SQLite4
Changes On Branch compression-hooks
Not logged in

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Changes In Branch compression-hooks Excluding Merge-Ins

This is equivalent to a diff from a7de625f13 to 676da8516d

2012-10-28
11:38
Merge compression-hooks branch with trunk. check-in: a701b281e9 user: dan tags: trunk
11:34
Turn off LSM_CONFIG_MMAP automatically in compressed database mode. Leaf check-in: 676da8516d user: dan tags: compression-hooks
11:28
Enhance the file-format to allow padding records smaller than 6 bytes in length. check-in: 2ba0368e76 user: dan tags: compression-hooks
2012-10-17
19:29
Fix various issues with tcl test cases. check-in: ae7d9c68ef user: dan tags: trunk
2012-10-16
15:26
Change page numbers to 8-byte numbers (from 4). This is required to support compressed databases, where a page number is a byte offset in the database file. check-in: 5d266a717d user: dan tags: compression-hooks
2012-10-15
19:36
Merge range-delete branch back into trunk. check-in: a7de625f13 user: dan tags: trunk
19:34
Fix a case in live-recovery from a writer crash. Leaf check-in: 80abdbea2d user: dan tags: range-delete
2012-10-03
09:24
Minor changes to the lsmperf.tcl script. check-in: 45e59053e7 user: dan tags: trunk

Changes to lsm-test/lsmtest.h.

74
75
76
77
78
79
80

81
82
83
84
85
86
87
** Functions in wrapper3.c. This file contains the tdb wrapper for lsm.
** The wrapper for lsm is a bit more involved than the others, as it 
** includes code for a couple of different lsm configurations, and for
** various types of fault injection and robustness testing.
*/
int test_lsm_open(const char *zFilename, int bClear, TestDb **ppDb);
int test_lsm_lomem_open(const char *zFilename, int bClear, TestDb **ppDb);

int test_lsm_small_open(const char *zFilename, int bClear, TestDb **ppDb);
int test_lsm_mt2(const char *zFilename, int bClear, TestDb **ppDb);
int test_lsm_mt3(const char *zFilename, int bClear, TestDb **ppDb);

/* Functions in testutil.c. */
int  testPrngInit(void);
u32  testPrngValue(u32 iVal);







>







74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
** Functions in wrapper3.c. This file contains the tdb wrapper for lsm.
** The wrapper for lsm is a bit more involved than the others, as it 
** includes code for a couple of different lsm configurations, and for
** various types of fault injection and robustness testing.
*/
int test_lsm_open(const char *zFilename, int bClear, TestDb **ppDb);
int test_lsm_lomem_open(const char *zFilename, int bClear, TestDb **ppDb);
int test_lsm_zip_open(const char *zFilename, int bClear, TestDb **ppDb);
int test_lsm_small_open(const char *zFilename, int bClear, TestDb **ppDb);
int test_lsm_mt2(const char *zFilename, int bClear, TestDb **ppDb);
int test_lsm_mt3(const char *zFilename, int bClear, TestDb **ppDb);

/* Functions in testutil.c. */
int  testPrngInit(void);
u32  testPrngValue(u32 iVal);

Changes to lsm-test/lsmtest2.c.

200
201
202
203
204
205
206
207
208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
** This function is a no-op if *pRc is non-zero when it is called.
**
** Open the LSM database identified by zFile and compute its checksum
** (a string, as returned by testCksumDatabase()). If the checksum is
** identical to zExpect1 or, if it is not NULL, zExpect2, the test passes.
** Otherwise, print an error message and set *pRc to 1.
*/
void testCompareCksumLsmdb(
  const char *zFile,              /* Path to LSM database */

  const char *zExpect1,           /* Expected checksum 1 */
  const char *zExpect2,           /* Expected checksum 2 (or NULL) */
  int *pRc                        /* IN/OUT: Test case error code */
){
  if( *pRc==0 ){
    char zCksum[TEST_CKSUM_BYTES];
    TestDb *pDb;

    pDb = testOpen("lsm", 0, pRc);
    testCksumDatabase(pDb, zCksum);
    testClose(&pDb);

    if( *pRc==0 ){
      int r1 = 0;
      int r2 = -1;








|

>








|







200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
** This function is a no-op if *pRc is non-zero when it is called.
**
** Open the LSM database identified by zFile and compute its checksum
** (a string, as returned by testCksumDatabase()). If the checksum is
** identical to zExpect1 or, if it is not NULL, zExpect2, the test passes.
** Otherwise, print an error message and set *pRc to 1.
*/
static void testCompareCksumLsmdb(
  const char *zFile,              /* Path to LSM database */
  int bCompress,                  /* True if db is compressed */
  const char *zExpect1,           /* Expected checksum 1 */
  const char *zExpect2,           /* Expected checksum 2 (or NULL) */
  int *pRc                        /* IN/OUT: Test case error code */
){
  if( *pRc==0 ){
    char zCksum[TEST_CKSUM_BYTES];
    TestDb *pDb;

    *pRc = tdb_lsm_open((bCompress?"compression=1 mmap=0":""), zFile, 0, &pDb);
    testCksumDatabase(pDb, zCksum);
    testClose(&pDb);

    if( *pRc==0 ){
      int r1 = 0;
      int r2 = -1;

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266








267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
** should really be in this file.
*************************************************************************/

/*
** This test verifies that if a system crash occurs while doing merge work
** on the db, no data is lost.
*/
static void crash_test1(int *pRc){
  const char *DBNAME = "testdb.lsm";

  const DatasourceDefn defn = {TEST_DATASOURCE_RANDOM, 12, 16, 200, 200};

  const int nRow = 5000;          /* Database size */
  const int nIter = 200;          /* Number of test iterations */
  const int nWork = 20;           /* Maximum lsm_work() calls per iteration */
  const int nPage = 15;           /* Pages per lsm_work call */

  int i;
  int iDot = 0;
  Datasource *pData;
  CksumDb *pCksumDb;
  TestDb *pDb;









  /* Allocate datasource. And calculate the expected checksums. */
  pData = testDatasourceNew(&defn);
  pCksumDb = testCksumArrayNew(pData, nRow, nRow, 1);

  /* Setup and save the initial database. */
  testSetupSavedLsmdb(
      "page_size=1024 block_size=65536 write_buffer=16384 nmerge=7", 
      DBNAME, pData, 5000, pRc
  );

  for(i=0; i<nIter && *pRc==0; i++){
    int iWork;
    int testrc = 0;

    testCaseProgress(i, nIter, testCaseNDot(), &iDot);

    /* Restore and open the database. */
    testRestoreLsmdb(DBNAME);
    testrc = tdb_lsm_open("safety=2", DBNAME, 0, &pDb);
    assert( testrc==0 );

    /* Call lsm_work() on the db */
    tdb_lsm_prepare_sync_crash(pDb, 1 + (i%(nWork*2)));
    for(iWork=0; testrc==0 && iWork<nWork; iWork++){
      int nWrite = 0;
      lsm_db *db = tdb_lsm(pDb);
      testrc = lsm_work(db, 0, nPage, &nWrite);
      assert( testrc!=0 || nWrite>0 );
      if( testrc==0 ) testrc = lsm_checkpoint(db, 0);
    }
    tdb_close(pDb);

    /* Check that the database content is still correct */
    testCompareCksumLsmdb(DBNAME, testCksumArrayGet(pCksumDb, nRow), 0, pRc);

  }

  testCksumArrayFree(pCksumDb);
  testDatasourceFree(pData);
}

/*
** This test verifies that if a system crash occurs while committing a
** transaction to the log file, no earlier transactions are lost or damaged.
*/
static void crash_test2(int *pRc){
  const char *DBNAME = "testdb.lsm";
  const DatasourceDefn defn = {TEST_DATASOURCE_RANDOM, 12, 16, 1000, 1000};

  const int nIter = 200;
  const int nInsert = 20;

  int i;







|

<












>
>
>
>
>
>
>
>






|
|
|
|









|














|
>










|







246
247
248
249
250
251
252
253
254

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
** should really be in this file.
*************************************************************************/

/*
** This test verifies that if a system crash occurs while doing merge work
** on the db, no data is lost.
*/
static void crash_test1(int bCompress, int *pRc){
  const char *DBNAME = "testdb.lsm";

  const DatasourceDefn defn = {TEST_DATASOURCE_RANDOM, 12, 16, 200, 200};

  const int nRow = 5000;          /* Database size */
  const int nIter = 200;          /* Number of test iterations */
  const int nWork = 20;           /* Maximum lsm_work() calls per iteration */
  const int nPage = 15;           /* Pages per lsm_work call */

  int i;
  int iDot = 0;
  Datasource *pData;
  CksumDb *pCksumDb;
  TestDb *pDb;
  char *zCfg;

  const char *azConfig[2] = {
    "page_size=1024 block_size=65536 write_buffer=16384 safety=2 mmap=0", 
    "page_size=1024 block_size=65536 write_buffer=16384 safety=2 "
    " compression=1 mmap=0"
  };
  assert( bCompress==0 || bCompress==1 );

  /* Allocate datasource. And calculate the expected checksums. */
  pData = testDatasourceNew(&defn);
  pCksumDb = testCksumArrayNew(pData, nRow, nRow, 1);

  /* Setup and save the initial database. */

  zCfg = testMallocPrintf("%s nmerge=7", azConfig[bCompress]);
  testSetupSavedLsmdb(zCfg, DBNAME, pData, 5000, pRc);
  testFree(zCfg);

  for(i=0; i<nIter && *pRc==0; i++){
    int iWork;
    int testrc = 0;

    testCaseProgress(i, nIter, testCaseNDot(), &iDot);

    /* Restore and open the database. */
    testRestoreLsmdb(DBNAME);
    testrc = tdb_lsm_open(azConfig[bCompress], DBNAME, 0, &pDb);
    assert( testrc==0 );

    /* Call lsm_work() on the db */
    tdb_lsm_prepare_sync_crash(pDb, 1 + (i%(nWork*2)));
    for(iWork=0; testrc==0 && iWork<nWork; iWork++){
      int nWrite = 0;
      lsm_db *db = tdb_lsm(pDb);
      testrc = lsm_work(db, 0, nPage, &nWrite);
      assert( testrc!=0 || nWrite>0 );
      if( testrc==0 ) testrc = lsm_checkpoint(db, 0);
    }
    tdb_close(pDb);

    /* Check that the database content is still correct */
    testCompareCksumLsmdb(DBNAME, 
        bCompress, testCksumArrayGet(pCksumDb, nRow), 0, pRc);
  }

  testCksumArrayFree(pCksumDb);
  testDatasourceFree(pData);
}

/*
** This test verifies that if a system crash occurs while committing a
** transaction to the log file, no earlier transactions are lost or damaged.
*/
static void crash_test2(int bCompress, int *pRc){
  const char *DBNAME = "testdb.lsm";
  const DatasourceDefn defn = {TEST_DATASOURCE_RANDOM, 12, 16, 1000, 1000};

  const int nIter = 200;
  const int nInsert = 20;

  int i;
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
      testDatasourceEntry(pData, 100+iIns, &pKey, &nKey, &pVal, &nVal);
      testrc = tdb_write(pDb, pKey, nKey, pVal, nVal);
      if( testrc ) break;
    }
    tdb_close(pDb);

    /* Check that no data was lost when the system crashed. */
    testCompareCksumLsmdb(DBNAME, 
      testCksumArrayGet(pCksumDb, 100 + iIns),
      testCksumArrayGet(pCksumDb, 100 + iIns + 1),
      pRc
    );
  }

  testDatasourceFree(pData);
  testCksumArrayFree(pCksumDb);
}

/*
** This test verifies that if a system crash occurs when checkpointing
** the database, data is not lost (assuming that any writes not synced
** to the db have been synced into the log file).
*/
static void crash_test3(int *pRc){
  const char *DBNAME = "testdb.lsm";
  const int nIter = 100;
  const DatasourceDefn defn = {TEST_DATASOURCE_RANDOM, 12, 16, 1000, 1000};

  int i;
  int iDot = 0;
  Datasource *pData;







|















|







358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
      testDatasourceEntry(pData, 100+iIns, &pKey, &nKey, &pVal, &nVal);
      testrc = tdb_write(pDb, pKey, nKey, pVal, nVal);
      if( testrc ) break;
    }
    tdb_close(pDb);

    /* Check that no data was lost when the system crashed. */
    testCompareCksumLsmdb(DBNAME, bCompress,
      testCksumArrayGet(pCksumDb, 100 + iIns),
      testCksumArrayGet(pCksumDb, 100 + iIns + 1),
      pRc
    );
  }

  testDatasourceFree(pData);
  testCksumArrayFree(pCksumDb);
}

/*
** This test verifies that if a system crash occurs when checkpointing
** the database, data is not lost (assuming that any writes not synced
** to the db have been synced into the log file).
*/
static void crash_test3(int bCompress, int *pRc){
  const char *DBNAME = "testdb.lsm";
  const int nIter = 100;
  const DatasourceDefn defn = {TEST_DATASOURCE_RANDOM, 12, 16, 1000, 1000};

  int i;
  int iDot = 0;
  Datasource *pData;
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

421
422

423
424
425
426
427
428
429
430
431
432
433
434
435
436

      /* Schedule a crash simulation then close the db. */
      tdb_lsm_prepare_sync_crash(pDb, 1 + (i%2));
      tdb_close(pDb);

      /* Open the database and check that the crash did not cause any
      ** data loss.  */
      testCompareCksumLsmdb(DBNAME, 
        testCksumArrayGet(pCksumDb, 110 + iOpen*10), 0,
        pRc
      );
    }
  }

  testDatasourceFree(pData);
  testCksumArrayFree(pCksumDb);
}

void do_crash_test(const char *zPattern, int *pRc){
  struct Test {
    const char *zTest;
    void (*x)(int *);

  } aTest [] = {
    { "crash.lsm.1", crash_test1 },

    { "crash.lsm.2", crash_test2 },
    { "crash.lsm.3", crash_test3 },
  };
  int i;

  for(i=0; *pRc==LSM_OK && i<ArraySize(aTest); i++){
    struct Test *p = &aTest[i];
    if( testCaseBegin(pRc, zPattern, "%s", p->zTest) ){
      p->x(pRc);
      testCaseFinish(*pRc);
    }
  }
}








|













|
>

|
>
|
|






|





408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

      /* Schedule a crash simulation then close the db. */
      tdb_lsm_prepare_sync_crash(pDb, 1 + (i%2));
      tdb_close(pDb);

      /* Open the database and check that the crash did not cause any
      ** data loss.  */
      testCompareCksumLsmdb(DBNAME, bCompress,
        testCksumArrayGet(pCksumDb, 110 + iOpen*10), 0,
        pRc
      );
    }
  }

  testDatasourceFree(pData);
  testCksumArrayFree(pCksumDb);
}

void do_crash_test(const char *zPattern, int *pRc){
  struct Test {
    const char *zTest;
    void (*x)(int, int *);
    int bCompress;
  } aTest [] = {
    { "crash.lsm.1",     crash_test1, 0 },
    { "crash.lsm_zip.1", crash_test1, 1 },
    { "crash.lsm.2",     crash_test2, 0 },
    { "crash.lsm.3",     crash_test3, 0 },
  };
  int i;

  for(i=0; *pRc==LSM_OK && i<ArraySize(aTest); i++){
    struct Test *p = &aTest[i];
    if( testCaseBegin(pRc, zPattern, "%s", p->zTest) ){
      p->x(p->bCompress, pRc);
      testCaseFinish(*pRc);
    }
  }
}

Changes to lsm-test/lsmtest_main.c.

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353




1354


1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
  if( pClose ) fclose(pClose);
  pEnv->xClose(pOut);

  return rc;
}

static int do_insert(int nArg, char **azArg){
  const char *zConfig = 0;
  const char *zDb = "lsm";
  TestDb *pDb = 0;
  int i;
  int rc;
  const int nRow = 1 * 1000 * 1000;

  DatasourceDefn defn = { TEST_DATASOURCE_RANDOM, 8, 15, 80, 150 };
  Datasource *pData = 0;

  if( nArg>2 ){
    testPrintError("Usage: insert ?DATABASE? ?LSM-CONFIG?\n");
    return 1;
  }
  if( nArg==1 ){ zDb = azArg[0]; }
  if( nArg==2 ){ zConfig = azArg[1]; }

  testMallocUninstall(tdb_lsm_env());




  rc = tdb_open(zDb, 0, 1, &pDb);


  if( rc!=0 ){
    testPrintError("Error opening db \"%s\": %d\n", zDb, rc);
  }else{
    InsertWriteHook hook;
    memset(&hook, 0, sizeof(hook));
    hook.pOut = fopen("writelog.txt", "w");

    pData = testDatasourceNew(&defn);
    tdb_lsm_config_work_hook(pDb, do_insert_work_hook, 0);
    tdb_lsm_write_hook(pDb, do_insert_write_hook, (void *)&hook);
    if( zConfig ){
      rc = tdb_lsm_config_str(pDb, zConfig);
    }

    if( rc==0 ){
      for(i=0; i<nRow; i++){
        void *pKey; int nKey;     /* Database key to insert */
        void *pVal; int nVal;     /* Database value to insert */
        testDatasourceEntry(pData, i, &pKey, &nKey, &pVal, &nVal);
        tdb_write(pDb, pKey, nKey, pVal, nVal);







<









|
|



<


>
>
>
>
|
>
>










<
<
<







1329
1330
1331
1332
1333
1334
1335

1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368



1369
1370
1371
1372
1373
1374
1375
  if( pClose ) fclose(pClose);
  pEnv->xClose(pOut);

  return rc;
}

static int do_insert(int nArg, char **azArg){

  const char *zDb = "lsm";
  TestDb *pDb = 0;
  int i;
  int rc;
  const int nRow = 1 * 1000 * 1000;

  DatasourceDefn defn = { TEST_DATASOURCE_RANDOM, 8, 15, 80, 150 };
  Datasource *pData = 0;

  if( nArg>1 ){
    testPrintError("Usage: insert ?DATABASE?\n");
    return 1;
  }
  if( nArg==1 ){ zDb = azArg[0]; }


  testMallocUninstall(tdb_lsm_env());
  for(i=0; zDb[i] && zDb[i]!='='; i++);
  if( zDb[i] ){
    rc = tdb_lsm_open(zDb, "testdb.lsm", 1, &pDb);
  }else{
    rc = tdb_open(zDb, 0, 1, &pDb);
  }

  if( rc!=0 ){
    testPrintError("Error opening db \"%s\": %d\n", zDb, rc);
  }else{
    InsertWriteHook hook;
    memset(&hook, 0, sizeof(hook));
    hook.pOut = fopen("writelog.txt", "w");

    pData = testDatasourceNew(&defn);
    tdb_lsm_config_work_hook(pDb, do_insert_work_hook, 0);
    tdb_lsm_write_hook(pDb, do_insert_write_hook, (void *)&hook);




    if( rc==0 ){
      for(i=0; i<nRow; i++){
        void *pKey; int nKey;     /* Database key to insert */
        void *pVal; int nVal;     /* Database value to insert */
        testDatasourceEntry(pData, i, &pKey, &nKey, &pVal, &nVal);
        tdb_write(pDb, pKey, nKey, pVal, nVal);

Changes to lsm-test/lsmtest_tdb.c.

609
610
611
612
613
614
615



616
617
618
619
620
621
622
  const char *zName;
  const char *zDefaultDb;
  int (*xOpen)(const char *zFilename, int bClear, TestDb **ppDb);
} aLib[] = {
  { "sqlite3",      "testdb.sqlite",    sql_open },
  { "lsm_small",    "testdb.lsm_small", test_lsm_small_open },
  { "lsm_lomem",    "testdb.lsm_lomem", test_lsm_lomem_open },



  { "lsm",          "testdb.lsm",       test_lsm_open },
#ifdef LSM_MUTEX_PTHREADS
  { "lsm_mt2",      "testdb.lsm_mt2",   test_lsm_mt2 },
  { "lsm_mt3",      "testdb.lsm_mt3",   test_lsm_mt3 },
#endif
#ifdef HAVE_LEVELDB
  { "leveldb",      "testdb.leveldb",   test_leveldb_open },







>
>
>







609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
  const char *zName;
  const char *zDefaultDb;
  int (*xOpen)(const char *zFilename, int bClear, TestDb **ppDb);
} aLib[] = {
  { "sqlite3",      "testdb.sqlite",    sql_open },
  { "lsm_small",    "testdb.lsm_small", test_lsm_small_open },
  { "lsm_lomem",    "testdb.lsm_lomem", test_lsm_lomem_open },
#ifdef HAVE_ZLIB
  { "lsm_zip",      "testdb.lsm_zip",   test_lsm_zip_open },
#endif
  { "lsm",          "testdb.lsm",       test_lsm_open },
#ifdef LSM_MUTEX_PTHREADS
  { "lsm_mt2",      "testdb.lsm_mt2",   test_lsm_mt2 },
  { "lsm_mt3",      "testdb.lsm_mt3",   test_lsm_mt3 },
#endif
#ifdef HAVE_LEVELDB
  { "leveldb",      "testdb.leveldb",   test_leveldb_open },

Changes to lsm-test/lsmtest_tdb3.c.

366
367
368
369
370
371
372

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391























































392
393
394
395
396
397
398
        int iOpt = testPrngValue(iSeed++) % 3;
        switch( iOpt ){
          case 0:
            break;

          case 1:
            testPrngArray(iSeed++, (u32 *)aOld, pDb->szSector/4);


          case 2:
            pEnv->xWrite(
                pFile, (lsm_i64)i * pDb->szSector, aOld, pDb->szSector
            );
            break;
        }
        testFree(aOld);
        pDb->aFile[iFile].aSector[i].aOld = 0;
      }
    }
    pEnv->xClose(pFile);
    zFree = zFile = sqlite3_mprintf("%s-log", pDb->zName);
  }

  sqlite3_free(zFree);
}
/*
** End test VFS code.























































**************************************************************************
*************************************************************************/

static int test_lsm_close(TestDb *pTestDb){
  int i;
  int rc = LSM_OK;
  LsmDb *pDb = (LsmDb *)pTestDb;







>



















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
        int iOpt = testPrngValue(iSeed++) % 3;
        switch( iOpt ){
          case 0:
            break;

          case 1:
            testPrngArray(iSeed++, (u32 *)aOld, pDb->szSector/4);
            /* Fall-through */

          case 2:
            pEnv->xWrite(
                pFile, (lsm_i64)i * pDb->szSector, aOld, pDb->szSector
            );
            break;
        }
        testFree(aOld);
        pDb->aFile[iFile].aSector[i].aOld = 0;
      }
    }
    pEnv->xClose(pFile);
    zFree = zFile = sqlite3_mprintf("%s-log", pDb->zName);
  }

  sqlite3_free(zFree);
}
/*
** End test VFS code.
**************************************************************************
*************************************************************************/

/*************************************************************************
**************************************************************************
** Begin test compression hooks.
*/

#ifdef HAVE_ZLIB
#include <zlib.h>

static int testZipBound(void *pCtx, int nSrc){
  return compressBound(nSrc);
}

static int testZipCompress(
  void *pCtx,                     /* Context pointer */
  char *aOut, int *pnOut,         /* OUT: Buffer containing compressed data */
  const char *aIn, int nIn        /* Buffer containing input data */
){
  uLongf n = *pnOut;              /* In/out buffer size for compress() */
  int rc;                         /* compress() return code */
 
  rc = compress((Bytef*)aOut, &n, (Bytef*)aIn, nIn);
  *pnOut = n;
  return (rc==Z_OK ? 0 : LSM_ERROR);
}

static int testZipUncompress(
  void *pCtx,                     /* Context pointer */
  char *aOut, int *pnOut,         /* OUT: Buffer containing uncompressed data */
  const char *aIn, int nIn        /* Buffer containing input data */
){
  uLongf n = *pnOut;              /* In/out buffer size for uncompress() */
  int rc;                         /* uncompress() return code */

  rc = uncompress((Bytef*)aOut, &n, (Bytef*)aIn, nIn);
  *pnOut = n;
  return (rc==Z_OK ? 0 : LSM_ERROR);
}

static int testConfigureCompression(lsm_db *pDb){
  static lsm_compress zip = {
    1, sizeof(lsm_compress),
    0,                            /* Context pointer (unused) */
    testZipBound,                 /* xBound method */
    testZipCompress,              /* xCompress method */
    testZipUncompress             /* xUncompress method */
  };
  return lsm_config(pDb, LSM_CONFIG_SET_COMPRESSION, &zip);
}
#endif /* ifdef HAVE_ZLIB */

/*
** End test compression hooks.
**************************************************************************
*************************************************************************/

static int test_lsm_close(TestDb *pTestDb){
  int i;
  int rc = LSM_OK;
  LsmDb *pDb = (LsmDb *)pTestDb;
613
614
615
616
617
618
619

620
621
622
623
624
625
626
static void xWorkHook(lsm_db *db, void *pArg){
  LsmDb *p = (LsmDb *)pArg;
  if( p->xWork ) p->xWork(db, p->pWorkCtx);
}

#define TEST_NO_RECOVERY -1
#define TEST_THREADS     -2


static int test_lsm_config_str(
  LsmDb *pLsm,
  lsm_db *db, 
  int bWorker,
  const char *zStr,
  int *pnThread







>







669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
static void xWorkHook(lsm_db *db, void *pArg){
  LsmDb *p = (LsmDb *)pArg;
  if( p->xWork ) p->xWork(db, p->pWorkCtx);
}

#define TEST_NO_RECOVERY -1
#define TEST_THREADS     -2
#define TEST_COMPRESSION -3

static int test_lsm_config_str(
  LsmDb *pLsm,
  lsm_db *db, 
  int bWorker,
  const char *zStr,
  int *pnThread
641
642
643
644
645
646
647



648
649
650
651
652
653
654
    { "use_log",          0, LSM_CONFIG_USE_LOG },
    { "nmerge",           0, LSM_CONFIG_NMERGE },
    { "max_freelist",     0, LSM_CONFIG_MAX_FREELIST },
    { "multi_proc",       0, LSM_CONFIG_MULTIPLE_PROCESSES },
    { "worker_nmerge",    1, LSM_CONFIG_NMERGE },
    { "test_no_recovery", 0, TEST_NO_RECOVERY },
    { "threads",          0, TEST_THREADS },



    { 0, 0 }
  };
  const char *z = zStr;
  int nThread = 1;

  assert( db );
  while( z[0] ){







>
>
>







698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
    { "use_log",          0, LSM_CONFIG_USE_LOG },
    { "nmerge",           0, LSM_CONFIG_NMERGE },
    { "max_freelist",     0, LSM_CONFIG_MAX_FREELIST },
    { "multi_proc",       0, LSM_CONFIG_MULTIPLE_PROCESSES },
    { "worker_nmerge",    1, LSM_CONFIG_NMERGE },
    { "test_no_recovery", 0, TEST_NO_RECOVERY },
    { "threads",          0, TEST_THREADS },
#ifdef HAVE_ZLIB
    { "compression",      0, TEST_COMPRESSION },
#endif
    { 0, 0 }
  };
  const char *z = zStr;
  int nThread = 1;

  assert( db );
  while( z[0] ){
692
693
694
695
696
697
698





699
700
701
702
703
704
705
          switch( eParam ){
            case TEST_NO_RECOVERY:
              pLsm->bNoRecovery = iVal;
              break;
            case TEST_THREADS:
              nThread = iVal;
              break;





          }
        }
      }
    }else if( z!=zStart ){
      goto syntax_error;
    }
  }







>
>
>
>
>







752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
          switch( eParam ){
            case TEST_NO_RECOVERY:
              pLsm->bNoRecovery = iVal;
              break;
            case TEST_THREADS:
              nThread = iVal;
              break;
#ifdef HAVE_ZLIB
            case TEST_COMPRESSION:
              testConfigureCompression(db);
              break;
#endif
          }
        }
      }
    }else if( z!=zStart ){
      goto syntax_error;
    }
  }
828
829
830
831
832
833
834
835
















836
837
838
839
840
841
842

int test_lsm_lomem_open(
  const char *zFilename, 
  int bClear, 
  TestDb **ppDb
){
  const char *zCfg = 
    "page_size=256 block_size=65536 write_buffer=16384 max_freelist=4 autocheckpoint=32768";
















  return testLsmOpen(zCfg, zFilename, bClear, ppDb);
}

lsm_db *tdb_lsm(TestDb *pDb){
  if( pDb->pMethods->xClose==test_lsm_close ){
    return ((LsmDb *)pDb)->db;
  }







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

int test_lsm_lomem_open(
  const char *zFilename, 
  int bClear, 
  TestDb **ppDb
){
  const char *zCfg = 
    "page_size=256 block_size=65536 write_buffer=16384 "
    "max_freelist=4 autocheckpoint=32768 "
    "mmap=0 "
  ;
  return testLsmOpen(zCfg, zFilename, bClear, ppDb);
}

int test_lsm_zip_open(
  const char *zFilename, 
  int bClear, 
  TestDb **ppDb
){
  const char *zCfg = 
    "page_size=256 block_size=65536 write_buffer=16384 "
    "max_freelist=4 autocheckpoint=32768 compression=1"
    "mmap=0 "
  ;
  return testLsmOpen(zCfg, zFilename, bClear, ppDb);
}

lsm_db *tdb_lsm(TestDb *pDb){
  if( pDb->pMethods->xClose==test_lsm_close ){
    return ((LsmDb *)pDb)->db;
  }

Changes to src/kvlsm.c.

451
452
453
454
455
456
457


458
459
460
461
462
463
464

    memset(pNew, 0, sizeof(KVLsm));
    pNew->base.pStoreVfunc = &kvlsmMethods;
    pNew->base.pEnv = pEnv;
    rc = lsm_new(0, &pNew->pDb);
    if( rc==SQLITE4_OK ){
      int i;


      for(i=0; i<ArraySize(aConfig); i++){
        const char *zVal = sqlite4_uri_parameter(zName, aConfig[i].zParam);
        if( zVal ){
          int nVal = sqlite4Atoi(zVal);
          lsm_config(pNew->pDb, aConfig[i].eParam, &nVal);
        }
      }







>
>







451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

    memset(pNew, 0, sizeof(KVLsm));
    pNew->base.pStoreVfunc = &kvlsmMethods;
    pNew->base.pEnv = pEnv;
    rc = lsm_new(0, &pNew->pDb);
    if( rc==SQLITE4_OK ){
      int i;
      int bMmap = 0;
      lsm_config(pNew->pDb, LSM_CONFIG_MMAP, &bMmap);
      for(i=0; i<ArraySize(aConfig); i++){
        const char *zVal = sqlite4_uri_parameter(zName, aConfig[i].zParam);
        if( zVal ){
          int nVal = sqlite4Atoi(zVal);
          lsm_config(pNew->pDb, aConfig[i].eParam, &nVal);
        }
      }

Changes to src/lsm.h.

29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
typedef struct lsm_file lsm_file;           /* OS file handle */

/* 64-bit integer type used for file offsets. */
typedef long long int lsm_i64;              /* 64-bit signed integer type */

/* Forward reference */
typedef struct lsm_env lsm_env;             /* Runtime environment */


/* Candidate values for the 3rd argument to lsm_env.xLock() */
#define LSM_LOCK_UNLOCK 0
#define LSM_LOCK_SHARED 1
#define LSM_LOCK_EXCL   2

/*
** Run-time environment used by LSM
*/
struct lsm_env {
  int nByte;                 /* Size of this structure in bytes */
  int iVersion;              /* Version number of this structure */
  /****** file i/o ***********************************************/
  void *pVfsCtx;
  int (*xFullpath)(lsm_env*, const char *, char *, int *);
  int (*xOpen)(lsm_env*, const char *, lsm_file **);
  int (*xRead)(lsm_file *, lsm_i64, void *, int);
  int (*xWrite)(lsm_file *, lsm_i64, void *, int);
  int (*xTruncate)(lsm_file *, lsm_i64);







>











|







29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
typedef struct lsm_file lsm_file;           /* OS file handle */

/* 64-bit integer type used for file offsets. */
typedef long long int lsm_i64;              /* 64-bit signed integer type */

/* Forward reference */
typedef struct lsm_env lsm_env;             /* Runtime environment */
typedef struct lsm_compress lsm_compress;   /* Compression library functions */

/* Candidate values for the 3rd argument to lsm_env.xLock() */
#define LSM_LOCK_UNLOCK 0
#define LSM_LOCK_SHARED 1
#define LSM_LOCK_EXCL   2

/*
** Run-time environment used by LSM
*/
struct lsm_env {
  int nByte;                 /* Size of this structure in bytes */
  int iVersion;              /* Version number of this structure (1) */
  /****** file i/o ***********************************************/
  void *pVfsCtx;
  int (*xFullpath)(lsm_env*, const char *, char *, int *);
  int (*xOpen)(lsm_env*, const char *, lsm_file **);
  int (*xRead)(lsm_file *, lsm_i64, void *, int);
  int (*xWrite)(lsm_file *, lsm_i64, void *, int);
  int (*xTruncate)(lsm_file *, lsm_i64);
76
77
78
79
80
81
82

















83
84
85
86
87
88
89
  void (*xMutexEnter)(lsm_mutex *);         /* Grab a mutex */
  int (*xMutexTry)(lsm_mutex *);            /* Attempt to obtain a mutex */
  void (*xMutexLeave)(lsm_mutex *);         /* Leave a mutex */
  int (*xMutexHeld)(lsm_mutex *);           /* Return true if mutex is held */
  int (*xMutexNotHeld)(lsm_mutex *);        /* Return true if mutex not held */
  /****** other ****************************************************/
  int (*xSleep)(lsm_env*, int microseconds);


















  /* New fields may be added in future releases, in which case the
  ** iVersion value will increase. */
};

/* 
** Values that may be passed as the second argument to xMutexStatic. 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  void (*xMutexEnter)(lsm_mutex *);         /* Grab a mutex */
  int (*xMutexTry)(lsm_mutex *);            /* Attempt to obtain a mutex */
  void (*xMutexLeave)(lsm_mutex *);         /* Leave a mutex */
  int (*xMutexHeld)(lsm_mutex *);           /* Return true if mutex is held */
  int (*xMutexNotHeld)(lsm_mutex *);        /* Return true if mutex not held */
  /****** other ****************************************************/
  int (*xSleep)(lsm_env*, int microseconds);

  /* New fields may be added in future releases, in which case the
  ** iVersion value will increase. */
};

/*
** The compression library interface.
*/
struct lsm_compress {
  int nByte;                 /* Size of this structure in bytes */
  int iVersion;              /* Version number of this structure (1) */

  /* Compression library functions */
  void *pCtx;
  int (*xBound)(void *, int nSrc);
  int (*xCompress)(void *, char *, int *, const char *, int);
  int (*xUncompress)(void *, char *, int *, const char *, int);

  /* New fields may be added in future releases, in which case the
  ** iVersion value will increase. */
};

/* 
** Values that may be passed as the second argument to xMutexStatic. 
188
189
190
191
192
193
194


















195
196
197
198
199
200
201
202
203
204
205
206
207



208
209
210
211
212
213
214
**     stored elsewhere in the database).
**
**     There is no reason for an application to configure or query this
**     parameter. It is only present because configuring a small value
**     makes certain parts of the lsm code easier to test.
**
**   LSM_CONFIG_MULTIPLE_PROCESSES


















*/
#define LSM_CONFIG_WRITE_BUFFER        1
#define LSM_CONFIG_PAGE_SIZE           2
#define LSM_CONFIG_SAFETY              3
#define LSM_CONFIG_BLOCK_SIZE          4
#define LSM_CONFIG_AUTOWORK            5
#define LSM_CONFIG_LOG_SIZE            6
#define LSM_CONFIG_MMAP                7
#define LSM_CONFIG_USE_LOG             8
#define LSM_CONFIG_NMERGE              9
#define LSM_CONFIG_MAX_FREELIST       10
#define LSM_CONFIG_MULTIPLE_PROCESSES 11
#define LSM_CONFIG_AUTOCHECKPOINT     12




#define LSM_SAFETY_OFF    0
#define LSM_SAFETY_NORMAL 1
#define LSM_SAFETY_FULL   2


/*







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>













>
>
>







206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
**     stored elsewhere in the database).
**
**     There is no reason for an application to configure or query this
**     parameter. It is only present because configuring a small value
**     makes certain parts of the lsm code easier to test.
**
**   LSM_CONFIG_MULTIPLE_PROCESSES
**     A read/write boolean parameter. This parameter may only be set before
**     lsm_open() has been called. If true, the library uses shared-memory
**     and posix advisory locks to co-ordinate access by clients from within
**     multiple processes. Otherwise, if false, all database clients must be 
**     located in the same process. The default value is true.
**
**   LSM_CONFIG_SET_COMPRESSION
**     Set the compression methods used to compress and decompress database
**     content. The argument to this option should be a pointer to a structure
**     of type lsm_compress. The lsm_config() method takes a copy of the 
**     structures contents.
**
**     This option may only be used before lsm_open() is called. Invoking it
**     after lsm_open() has been called results in an LSM_MISUSE error.
**
**   LSM_CONFIG_GET_COMPRESSION
**     Query the compression methods used to compress and decompress database
**     content.
*/
#define LSM_CONFIG_WRITE_BUFFER        1
#define LSM_CONFIG_PAGE_SIZE           2
#define LSM_CONFIG_SAFETY              3
#define LSM_CONFIG_BLOCK_SIZE          4
#define LSM_CONFIG_AUTOWORK            5
#define LSM_CONFIG_LOG_SIZE            6
#define LSM_CONFIG_MMAP                7
#define LSM_CONFIG_USE_LOG             8
#define LSM_CONFIG_NMERGE              9
#define LSM_CONFIG_MAX_FREELIST       10
#define LSM_CONFIG_MULTIPLE_PROCESSES 11
#define LSM_CONFIG_AUTOCHECKPOINT     12

#define LSM_CONFIG_SET_COMPRESSION    13
#define LSM_CONFIG_GET_COMPRESSION    14

#define LSM_SAFETY_OFF    0
#define LSM_SAFETY_NORMAL 1
#define LSM_SAFETY_FULL   2


/*

Changes to src/lsmInt.h.

