

A Lesson In Low-Defect Software
- or -

A Journey From A Quick Hack
To A High-Reliability Database Engine

and how you can use the same techniques to reduce
the number of bugs in your own software projects

D. Richard Hipp
2009-03-10

What Is ?

SQL Database Engine
ACID

Transactional Single-file Database

Small footprint

Efficient

Robust

Zero-administration

Embedded
Serverless

Stable, cross-platform file format

Public domain

Easy to integrate

SQL?
What's That?

● “Structured Query Langauge”
● A high-level language for interacting with

databases
● The most widely known programming language

in the world.

Why SQLite?

● Serverless
● Zero-administration
● Portable file format
● Small footprint
● Public domain

● Serverless
● Zero-administration
● Portable file format
● Small footprint
● Public domain

Database
Files on

Disk

SQL
Database

Engine

Client

Client Client

Client

Database
Files on

Disk

Client

Client Client

Client

Advantages of Serverless

● No background server process
● No configuration files
● No IPC
● No security issues
● Nothing to start, shutdown, or reboot
● Nothing to go wrong or need tending to

Advantages of Serverless

● No background server process
● No configuration files
● No IPC
● No security issues
● Nothing to start, shutdown, or reboot
● Nothing to go wrong or need tending to

“ - ”Zero a dm in i str a t i on

● Serverless
● Zero-administration
● Portable file format
● Small footprint
● Public domain

Database Administrators

Database
Files on

Disk

SQL
Database

Engine

Client

Client Client

Client

Database
Files on

Disk

Client

Client Client

Client

Database
Files on

Disk

Client

Client Client

Client

SQLite 1.0
2000-08-17

Another way to think of
SQLite in relation to
traditional SQL database
engines....

is to is toas

● SQLite does not compete with Oracle

● SQLite does not compete with Oracle
● SQLite competes with fopen()

● Serverless
● Zero-administration
● Portable file format
● Small footprint
● Public domain

Portable File Format

● A database is a single ordinary disk file
● No special naming conventions or required file

suffixes
● Cross-platform: big/little-endian and 32/64-bit
● Backwards compatible through 3.0.0
● Promise to keep it compatible moving forward
● Not tied to any particular programming

language.

● Serverless
● Zero-administration
● Portable file format
● Small footprint
● Public domain

Small Footprint

gcc -Os -DSQLITE_THREADSAFE=0

gcc -O3 -DSQLITE_ENABLE_FTS3=1 -DSQLITE_ENABLE_RTREE=1

272 KiB

789 KiB

As of 2009-02-17

Single Source Code File

● The “amalgamation” source code file: sqlite3.c
● About 60,000 lines of ANSI C code
● 3.5 MB
● No other library dependencies on than standard

library routines:
– memcpy(), memset(), malloc(), free(), etc

● Very simple to add to a larger C program

● Serverless
● Zero-administration
● Portable file format
● Small footprint
● Public domain

Other Features Of SQLite

● App-defined functions
● App-defined collating

sequences
● UTF8 or UTF16
● Robust against power

loss
● Robust against

malloc() failures

● Full text search
● R-Trees
● ATTACH DATABASE
● Gigibyte size BLOBs

and strings
● Robust against I/O

errors
● Zero-malloc option

Adobe Photoshop Lightroom

Adobe Reader

Mozilla Firefox

Google Android

iPhone

iPod & iTunes

iStuff

Blackberry

Palm webOS

Skype

Sony Playstation

... and so forth

Various Programming Languages

SQLite.org
The Company

The SQLite Development Team

ConsortiumThe

● Guarantees of project continuity
● Enterprise-level technical support
● Highest priority bug fixes
● Community Outreach

ConsortiumThe

● Guarantees of project continuity
● Enterprise-level technical support
● Highest priority bug fixes
● Community Outreach

Keep It Reliable And Bug-Free!

The SQLite Journey

● SQLite 1.0 started out as a quick hack
– To solve a single problem in a single application
– Used only in a tightly controlled environment

● It has evolved into highly reliable and low-defect
software
– The most widely used SQL database engine in the

world
– Hundreds of millions of deployments
– Any defect has huge impact

● How did we achieve this?

