SQLite4
Check-in [ee5b8b8d11]
Not logged in

 ```90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 ... 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 ... 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 ``` ```For all values, we compute a mantissa M and an exponent E. The mantissa is a base-100 representation of the value. The exponent E determines where to put the decimal point. Each centimal digit of the mantissa is stored in a byte. If the value of the centimal digit is X (hence X>=0 and X<=99) then the byte value will be 2*X+1 for every byte of the mantissa, except for the last byte which will be 2*X+0. If we assume all digits of the mantissa occur to the right of the decimal point, then the exponent E is the power of one hundred by which one must multiply the mantissa to recover the original value. Examples: ................................................................................ Value Exponent E Significand M (in hex) -------- ---------- ---------------------- 1.0 1 02 10.0 1 14 99.0 1 b4 99.01 1 b5 02 99.0001 1 b5 01 02 100.0 2 03 00 100.1 2 03 02 100.01 2 03 01 02 1234 2 19 44 9999 2 c7 c6 9999.000001 2 c7 c7 01 01 02 9999.000009 2 c7 c7 01 01 12 9999.00001 2 c7 c7 01 01 14 ................................................................................ 9999.00009 2 c7 c7 01 01 b4 9999.000099 2 c7 c7 01 01 c6 9999.0001 2 c7 c7 01 02 9999.001 2 c7 c7 01 14 9999.01 2 c7 c7 02 9999.1 2 c7 c7 14 10000 3 02 10001 3 03 00 02 12345 3 03 2f 5a 123450 4 19 45 64 1234.5 3 19 45 64 12.345 2 19 45 64 0.123 0 19 3c 0.0123 0 03 2e 0.00123 -1 19 3c ``` ``` | > > > | | ``` ```90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 ... 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 ... 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 ``` ```For all values, we compute a mantissa M and an exponent E. The mantissa is a base-100 representation of the value. The exponent E determines where to put the decimal point. Each centimal digit of the mantissa is stored in a byte. If the value of the centimal digit is X (hence X>=0 and X<=99) then the byte value will be 2*X+1 for every byte of the mantissa, except for the last byte which will be 2*X+0. The mantissa must be the minimum number of bytes necessary to represent the value; trailing X==0 digits are omitted. This means that the mantissa will never contain a byte with the value 0x00. If we assume all digits of the mantissa occur to the right of the decimal point, then the exponent E is the power of one hundred by which one must multiply the mantissa to recover the original value. Examples: ................................................................................ Value Exponent E Significand M (in hex) -------- ---------- ---------------------- 1.0 1 02 10.0 1 14 99.0 1 b4 99.01 1 b5 02 99.0001 1 b5 01 02 100.0 2 02 100.1 2 03 02 100.01 2 03 01 02 1234 2 19 44 9999 2 c7 c6 9999.000001 2 c7 c7 01 01 02 9999.000009 2 c7 c7 01 01 12 9999.00001 2 c7 c7 01 01 14 ................................................................................ 9999.00009 2 c7 c7 01 01 b4 9999.000099 2 c7 c7 01 01 c6 9999.0001 2 c7 c7 01 02 9999.001 2 c7 c7 01 14 9999.01 2 c7 c7 02 9999.1 2 c7 c7 14 10000 3 02 10001 3 03 01 02 12345 3 03 2f 5a 123450 4 19 45 64 1234.5 3 19 45 64 12.345 2 19 45 64 0.123 0 19 3c 0.0123 0 03 2e 0.00123 -1 19 3c ```