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

typedef unsigned char u8;
typedef unsigned short int u16;
typedef unsigned int u32;
typedef lsm_i64 i64;
typedef unsigned long long int u64;

/* A page number is an integer. */
typedef int Pgno;

#ifdef LSM_DEBUG
int lsmErrorBkpt(int);
#else
# define lsmErrorBkpt(x) (x)
#endif








|
|







99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

typedef unsigned char u8;
typedef unsigned short int u16;
typedef unsigned int u32;
typedef lsm_i64 i64;
typedef unsigned long long int u64;

/* A page number is a 64-bit integer. */
typedef i64 Pgno;

#ifdef LSM_DEBUG
int lsmErrorBkpt(int);
#else
# define lsmErrorBkpt(x) (x)
#endif

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#define LSM_LOCK_READER(i)    ((i) + LSM_LOCK_CHECKPOINTER + 1)

/*
** Hard limit on the number of free-list entries that may be stored in 
** a checkpoint (the remainder are stored as a system record in the LSM).
** See also LSM_CONFIG_MAX_FREELIST.
*/
#define LSM_MAX_FREELIST_ENTRIES 100

#define LSM_ATTEMPTS_BEFORE_PROTOCOL 10000


/*
** Each entry stored in the LSM (or in-memory tree structure) has an
** associated mask of the following flags.







|







139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#define LSM_LOCK_READER(i)    ((i) + LSM_LOCK_CHECKPOINTER + 1)

/*
** Hard limit on the number of free-list entries that may be stored in 
** a checkpoint (the remainder are stored as a system record in the LSM).
** See also LSM_CONFIG_MAX_FREELIST.
*/
#define LSM_MAX_FREELIST_ENTRIES 24

#define LSM_ATTEMPTS_BEFORE_PROTOCOL 10000


/*
** Each entry stored in the LSM (or in-memory tree structure) has an
** associated mask of the following flags.
300
301
302
303
304
305
306

307
308
309
310
311
312
313
  int bUseLog;                    /* Configured by LSM_CONFIG_USE_LOG */
  int nDfltPgsz;                  /* Configured by LSM_CONFIG_PAGE_SIZE */
  int nDfltBlksz;                 /* Configured by LSM_CONFIG_BLOCK_SIZE */
  int nMaxFreelist;               /* Configured by LSM_CONFIG_MAX_FREELIST */
  int bMmap;                      /* Configured by LSM_CONFIG_MMAP */
  int nAutockpt;                  /* Configured by LSM_CONFIG_AUTOCHECKPOINT */
  int bMultiProc;                 /* Configured by L_C_MULTIPLE_PROCESSES */


  /* Sub-system handles */
  FileSystem *pFS;                /* On-disk portion of database */
  Database *pDatabase;            /* Database shared data */

  /* Client transaction context */
  Snapshot *pClient;              /* Client snapshot (non-NULL in read trans) */







>







300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
  int bUseLog;                    /* Configured by LSM_CONFIG_USE_LOG */
  int nDfltPgsz;                  /* Configured by LSM_CONFIG_PAGE_SIZE */
  int nDfltBlksz;                 /* Configured by LSM_CONFIG_BLOCK_SIZE */
  int nMaxFreelist;               /* Configured by LSM_CONFIG_MAX_FREELIST */
  int bMmap;                      /* Configured by LSM_CONFIG_MMAP */
  int nAutockpt;                  /* Configured by LSM_CONFIG_AUTOCHECKPOINT */
  int bMultiProc;                 /* Configured by L_C_MULTIPLE_PROCESSES */
  lsm_compress compress;          /* Compression callbacks */

  /* Sub-system handles */
  FileSystem *pFS;                /* On-disk portion of database */
  Database *pDatabase;            /* Database shared data */

  /* Client transaction context */
  Snapshot *pClient;              /* Client snapshot (non-NULL in read trans) */
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
  ShmHeader *pShmhdr;             /* Live shared-memory header */
  TreeHeader treehdr;             /* Local copy of tree-header */
  u32 aSnapshot[LSM_META_PAGE_SIZE / sizeof(u32)];
};

struct Segment {
  Pgno iFirst;                     /* First page of this run */
  Pgno iLast;                      /* Last page of this run */
  Pgno iRoot;                     /* Root page number (if any) */
  int nSize;                      /* Size of this run in pages */
};

/*
** iSplitTopic/pSplitKey/nSplitKey:
**   If nRight>0, this buffer contains a copy of the largest key that has
**   already been written to the left-hand-side of the level.
*/







|
|
|







339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
  ShmHeader *pShmhdr;             /* Live shared-memory header */
  TreeHeader treehdr;             /* Local copy of tree-header */
  u32 aSnapshot[LSM_META_PAGE_SIZE / sizeof(u32)];
};

struct Segment {
  Pgno iFirst;                     /* First page of this run */
  Pgno iLastPg;                    /* Last page of this run */
  Pgno iRoot;                      /* Root page number (if any) */
  int nSize;                       /* Size of this run in pages */
};

/*
** iSplitTopic/pSplitKey/nSplitKey:
**   If nRight>0, this buffer contains a copy of the largest key that has
**   already been written to the left-hand-side of the level.
*/
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
** A structure describing an ongoing merge. There is an instance of this
** structure for every Level currently undergoing a merge in the worker
** snapshot.
**
** It is assumed that code that uses an instance of this structure has
** access to the associated Level struct.
**
** bHierReadonly:
**   True if the b-tree hierarchy is currently read-only.
**
** iOutputOff:
**   The byte offset to write to next within the last page of the 
**   output segment.
*/
struct MergeInput {
  Pgno iPg;                       /* Page on which next input is stored */
  int iCell;                      /* Cell containing next input to merge */
};
struct Merge {
  int nInput;                     /* Number of input runs being merged */
  MergeInput *aInput;             /* Array nInput entries in size */
  MergeInput splitkey;            /* Location in file of current splitkey */
  int nSkip;                      /* Number of separators entries to skip */
  int iOutputOff;                 /* Write offset on output page */
  Pgno iCurrentPtr;               /* Current pointer value */
  int bHierReadonly;              /* True if b-tree heirarchies are read-only */
};

/* 
** The first argument to this macro is a pointer to a Segment structure.
** Returns true if the structure instance indicates that the separators
** array is valid.
*/







<
<
<















<







370
371
372
373
374
375
376



377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

392
393
394
395
396
397
398
** A structure describing an ongoing merge. There is an instance of this
** structure for every Level currently undergoing a merge in the worker
** snapshot.
**
** It is assumed that code that uses an instance of this structure has
** access to the associated Level struct.
**



** iOutputOff:
**   The byte offset to write to next within the last page of the 
**   output segment.
*/
struct MergeInput {
  Pgno iPg;                       /* Page on which next input is stored */
  int iCell;                      /* Cell containing next input to merge */
};
struct Merge {
  int nInput;                     /* Number of input runs being merged */
  MergeInput *aInput;             /* Array nInput entries in size */
  MergeInput splitkey;            /* Location in file of current splitkey */
  int nSkip;                      /* Number of separators entries to skip */
  int iOutputOff;                 /* Write offset on output page */
  Pgno iCurrentPtr;               /* Current pointer value */

};

/* 
** The first argument to this macro is a pointer to a Segment structure.
** Returns true if the structure instance indicates that the separators
** array is valid.
*/
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
  Database *pDatabase;            /* Database this snapshot belongs to */
  Level *pLevel;                  /* Pointer to level 0 of snapshot (or NULL) */
  i64 iId;                        /* Snapshot id */
  i64 iLogOff;                    /* Log file offset */

  /* Used by worker snapshots only */
  int nBlock;                     /* Number of blocks in database file */
  u32 aiAppend[LSM_APPLIST_SZ];   /* Append point list */
  Freelist freelist;              /* Free block list */
  int nFreelistOvfl;              /* Number of extra free-list entries in LSM */
  u32 nWrite;                     /* Total number of pages written to disk */
};
#define LSM_INITIAL_SNAPSHOT_ID 11

/*







|







478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
  Database *pDatabase;            /* Database this snapshot belongs to */
  Level *pLevel;                  /* Pointer to level 0 of snapshot (or NULL) */
  i64 iId;                        /* Snapshot id */
  i64 iLogOff;                    /* Log file offset */

  /* Used by worker snapshots only */
  int nBlock;                     /* Number of blocks in database file */
  Pgno aiAppend[LSM_APPLIST_SZ];  /* Append point list */
  Freelist freelist;              /* Free block list */
  int nFreelistOvfl;              /* Number of extra free-list entries in LSM */
  u32 nWrite;                     /* Total number of pages written to disk */
};
#define LSM_INITIAL_SNAPSHOT_ID 11

/*
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

655
656
657
658
659
660
661
int lsmFsFileid(lsm_db *pDb, void **ppId, int *pnId);

/* Creating, populating, gobbling and deleting sorted runs. */
void lsmFsGobble(lsm_db *, Segment *, Pgno *, int);
int lsmFsSortedDelete(FileSystem *, Snapshot *, int, Segment *);
int lsmFsSortedFinish(FileSystem *, Segment *);
int lsmFsSortedAppend(FileSystem *, Snapshot *, Segment *, Page **);
int lsmFsPhantomMaterialize(FileSystem *, Snapshot *, Segment *);

/* Functions to retrieve the lsm_env pointer from a FileSystem or Page object */
lsm_env *lsmFsEnv(FileSystem *);
lsm_env *lsmPageEnv(Page *);
FileSystem *lsmPageFS(Page *);

int lsmFsSectorSize(FileSystem *);

void lsmSortedSplitkey(lsm_db *, Level *, int *);

/* Reading sorted run content. */

int lsmFsDbPageGet(FileSystem *, Pgno, Page **);
int lsmFsDbPageNext(Segment *, Page *, int eDir, Page **);

int lsmFsPageWrite(Page *);
u8 *lsmFsPageData(Page *, int *);
int lsmFsPageRelease(Page *);
int lsmFsPagePersist(Page *);
void lsmFsPageRef(Page *);
Pgno lsmFsPageNumber(Page *);

int lsmFsNRead(FileSystem *);
int lsmFsNWrite(FileSystem *);

int lsmFsMetaPageGet(FileSystem *, int, int, MetaPage **);
int lsmFsMetaPageRelease(MetaPage *);
u8 *lsmFsMetaPageData(MetaPage *, int *);

#ifdef LSM_DEBUG

int lsmFsIntegrityCheck(lsm_db *);
#endif

int lsmFsPageWritable(Page *);

/* Functions to read, write and sync the log file. */
int lsmFsWriteLog(FileSystem *pFS, i64 iOff, LsmString *pStr);







|











>



<














>







615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
int lsmFsFileid(lsm_db *pDb, void **ppId, int *pnId);

/* Creating, populating, gobbling and deleting sorted runs. */
void lsmFsGobble(lsm_db *, Segment *, Pgno *, int);
int lsmFsSortedDelete(FileSystem *, Snapshot *, int, Segment *);
int lsmFsSortedFinish(FileSystem *, Segment *);
int lsmFsSortedAppend(FileSystem *, Snapshot *, Segment *, Page **);
int lsmFsSortedPadding(FileSystem *, Snapshot *, Segment *);

/* Functions to retrieve the lsm_env pointer from a FileSystem or Page object */
lsm_env *lsmFsEnv(FileSystem *);
lsm_env *lsmPageEnv(Page *);
FileSystem *lsmPageFS(Page *);

int lsmFsSectorSize(FileSystem *);

void lsmSortedSplitkey(lsm_db *, Level *, int *);

/* Reading sorted run content. */
int lsmFsDbPageLast(FileSystem *pFS, Segment *pSeg, Page **ppPg);
int lsmFsDbPageGet(FileSystem *, Pgno, Page **);
int lsmFsDbPageNext(Segment *, Page *, int eDir, Page **);


u8 *lsmFsPageData(Page *, int *);
int lsmFsPageRelease(Page *);
int lsmFsPagePersist(Page *);
void lsmFsPageRef(Page *);
Pgno lsmFsPageNumber(Page *);

int lsmFsNRead(FileSystem *);
int lsmFsNWrite(FileSystem *);

int lsmFsMetaPageGet(FileSystem *, int, int, MetaPage **);
int lsmFsMetaPageRelease(MetaPage *);
u8 *lsmFsMetaPageData(MetaPage *, int *);

#ifdef LSM_DEBUG
int lsmFsDbPageIsLast(Segment *pSeg, Page *pPg);
int lsmFsIntegrityCheck(lsm_db *);
#endif

int lsmFsPageWritable(Page *);

/* Functions to read, write and sync the log file. */
int lsmFsWriteLog(FileSystem *pFS, i64 iOff, LsmString *pStr);
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

int lsmFlushTreeToDisk(lsm_db *pDb);

void lsmSortedRemap(lsm_db *pDb);

void lsmSortedFreeLevel(lsm_env *pEnv, Level *);

int lsmSortedFlushDb(lsm_db *);
int lsmSortedAdvanceAll(lsm_db *pDb);

int lsmSortedLoadMerge(lsm_db *, Level *, u32 *, int *);
int lsmSortedLoadFreelist(lsm_db *pDb, void **, int *);

void *lsmSortedSplitKey(Level *pLevel, int *pnByte);








<







694
695
696
697
698
699
700

701
702
703
704
705
706
707

int lsmFlushTreeToDisk(lsm_db *pDb);

void lsmSortedRemap(lsm_db *pDb);

void lsmSortedFreeLevel(lsm_env *pEnv, Level *);


int lsmSortedAdvanceAll(lsm_db *pDb);

int lsmSortedLoadMerge(lsm_db *, Level *, u32 *, int *);
int lsmSortedLoadFreelist(lsm_db *pDb, void **, int *);

void *lsmSortedSplitKey(Level *pLevel, int *pnByte);

Changes to src/lsm_ckpt.c.

51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
**
**     4 integers. See ckptExportAppendlist().
**
**   For each level in the database, a level record. Formatted as follows:
**
**     0. Age of the level.
**     1. The number of right-hand segments (nRight, possibly 0),
**     2. Segment record for left-hand segment (4 integers defined below),
**     3. Segment record for each right-hand segment (4 integers defined below),
**     4. If nRight>0, The number of segments involved in the merge
**     5. if nRight>0, Current nSkip value (see Merge structure defn.),
**     6. For each segment in the merge:
**        5a. Page number of next cell to read during merge

**        5b. Cell number of next cell to read during merge
**     7. Page containing current split-key.
**     8. Cell within page containing current split-key.
**     9. Current pointer value.
**
**   The freelist. 
**
**     1. Number of free-list entries stored in checkpoint header.
**     2. For each entry:
**        2a. Block number of free block.
**        2b. MSW of associated checkpoint id.
**        2c. LSW of associated checkpoint id.
**
**   If the overflow flag is set, then extra free-list entries may be stored
**   in the FREELIST record. The FREELIST record contains 3 32-bit integers
**   per entry, in the same format as above (without the "number of entries"
**   field).
**
**   The checksum:
**
**     1. Checksum value 1.
**     2. Checksum value 2.
**
** In the above, a segment record is:

**
**     1. First page of array,
**     2. Last page of array,
**     3. Root page of array (or 0),
**     4. Size of array in pages.
*/








|
|



|
>

|

|



















|
>







51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
**
**     4 integers. See ckptExportAppendlist().
**
**   For each level in the database, a level record. Formatted as follows:
**
**     0. Age of the level.
**     1. The number of right-hand segments (nRight, possibly 0),
**     2. Segment record for left-hand segment (8 integers defined below),
**     3. Segment record for each right-hand segment (8 integers defined below),
**     4. If nRight>0, The number of segments involved in the merge
**     5. if nRight>0, Current nSkip value (see Merge structure defn.),
**     6. For each segment in the merge:
**        5a. Page number of next cell to read during merge (this field
**            is 64-bits - 2 integers)
**        5b. Cell number of next cell to read during merge
**     7. Page containing current split-key (64-bits - 2 integers).
**     8. Cell within page containing current split-key.
**     9. Current pointer value (64-bits - 2 integers).
**
**   The freelist. 
**
**     1. Number of free-list entries stored in checkpoint header.
**     2. For each entry:
**        2a. Block number of free block.
**        2b. MSW of associated checkpoint id.
**        2c. LSW of associated checkpoint id.
**
**   If the overflow flag is set, then extra free-list entries may be stored
**   in the FREELIST record. The FREELIST record contains 3 32-bit integers
**   per entry, in the same format as above (without the "number of entries"
**   field).
**
**   The checksum:
**
**     1. Checksum value 1.
**     2. Checksum value 2.
**
** In the above, a segment record consists of the following four 64-bit 
** fields (converted to 2 * u32 by storing the MSW followed by LSW):
**
**     1. First page of array,
**     2. Last page of array,
**     3. Root page of array (or 0),
**     4. Size of array in pages.
*/

103
104
105
106
107
108
109
110
111
112
113
114






115
116
117
118
119
120
121
** follows:
**
**   * For each level in the database not undergoing a merge, add 1.
**
**   * For each level in the database that is undergoing a merge, add 
**     the number of segments on the rhs of the level.
**
** A level record not undergoing a merge is 6 integers. A level record 
** with nRhs rhs segments and (nRhs+1) input segments (i.e. including the 
** separators from the next level) is (6*nRhs+12) integers. The maximum
** per right-hand-side level is therefore 12 integers. So the maximum
** size of all level records in a checkpoint is 12*40=480 integers.






*/
#define LSM_MAX_RHS_SEGMENTS 40

/*
** LARGE NUMBERS OF FREELIST ENTRIES:
**
** There is also a limit (LSM_MAX_FREELIST_ENTRIES - defined in lsmInt.h)







|

|
|
|
>
>
>
>
>
>







105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
** follows:
**
**   * For each level in the database not undergoing a merge, add 1.
**
**   * For each level in the database that is undergoing a merge, add 
**     the number of segments on the rhs of the level.
**
** A level record not undergoing a merge is 10 integers. A level record 
** with nRhs rhs segments and (nRhs+1) input segments (i.e. including the 
** separators from the next level) is (11*nRhs+20) integers. The maximum
** per right-hand-side level is therefore 21 integers. So the maximum
** size of all level records in a checkpoint is 21*40=820 integers.
**
** TODO: Before pointer values were changed from 32 to 64 bits, the above
** used to come to 420 bytes - leaving significant space for a free-list
** prefix. No more. To fix this, reduce the size of the level records in
** a db snapshot, and improve management of the free-list tail in 
** lsm_sorted.c. 
*/
#define LSM_MAX_RHS_SEGMENTS 40

/*
** LARGE NUMBERS OF FREELIST ENTRIES:
**
** There is also a limit (LSM_MAX_FREELIST_ENTRIES - defined in lsmInt.h)
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

static const int one = 1;
#define LSM_LITTLE_ENDIAN (*(u8 *)(&one))

/* Sizes, in integers, of various parts of the checkpoint. */
#define CKPT_HDR_SIZE         9
#define CKPT_LOGPTR_SIZE      4
#define CKPT_SEGMENT_SIZE     4
#define CKPT_CKSUM_SIZE       2
#define CKPT_APPENDLIST_SIZE  LSM_APPLIST_SZ

/* A #define to describe each integer in the checkpoint header. */
#define CKPT_HDR_ID_MSW   0
#define CKPT_HDR_ID_LSW   1
#define CKPT_HDR_NCKPT    2
#define CKPT_HDR_NBLOCK   3
#define CKPT_HDR_BLKSZ    4







<
<
|







165
166
167
168
169
170
171


172
173
174
175
176
177
178
179

static const int one = 1;
#define LSM_LITTLE_ENDIAN (*(u8 *)(&one))

/* Sizes, in integers, of various parts of the checkpoint. */
#define CKPT_HDR_SIZE         9
#define CKPT_LOGPTR_SIZE      4


#define CKPT_APPENDLIST_SIZE  (LSM_APPLIST_SZ * 2)

/* A #define to describe each integer in the checkpoint header. */
#define CKPT_HDR_ID_MSW   0
#define CKPT_HDR_ID_LSW   1
#define CKPT_HDR_NCKPT    2
#define CKPT_HDR_NBLOCK   3
#define CKPT_HDR_BLKSZ    4
257
258
259
260
261
262
263


















264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
  if( *pRc==LSM_OK ){
    u32 aCksum[2] = {0, 0};
    ckptChecksum(p->aCkpt, nCkpt+2, &aCksum[0], &aCksum[1]);
    ckptSetValue(p, nCkpt, aCksum[0], pRc);
    ckptSetValue(p, nCkpt+1, aCksum[1], pRc);
  }
}



















/*
** Append a 6-value segment record corresponding to pSeg to the checkpoint 
** buffer passed as the third argument.
*/
static void ckptExportSegment(
  Segment *pSeg, 
  CkptBuffer *p, 
  int *piOut, 
  int *pRc
){
  int iOut = *piOut;

  ckptSetValue(p, iOut++, pSeg->iFirst, pRc);
  ckptSetValue(p, iOut++, pSeg->iLast, pRc);
  ckptSetValue(p, iOut++, pSeg->iRoot, pRc);
  ckptSetValue(p, iOut++, pSeg->nSize, pRc);

  *piOut = iOut;
}

static void ckptExportLevel(
  Level *pLevel,                  /* Level object to serialize */
  CkptBuffer *p,                  /* Append new level record to this ckpt */
  int *piOut,                     /* IN/OUT: Size of checkpoint so far */
  int *pRc                        /* IN/OUT: Error code */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











<
<
|
|
|
|
<
<







263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298


299
300
301
302


303
304
305
306
307
308
309
  if( *pRc==LSM_OK ){
    u32 aCksum[2] = {0, 0};
    ckptChecksum(p->aCkpt, nCkpt+2, &aCksum[0], &aCksum[1]);
    ckptSetValue(p, nCkpt, aCksum[0], pRc);
    ckptSetValue(p, nCkpt+1, aCksum[1], pRc);
  }
}

static void ckptAppend64(CkptBuffer *p, int *piOut, i64 iVal, int *pRc){
  int iOut = *piOut;
  ckptSetValue(p, iOut++, (iVal >> 32) & 0xFFFFFFFF, pRc);
  ckptSetValue(p, iOut++, (iVal & 0xFFFFFFFF), pRc);
  *piOut = iOut;
}

static i64 ckptRead64(u32 *a){
  return (((i64)a[0]) << 32) + (i64)a[1];
}

static i64 ckptGobble64(u32 *a, int *piIn){
  int iIn = *piIn;
  *piIn += 2;
  return ckptRead64(&a[iIn]);
}


/*
** Append a 6-value segment record corresponding to pSeg to the checkpoint 
** buffer passed as the third argument.
*/
static void ckptExportSegment(
  Segment *pSeg, 
  CkptBuffer *p, 
  int *piOut, 
  int *pRc
){


  ckptAppend64(p, piOut, pSeg->iFirst, pRc);
  ckptAppend64(p, piOut, pSeg->iLastPg, pRc);
  ckptAppend64(p, piOut, pSeg->iRoot, pRc);
  ckptAppend64(p, piOut, pSeg->nSize, pRc);


}

static void ckptExportLevel(
  Level *pLevel,                  /* Level object to serialize */
  CkptBuffer *p,                  /* Append new level record to this ckpt */
  int *piOut,                     /* IN/OUT: Size of checkpoint so far */
  int *pRc                        /* IN/OUT: Error code */
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    }
    assert( pMerge->nInput==pLevel->nRight 
         || pMerge->nInput==pLevel->nRight+1 
    );
    ckptSetValue(p, iOut++, pMerge->nInput, pRc);
    ckptSetValue(p, iOut++, pMerge->nSkip, pRc);
    for(i=0; i<pMerge->nInput; i++){
      ckptSetValue(p, iOut++, pMerge->aInput[i].iPg, pRc);
      ckptSetValue(p, iOut++, pMerge->aInput[i].iCell, pRc);
    }
    ckptSetValue(p, iOut++, pMerge->splitkey.iPg, pRc);
    ckptSetValue(p, iOut++, pMerge->splitkey.iCell, pRc);
    ckptSetValue(p, iOut++, pMerge->iCurrentPtr, pRc);
  }

  *piOut = iOut;
}

/*
** Populate the log offset fields of the checkpoint buffer. 4 values.







|


|

|







324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    }
    assert( pMerge->nInput==pLevel->nRight 
         || pMerge->nInput==pLevel->nRight+1 
    );
    ckptSetValue(p, iOut++, pMerge->nInput, pRc);
    ckptSetValue(p, iOut++, pMerge->nSkip, pRc);
    for(i=0; i<pMerge->nInput; i++){
      ckptAppend64(p, &iOut, pMerge->aInput[i].iPg, pRc);
      ckptSetValue(p, iOut++, pMerge->aInput[i].iCell, pRc);
    }
    ckptAppend64(p, &iOut, pMerge->splitkey.iPg, pRc);
    ckptSetValue(p, iOut++, pMerge->splitkey.iCell, pRc);
    ckptAppend64(p, &iOut, pMerge->iCurrentPtr, pRc);
  }

  *piOut = iOut;
}

/*
** Populate the log offset fields of the checkpoint buffer. 4 values.
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
){
  int iOut = *piOut;

  assert( iOut==CKPT_HDR_LO_MSW );

  if( bFlush ){
    i64 iOff = pDb->treehdr.iOldLog;
    ckptSetValue(p, iOut++, (iOff >> 32) & 0xFFFFFFFF, pRc);
    ckptSetValue(p, iOut++, (iOff & 0xFFFFFFFF), pRc);
    ckptSetValue(p, iOut++, pDb->treehdr.oldcksum0, pRc);
    ckptSetValue(p, iOut++, pDb->treehdr.oldcksum1, pRc);
  }else{
    for(; iOut<=CKPT_HDR_LO_CKSUM2; iOut++){
      ckptSetValue(p, iOut, pDb->pShmhdr->aSnap2[iOut], pRc);
    }
  }

  *piOut = iOut;
}

static void ckptExportAppendlist(
  lsm_db *db,                     /* Database connection */
  CkptBuffer *p,                  /* Checkpoint buffer to write to */
  int *piOut,                     /* IN/OUT: Offset within checkpoint buffer */
  int *pRc                        /* IN/OUT: Error code */
){
  int i;
  int iOut = *piOut;
  u32 *aiAppend = db->pWorker->aiAppend;

  for(i=0; i<CKPT_APPENDLIST_SIZE; i++){
    ckptSetValue(p, iOut++, aiAppend[i], pRc);
  }
  *piOut = iOut;
};

static int ckptExportSnapshot( 
  lsm_db *pDb,                    /* Connection handle */
  int nOvfl,                      /* Number of free-list entries in LSM */
  int bLog,                       /* True to update log-offset fields */
  i64 iId,                        /* Checkpoint id */







<
|


















<
|

|
|

<







351
352
353
354
355
356
357

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

377
378
379
380
381

382
383
384
385
386
387
388
){
  int iOut = *piOut;

  assert( iOut==CKPT_HDR_LO_MSW );

  if( bFlush ){
    i64 iOff = pDb->treehdr.iOldLog;

    ckptAppend64(p, &iOut, iOff, pRc);
    ckptSetValue(p, iOut++, pDb->treehdr.oldcksum0, pRc);
    ckptSetValue(p, iOut++, pDb->treehdr.oldcksum1, pRc);
  }else{
    for(; iOut<=CKPT_HDR_LO_CKSUM2; iOut++){
      ckptSetValue(p, iOut, pDb->pShmhdr->aSnap2[iOut], pRc);
    }
  }

  *piOut = iOut;
}

static void ckptExportAppendlist(
  lsm_db *db,                     /* Database connection */
  CkptBuffer *p,                  /* Checkpoint buffer to write to */
  int *piOut,                     /* IN/OUT: Offset within checkpoint buffer */
  int *pRc                        /* IN/OUT: Error code */
){
  int i;

  Pgno *aiAppend = db->pWorker->aiAppend;

  for(i=0; i<LSM_APPLIST_SZ; i++){
    ckptAppend64(p, piOut, aiAppend[i], pRc);
  }

};

static int ckptExportSnapshot( 
  lsm_db *pDb,                    /* Connection handle */
  int nOvfl,                      /* Number of free-list entries in LSM */
  int bLog,                       /* True to update log-offset fields */
  i64 iId,                        /* Checkpoint id */
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
** Helper function for ckptImport().
*/
static void ckptNewSegment(
  u32 *aIn,
  int *piIn,
  Segment *pSegment               /* Populate this structure */
){
  int iIn = *piIn;

  assert( pSegment->iFirst==0 && pSegment->iLast==0 );
  assert( pSegment->nSize==0 && pSegment->iRoot==0 );
  pSegment->iFirst = aIn[iIn++];
  pSegment->iLast = aIn[iIn++];
  pSegment->iRoot = aIn[iIn++];
  pSegment->nSize = aIn[iIn++];

  *piIn = iIn;
}

static int ckptSetupMerge(lsm_db *pDb, u32 *aInt, int *piIn, Level *pLevel){
  Merge *pMerge;                  /* Allocated Merge object */
  int nInput;                     /* Number of input segments in merge */
  int iIn = *piIn;                /* Next value to read from aInt[] */
  int i;                          /* Iterator variable */
  int nByte;                      /* Number of bytes to allocate */

  /* Allocate the Merge object. If malloc() fails, return LSM_NOMEM. */
  nInput = (int)aInt[iIn++];
  nByte = sizeof(Merge) + sizeof(MergeInput) * nInput;
  pMerge = (Merge *)lsmMallocZero(pDb->pEnv, nByte);
  if( !pMerge ) return LSM_NOMEM_BKPT;
  pLevel->pMerge = pMerge;

  /* Populate the Merge object. */
  pMerge->aInput = (MergeInput *)&pMerge[1];
  pMerge->nInput = nInput;
  pMerge->iOutputOff = -1;
  pMerge->bHierReadonly = 1;
  pMerge->nSkip = (int)aInt[iIn++];
  for(i=0; i<nInput; i++){
    pMerge->aInput[i].iPg = (Pgno)aInt[iIn++];
    pMerge->aInput[i].iCell = (int)aInt[iIn++];
  }
  pMerge->splitkey.iPg = (Pgno)aInt[iIn++];
  pMerge->splitkey.iCell = (int)aInt[iIn++];
  pMerge->iCurrentPtr = (int)aInt[iIn++];

  /* Set *piIn and return LSM_OK. */
  *piIn = iIn;
  return LSM_OK;
}









<
<
|

|
|
|
|
|
<




















<


|


|

|







478
479
480
481
482
483
484


485
486
487
488
489
490
491

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
** Helper function for ckptImport().
*/
static void ckptNewSegment(
  u32 *aIn,
  int *piIn,
  Segment *pSegment               /* Populate this structure */
){


  assert( pSegment->iFirst==0 && pSegment->iLastPg==0 );
  assert( pSegment->nSize==0 && pSegment->iRoot==0 );
  pSegment->iFirst = ckptGobble64(aIn, piIn);
  pSegment->iLastPg = ckptGobble64(aIn, piIn);
  pSegment->iRoot = ckptGobble64(aIn, piIn);
  pSegment->nSize = ckptGobble64(aIn, piIn);
  assert( pSegment->iFirst );

}

static int ckptSetupMerge(lsm_db *pDb, u32 *aInt, int *piIn, Level *pLevel){
  Merge *pMerge;                  /* Allocated Merge object */
  int nInput;                     /* Number of input segments in merge */
  int iIn = *piIn;                /* Next value to read from aInt[] */
  int i;                          /* Iterator variable */
  int nByte;                      /* Number of bytes to allocate */

  /* Allocate the Merge object. If malloc() fails, return LSM_NOMEM. */
  nInput = (int)aInt[iIn++];
  nByte = sizeof(Merge) + sizeof(MergeInput) * nInput;
  pMerge = (Merge *)lsmMallocZero(pDb->pEnv, nByte);
  if( !pMerge ) return LSM_NOMEM_BKPT;
  pLevel->pMerge = pMerge;

  /* Populate the Merge object. */
  pMerge->aInput = (MergeInput *)&pMerge[1];
  pMerge->nInput = nInput;
  pMerge->iOutputOff = -1;

  pMerge->nSkip = (int)aInt[iIn++];
  for(i=0; i<nInput; i++){
    pMerge->aInput[i].iPg = ckptGobble64(aInt, &iIn);
    pMerge->aInput[i].iCell = (int)aInt[iIn++];
  }
  pMerge->splitkey.iPg = ckptGobble64(aInt, &iIn);
  pMerge->splitkey.iCell = (int)aInt[iIn++];
  pMerge->iCurrentPtr = ckptGobble64(aInt, &iIn);

  /* Set *piIn and return LSM_OK. */
  *piIn = iIn;
  return LSM_OK;
}


885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
    0,                  /* CKPT_HDR_NBLOCK */
    0,                  /* CKPT_HDR_BLKSZ */
    0,                  /* CKPT_HDR_NLEVEL */
    0,                  /* CKPT_HDR_PGSZ */
    0,                  /* CKPT_HDR_OVFL */
    0,                  /* CKPT_HDR_NWRITE */
    0, 0, 1234, 5678,   /* The log pointer and initial checksum */
    0, 0, 0, 0,         /* The append list */
    0,                  /* The free block list */
    0, 0                /* Space for checksum values */
  };
  u32 nCkpt = array_size(aCkpt);
  ShmHeader *pShm = pDb->pShmhdr;

  aCkpt[CKPT_HDR_NCKPT] = nCkpt;







|







898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
    0,                  /* CKPT_HDR_NBLOCK */
    0,                  /* CKPT_HDR_BLKSZ */
    0,                  /* CKPT_HDR_NLEVEL */
    0,                  /* CKPT_HDR_PGSZ */
    0,                  /* CKPT_HDR_OVFL */
    0,                  /* CKPT_HDR_NWRITE */
    0, 0, 1234, 5678,   /* The log pointer and initial checksum */
    0,0,0,0, 0,0,0,0,   /* The append list */
    0,                  /* The free block list */
    0, 0                /* Space for checksum values */
  };
  u32 nCkpt = array_size(aCkpt);
  ShmHeader *pShm = pDb->pShmhdr;

  aCkpt[CKPT_HDR_NCKPT] = nCkpt;
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066


1067
1068
1069
1070
1071
1072
1073
){
  int rc = LSM_OK;
  Snapshot *pNew;

  pNew = (Snapshot *)lsmMallocZeroRc(pDb->pEnv, sizeof(Snapshot), &rc);
  if( rc==LSM_OK ){
    int nFree;
    int nCopy;
    int nLevel = (int)aCkpt[CKPT_HDR_NLEVEL];
    int iIn = CKPT_HDR_SIZE + CKPT_APPENDLIST_SIZE + CKPT_LOGPTR_SIZE;

    pNew->iId = lsmCheckpointId(aCkpt, 0);
    pNew->nBlock = aCkpt[CKPT_HDR_NBLOCK];
    pNew->nWrite = aCkpt[CKPT_HDR_NWRITE];
    rc = ckptLoadLevels(pDb, aCkpt, &iIn, nLevel, &pNew->pLevel);
    pNew->iLogOff = lsmCheckpointLogOffset(aCkpt);

    /* Make a copy of the append-list */
    nCopy = sizeof(u32) * LSM_APPLIST_SZ;
    memcpy(pNew->aiAppend, &aCkpt[CKPT_HDR_SIZE+CKPT_LOGPTR_SIZE], nCopy);



    /* Copy the free-list */
    if( bInclFreelist ){
      pNew->nFreelistOvfl = aCkpt[CKPT_HDR_OVFL];
      nFree = aCkpt[iIn++];
      if( nFree ){
        pNew->freelist.aEntry = (FreelistEntry *)lsmMallocZeroRc(







|










|
|
>
>







1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
){
  int rc = LSM_OK;
  Snapshot *pNew;

  pNew = (Snapshot *)lsmMallocZeroRc(pDb->pEnv, sizeof(Snapshot), &rc);
  if( rc==LSM_OK ){
    int nFree;
    int i;
    int nLevel = (int)aCkpt[CKPT_HDR_NLEVEL];
    int iIn = CKPT_HDR_SIZE + CKPT_APPENDLIST_SIZE + CKPT_LOGPTR_SIZE;

    pNew->iId = lsmCheckpointId(aCkpt, 0);
    pNew->nBlock = aCkpt[CKPT_HDR_NBLOCK];
    pNew->nWrite = aCkpt[CKPT_HDR_NWRITE];
    rc = ckptLoadLevels(pDb, aCkpt, &iIn, nLevel, &pNew->pLevel);
    pNew->iLogOff = lsmCheckpointLogOffset(aCkpt);

    /* Make a copy of the append-list */
    for(i=0; i<LSM_APPLIST_SZ; i++){
      u32 *a = &aCkpt[CKPT_HDR_SIZE + CKPT_LOGPTR_SIZE + i*2];
      pNew->aiAppend[i] = ckptRead64(a);
    }

    /* Copy the free-list */
    if( bInclFreelist ){
      pNew->nFreelistOvfl = aCkpt[CKPT_HDR_OVFL];
      nFree = aCkpt[iIn++];
      if( nFree ){
        pNew->freelist.aEntry = (FreelistEntry *)lsmMallocZeroRc(

Changes to src/lsm_file.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/*
** 2011-08-26
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** 
** DATABASE FILE FORMAT
**
** The following database file format concepts are used by the code in
** this file to read and write the database file.
**
** Pages:
**
**   A database file is divided into pages. The first 8KB of the file consists












|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/*
** 2011-08-26
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** 
** NORMAL DATABASE FILE FORMAT
**
** The following database file format concepts are used by the code in
** this file to read and write the database file.
**
** Pages:
**
**   A database file is divided into pages. The first 8KB of the file consists
81
82
83
84
85
86
87





























































88
89
90
91
92
93
94
95
96
97
98
99
100
101
**     lsmFsOpenLog
**     lsmFsWriteLog
**     lsmFsSyncLog
**     lsmFsReadLog
**     lsmFsTruncateLog
**     lsmFsCloseAndDeleteLog
**





























































*/
#include "lsmInt.h"

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>


/*
** File-system object. Each database connection allocates a single instance
** of the following structure. It is used for all access to the database and
** log files.
**
** pLruFirst, pLruLast:







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






<







81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

155
156
157
158
159
160
161
**     lsmFsOpenLog
**     lsmFsWriteLog
**     lsmFsSyncLog
**     lsmFsReadLog
**     lsmFsTruncateLog
**     lsmFsCloseAndDeleteLog
**
** COMPRESSED DATABASE FILE FORMAT
**
** The compressed database file format is very similar to the normal format.
** The file still begins with two 4KB meta-pages (which are never compressed).
** It is still divided into blocks.
**
** The first and last four bytes of each block are reserved for 32-bit 
** pointer values. Similar to the way four bytes are carved from the end of 
** the first and last page of each block in uncompressed databases. From
** the point of view of the upper layer, all pages are the same size - this
** is different from the uncompressed format where the first and last pages
** on each block are 4 bytes smaller than the others.
**
** Pages are stored in variable length compressed form, as follows:
**
**     * 3-byte size field containing the size of the compressed page image
**       in bytes. The most significant bit of each byte of the size field
**       is always set. The remaining 7 bits are used to store a 21-bit
**       integer value (in big-endian order - the first byte in the field
**       contains the most significant 7 bits). Since the maximum allowed 
**       size of a compressed page image is (2^17 - 1) bytes, there are
**       actually 4 unused bits in the size field.
**
**       In other words, if the size of the compressed page image is nSz,
**       the header can be serialized as follows:
**
**         u8 aHdr[3]
**         aHdr[0] = 0x80 | (u8)(nSz >> 14);
**         aHdr[1] = 0x80 | (u8)(nSz >>  7);
**         aHdr[2] = 0x80 | (u8)(nSz >>  0);
**
**     * Compressed page image.
**
**     * A second copy of the 3-byte record header.
**
** A page number is a byte offset into the database file. So the smallest
** possible page number is 8192 (immediately after the two meta-pages).
** The first and root page of a segment are identified by a page number
** corresponding to the byte offset of the first byte in the corresponding
** page record. The last page of a segment is identified by the byte offset
** of the last byte in its record.
**
** Unlike uncompressed pages, compressed page records may span blocks.
**
** Sometimes, in order to avoid touching sectors that contain synced data
** when writing, it is necessary to insert unused space between compressed
** page records. This can be done as follows:
**
**     * For less than 6 bytes of empty space, the first and last byte
**       of the free space contain the total number of free bytes. For
**       example:
**
**         Block of 4 free bytes: 0x04 0x?? 0x?? 0x04
**         Block of 2 free bytes: 0x02 0x02
**         A single free byte:    0x01
**
**     * For 6 or more bytes of empty space, a record similar to a 
**       compressed page record is added to the segment. A padding record
**       is distinguished from a compressed page record by the most 
**       significant bit of the second byte of the size field, which is
**       cleared instead of set. 
*/
#include "lsmInt.h"

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>


/*
** File-system object. Each database connection allocates a single instance
** of the following structure. It is used for all access to the database and
** log files.
**
** pLruFirst, pLruLast:
120
121
122
123
124
125
126







127
128
129
130
131
132
133
  int nPagesize;                  /* Database page-size in bytes */
  int nBlocksize;                 /* Database block-size in bytes */

  /* r/w file descriptors for both files. */
  LsmFile *pLsmFile;
  lsm_file *fdDb;                 /* Database file */
  lsm_file *fdLog;                /* Log file */








  /* mmap() mode things */
  int bUseMmap;                   /* True to use mmap() to access db file */
  void *pMap;                     /* Current mapping of database file */
  i64 nMap;                       /* Bytes mapped at pMap */
  Page *pFree;








>
>
>
>
>
>
>







180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  int nPagesize;                  /* Database page-size in bytes */
  int nBlocksize;                 /* Database block-size in bytes */

  /* r/w file descriptors for both files. */
  LsmFile *pLsmFile;
  lsm_file *fdDb;                 /* Database file */
  lsm_file *fdLog;                /* Log file */
  int szSector;                   /* Database file sector size */

  /* If this is a compressed database, a pointer to the compression methods.
  ** For an uncompressed database, a NULL pointer.  */
  lsm_compress *pCompress;
  u8 *aBuffer;                    /* Buffer to compress into */
  int nBuffer;                    /* Allocated size of aBuffer[] in bytes */

  /* mmap() mode things */
  int bUseMmap;                   /* True to use mmap() to access db file */
  void *pMap;                     /* Current mapping of database file */
  i64 nMap;                       /* Bytes mapped at pMap */
  Page *pFree;

143
144
145
146
147
148
149










150
151
152
153
154
155
156
157
158
159
160





161
162
163
164
165
166
167
  Page *pLruLast;                 /* Tail of the LRU list */
  int nHash;                      /* Number of hash slots in hash table */
  Page **apHash;                  /* nHash Hash slots */
};

/*
** Database page handle.