Safety ≠ Reliability

First, some terminology:

Reliability: no failures

Safety: no harm

Volvo: Safe but not Reliable

Nitroglycerin: Reliable but not Safe

Safety ≠ Reliability

Safe
Software

Reliable
Software≅

Safe
Software

Extremely
Reliable
Software

=

Safe Programming Languages?

Safe Programming Languages?

● Prevent buffer overruns
● Help prevent memory leaks
● Trap exceptions

Safe Programming Languages?

● Prevent buffer overruns
● Help prevent memory leaks
● Trap exceptions

● They can still get the wrong answer

But....

Safe Programming Languages?

Less likely to have
a zero-day exploit

Less likely to cause
injury or death

What Programming Languages
Does The World's Most Reliable

Software Use?

What Programming Languages
Does The World's Most Reliable

Software Use?

Hint: The answer is not any of the following:

Space Shuttle: HAL/S

Avionics: Ada or C

DO-178B and ED-12B

● It's the development process not the
programming language that counts.

● Captures best practices
● Required for safety-critical software by:

DO-178B and ED-12B

● 21 “outputs” (mostly reports)
● 66 “objectives”

Reports &
Documentation

Code

Planning Documents

● Plan for Software Aspects of Certification
● Software Development Plan
● Software Verification Plan
● Software Configuration Management Plan
● Software Quality Assurance Plan
● Software Requirements Standards
● Software Design Standards
● Software Coding Standards

Verification Documents

● Software Verifications Cases & Procedures
● Software Verification Results
● Software Configuration Management Records
● Software Configuration Index
● Bug Reports
● Software Quality Assurance Records
● Software Conformity Review
● Software Accomplishment Summary

Requirements Stack

System Requirements

High Level Requirements

Software Architecture

Low Level Requirements

Source Code

Object Code

4 Sample Objectives out of 66

● High-level requirements comply with system
requirements (with independence)

● High-level requirement algorithms are accurate
(with independence)

● Source code it traceable to low-level
requirements

● Modified Condition/Decision test coverage is
achieved (with independence)

End result of DO-178B/ED-12B....

● Software that has very few defects

End result of DO-178B/ED-12B....

● Software that has very few defects

● Expensive software
● Software that takes a long time to bring to

market
● Boring software

Also...

The Essence of DO-178B

● Use your whole brain
● Full coverage testing
● Good configuration management

3 Steps Toward Low-Defect Code

● Use your whole brain
● Full coverage testing
● Good configuration management

3 Steps Toward Low-Defect Code

● Use your whole brain
● Full coverage testing
● Good configuration management
● Don't just fix bugs – fix your process

Not in DO-178B, but ought to be

4

4 Steps Toward Low-Defect Code

● Use your whole brain
● Full coverage testing
● Good configuration management
● Don't just fix bugs – fix your process

Use Your Whole Brain

Math side Language side

Use Your Whole Brain

Code side Comment side

Why Put Comments In Code?

1) Make the code easier to read
2) Engage the linguistic side of your brain

Code without Comments?

● Only uses have your
brain.

● In English we call this
being a “half-wit”.

Why Put Comments In Code?

1) Make the code easier to read
2) Engage the linguistic side of your brain

Catch and fix code defects early

Hey, Carl, can you look at this problem with me. I've been working on this for
hours. You see the X variable clearly cannot be less than zero because Y
has to be more than 20.... Oh wait. That's not right. OK, I've got it now.
Thanks, Carl!

Why Put Comments In Code?

1) Make the code easier to read
2) Engage the linguistic side of your brain

Common Fallacy:
“Well-written code needs no comments”
● Ignores reason (2) for writing comments
● No code is ever that well written

What To Comment
● Each function or procedure and major code

blocks
– Explain what it computes, not how it works
– Preconditions, postconditions, invariants

● Each variable, constant, and type declaration
– Explain what the variable or type represents
– Constraints

● Comments stand in for low-level requirements
● Be succinct – avoid fancy formatting and

boilerplate

Mother-tongue Or English?

● English-language comments are best for
readability.

● Mother-tongue comments are best for catching
bugs.

● Why not do both?

