Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Further fixes to things. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | primary-keys |
Files: | files | file ages | folders |
SHA1: |
81fab250025d4c12a2014c4a8ca20cca |
User & Date: | dan 2012-04-12 19:52:31.391 |
Context
2012-04-13
| ||
05:50 | Ensure that kvmemSeek() does not come to rest on a deleted node. check-in: 21991a932a user: dan tags: primary-keys | |
2012-04-12
| ||
19:52 | Further fixes to things. check-in: 81fab25002 user: dan tags: primary-keys | |
11:49 | Fix a problem in kvmemRemoveNode. check-in: f3c424ddf3 user: dan tags: primary-keys | |
Changes
Changes to src/build.c.
︙ | ︙ | |||
2391 2392 2393 2394 2395 2396 2397 | sqlite4HaltConstraint( pParse, OE_Abort, "indexed columns are not unique", P4_STATIC ); }else{ addr2 = sqlite4VdbeCurrentAddr(v); } sqlite4VdbeAddOp2(v, OP_SorterData, iSorter, regRecord); | | | 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 | sqlite4HaltConstraint( pParse, OE_Abort, "indexed columns are not unique", P4_STATIC ); }else{ addr2 = sqlite4VdbeCurrentAddr(v); } sqlite4VdbeAddOp2(v, OP_SorterData, iSorter, regRecord); sqlite4VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); sqlite4VdbeChangeP5(v, OPFLAG_USESEEKRESULT | OPFLAG_APPENDBIAS); #else regIdxKey = sqlite4GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1, iIdx); addr2 = addr1 + 1; if( pIndex->onError!=OE_None ){ const int regRowid = regIdxKey + pIndex->nColumn; const int j2 = sqlite4VdbeCurrentAddr(v) + 2; |
︙ | ︙ |
Changes to src/fkey.c.
︙ | ︙ | |||
138 139 140 141 142 143 144 | ** Register (x+3): 3.1 (type real) */ /* ** A foreign key constraint requires that the key columns in the parent ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. ** Given that pParent is the parent table for foreign key constraint pFKey, | | | < | | 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | ** Register (x+3): 3.1 (type real) */ /* ** A foreign key constraint requires that the key columns in the parent ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. ** Given that pParent is the parent table for foreign key constraint pFKey, ** search the schema for a unique index on the parent key columns. ** ** If successful, zero is returned and *ppIdx is set to point to the ** unique index. ** ** If the parent key consists of a single column (the foreign key constraint ** is not a composite foreign key), output variable *paiCol is set to NULL. ** Otherwise, it is set to point to an allocated array of size N, where ** N is the number of columns in the parent key. The first element of the ** array is the index of the child table column that is mapped by the FK ** constraint to the parent table column stored in the left-most column |
︙ | ︙ | |||
181 182 183 184 185 186 187 | static int locateFkeyIndex( Parse *pParse, /* Parse context to store any error in */ Table *pParent, /* Parent table of FK constraint pFKey */ FKey *pFKey, /* Foreign key to find index for */ Index **ppIdx, /* OUT: Unique index on parent table */ int **paiCol /* OUT: Map of index columns in pFKey */ ){ | | | | | | | < < | | < < < < < < < < < < < < < | | < < < | | | | | 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | static int locateFkeyIndex( Parse *pParse, /* Parse context to store any error in */ Table *pParent, /* Parent table of FK constraint pFKey */ FKey *pFKey, /* Foreign key to find index for */ Index **ppIdx, /* OUT: Unique index on parent table */ int **paiCol /* OUT: Map of index columns in pFKey */ ){ Index *pIdx = 0; /* Value to return via *ppIdx */ int *aiCol = 0; /* Value to return via *paiCol */ int nCol = pFKey->nCol; /* Number of columns in parent key */ int bImplicit; /* True if no explicit parent columns */ /* The caller is responsible for zeroing output parameters. */ assert( ppIdx && *ppIdx==0 ); assert( !paiCol || *paiCol==0 ); assert( pParse ); bImplicit = (pFKey->aCol[0].zCol==0); /* If this is a composite foreign key (more than one column), allocate ** space for the aiCol