*/
struct Page {
  u8 *aData;                      /* Buffer containing page data */
  int nData;                      /* Bytes of usable data at aData[] */
  int iPg;                        /* Page number */
  int nRef;                       /* Number of outstanding references */
  int flags;                      /* Combination of PAGE_XXX flags */
  Page *pHashNext;                /* Next page in hash table slot */
  Page *pLruNext;                 /* Next page in LRU list */
  Page *pLruPrev;                 /* Previous page in LRU list */
  FileSystem *pFS;                /* File system that owns this page */





};

/*
** Meta-data page handle. There are two meta-data pages at the start of
** the database file, each FileSystem.nMetasize bytes in size.
*/
struct MetaPage {







>
>
>
>
>
>
>
>
>
>




|






>
>
>
>
>







210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
  Page *pLruLast;                 /* Tail of the LRU list */
  int nHash;                      /* Number of hash slots in hash table */
  Page **apHash;                  /* nHash Hash slots */
};

/*
** Database page handle.
**
** pSeg:
**   When lsmFsSortedAppend() is called on a compressed database, the new
**   page is not assigned a page number or location in the database file
**   immediately. Instead, these are assigned by the lsmFsPagePersist() call
**   right before it writes the compressed page image to disk.
**
**   The lsmFsSortedAppend() function sets the pSeg pointer to point to the
**   segment that the new page will be a part of. It is unset by
**   lsmFsPagePersist() after the page is written to disk.
*/
struct Page {
  u8 *aData;                      /* Buffer containing page data */
  int nData;                      /* Bytes of usable data at aData[] */
  Pgno iPg;                       /* Page number */
  int nRef;                       /* Number of outstanding references */
  int flags;                      /* Combination of PAGE_XXX flags */
  Page *pHashNext;                /* Next page in hash table slot */
  Page *pLruNext;                 /* Next page in LRU list */
  Page *pLruPrev;                 /* Previous page in LRU list */
  FileSystem *pFS;                /* File system that owns this page */

  /* Only used in compressed database mode: */
  int nCompress;                  /* Compressed size (or 0 for uncomp. db) */
  int nCompressPrev;              /* Compressed size of prev page */
  Segment *pSeg;                  /* Segment this page will be written to */
};

/*
** Meta-data page handle. There are two meta-data pages at the start of
** the database file, each FileSystem.nMetasize bytes in size.
*/
struct MetaPage {
180
181
182
183
184
185
186
















187
188
189
190
191
192
193

/*
** Number of pgsz byte pages omitted from the start of block 1. The start
** of block 1 contains two 4096 byte meta pages (8192 bytes in total).
*/
#define BLOCK1_HDR_SIZE(pgsz)  LSM_MAX(1, 8192/(pgsz))


















/*
** Wrappers around the VFS methods of the lsm_env object:
**
**     lsmEnvOpen()
**     lsmEnvRead()
**     lsmEnvWrite()







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

/*
** Number of pgsz byte pages omitted from the start of block 1. The start
** of block 1 contains two 4096 byte meta pages (8192 bytes in total).
*/
#define BLOCK1_HDR_SIZE(pgsz)  LSM_MAX(1, 8192/(pgsz))

/*
** If NDEBUG is not defined, set a breakpoint in function lsmIoerrBkpt()
** to catch IO errors. 
*/
#ifndef NDEBUG
static void lsmIoerrBkpt(){
  static int nErr = 0;
  nErr++;
}
static int IOERR_WRAPPER(int rc){
  if( rc!=LSM_OK ) lsmIoerrBkpt();
  return rc;
}
#else
# define IOERR_WRAPPER(rc) (rc)
#endif

/*
** Wrappers around the VFS methods of the lsm_env object:
**
**     lsmEnvOpen()
**     lsmEnvRead()
**     lsmEnvWrite()
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
static int lsmEnvRead(
  lsm_env *pEnv, 
  lsm_file *pFile, 
  lsm_i64 iOff, 
  void *pRead, 
  int nRead
){
  return pEnv->xRead(pFile, iOff, pRead, nRead);
}
static int lsmEnvWrite(
  lsm_env *pEnv, 
  lsm_file *pFile, 
  lsm_i64 iOff, 
  void *pWrite, 
  int nWrite
){
  return pEnv->xWrite(pFile, iOff, pWrite, nWrite);
}
static int lsmEnvSync(lsm_env *pEnv, lsm_file *pFile){
  return pEnv->xSync(pFile);
}
static int lsmEnvSectorSize(lsm_env *pEnv, lsm_file *pFile){
  return pEnv->xSectorSize(pFile);
}
int lsmEnvClose(lsm_env *pEnv, lsm_file *pFile){
  return pEnv->xClose(pFile);
}
static int lsmEnvTruncate(lsm_env *pEnv, lsm_file *pFile, lsm_i64 nByte){
  return pEnv->xTruncate(pFile, nByte);
}
static int lsmEnvUnlink(lsm_env *pEnv, const char *zDel){
  return pEnv->xUnlink(pEnv, zDel);
}
static int lsmEnvRemap(
  lsm_env *pEnv, 
  lsm_file *pFile, 
  i64 szMin,
  void **ppMap,
  i64 *pszMap







|





|


|


|





|


|


|







302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
static int lsmEnvRead(
  lsm_env *pEnv, 
  lsm_file *pFile, 
  lsm_i64 iOff, 
  void *pRead, 
  int nRead
){
  return IOERR_WRAPPER( pEnv->xRead(pFile, iOff, pRead, nRead) );
}
static int lsmEnvWrite(
  lsm_env *pEnv, 
  lsm_file *pFile, 
  lsm_i64 iOff, 
  const void *pWrite, 
  int nWrite
){
  return IOERR_WRAPPER( pEnv->xWrite(pFile, iOff, (void *)pWrite, nWrite) );
}
static int lsmEnvSync(lsm_env *pEnv, lsm_file *pFile){
  return IOERR_WRAPPER( pEnv->xSync(pFile) );
}
static int lsmEnvSectorSize(lsm_env *pEnv, lsm_file *pFile){
  return pEnv->xSectorSize(pFile);
}
int lsmEnvClose(lsm_env *pEnv, lsm_file *pFile){
  return IOERR_WRAPPER( pEnv->xClose(pFile) );
}
static int lsmEnvTruncate(lsm_env *pEnv, lsm_file *pFile, lsm_i64 nByte){
  return IOERR_WRAPPER( pEnv->xTruncate(pFile, nByte) );
}
static int lsmEnvUnlink(lsm_env *pEnv, const char *zDel){
  return IOERR_WRAPPER( pEnv->xUnlink(pEnv, zDel) );
}
static int lsmEnvRemap(
  lsm_env *pEnv, 
  lsm_file *pFile, 
  i64 szMin,
  void **ppMap,
  i64 *pszMap
393
394
395
396
397
398
399



400

401
402
403
404
405
406
407
    pFS->zDb = (char *)&pFS[1];
    pFS->zLog = &pFS->zDb[nDb+1];
    pFS->nPagesize = LSM_DFLT_PAGE_SIZE;
    pFS->nBlocksize = LSM_DFLT_BLOCK_SIZE;
    pFS->nMetasize = 4 * 1024;
    pFS->pDb = pDb;
    pFS->pEnv = pDb->pEnv;



    pFS->bUseMmap = pDb->bMmap;


    /* Make a copy of the database and log file names. */
    memcpy(pFS->zDb, zDb, nDb+1);
    memcpy(pFS->zLog, zDb, nDb);
    memcpy(&pFS->zLog[nDb], "-log", 5);

    /* Allocate the hash-table here. At some point, it should be changed







>
>
>
|
>







491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    pFS->zDb = (char *)&pFS[1];
    pFS->zLog = &pFS->zDb[nDb+1];
    pFS->nPagesize = LSM_DFLT_PAGE_SIZE;
    pFS->nBlocksize = LSM_DFLT_BLOCK_SIZE;
    pFS->nMetasize = 4 * 1024;
    pFS->pDb = pDb;
    pFS->pEnv = pDb->pEnv;
    if( pDb->compress.xCompress ){
      pFS->pCompress = &pDb->compress;
    }else{
      pFS->bUseMmap = pDb->bMmap;
    }

    /* Make a copy of the database and log file names. */
    memcpy(pFS->zDb, zDb, nDb+1);
    memcpy(pFS->zLog, zDb, nDb);
    memcpy(&pFS->zLog[nDb], "-log", 5);

    /* Allocate the hash-table here. At some point, it should be changed
422
423
424
425
426
427
428


429
430
431
432
433
434
435
        pFS->fdDb = fsOpenFile(pFS, 0, &rc);
      }
    }

    if( rc!=LSM_OK ){
      lsmFsClose(pFS);
      pFS = 0;


    }
  }

  pDb->pFS = pFS;
  return rc;
}








>
>







524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
        pFS->fdDb = fsOpenFile(pFS, 0, &rc);
      }
    }

    if( rc!=LSM_OK ){
      lsmFsClose(pFS);
      pFS = 0;
    }else{
      pFS->szSector = lsmEnvSectorSize(pFS->pEnv, pFS->fdDb);
    }
  }

  pDb->pFS = pFS;
  return rc;
}

450
451
452
453
454
455
456

457
458
459
460
461
462
463
      pPg = pNext;
    }

    if( pFS->fdDb ) lsmEnvClose(pFS->pEnv, pFS->fdDb );
    if( pFS->fdLog ) lsmEnvClose(pFS->pEnv, pFS->fdLog );
    lsmFree(pEnv, pFS->pLsmFile);
    lsmFree(pEnv, pFS->apHash);

    lsmFree(pEnv, pFS);
  }
}

void lsmFsDeferClose(FileSystem *pFS, LsmFile **pp){
  LsmFile *p = pFS->pLsmFile;
  assert( p->pNext==0 );







>







554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
      pPg = pNext;
    }

    if( pFS->fdDb ) lsmEnvClose(pFS->pEnv, pFS->fdDb );
    if( pFS->fdLog ) lsmEnvClose(pFS->pEnv, pFS->fdLog );
    lsmFree(pEnv, pFS->pLsmFile);
    lsmFree(pEnv, pFS->apHash);
    lsmFree(pEnv, pFS->aBuffer);
    lsmFree(pEnv, pFS);
  }
}

void lsmFsDeferClose(FileSystem *pFS, LsmFile **pp){
  LsmFile *p = pFS->pLsmFile;
  assert( p->pNext==0 );
526
527
528
529
530
531
532




533
534








535
536
537
538
539
540

541
542
543
544
545
546
547




548
549



550
551













552
553
554
555


556
557
558

559
560
561
562
563


564
565
566

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

596
597
598
599
600
601
602
void lsmFsSetBlockSize(FileSystem *pFS, int nBlocksize){
  pFS->nBlocksize = nBlocksize;
}

/*
** Return the page number of the first page on block iBlock. Blocks are
** numbered starting from 1.




*/
static Pgno fsFirstPageOnBlock(FileSystem *pFS, int iBlock){








  const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
  int iPg;
  if( iBlock==1 ){
    iPg = 1 + ((pFS->nMetasize*2 + pFS->nPagesize - 1) / pFS->nPagesize);
  }else{
    iPg = 1 + (iBlock-1) * nPagePerBlock;

  }
  return iPg;
}

/*
** Return the page number of the last page on block iBlock. Blocks are
** numbered starting from 1.




*/
static Pgno fsLastPageOnBlock(FileSystem *pFS, int iBlock){



  const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
  return iBlock * nPagePerBlock;













}

/*
** Return true if page iPg is the last page on its block.


*/
static int fsIsLast(FileSystem *pFS, Pgno iPg){
  const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);

  return ( iPg && (iPg % nPagePerBlock)==0 );
}

/*
** Return true if page iPg is the first page on its block.


*/
static int fsIsFirst(FileSystem *pFS, Pgno iPg){
  const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);

  return (
      (iPg % nPagePerBlock)==1
   || (iPg<nPagePerBlock && iPg==fsFirstPageOnBlock(pFS, 1))
  );
}

/*
** Given a page reference, return a pointer to the in-memory buffer of the
** pages contents. If parameter pnData is not NULL, set *pnData to the size
** of the buffer in bytes before returning.
*/
u8 *lsmFsPageData(Page *pPage, int *pnData){
  if( pnData ){
#ifndef NDEBUG
    int bShort = (
        fsIsFirst(pPage->pFS, pPage->iPg) || fsIsLast(pPage->pFS, pPage->iPg)
    );
    assert( bShort==!!(pPage->flags & PAGE_SHORT) );
    assert( PAGE_SHORT==4 );
#endif
    *pnData = pPage->pFS->nPagesize - (pPage->flags & PAGE_SHORT);
  }
  return pPage->aData;
}

/*
** Return the page number of a page.
*/
Pgno lsmFsPageNumber(Page *pPage){

  return pPage ? pPage->iPg : 0;
}

/*
** Page pPg is currently part of the LRU list belonging to pFS. Remove
** it from the list. pPg->pLruNext and pPg->pLruPrev are cleared by this
** operation.







>
>
>
>


>
>
>
>
>
>
>
>
|
<
|
|
|
|
>







>
>
>
>


>
>
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>




>
>



>





>
>



>
|
|
|











|
|













>







631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
void lsmFsSetBlockSize(FileSystem *pFS, int nBlocksize){
  pFS->nBlocksize = nBlocksize;
}

/*
** Return the page number of the first page on block iBlock. Blocks are
** numbered starting from 1.
**
** For a compressed database, page numbers are byte offsets. The first
** page on each block is the byte offset immediately following the 4-byte
** "previous block" pointer at the start of each block.
*/
static Pgno fsFirstPageOnBlock(FileSystem *pFS, int iBlock){
  Pgno iPg;
  if( pFS->pCompress ){
    if( iBlock==1 ){
      iPg = pFS->nMetasize * 2 + 4;
    }else{
      iPg = pFS->nBlocksize * (Pgno)(iBlock-1) + 4;
    }
  }else{
    const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);

    if( iBlock==1 ){
      iPg = 1 + ((pFS->nMetasize*2 + pFS->nPagesize - 1) / pFS->nPagesize);
    }else{
      iPg = 1 + (iBlock-1) * nPagePerBlock;
    }
  }
  return iPg;
}

/*
** Return the page number of the last page on block iBlock. Blocks are
** numbered starting from 1.
**
** For a compressed database, page numbers are byte offsets. The first
** page on each block is the byte offset of the byte immediately before 
** the 4-byte "next block" pointer at the end of each block.
*/
static Pgno fsLastPageOnBlock(FileSystem *pFS, int iBlock){
  if( pFS->pCompress ){
    return pFS->nBlocksize * (Pgno)iBlock - 1 - 4;
  }else{
    const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
    return iBlock * nPagePerBlock;
  }
}

/*
** Return the block number of the block that page iPg is located on. 
** Blocks are numbered starting from 1.
*/
static int fsPageToBlock(FileSystem *pFS, Pgno iPg){
  if( pFS->pCompress ){
    return (iPg / pFS->nBlocksize) + 1;
  }else{
    return 1 + ((iPg-1) / (pFS->nBlocksize / pFS->nPagesize));
  }
}

/*
** Return true if page iPg is the last page on its block.
**
** This function is only called in non-compressed database mode.
*/
static int fsIsLast(FileSystem *pFS, Pgno iPg){
  const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
  assert( !pFS->pCompress );
  return ( iPg && (iPg % nPagePerBlock)==0 );
}

/*
** Return true if page iPg is the first page on its block.
**
** This function is only called in non-compressed database mode.
*/
static int fsIsFirst(FileSystem *pFS, Pgno iPg){
  const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
  assert( !pFS->pCompress );

  return ( (iPg % nPagePerBlock)==1
        || (iPg<nPagePerBlock && iPg==fsFirstPageOnBlock(pFS, 1))
  );
}

/*
** Given a page reference, return a pointer to the in-memory buffer of the
** pages contents. If parameter pnData is not NULL, set *pnData to the size
** of the buffer in bytes before returning.
*/
u8 *lsmFsPageData(Page *pPage, int *pnData){
  if( pnData ){
#ifndef NDEBUG
    int bShort = (pPage->pFS->pCompress==0 &&
        (fsIsFirst(pPage->pFS, pPage->iPg) || fsIsLast(pPage->pFS, pPage->iPg))
    );
    assert( bShort==!!(pPage->flags & PAGE_SHORT) );
    assert( PAGE_SHORT==4 );
#endif
    *pnData = pPage->pFS->nPagesize - (pPage->flags & PAGE_SHORT);
  }
  return pPage->aData;
}

/*
** Return the page number of a page.
*/
Pgno lsmFsPageNumber(Page *pPage){
  assert( (pPage->flags & PAGE_DIRTY)==0 );
  return pPage ? pPage->iPg : 0;
}

/*
** Page pPg is currently part of the LRU list belonging to pFS. Remove
** it from the list. pPg->pLruNext and pPg->pLruPrev are cleared by this
** operation.
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700



701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717


718






































































































































































































































719
720
721
722
723
724
725

726
727
728
729
730
731
732
    lsmFree(pPg->pFS->pEnv, pPg->aData);
  }
  else if( pPg->pFS->bUseMmap ){
    fsPageRemoveFromLru(pPg->pFS, pPg);
  }
  lsmFree(pPg->pFS->pEnv, pPg);
}

int fsPageToBlock(FileSystem *pFS, Pgno iPg){
  return 1 + ((iPg-1) / (pFS->nBlocksize / pFS->nPagesize));
}


static void fsGrowMapping(
  FileSystem *pFS,
  i64 iSz,
  int *pRc
){



  if( *pRc==LSM_OK && iSz>pFS->nMap ){
    Page *pFix;
    int rc;
    u8 *aOld = pFS->pMap;
    rc = lsmEnvRemap(pFS->pEnv, pFS->fdDb, iSz, &pFS->pMap, &pFS->nMap);
    if( rc==LSM_OK && pFS->pMap!=aOld ){
      u8 *aData = (u8 *)pFS->pMap;
      for(pFix=pFS->pLruFirst; pFix; pFix=pFix->pLruNext){
        assert( &aOld[pFS->nPagesize * (i64)(pFix->iPg-1)]==pFix->aData );
        pFix->aData = &aData[pFS->nPagesize * (i64)(pFix->iPg-1)];
      }
      lsmSortedRemap(pFS->pDb);
    }
    *pRc = rc;
  }
}



/*






































































































































































































































** Return a handle for a database page.
*/
int fsPageGet(
  FileSystem *pFS,                /* File-system handle */
  Pgno iPg,                       /* Page id */
  int noContent,                  /* True to not load content from disk */
  Page **ppPg                     /* OUT: New page handle */

){
  Page *p;
  int iHash;
  int rc = LSM_OK;

  assert( iPg>=fsFirstPageOnBlock(pFS, 1) );
  *ppPg = 0;







<
<
<
<
<






>
>
>

















>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|



|
>







827
828
829
830
831
832
833





834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
    lsmFree(pPg->pFS->pEnv, pPg->aData);
  }
  else if( pPg->pFS->bUseMmap ){
    fsPageRemoveFromLru(pPg->pFS, pPg);
  }
  lsmFree(pPg->pFS->pEnv, pPg);
}






static void fsGrowMapping(
  FileSystem *pFS,
  i64 iSz,
  int *pRc
){
  /* This function won't work with compressed databases yet. */
  assert( pFS->pCompress==0 );

  if( *pRc==LSM_OK && iSz>pFS->nMap ){
    Page *pFix;
    int rc;
    u8 *aOld = pFS->pMap;
    rc = lsmEnvRemap(pFS->pEnv, pFS->fdDb, iSz, &pFS->pMap, &pFS->nMap);
    if( rc==LSM_OK && pFS->pMap!=aOld ){
      u8 *aData = (u8 *)pFS->pMap;
      for(pFix=pFS->pLruFirst; pFix; pFix=pFix->pLruNext){
        assert( &aOld[pFS->nPagesize * (i64)(pFix->iPg-1)]==pFix->aData );
        pFix->aData = &aData[pFS->nPagesize * (i64)(pFix->iPg-1)];
      }
      lsmSortedRemap(pFS->pDb);
    }
    *pRc = rc;
  }
}

static int fsPageGet(FileSystem *, Pgno, int, Page **, int *);

/*
** Parameter iBlock is a database file block. This function reads the value 
** stored in the blocks "next block" pointer and stores it in *piNext.
** LSM_OK is returned if everything is successful, or an LSM error code
** otherwise.
*/
static int fsBlockNext(
  FileSystem *pFS,                /* File-system object handle */
  int iBlock,                     /* Read field from this block */
  int *piNext                     /* OUT: Next block in linked list */
){
  int rc;

  assert( pFS->bUseMmap==0 || pFS->pCompress==0 );
  if( pFS->pCompress ){
    i64 iOff;                     /* File offset to read data from */
    u8 aNext[4];                  /* 4-byte pointer read from db file */

    iOff = (i64)iBlock * pFS->nBlocksize - sizeof(aNext);
    rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aNext, sizeof(aNext));
    if( rc==LSM_OK ){
      *piNext = (int)lsmGetU32(aNext);
    }
  }else{
    const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
    Page *pLast;
    rc = fsPageGet(pFS, iBlock*nPagePerBlock, 0, &pLast, 0);
    if( rc==LSM_OK ){
      *piNext = fsPageToBlock(pFS, lsmGetU32(&pLast->aData[pFS->nPagesize-4]));
      lsmFsPageRelease(pLast);
    }
  }
  return rc;
}

/*
** Return the page number of the last page on the same block as page iPg.
*/
Pgno fsLastPageOnPagesBlock(FileSystem *pFS, Pgno iPg){
  return fsLastPageOnBlock(pFS, fsPageToBlock(pFS, iPg));
}

/*
** This function is only called in compressed database mode.
*/
static int fsReadData(
  FileSystem *pFS,                /* File-system handle */
  i64 iOff,                       /* Read data from this offset */
  u8 *aData,                      /* Buffer to read data into */
  int nData                       /* Number of bytes to read */
){
  i64 iEob;                       /* End of block */
  int nRead;
  int rc;

  assert( pFS->pCompress );

  iEob = fsLastPageOnPagesBlock(pFS, iOff) + 1;
  nRead = LSM_MIN(iEob - iOff, nData);

  rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aData, nRead);
  if( rc==LSM_OK && nRead!=nData ){
    int iBlk;

    rc = fsBlockNext(pFS, fsPageToBlock(pFS, iOff), &iBlk);
    if( rc==LSM_OK ){
      i64 iOff2 = fsFirstPageOnBlock(pFS, iBlk);
      rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff2, &aData[nRead], nData-nRead);
    }
  }

  return rc;
}

/*
** Parameter iBlock is a database file block. This function reads the value 
** stored in the blocks "previous block" pointer and stores it in *piPrev.
** LSM_OK is returned if everything is successful, or an LSM error code
** otherwise.
*/
static int fsBlockPrev(
  FileSystem *pFS,                /* File-system object handle */
  int iBlock,                     /* Read field from this block */
  int *piPrev                     /* OUT: Previous block in linked list */
){
  int rc = LSM_OK;                /* Return code */

  assert( pFS->bUseMmap==0 || pFS->pCompress==0 );
  assert( iBlock>0 );

  if( pFS->pCompress ){
    i64 iOff = fsFirstPageOnBlock(pFS, iBlock) - 4;
    u8 aPrev[4];                  /* 4-byte pointer read from db file */
    rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aPrev, sizeof(aPrev));
    if( rc==LSM_OK ){
      *piPrev = (int)lsmGetU32(aPrev);
    }
  }else{
    assert( 0 );
  }
  return rc;
}

/*
** Encode and decode routines for record size fields.
*/
static void putRecordSize(u8 *aBuf, int nByte, int bFree){
  aBuf[0] = (u8)(nByte >> 14) | 0x80;
  aBuf[1] = ((u8)(nByte >>  7) & 0x7F) | (bFree ? 0x00 : 0x80);
  aBuf[2] = (u8)nByte | 0x80;
}
static int getRecordSize(u8 *aBuf, int *pbFree){
  int nByte;
  nByte  = (aBuf[0] & 0x7F) << 14;
  nByte += (aBuf[1] & 0x7F) << 7;
  nByte += (aBuf[2] & 0x7F);
  *pbFree = !(aBuf[1] & 0x80);
  return nByte;
}

static int fsSubtractOffset(FileSystem *pFS, i64 iOff, int iSub, i64 *piRes){
  i64 iStart;
  int iBlk;
  int rc;

  assert( pFS->pCompress );

  iStart = fsFirstPageOnBlock(pFS, fsPageToBlock(pFS, iOff));
  if( (iOff-iSub)>=iStart ){
    *piRes = (iOff-iSub);
    return LSM_OK;
  }

  rc = fsBlockPrev(pFS, fsPageToBlock(pFS, iOff), &iBlk);
  *piRes = fsLastPageOnBlock(pFS, iBlk) - iSub + (iOff - iStart + 1);
  return rc;
}

static int fsAddOffset(FileSystem *pFS, i64 iOff, int iAdd, i64 *piRes){
  i64 iEob;
  int iBlk;
  int rc;

  assert( pFS->pCompress );

  iEob = fsLastPageOnPagesBlock(pFS, iOff);
  if( (iOff+iAdd)<=iEob ){
    *piRes = (iOff+iAdd);
    return LSM_OK;
  }

  rc = fsBlockNext(pFS, fsPageToBlock(pFS, iOff), &iBlk);
  *piRes = fsFirstPageOnBlock(pFS, iBlk) + iAdd - (iEob - iOff + 1);
  return rc;
}

static int fsAllocateBuffer(FileSystem *pFS){
  assert( pFS->pCompress );
  if( pFS->aBuffer==0 ){
    pFS->nBuffer = pFS->pCompress->xBound(pFS->pCompress->pCtx, pFS->nPagesize);
    if( pFS->nBuffer<(pFS->szSector+6) ){
      pFS->nBuffer = pFS->szSector+6;
    }
    pFS->aBuffer = lsmMalloc(pFS->pEnv, LSM_MAX(pFS->nBuffer, pFS->nPagesize));
    if( pFS->aBuffer==0 ) return LSM_NOMEM_BKPT;
  }
  return LSM_OK;
}

/*
** This function is only called in compressed database mode. It reads and
** uncompresses the compressed data for page pPg from the database and
** populates the pPg->aData[] buffer and pPg->nCompress field.
**
** LSM_OK is returned if successful, or an LSM error code otherwise.
*/
static int fsReadPagedata(
  FileSystem *pFS,                /* File-system handle */
  Page *pPg,                      /* Page to read and uncompress data for */
  int *pnSpace                    /* OUT: Total bytes of free space */
){
  lsm_compress *p = pFS->pCompress;
  i64 iOff = pPg->iPg;
  u8 aSz[3];
  int rc;

  assert( p && pPg->nCompress==0 );

  if( fsAllocateBuffer(pFS) ) return LSM_NOMEM;

  rc = fsReadData(pFS, iOff, aSz, sizeof(aSz));

  if( rc==LSM_OK ){
    int bFree;
    if( aSz[0] & 0x80 ){
      pPg->nCompress = (int)getRecordSize(aSz, &bFree);
    }else{
      pPg->nCompress = (int)aSz[0] - sizeof(aSz)*2;
      bFree = 1;
    }
    if( bFree ){
      if( pnSpace ){
        *pnSpace = pPg->nCompress + sizeof(aSz)*2;
      }else{
        rc = LSM_CORRUPT_BKPT;
      }
    }else{
      rc = fsAddOffset(pFS, iOff, 3, &iOff);
      if( rc==LSM_OK ){
        if( pPg->nCompress>pFS->nBuffer ){
          rc = LSM_CORRUPT_BKPT;
        }else{
          rc = fsReadData(pFS, iOff, pFS->aBuffer, pPg->nCompress);
        }
        if( rc==LSM_OK ){
          int n = pFS->nPagesize;
          rc = p->xUncompress(p->pCtx, 
              (char *)pPg->aData, &n, 
              (const char *)pFS->aBuffer, pPg->nCompress
              );
          if( rc==LSM_OK && n!=pPg->nData ){
            rc = LSM_CORRUPT_BKPT;
          }
        }
      }
    }
  }
  return rc;
}

/*
** Return a handle for a database page.
*/
static int fsPageGet(
  FileSystem *pFS,                /* File-system handle */
  Pgno iPg,                       /* Page id */
  int noContent,                  /* True to not load content from disk */
  Page **ppPg,                    /* OUT: New page handle */
  int *pnSpace                    /* OUT: Bytes of free space */
){
  Page *p;
  int iHash;
  int rc = LSM_OK;

  assert( iPg>=fsFirstPageOnBlock(pFS, 1) );
  *ppPg = 0;
761
762
763
764
765
766
767

768
769
770
771
772



773
774
775
776
777
778



779
780
781
782
783

784
785
786
787
788
789
790
791
792
793
794
795
796

797
798
799
800
801
802

803

804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
    for(p=pFS->apHash[iHash]; p; p=p->pHashNext){
      if( p->iPg==iPg) break;
    }

    if( p==0 ){
      rc = fsPageBuffer(pFS, 1, &p);
      if( rc==LSM_OK ){

        p->iPg = iPg;
        p->nRef = 0;
        p->pFS = pFS;
        assert( p->flags==0 || p->flags==PAGE_FREE );
        if( fsIsLast(pFS, iPg) || fsIsFirst(pFS, iPg) ) p->flags |= PAGE_SHORT;




#ifdef LSM_DEBUG
        memset(p->aData, 0x56, pFS->nPagesize);
#endif
        assert( p->pLruNext==0 && p->pLruPrev==0 );
        if( noContent==0 ){



          int nByte = pFS->nPagesize;
          i64 iOff;

          iOff = (i64)(iPg-1) * pFS->nPagesize;
          rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, p->aData, nByte);

          pFS->nRead++;
        }

        /* If the xRead() call was successful (or not attempted), link the
         ** page into the page-cache hash-table. Otherwise, if it failed,
         ** free the buffer. */
        if( rc==LSM_OK ){
          p->pHashNext = pFS->apHash[iHash];
          p->nData =  pFS->nPagesize - (p->flags & PAGE_SHORT);
          pFS->apHash[iHash] = p;
        }else{
          fsPageBufferFree(p);
          p = 0;

        }
      }
    }else if( p->nRef==0 ){
      fsPageRemoveFromLru(pFS, p);
    }


    assert( (rc==LSM_OK && p) || (rc!=LSM_OK && p==0) );

  }
  if( rc==LSM_OK ){
    pFS->nOut += (p->nRef==0);
    p->nRef++;
  }
  *ppPg = p;
  return rc;
}

static int fsBlockNext(
  FileSystem *pFS, 
  int iBlock, 
  int *piNext
){
  const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
  Page *pLast;
  int rc;
  
  rc = fsPageGet(pFS, iBlock*nPagePerBlock, 0, &pLast);
  if( rc==LSM_OK ){
    *piNext = fsPageToBlock(pFS, lsmGetU32(&pLast->aData[pFS->nPagesize-4]));
    lsmFsPageRelease(pLast);
  }
  return rc;
}

static int fsRunEndsBetween(
  Segment *pRun, 
  Segment *pIgnore, 
  int iFirst, 
  int iLast
){
  return (pRun!=pIgnore && (
        (pRun->iFirst>=iFirst && pRun->iFirst<=iLast)
     || (pRun->iLast>=iFirst && pRun->iLast<=iLast)
  ));
}

static int fsLevelEndsBetween(
  Level *pLevel, 
  Segment *pIgnore, 
  int iFirst, 
  int iLast
){
  int i;

  if( fsRunEndsBetween(&pLevel->lhs, pIgnore, iFirst, iLast) ){
    return 1;
  }
  for(i=0; i<pLevel->nRight; i++){







>




|
>
>
>






>
>
>
|
<
<
|
|
>






|

<




>






>
|
>

|







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




|
|



|






|
|







1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161


1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
















1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
    for(p=pFS->apHash[iHash]; p; p=p->pHashNext){
      if( p->iPg==iPg) break;
    }

    if( p==0 ){
      rc = fsPageBuffer(pFS, 1, &p);
      if( rc==LSM_OK ){
        int nSpace = 0;
        p->iPg = iPg;
        p->nRef = 0;
        p->pFS = pFS;
        assert( p->flags==0 || p->flags==PAGE_FREE );
        if( pFS->pCompress==0 && (fsIsLast(pFS, iPg) || fsIsFirst(pFS, iPg)) ){
          p->flags |= PAGE_SHORT;
        }
        p->nData =  pFS->nPagesize - (p->flags & PAGE_SHORT);