System Requirements

High Level Requirements

Software Architecture

Low Level Requirements

Source Code

Object Code

Code :: Comment
53813 :: 27695

* As of 2009-03-03 18:20 EST

Code :: Comment
2 :: 1

Express Ideas In Different Ways

stmt ::= ALTER TABLE fullname RENAME TO id.
stmt ::= ALTER TABLE fullname ADD column_opt column_def.

Use Multiple Brains

● Structured Walk-Throughs & Inspections
– Finds errors that a single programmer will miss
– Keeps the code uniform
– Helps entire team stay up-to-date
– Training for junior team members
– Only works if down well

Use Multiple Brains

● Pair Programming
– Two people working together on the same

workstation
● One person works the keyboard
● The other person reads and checks for mistakes

– Builds a sense of community ownership
– Promotes uniformity of coding and commenting

style
– Requires that programmers be colocated
– Requires interpersonal skills (which many

programmers lack)

Use Multiple Brains

● Open-Source
– Encourage volunteer code reviewers
– It helps if your code has good (English) comments!
– In practice, very few bugs are ever found this way

4 Steps Toward Low-Defect Code

● Use your whole brain
● Full coverage testing
● Good configuration management
● Don't just fix bugs – fix your process

Full Coverage Testing

● Automated tests that exercise all features of the
program
– All entry points
– All subroutines
– All branches and conditions
– All cases
– All boundary values

● The single best way to find bugs
● DO-178B places special emphasis on testing

If it has not been tested
then it does not work.

Fly what you test
and test what you fly.

Statement Coverage:

Branch Coverage:

Tests cause every line of code to run at least once.

Tests cause every machine-language branch operation
to evaluate to both TRUE and FALSE at least once.

int exampleFunction(int a, int b){
 int ans = 0;
 if(a>b && a<2*b){
 ans = a;
 }else{
 ans = b;
 }
 return ans;
}

int exampleFunction(int a, int b){
 int ans = 0;
 if(a>b && a<2*b){
 ans = a;
 }else{
 ans = b;
 }
 return ans;
}

Test 1: exampleFunction(1,1)

5 out of 6 statements: 83.33% statement coverage

int exampleFunction(int a, int b){
 int ans = 0;
 if(a>b && a<2*b){
 ans = a;
 }else{
 ans = b;
 }
 return ans;
}

Test 1: exampleFunction(1,1)
Test 2: exampleFunction(3,2)

6 out of 6 statements: 100% statement coverage

int exampleFunction(int a, int b){
 int ans = 0;
 if(a>b && a<2*b){
 ans = a;
 }else{
 ans = b;
 }
 return ans;
}

Test 1: exampleFunction(1,1)
Test 2: exampleFunction(3,2)

3 out of 4 branches: 75% branch coverage

Branches:
 a>b Taken on test 2
 !(a>b) Taken on test 1
 a<2*b Taken on test 2
 !(a<2*b) Never taken

int exampleFunction(int a, int b){
 int ans = 0;
 if(a>b && a<2*b){
 ans = a;
 }else{
 ans = b;
 }
 return ans;
}

Test 1: exampleFunction(1,1)
Test 2: exampleFunction(3,2)
Test 3: exampleFunction(4,2)

4 out of 4 branches: 100% branch coverage

Branches:
 a>b Taken on test 2
 !(a>b) Taken on test 1
 a<2*b Taken on test 2
 !(a<2*b) Taken on test 3

Measuring Statement Coverage

gcc -g -fprofile-arcs -ftest-coverage
./a.out
gcov -c ex1.c
cat ex1.c.gcov

Measuring Statement Coverage

 1: 1:int exampleFunction(int a, int b){
 1: 2: int ans = 0;
 1: 3: if(a>b && a<2*b){
 #####: 4: ans = a;
 -: 5: }else{
 1: 6: ans = b;
 -: 7: }
 1: 8: return ans;
 -: 9:}

Number of times this line was evaluated

Line number in source file

Test 1 only

Measuring Statement Coverage

 2: 1:int exampleFunction(int a, int b){
 2: 2: int ans = 0;
 2: 3: if(a>b && a<2*b){
 1: 4: ans = a;
 -: 5: }else{
 1: 6: ans = b;
 -: 7: }
 2: 8: return ans;
 -: 9:}