array (returned via output parameter *paiCol). ** Non-composite foreign keys do not require the aiCol array. */ if( paiCol && nCol>1 ){ assert( nCol>1 ); aiCol = (int *)sqlite4DbMallocRaw(pParse->db, nCol*sizeof(int)); if( !aiCol ) return 1; *paiCol = aiCol; } for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){ /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number ** of columns. If each indexed column corresponds to a foreign key ** column of pFKey, then this index is a winner. */ if( bImplicit ){ if( pIdx->eIndexType==SQLITE_INDEX_PRIMARYKEY ){ if( aiCol ){ int i; for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; } break; } }else{ /* If this foreign key was declared to map to an explicit list of ** columns in table pParent. Check if this index matches those ** columns. Also, check that the index uses the default collation ** sequences for each column. */ int i, j; for(i=0; i<nCol; i++){ int iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ char *zDfltColl; /* Def. collation for column */ char *zIdxCol; /* Name of indexed column */ /* If the index uses a collation sequence that is different from |
︙ | ︙ | |||
314 315 316 317 318 319 320 | static void fkLookupParent( Parse *pParse, /* Parse context */ int iDb, /* Index of database housing pTab */ Table *pTab, /* Parent table of FK pFKey */ Index *pIdx, /* Unique index on parent key columns in pTab */ FKey *pFKey, /* Foreign key constraint */ int *aiCol, /* Map from parent key columns to child table columns */ | | > > | | | | < < < > > > > | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | | | < | | | > | | | | | | | | | | | | | < | | | | | < < < < < | | | | | | > > > > > > | | | | | | < | 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | static void fkLookupParent( Parse *pParse, /* Parse context */ int iDb, /* Index of database housing pTab */ Table *pTab, /* Parent table of FK pFKey */ Index *pIdx, /* Unique index on parent key columns in pTab */ FKey *pFKey, /* Foreign key constraint */ int *aiCol, /* Map from parent key columns to child table columns */ int regContent, /* Address of array containing child table row */ int nIncr, /* Increment constraint counter by this */ int isIgnore /* If true, pretend pTab contains all NULL values */ ){ int i; /* Iterator variable */ Vdbe *v = sqlite4GetVdbe(pParse); /* Vdbe to add code to */ int iCur = pParse->nTab - 1; /* Cursor number to use */ int iOk = sqlite4VdbeMakeLabel(v); /* jump here if parent key found */ assert( pIdx ); /* If nIncr is less than zero (this is a DELETE), then check at runtime if ** there are any outstanding constraints to resolve. If there are not, ** there is no need to check if deleting this row resolves any outstanding ** violations. */ if( nIncr<0 ){ sqlite4VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); } /* Check if any of the key columns in the child table row are NULL. If ** any are, then the constraint is considered satisfied. No need to ** search for a matching row in the parent table. */ for(i=0; i<pFKey->nCol; i++){ int iReg = aiCol[i] + regContent; sqlite4VdbeAddOp2(v, OP_IsNull, iReg, iOk); } if( isIgnore==0 ){ int nCol = pFKey->nCol; int regTemp = sqlite4GetTempRange(pParse, nCol); int regRec = sqlite4GetTempReg(pParse); sqlite4OpenIndex(pParse, iCur, iDb, pIdx, OP_OpenRead); /* Assemble the child key values in a contiguous array of registers */ for(i=0; i<nCol; i++){ sqlite4VdbeAddOp2(v, OP_Copy, aiCol[i]+regContent, regTemp+i); } /* If the parent table is the same as the child table, and we are about ** to increment the constraint-counter (i.e. this is an INSERT operation), ** then check if the row being inserted matches itself. If so, do not ** increment the constraint-counter. ** ** If any of the parent-key values are NULL, then the row cannot match ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any ** of the parent-key values are NULL (at this point it is known that ** none of the child key values are). */ if( pTab==pFKey->pFrom && nIncr==1 ){ int