#ifdef LSM_DEBUG
        memset(p->aData, 0x56, pFS->nPagesize);
#endif
        assert( p->pLruNext==0 && p->pLruPrev==0 );
        if( noContent==0 ){
          if( pFS->pCompress ){
            rc = fsReadPagedata(pFS, p, &nSpace);
          }else{
            int nByte = pFS->nPagesize;


            i64 iOff = (i64)(iPg-1) * pFS->nPagesize;
            rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, p->aData, nByte);
          }
          pFS->nRead++;
        }

        /* If the xRead() call was successful (or not attempted), link the
         ** page into the page-cache hash-table. Otherwise, if it failed,
         ** free the buffer. */
        if( rc==LSM_OK && nSpace==0 ){
          p->pHashNext = pFS->apHash[iHash];

          pFS->apHash[iHash] = p;
        }else{
          fsPageBufferFree(p);
          p = 0;
          if( pnSpace ) *pnSpace = nSpace;
        }
      }
    }else if( p->nRef==0 ){
      fsPageRemoveFromLru(pFS, p);
    }

    assert( (rc==LSM_OK && (p || (pnSpace && *pnSpace)))
         || (rc!=LSM_OK && p==0) 
    );
  }
  if( rc==LSM_OK && p ){
    pFS->nOut += (p->nRef==0);
    p->nRef++;
  }
  *ppPg = p;
  return rc;
}


















static int fsRunEndsBetween(
  Segment *pRun, 
  Segment *pIgnore, 
  Pgno iFirst, 
  Pgno iLast
){
  return (pRun!=pIgnore && (
        (pRun->iFirst>=iFirst && pRun->iFirst<=iLast)
     || (pRun->iLastPg>=iFirst && pRun->iLastPg<=iLast)
  ));
}

static int fsLevelEndsBetween(
  Level *pLevel, 
  Segment *pIgnore, 
  Pgno iFirst, 
  Pgno iLast
){
  int i;

  if( fsRunEndsBetween(&pLevel->lhs, pIgnore, iFirst, iLast) ){
    return 1;
  }
  for(i=0; i<pLevel->nRight; i++){
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
  int rc = LSM_OK;                /* Return code */
  int iFirst;                     /* First page on block iBlk */
  int iLast;                      /* Last page on block iBlk */
  Level *pLevel;                  /* Used to iterate through levels */

  int iIn;                        /* Used to iterate through append points */
  int iOut = 0;                   /* Used to output append points */
  u32 *aApp = pSnapshot->aiAppend;

  iFirst = fsFirstPageOnBlock(pFS, iBlk);
  iLast = fsLastPageOnBlock(pFS, iBlk);

  /* Check if any other run in the snapshot has a start or end page 
  ** within this block. If there is such a run, return early. */
  for(pLevel=lsmDbSnapshotLevel(pSnapshot); pLevel; pLevel=pLevel->pNext){







|







1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
  int rc = LSM_OK;                /* Return code */
  int iFirst;                     /* First page on block iBlk */
  int iLast;                      /* Last page on block iBlk */
  Level *pLevel;                  /* Used to iterate through levels */

  int iIn;                        /* Used to iterate through append points */
  int iOut = 0;                   /* Used to output append points */
  Pgno *aApp = pSnapshot->aiAppend;

  iFirst = fsFirstPageOnBlock(pFS, iBlk);
  iLast = fsLastPageOnBlock(pFS, iBlk);

  /* Check if any other run in the snapshot has a start or end page 
  ** within this block. If there is such a run, return early. */
  for(pLevel=lsmDbSnapshotLevel(pSnapshot); pLevel; pLevel=pLevel->pNext){
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
  if( pDel->iFirst ){
    int rc = LSM_OK;

    int iBlk;
    int iLastBlk;

    iBlk = fsPageToBlock(pFS, pDel->iFirst);
    iLastBlk = fsPageToBlock(pFS, pDel->iLast);

    /* Mark all blocks currently used by this sorted run as free */
    while( iBlk && rc==LSM_OK ){
      int iNext = 0;
      if( iBlk!=iLastBlk ){
        rc = fsBlockNext(pFS, iBlk, &iNext);
      }else if( bZero==0 && pDel->iLast!=fsLastPageOnBlock(pFS, iLastBlk) ){
        break;
      }
      rc = fsFreeBlock(pFS, pSnapshot, pDel, iBlk);
      iBlk = iNext;
    }

    if( bZero ) memset(pDel, 0, sizeof(Segment));







|






|







1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
  if( pDel->iFirst ){
    int rc = LSM_OK;

    int iBlk;
    int iLastBlk;

    iBlk = fsPageToBlock(pFS, pDel->iFirst);
    iLastBlk = fsPageToBlock(pFS, pDel->iLastPg);

    /* Mark all blocks currently used by this sorted run as free */
    while( iBlk && rc==LSM_OK ){
      int iNext = 0;
      if( iBlk!=iLastBlk ){
        rc = fsBlockNext(pFS, iBlk, &iNext);
      }else if( bZero==0 && pDel->iLastPg!=fsLastPageOnBlock(pFS, iLastBlk) ){
        break;
      }
      rc = fsFreeBlock(pFS, pSnapshot, pDel, iBlk);
      iBlk = iNext;
    }

    if( bZero ) memset(pDel, 0, sizeof(Segment));
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
    if( fsPageToBlock(pFS, iPg)==iBlk && (iRet==0 || iPg<iRet) ){
      iRet = iPg;
    }
  }
  return iRet;
}

#if 0
void fsOldGobble(
  FileSystem *pFS,
  Snapshot *pSnapshot,
  Segment *pRun, 
  Pgno iPg
){
  if( iPg!=pRun->iFirst ){
    int rc = LSM_OK;
    int iBlk = fsPageToBlock(pFS, pRun->iFirst);
    int iFirstBlk = fsPageToBlock(pFS, iPg);

    pRun->nSize += (pRun->iFirst - fsFirstPageOnBlock(pFS, iBlk));
    pRun->iFirst = iPg;
    while( rc==LSM_OK && iBlk!=iFirstBlk ){
      int iNext = 0;
      rc = fsBlockNext(pFS, iBlk, &iNext);
      if( rc==LSM_OK ) rc = fsFreeBlock(pFS, pSnapshot, 0, iBlk);
      pRun->nSize -= (
          1 + fsLastPageOnBlock(pFS, iBlk) - fsFirstPageOnBlock(pFS, iBlk)
          );
      iBlk = iNext;
    }

    pRun->nSize -= (pRun->iFirst - fsFirstPageOnBlock(pFS, iBlk));
    assert( pRun->nSize>0 );
  }
}
#endif

/*
** Argument aPgno is an array of nPgno page numbers. All pages belong to
** the segment pRun. This function gobbles from the start of the run to the
** first page that appears in aPgno[] (i.e. so that the aPgno[] entry is
** the new first page of the run).
*/
void lsmFsGobble(







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1308
1309
1310
1311
1312
1313
1314






























1315
1316
1317
1318
1319
1320
1321
    if( fsPageToBlock(pFS, iPg)==iBlk && (iRet==0 || iPg<iRet) ){
      iRet = iPg;
    }
  }
  return iRet;
}































/*
** Argument aPgno is an array of nPgno page numbers. All pages belong to
** the segment pRun. This function gobbles from the start of the run to the
** first page that appears in aPgno[] (i.e. so that the aPgno[] entry is
** the new first page of the run).
*/
void lsmFsGobble(
1011
1012
1013
1014
1015
1016
1017













































1018
1019
1020
1021
1022
1023
1024
    iBlk = iNext;
  }

  pRun->nSize -= (pRun->iFirst - fsFirstPageOnBlock(pFS, iBlk));
  assert( pRun->nSize>0 );
}















































/*
** The first argument to this function is a valid reference to a database
** file page that is part of a sorted run. If parameter eDir is -1, this 
** function attempts to locate and load the previous page in the same run. 
** Or, if eDir is +1, it attempts to find the next page in the same run.
** The results of passing an eDir value other than positive or negative one







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
    iBlk = iNext;
  }

  pRun->nSize -= (pRun->iFirst - fsFirstPageOnBlock(pFS, iBlk));
  assert( pRun->nSize>0 );
}

static int fsNextPageOffset(
  FileSystem *pFS,                /* File system object */
  Segment *pSeg,                  /* Segment to move within */
  Pgno iPg,                       /* Offset of current page */
  int nByte,                      /* Size of current page including headers */
  Pgno *piNext                    /* OUT: Offset of next page. Or zero (EOF) */
){
  Pgno iNext;
  int rc;

  assert( pFS->pCompress );

  rc = fsAddOffset(pFS, iPg, nByte-1, &iNext);
  if( pSeg && iNext==pSeg->iLastPg ){
    iNext = 0;
  }else if( rc==LSM_OK ){
    rc = fsAddOffset(pFS, iNext, 1, &iNext);
  }

  *piNext = iNext;
  return rc;
}

static int fsGetPageBefore(FileSystem *pFS, i64 iOff, Pgno *piPrev){
  u8 aSz[3];
  int rc;
  i64 iRead;

  rc = fsSubtractOffset(pFS, iOff, sizeof(aSz), &iRead);
  if( rc==LSM_OK ) rc = fsReadData(pFS, iRead, aSz, sizeof(aSz));

  if( rc==LSM_OK ){
    int bFree;
    int nSz;
    if( aSz[2] & 0x80 ){
      nSz = getRecordSize(aSz, &bFree) + sizeof(aSz)*2;
    }else{
      nSz = (int)(aSz[2] & 0x7F);
      bFree = 1;
    }
    rc = fsSubtractOffset(pFS, iOff, nSz, piPrev);
  }

  return rc;
}

/*
** The first argument to this function is a valid reference to a database
** file page that is part of a sorted run. If parameter eDir is -1, this 
** function attempts to locate and load the previous page in the same run. 
** Or, if eDir is +1, it attempts to find the next page in the same run.
** The results of passing an eDir value other than positive or negative one
1034
1035
1036
1037
1038
1039
1040

1041
1042
1043
























1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063

1064

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095

















1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139

1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160






1161




1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
























1190
1191
1192
1193
1194
1195
1196
** is set to point to it and LSM_OK is returned. Otherwise, if an error 
** occurs, *ppNext is set to NULL and and lsm error code returned.
**
** Page references returned by this function should be released by the 
** caller using lsmFsPageRelease().
*/
int lsmFsDbPageNext(Segment *pRun, Page *pPg, int eDir, Page **ppNext){

  FileSystem *pFS = pPg->pFS;
  int iPg = pPg->iPg;

























  assert( eDir==1 || eDir==-1 );
  if( eDir<0 ){
    if( pRun && iPg==pRun->iFirst ){
      *ppNext = 0;
      return LSM_OK;
    }else if( fsIsFirst(pFS, iPg) ){
      iPg = lsmGetU32(&pPg->aData[pFS->nPagesize-4]);
    }else{
      iPg--;
    }
  }else{
    if( pRun && iPg==pRun->iLast ){
      *ppNext = 0;
      return LSM_OK;
    }else if( fsIsLast(pFS, iPg) ){
      iPg = lsmGetU32(&pPg->aData[pFS->nPagesize-4]);
    }else{
      iPg++;
    }
  }



  return fsPageGet(pFS, iPg, 0, ppNext);
}

static Pgno findAppendPoint(FileSystem *pFS){
  int i;
  u32 *aiAppend = pFS->pDb->pWorker->aiAppend;
  u32 iRet = 0;

  for(i=LSM_APPLIST_SZ-1; iRet==0 && i>=0; i--){
    if( (iRet = aiAppend[i]) ) aiAppend[i] = 0;
  }
  return iRet;
}

/*
** Append a page to file iFile. Return a reference to it. lsmFsPageWrite()
** has already been called on the returned reference.

*/
int lsmFsSortedAppend(
  FileSystem *pFS, 
  Snapshot *pSnapshot,
  Segment *p, 
  Page **ppOut
){
  int rc = LSM_OK;
  Page *pPg = 0;
  *ppOut = 0;
  int iApp = 0;
  int iNext = 0;
  int iPrev = p->iLast;


















  if( iPrev==0 ){
    iApp = findAppendPoint(pFS);
  }else if( fsIsLast(pFS, iPrev) ){
    Page *pLast = 0;
    rc = fsPageGet(pFS, iPrev, 0, &pLast);
    if( rc!=LSM_OK ) return rc;
    iApp = lsmGetU32(&pLast->aData[pFS->nPagesize-4]);
    lsmFsPageRelease(pLast);
  }else{
    iApp = iPrev + 1;
  }

  /* If this is the first page allocated, or if the page allocated is the
   ** last in the block, allocate a new block here.  */
  if( iApp==0 || fsIsLast(pFS, iApp) ){
    int iNew;                     /* New block number */

    lsmBlockAllocate(pFS->pDb, &iNew);
    if( iApp==0 ){
      iApp = fsFirstPageOnBlock(pFS, iNew);
    }else{
      iNext = fsFirstPageOnBlock(pFS, iNew);
    }
  }

  /* Grab the new page. */
  pPg = 0;
  rc = fsPageGet(pFS, iApp, 1, &pPg);
  assert( rc==LSM_OK || pPg==0 );

  /* If this is the first or last page of a block, fill in the pointer 
   ** value at the end of the new page. */
  if( rc==LSM_OK ){
    p->nSize++;
    p->iLast = iApp;
    if( p->iFirst==0 ) p->iFirst = iApp;
    pPg->flags |= PAGE_DIRTY;

    if( fsIsLast(pFS, iApp) ){
      lsmPutU32(&pPg->aData[pFS->nPagesize-4], iNext);
    }else 
      if( fsIsFirst(pFS, iApp) ){
        lsmPutU32(&pPg->aData[pFS->nPagesize-4], iPrev);
      }

  }

  *ppOut = pPg;
  return rc;
}

/*
** Mark the sorted run passed as the second argument as finished. 
*/
int lsmFsSortedFinish(FileSystem *pFS, Segment *p){
  int rc = LSM_OK;
  if( p ){
    const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);

    /* Check if the last page of this run happens to be the last of a block.
    ** If it is, then an extra block has already been allocated for this run.
    ** Shift this extra block back to the free-block list. 
    **
    ** Otherwise, add the first free page in the last block used by the run
    ** to the lAppend list.
    */






    if( (p->iLast % nPagePerBlock)==0 ){




      Page *pLast;
      rc = fsPageGet(pFS, p->iLast, 0, &pLast);
      if( rc==LSM_OK ){
        int iPg = (int)lsmGetU32(&pLast->aData[pFS->nPagesize-4]);
        int iBlk = fsPageToBlock(pFS, iPg);
        lsmBlockRefree(pFS->pDb, iBlk);
        lsmFsPageRelease(pLast);
      }
    }else{
      int i;
      u32 *aiAppend = pFS->pDb->pWorker->aiAppend;
      for(i=0; i<LSM_APPLIST_SZ; i++){
        if( aiAppend[i]==0 ){
          aiAppend[i] = p->iLast+1;
          break;
        }
      }
    }
  }
  return rc;
}

/*
** Obtain a reference to page number iPg.
*/
int lsmFsDbPageGet(FileSystem *pFS, int iPg, Page **ppPg){
  assert( pFS );
  return fsPageGet(pFS, iPg, 0, ppPg);
























}

/*
** Return a reference to meta-page iPg. If successful, LSM_OK is returned
** and *ppPg populated with the new page reference. The reference should
** be released by the caller using lsmFsPageRelease().
**







>

|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
>
|




|









|
|
>












|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|
<
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
>











|
|








>
>
>
>
>
>
|
>
>
>
>

|


<
|



|
|
<
|
<
|
<









|

|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529

1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602

1603
1604
1605
1606
1607
1608

1609

1610

1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
** is set to point to it and LSM_OK is returned. Otherwise, if an error 
** occurs, *ppNext is set to NULL and and lsm error code returned.
**
** Page references returned by this function should be released by the 
** caller using lsmFsPageRelease().
*/
int lsmFsDbPageNext(Segment *pRun, Page *pPg, int eDir, Page **ppNext){
  int rc = LSM_OK;
  FileSystem *pFS = pPg->pFS;
  Pgno iPg = pPg->iPg;

  if( pFS->pCompress ){
    int nSpace = pPg->nCompress + 2*3;

    do {
      if( eDir>0 ){
        rc = fsNextPageOffset(pFS, pRun, iPg, nSpace, &iPg);
      }else{
        if( iPg==pRun->iFirst ){
          iPg = 0;
        }else{
          rc = fsGetPageBefore(pFS, iPg, &iPg);
        }
      }

      nSpace = 0;
      if( iPg!=0 ){
        rc = fsPageGet(pFS, iPg, 0, ppNext, &nSpace);
        assert( (*ppNext==0)==(rc!=LSM_OK || nSpace>0) );
      }else{
        *ppNext = 0;
      }
    }while( nSpace>0 && rc==LSM_OK );

  }else{
    assert( eDir==1 || eDir==-1 );
    if( eDir<0 ){
      if( pRun && iPg==pRun->iFirst ){
        *ppNext = 0;
        return LSM_OK;
      }else if( fsIsFirst(pFS, iPg) ){
        iPg = lsmGetU32(&pPg->aData[pFS->nPagesize-4]);
      }else{
        iPg--;
      }
    }else{
      if( pRun && iPg==pRun->iLastPg ){
        *ppNext = 0;
        return LSM_OK;
      }else if( fsIsLast(pFS, iPg) ){
        iPg = lsmGetU32(&pPg->aData[pFS->nPagesize-4]);
      }else{
        iPg++;
      }
    }
    rc = fsPageGet(pFS, iPg, 0, ppNext, 0);
  }

  return rc;
}

static Pgno findAppendPoint(FileSystem *pFS){
  int i;
  Pgno *aiAppend = pFS->pDb->pWorker->aiAppend;
  u32 iRet = 0;

  for(i=LSM_APPLIST_SZ-1; iRet==0 && i>=0; i--){
    if( (iRet = aiAppend[i]) ) aiAppend[i] = 0;
  }
  return iRet;
}

/*
** Append a page to file iFile. Set the ref-count to 1 and return a pointer
** to it. The page is writable until either lsmFsPagePersist() is called on 
** it or the ref-count drops to zero.
*/
int lsmFsSortedAppend(
  FileSystem *pFS, 
  Snapshot *pSnapshot,
  Segment *p, 
  Page **ppOut
){
  int rc = LSM_OK;
  Page *pPg = 0;
  *ppOut = 0;
  int iApp = 0;
  int iNext = 0;
  int iPrev = p->iLastPg;

  if( pFS->pCompress ){
    /* In compressed database mode the page is not assigned a page number
    ** or location in the database file at this point. This will be done
    ** by the lsmFsPagePersist() call.  */
    rc = fsPageBuffer(pFS, 1, &pPg);
    if( rc==LSM_OK ){
      pPg->pFS = pFS;
      pPg->pSeg = p;
      pPg->iPg = 0;
      pPg->flags |= PAGE_DIRTY;
      pPg->nData = pFS->nPagesize;
      assert( pPg->aData );

      pPg->nRef = 1;
      pFS->nOut++;
    }
  }else{
    if( iPrev==0 ){
      iApp = findAppendPoint(pFS);
    }else if( fsIsLast(pFS, iPrev) ){
      int iNext;
      rc = fsBlockNext(pFS, fsPageToBlock(pFS, iPrev), &iNext);
      if( rc!=LSM_OK ) return rc;
      iApp = fsFirstPageOnBlock(pFS, iNext);

    }else{
      iApp = iPrev + 1;
    }

    /* If this is the first page allocated, or if the page allocated is the
     ** last in the block, allocate a new block here.  */
    if( iApp==0 || fsIsLast(pFS, iApp) ){
      int iNew;                     /* New block number */

      lsmBlockAllocate(pFS->pDb, &iNew);
      if( iApp==0 ){
        iApp = fsFirstPageOnBlock(pFS, iNew);
      }else{
        iNext = fsFirstPageOnBlock(pFS, iNew);
      }
    }

    /* Grab the new page. */
    pPg = 0;
    rc = fsPageGet(pFS, iApp, 1, &pPg, 0);
    assert( rc==LSM_OK || pPg==0 );

    /* If this is the first or last page of a block, fill in the pointer 
     ** value at the end of the new page. */
    if( rc==LSM_OK ){
      p->nSize++;
      p->iLastPg = iApp;
      if( p->iFirst==0 ) p->iFirst = iApp;
      pPg->flags |= PAGE_DIRTY;

      if( fsIsLast(pFS, iApp) ){
        lsmPutU32(&pPg->aData[pFS->nPagesize-4], iNext);
      }else 
        if( fsIsFirst(pFS, iApp) ){
          lsmPutU32(&pPg->aData[pFS->nPagesize-4], iPrev);
        }
    }
  }

  *ppOut = pPg;
  return rc;
}

/*
** Mark the sorted run passed as the second argument as finished. 
*/
int lsmFsSortedFinish(FileSystem *pFS, Segment *p){
  int rc = LSM_OK;
  if( p && p->iLastPg ){
    int iBlk;

    /* Check if the last page of this run happens to be the last of a block.
    ** If it is, then an extra block has already been allocated for this run.
    ** Shift this extra block back to the free-block list. 
    **
    ** Otherwise, add the first free page in the last block used by the run
    ** to the lAppend list.
    */
    iBlk = fsPageToBlock(pFS, p->iLastPg);
    if( fsLastPageOnPagesBlock(pFS, p->iLastPg)!=p->iLastPg ){
      int i;
      Pgno *aiAppend = pFS->pDb->pWorker->aiAppend;
      for(i=0; i<LSM_APPLIST_SZ; i++){
        if( aiAppend[i]==0 ){
          aiAppend[i] = p->iLastPg+1;
          break;
        }
      }
    }else if( pFS->pCompress==0 ){
      Page *pLast;
      rc = fsPageGet(pFS, p->iLastPg, 0, &pLast, 0);
      if( rc==LSM_OK ){
        int iPg = (int)lsmGetU32(&pLast->aData[pFS->nPagesize-4]);

        lsmBlockRefree(pFS->pDb, fsPageToBlock(pFS, iPg));
        lsmFsPageRelease(pLast);
      }
    }else{
      int iBlk = 0;
      rc = fsBlockNext(pFS, fsPageToBlock(pFS, p->iLastPg), &iBlk);

      if( rc==LSM_OK ){

        lsmBlockRefree(pFS->pDb, iBlk);

      }
    }
  }
  return rc;
}

/*
** Obtain a reference to page number iPg.
*/
int lsmFsDbPageGet(FileSystem *pFS, Pgno iPg, Page **ppPg){
  assert( pFS );
  return fsPageGet(pFS, iPg, 0, ppPg, 0);
}

/*
** Obtain a reference to the last page in the segment passed as the 
** second argument.
*/
int lsmFsDbPageLast(FileSystem *pFS, Segment *pSeg, Page **ppPg){
  int rc;
  Pgno iPg = pSeg->iLastPg;
  if( pFS->pCompress ){
    int nSpace;
    iPg++;
    do {
      nSpace = 0;
      rc = fsGetPageBefore(pFS, iPg, &iPg);
      if( rc==LSM_OK ){
        rc = fsPageGet(pFS, iPg, 0, ppPg, &nSpace);
      }
    }while( rc==LSM_OK && nSpace>0 );

  }else{
    rc = fsPageGet(pFS, iPg, 0, ppPg, 0);
  }
  return rc;
}

/*
** Return a reference to meta-page iPg. If successful, LSM_OK is returned
** and *ppPg populated with the new page reference. The reference should
** be released by the caller using lsmFsPageRelease().
**
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296


















































































































1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310




1311




















1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

1324
1325
1326
1327
1328
1329
1330
1331
























































1332
1333
1334
1335
1336
1337
1338
** set *pnData to the size of the meta-page in bytes before returning.
*/
u8 *lsmFsMetaPageData(MetaPage *pPg, int *pnData){
  if( pnData ) *pnData = pPg->pFS->nMetasize;
  return pPg->aData;
}

/*
** Notify the file-system that the page needs to be written back to disk
** when the reference count next drops to zero.
*/
int lsmFsPageWrite(Page *pPg){
  pPg->flags |= PAGE_DIRTY;
  return LSM_OK;
}

/*
** Return true if page is currently writable.
*/
int lsmFsPageWritable(Page *pPg){
  return (pPg->flags & PAGE_DIRTY) ? 1 : 0;
}




















































































































/*
** If the page passed as an argument is dirty, update the database file
** (or mapping of the database file) with its current contents and mark
** the page as clean.
**
** Return LSM_OK if the operation is a success, or an LSM error code
** otherwise.
*/
int lsmFsPagePersist(Page *pPg){
  int rc = LSM_OK;
  if( pPg && (pPg->flags & PAGE_DIRTY) ){
    FileSystem *pFS = pPg->pFS;
    i64 iOff;                 /* Offset to write within database file */

























    iOff = (i64)pFS->nPagesize * (i64)(pPg->iPg-1);
    if( pFS->bUseMmap==0 ){
      rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iOff, pPg->aData,pFS->nPagesize);
    }else if( pPg->flags & PAGE_FREE ){
      fsGrowMapping(pFS, iOff + pFS->nPagesize, &rc);
      if( rc==LSM_OK ){
        u8 *aTo = &((u8 *)(pFS->pMap))[iOff];
        memcpy(aTo, pPg->aData, pFS->nPagesize);
        lsmFree(pFS->pEnv, pPg->aData);
        pPg->aData = aTo;
        pPg->flags &= ~PAGE_FREE;
        fsPageAddToLru(pFS, pPg);

      }
    }
    pPg->flags &= ~PAGE_DIRTY;
    pFS->nWrite++;
  }

  return rc;
}

























































/*
** Increment the reference count on the page object passed as the first
** argument.
*/
void lsmFsPageRef(Page *pPg){
  if( pPg ){







<
<
<
<
<
<
<
<
<







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>













|
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
>








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1731
1732
1733
1734
1735
1736
1737









1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
** set *pnData to the size of the meta-page in bytes before returning.
*/
u8 *lsmFsMetaPageData(MetaPage *pPg, int *pnData){
  if( pnData ) *pnData = pPg->pFS->nMetasize;
  return pPg->aData;
}










/*
** Return true if page is currently writable.
*/
int lsmFsPageWritable(Page *pPg){
  return (pPg->flags & PAGE_DIRTY) ? 1 : 0;
}

/*
** Append raw data to a segment. This function is only used in compressed
** database mode.
*/
static Pgno fsAppendData(
  FileSystem *pFS,                /* File-system handle */
  Segment *pSeg,                  /* Segment to append to */
  const u8 *aData,                /* Buffer containing data to write */
  int nData,                      /* Size of buffer aData[] in bytes */
  int *pRc                        /* IN/OUT: Error code */
){
  Pgno iRet = 0;
  int rc = *pRc;
  assert( pFS->pCompress );
  if( rc==LSM_OK ){
    int nRem;
    int nWrite;
    Pgno iLastOnBlock;
    Pgno iApp = pSeg->iLastPg+1;

    /* If this is the first data written into the segment, find an append-point
    ** or allocate a new block.  */
    if( iApp==1 ){
      pSeg->iFirst = iApp = findAppendPoint(pFS);
      if( iApp==0 ){
        int iBlk;
        rc = lsmBlockAllocate(pFS->pDb, &iBlk);
        pSeg->iFirst = iApp = fsFirstPageOnBlock(pFS, iBlk);
      }
    }
    iRet = iApp;

    /* Write as much data as is possible at iApp (usually all of it). */
    iLastOnBlock = fsLastPageOnPagesBlock(pFS, iApp);
    if( rc==LSM_OK ){
      int nSpace = iLastOnBlock - iApp + 1;
      nWrite = LSM_MIN(nData, nSpace);
      nRem = nData - nWrite;
      assert( nWrite>=0 );
      if( nWrite!=0 ){
        rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, aData, nWrite);
      }
      iApp += nWrite;
    }

    /* If required, allocate a new block and write the rest of the data
    ** into it. Set the next and previous block pointers to link the new
    ** block to the old.  */
    assert( nRem<=0 || (iApp-1)==iLastOnBlock );
    if( rc==LSM_OK && (iApp-1)==iLastOnBlock ){
      u8 aPtr[4];                 /* Space to serialize a u32 */
      int iBlk;                   /* New block number */

      if( nWrite>0 ){
        /* Allocate a new block. */
        rc = lsmBlockAllocate(pFS->pDb, &iBlk);

        /* Set the "next" pointer on the old block */
        if( rc==LSM_OK ){
          assert( iApp==(fsPageToBlock(pFS, iApp)*pFS->nBlocksize)-4 );
          lsmPutU32(aPtr, iBlk);
          rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, aPtr, sizeof(aPtr));
        }

        /* Set the "prev" pointer on the new block */
        if( rc==LSM_OK ){
          Pgno iWrite;
          lsmPutU32(aPtr, fsPageToBlock(pFS, iApp));
          iWrite = fsFirstPageOnBlock(pFS, iBlk);
          rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iWrite-4, aPtr, sizeof(aPtr));
          if( nRem>0 ) iApp = iWrite;
        }
      }else{
        /* The next block is already allocated. */
        assert( nRem>0 );
        rc = fsBlockNext(pFS, fsPageToBlock(pFS, iApp), &iBlk);
        iApp = fsFirstPageOnBlock(pFS, iBlk);
      }

      /* Write the remaining data into the new block */
      if( rc==LSM_OK && nRem>0 ){
        rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, &aData[nWrite], nRem);
        iApp += nRem;
      }
    }

    pSeg->iLastPg = iApp-1;
    *pRc = rc;
  }

  return iRet;
}

/*
** This function is only called in compressed database mode. It 
** compresses the contents of page pPg and writes the result to the 
** buffer at pFS->aBuffer. The size of the compressed data is stored in
** pPg->nCompress.
**
** If buffer pFS->aBuffer[] has not been allocated then this function
** allocates it. If this fails, LSM_NOMEM is returned. Otherwise, LSM_OK.
*/
static int fsCompressIntoBuffer(FileSystem *pFS, Page *pPg){
  lsm_compress *p = pFS->pCompress;

  if( fsAllocateBuffer(pFS) ) return LSM_NOMEM;
  assert( pPg->nData==pFS->nPagesize );

  pPg->nCompress = pFS->nBuffer;
  return p->xCompress(p->pCtx, 
      (char *)pFS->aBuffer, &pPg->nCompress, 
      (const char *)pPg->aData, pPg->nData
  );
}

/*
** If the page passed as an argument is dirty, update the database file
** (or mapping of the database file) with its current contents and mark
** the page as clean.
**
** Return LSM_OK if the operation is a success, or an LSM error code
** otherwise.
*/
int lsmFsPagePersist(Page *pPg){
  int rc = LSM_OK;
  if( pPg && (pPg->flags & PAGE_DIRTY) ){
    FileSystem *pFS = pPg->pFS;

    if( pFS->pCompress ){
      int iHash;                  /* Hash key of assigned page number */
      u8 aSz[3];                  /* pPg->nCompress as a 24-bit big-endian */
      assert( pPg->pSeg && pPg->iPg==0 && pPg->nCompress==0 );

      /* Compress the page image. */
      rc = fsCompressIntoBuffer(pFS, pPg);

      /* Serialize the compressed size into buffer aSz[] */
      putRecordSize(aSz, pPg->nCompress, 0);

      /* Write the serialized page record into the database file. */
      pPg->iPg = fsAppendData(pFS, pPg->pSeg, aSz, sizeof(aSz), &rc);
      fsAppendData(pFS, pPg->pSeg, pFS->aBuffer, pPg->nCompress, &rc);
      fsAppendData(pFS, pPg->pSeg, aSz, sizeof(aSz), &rc);

      /* Now that it has a page number, insert the page into the hash table */
      iHash = fsHashKey(pFS->nHash, pPg->iPg);
      pPg->pHashNext = pFS->apHash[iHash];
      pFS->apHash[iHash] = pPg;

      pPg->pSeg->nSize += (sizeof(aSz) * 2) + pPg->nCompress;

    }else{
      i64 iOff;                   /* Offset to write within database file */
      iOff = (i64)pFS->nPagesize * (i64)(pPg->iPg-1);
      if( pFS->bUseMmap==0 ){
        rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iOff, pPg->aData,pFS->nPagesize);
      }else if( pPg->flags & PAGE_FREE ){
        fsGrowMapping(pFS, iOff + pFS->nPagesize, &rc);
        if( rc==LSM_OK ){
          u8 *aTo = &((u8 *)(pFS->pMap))[iOff];
          memcpy(aTo, pPg->aData, pFS->nPagesize);
          lsmFree(pFS->pEnv, pPg->aData);
          pPg->aData = aTo;
          pPg->flags &= ~PAGE_FREE;
          fsPageAddToLru(pFS, pPg);
        }
      }
    }
    pPg->flags &= ~PAGE_DIRTY;
    pFS->nWrite++;
  }

  return rc;
}

/*
** For non-compressed databases, this function is a no-op. For compressed
** databases, it adds a padding record to the segment passed as the third
** argument.
**
** The size of the padding records is selected so that the last byte 
** written is the last byte of a disk sector. This means that if a 
** snapshot is taken and checkpointed, subsequent worker processes will
** not write to any sector that contains checkpointed data.
*/
int lsmFsSortedPadding(
  FileSystem *pFS, 
  Snapshot *pSnapshot,
  Segment *pSeg
){
  int rc = LSM_OK;
  if( pFS->pCompress ){
    Pgno iLast2;
    Pgno iLast = pSeg->iLastPg;     /* Current last page of segment */
    int nPad;                       /* Bytes of padding required */
    u8 aSz[3];

    iLast2 = (1 + iLast/pFS->szSector) * pFS->szSector - 1;
    assert( fsPageToBlock(pFS, iLast)==fsPageToBlock(pFS, iLast2) );
    nPad = iLast2 - iLast;

    if( iLast2>fsLastPageOnPagesBlock(pFS, iLast) ){
      nPad -= 4;
    }
    assert( nPad>=0 );

    if( nPad>=6 ){
      pSeg->nSize += nPad;
      nPad -= 6;
      putRecordSize(aSz, nPad, 1);
      fsAppendData(pFS, pSeg, aSz, sizeof(aSz), &rc);
      memset(pFS->aBuffer, 0, nPad);
      fsAppendData(pFS, pSeg, pFS->aBuffer, nPad, &rc);
      fsAppendData(pFS, pSeg, aSz, sizeof(aSz), &rc);
    }else if( nPad>0 ){
      u8 aBuf[5] = {0,0,0,0,0};
      aBuf[0] = (u8)nPad;
      aBuf[nPad-1] = (u8)nPad;
      fsAppendData(pFS, pSeg, aBuf, nPad, &rc);
    }

    assert( rc!=LSM_OK 
        || pSeg->iLastPg==fsLastPageOnPagesBlock(pFS, pSeg->iLastPg)
        || ((pSeg->iLastPg + 1) % pFS->szSector)==0
    );
  }

  return rc;
}


/*
** Increment the reference count on the page object passed as the first
** argument.
*/
void lsmFsPageRef(Page *pPg){
  if( pPg ){
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
  }else{
    FileSystem *pFS = pDb->pFS;
    LsmString str;
    int iBlk;
    int iLastBlk;
   
    iBlk = fsPageToBlock(pFS, pArray->iFirst);
    iLastBlk = fsPageToBlock(pFS, pArray->iLast);

    lsmStringInit(&str, pDb->pEnv);
    lsmStringAppendf(&str, "%d", pArray->iFirst);
    while( iBlk!=iLastBlk ){
      lsmStringAppendf(&str, " %d", fsLastPageOnBlock(pFS, iBlk));
      fsBlockNext(pFS, iBlk, &iBlk);
      lsmStringAppendf(&str, " %d", fsFirstPageOnBlock(pFS, iBlk));
    }
    lsmStringAppendf(&str, " %d", pArray->iLast);

    *pzOut = str.z;
  }

  if( bUnlock ){
    int rcwork = LSM_BUSY;
    lsmFinishWork(pDb, 0, 0, &rcwork);







|








|







2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
  }else{
    FileSystem *pFS = pDb->pFS;
    LsmString str;
    int iBlk;
    int iLastBlk;
   
    iBlk = fsPageToBlock(pFS, pArray->iFirst);
    iLastBlk = fsPageToBlock(pFS, pArray->iLastPg);

    lsmStringInit(&str, pDb->pEnv);
    lsmStringAppendf(&str, "%d", pArray->iFirst);
    while( iBlk!=iLastBlk ){
      lsmStringAppendf(&str, " %d", fsLastPageOnBlock(pFS, iBlk));
      fsBlockNext(pFS, iBlk, &iBlk);
      lsmStringAppendf(&str, " %d", fsFirstPageOnBlock(pFS, iBlk));
    }
    lsmStringAppendf(&str, " %d", pArray->iLastPg);

    *pzOut = str.z;
  }

  if( bUnlock ){
    int rcwork = LSM_BUSY;
    lsmFinishWork(pDb, 0, 0, &rcwork);
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
  Segment *pSeg,
  int bExtra,                     /* If true, count the "next" block if any */
  int nUsed,
  u8 *aUsed
){
  if( pSeg ){
    if( pSeg && pSeg->nSize>0 ){
      const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);

      int iBlk;
      int iLastBlk;
      iBlk = fsPageToBlock(pFS, pSeg->iFirst);
      iLastBlk = fsPageToBlock(pFS, pSeg->iLast);

      while( iBlk ){
        assert( iBlk<=nUsed );
        /* assert( aUsed[iBlk-1]==0 ); */
        aUsed[iBlk-1] = 1;
        if( iBlk!=iLastBlk ){
          fsBlockNext(pFS, iBlk, &iBlk);
        }else{
          iBlk = 0;
        }
      }

      if( bExtra && (pSeg->iLast % nPagePerBlock)==0 ){
        fsBlockNext(pFS, iLastBlk, &iBlk);
        aUsed[iBlk-1] = 1;
      }
    }
  }
}








<
|



|












|







2138
2139
2140
2141
2142
2143
2144

2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
  Segment *pSeg,
  int bExtra,                     /* If true, count the "next" block if any */
  int nUsed,
  u8 *aUsed
){
  if( pSeg ){
    if( pSeg && pSeg->nSize>0 ){

      Pgno iLast = pSeg->iLastPg;
      int iBlk;
      int iLastBlk;
      iBlk = fsPageToBlock(pFS, pSeg->iFirst);
      iLastBlk = fsPageToBlock(pFS, pSeg->iLastPg);

      while( iBlk ){
        assert( iBlk<=nUsed );
        /* assert( aUsed[iBlk-1]==0 ); */
        aUsed[iBlk-1] = 1;
        if( iBlk!=iLastBlk ){
          fsBlockNext(pFS, iBlk, &iBlk);
        }else{
          iBlk = 0;
        }
      }

      if( bExtra && iLast==fsLastPageOnPagesBlock(pFS, iLast) ){
        fsBlockNext(pFS, iLastBlk, &iBlk);
        aUsed[iBlk-1] = 1;
      }
    }
  }
}

1535
1536
1537
1538
1539
1540
1541

1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
** This function also checks that there are no references to blocks with
** out-of-range block numbers.
**
** If no errors are found, non-zero is returned. If an error is found, an
** assert() fails.
*/
int lsmFsIntegrityCheck(lsm_db *pDb){

  int i;
  int j;
  Freelist freelist = {0, 0, 0};
  FileSystem *pFS = pDb->pFS;
  u8 *aUsed;
  Level *pLevel;
  Snapshot *pWorker = pDb->pWorker;
  int nBlock = pWorker->nBlock;

  aUsed = lsmMallocZero(pDb->pEnv, nBlock);
  if( aUsed==0 ){
    /* Malloc has failed. Since this function is only called within debug
    ** builds, this probably means the user is running an OOM injection test.
    ** Regardless, it will not be possible to run the integrity-check at this
    ** time, so assume the database is Ok and return non-zero. */
    return 1;
  }

  for(pLevel=pWorker->pLevel; pLevel; pLevel=pLevel->pNext){
    int i;
    checkBlocks(pFS, &pLevel->lhs, (pLevel->nRight!=0), nBlock, aUsed);
    for(i=0; i<pLevel->nRight; i++){







>



<








|
|
|







2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187

2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
** This function also checks that there are no references to blocks with
** out-of-range block numbers.
**
** If no errors are found, non-zero is returned. If an error is found, an
** assert() fails.
*/
int lsmFsIntegrityCheck(lsm_db *pDb){
  FileSystem *pFS = pDb->pFS;
  int i;
  int j;
  Freelist freelist = {0, 0, 0};

  u8 *aUsed;
  Level *pLevel;
  Snapshot *pWorker = pDb->pWorker;
  int nBlock = pWorker->nBlock;

  aUsed = lsmMallocZero(pDb->pEnv, nBlock);
  if( aUsed==0 ){
    /* Malloc has failed. Since this function is only called within debug
     ** builds, this probably means the user is running an OOM injection test.
     ** Regardless, it will not be possible to run the integrity-check at this
     ** time, so assume the database is Ok and return non-zero. */
    return 1;
  }

  for(pLevel=pWorker->pLevel; pLevel; pLevel=pLevel->pNext){
    int i;
    checkBlocks(pFS, &pLevel->lhs, (pLevel->nRight!=0), nBlock, aUsed);
    for(i=0; i<pLevel->nRight; i++){
1584
1585
1586
1587
1588
1589
1590

1591
1592
















    }
  }

  for(i=0; i<nBlock; i++) assert( aUsed[i]==1 );

  lsmFree(pDb->pEnv, aUsed);
  lsmFree(pDb->pEnv, freelist.aEntry);

  return 1;
}























>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
    }
  }

  for(i=0; i<nBlock; i++) assert( aUsed[i]==1 );

  lsmFree(pDb->pEnv, aUsed);
  lsmFree(pDb->pEnv, freelist.aEntry);

  return 1;
}

#ifndef NDEBUG
/*
** Return true if pPg happens to be the last page in segment pSeg. Or false
** otherwise. This function is only invoked as part of assert() conditions.
*/
int lsmFsDbPageIsLast(Segment *pSeg, Page *pPg){
  if( pPg->pFS->pCompress ){
    Pgno iNext = 0;
    int rc;
    rc = fsNextPageOffset(pPg->pFS, pSeg, pPg->iPg, pPg->nCompress+6, &iNext);
    return (rc!=LSM_OK || iNext==0);
  }
  return (pPg->iPg==pSeg->iLastPg);
}
#endif

Changes to src/lsm_main.c.