Number of times this line was evaluated

Line number in source file

Tests 1 & 2

Measuring Branch Coverage

gcc -g -fprofile-arcs -ftest-coverage
./a.out
gcov -b -c ex1.c
cat ex1.c.gcov

The only change

Measuring Branch Coverage

 1: 1:int exampleFunction(int a, int b){
 1: 2: int ans = 0;
 1: 3: if(a>b && a<2*b){
branch 0 taken 0 (fallthrough)
branch 1 taken 1
branch 2 never executed
branch 3 never executed
 #####: 4: ans = a;
 -: 5: }else{
 1: 6: ans = b;
 -: 7: }
 1: 8: return ans;
 -: 9:}

Condition never evaluated

Branch never taken

Test 1 only

Measuring Branch Coverage

 2: 1:int exampleFunction(int a, int b){
 2: 2: int ans = 0;
 2: 3: if(a>b && a<2*b){
branch 0 taken 1 (fallthrough)
branch 1 taken 1
branch 2 taken 1 (fallthrough)
branch 3 taken 0
 1: 4: ans = a;
 -: 5: }else{
 1: 6: ans = b;
 -: 7: }
 2: 8: return ans;
 -: 9:}

Branch never taken

Tests 1 & 2

Measuring Branch Coverage

 3: 1:int exampleFunction(int a, int b){
 3: 2: int ans = 0;
 3: 3: if(a>b && a<2*b){
branch 0 taken 2 (fallthrough)
branch 1 taken 1
branch 2 taken 1 (fallthrough)
branch 3 taken 1
 1: 4: ans = a;
 -: 5: }else{
 2: 6: ans = b;
 -: 7: }
 3: 8: return ans;
 -: 9:}

Tests 1, 2, & 3

All branches taken
at least once:
100% coverage!

Fly what you test!

● Compile for coverage testing
● Run tests
● Verify correct result
● Recompile as delivered
● Rerun tests
● Verify same results as before

Not what you fly

What you fly

Fly what you test!

● Compile for coverage testing
● Run tests
● Verify correct result
● Recompile as delivered
● Rerun tests
● Verify same results as before
● Measuring coverage validates

your tests, not your product

Not what you fly
Validates your tests

What you fly
Validates your product

Defensive Programming

void *sqlite3InternalMalloc(int nBytes){
 if(nBytes<=0){
 return 0;
 }else{
 return sqlite3LowLevelMalloc(nBytes);
 }
}

● Unable to handle nBytes>0x7FFFFFF0
● Will return incorrectly sized buffer if nBytes is too large.
● Possible memory overrun exploit

Will never be larger than 0x40000010

Defensive Programming

void *sqlite3InternalMalloc(int nBytes){
 if(nBytes<=0 || nBytes>=0x7fffff00){
 return 0;
 }else{
 return sqlite3LowLevelMalloc(nBytes);
 }
}

● Prevents any possibility of an exploit
● But – how can we test it?

Defensive Programming

void *sqlite3InternalMalloc(int nBytes){
 if(nBytes<=0 || NEVER(nBytes>=0x7fffff00)){
 return 0;
 }else{
 return sqlite3LowLevelMalloc(nBytes);
 }
}

● NEVER() macro around conditions that are always FALSE
● ALWAYS() macro around conditions that are always TRUE

ALWAYS() and NEVER()

#if defined(SQLITE_COVERAGE_TEST)
define ALWAYS(X) 1
define NEVER(X) 0

#elif defined(SQLITE_DEBUG)
define ALWAYS(X) ((X)?1:sqlite3Panic())
define NEVER(X) ((X)?sqlite3Panic():0)

#else
define ALWAYS(X) (X)
define NEVER(X) (X)
#endif

What you fly:
ALWAYS and NEVER are
pass-throughs.