iJump = sqlite4VdbeCurrentAddr(v) + nCol + 1; for(i=0; i<nCol; i++){ int iChild = aiCol[i]+regContent; int iParent = pIdx->aiColumn[i]+regContent; sqlite4VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); sqlite4VdbeChangeP5(v, SQLITE_JUMPIFNULL); } sqlite4VdbeAddOp2(v, OP_Goto, 0, iOk); } /* FIXME: Affinities... */ sqlite4VdbeAddOp3(v, OP_MakeIdxKey, iCur, regTemp, regRec); /* sqlite4VdbeChangeP5(v, 1); */ sqlite4VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); sqlite4VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec); sqlite4VdbeChangeP4(v, -1, sqlite4IndexAffinityStr(v,pIdx), P4_TRANSIENT); sqlite4VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); sqlite4ReleaseTempReg(pParse, regRec); sqlite4ReleaseTempRange(pParse, regTemp, nCol); } if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ /* Special case: If this is an INSERT statement that will insert exactly ** one row into the table, raise a constraint immediately instead of ** incrementing a counter. This is necessary as the VM code is being ** generated for will not open a statement transaction. */ |
︙ | ︙ | |||
509 510 511 512 513 514 515 | if( pLeft ){ /* Set the collation sequence and affinity of the LHS of each TK_EQ ** expression to the parent key column defaults. */ if( pIdx ){ Column *pCol; iCol = pIdx->aiColumn[i]; pCol = &pTab->aCol[iCol]; | < | 463 464 465 466 467 468 469 470 471 472 473 474 475 476 | if( pLeft ){ /* Set the collation sequence and affinity of the LHS of each TK_EQ ** expression to the parent key column defaults. */ if( pIdx ){ Column *pCol; iCol = pIdx->aiColumn[i]; pCol = &pTab->aCol[iCol]; pLeft->iTable = regData+iCol+1; pLeft->affinity = pCol->affinity; pLeft->pColl = sqlite4LocateCollSeq(pParse, pCol->zColl); }else{ pLeft->iTable = regData; pLeft->affinity = SQLITE_AFF_INTEGER; } |
︙ | ︙ | |||
758 759 760 761 762 763 764 | if( aiFree ){ aiCol = aiFree; }else{ iCol = pFKey->aCol[0].iFrom; aiCol = &iCol; } | < < < < > | < > | 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 | if( aiFree ){ aiCol = aiFree; }else{ iCol = pFKey->aCol[0].iFrom; aiCol = &iCol; } #ifndef SQLITE_OMIT_AUTHORIZATION for(i=0; i<pFKey->nCol; i++){ /* Request permission to read the parent key columns. If the ** authorization callback returns SQLITE_IGNORE, behave as if any ** values read from the parent table are NULL. */ if( db->xAuth ){ int rcauth; char *zCol = pTo->aCol[pIdx->aiColumn[i]].zName; rcauth = sqlite4AuthReadCol(pParse, pTo->zName, zCol, iDb); isIgnore = (rcauth==SQLITE_IGNORE); } } #endif /* Take a shared-cache advisory read-lock on the parent table. Allocate ** a cursor to use to search the unique index on the parent key columns ** in the parent table. */ sqlite4TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); pParse->nTab++; |
︙ | ︙ | |||
910 911 912 913 914 915 916 | FKey *p; /* Check if any child key columns are being modified. */ for(p=pTab->pFKey; p; p=p->pNextFrom){ for(i=0; i<p->nCol; i++){ int iChildKey = p->aCol[i].iFrom; if( aChange[iChildKey]>=0 ) return 1; | < < | 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 | FKey *p; /* Check if any child key columns are being modified. */ for(p=pTab->pFKey; p; p=p->pNextFrom){ for(i=0; i<p->nCol; i++){ int iChildKey = p->aCol[i].iFrom; if( aChange[iChildKey]>=0 ) return 1; } } /* Check if any parent key columns are being modified. */ for(p=sqlite4FkReferences(pTab); p; p=p->pNextTo){ for(i=0; i<p->nCol; i++){ char *zKey = p->aCol[i].zCol; int iKey; for(iKey=0; iKey<pTab->nCol; iKey++){ Column *pCol = &pTab->aCol[iKey]; if( (zKey ? !sqlite4StrICmp(pCol->zName, zKey) : pCol->isPrimKey) ){ if( aChange[iKey]>=0 ) return 1; } } } } } } return 0; |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