319
320
321
322
323
324
325

















326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        ** in multi-process mode.  */
        *piVal = lsmDbMultiProc(pDb);
      }else{
        pDb->bMultiProc = *piVal = (*piVal!=0);
      }
      break;
    }


















    default:
      rc = LSM_MISUSE;
      break;
  }

  va_end(ap);
  return rc;
}

void lsmAppendSegmentList(LsmString *pStr, char *zPre, Segment *pSeg){
  lsmStringAppendf(pStr, "%s{%d %d %d %d}", zPre, 
        pSeg->iFirst, pSeg->iLast, pSeg->iRoot, pSeg->nSize
  );
}

static int infoGetWorker(lsm_db *pDb, Snapshot **pp, int *pbUnlock){
  int rc = LSM_OK;

  assert( *pbUnlock==0 );







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>












|







319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
        ** in multi-process mode.  */
        *piVal = lsmDbMultiProc(pDb);
      }else{
        pDb->bMultiProc = *piVal = (*piVal!=0);
      }
      break;
    }

    case LSM_CONFIG_SET_COMPRESSION: {
      int *p = va_arg(ap, lsm_compress *);
      if( pDb->pDatabase ){
        /* If lsm_open() has been called, this call is against the rules. */
        rc = LSM_MISUSE_BKPT;
      }else{
        memcpy(&pDb->compress, p, sizeof(lsm_compress));
      }
      break;
    }

    case LSM_CONFIG_GET_COMPRESSION: {
      int *p = va_arg(ap, lsm_compress *);
      memcpy(p, &pDb->compress, sizeof(lsm_compress));
      break;
    }

    default:
      rc = LSM_MISUSE;
      break;
  }

  va_end(ap);
  return rc;
}

void lsmAppendSegmentList(LsmString *pStr, char *zPre, Segment *pSeg){
  lsmStringAppendf(pStr, "%s{%d %d %d %d}", zPre, 
        pSeg->iFirst, pSeg->iLastPg, pSeg->iRoot, pSeg->nSize
  );
}

static int infoGetWorker(lsm_db *pDb, Snapshot **pp, int *pbUnlock){
  int rc = LSM_OK;

  assert( *pbUnlock==0 );

Changes to src/lsm_sorted.c.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
**
**   The footer consists of the following values (starting at the end of
**   the page and continuing backwards towards the start). All values are
**   stored as unsigned big-endian integers.
**
**     * Number of records on page (2 bytes).
**     * Flags field (2 bytes).
**     * Left-hand pointer value (4 bytes).
**     * The starting offset of each record (2 bytes per record).
**
**   Records may span pages. Unless it happens to be an exact fit, the part
**   of the final record that starts on page X that does not fit on page X
**   is stored at the start of page (X+1). This means there may be pages where
**   (N==0). And on most pages the first record that starts on the page will
**   not start at byte offset 0. For example:







|







25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
**
**   The footer consists of the following values (starting at the end of
**   the page and continuing backwards towards the start). All values are
**   stored as unsigned big-endian integers.
**
**     * Number of records on page (2 bytes).
**     * Flags field (2 bytes).
**     * Left-hand pointer value (8 bytes).
**     * The starting offset of each record (2 bytes per record).
**
**   Records may span pages. Unless it happens to be an exact fit, the part
**   of the final record that starts on page X that does not fit on page X
**   is stored at the start of page (X+1). This means there may be pages where
**   (N==0). And on most pages the first record that starts on the page will
**   not start at byte offset 0. For example:
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#define rtIsSystem(eType)    (((eType) & LSM_SYSTEMKEY)!=0)

/*
** The following macros are used to access a page footer.
*/
#define SEGMENT_NRECORD_OFFSET(pgsz)        ((pgsz) - 2)
#define SEGMENT_FLAGS_OFFSET(pgsz)          ((pgsz) - 2 - 2)
#define SEGMENT_POINTER_OFFSET(pgsz)        ((pgsz) - 2 - 2 - 4)
#define SEGMENT_CELLPTR_OFFSET(pgsz, iCell) ((pgsz) - 2 - 2 - 4 - 2 - (iCell)*2)

#define SEGMENT_EOF(pgsz, nEntry) SEGMENT_CELLPTR_OFFSET(pgsz, nEntry)

#define SEGMENT_BTREE_FLAG     0x0001
#define PGFTR_SKIP_NEXT_FLAG   0x0002
#define PGFTR_SKIP_THIS_FLAG   0x0004








|
|







83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#define rtIsSystem(eType)    (((eType) & LSM_SYSTEMKEY)!=0)

/*
** The following macros are used to access a page footer.
*/
#define SEGMENT_NRECORD_OFFSET(pgsz)        ((pgsz) - 2)
#define SEGMENT_FLAGS_OFFSET(pgsz)          ((pgsz) - 2 - 2)
#define SEGMENT_POINTER_OFFSET(pgsz)        ((pgsz) - 2 - 2 - 8)
#define SEGMENT_CELLPTR_OFFSET(pgsz, iCell) ((pgsz) - 2 - 2 - 8 - 2 - (iCell)*2)

#define SEGMENT_EOF(pgsz, nEntry) SEGMENT_CELLPTR_OFFSET(pgsz, nEntry)

#define SEGMENT_BTREE_FLAG     0x0001
#define PGFTR_SKIP_NEXT_FLAG   0x0002
#define PGFTR_SKIP_THIS_FLAG   0x0004

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
  Level *pLevel;                /* Level object segment is part of */
  Segment *pSeg;                /* Segment to access */

  /* Current page. See segmentPtrLoadPage(). */
  Page *pPg;                    /* Current page */
  u16 flags;                    /* Copy of page flags field */
  int nCell;                    /* Number of cells on pPg */
  int iPtr;                     /* Base cascade pointer */

  /* Current cell. See segmentPtrLoadCell() */
  int iCell;                    /* Current record within page pPg */
  int eType;                    /* Type of current record */
  int iPgPtr;                   /* Cascade pointer offset */
  void *pKey; int nKey;         /* Key associated with current record */
  void *pVal; int nVal;         /* Current record value (eType==WRITE only) */

  /* Blobs used to allocate buffers for pKey and pVal as required */
  Blob blob1;
  Blob blob2;
};







|




|







118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
  Level *pLevel;                /* Level object segment is part of */
  Segment *pSeg;                /* Segment to access */

  /* Current page. See segmentPtrLoadPage(). */
  Page *pPg;                    /* Current page */
  u16 flags;                    /* Copy of page flags field */
  int nCell;                    /* Number of cells on pPg */
  Pgno iPtr;                    /* Base cascade pointer */

  /* Current cell. See segmentPtrLoadCell() */
  int iCell;                    /* Current record within page pPg */
  int eType;                    /* Type of current record */
  Pgno iPgPtr;                  /* Cascade pointer offset */
  void *pKey; int nKey;         /* Key associated with current record */
  void *pVal; int nVal;         /* Current record value (eType==WRITE only) */

  /* Blobs used to allocate buffers for pKey and pVal as required */
  Blob blob1;
  Blob blob2;
};
263
264
265
266
267
268
269












270
271
272
273
274
275
276
277
278






279
280
281
282
283
284
285
286

287
288
289
290
291
292
293
typedef struct Hierarchy Hierarchy;

struct Hierarchy {
  Page **apHier;
  int nHier;
};













struct MergeWorker {
  lsm_db *pDb;                    /* Database handle */
  Level *pLevel;                  /* Worker snapshot Level being merged */
  MultiCursor *pCsr;              /* Cursor to read new segment contents from */
  int bFlush;                     /* True if this is an in-memory tree flush */
  Hierarchy hier;                 /* B-tree hierarchy under construction */
  Page *pPage;                    /* Current output page */
  int nWork;                      /* Number of calls to mergeWorkerNextPage() */
  Pgno *aGobble;                  /* Gobble point for each input segment */






};

#ifdef LSM_DEBUG_EXPENSIVE
static int assertPointersOk(lsm_db *, Segment *, Segment *, int);
static int assertBtreeOk(lsm_db *, Segment *);
static void assertRunInOrder(lsm_db *pDb, Segment *pSeg);
#else
#define assertRunInOrder(x,y)

#endif


struct FilePage { u8 *aData; int nData; };
static u8 *fsPageData(Page *pPg, int *pnData){
  *pnData = ((struct FilePage *)(pPg))->nData;
  return ((struct FilePage *)(pPg))->aData;







>
>
>
>
>
>
>
>
>
>
>
>









>
>
>
>
>
>








>







263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
typedef struct Hierarchy Hierarchy;

struct Hierarchy {
  Page **apHier;
  int nHier;
};

/*
** aSave:
**   When mergeWorkerNextPage() is called to advance to the next page in
**   the output segment, if the bStore flag for an element of aSave[] is
**   true, it is cleared and the corresponding iPgno value is set to the 
**   page number of the page just completed.
**
**   aSave[0] is used to record the pointer value to be pushed into the
**   b-tree hierarchy. aSave[1] is used to save the page number of the
**   page containing the indirect key most recently written to the b-tree.
**   see mergeWorkerPushHierarchy() for details.
*/
struct MergeWorker {
  lsm_db *pDb;                    /* Database handle */
  Level *pLevel;                  /* Worker snapshot Level being merged */
  MultiCursor *pCsr;              /* Cursor to read new segment contents from */
  int bFlush;                     /* True if this is an in-memory tree flush */
  Hierarchy hier;                 /* B-tree hierarchy under construction */
  Page *pPage;                    /* Current output page */
  int nWork;                      /* Number of calls to mergeWorkerNextPage() */
  Pgno *aGobble;                  /* Gobble point for each input segment */

  Pgno iIndirect;
  struct SavedPgno {
    Pgno iPgno;
    int bStore;
  } aSave[2];
};

#ifdef LSM_DEBUG_EXPENSIVE
static int assertPointersOk(lsm_db *, Segment *, Segment *, int);
static int assertBtreeOk(lsm_db *, Segment *);
static void assertRunInOrder(lsm_db *pDb, Segment *pSeg);
#else
#define assertRunInOrder(x,y)
#define assertBtreeOk(x,y)
#endif


struct FilePage { u8 *aData; int nData; };
static u8 *fsPageData(Page *pPg, int *pnData){
  *pnData = ((struct FilePage *)(pPg))->nData;
  return ((struct FilePage *)(pPg))->aData;
317
318
319
320
321
322
323






















324
325
326
327
328
329
330

u32 lsmGetU32(u8 *aOut){
  return ((u32)aOut[0] << 24) 
       + ((u32)aOut[1] << 16) 
       + ((u32)aOut[2] << 8) 
       + ((u32)aOut[3]);
}























static int sortedBlobGrow(lsm_env *pEnv, Blob *pBlob, int nData){
  assert( pBlob->pEnv==pEnv || (pBlob->pEnv==0 && pBlob->pData==0) );
  if( pBlob->nAlloc<nData ){
    pBlob->pData = lsmReallocOrFree(pEnv, pBlob->pData, nData);
    if( !pBlob->pData ) return LSM_NOMEM;
    pBlob->nAlloc = nData;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

u32 lsmGetU32(u8 *aOut){
  return ((u32)aOut[0] << 24) 
       + ((u32)aOut[1] << 16) 
       + ((u32)aOut[2] << 8) 
       + ((u32)aOut[3]);
}

u32 lsmGetU64(u8 *aOut){
  return ((u64)aOut[0] << 56) 
       + ((u64)aOut[1] << 48) 
       + ((u64)aOut[2] << 40) 
       + ((u64)aOut[3] << 32) 
       + ((u64)aOut[4] << 24)
       + ((u32)aOut[5] << 16) 
       + ((u32)aOut[6] << 8) 
       + ((u32)aOut[7]);
}

void lsmPutU64(u8 *aOut, u64 nVal){
  aOut[0] = (u8)((nVal>>56) & 0xFF);
  aOut[1] = (u8)((nVal>>48) & 0xFF);
  aOut[2] = (u8)((nVal>>40) & 0xFF);
  aOut[3] = (u8)((nVal>>32) & 0xFF);
  aOut[4] = (u8)((nVal>>24) & 0xFF);
  aOut[5] = (u8)((nVal>>16) & 0xFF);
  aOut[6] = (u8)((nVal>> 8) & 0xFF);
  aOut[7] = (u8)((nVal    ) & 0xFF);
}

static int sortedBlobGrow(lsm_env *pEnv, Blob *pBlob, int nData){
  assert( pBlob->pEnv==pEnv || (pBlob->pEnv==0 && pBlob->pData==0) );
  if( pBlob->nAlloc<nData ){
    pBlob->pData = lsmReallocOrFree(pEnv, pBlob->pData, nData);
    if( !pBlob->pData ) return LSM_NOMEM;
    pBlob->nAlloc = nData;
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
  return rc;
}

static int pageGetNRec(u8 *aData, int nData){
  return (int)lsmGetU16(&aData[SEGMENT_NRECORD_OFFSET(nData)]);
}

static int pageGetPtr(u8 *aData, int nData){
  return (int)lsmGetU32(&aData[SEGMENT_POINTER_OFFSET(nData)]);
}

static int pageGetFlags(u8 *aData, int nData){
  return (int)lsmGetU16(&aData[SEGMENT_FLAGS_OFFSET(nData)]);
}

static u8 *pageGetCell(u8 *aData, int nData, int iCell){







|
|







468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
  return rc;
}

static int pageGetNRec(u8 *aData, int nData){
  return (int)lsmGetU16(&aData[SEGMENT_NRECORD_OFFSET(nData)]);
}

static Pgno pageGetPtr(u8 *aData, int nData){
  return (Pgno)lsmGetU64(&aData[SEGMENT_POINTER_OFFSET(nData)]);
}

static int pageGetFlags(u8 *aData, int nData){
  return (int)lsmGetU16(&aData[SEGMENT_FLAGS_OFFSET(nData)]);
}

static u8 *pageGetCell(u8 *aData, int nData, int iCell){
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
  return pageGetNRec(aData, nData);
}

/*
** Return the decoded (possibly relative) pointer value stored in cell 
** iCell from page aData/nData.
*/
static int pageGetRecordPtr(u8 *aData, int nData, int iCell){
  int iRet;                       /* Return value */
  u8 *aCell;                      /* Pointer to cell iCell */

  assert( iCell<pageGetNRec(aData, nData) && iCell>=0 );
  aCell = pageGetCell(aData, nData, iCell);
  lsmVarintGet32(&aCell[1], &iRet);
  return iRet;
}

static u8 *pageGetKey(
  Page *pPg,                      /* Page to read from */
  int iCell,                      /* Index of cell on page to read */
  int *piTopic,                   /* OUT: Topic associated with this key */







|
|




|







493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
  return pageGetNRec(aData, nData);
}

/*
** Return the decoded (possibly relative) pointer value stored in cell 
** iCell from page aData/nData.
*/
static Pgno pageGetRecordPtr(u8 *aData, int nData, int iCell){
  Pgno iRet;                      /* Return value */
  u8 *aCell;                      /* Pointer to cell iCell */

  assert( iCell<pageGetNRec(aData, nData) && iCell>=0 );
  aCell = pageGetCell(aData, nData, iCell);
  lsmVarintGet64(&aCell[1], &iRet);
  return iRet;
}

static u8 *pageGetKey(
  Page *pPg,                      /* Page to read from */
  int iCell,                      /* Index of cell on page to read */
  int *piTopic,                   /* OUT: Topic associated with this key */
523
524
525
526
527
528
529
530
531
532
533
534
535

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
  int nData;
  u8 *aCell;

  aData = fsPageData(pPg, &nData);
  aCell = pageGetCell(aData, nData, iKey);
  assert( aCell[0]==0 );
  aCell++;
  aCell += lsmVarintGet32(aCell, &iRef);
  lsmVarintGet32(aCell, &iRef);
  assert( iRef>0 );
  return iRef;
}


#define GETVARINT32(a, i) (((i)=((u8*)(a))[0])<=240?1:lsmVarintGet32((a), &(i)))

static int pageGetBtreeKey(
  Page *pPg,
  int iKey, 
  int *piPtr, 
  int *piTopic, 
  void **ppKey,
  int *pnKey,
  Blob *pBlob
){
  u8 *aData;
  int nData;
  u8 *aCell;
  int eType;

  aData = fsPageData(pPg, &nData);
  assert( SEGMENT_BTREE_FLAG & pageGetFlags(aData, nData) );
  assert( iKey>=0 && iKey<pageGetNRec(aData, nData) );

  aCell = pageGetCell(aData, nData, iKey);
  eType = *aCell++;
  aCell += GETVARINT32(aCell, *piPtr);

  if( eType==0 ){
    int rc;
    Pgno iRef;                  /* Page number of referenced page */
    Page *pRef;
    aCell += GETVARINT32(aCell, iRef);
    rc = lsmFsDbPageGet(lsmPageFS(pPg), iRef, &pRef);
    if( rc!=LSM_OK ) return rc;
    pageGetKeyCopy(lsmPageEnv(pPg), pRef, 0, &eType, pBlob);
    lsmFsPageRelease(pRef);
    *ppKey = pBlob->pData;
    *pnKey = pBlob->nData;
  }else{







|
|




>





|
















|





|







564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
  int nData;
  u8 *aCell;

  aData = fsPageData(pPg, &nData);
  aCell = pageGetCell(aData, nData, iKey);
  assert( aCell[0]==0 );
  aCell++;
  aCell += lsmVarintGet64(aCell, &iRef);
  lsmVarintGet64(aCell, &iRef);
  assert( iRef>0 );
  return iRef;
}

#define GETVARINT64(a, i) (((i)=((u8*)(a))[0])<=240?1:lsmVarintGet64((a), &(i)))
#define GETVARINT32(a, i) (((i)=((u8*)(a))[0])<=240?1:lsmVarintGet32((a), &(i)))

static int pageGetBtreeKey(
  Page *pPg,
  int iKey, 
  Pgno *piPtr, 
  int *piTopic, 
  void **ppKey,
  int *pnKey,
  Blob *pBlob
){
  u8 *aData;
  int nData;
  u8 *aCell;
  int eType;

  aData = fsPageData(pPg, &nData);
  assert( SEGMENT_BTREE_FLAG & pageGetFlags(aData, nData) );
  assert( iKey>=0 && iKey<pageGetNRec(aData, nData) );

  aCell = pageGetCell(aData, nData, iKey);
  eType = *aCell++;
  aCell += GETVARINT64(aCell, *piPtr);

  if( eType==0 ){
    int rc;
    Pgno iRef;                  /* Page number of referenced page */
    Page *pRef;
    aCell += GETVARINT64(aCell, iRef);
    rc = lsmFsDbPageGet(lsmPageFS(pPg), iRef, &pRef);
    if( rc!=LSM_OK ) return rc;
    pageGetKeyCopy(lsmPageEnv(pPg), pRef, 0, &eType, pBlob);
    lsmFsPageRelease(pRef);
    *ppKey = pBlob->pData;
    *pnKey = pBlob->nData;
  }else{
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
static int btreeCursorLoadKey(BtreeCursor *pCsr){
  int rc = LSM_OK;
  if( pCsr->iPg<0 ){
    pCsr->pKey = 0;
    pCsr->nKey = 0;
    pCsr->eType = 0;
  }else{
    int dummy;
    int iPg = pCsr->iPg;
    int iCell = pCsr->aPg[iPg].iCell;
    while( iCell<0 && (--iPg)>=0 ){
      iCell = pCsr->aPg[iPg].iCell-1;
    }
    if( iPg<0 || iCell<0 ) return LSM_CORRUPT_BKPT;








|







622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
static int btreeCursorLoadKey(BtreeCursor *pCsr){
  int rc = LSM_OK;
  if( pCsr->iPg<0 ){
    pCsr->pKey = 0;
    pCsr->nKey = 0;
    pCsr->eType = 0;
  }else{
    Pgno dummy;
    int iPg = pCsr->iPg;
    int iCell = pCsr->aPg[iPg].iCell;
    while( iCell<0 && (--iPg)>=0 ){
      iCell = pCsr->aPg[iPg].iCell-1;
    }
    if( iPg<0 || iCell<0 ) return LSM_CORRUPT_BKPT;

809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

830
831
832
833
834
835
836

    /* Populate any other aPg[] array entries */
    if( rc==LSM_OK && nDepth>1 ){
      Blob blob = {0,0,0};
      void *pSeek;
      int nSeek;
      int iTopicSeek;
      int dummy;
      int iPg = 0;
      int iLoad = pCsr->pSeg->iRoot;
      Page *pPg = pCsr->aPg[nDepth-1].pPage;
 
      if( pageObjGetNRec(pPg)==0 ){
        /* This can happen when pPg is the right-most leaf in the b-tree.
        ** In this case, set the iTopicSeek/pSeek/nSeek key to a value
        ** greater than any real key.  */
        assert( iCell==-1 );
        iTopicSeek = 1000;
        pSeek = 0;
        nSeek = 0;
      }else{

        rc = pageGetBtreeKey(pPg,
            0, &dummy, &iTopicSeek, &pSeek, &nSeek, &pCsr->blob
        );
      }

      do {
        Page *pPg;







<













>







851
852
853
854
855
856
857

858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

    /* Populate any other aPg[] array entries */
    if( rc==LSM_OK && nDepth>1 ){
      Blob blob = {0,0,0};
      void *pSeek;
      int nSeek;
      int iTopicSeek;

      int iPg = 0;
      int iLoad = pCsr->pSeg->iRoot;
      Page *pPg = pCsr->aPg[nDepth-1].pPage;
 
      if( pageObjGetNRec(pPg)==0 ){
        /* This can happen when pPg is the right-most leaf in the b-tree.
        ** In this case, set the iTopicSeek/pSeek/nSeek key to a value
        ** greater than any real key.  */
        assert( iCell==-1 );
        iTopicSeek = 1000;
        pSeek = 0;
        nSeek = 0;
      }else{
        Pgno dummy;
        rc = pageGetBtreeKey(pPg,
            0, &dummy, &iTopicSeek, &pSeek, &nSeek, &pCsr->blob
        );
      }

      do {
        Page *pPg;
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
          iMax = iCell-1;
          iMin = 0;

          while( iMax>=iMin ){
            int iTry = (iMin+iMax)/2;
            void *pKey; int nKey;         /* Key for cell iTry */
            int iTopic;                   /* Topic for key pKeyT/nKeyT */
            int iPtr;                     /* Pointer for cell iTry */
            int res;                      /* (pSeek - pKeyT) */

            rc = pageGetBtreeKey(pPg, iTry, &iPtr, &iTopic, &pKey, &nKey,&blob);
            if( rc!=LSM_OK ) break;

            res = sortedKeyCompare(
                xCmp, iTopicSeek, pSeek, nSeek, iTopic, pKey, nKey







|







893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
          iMax = iCell-1;
          iMin = 0;

          while( iMax>=iMin ){
            int iTry = (iMin+iMax)/2;
            void *pKey; int nKey;         /* Key for cell iTry */
            int iTopic;                   /* Topic for key pKeyT/nKeyT */
            Pgno iPtr;                    /* Pointer for cell iTry */
            int res;                      /* (pSeek - pKeyT) */

            rc = pageGetBtreeKey(pPg, iTry, &iPtr, &iTopic, &pKey, &nKey,&blob);
            if( rc!=LSM_OK ) break;

            res = sortedKeyCompare(
                xCmp, iTopicSeek, pSeek, nSeek, iTopic, pKey, nKey
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
      u8 *aData;
      int nData;

      pBtreePg = &pCsr->aPg[pCsr->iPg];
      aData = fsPageData(pBtreePg->pPage, &nData);
      pCsr->iPtr = btreeCursorPtr(aData, nData, pBtreePg->iCell+1);
      if( pBtreePg->iCell<0 ){
        int dummy;
        int i;
        for(i=pCsr->iPg-1; i>=0; i--){
          if( pCsr->aPg[i].iCell>0 ) break;
        }
        assert( i>=0 );
        rc = pageGetBtreeKey(
            pCsr->aPg[i].pPage, pCsr->aPg[i].iCell-1,







|







932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
      u8 *aData;
      int nData;

      pBtreePg = &pCsr->aPg[pCsr->iPg];
      aData = fsPageData(pBtreePg->pPage, &nData);
      pCsr->iPtr = btreeCursorPtr(aData, nData, pBtreePg->iCell+1);
      if( pBtreePg->iCell<0 ){
        Pgno dummy;
        int i;
        for(i=pCsr->iPg-1; i>=0; i--){
          if( pCsr->aPg[i].iCell>0 ) break;
        }
        assert( i>=0 );
        rc = pageGetBtreeKey(
            pCsr->aPg[i].pPage, pCsr->aPg[i].iCell-1,
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

    assert( iNew<pPtr->nCell );
    pPtr->iCell = iNew;
    aData = fsPageData(pPtr->pPg, &nPgsz);
    iOff = lsmGetU16(&aData[SEGMENT_CELLPTR_OFFSET(nPgsz, pPtr->iCell)]);
    pPtr->eType = aData[iOff];
    iOff++;
    iOff += GETVARINT32(&aData[iOff], pPtr->iPgPtr);
    iOff += GETVARINT32(&aData[iOff], pPtr->nKey);
    if( rtIsWrite(pPtr->eType) ){
      iOff += GETVARINT32(&aData[iOff], pPtr->nVal);
    }
    assert( pPtr->nKey>=0 );

    rc = segmentPtrReadData(







|







1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059

    assert( iNew<pPtr->nCell );
    pPtr->iCell = iNew;
    aData = fsPageData(pPtr->pPg, &nPgsz);
    iOff = lsmGetU16(&aData[SEGMENT_CELLPTR_OFFSET(nPgsz, pPtr->iCell)]);
    pPtr->eType = aData[iOff];
    iOff++;
    iOff += GETVARINT64(&aData[iOff], pPtr->iPgPtr);
    iOff += GETVARINT32(&aData[iOff], pPtr->nKey);
    if( rtIsWrite(pPtr->eType) ){
      iOff += GETVARINT32(&aData[iOff], pPtr->nVal);
    }
    assert( pPtr->nKey>=0 );

    rc = segmentPtrReadData(
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
    u8 *aData;
    int nData;
  
    aData = lsmFsPageData(pPg, &nData);
    if( pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG ){
      void *pKey;
      int nKey;
      int dummy;
      rc = pageGetBtreeKey(
          pPg, pMerge->splitkey.iCell, &dummy, &iTopic, &pKey, &nKey, &blob
      );
      if( rc==LSM_OK && blob.pData!=pKey ){
        rc = sortedBlobSet(pEnv, &blob, pKey, nKey);
      }
    }else{







|







1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
    u8 *aData;
    int nData;
  
    aData = lsmFsPageData(pPg, &nData);
    if( pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG ){
      void *pKey;
      int nKey;
      Pgno dummy;
      rc = pageGetBtreeKey(
          pPg, pMerge->splitkey.iCell, &dummy, &iTopic, &pKey, &nKey, &blob
      );
      if( rc==LSM_OK && blob.pData!=pKey ){
        rc = sortedBlobSet(pEnv, &blob, pKey, nKey);
      }
    }else{
1150
1151
1152
1153
1154
1155
1156
1157


1158

1159
1160
1161
1162
1163
1164
1165
  FileSystem *pFS, 
  SegmentPtr *pPtr, 
  int bLast, 
  int *pRc
){
  if( *pRc==LSM_OK ){
    Page *pNew = 0;
    Pgno iPg = (bLast ? pPtr->pSeg->iLast : pPtr->pSeg->iFirst);


    *pRc = lsmFsDbPageGet(pFS, iPg, &pNew);

    segmentPtrSetPage(pPtr, pNew);
  }
}


/*
** Try to move the segment pointer passed as the second argument so that it







|
>
>
|
>







1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
  FileSystem *pFS, 
  SegmentPtr *pPtr, 
  int bLast, 
  int *pRc
){
  if( *pRc==LSM_OK ){
    Page *pNew = 0;
    if( bLast ){
      *pRc = lsmFsDbPageLast(pFS, pPtr->pSeg, &pNew);
    }else{
      *pRc = lsmFsDbPageGet(pFS, pPtr->pSeg->iFirst, &pNew);
    }
    segmentPtrSetPage(pPtr, pNew);
  }
}


/*
** Try to move the segment pointer passed as the second argument so that it
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
  int *pbStop
){
  int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
  int res;                        /* Result of comparison operation */
  int rc = LSM_OK;
  int iMin;
  int iMax;
  int iPtrOut = 0;
  const int iTopic = 0;

  /* If the current page contains an oversized entry, then there are no
  ** pointers to one or more of the subsequent pages in the sorted run.
  ** The following call ensures that the segment-ptr points to the correct 
  ** page in this case.  */
  rc = segmentPtrSearchOversized(pCsr, pPtr, pKey, nKey);







|







1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
  int *pbStop
){
  int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
  int res;                        /* Result of comparison operation */
  int rc = LSM_OK;
  int iMin;
  int iMax;
  Pgno iPtrOut = 0;
  const int iTopic = 0;

  /* If the current page contains an oversized entry, then there are no
  ** pointers to one or more of the subsequent pages in the sorted run.
  ** The following call ensures that the segment-ptr points to the correct 
  ** page in this case.  */
  rc = segmentPtrSearchOversized(pCsr, pPtr, pKey, nKey);
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
  */
#if 0
  assert( assertKeyLocation(pCsr, pPtr, pKey, nKey) );
#endif

  assert( pPtr->nCell>0 
       || pPtr->pSeg->nSize==1 
       || lsmFsPageNumber(pPtr->pPg)==pPtr->pSeg->iLast
  );
  if( pPtr->nCell==0 ){
    segmentPtrReset(pPtr);
  }else{
    iMin = 0;
    iMax = pPtr->nCell-1;








|







1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
  */
#if 0
  assert( assertKeyLocation(pCsr, pPtr, pKey, nKey) );
#endif

  assert( pPtr->nCell>0 
       || pPtr->pSeg->nSize==1 
       || lsmFsDbPageIsLast(pPtr->pSeg, pPtr->pPg)
  );
  if( pPtr->nCell==0 ){
    segmentPtrReset(pPtr);
  }else{
    iMin = 0;
    iMax = pPtr->nCell-1;

1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712

      iMin = 0;
      iMax = nRec-1;
      while( iMax>=iMin ){
        int iTry = (iMin+iMax)/2;
        void *pKeyT; int nKeyT;       /* Key for cell iTry */
        int iTopicT;                  /* Topic for key pKeyT/nKeyT */
        int iPtr;                     /* Pointer associated with cell iTry */
        int res;                      /* (pKey - pKeyT) */

        rc = pageGetBtreeKey(pPg, iTry, &iPtr, &iTopicT, &pKeyT, &nKeyT, &blob);
        if( rc!=LSM_OK ) break;
        if( piFirst && pKeyT==blob.pData ){
          *piFirst = pageGetBtreeRef(pPg, iTry);
          piFirst = 0;







|







1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757

      iMin = 0;
      iMax = nRec-1;
      while( iMax>=iMin ){
        int iTry = (iMin+iMax)/2;
        void *pKeyT; int nKeyT;       /* Key for cell iTry */
        int iTopicT;                  /* Topic for key pKeyT/nKeyT */
        Pgno iPtr;                    /* Pointer associated with cell iTry */
        int res;                      /* (pKey - pKeyT) */

        rc = pageGetBtreeKey(pPg, iTry, &iPtr, &iTopicT, &pKeyT, &nKeyT, &blob);
        if( rc!=LSM_OK ) break;
        if( piFirst && pKeyT==blob.pData ){
          *piFirst = pageGetBtreeRef(pPg, iTry);
          piFirst = 0;
2124
2125
2126
2127
2128
2129
2130

2131
2132
2133
2134
2135
2136
2137
2138
2139

2140
2141
2142
2143
2144
2145
2146
static int multiCursorAddAll(MultiCursor *pCsr, Snapshot *pSnap){
  Level *pLvl;
  int nPtr = 0;
  int iPtr = 0;
  int rc = LSM_OK;

  for(pLvl=pSnap->pLevel; pLvl; pLvl=pLvl->pNext){

    nPtr += (1 + pLvl->nRight);
  }

  assert( pCsr->aPtr==0 );
  pCsr->aPtr = lsmMallocZeroRc(pCsr->pDb->pEnv, sizeof(SegmentPtr) * nPtr, &rc);
  if( rc==LSM_OK ) pCsr->nPtr = nPtr;

  for(pLvl=pSnap->pLevel; pLvl && rc==LSM_OK; pLvl=pLvl->pNext){
    int i;

    pCsr->aPtr[iPtr].pLevel = pLvl;
    pCsr->aPtr[iPtr].pSeg = &pLvl->lhs;
    iPtr++;
    for(i=0; i<pLvl->nRight; i++){
      pCsr->aPtr[iPtr].pLevel = pLvl;
      pCsr->aPtr[iPtr].pSeg = &pLvl->aRhs[i];
      iPtr++;