ALWAYS() and NEVER()

#if defined(SQLITE_COVERAGE_TEST)
define ALWAYS(X) 1
define NEVER(X) 0

#elif defined(SQLITE_DEBUG)
define ALWAYS(X) ((X)?1:sqlite3Panic())
define NEVER(X) ((X)?sqlite3Panic():0)

#else
define ALWAYS(X) (X)
define NEVER(X) (X)
#endif

For test coverage measurement:
Unconditional so that there are no
untested branches

ALWAYS() and NEVER()

#if defined(SQLITE_COVERAGE_TEST)
define ALWAYS(X) 1
define NEVER(X) 0

#elif defined(SQLITE_DEBUG)
define ALWAYS(X) ((X)?1:sqlite3Panic())
define NEVER(X) ((X)?sqlite3Panic():0)

#else
define ALWAYS(X) (X)
define NEVER(X) (X)
#endif

During development:
Panic if ALWAYS() is false or
if NEVER() is true.

Testing In

● 99% Statement Coverage
● 95% Branch Coverage
● Goal: 100% branch coverage by Dec 2009
● Striving for 100% test coverage has been our

most effective method for finding bugs.

Testing In

● “testfixture”
– Written in C + TCL
– Approximately 1 million test cases

● “th3”
– Pure C code (for embedded platforms)
– Approximately 2.3 million test cases

● “sqllogictest”
– Compare SQLite against MySQL, PostgreSQL, etc
– Approximately 5.8 million test cases

Tcl/Tk in Google Summer of Code
slides available at http://purl.org/NET/gsoc2009

• Google Summer of Code (GSoC)
– Google pay 4500USD each qualified student
for coding for 12 weeks for approved open source project.

• Tcl/Tk – dynamic (scripting) language
also known as “The C Library” (high quality C source code)
http://www.tcl.tk (official) or http://tkosiak.blogspot.com (po polsku).

• D. Richard Hipp is Tcl Core Team Member “Emeriti” ☺
• 9 / 9 students successfully completed GSoC 2008

and get paid with Tcl/Tk community
(note PHP also have 9 slots in GSoC 2008)

Why to apply to Tcl/Tk GSoC?
• Tcl is easy to learn but very productive language.

Used in GCC/GDB, SQLite and Cisco, Intel, Mentor, IBM, Motorola …
• Tcl/Tk GSoC is about coding in C and/or Tcl

and is not crowded with students applications.
• 4/9 Tcl/Tk GSoC 2008 students were from Poland !!!

(please contact them about it: ania.pawelczyk@gmail.com,
blicharski@gmail.com, daniel.m.hans@gmail.com, lrem@go2.pl)

• Tcl Community is known to be extremely friendly.
In Poland you have local Polish speaking experts willing to help:
o Tomasz Kosiak http://tkosiak.blogspot.com or http://wiki.tcl.tk/17873
o Wojciech Kocjan http://kocjan.org or http://wiki.tcl.tk/3684
o Paweł Salawa http://sqlitestudio.one.pl or http://wiki.tcl.tk/12959

• For more details or help contact Tomasz Kosiak
(tkosiak@gmail.com /+48 503 021 130) who helps to organize Tcl/Tk GSoC.

Testing In

● “testfixture”
– Written in C + TCL
– Approximately 1 million test cases

● “th3”
– Pure C code (for embedded platforms)
– Approximately 2.3 million test cases

● “sqllogictest”
– Compare SQLite against MySQL, PostgreSQL, etc
– Approximately 5.8 million test cases

Testing In

Code :: Test Data
1 :: 716

Testing In

● Crash testing
– Simulate recovery from power loss

● I/O Error and Out-of-memory testing
– Recovery from system errors.

● “fuzz” testing
– Test response to random inputs

● valgrind

Fuzz Testing

SELECT NOT -2147483647 IN (SELECT DISTINCT 2147483649 FROM (SELECT DISTINCT EXISTS (SELECT ALL
'injection' FROM (SELECT DISTINCT 1, 'experiments', 0) UNION ALL SELECT DISTINCT NULL) NOT IN
(SELECT EXISTS (SELECT ALL 'fault') IN (SELECT DISTINCT 'The') IN (SELECT DISTINCT 0 ORDER BY
'experiments' ASC, -2147483649 DESC)) IN (SELECT EXISTS (SELECT 'experiments') FROM (SELECT
DISTINCT NULL, -2147483647)) IN (SELECT EXISTS (SELECT DISTINCT 56.1 ORDER BY -456 ASC) ORDER
BY (SELECT 'first') DESC), CAST((SELECT (SELECT 0) IN (SELECT DISTINCT 'injection') IN (SELECT
ALL 'The') NOT IN (SELECT DISTINCT 'first' ORDER BY 2147483648 LIMIT 123456789.1234567899
OFFSET 2147483648)) AS blob) FROM (SELECT 'The', -1 UNION ALL SELECT 456, CAST(56.1 AS text)
ORDER BY CAST(-2147483649 AS real) ASC)))