>









>







2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
static int multiCursorAddAll(MultiCursor *pCsr, Snapshot *pSnap){
  Level *pLvl;
  int nPtr = 0;
  int iPtr = 0;
  int rc = LSM_OK;

  for(pLvl=pSnap->pLevel; pLvl; pLvl=pLvl->pNext){
    if( pLvl->iAge<0 ) continue;
    nPtr += (1 + pLvl->nRight);
  }

  assert( pCsr->aPtr==0 );
  pCsr->aPtr = lsmMallocZeroRc(pCsr->pDb->pEnv, sizeof(SegmentPtr) * nPtr, &rc);
  if( rc==LSM_OK ) pCsr->nPtr = nPtr;

  for(pLvl=pSnap->pLevel; pLvl && rc==LSM_OK; pLvl=pLvl->pNext){
    int i;
    if( pLvl->iAge<0 ) continue;
    pCsr->aPtr[iPtr].pLevel = pLvl;
    pCsr->aPtr[iPtr].pSeg = &pLvl->lhs;
    iPtr++;
    for(i=0; i<pLvl->nRight; i++){
      pCsr->aPtr[iPtr].pLevel = pLvl;
      pCsr->aPtr[iPtr].pSeg = &pLvl->aRhs[i];
      iPtr++;
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
  MergeWorker *pMW,               /* Merge worker */
  int bSep                        /* True for separators run */
){
  Segment *pSeg;                  /* Segment being written */
  lsm_db *pDb = pMW->pDb;         /* Database handle */
  int rc = LSM_OK;                /* Return code */
  int i;
  int iRight = 0;
  Page **apHier = pMW->hier.apHier;
  int nHier = pMW->hier.nHier;

  assert( nHier>0 && pMW->pLevel->pMerge->bHierReadonly );
  pSeg = &pMW->pLevel->lhs;

  for(i=0; rc==LSM_OK && i<nHier; i++){
    Page *pNew = 0;
    rc = lsmFsSortedAppend(pDb->pFS, pDb->pWorker, pSeg, &pNew);
    assert( rc==LSM_OK );








<



<







2906
2907
2908
2909
2910
2911
2912

2913
2914
2915

2916
2917
2918
2919
2920
2921
2922
  MergeWorker *pMW,               /* Merge worker */
  int bSep                        /* True for separators run */
){
  Segment *pSeg;                  /* Segment being written */
  lsm_db *pDb = pMW->pDb;         /* Database handle */
  int rc = LSM_OK;                /* Return code */
  int i;

  Page **apHier = pMW->hier.apHier;
  int nHier = pMW->hier.nHier;


  pSeg = &pMW->pLevel->lhs;

  for(i=0; rc==LSM_OK && i<nHier; i++){
    Page *pNew = 0;
    rc = lsmFsSortedAppend(pDb->pFS, pDb->pWorker, pSeg, &pNew);
    assert( rc==LSM_OK );

2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
        ** since sometimes n1>n2, the page content and footer must be copied 
        ** separately. */
        int nEntry = pageGetNRec(a2, n2);
        int iEof1 = SEGMENT_EOF(n1, nEntry);
        int iEof2 = SEGMENT_EOF(n2, nEntry);
        memcpy(a1, a2, iEof2);
        memcpy(&a1[iEof1], &a2[iEof2], n2 - iEof2);
        if( iRight ) lsmPutU32(&a1[SEGMENT_POINTER_OFFSET(n1)], iRight);
        lsmFsPageRelease(apHier[i]);
        apHier[i] = pNew;
        iRight = lsmFsPageNumber(pNew);
      }else{
        lsmPutU16(&a1[SEGMENT_FLAGS_OFFSET(n1)], SEGMENT_BTREE_FLAG);
        lsmPutU16(&a1[SEGMENT_NRECORD_OFFSET(n1)], 0);
        lsmPutU32(&a1[SEGMENT_POINTER_OFFSET(n1)], 0);
        i = i - 1;
        lsmFsPageRelease(pNew);
      }
    }
  }

#ifdef LSM_DEBUG
  if( rc==LSM_OK ){
    for(i=0; i<nHier; i++) assert( lsmFsPageWritable(apHier[i]) );
  }
#endif

  if( rc==LSM_OK ){
    pMW->pLevel->pMerge->bHierReadonly = 0;
  }
  return rc;
}

/*
** Allocate and populate the MergeWorker.apHier[] array.
*/
static int mergeWorkerLoadHierarchy(MergeWorker *pMW){
  int rc = LSM_OK;
  Segment *pSeg;
  Hierarchy *p;
 
  pSeg = &pMW->pLevel->lhs;
  p = &pMW->hier;

  if( p->apHier==0 && pSeg->iRoot!=0 ){
    int bHierReadonly = pMW->pLevel->pMerge->bHierReadonly;
    FileSystem *pFS = pMW->pDb->pFS;
    lsm_env *pEnv = pMW->pDb->pEnv;
    Page **apHier = 0;
    int nHier = 0;
    int iPg = pSeg->iRoot;

    do {







<


<



|












<
<
<















<







2935
2936
2937
2938
2939
2940
2941

2942
2943

2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959



2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974

2975
2976
2977
2978
2979
2980
2981
        ** since sometimes n1>n2, the page content and footer must be copied 
        ** separately. */
        int nEntry = pageGetNRec(a2, n2);
        int iEof1 = SEGMENT_EOF(n1, nEntry);
        int iEof2 = SEGMENT_EOF(n2, nEntry);
        memcpy(a1, a2, iEof2);
        memcpy(&a1[iEof1], &a2[iEof2], n2 - iEof2);

        lsmFsPageRelease(apHier[i]);
        apHier[i] = pNew;

      }else{
        lsmPutU16(&a1[SEGMENT_FLAGS_OFFSET(n1)], SEGMENT_BTREE_FLAG);
        lsmPutU16(&a1[SEGMENT_NRECORD_OFFSET(n1)], 0);
        lsmPutU64(&a1[SEGMENT_POINTER_OFFSET(n1)], 0);
        i = i - 1;
        lsmFsPageRelease(pNew);
      }
    }
  }

#ifdef LSM_DEBUG
  if( rc==LSM_OK ){
    for(i=0; i<nHier; i++) assert( lsmFsPageWritable(apHier[i]) );
  }
#endif




  return rc;
}

/*
** Allocate and populate the MergeWorker.apHier[] array.
*/
static int mergeWorkerLoadHierarchy(MergeWorker *pMW){
  int rc = LSM_OK;
  Segment *pSeg;
  Hierarchy *p;
 
  pSeg = &pMW->pLevel->lhs;
  p = &pMW->hier;

  if( p->apHier==0 && pSeg->iRoot!=0 ){

    FileSystem *pFS = pMW->pDb->pFS;
    lsm_env *pEnv = pMW->pDb->pEnv;
    Page **apHier = 0;
    int nHier = 0;
    int iPg = pSeg->iRoot;

    do {
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974




2975
2976

2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
        Page **apNew = (Page **)lsmRealloc(
            pEnv, apHier, sizeof(Page *)*(nHier+1)
        );
        if( apNew==0 ){
          rc = LSM_NOMEM_BKPT;
          break;
        }
        if( bHierReadonly==0 ) lsmFsPageWrite(pPg);
        apHier = apNew;
        memmove(&apHier[1], &apHier[0], sizeof(Page *) * nHier);
        nHier++;

        apHier[0] = pPg;
        iPg = pageGetPtr(aData, nData);
      }else{
        lsmFsPageRelease(pPg);
        break;
      }
    }while( 1 );

    if( rc==LSM_OK ){




      p->nHier = nHier;
      p->apHier = apHier;

    }else{
      int i;
      for(i=0; i<nHier; i++){
        lsmFsPageRelease(apHier[i]);
      }
      lsmFree(pEnv, apHier);
    }
  }

  return rc;
}

/*
** Push the key passed through the pKey/nKey arguments into the b-tree 
** hierarchy. The associated pointer value is iPtr.
**
** B-tree pages use almost the same format as regular pages. The 
** differences are:
**
**   1. The record format is (usually, see below) as follows:
**
**         + Type byte (always SORTED_SEPARATOR or SORTED_SYSTEM_SEPARATOR),
**         + Absolute pointer value (varint),







<













>
>
>
>


>













<
<
<







2993
2994
2995
2996
2997
2998
2999

3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032



3033
3034
3035
3036
3037
3038
3039
        Page **apNew = (Page **)lsmRealloc(
            pEnv, apHier, sizeof(Page *)*(nHier+1)
        );
        if( apNew==0 ){
          rc = LSM_NOMEM_BKPT;
          break;
        }

        apHier = apNew;
        memmove(&apHier[1], &apHier[0], sizeof(Page *) * nHier);
        nHier++;

        apHier[0] = pPg;
        iPg = pageGetPtr(aData, nData);
      }else{
        lsmFsPageRelease(pPg);
        break;
      }
    }while( 1 );

    if( rc==LSM_OK ){
      u8 *aData;
      int nData;
      aData = fsPageData(apHier[0], &nData);
      pMW->aSave[0].iPgno = pageGetPtr(aData, nData);
      p->nHier = nHier;
      p->apHier = apHier;
      rc = mergeWorkerMoveHierarchy(pMW, 0);
    }else{
      int i;
      for(i=0; i<nHier; i++){
        lsmFsPageRelease(apHier[i]);
      }
      lsmFree(pEnv, apHier);
    }
  }

  return rc;
}

/*



** B-tree pages use almost the same format as regular pages. The 
** differences are:
**
**   1. The record format is (usually, see below) as follows:
**
**         + Type byte (always SORTED_SEPARATOR or SORTED_SYSTEM_SEPARATOR),
**         + Absolute pointer value (varint),
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030

3031
3032
3033


3034
3035
3036
3037
3038


3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100

3101
3102
3103


3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115

3116



3117
3118

3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164


3165

3166







3167





















3168


3169




3170


3171
3172





3173









3174
3175




















3176

3177
3178







3179
3180







3181
3182
3183
3184
3185
3186




























3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212

3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
**
**   4. The pointer in the page footer of a b-tree page points to a page
**      that contains keys equal to or larger than the largest key on the
**      b-tree page.
**
** The reason for having the page footer pointer point to the right-child
** (instead of the left) is that doing things this way makes the 
** segWriterMoveHierarchy() operation less complicated (since the pointers 
** that need to be updated are all stored as fixed-size integers within the 
** page footer, not varints in page records).
**
** Records may not span b-tree pages. If this function is called to add a
** record larger than (page-size / 4) bytes, then a pointer to the indexed
** array page that contains the main record is added to the b-tree instead.
** In this case the record format is:
**
**         + 0x00 byte (1 byte) 
**         + Absolute pointer value (varint),
**         + Absolute page number of page containing key (varint).
**
** See function seekInBtree() for the code that traverses b-tree pages.
*/

static int mergeWorkerPushHierarchy(
  MergeWorker *pMW,               /* Merge worker object */
  int bSep,                       /* True for separators, false otherwise */


  Pgno iKeyPg,                    /* Page that will contain pKey/nKey */
  int iTopic,                     /* Topic value for this key */
  void *pKey,                     /* Pointer to key buffer */
  int nKey                        /* Size of pKey buffer in bytes */
){


  lsm_db *pDb = pMW->pDb;         /* Database handle */
  int rc;                         /* Return Code */
  int iLevel;                     /* Level of b-tree hierachy to write to */
  int nData;                      /* Size of aData[] in bytes */
  u8 *aData;                      /* Page data for level iLevel */
  int iOff;                       /* Offset on b-tree page to write record to */
  int nRec;                       /* Initial number of records on b-tree page */
  Pgno iPtr;                      /* Pointer value to accompany pKey/nKey */
  int bIndirect;                  /* True to use an indirect record */

  Hierarchy *p;
  Segment *pSeg;

  /* If there exists a b-tree hierarchy and it is not loaded into 
  ** memory, load it now.  */
  pSeg = &pMW->pLevel->lhs;
  p = &pMW->hier;
  rc = mergeWorkerLoadHierarchy(pMW);

  /* Obtain the absolute pointer value to store along with the key in the
  ** page body. This pointer points to a page that contains keys that are
  ** smaller than pKey/nKey.  */
  if( p->nHier ){
    aData = fsPageData(p->apHier[0], &nData);
    iPtr = lsmGetU32(&aData[SEGMENT_POINTER_OFFSET(nData)]);
  }else{
    iPtr = pSeg->iFirst;
  }

  if( p->nHier && pMW->pLevel->pMerge->bHierReadonly ){
    rc = mergeWorkerMoveHierarchy(pMW, bSep);
    if( rc!=LSM_OK ) goto push_hierarchy_out;
  }

  /* Determine if the indirect format should be used. */
  bIndirect = (nKey*4 > lsmFsPageSize(pMW->pDb->pFS));

  /* The MergeWorker.apHier[] array contains the right-most leaf of the b-tree
  ** hierarchy, the root node, and all nodes that lie on the path between.
  ** apHier[0] is the right-most leaf and apHier[pMW->nHier-1] is the current
  ** root page.
  **
  ** This loop searches for a node with enough space to store the key on,
  ** starting with the leaf and iterating up towards the root. When the loop
  ** exits, the key may be written to apHier[iLevel].
  */
  for(iLevel=0; iLevel<=p->nHier; iLevel++){
    int nByte;                    /* Number of free bytes required */
    int iRight;                   /* Right hand pointer from aData[]/nData */

    if( iLevel==p->nHier ){
      /* Extend the array and allocate a new root page. */
      Page **aNew;
      aNew = (Page **)lsmRealloc(
          pMW->pDb->pEnv, p->apHier, sizeof(Page *)*(p->nHier+1)
      );
      if( !aNew ){
        rc = LSM_NOMEM_BKPT;
        goto push_hierarchy_out;
      }
      p->apHier = aNew;
    }else{

      int nFree;

      /* If the key will fit on this page, break out of the loop. */


      assert( lsmFsPageWritable(p->apHier[iLevel]) );
      aData = fsPageData(p->apHier[iLevel], &nData);
      iRight = lsmGetU32(&aData[SEGMENT_POINTER_OFFSET(nData)]);
      if( bIndirect ){
        nByte = 2 + 1 + lsmVarintLen32(iRight) + lsmVarintLen32(iKeyPg);
      }else{
        nByte = 2 + 1 + lsmVarintLen32(iRight) + lsmVarintLen32(nKey) + nKey;
      }
      nRec = pageGetNRec(aData, nData);
      nFree = SEGMENT_EOF(nData, nRec) - mergeWorkerPageOffset(aData, nData);
      if( nByte<=nFree ) break;


      /* Otherwise, it is full. Release it. */



      iPtr = lsmFsPageNumber(p->apHier[iLevel]);
      rc = lsmFsPageRelease(p->apHier[iLevel]);

    }

    /* Allocate a new page for apHier[iLevel]. */
    p->apHier[iLevel] = 0;
    if( rc==LSM_OK ){
      rc = lsmFsSortedAppend(
          pDb->pFS, pDb->pWorker, pSeg, &p->apHier[iLevel]
      );
    }
    if( rc!=LSM_OK ) goto push_hierarchy_out;

    aData = fsPageData(p->apHier[iLevel], &nData);
    memset(aData, 0, nData);
    lsmPutU16(&aData[SEGMENT_FLAGS_OFFSET(nData)], SEGMENT_BTREE_FLAG);
    lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], 0);
    if( iLevel>0 ){
      iRight = lsmFsPageNumber(p->apHier[iLevel-1]);
      lsmPutU32(&aData[SEGMENT_POINTER_OFFSET(nData)], iRight);
    }

    if( iLevel==p->nHier ){
      p->nHier++;
      break;
    }
  }

  /* Write the key into page apHier[iLevel]. */
  aData = fsPageData(p->apHier[iLevel], &nData);

  iOff = mergeWorkerPageOffset(aData, nData);

  nRec = pageGetNRec(aData, nData);
  lsmPutU16(&aData[SEGMENT_CELLPTR_OFFSET(nData, nRec)], iOff);
  lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], nRec+1);

  if( bIndirect ){
    aData[iOff++] = 0x00;
    iOff += lsmVarintPut32(&aData[iOff], iPtr);
    iOff += lsmVarintPut32(&aData[iOff], iKeyPg);
  }else{
    aData[iOff++] = (u8)(iTopic | LSM_SEPARATOR);
    iOff += lsmVarintPut32(&aData[iOff], iPtr);
    iOff += lsmVarintPut32(&aData[iOff], nKey);
    memcpy(&aData[iOff], pKey, nKey);
  }



  if( iLevel>0 ){

    int iRight = lsmFsPageNumber(p->apHier[iLevel-1]);







    lsmPutU32(&aData[SEGMENT_POINTER_OFFSET(nData)], iRight);





















  }







  /* Write the right-hand pointer of the right-most leaf page of the 


  ** b-tree heirarchy. */
  aData = fsPageData(p->apHier[0], &nData);





  lsmPutU32(&aData[SEGMENT_POINTER_OFFSET(nData)], iKeyPg);










  /* Ensure that the SortedRun.iRoot field is correct. */




















  pSeg->iRoot = lsmFsPageNumber(p->apHier[p->nHier-1]);


push_hierarchy_out:







  return rc;
}








static int keyszToSkip(FileSystem *pFS, int nKey){
  int nPgsz;                /* Nominal database page size */
  nPgsz = lsmFsPageSize(pFS);
  return LSM_MIN(((nKey * 4) / nPgsz), 3);
}





























/*
** Advance to the next page of an output run being populated by merge-worker
** pMW. The footer of the new page is initialized to indicate that it contains
** zero records. The flags field is cleared. The page footer pointer field
** is set to iFPtr.
**
** If successful, LSM_OK is returned. Otherwise, an error code.
*/
static int mergeWorkerNextPage(
  MergeWorker *pMW,               /* Merge worker object to append page to */
  int iFPtr                       /* Pointer value for footer of new page */
){
  int rc = LSM_OK;                /* Return code */
  Page *pNext = 0;                /* New page appended to run */
  lsm_db *pDb = pMW->pDb;         /* Database handle */
  Segment *pSeg;                  /* Run to append to */

  pSeg = &pMW->pLevel->lhs;
  rc = lsmFsSortedAppend(pDb->pFS, pDb->pWorker, pSeg, &pNext);
  assert( rc!=LSM_OK || pSeg->iFirst>0 );

  if( rc==LSM_OK ){
    u8 *aData;                    /* Data buffer belonging to page pNext */
    int nData;                    /* Size of aData[] in bytes */


    lsmFsPageRelease(pMW->pPage);
    pMW->pPage = pNext;
    pMW->pLevel->pMerge->iOutputOff = 0;

    aData = fsPageData(pNext, &nData);
    lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], 0);
    lsmPutU16(&aData[SEGMENT_FLAGS_OFFSET(nData)], 0);
    lsmPutU32(&aData[SEGMENT_POINTER_OFFSET(nData)], iFPtr);

    pMW->nWork++;
  }

  return rc;
}

/*







|














>
|
|
<
>
>
|
<
|
|

>
>

|





<
<

<
<
|
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<








|
<


<








|
<



>


|
>
>
|
|
<
|
|

|





>
|
>
>
>
|
|
>









|





<
<
<
<









<

<



|
<




|





>
>
|
>
|
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>

>
>
>
>
|
>
>
|
|
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
|
|
>
>
>
>
>
>
>


>
>
>
>
>
>
>






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











|








|





>
|


<



|
<







3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073

3074
3075
3076

3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088


3089


3090





3091









3092







3093
3094
3095
3096
3097
3098
3099
3100
3101

3102
3103

3104
3105
3106
3107
3108
3109
3110
3111
3112

3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123

3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155




3156
3157
3158
3159
3160
3161
3162
3163
3164

3165

3166
3167
3168
3169

3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

3348
3349
3350
3351

3352
3353
3354
3355
3356
3357
3358
**
**   4. The pointer in the page footer of a b-tree page points to a page
**      that contains keys equal to or larger than the largest key on the
**      b-tree page.
**
** The reason for having the page footer pointer point to the right-child
** (instead of the left) is that doing things this way makes the 
** mergeWorkerMoveHierarchy() operation less complicated (since the pointers 
** that need to be updated are all stored as fixed-size integers within the 
** page footer, not varints in page records).
**
** Records may not span b-tree pages. If this function is called to add a
** record larger than (page-size / 4) bytes, then a pointer to the indexed
** array page that contains the main record is added to the b-tree instead.
** In this case the record format is:
**
**         + 0x00 byte (1 byte) 
**         + Absolute pointer value (varint),
**         + Absolute page number of page containing key (varint).
**
** See function seekInBtree() for the code that traverses b-tree pages.
*/

static int mergeWorkerBtreeWrite(
  MergeWorker *pMW,

  u8 eType,
  Pgno iPtr,
  Pgno iKeyPg,

  void *pKey,
  int nKey
){
  Segment *pSeg = &pMW->pLevel->lhs;
  Hierarchy *p = &pMW->hier;
  lsm_db *pDb = pMW->pDb;         /* Database handle */
  int rc = LSM_OK;                /* Return Code */
  int iLevel;                     /* Level of b-tree hierachy to write to */
  int nData;                      /* Size of aData[] in bytes */
  u8 *aData;                      /* Page data for level iLevel */
  int iOff;                       /* Offset on b-tree page to write record to */
  int nRec;                       /* Initial number of records on b-tree page */





  /* iKeyPg should be zero for an ordinary b-tree key, or non-zero for an





  ** indirect key. The flags byte for an indirect key is 0x00.  */









  assert( (eType==0)==(iKeyPg!=0) );








  /* The MergeWorker.apHier[] array contains the right-most leaf of the b-tree
  ** hierarchy, the root node, and all nodes that lie on the path between.
  ** apHier[0] is the right-most leaf and apHier[pMW->nHier-1] is the current
  ** root page.
  **
  ** This loop searches for a node with enough space to store the key on,
  ** starting with the leaf and iterating up towards the root. When the loop
  ** exits, the key may be written to apHier[iLevel].  */

  for(iLevel=0; iLevel<=p->nHier; iLevel++){
    int nByte;                    /* Number of free bytes required */


    if( iLevel==p->nHier ){
      /* Extend the array and allocate a new root page. */
      Page **aNew;
      aNew = (Page **)lsmRealloc(
          pMW->pDb->pEnv, p->apHier, sizeof(Page *)*(p->nHier+1)
      );
      if( !aNew ){
        return LSM_NOMEM_BKPT;

      }
      p->apHier = aNew;
    }else{
      Page *pOld;
      int nFree;

      /* If the key will fit on this page, break out of the loop here.
      ** The new entry will be written to page apHier[iLevel]. */
      pOld = p->apHier[iLevel];
      assert( lsmFsPageWritable(pOld) );
      aData = fsPageData(pOld, &nData);

      if( eType==0 ){
        nByte = 2 + 1 + lsmVarintLen32(iPtr) + lsmVarintLen32(iKeyPg);
      }else{
        nByte = 2 + 1 + lsmVarintLen32(iPtr) + lsmVarintLen32(nKey) + nKey;
      }
      nRec = pageGetNRec(aData, nData);
      nFree = SEGMENT_EOF(nData, nRec) - mergeWorkerPageOffset(aData, nData);
      if( nByte<=nFree ) break;

      /* Otherwise, this page is full. Set the right-hand-child pointer
      ** to iPtr and release it.  */
      lsmPutU64(&aData[SEGMENT_POINTER_OFFSET(nData)], iPtr);
      rc = lsmFsPagePersist(pOld);
      if( rc==LSM_OK ){
        iPtr = lsmFsPageNumber(pOld);
        lsmFsPageRelease(pOld);
      }
    }

    /* Allocate a new page for apHier[iLevel]. */
    p->apHier[iLevel] = 0;
    if( rc==LSM_OK ){
      rc = lsmFsSortedAppend(
          pDb->pFS, pDb->pWorker, pSeg, &p->apHier[iLevel]
      );
    }
    if( rc!=LSM_OK ) return rc;

    aData = fsPageData(p->apHier[iLevel], &nData);
    memset(aData, 0, nData);
    lsmPutU16(&aData[SEGMENT_FLAGS_OFFSET(nData)], SEGMENT_BTREE_FLAG);
    lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], 0);





    if( iLevel==p->nHier ){
      p->nHier++;
      break;
    }
  }

  /* Write the key into page apHier[iLevel]. */
  aData = fsPageData(p->apHier[iLevel], &nData);

  iOff = mergeWorkerPageOffset(aData, nData);

  nRec = pageGetNRec(aData, nData);
  lsmPutU16(&aData[SEGMENT_CELLPTR_OFFSET(nData, nRec)], iOff);
  lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], nRec+1);
  if( eType==0 ){

    aData[iOff++] = 0x00;
    iOff += lsmVarintPut32(&aData[iOff], iPtr);
    iOff += lsmVarintPut32(&aData[iOff], iKeyPg);
  }else{
    aData[iOff++] = eType;
    iOff += lsmVarintPut32(&aData[iOff], iPtr);
    iOff += lsmVarintPut32(&aData[iOff], nKey);
    memcpy(&aData[iOff], pKey, nKey);
  }

  return rc;
}

static int mergeWorkerBtreeIndirect(MergeWorker *pMW){
  int rc = LSM_OK;
  if( pMW->iIndirect ){
    Pgno iKeyPg = pMW->aSave[1].iPgno;
    rc = mergeWorkerBtreeWrite(pMW, 0, pMW->iIndirect, iKeyPg, 0, 0);
    pMW->iIndirect = 0;
  }
  return rc;
}

/*
** Append the database key (iTopic/pKey/nKey) to the b-tree under 
** construction. This key has not yet been written to a segment page.
** The pointer that will accompany the new key in the b-tree - that
** points to the completed segment page that contains keys smaller than
** (pKey/nKey) is currently stored in pMW->aSave[0].iPgno.
*/
static int mergeWorkerPushHierarchy(
  MergeWorker *pMW,               /* Merge worker object */
  int iTopic,                     /* Topic value for this key */
  void *pKey,                     /* Pointer to key buffer */
  int nKey                        /* Size of pKey buffer in bytes */
){
  lsm_db *pDb = pMW->pDb;         /* Database handle */
  int rc = LSM_OK;                /* Return Code */
  int iLevel;                     /* Level of b-tree hierachy to write to */
  int nData;                      /* Size of aData[] in bytes */
  u8 *aData;                      /* Page data for level iLevel */
  int iOff;                       /* Offset on b-tree page to write record to */
  int nRec;                       /* Initial number of records on b-tree page */
  Pgno iPtr;                      /* Pointer value to accompany pKey/nKey */

  Hierarchy *p;
  Segment *pSeg;

  /* If there exists a b-tree hierarchy and it is not loaded into 
  ** memory, load it now.  */
  pSeg = &pMW->pLevel->lhs;
  p = &pMW->hier;

  assert( pMW->aSave[0].bStore==0 );
  assert( pMW->aSave[1].bStore==0 );
  rc = mergeWorkerBtreeIndirect(pMW);

  /* Obtain the absolute pointer value to store along with the key in the
  ** page body. This pointer points to a page that contains keys that are
  ** smaller than pKey/nKey.  */
  iPtr = pMW->aSave[0].iPgno;
  assert( iPtr!=0 );

  /* Determine if the indirect format should be used. */
  if( (nKey*4 > lsmFsPageSize(pMW->pDb->pFS)) ){
    pMW->iIndirect = iPtr;
    pMW->aSave[1].bStore = 1;
  }else{
    rc = mergeWorkerBtreeWrite(
        pMW, (u8)(iTopic | LSM_SEPARATOR), iPtr, 0, pKey, nKey
    );
  }

  /* Ensure that the SortedRun.iRoot field is correct. */
  return rc;
}

static int mergeWorkerFinishHierarchy(
  MergeWorker *pMW                /* Merge worker object */
){
  int i;                          /* Used to loop through apHier[] */
  int rc = LSM_OK;                /* Return code */
  Pgno iPtr;                      /* New right-hand-child pointer value */

  iPtr = pMW->aSave[0].iPgno;
  for(i=0; i<pMW->hier.nHier && rc==LSM_OK; i++){
    Page *pPg = pMW->hier.apHier[i];
    int nData;                    /* Size of aData[] in bytes */
    u8 *aData;                    /* Page data for pPg */

    aData = fsPageData(pPg, &nData);
    lsmPutU64(&aData[SEGMENT_POINTER_OFFSET(nData)], iPtr);

    rc = lsmFsPagePersist(pPg);
    iPtr = lsmFsPageNumber(pPg);
    lsmFsPageRelease(pPg);
  }

  if( pMW->hier.nHier ){
    pMW->pLevel->lhs.iRoot = iPtr;
    lsmFree(pMW->pDb->pEnv, pMW->hier.apHier);
    pMW->hier.apHier = 0;
    pMW->hier.nHier = 0;
  }

  return rc;
}

static int mergeWorkerAddPadding(
  MergeWorker *pMW                /* Merge worker object */
){
  FileSystem *pFS = pMW->pDb->pFS;
  return lsmFsSortedPadding(pFS, pMW->pDb->pWorker, &pMW->pLevel->lhs);
}

static int keyszToSkip(FileSystem *pFS, int nKey){
  int nPgsz;                /* Nominal database page size */
  nPgsz = lsmFsPageSize(pFS);
  return LSM_MIN(((nKey * 4) / nPgsz), 3);
}

/*
** Release the reference to the current output page of merge-worker *pMW
** (reference pMW->pPage). Set the page number values in aSave[] as 
** required (see comments above struct MergeWorker for details).
*/
static int mergeWorkerPersistAndRelease(MergeWorker *pMW){
  int rc;
  int i;

  assert( pMW->pPage || (pMW->aSave[0].bStore==0 && pMW->aSave[1].bStore==0) );

  /* Persist the page */
  rc = lsmFsPagePersist(pMW->pPage);

  /* If required, save the page number. */
  for(i=0; i<2; i++){
    if( pMW->aSave[i].bStore ){
      pMW->aSave[i].iPgno = lsmFsPageNumber(pMW->pPage);
      pMW->aSave[i].bStore = 0;
    }
  }

  /* Release the completed output page. */
  lsmFsPageRelease(pMW->pPage);
  pMW->pPage = 0;
  return rc;
}

/*
** Advance to the next page of an output run being populated by merge-worker
** pMW. The footer of the new page is initialized to indicate that it contains
** zero records. The flags field is cleared. The page footer pointer field
** is set to iFPtr.
**
** If successful, LSM_OK is returned. Otherwise, an error code.
*/
static int mergeWorkerNextPage(
  MergeWorker *pMW,               /* Merge worker object to append page to */
  Pgno iFPtr                      /* Pointer value for footer of new page */
){
  int rc = LSM_OK;                /* Return code */
  Page *pNext = 0;                /* New page appended to run */
  lsm_db *pDb = pMW->pDb;         /* Database handle */
  Segment *pSeg;                  /* Run to append to */

  pSeg = &pMW->pLevel->lhs;
  rc = lsmFsSortedAppend(pDb->pFS, pDb->pWorker, pSeg, &pNext);
  assert( rc!=LSM_OK || pSeg->iFirst>0 || pMW->pDb->compress.xCompress );

  if( rc==LSM_OK ){
    u8 *aData;                    /* Data buffer belonging to page pNext */
    int nData;                    /* Size of aData[] in bytes */

    rc = mergeWorkerPersistAndRelease(pMW);

    pMW->pPage = pNext;
    pMW->pLevel->pMerge->iOutputOff = 0;

    aData = fsPageData(pNext, &nData);
    lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], 0);
    lsmPutU16(&aData[SEGMENT_FLAGS_OFFSET(nData)], 0);
    lsmPutU64(&aData[SEGMENT_POINTER_OFFSET(nData)], iFPtr);

    pMW->nWork++;
  }

  return rc;
}

/*
3266
3267
3268
3269
3270
3271
3272






































3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

3294
3295
3296
3297
3298
3299




3300

3301
3302
3303
3304
3305
3306
3307

3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359


3360

3361
3362
3363
3364
3365
3366

3367
3368
3369
3370
3371
3372
3373
      pMerge->iOutputOff = iOff + nCopy;
    }
  }

  return rc;
}








































static int mergeWorkerWrite(
  MergeWorker *pMW,               /* Merge worker object to write into */
  int eType,                      /* One of SORTED_SEPARATOR, WRITE or DELETE */
  void *pKey, int nKey,           /* Key value */
  MultiCursor *pCsr,              /* Read value (if any) from here */
  int iPtr,                       /* Absolute value of page pointer, or 0 */
  int *piPtrOut                   /* OUT: Pointer to write to separators */
){
  int rc = LSM_OK;                /* Return code */
  Merge *pMerge;                  /* Persistent part of level merge state */
  int nHdr;                       /* Space required for this record header */
  Page *pPg;                      /* Page to write to */
  u8 *aData;                      /* Data buffer for page pWriter->pPage */
  int nData;                      /* Size of buffer aData[] in bytes */
  int nRec;                       /* Number of records on page pPg */
  int iFPtr;                      /* Value of pointer in footer of pPg */
  int iRPtr;                      /* Value of pointer written into record */
  int iOff;                       /* Current write offset within page pPg */
  Segment *pSeg;                  /* Segment being written */
  int flags = 0;                  /* If != 0, flags value for page footer */

  void *pVal;
  int nVal;

  pMerge = pMW->pLevel->pMerge;    
  pSeg = &pMW->pLevel->lhs;





  pPg = pMW->pPage;

  aData = fsPageData(pPg, &nData);
  nRec = pageGetNRec(aData, nData);
  iFPtr = pageGetPtr(aData, nData);

  /* Calculate the relative pointer value to write to this record */
  iRPtr = iPtr - iFPtr;
  /* assert( iRPtr>=0 ); */

     
  /* Figure out how much space is required by the new record. The space
  ** required is divided into two sections: the header and the body. The
  ** header consists of the intial varint fields. The body are the blobs 
  ** of data that correspond to the key and value data. The entire header 
  ** must be stored on the page. The body may overflow onto the next and
  ** subsequent pages.
  **
  ** The header space is:
  **
  **     1) record type - 1 byte.
  **     2) Page-pointer-offset - 1 varint
  **     3) Key size - 1 varint
  **     4) Value size - 1 varint (SORTED_WRITE only)
  */
  rc = lsmMCursorValue(pCsr, &pVal, &nVal);
  if( rc==LSM_OK ){
    nHdr = 1 + lsmVarintLen32(iRPtr) + lsmVarintLen32(nKey);
    if( rtIsWrite(eType) ) nHdr += lsmVarintLen32(nVal);

    /* If the entire header will not fit on page pPg, or if page pPg is 
     ** marked read-only, advance to the next page of the output run. */
    iOff = pMerge->iOutputOff;
    if( iOff<0 || iOff+nHdr > SEGMENT_EOF(nData, nRec+1) ){
      iFPtr = *pCsr->pPrevMergePtr;
      iRPtr = iPtr - iFPtr;

      iOff = 0;
      nRec = 0;
      rc = mergeWorkerNextPage(pMW, iFPtr);
      pPg = pMW->pPage;
    }
  }

  /* If this record header will be the first on the page, and the page is 
  ** not the very first in the entire run, special actions may need to be 
  ** taken:
  **
  **   * If currently writing the main run, *piPtrOut should be set to
  **     the current page number. The caller will add a key to the separators
  **     array that points to the current page.
  **
  **   * If currently writing the separators array, push a copy of the key
  **     into the b-tree hierarchy.
  */
  if( rc==LSM_OK && nRec==0 && pSeg->iFirst!=pSeg->iLast ){
    assert( pMerge->nSkip>=0 );

    if( pMerge->nSkip==0 ){
      Pgno iPg = lsmFsPageNumber(pPg);
      rc = mergeWorkerPushHierarchy(pMW, 0, iPg, rtTopic(eType), pKey, nKey);
    }


    if( pMerge->nSkip ){

      pMerge->nSkip--;
      flags = PGFTR_SKIP_THIS_FLAG;
    }else{
      *piPtrOut = lsmFsPageNumber(pPg);
      pMerge->nSkip = keyszToSkip(pMW->pDb->pFS, nKey);
    }

    if( pMerge->nSkip ) flags |= PGFTR_SKIP_NEXT_FLAG;
  }

  /* Update the output segment */
  if( rc==LSM_OK ){
    aData = fsPageData(pPg, &nData);








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






|
<









|



>






>
>
>
>

>
|
|
|
<
<
|
<
>













|







|

|


<








|
<
<
<
<
<
<
<
|

|



<
|
<
>
>
|
>


<
<
<

>







3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447

3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476


3477

3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504

3505
3506
3507
3508
3509
3510
3511
3512
3513







3514
3515
3516
3517
3518
3519

3520

3521
3522
3523
3524
3525
3526



3527
3528
3529
3530
3531
3532
3533
3534
3535
      pMerge->iOutputOff = iOff + nCopy;
    }
  }

  return rc;
}


/*
** The MergeWorker passed as the only argument is working to merge two or
** more existing segments together (not to flush an in-memory tree). It
** has not yet written the first key to the first page of the output.
*/
static int mergeWorkerFirstPage(MergeWorker *pMW){
  int rc = LSM_OK;                /* Return code */
  Page *pPg = 0;                  /* First page of run pSeg */
  int iFPtr = 0;                  /* Pointer value read from footer of pPg */
  MultiCursor *pCsr = pMW->pCsr;

  assert( pMW->pPage==0 );

  if( pCsr->pBtCsr ){
    rc = LSM_OK;
    iFPtr = pMW->pLevel->pNext->lhs.iFirst;
  }else if( pCsr->nPtr>0 ){
    Segment *pSeg;
    pSeg = pCsr->aPtr[pCsr->nPtr-1].pSeg;
    rc = lsmFsDbPageGet(pMW->pDb->pFS, pSeg->iFirst, &pPg);
    if( rc==LSM_OK ){
      u8 *aData;                    /* Buffer for page pPg */
      int nData;                    /* Size of aData[] in bytes */
      aData = fsPageData(pPg, &nData);
      iFPtr = pageGetPtr(aData, nData);
      lsmFsPageRelease(pPg);
    }
  }

  if( rc==LSM_OK ){
    rc = mergeWorkerNextPage(pMW, iFPtr);
    if( pCsr->pPrevMergePtr ) *pCsr->pPrevMergePtr = iFPtr;
    pMW->aSave[0].bStore = 1;
  }

  return rc;
}

static int mergeWorkerWrite(
  MergeWorker *pMW,               /* Merge worker object to write into */
  int eType,                      /* One of SORTED_SEPARATOR, WRITE or DELETE */
  void *pKey, int nKey,           /* Key value */
  MultiCursor *pCsr,              /* Read value (if any) from here */
  int iPtr                        /* Absolute value of page pointer, or 0 */

){
  int rc = LSM_OK;                /* Return code */
  Merge *pMerge;                  /* Persistent part of level merge state */
  int nHdr;                       /* Space required for this record header */
  Page *pPg;                      /* Page to write to */
  u8 *aData;                      /* Data buffer for page pWriter->pPage */
  int nData;                      /* Size of buffer aData[] in bytes */
  int nRec;                       /* Number of records on page pPg */
  int iFPtr;                      /* Value of pointer in footer of pPg */
  int iRPtr = 0;                  /* Value of pointer written into record */
  int iOff;                       /* Current write offset within page pPg */
  Segment *pSeg;                  /* Segment being written */
  int flags = 0;                  /* If != 0, flags value for page footer */
  int bFirst = 0;                 /* True for first key of output run */
  void *pVal;
  int nVal;

  pMerge = pMW->pLevel->pMerge;    
  pSeg = &pMW->pLevel->lhs;

  if( pSeg->iFirst==0 && pMW->pPage==0 ){
    rc = mergeWorkerFirstPage(pMW);
    bFirst = 1;
  }
  pPg = pMW->pPage;
  if( pPg ){
    aData = fsPageData(pPg, &nData);
    nRec = pageGetNRec(aData, nData);
    iFPtr = pageGetPtr(aData, nData);


    iRPtr = iPtr - iFPtr;

  }
     
  /* Figure out how much space is required by the new record. The space
  ** required is divided into two sections: the header and the body. The
  ** header consists of the intial varint fields. The body are the blobs 
  ** of data that correspond to the key and value data. The entire header 
  ** must be stored on the page. The body may overflow onto the next and
  ** subsequent pages.
  **
  ** The header space is:
  **
  **     1) record type - 1 byte.
  **     2) Page-pointer-offset - 1 varint
  **     3) Key size - 1 varint
  **     4) Value size - 1 varint (only if LSM_INSERT flag is set)
  */
  rc = lsmMCursorValue(pCsr, &pVal, &nVal);
  if( rc==LSM_OK ){
    nHdr = 1 + lsmVarintLen32(iRPtr) + lsmVarintLen32(nKey);
    if( rtIsWrite(eType) ) nHdr += lsmVarintLen32(nVal);

    /* If the entire header will not fit on page pPg, or if page pPg is 
    ** marked read-only, advance to the next page of the output run. */
    iOff = pMerge->iOutputOff;
    if( iOff<0 || pPg==0 || iOff+nHdr > SEGMENT_EOF(nData, nRec+1) ){
      iFPtr = *pCsr->pPrevMergePtr;
      iRPtr = iPtr - iFPtr;

      iOff = 0;
      nRec = 0;
      rc = mergeWorkerNextPage(pMW, iFPtr);
      pPg = pMW->pPage;
    }
  }

  /* If this record header will be the first on the page, and the page is 
  ** not the very first in the entire run, add a copy of the key to the







  ** b-tree hierarchy.
  */
  if( rc==LSM_OK && nRec==0 && bFirst==0 ){
    assert( pMerge->nSkip>=0 );

    if( pMerge->nSkip==0 ){

      rc = mergeWorkerPushHierarchy(pMW, rtTopic(eType), pKey, nKey);

      assert( pMW->aSave[0].bStore==0 );
      pMW->aSave[0].bStore = 1;
      pMerge->nSkip = keyszToSkip(pMW->pDb->pFS, nKey);
    }else{
      pMerge->nSkip--;
      flags = PGFTR_SKIP_THIS_FLAG;



    }

    if( pMerge->nSkip ) flags |= PGFTR_SKIP_NEXT_FLAG;
  }

  /* Update the output segment */
  if( rc==LSM_OK ){
    aData = fsPageData(pPg, &nData);

3418
3419
3420
3421
3422
3423
3424

3425
3426
3427
3428
3429
3430
3431
/*
** Free all resources allocated by mergeWorkerInit().
*/
static void mergeWorkerShutdown(MergeWorker *pMW, int *pRc){
  int i;                          /* Iterator variable */
  int rc = *pRc;
  MultiCursor *pCsr = pMW->pCsr;


  /* Unless the merge has finished, save the cursor position in the
  ** Merge.aInput[] array. See function mergeWorkerInit() for the 
  ** code to restore a cursor position based on aInput[].  */
  if( rc==LSM_OK && pCsr && lsmMCursorValid(pCsr) ){
    Merge *pMerge = pMW->pLevel->pMerge;
    int bBtree = (pCsr->pBtCsr!=0);







>







3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
/*
** Free all resources allocated by mergeWorkerInit().
*/
static void mergeWorkerShutdown(MergeWorker *pMW, int *pRc){
  int i;                          /* Iterator variable */
  int rc = *pRc;
  MultiCursor *pCsr = pMW->pCsr;
  Hierarchy *p = &pMW->hier;

  /* Unless the merge has finished, save the cursor position in the
  ** Merge.aInput[] array. See function mergeWorkerInit() for the 
  ** code to restore a cursor position based on aInput[].  */
  if( rc==LSM_OK && pCsr && lsmMCursorValid(pCsr) ){
    Merge *pMerge = pMW->pLevel->pMerge;
    int bBtree = (pCsr->pBtCsr!=0);
3453
3454
3455
3456
3457
3458
3459
3460

3461

3462
3463
3464
3465
3466
3467
3468
3469


3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
    /* Store the location of the split-key */
    iPtr = pCsr->aTree[1] - CURSOR_DATA_SEGMENT;
    if( iPtr<pCsr->nPtr ){
      pMerge->splitkey = pMerge->aInput[iPtr];
    }else{
      btreeCursorSplitkey(pCsr->pBtCsr, &pMerge->splitkey);
    }
  }



  lsmMCursorClose(pCsr);
  lsmFsPageRelease(pMW->pPage);

  for(i=0; i<2; i++){
    Hierarchy *p = &pMW->hier;
    int iPg;
    for(iPg=0; iPg<p->nHier; iPg++){
      int rc2 = lsmFsPageRelease(p->apHier[iPg]);


      if( rc==LSM_OK ) rc = rc2;
    }
    lsmFree(pMW->pDb->pEnv, p->apHier);
    p->apHier = 0;
    p->nHier = 0;
  }

  pMW->pCsr = 0;
  pMW->pPage = 0;
  pMW->pPage = 0;
}

static int mergeWorkerFirstPage(MergeWorker *pMW){
  int rc;                         /* Return code */
  Page *pPg = 0;                  /* First page of run pSeg */
  int iFPtr;                      /* Pointer value read from footer of pPg */
  MultiCursor *pCsr = pMW->pCsr;

  assert( pMW->pPage==0 );

  if( pCsr->pBtCsr ){
    rc = LSM_OK;
    iFPtr = pMW->pLevel->pNext->lhs.iFirst;
  }else{
    Segment *pSeg;
    pSeg = pMW->pCsr->aPtr[pMW->pCsr->nPtr-1].pSeg;
    rc = lsmFsDbPageGet(pMW->pDb->pFS, pSeg->iFirst, &pPg);
    if( rc==LSM_OK ){
      u8 *aData;                    /* Buffer for page pPg */
      int nData;                    /* Size of aData[] in bytes */
      aData = fsPageData(pPg, &nData);
      iFPtr = pageGetPtr(aData, nData);
      lsmFsPageRelease(pPg);
    }
  }

  if( rc==LSM_OK ){
    rc = mergeWorkerNextPage(pMW, iFPtr);
    if( pCsr->pPrevMergePtr ) *pCsr->pPrevMergePtr = iFPtr;
  }

  return rc;
}

/*
** The cursor passed as the first argument is being used as the input for
** a merge operation. When this function is called, *piFlags contains the
** database entry flags for the current entry. The entry about to be written
** to the output.







|
>
|
>

<

<
|
<
<
|
>
>
|
|
|
|
<
<
<



|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|







3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627

3628

3629


3630
3631
3632
3633
3634
3635
3636



3637
3638
3639
3640






























3641
3642
3643
3644
3645
3646
3647
3648
    /* Store the location of the split-key */
    iPtr = pCsr->aTree[1] - CURSOR_DATA_SEGMENT;
    if( iPtr<pCsr->nPtr ){
      pMerge->splitkey = pMerge->aInput[iPtr];
    }else{
      btreeCursorSplitkey(pCsr->pBtCsr, &pMerge->splitkey);
    }
    
    pMerge->iOutputOff = -1;
  }

  lsmMCursorClose(pCsr);



  /* Persist and release the output page. */


  if( rc==LSM_OK ) rc = mergeWorkerPersistAndRelease(pMW);
  if( rc==LSM_OK ) rc = mergeWorkerBtreeIndirect(pMW);
  if( rc==LSM_OK ) rc = mergeWorkerFinishHierarchy(pMW);
  if( rc==LSM_OK ) rc = mergeWorkerAddPadding(pMW);

  lsmFree(pMW->pDb->pEnv, pMW->aGobble);
  pMW->aGobble = 0;



  pMW->pCsr = 0;
  pMW->pPage = 0;
  pMW->pPage = 0;































  *pRc = rc;
}

/*
** The cursor passed as the first argument is being used as the input for
** a merge operation. When this function is called, *piFlags contains the
** database entry flags for the current entry. The entry about to be written
** to the output.
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633


3634
3635
3636
3637
3638
3639

3640
3641
3642
3643
3644
3645
3646
3647
3648

3649
3650
3651
3652
3653
3654
3655
      }
    }

    /* If this is a separator key and we know that the output pointer has not
    ** changed, there is no point in writing an output record. Otherwise,
    ** proceed. */
    if( rtIsSeparator(eType)==0 || iPtr!=0 ){
      int iSPtr = 0;                /* Separators require a pointer here */

      if( pMW->pPage==0 ){
        rc = mergeWorkerFirstPage(pMW);
      }

      /* Write the record into the main run. */
      if( rc==LSM_OK ){
        rc = mergeWorkerWrite(pMW, eType, pKey, nKey, pCsr, iPtr, &iSPtr);
      }
    }
  }

  /* Advance the cursor to the next input record (assuming one exists). */
  assert( lsmMCursorValid(pMW->pCsr) );
  if( rc==LSM_OK ) rc = lsmMCursorNext(pMW->pCsr);

  /* If the cursor is at EOF, the merge is finished. Release all page
  ** references currently held by the merge worker and inform the 
  ** FileSystem object that no further pages will be appended to either 
  ** the main or separators array. 
  */
  if( rc==LSM_OK && !lsmMCursorValid(pMW->pCsr) ){


    if( pSeg->iFirst ){
      rc = lsmFsSortedFinish(pDb->pFS, pSeg);
    }

#ifdef LSM_DEBUG_EXPENSIVE
    if( rc==LSM_OK ){

      rc = assertBtreeOk(pDb, pSeg);
      if( pMW->pCsr->pBtCsr ){
        Segment *pNext = &pMW->pLevel->pNext->lhs;
        rc = assertPointersOk(pDb, pSeg, pNext, 0);
      }
    }
#endif

    mergeWorkerShutdown(pMW, &rc);

  }
  return rc;
}

static int mergeWorkerDone(MergeWorker *pMW){
  return pMW->pCsr==0 || !lsmMCursorValid(pMW->pCsr);
}







<
<
<
<
<
<


|














>
>






>





<

|
<
>







3734
3735
3736
3737
3738
3739
3740






3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771

3772
3773

3774
3775
3776
3777
3778
3779
3780
3781
      }
    }

    /* If this is a separator key and we know that the output pointer has not
    ** changed, there is no point in writing an output record. Otherwise,
    ** proceed. */
    if( rtIsSeparator(eType)==0 || iPtr!=0 ){






      /* Write the record into the main run. */
      if( rc==LSM_OK ){
        rc = mergeWorkerWrite(pMW, eType, pKey, nKey, pCsr, iPtr);
      }
    }
  }

  /* Advance the cursor to the next input record (assuming one exists). */
  assert( lsmMCursorValid(pMW->pCsr) );
  if( rc==LSM_OK ) rc = lsmMCursorNext(pMW->pCsr);

  /* If the cursor is at EOF, the merge is finished. Release all page
  ** references currently held by the merge worker and inform the 
  ** FileSystem object that no further pages will be appended to either 
  ** the main or separators array. 
  */
  if( rc==LSM_OK && !lsmMCursorValid(pMW->pCsr) ){

    mergeWorkerShutdown(pMW, &rc);
    if( pSeg->iFirst ){
      rc = lsmFsSortedFinish(pDb->pFS, pSeg);
    }

#ifdef LSM_DEBUG_EXPENSIVE
    if( rc==LSM_OK ){
#if 0
      rc = assertBtreeOk(pDb, pSeg);
      if( pMW->pCsr->pBtCsr ){
        Segment *pNext = &pMW->pLevel->pNext->lhs;
        rc = assertPointersOk(pDb, pSeg, pNext, 0);
      }

#endif
    }

#endif
  }
  return rc;
}

static int mergeWorkerDone(MergeWorker *pMW){
  return pMW->pCsr==0 || !lsmMCursorValid(pMW->pCsr);
}
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
  int *pnWrite                    /* OUT: Number of database pages written */
){
  int rc = LSM_OK;                /* Return Code */
  MultiCursor *pCsr = 0;
  Level *pNext = 0;               /* The current top level */
  Level *pNew;                    /* The new level itself */
  Segment *pDel = 0;              /* Delete separators from this segment */
  Pgno iLeftPtr = 0;
  int nWrite = 0;                 /* Number of database pages written */

  assert( pnOvfl );

  /* Allocate the new level structure to write to. */
  pNext = lsmDbSnapshotLevel(pDb->pWorker);
  pNew = (Level *)lsmMallocZeroRc(pDb->pEnv, sizeof(Level), &rc);







<







3802
3803
3804
3805
3806
3807
3808

3809
3810
3811
3812
3813
3814
3815
  int *pnWrite                    /* OUT: Number of database pages written */
){
  int rc = LSM_OK;                /* Return Code */
  MultiCursor *pCsr = 0;
  Level *pNext = 0;               /* The current top level */
  Level *pNew;                    /* The new level itself */
  Segment *pDel = 0;              /* Delete separators from this segment */

  int nWrite = 0;                 /* Number of database pages written */

  assert( pnOvfl );

  /* Allocate the new level structure to write to. */
  pNext = lsmDbSnapshotLevel(pDb->pWorker);
  pNew = (Level *)lsmMallocZeroRc(pDb->pEnv, sizeof(Level), &rc);
3700
3701
3702
3703
3704
3705
3706

3707


3708
3709
3710
3711
3712
3713

3714
3715
3716
3717
3718
3719
3720

3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740

3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757





3758
3759
3760
3761
3762
3763
3764
  if( pCsr ){
    pCsr->pDb = pDb;
    multiCursorVisitFreelist(pCsr, pnOvfl);
    rc = multiCursorAddTree(pCsr, pDb->pWorker, eTree);
    if( rc==LSM_OK && pNext && pNext->pMerge==0 && pNext->lhs.iRoot ){
      pDel = &pNext->lhs;
      rc = btreeCursorNew(pDb, pDel, &pCsr->pBtCsr);

      iLeftPtr = pNext->lhs.iFirst;


    }
  }

  if( rc!=LSM_OK ){
    lsmMCursorClose(pCsr);
  }else{

    Merge merge;                  /* Merge object used to create new level */
    MergeWorker mergeworker;      /* MergeWorker object for the same purpose */

    memset(&merge, 0, sizeof(Merge));
    memset(&mergeworker, 0, sizeof(MergeWorker));

    pNew->pMerge = &merge;

    mergeworker.pDb = pDb;
    mergeworker.pLevel = pNew;
    mergeworker.pCsr = pCsr;
    pCsr->pPrevMergePtr = &iLeftPtr;

    /* Mark the separators array for the new level as a "phantom". */
    mergeworker.bFlush = 1;

    /* Allocate the first page of the output segment. */
    rc = mergeWorkerNextPage(&mergeworker, iLeftPtr);

    /* Do the work to create the new merged segment on disk */
    if( rc==LSM_OK ) rc = lsmMCursorFirst(pCsr);
    while( rc==LSM_OK && mergeWorkerDone(&mergeworker)==0 ){
      rc = mergeWorkerStep(&mergeworker);
    }

    nWrite = mergeworker.nWork;
    mergeWorkerShutdown(&mergeworker, &rc);
    pNew->pMerge = 0;

  }

  /* Link the new level into the top of the tree. */
  if( rc==LSM_OK ){
    if( pDel ) pDel->iRoot = 0;
  }else{
    lsmDbSnapshotSetLevel(pDb->pWorker, pNext);
    sortedFreeLevel(pDb->pEnv, pNew);
  }

  if( rc==LSM_OK ){
    sortedInvokeWorkHook(pDb);
  }

#if 0
  lsmSortedDumpStructure(pDb, pDb->pWorker, 1, 0, "new-toplevel");
#endif






  if( pnWrite ) *pnWrite = nWrite;
  pDb->pWorker->nWrite += nWrite;
  return rc;
}

/*







>
|
>
>






>







>








<
<
<









>










<
<
<
<



>
>
>
>
>







3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858



3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878




3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
  if( pCsr ){
    pCsr->pDb = pDb;
    multiCursorVisitFreelist(pCsr, pnOvfl);
    rc = multiCursorAddTree(pCsr, pDb->pWorker, eTree);
    if( rc==LSM_OK && pNext && pNext->pMerge==0 && pNext->lhs.iRoot ){
      pDel = &pNext->lhs;
      rc = btreeCursorNew(pDb, pDel, &pCsr->pBtCsr);
    }

    if( pNext==0 ){
      multiCursorIgnoreDelete(pCsr);
    }
  }

  if( rc!=LSM_OK ){
    lsmMCursorClose(pCsr);
  }else{
    Pgno iLeftPtr = 0;
    Merge merge;                  /* Merge object used to create new level */
    MergeWorker mergeworker;      /* MergeWorker object for the same purpose */

    memset(&merge, 0, sizeof(Merge));
    memset(&mergeworker, 0, sizeof(MergeWorker));

    pNew->pMerge = &merge;
    pNew->iAge = -1;
    mergeworker.pDb = pDb;
    mergeworker.pLevel = pNew;
    mergeworker.pCsr = pCsr;
    pCsr->pPrevMergePtr = &iLeftPtr;

    /* Mark the separators array for the new level as a "phantom". */
    mergeworker.bFlush = 1;




    /* Do the work to create the new merged segment on disk */
    if( rc==LSM_OK ) rc = lsmMCursorFirst(pCsr);
    while( rc==LSM_OK && mergeWorkerDone(&mergeworker)==0 ){
      rc = mergeWorkerStep(&mergeworker);
    }

    nWrite = mergeworker.nWork;
    mergeWorkerShutdown(&mergeworker, &rc);
    pNew->pMerge = 0;
    pNew->iAge = 0;
  }

  /* Link the new level into the top of the tree. */
  if( rc==LSM_OK ){
    if( pDel ) pDel->iRoot = 0;
  }else{
    lsmDbSnapshotSetLevel(pDb->pWorker, pNext);
    sortedFreeLevel(pDb->pEnv, pNew);
  }





#if 0
  lsmSortedDumpStructure(pDb, pDb->pWorker, 1, 0, "new-toplevel");
#endif

  if( rc==LSM_OK ){
    assertBtreeOk(pDb, &pNew->lhs);
    sortedInvokeWorkHook(pDb);
  }

  if( pnWrite ) *pnWrite = nWrite;
  pDb->pWorker->nWrite += nWrite;
  return rc;
}

/*
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
    pNew->pMerge = pMerge;
  }

  *ppNew = pNew;
  return rc;
}

static int mergeWorkerLoadOutputPage(MergeWorker *pMW){
  int rc = LSM_OK;                /* Return code */
  Segment *pSeg;                  /* Run to load page from */
  Level *pLevel;

  pLevel = pMW->pLevel;
  pSeg = &pLevel->lhs;
  if( pSeg->iLast ){
    Page *pPg;
    rc = lsmFsDbPageGet(pMW->pDb->pFS, pSeg->iLast, &pPg);

    while( rc==LSM_OK ){
      Page *pNext;
      u8 *aData;
      int nData;
      aData = fsPageData(pPg, &nData);
      if( (pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG)==0 ) break;
      rc = lsmFsDbPageNext(pSeg, pPg, -1, &pNext);
      lsmFsPageRelease(pPg);
      pPg = pNext;
    }

    if( rc==LSM_OK ){
      pMW->pPage = pPg;
      if( pLevel->pMerge->iOutputOff>=0 ) rc = lsmFsPageWrite(pPg);
    }
  }
  return rc;
}

static int mergeWorkerInit(
  lsm_db *pDb,                    /* Db connection to do merge work */
  Level *pLevel,                  /* Level to work on merging */
  MergeWorker *pMW                /* Object to initialize */
){
  int rc = LSM_OK;                /* Return code */
  Merge *pMerge = pLevel->pMerge; /* Persistent part of merge state */







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







3967
3968
3969
3970
3971
3972
3973






























3974
3975
3976
3977
3978
3979
3980
    pNew->pMerge = pMerge;
  }

  *ppNew = pNew;
  return rc;
}































static int mergeWorkerInit(
  lsm_db *pDb,                    /* Db connection to do merge work */
  Level *pLevel,                  /* Level to work on merging */
  MergeWorker *pMW                /* Object to initialize */
){
  int rc = LSM_OK;                /* Return code */
  Merge *pMerge = pLevel->pMerge; /* Persistent part of merge state */
3912
3913
3914
3915
3916
3917
3918
3919
3920



3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
  }else{
    multiCursorIgnoreDelete(pCsr);
  }

  assert( rc!=LSM_OK || pMerge->nInput==(pCsr->nPtr+(pCsr->pBtCsr!=0)) );
  pMW->pCsr = pCsr;

  /* Load the current output page into memory. */
  if( rc==LSM_OK ) rc = mergeWorkerLoadOutputPage(pMW);




  /* Position the cursor. */
  if( rc==LSM_OK ){
    pCsr->pPrevMergePtr = &pMerge->iCurrentPtr;
    if( pMW->pPage==0 ){
      /* The output array is still empty. So position the cursor at the very 
      ** start of the input.  */
      rc = multiCursorEnd(pCsr, 0);
    }else{
      /* The output array is non-empty. Position the cursor based on the
      ** page/cell data saved in the Merge.aInput[] array.  */
      int i;







|
|
>
>
>




|







4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
  }else{
    multiCursorIgnoreDelete(pCsr);
  }

  assert( rc!=LSM_OK || pMerge->nInput==(pCsr->nPtr+(pCsr->pBtCsr!=0)) );
  pMW->pCsr = pCsr;

  /* Load the b-tree hierarchy into memory. */
  if( rc==LSM_OK ) rc = mergeWorkerLoadHierarchy(pMW);
  if( rc==LSM_OK && pMW->hier.nHier==0 ){
    pMW->aSave[0].iPgno = pLevel->lhs.iFirst;
  }

  /* Position the cursor. */
  if( rc==LSM_OK ){
    pCsr->pPrevMergePtr = &pMerge->iCurrentPtr;
    if( pLevel->lhs.iFirst==0 ){
      /* The output array is still empty. So position the cursor at the very 
      ** start of the input.  */
      rc = multiCursorEnd(pCsr, 0);
    }else{
      /* The output array is non-empty. Position the cursor based on the
      ** page/cell data saved in the Merge.aInput[] array.  */
      int i;
3955
3956
3957
3958
3959
3960
3961

3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980

3981
3982
3983
3984
3985
3986
3987
3988
    }
    pCsr->flags |= CURSOR_NEXT_OK;
  }

  return rc;
}


static int sortedBtreeGobble(
  lsm_db *pDb, 
  MultiCursor *pCsr, 
  int iGobble
){
  int rc = LSM_OK;
  if( rtTopic(pCsr->eType)==0 ){
    Segment *pSeg = pCsr->aPtr[iGobble].pSeg;
    Blob *p = &pCsr->key;
    Pgno *aPg;
    int nPg;

    assert( pSeg->iRoot>0 );
    aPg = lsmMallocZeroRc(pDb->pEnv, sizeof(Pgno)*32, &rc);
    if( rc==LSM_OK ){
      rc = seekInBtree(pCsr, pSeg, p->pData, p->nData, aPg, 0); 
    }

    for(nPg=0; aPg[nPg]; nPg++);

#if 1
    lsmFsGobble(pDb, pSeg, aPg, nPg);
#endif

    lsmFree(pDb->pEnv, aPg);
  }
  return rc;
}







>



















>
|







4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
    }
    pCsr->flags |= CURSOR_NEXT_OK;
  }

  return rc;
}

/* TODO: Re-enable this!!! */
static int sortedBtreeGobble(
  lsm_db *pDb, 
  MultiCursor *pCsr, 
  int iGobble
){
  int rc = LSM_OK;
  if( rtTopic(pCsr->eType)==0 ){
    Segment *pSeg = pCsr->aPtr[iGobble].pSeg;
    Blob *p = &pCsr->key;
    Pgno *aPg;
    int nPg;

    assert( pSeg->iRoot>0 );
    aPg = lsmMallocZeroRc(pDb->pEnv, sizeof(Pgno)*32, &rc);
    if( rc==LSM_OK ){
      rc = seekInBtree(pCsr, pSeg, p->pData, p->nData, aPg, 0); 
    }

    for(nPg=0; aPg[nPg]; nPg++);

#if 0
    lsmFsGobble(pDb, pSeg, aPg, nPg);
#endif

    lsmFree(pDb->pEnv, aPg);
  }
  return rc;
}
4175
4176
4177
4178
4179
4180
4181

4182
4183
4184
4185
4186
4187
4188
      ** the database structure has changed. */
      mergeWorkerShutdown(&mergeworker, &rc);
      if( rc==LSM_OK ) sortedInvokeWorkHook(pDb);

#if 0
      lsmSortedDumpStructure(pDb, pDb->pWorker, 1, 0, "work");
#endif

      assertRunInOrder(pDb, &pLevel->lhs);

      /* If bFlush is true and the database is no longer considered "full",
      ** break out of the loop even if nRemaining is still greater than
      ** zero. The caller has an in-memory tree to flush to disk.  */
      if( bFlush && sortedDbIsFull(pDb)==0 ) break;
    }







>







4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
      ** the database structure has changed. */
      mergeWorkerShutdown(&mergeworker, &rc);
      if( rc==LSM_OK ) sortedInvokeWorkHook(pDb);

#if 0
      lsmSortedDumpStructure(pDb, pDb->pWorker, 1, 0, "work");
#endif
      assertBtreeOk(pDb, &pLevel->lhs);
      assertRunInOrder(pDb, &pLevel->lhs);

      /* If bFlush is true and the database is no longer considered "full",
      ** break out of the loop even if nRemaining is still greater than
      ** zero. The caller has an in-memory tree to flush to disk.  */
      if( bFlush && sortedDbIsFull(pDb)==0 ) break;
    }
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206

4207
4208
4209

4210
4211

4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223



4224
4225
4226
4227
4228
4229
4230
4231
#endif
  return rc;
}

/*
** The database connection passed as the first argument must be a worker
** connection. This function checks if there exists an "old" in-memory tree
** ready to be flushed to disk. If so, *pbOut is set to true before 
** returning. Otherwise false.
**
** Normally, LSM_OK is returned. Or, if an error occurs, an LSM error code.

*/
static int sortedTreeHasOld(lsm_db *pDb, int *pbOut){
  int rc = LSM_OK;


  assert( pDb->pWorker );

  if( pDb->nTransOpen==0 ){
    rc = lsmTreeLoadHeader(pDb, 0);
  }

  if( rc==LSM_OK 
   && pDb->treehdr.iOldShmid
   && pDb->treehdr.iOldLog!=pDb->pWorker->iLogOff 
  ){
    *pbOut = 1;
  }else{
    *pbOut = 0;
  }



  return rc;
}

static int doLsmSingleWork(
  lsm_db *pDb, 
  int bShutdown,
  int flags, 
  int nPage,                      /* Number of pages to write to disk */







|
<

|
>

|

>


>
|
|
|
<
|
|
|
|
|
|
|
|
>
>
>
|







4301
4302
4303
4304
4305
4306
4307
4308

4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321

4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
#endif
  return rc;
}

/*
** The database connection passed as the first argument must be a worker
** connection. This function checks if there exists an "old" in-memory tree
** ready to be flushed to disk. If so, true is returned. Otherwise false.

**
** If an error occurs, *pRc is set to an LSM error code before returning.
** It is assumed that *pRc is set to LSM_OK when this function is called.
*/
static int sortedTreeHasOld(lsm_db *pDb, int *pRc){
  int rc = LSM_OK;
  int bRet = 0;

  assert( pDb->pWorker );
  if( *pRc==LSM_OK ){
    if( pDb->nTransOpen==0 ){
      rc = lsmTreeLoadHeader(pDb, 0);
    }

    if( rc==LSM_OK 
        && pDb->treehdr.iOldShmid
        && pDb->treehdr.iOldLog!=pDb->pWorker->iLogOff 
      ){
      bRet = 1;
    }else{
      bRet = 0;
    }
    *pRc = rc;
  }
  assert( *pRc==LSM_OK || bRet==0 );
  return bRet;
}

static int doLsmSingleWork(
  lsm_db *pDb, 
  int bShutdown,
  int flags, 
  int nPage,                      /* Number of pages to write to disk */
4240
4241
4242
4243
4244
4245
4246

4247
4248
4249
4250
4251
4252
4253
  int bCkpt = 0;
  int bToplevel = 0;

  /* Open the worker 'transaction'. It will be closed before this function
  ** returns.  */
  assert( pDb->pWorker==0 );
  rc = lsmBeginWork(pDb);

  if( rc!=LSM_OK ) return rc;

  /* If this connection is doing auto-checkpoints, set nMax (and nRem) so
  ** that this call stops writing when the auto-checkpoint is due.  */
  if( bShutdown==0 && pDb->nAutockpt ){
    u32 nSync;
    u32 nUnsync;







>







4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
  int bCkpt = 0;
  int bToplevel = 0;

  /* Open the worker 'transaction'. It will be closed before this function
  ** returns.  */
  assert( pDb->pWorker==0 );
  rc = lsmBeginWork(pDb);
  assert( rc!=8 );
  if( rc!=LSM_OK ) return rc;

  /* If this connection is doing auto-checkpoints, set nMax (and nRem) so
  ** that this call stops writing when the auto-checkpoint is due.  */
  if( bShutdown==0 && pDb->nAutockpt ){
    u32 nSync;
    u32 nUnsync;
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
    nMax = (pDb->nAutockpt/nPgsz) - (nUnsync-nSync);
    if( nMax<nRem ){
      bCkpt = 1;
      nRem = LSM_MAX(nMax, 0);
    }
  }

  /* If the FLUSH flag is set, there exists in-memory ready to be flushed
  ** to disk and there are lsm_db.nMerge or fewer age=0 levels, flush the 
  ** data to disk now.  */
  if( (flags & LSM_WORK_FLUSH) ){
    int bOld;
    rc = sortedTreeHasOld(pDb, &bOld);
    if( bOld ){
      if( sortedDbIsFull(pDb) ){
        int nPg = 0;
        rc = sortedWork(pDb, nRem, 0, 1, &nPg);
        nRem -= nPg;
        assert( rc!=LSM_OK || nRem<=0 || !sortedDbIsFull(pDb) );
        bToplevel = 1;
      }

      if( rc==LSM_OK && nRem>0 ){
        int nPg = 0;
        rc = sortedNewToplevel(pDb, TREE_OLD, &nOvfl, &nPg);
        nRem -= nPg;
        if( rc==LSM_OK && pDb->nTransOpen>0 ){
          lsmTreeDiscardOld(pDb);
        }
        bFlush = 1;
        bToplevel = 0;
      }
    }
  }

  /* If nPage is still greater than zero, do some merging. */
  if( rc==LSM_OK && nRem>0 && bShutdown==0 ){
    int nPg = 0;
    int bOptimize = ((flags & LSM_WORK_OPTIMIZE) ? 1 : 0);







|
<
|
<
<
|
<
|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
|
<







4371
4372
4373
4374
4375
4376
4377
4378

4379


4380

4381
4382
4383
4384
4385
4386
4387

4388
4389
4390
4391
4392
4393
4394
4395
4396

4397
4398
4399
4400
4401
4402
4403
    nMax = (pDb->nAutockpt/nPgsz) - (nUnsync-nSync);
    if( nMax<nRem ){
      bCkpt = 1;
      nRem = LSM_MAX(nMax, 0);
    }
  }

  /* If there exists in-memory data ready to be flushed to disk, attempt

  ** to flush it now.  */


  if( sortedTreeHasOld(pDb, &rc) ){

    if( sortedDbIsFull(pDb) ){
      int nPg = 0;
      rc = sortedWork(pDb, nRem, 0, 1, &nPg);
      nRem -= nPg;
      assert( rc!=LSM_OK || nRem<=0 || !sortedDbIsFull(pDb) );
      bToplevel = 1;
    }

    if( rc==LSM_OK && nRem>0 ){
      int nPg = 0;
      rc = sortedNewToplevel(pDb, TREE_OLD, &nOvfl, &nPg);
      nRem -= nPg;
      if( rc==LSM_OK && pDb->nTransOpen>0 ){
        lsmTreeDiscardOld(pDb);
      }
      bFlush = 1;
      bToplevel = 0;

    }
  }

  /* If nPage is still greater than zero, do some merging. */
  if( rc==LSM_OK && nRem>0 && bShutdown==0 ){
    int nPg = 0;
    int bOptimize = ((flags & LSM_WORK_OPTIMIZE) ? 1 : 0);
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
    }
    if( rc==LSM_OK && lsmCheckpointOverflowRequired(pDb) ){
      rc = sortedNewToplevel(pDb, TREE_NONE, &nOvfl, 0);
    }
  }

  if( rc==LSM_OK && (nRem!=nMax) ){
    rc = lsmSortedFlushDb(pDb);
    lsmFinishWork(pDb, bFlush, nOvfl, &rc);
  }else{
    int rcdummy = LSM_BUSY;
    assert( rc!=LSM_OK || bFlush==0 );
    lsmFinishWork(pDb, 0, 0, &rcdummy);
  }
  assert( pDb->pWorker==0 );







<







4416
4417
4418
4419
4420
4421
4422

4423
4424
4425
4426
4427
4428
4429
    }
    if( rc==LSM_OK && lsmCheckpointOverflowRequired(pDb) ){
      rc = sortedNewToplevel(pDb, TREE_NONE, &nOvfl, 0);
    }
  }

  if( rc==LSM_OK && (nRem!=nMax) ){

    lsmFinishWork(pDb, bFlush, nOvfl, &rc);
  }else{
    int rcdummy = LSM_BUSY;
    assert( rc!=LSM_OK || bFlush==0 );
    lsmFinishWork(pDb, 0, 0, &rcdummy);
  }
  assert( pDb->pWorker==0 );
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
** Space for the returned string is allocated using lsmMalloc(), and should
** be freed by the caller using lsmFree().
*/
static char *segToString(lsm_env *pEnv, Segment *pSeg, int nMin){
  int nSize = pSeg->nSize;
  Pgno iRoot = pSeg->iRoot;
  Pgno iFirst = pSeg->iFirst;
  Pgno iLast = pSeg->iLast;
  char *z;

  char *z1;
  char *z2;
  int nPad;

  z1 = lsmMallocPrintf(pEnv, "%d.%d", iFirst, iLast);







|







4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
** Space for the returned string is allocated using lsmMalloc(), and should
** be freed by the caller using lsmFree().
*/
static char *segToString(lsm_env *pEnv, Segment *pSeg, int nMin){
  int nSize = pSeg->nSize;
  Pgno iRoot = pSeg->iRoot;
  Pgno iFirst = pSeg->iFirst;
  Pgno iLast = pSeg->iLastPg;
  char *z;

  char *z1;
  char *z2;
  int nPad;

  z1 = lsmMallocPrintf(pEnv, "%d.%d", iFirst, iLast);
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
    aCell = pageGetCell(aData, nData, i);
    eType = *aCell++;
    assert( (flags & SEGMENT_BTREE_FLAG) || eType!=0 );
    aCell += lsmVarintGet32(aCell, &iPgPtr);

    if( eType==0 ){
      Pgno iRef;                  /* Page number of referenced page */
      aCell += lsmVarintGet32(aCell, &iRef);
      lsmFsDbPageGet(pDb->pFS, iRef, &pRef);
      aKey = pageGetKey(pRef, 0, &iTopic, &nKey, &blob);
    }else{
      aCell += lsmVarintGet32(aCell, &nKey);
      if( rtIsWrite(eType) ) aCell += lsmVarintGet32(aCell, &nVal);
      sortedReadData(pPg, (aCell-aData), nKey+nVal, (void **)&aKey, &blob);
      aVal = &aKey[nKey];







|







4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
    aCell = pageGetCell(aData, nData, i);
    eType = *aCell++;
    assert( (flags & SEGMENT_BTREE_FLAG) || eType!=0 );
    aCell += lsmVarintGet32(aCell, &iPgPtr);

    if( eType==0 ){
      Pgno iRef;                  /* Page number of referenced page */
      aCell += lsmVarintGet64(aCell, &iRef);
      lsmFsDbPageGet(pDb->pFS, iRef, &pRef);
      aKey = pageGetKey(pRef, 0, &iTopic, &nKey, &blob);
    }else{
      aCell += lsmVarintGet32(aCell, &nKey);
      if( rtIsWrite(eType) ) aCell += lsmVarintGet32(aCell, &nVal);
      sortedReadData(pPg, (aCell-aData), nKey+nVal, (void **)&aKey, &blob);
      aVal = &aKey[nKey];
4575
4576
4577
4578
4579
4580
4581