Testing In

● Most bugs are found internally – before release
● External bugs are mostly build problems
● We do not do “alpha” or “beta” releases

– All releases are production ready
● Very, very few “wrong answers” found by users

4 Steps Toward Low-Defect Code

● Use your whole brain
● Full coverage testing
● Good configuration management
● Don't just fix bugs – fix your process

Configuration Management

● Identification
● Access Control
● Archival Storage
● Reporting and Auditing
● Collaboration
● Defect Tracking

Configuration Management

● Identification
● Access Control
● Archival Storage
● Reporting and Auditing
● Collaboration
● Defect Tracking

Version Control System
CVS, Subversion, Git, Mercurial,
Monotone, Fossil, Bitkeeper,
Perforce, ClearCase

Configuration Management

● Identification
● Access Control
● Archival Storage
● Reporting and Auditing
● Collaboration
● Defect Tracking

Various ad hoc add-ons.

Configuration Management

● Identification
● Access Control
● Archival Storage
● Reporting and Auditing
● Collaboration
● Defect Tracking

Very, very important yet
commonly ignored!

Configuration Management

● Identification
● Access Control
● Archival Storage
● Reporting and Auditing
● Collaboration
● Defect Tracking

“situational awareness”

Situational Awareness

● Understanding what is happening around you
● Recognizing how events and your own actions

will impact goals and objectives
● Lack of situational awareness is the main cause

of human-error accidents
● Important in work domains where information

flow is high and poor decisions may have
serious consequences

Situational Awareness in CM

● What has changed last N days?
● What has changed between release X and Y?
● What changed in module M between dates P

and Q?
● Who made the changes and why?
● When and why was line of code W inserted?
● When and why was subroutine U last modified?
● What bugs are still outstanding?
● What changes were made to address bug Z?

Open-Source Reporting Systems

● CVSTrac
– http://www.cvstrac.org/
– CVS, Subversion, GIT

● Trac
– http://trac.edgewall.org/
– Subversion, GIT, Perforce, Mercurial, Darcs, Bazaar

● Fossil
– http://www.fossil-scm.org/
– Distributed version control with reporting built in

http://trac.edgewall.org/
http://www.fossil-scm.org/

Open-Source Reporting Systems

● CVSTrac
– http://www.cvstrac.org/
– CVS, Subversion, GIT

● Trac
– http://trac.edgewall.org/
– Subversion, GIT, Perforce, Mercurial, Darcs, Bazaar

● Fossil
– http://www.fossil-scm.org/
– Distributed version control with reporting built in

 Used by SQLite

 Essential to the success of SQLite

 New projects should consider newer
 systems

http://trac.edgewall.org/
http://www.fossil-scm.org/

Are you already using a version control system?

Good! Be sure to add reporting and auditing software.
Maintain situational awareness!

Are you not currently using a version control?

● Go to http://www.fossil-scm.org/
● Download a pre-compiled binary for fossil
● Start using it!

http://www.fossil-scm.org/

4 Steps Toward Low-Defect Code

● Use your whole brain
● Full coverage testing
● Good configuration management
● Don't just fix bugs – fix your process

When you find a bug....

● Add a test case that demonstrates the bug
– Prevents the bug from recurring

● Ask: “Are there any similar bugs elsewhere in
the code?”
– Find and fix them too – adding new test cases

● Ask: “What tests or development procedures
might have prevented this bug?”
– Implement your answers

When you find a bug....

● Ask: “What is the root cause of this bug?”
– Fix the root cause, not the specific manifestation

● Ask: “What can be done to prevent future
occurrences of similar bugs?”
– Implement your answers

Summary

● Use your whole brain
– Good comments and documentation reduce defects

● Full coverage testing
– If it is not tested, it does not work
– Fly what you test and test what you fly

● Good configuration management
– Maintain Situational Awareness

● Don't just fix bugs – fix your process