4582
4583
4584
4585
4586
4587
4588
  lsmStringClear(&s);

  sortedBlobFree(&blob);
}

static void infoCellDump(
  lsm_db *pDb,

  Page *pPg,
  int iCell,
  int *peType,
  int *piPgPtr,
  u8 **paKey, int *pnKey,
  u8 **paVal, int *pnVal,
  Blob *pBlob







>







4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
  lsmStringClear(&s);

  sortedBlobFree(&blob);
}

static void infoCellDump(
  lsm_db *pDb,
  int bIndirect,                  /* True to follow indirect refs */
  Page *pPg,
  int iCell,
  int *peType,
  int *piPgPtr,
  u8 **paKey, int *pnKey,
  u8 **paVal, int *pnVal,
  Blob *pBlob
4600
4601
4602
4603
4604
4605
4606
4607

4608
4609
4610
4611
4612




4613
4614
4615
4616
4617
4618
4619
  aCell = pageGetCell(aData, nData, iCell);
  eType = *aCell++;
  aCell += lsmVarintGet32(aCell, &iPgPtr);

  if( eType==0 ){
    int dummy;
    Pgno iRef;                  /* Page number of referenced page */
    aCell += lsmVarintGet32(aCell, &iRef);

    lsmFsDbPageGet(pDb->pFS, iRef, &pRef);
    pageGetKeyCopy(pDb->pEnv, pRef, 0, &dummy, pBlob);
    aKey = (u8 *)pBlob->pData;
    nKey = pBlob->nData;
    lsmFsPageRelease(pRef);




  }else{
    aCell += lsmVarintGet32(aCell, &nKey);
    if( rtIsWrite(eType) ) aCell += lsmVarintGet32(aCell, &nVal);
    sortedReadData(pPg, (aCell-aData), nKey+nVal, (void **)&aKey, pBlob);
    aVal = &aKey[nKey];
  }








|
>
|
|
|
|
|
>
>
>
>







4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
  aCell = pageGetCell(aData, nData, iCell);
  eType = *aCell++;
  aCell += lsmVarintGet32(aCell, &iPgPtr);

  if( eType==0 ){
    int dummy;
    Pgno iRef;                  /* Page number of referenced page */
    aCell += lsmVarintGet64(aCell, &iRef);
    if( bIndirect ){
      lsmFsDbPageGet(pDb->pFS, iRef, &pRef);
      pageGetKeyCopy(pDb->pEnv, pRef, 0, &dummy, pBlob);
      aKey = (u8 *)pBlob->pData;
      nKey = pBlob->nData;
      lsmFsPageRelease(pRef);
    }else{
      aKey = (u8 *)"<indirect>";
      nKey = 11;
    }
  }else{
    aCell += lsmVarintGet32(aCell, &nKey);
    if( rtIsWrite(eType) ) aCell += lsmVarintGet32(aCell, &nVal);
    sortedReadData(pPg, (aCell-aData), nKey+nVal, (void **)&aKey, pBlob);
    aVal = &aKey[nKey];
  }

4633
4634
4635
4636
4637
4638
4639
4640
4641
4642

4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657

4658
4659
4660
4661
4662
4663
4664
    }else{
      lsmStringAppendf(pStr, "%c", isalnum(z[iChar]) ?z[iChar] : '.');
    }
  }
  return LSM_OK;
}

#define INFO_PAGE_DUMP_DATA   0x01
#define INFO_PAGE_DUMP_VALUES 0x02
#define INFO_PAGE_DUMP_HEX    0x04


static int infoPageDump(
  lsm_db *pDb,                    /* Database handle */
  Pgno iPg,                       /* Page number of page to dump */
  int flags,
  char **pzOut                    /* OUT: lsmMalloc'd string */
){
  int rc = LSM_OK;                /* Return code */
  Page *pPg = 0;                  /* Handle for page iPg */
  int i, j;                       /* Loop counters */
  const int perLine = 16;         /* Bytes per line in the raw hex dump */

  int bValues = (flags & INFO_PAGE_DUMP_VALUES);
  int bHex = (flags & INFO_PAGE_DUMP_HEX);
  int bData = (flags & INFO_PAGE_DUMP_DATA);


  *pzOut = 0;
  if( iPg==0 ) return LSM_ERROR;

  rc = lsmFsDbPageGet(pDb->pFS, iPg, &pPg);
  if( rc==LSM_OK ){
    Blob blob = {0, 0, 0, 0};







|
|
|
>















>







4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
    }else{
      lsmStringAppendf(pStr, "%c", isalnum(z[iChar]) ?z[iChar] : '.');
    }
  }
  return LSM_OK;
}

#define INFO_PAGE_DUMP_DATA     0x01
#define INFO_PAGE_DUMP_VALUES   0x02
#define INFO_PAGE_DUMP_HEX      0x04
#define INFO_PAGE_DUMP_INDIRECT 0x08

static int infoPageDump(
  lsm_db *pDb,                    /* Database handle */
  Pgno iPg,                       /* Page number of page to dump */
  int flags,
  char **pzOut                    /* OUT: lsmMalloc'd string */
){
  int rc = LSM_OK;                /* Return code */
  Page *pPg = 0;                  /* Handle for page iPg */
  int i, j;                       /* Loop counters */
  const int perLine = 16;         /* Bytes per line in the raw hex dump */

  int bValues = (flags & INFO_PAGE_DUMP_VALUES);
  int bHex = (flags & INFO_PAGE_DUMP_HEX);
  int bData = (flags & INFO_PAGE_DUMP_DATA);
  int bIndirect = (flags & INFO_PAGE_DUMP_INDIRECT);

  *pzOut = 0;
  if( iPg==0 ) return LSM_ERROR;

  rc = lsmFsDbPageGet(pDb->pFS, iPg, &pPg);
  if( rc==LSM_OK ){
    Blob blob = {0, 0, 0, 0};
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
    lsmStringAppendf(&str, "nRec : %d\n", nRec);
    lsmStringAppendf(&str, "iPtr : %d\n", iPtr);
    lsmStringAppendf(&str, "flags: %04x\n", flags);
    lsmStringAppendf(&str, "\n");

    for(iCell=0; iCell<nRec; iCell++){
      int nKey;
      infoCellDump(pDb, pPg, iCell, 0, 0, 0, &nKey, 0, 0, &blob);
      if( nKey>nKeyWidth ) nKeyWidth = nKey;
    }
    if( bHex ) nKeyWidth = nKeyWidth * 2;

    for(iCell=0; iCell<nRec; iCell++){
      u8 *aKey; int nKey = 0;       /* Key */
      u8 *aVal; int nVal = 0;       /* Value */
      int iPgPtr;
      int eType;
      char cType = '?';
      Pgno iAbsPtr;
      char zFlags[8];

      infoCellDump(pDb, pPg, iCell, &eType, &iPgPtr,
          &aKey, &nKey, &aVal, &nVal, &blob
      );
      iAbsPtr = iPgPtr + ((flags & SEGMENT_BTREE_FLAG) ? 0 : iPtr);

      lsmFlagsToString(eType, zFlags);
      lsmStringAppendf(&str, "%s %d (%s) ", 
          zFlags, iAbsPtr, (rtTopic(eType) ? "sys" : "usr")







|













|







4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
    lsmStringAppendf(&str, "nRec : %d\n", nRec);
    lsmStringAppendf(&str, "iPtr : %d\n", iPtr);
    lsmStringAppendf(&str, "flags: %04x\n", flags);
    lsmStringAppendf(&str, "\n");

    for(iCell=0; iCell<nRec; iCell++){
      int nKey;
      infoCellDump(pDb, bIndirect, pPg, iCell, 0, 0, 0, &nKey, 0, 0, &blob);
      if( nKey>nKeyWidth ) nKeyWidth = nKey;
    }
    if( bHex ) nKeyWidth = nKeyWidth * 2;

    for(iCell=0; iCell<nRec; iCell++){
      u8 *aKey; int nKey = 0;       /* Key */
      u8 *aVal; int nVal = 0;       /* Value */
      int iPgPtr;
      int eType;
      char cType = '?';
      Pgno iAbsPtr;
      char zFlags[8];

      infoCellDump(pDb, bIndirect, pPg, iCell, &eType, &iPgPtr,
          &aKey, &nKey, &aVal, &nVal, &blob
      );
      iAbsPtr = iPgPtr + ((flags & SEGMENT_BTREE_FLAG) ? 0 : iPtr);

      lsmFlagsToString(eType, zFlags);
      lsmStringAppendf(&str, "%s %d (%s) ", 
          zFlags, iAbsPtr, (rtTopic(eType) ? "sys" : "usr")
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909

  for(p=pLevel; p; p=pNext){
    pNext = p->pNext;
    sortedFreeLevel(pEnv, p);
  }
}

int lsmSortedFlushDb(lsm_db *pDb){
  int rc = LSM_OK;
  Level *p;

  assert( pDb->pWorker );
  for(p=lsmDbSnapshotLevel(pDb->pWorker); p && rc==LSM_OK; p=p->pNext){
    Merge *pMerge = p->pMerge;
    if( pMerge ){
      pMerge->iOutputOff = -1;
      pMerge->bHierReadonly = 1;
    }
  }

  return LSM_OK;
}

void lsmSortedSaveTreeCursors(lsm_db *pDb){
  MultiCursor *pCsr;
  for(pCsr=pDb->pCsr; pCsr; pCsr=pCsr->pNext){
    lsmTreeCursorSave(pCsr->apTreeCsr[0]);
    lsmTreeCursorSave(pCsr->apTreeCsr[1]);
  }
}







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







4991
4992
4993
4994
4995
4996
4997
















4998
4999
5000
5001
5002
5003
5004

  for(p=pLevel; p; p=pNext){
    pNext = p->pNext;
    sortedFreeLevel(pEnv, p);
  }
}

















void lsmSortedSaveTreeCursors(lsm_db *pDb){
  MultiCursor *pCsr;
  for(pCsr=pDb->pCsr; pCsr; pCsr=pCsr->pNext){
    lsmTreeCursorSave(pCsr->apTreeCsr[0]);
    lsmTreeCursorSave(pCsr->apTreeCsr[1]);
  }
}

Changes to src/lsm_tree.c.

2417
2418
2419
2420
2421
2422
2423

2424
2425
2426
2427
2428
2429
2430
    TreeKey *pKey = csrGetKey(&csr, &blob, &rc);
    if( rc!=LSM_OK ) break;
    assert( ((prev&LSM_START_DELETE)==0)==((pKey->flags&LSM_END_DELETE)==0) );
    prev = pKey->flags;
  }

  tblobFree(csr.pDb, &csr.blob);


  return 1;
}

static int treeCountEntries(lsm_db *db){
  TreeCursor csr;               /* Cursor used to iterate through tree */
  int rc;







>







2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
    TreeKey *pKey = csrGetKey(&csr, &blob, &rc);
    if( rc!=LSM_OK ) break;
    assert( ((prev&LSM_START_DELETE)==0)==((pKey->flags&LSM_END_DELETE)==0) );
    prev = pKey->flags;
  }

  tblobFree(csr.pDb, &csr.blob);
  tblobFree(csr.pDb, &blob);

  return 1;
}

static int treeCountEntries(lsm_db *db){
  TreeCursor csr;               /* Cursor used to iterate through tree */
  int rc;

Changes to test/csr1.test.

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
populate_db
do_execsql_test 2.1 { 
  BEGIN;
    INSERT INTO t1 VALUES(10, 100);
}
do_test 2.2 { 
  sqlite4 db2 ./test.db
  list [catch { sqlite4_lsm_work db2 main -flush 0 } msg] $msg
} {1 SQLITE4_BUSY}

do_execsql_test 2.3 { COMMIT }
do_test 2.4 { sqlite4_lsm_work db2 main -flush 0 } {0}
db2 close


#-------------------------------------------------------------------------







|
|







56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
populate_db
do_execsql_test 2.1 { 
  BEGIN;
    INSERT INTO t1 VALUES(10, 100);
}
do_test 2.2 { 
  sqlite4 db2 ./test.db
  list [catch { db2 eval { BEGIN ; INSERT INTO t1 VALUES(1, 2) } } msg] $msg
} {1 {database is locked}}

do_execsql_test 2.3 { COMMIT }
do_test 2.4 { sqlite4_lsm_work db2 main -flush 0 } {0}
db2 close


#-------------------------------------------------------------------------

Changes to test/log1.test.

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
  execsql { SELECT count(*) FROM t1 } db2
} {256}
db2 close

reset_db
do_execsql_test 3.5 { CREATE TABLE t1(a, b) }
do_test 3.6 {
  sqlite4_lsm_work db main -flush -checkpoint 0
  for {set i 0} {$i < 203} {incr i} {
    execsql { INSERT INTO t1 VALUES(randstr(100,100), randstr(100,100)) }
  }
  execsql { SELECT count(*) FROM t1 }
} {203}

do_test 3.7 {







|







130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
  execsql { SELECT count(*) FROM t1 } db2
} {256}
db2 close

reset_db
do_execsql_test 3.5 { CREATE TABLE t1(a, b) }
do_test 3.6 {
  sqlite4_lsm_checkpoint db main
  for {set i 0} {$i < 203} {incr i} {
    execsql { INSERT INTO t1 VALUES(randstr(100,100), randstr(100,100)) }
  }
  execsql { SELECT count(*) FROM t1 }
} {203}

do_test 3.7 {
272
273
274
275
276
277
278

279
280
281
282
283
284
285
286
287
288
289
  INSERT INTO x VALUES(randstr(10,10), randstr(100,100));
  INSERT INTO x VALUES(randstr(10,10), randstr(100,100));
  INSERT INTO x VALUES(randstr(10,10), randstr(100,100));
  INSERT INTO x VALUES(randstr(10,10), randstr(100,100));
  INSERT INTO x VALUES(randstr(10,10), randstr(100,100));
}
do_filesize_test 8.2   0 776

do_test          8.3 { sqlite4_lsm_work db main -flush } 0
do_execsql_test  8.4 { INSERT INTO x VALUES(randstr(10,10), randstr(100,100)) }
do_filesize_test 8.5   12288 915
do_test          8.6 { sqlite4_lsm_work db main -checkpoint } 0

do_test 8.7 {
  copy_db_files test.db test.db2
  sqlite4 db2 test.db2
  execsql { SELECT count(*) FROM x ; PRAGMA integrity_check } db2
} {6 ok}








>
|


|







272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
  INSERT INTO x VALUES(randstr(10,10), randstr(100,100));
  INSERT INTO x VALUES(randstr(10,10), randstr(100,100));
  INSERT INTO x VALUES(randstr(10,10), randstr(100,100));
  INSERT INTO x VALUES(randstr(10,10), randstr(100,100));
  INSERT INTO x VALUES(randstr(10,10), randstr(100,100));
}
do_filesize_test 8.2   0 776
do_test          8.3.1 { sqlite4_lsm_flush db main } {}
do_test          8.3.2 { sqlite4_lsm_work db main } 0
do_execsql_test  8.4 { INSERT INTO x VALUES(randstr(10,10), randstr(100,100)) }
do_filesize_test 8.5   12288 915
do_test          8.6 { sqlite4_lsm_checkpoint db main } {}

do_test 8.7 {
  copy_db_files test.db test.db2
  sqlite4 db2 test.db2
  execsql { SELECT count(*) FROM x ; PRAGMA integrity_check } db2
} {6 ok}

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
}
do_test 10.7 { sqlite4_lsm_info db main log-structure } {0 0 0 0 0 556}
do_test 10.8 { sqlite4_lsm_work db main -flush } 0
do_execsql_test 10.9 {
  INSERT INTO t1 VALUES(randstr(10,10), randstr(100,100));
}
do_test 10.9  { sqlite4_lsm_info db main log-structure } {0 0 0 0 0 695}
do_test 10.10 { sqlite4_lsm_work db main -checkpoint } 0
do_test 10.11 { sqlite4_lsm_info db main log-structure } {0 0 0 0 556 695}

#-------------------------------------------------------------------------
#
reset_db
do_test         11.1 { sqlite4_lsm_config db main log-size 800 } 800
do_test         11.2 { sqlite4_lsm_config db main log-size     } 800







|







355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
}
do_test 10.7 { sqlite4_lsm_info db main log-structure } {0 0 0 0 0 556}
do_test 10.8 { sqlite4_lsm_work db main -flush } 0
do_execsql_test 10.9 {
  INSERT INTO t1 VALUES(randstr(10,10), randstr(100,100));
}
do_test 10.9  { sqlite4_lsm_info db main log-structure } {0 0 0 0 0 695}
do_test 10.10 { sqlite4_lsm_checkpoint db main } {}
do_test 10.11 { sqlite4_lsm_info db main log-structure } {0 0 0 0 556 695}

#-------------------------------------------------------------------------
#
reset_db
do_test         11.1 { sqlite4_lsm_config db main log-size 800 } 800
do_test         11.2 { sqlite4_lsm_config db main log-size     } 800
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

do_test 11.4 { sqlite4_lsm_info db main log-structure } {0 0 0 0 0 1335}
do_test 11.5 { sqlite4_lsm_work db main -flush } 0
do_execsql_test 11.6 {
  INSERT INTO t1 VALUES(randstr(10,10), randstr(100,100));
}
do_test 11.7 { sqlite4_lsm_info db main log-structure } {0 0 0 0 0 1474}
do_test 11.8 { sqlite4_lsm_work db main -checkpoint } 0
do_test 11.9 { sqlite4_lsm_info db main log-structure } {0 0 0 0 1335 1474}
do_execsql_test 11.10 {
  INSERT INTO t1 VALUES(randstr(10,10), randstr(100,100));
}
do_test 11.11 { sqlite4_lsm_info db main log-structure } {1335 1482 0 0 0 139}
do_test 11.12 {
  execsql { SELECT count(*) FROM t1 ; PRAGMA integrity_check } 







|







382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

do_test 11.4 { sqlite4_lsm_info db main log-structure } {0 0 0 0 0 1335}
do_test 11.5 { sqlite4_lsm_work db main -flush } 0
do_execsql_test 11.6 {
  INSERT INTO t1 VALUES(randstr(10,10), randstr(100,100));
}
do_test 11.7 { sqlite4_lsm_info db main log-structure } {0 0 0 0 0 1474}
do_test 11.8 { sqlite4_lsm_checkpoint db main } {}
do_test 11.9 { sqlite4_lsm_info db main log-structure } {0 0 0 0 1335 1474}
do_execsql_test 11.10 {
  INSERT INTO t1 VALUES(randstr(10,10), randstr(100,100));
}
do_test 11.11 { sqlite4_lsm_info db main log-structure } {1335 1482 0 0 0 139}
do_test 11.12 {
  execsql { SELECT count(*) FROM t1 ; PRAGMA integrity_check } 
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
db eval {SELECT randstr(5,5)}
do_execsql_test 11.22 {
  INSERT INTO t1 VALUES(randstr(10,10), randstr(100,100));
}
do_test 11.23 { 
  sqlite4_lsm_info db main log-structure 
} {1335 1482 0 1259 1483 1908}
do_test 11.24 { sqlite4_lsm_work db main -checkpoint } {0}
do_test 11.25 { 
  sqlite4_lsm_info db main log-structure 
} {0 0 0 0 1769 1908}

#-------------------------------------------------------------------------
#
reset_db
do_test         12.1 { sqlite4_lsm_config db main log-size 800 } 800
do_execsql_test 12.2 {
  CREATE TABLE t1(a PRIMARY KEY, b);
  CREATE INDEX i1 ON t1(b);
}
for {set iTest 1} {$iTest<=150} {incr iTest} {
  expr srand(0)
  do_test 12.3.$iTest {
    for {set i 0} {$i < 10} {incr i} {
      execsql { INSERT INTO t1 VALUES(randstr(20,20), randstr(100,100)) }
      if { int(rand()*10.0)==0 } { sqlite4_lsm_work db main -flush }
      if { int(rand()*10.0)==0 } { sqlite4_lsm_work db main -checkpoint }
    }
    copy_db_files test.db test.db2
    sqlite4 db2 test.db2
    set sql "SELECT count(*) FROM t1 ; "
    if {0==($iTest % 25)} {
      append sql "PRAGMA integrity_check"
    } else {







|


















|







442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
db eval {SELECT randstr(5,5)}
do_execsql_test 11.22 {
  INSERT INTO t1 VALUES(randstr(10,10), randstr(100,100));
}
do_test 11.23 { 
  sqlite4_lsm_info db main log-structure 
} {1335 1482 0 1259 1483 1908}
do_test 11.24 { sqlite4_lsm_checkpoint db main } {}
do_test 11.25 { 
  sqlite4_lsm_info db main log-structure 
} {0 0 0 0 1769 1908}

#-------------------------------------------------------------------------
#
reset_db
do_test         12.1 { sqlite4_lsm_config db main log-size 800 } 800
do_execsql_test 12.2 {
  CREATE TABLE t1(a PRIMARY KEY, b);
  CREATE INDEX i1 ON t1(b);
}
for {set iTest 1} {$iTest<=150} {incr iTest} {
  expr srand(0)
  do_test 12.3.$iTest {
    for {set i 0} {$i < 10} {incr i} {
      execsql { INSERT INTO t1 VALUES(randstr(20,20), randstr(100,100)) }
      if { int(rand()*10.0)==0 } { sqlite4_lsm_work db main -flush }
      if { int(rand()*10.0)==0 } { sqlite4_lsm_checkpoint db main }
    }
    copy_db_files test.db test.db2
    sqlite4 db2 test.db2
    set sql "SELECT count(*) FROM t1 ; "
    if {0==($iTest % 25)} {
      append sql "PRAGMA integrity_check"
    } else {

Changes to test/log3.test.

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    INSERT INTO t1 VALUES(randstr(50,50), randstr(50,50));
    INSERT INTO t1 VALUES(randstr(50,50), randstr(50,50));
    INSERT INTO t1 VALUES(randstr(50,50), randstr(50,50));
  COMMIT;
} {}
do_filesize_test 2.5   0 2048

do_test         2.6 { sqlite4_lsm_work db main -flush 0 } {0}
do_execsql_test 2.7 { INSERT INTO t1 VALUES(randstr(50,50), randstr(50,50)) }
do_test         2.8 { sqlite4_lsm_work db main -check 0 } {0}
do_test 2.9 { sqlite4_lsm_info db main log-structure } {0 0 0 0 2048 2560}

for {set i 1} {$i <= 6} {incr i} {
  do_execsql_test 2.10.$i.1 {
    INSERT INTO t1 VALUES(randstr(50,50), randstr(50,50));
  }
  do_execsql_test 2.10.$i.2 { SELECT count(*) FROM t1 } [expr 8 + $i]
  do_recover_test 2.10.$i.3 { SELECT count(*) FROM t1 } [expr 8 + $i]
}

do_test 2.11 { 
  sqlite4_lsm_info db main log-structure 
} {2048 2568 0 1704 3072 4608}


finish_test







|

|
|











|



52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    INSERT INTO t1 VALUES(randstr(50,50), randstr(50,50));
    INSERT INTO t1 VALUES(randstr(50,50), randstr(50,50));
    INSERT INTO t1 VALUES(randstr(50,50), randstr(50,50));
  COMMIT;
} {}
do_filesize_test 2.5   0 2048

do_test         2.6 { sqlite4_lsm_flush db main } {}
do_execsql_test 2.7 { INSERT INTO t1 VALUES(randstr(50,50), randstr(50,50)) }
do_test         2.8 { sqlite4_lsm_checkpoint db main } {}
do_test 2.9 { sqlite4_lsm_info db main log-structure } {0 0 0 0 2560 3072}

for {set i 1} {$i <= 6} {incr i} {
  do_execsql_test 2.10.$i.1 {
    INSERT INTO t1 VALUES(randstr(50,50), randstr(50,50));
  }
  do_execsql_test 2.10.$i.2 { SELECT count(*) FROM t1 } [expr 8 + $i]
  do_recover_test 2.10.$i.3 { SELECT count(*) FROM t1 } [expr 8 + $i]
}

do_test 2.11 { 
  sqlite4_lsm_info db main log-structure 
} {2560 3080 0 2216 3584 4608}


finish_test

Changes to test/permutations.test.

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#   full
#
lappend ::testsuitelist xxx

test_suite "src4" -prefix "" -description {
} -files {
  simple.test simple2.test
  log1.test log2.test log3.test 
  csr1.test
  ckpt1.test
  mc1.test

  aggerror.test
  attach.test
  autoindex1.test







|







130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#   full
#
lappend ::testsuitelist xxx

test_suite "src4" -prefix "" -description {
} -files {
  simple.test simple2.test
  log3.test 
  csr1.test
  ckpt1.test
  mc1.test

  aggerror.test
  attach.test
  autoindex1.test

Changes to test/simple.test.

1365
1366
1367
1368
1369
1370
1371



1372
1373
1374
1375
1376
1377
1378

do_catchsql_test 70.3 {
  select * from maintable, joinme INDEXED by joinme_id_text_idx
} {1 {cannot use index: joinme_id_text_idx}}

#-------------------------------------------------------------------------
# This is testing that the "phantom" runs feature works.



reset_db
do_execsql_test 71.1 {
  CREATE TABLE t1(x);
  INSERT INTO t1 VALUES(randomblob(1024));           --   1
  INSERT INTO t1 SELECT randomblob(1024) FROM t1;    --   2
  INSERT INTO t1 SELECT randomblob(1024) FROM t1;    --   4
  INSERT INTO t1 SELECT randomblob(1024) FROM t1;    --   8







>
>
>







1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381

do_catchsql_test 70.3 {
  select * from maintable, joinme INDEXED by joinme_id_text_idx
} {1 {cannot use index: joinme_id_text_idx}}

#-------------------------------------------------------------------------
# This is testing that the "phantom" runs feature works.
#
# UPDATE: Said feature was dropped early in development. But the test 
# remains valid.
reset_db
do_execsql_test 71.1 {
  CREATE TABLE t1(x);
  INSERT INTO t1 VALUES(randomblob(1024));           --   1
  INSERT INTO t1 SELECT randomblob(1024) FROM t1;    --   2
  INSERT INTO t1 SELECT randomblob(1024) FROM t1;    --   4
  INSERT INTO t1 SELECT randomblob(1024) FROM t1;    --   8
1386
1387
1388
1389
1390
1391
1392



1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
do_execsql_test 71.3 { SELECT count(*) FROM t1 } 64
do_test 71.4 { 
  expr {[file size test.db] < 256*1024}
} {1}

#-------------------------------------------------------------------------
# This is testing that the "phantom" runs feature works with mmap.



reset_db

do_test 72.0.1 { sqlite4_lsm_config db main mmap   } 0
do_test 72.0.2 { sqlite4_lsm_config db main mmap 1 } 1
do_test 72.0.3 { sqlite4_lsm_config db main mmap   } 1

do_execsql_test 72.1 {
  CREATE TABLE t1(x);
  INSERT INTO t1 VALUES(randomblob(1024));           --   1
  INSERT INTO t1 SELECT randomblob(1024) FROM t1;    --   2
  INSERT INTO t1 SELECT randomblob(1024) FROM t1;    --   4
  INSERT INTO t1 SELECT randomblob(1024) FROM t1;    --   8







>
>
>


|
|
|







1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
do_execsql_test 71.3 { SELECT count(*) FROM t1 } 64
do_test 71.4 { 
  expr {[file size test.db] < 256*1024}
} {1}

#-------------------------------------------------------------------------
# This is testing that the "phantom" runs feature works with mmap.
#
# UPDATE: Said feature was dropped early in development. But the test 
# remains valid.
reset_db

#do_test 72.0.1 { sqlite4_lsm_config db main mmap   } 0
#do_test 72.0.2 { sqlite4_lsm_config db main mmap 1 } 1
#do_test 72.0.3 { sqlite4_lsm_config db main mmap   } 1

do_execsql_test 72.1 {
  CREATE TABLE t1(x);
  INSERT INTO t1 VALUES(randomblob(1024));           --   1
  INSERT INTO t1 SELECT randomblob(1024) FROM t1;    --   2
  INSERT INTO t1 SELECT randomblob(1024) FROM t1;    --   4
  INSERT INTO t1 SELECT randomblob(1024) FROM t1;    --   8

Changes to test/test_lsm.c.

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
  Tcl_Obj *CONST objv[]
){
  struct Switch {
    const char *zSwitch;
    int flags;
  } aSwitch[] = {
    { "-flush",      LSM_WORK_FLUSH }, 
    { "-checkpoint", LSM_WORK_CHECKPOINT }, 
    { "-optimize",   LSM_WORK_OPTIMIZE }, 
    { 0, 0 }
  };

  int flags = 0;
  int nPage = 0;
  const char *zDb;







<







150
151
152
153
154
155
156

157
158
159
160
161
162
163
  Tcl_Obj *CONST objv[]
){
  struct Switch {
    const char *zSwitch;
    int flags;
  } aSwitch[] = {
    { "-flush",      LSM_WORK_FLUSH }, 

    { "-optimize",   LSM_WORK_OPTIMIZE }, 
    { 0, 0 }
  };

  int flags = 0;
  int nPage = 0;
  const char *zDb;
203
204
205
206
207
208
209
210


















































































211
212
213
214
215
216


217
218
219
220
221
222
223
224
225
226
    Tcl_SetResult(interp, (char *)sqlite4TestErrorName(rc), TCL_STATIC);
    return TCL_ERROR;
  }

  Tcl_SetObjResult(interp, Tcl_NewIntObj(nWork));
  return TCL_OK;
}



















































































int SqlitetestLsm_Init(Tcl_Interp *interp){
  struct SyscallCmd {
    const char *zName;
    Tcl_ObjCmdProc *xCmd;
  } aCmd[] = {
    { "sqlite4_lsm_work",     test_lsm_work                },


    { "sqlite4_lsm_info",     test_lsm_info                },
    { "sqlite4_lsm_config",   test_lsm_config              },
  };
  int i;

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateObjCommand(interp, aCmd[i].zName, aCmd[i].xCmd, 0, 0);
  }
  return TCL_OK;
}








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>





|
>
>
|
|








202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    Tcl_SetResult(interp, (char *)sqlite4TestErrorName(rc), TCL_STATIC);
    return TCL_ERROR;
  }

  Tcl_SetObjResult(interp, Tcl_NewIntObj(nWork));
  return TCL_OK;
}

/*
** TCLCMD:    sqlite4_lsm_checkpoint DB DBNAME 
*/
static int test_lsm_checkpoint(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  const char *zDb;
  const char *zName;
  int rc;
  sqlite4 *db;
  lsm_db *pLsm;

  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB DBNAME");
    return TCL_ERROR;
  }
  zDb = Tcl_GetString(objv[1]);
  zName = Tcl_GetString(objv[2]);

  rc = getDbPointer(interp, zDb, &db);
  if( rc!=TCL_OK ) return rc;

  rc = sqlite4_kvstore_control(db, zName, SQLITE4_KVCTRL_LSM_HANDLE, &pLsm);
  if( rc==SQLITE4_OK ){
    rc = lsm_checkpoint(pLsm, 0);
  }
  if( rc!=SQLITE4_OK ){
    Tcl_SetResult(interp, (char *)sqlite4TestErrorName(rc), TCL_STATIC);
    return TCL_ERROR;
  }

  Tcl_ResetResult(interp);
  return TCL_OK;
}

/*
** TCLCMD:    sqlite4_lsm_flush DB DBNAME 
*/
static int test_lsm_flush(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  const char *zDb;
  const char *zName;
  int rc;
  sqlite4 *db;
  lsm_db *pLsm;

  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB DBNAME");
    return TCL_ERROR;
  }
  zDb = Tcl_GetString(objv[1]);
  zName = Tcl_GetString(objv[2]);

  rc = getDbPointer(interp, zDb, &db);
  if( rc!=TCL_OK ) return rc;

  rc = sqlite4_kvstore_control(db, zName, SQLITE4_KVCTRL_LSM_HANDLE, &pLsm);
  if( rc==SQLITE4_OK ){
    int nZero = 0;
    int nOrig = -1;
    lsm_config(pLsm, LSM_CONFIG_WRITE_BUFFER, &nOrig);
    lsm_config(pLsm, LSM_CONFIG_WRITE_BUFFER, &nZero);
    rc = lsm_begin(pLsm, 1);
    if( rc==LSM_OK ) rc = lsm_commit(pLsm, 0);
    lsm_config(pLsm, LSM_CONFIG_WRITE_BUFFER, &nOrig);
  }
  if( rc!=SQLITE4_OK ){
    Tcl_SetResult(interp, (char *)sqlite4TestErrorName(rc), TCL_STATIC);
    return TCL_ERROR;
  }

  Tcl_ResetResult(interp);
  return TCL_OK;
}

int SqlitetestLsm_Init(Tcl_Interp *interp){
  struct SyscallCmd {
    const char *zName;
    Tcl_ObjCmdProc *xCmd;
  } aCmd[] = {
    { "sqlite4_lsm_work",       test_lsm_work                },
    { "sqlite4_lsm_checkpoint", test_lsm_checkpoint          },
    { "sqlite4_lsm_flush",      test_lsm_flush               },
    { "sqlite4_lsm_info",       test_lsm_info                },
    { "sqlite4_lsm_config",     test_lsm_config              },
  };
  int i;

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateObjCommand(interp, aCmd[i].zName, aCmd[i].xCmd, 0, 0);
  }
  return TCL_OK;
}

Changes to test/tester.tcl.

1516
1517
1518
1519
1520
1521
1522


1523


1524
1525
1526
1527
1528
1529
1530

# Flush the in-memory tree to disk and merge all runs together into
# a single b-tree structure. Because this annihilates all delete keys,
# the next rowid allocated for each table with an IPK will be as expected
# by SQLite 3 tests.
#
proc optimize_db {} { 


  catch { sqlite4_lsm_work db main -checkpoint -opt -flush 100000 }


  return ""
}


# If the library is compiled with the SQLITE4_DEFAULT_AUTOVACUUM macro set
# to non-zero, then set the global variable $AUTOVACUUM to 1.
set AUTOVACUUM $sqlite_options(default_autovacuum)







>
>
|
>
>







1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534

# Flush the in-memory tree to disk and merge all runs together into
# a single b-tree structure. Because this annihilates all delete keys,
# the next rowid allocated for each table with an IPK will be as expected
# by SQLite 3 tests.
#
proc optimize_db {} { 
  #catch { 
    sqlite4_lsm_flush db main 
    sqlite4_lsm_work db main -opt -flush 100000 
    sqlite4_lsm_checkpoint db main
  #}
  return ""
}


# If the library is compiled with the SQLITE4_DEFAULT_AUTOVACUUM macro set
# to non-zero, then set the global variable $AUTOVACUUM to 1.
set AUTOVACUUM $sqlite_options(default_autovacuum)

Changes to tool/lsmperf.tcl.

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
  append script $data4

  append script "pause -1\n"
  exec_gnuplot_script $script $zPng
}

do_write_test x.png 600 50000 50000 20 {
  lsm-mt     "mmap=1 multi_proc=0 safety=1 threads=3 autowork=0 write_buffer=2097152"
  LevelDB leveldb
}

# lsm-mt    "mmap=1 multi_proc=0 threads=2 autowork=0 autocheckpoint=8192000"
# lsm-mt     "mmap=1 multi_proc=0 safety=1 threads=3 autowork=0"
# lsm-st     "mmap=1 multi_proc=0 safety=1 threads=1 autowork=1"
# lsm-mt     "mmap=1 multi_proc=0 safety=1 threads=3 autowork=0"
# lsm-mt     "mmap=1 multi_proc=0 safety=1 threads=3 autowork=0"







|
|







187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
  append script $data4

  append script "pause -1\n"
  exec_gnuplot_script $script $zPng
}

do_write_test x.png 600 50000 50000 20 {
 lsm-st     "mmap=1 multi_proc=0 safety=1 threads=1 autowork=1"
 lsm-st2    "page_size=1024 mmap=1 multi_proc=0 safety=1 threads=1 autowork=1"
}

# lsm-mt    "mmap=1 multi_proc=0 threads=2 autowork=0 autocheckpoint=8192000"
# lsm-mt     "mmap=1 multi_proc=0 safety=1 threads=3 autowork=0"
# lsm-st     "mmap=1 multi_proc=0 safety=1 threads=1 autowork=1"
# lsm-mt     "mmap=1 multi_proc=0 safety=1 threads=3 autowork=0"
# lsm-mt     "mmap=1 multi_proc=0 safety=1 threads=3 autowork=0"