544 545 546 547 548 549 550 | db = pParse->db; memset(&dest, 0, sizeof(dest)); if( pParse->nErr || db->mallocFailed ){ goto insert_cleanup; } | | < | > > > | < | 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 | db = pParse->db; memset(&dest, 0, sizeof(dest)); if( pParse->nErr || db->mallocFailed ){ goto insert_cleanup; } /* Locate the table into which we will be inserting new information. */ assert( pTabList->nSrc==1 ); zTab = pTabList->a[0].zName; if( NEVER(zTab==0) ) goto insert_cleanup; pTab = sqlite4SrcListLookup(pParse, pTabList); if( pTab==0 ){ goto insert_cleanup; } iDb = sqlite4SchemaToIndex(db, pTab->pSchema); assert( iDb<db->nDb ); pDb = &db->aDb[iDb]; zDb = pDb->zName; if( sqlite4AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ goto insert_cleanup; } /* Set bImplicitPK to true for an implicit PRIMARY KEY, or false otherwise. ** Also set pPk to point to the primary key, and iPk to the cursor offset ** of the primary key cursor (i.e. so that the cursor opened on the primary ** key index is VDBE cursor (baseCur+iPk). */ pPk = sqlite4FindPrimaryKey(pTab, &iPk); bImplicitPK = pPk->aiColumn[0]==-1; /* Figure out if we have any triggers and if the table being ** inserted into is a view. */ #ifndef SQLITE_OMIT_TRIGGER pTrigger = sqlite4TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); isView = pTab->pSelect!=0; #else # define pTrigger 0 # define tmask 0 # define isView 0 |
︙ | ︙ | |||
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 | sqlite4VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); sqlite4VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); sqlite4MayAbort(pParse); }else #endif { int isReplace; /* Set to true if constraints may cause a replace */ sqlite4GenerateConstraintChecks(pParse, pTab, baseCur, regContent, aRegIdx, keyColumn>=0, 0, onError, endOfLoop, &isReplace ); | > > | > | 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 | sqlite4VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); sqlite4VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); sqlite4MayAbort(pParse); }else #endif { int isReplace; /* Set to true if constraints may cause a replace */ sqlite4GenerateConstraintChecks(pParse, pTab, baseCur, regContent, aRegIdx, keyColumn>=0, 0, onError, endOfLoop, &isReplace ); sqlite4FkCheck(pParse, pTab, 0, regContent); sqlite4CompleteInsertion(pParse, pTab, baseCur, regContent, aRegIdx, 0, appendFlag, isReplace==0 ); } } /* Update the count of rows that are inserted |
︙ | ︙ |
Changes to src/kvmem.c.
︙ | ︙ | |||
470 471 472 473 474 475 476 | ** After this routine returns successfully, the transaction level will be ** equal to iLevel. */ static int kvmemRollback(KVStore *pKVStore, int iLevel){ KVMem *p = (KVMem*)pKVStore; assert( p->iMagicKVMemBase==SQLITE_KVMEMBASE_MAGIC ); assert( iLevel>=0 ); | < | 470 471 472 473 474 475 476 477 478 479 480 481 482 483 | ** After this routine returns successfully, the transaction level will be ** equal to iLevel. */ static int kvmemRollback(KVStore *pKVStore, int iLevel){ KVMem *p = (KVMem*)pKVStore; assert( p->iMagicKVMemBase==SQLITE_KVMEMBASE_MAGIC ); assert( iLevel>=0 ); while( p->base.iTransLevel>iLevel && p->base.iTransLevel>1 ){ KVMemChng *pChng, *pNext; for(pChng=p->apLog[p->base.iTransLevel-2]; pChng; pChng=pNext){ KVMemNode *pNode = pChng->pNode; if( pChng->pData ){ kvmemDataUnref(pNode->pData); pNode->pData = pChng->pData; |
︙ | ︙ | |||
677 678 679 680 681 682 683 684 685 686 687 688 689 690 | if( pBest ){ pCur->pNode = kvmemNodeRef(pBest); pCur->pData = kvmemDataRef(pBest->pData); }else{ pCur->pNode = 0; pCur->pData = 0; } return rc; } /* ** Delete the entry that the cursor is pointing to. ** ** Though the entry is "deleted", it still continues to exist as a | > | 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 | if( pBest ){ pCur->pNode = kvmemNodeRef(pBest); pCur->pData = kvmemDataRef(pBest->pData); }else{ pCur->pNode = 0; pCur->pData = 0; } assert( rc!=SQLITE_DONE ); return rc; } /* ** Delete the entry that the cursor is pointing to. ** ** Though the entry is "deleted", it still continues to exist as a |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
18 19 20 21 22 23 24 | /*#define SQLITE_OMIT_BTREECOUNT 1*/ #define SQLITE_OMIT_WAL 1 #define SQLITE_OMIT_VACUUM 1 #define SQLITE_OMIT_AUTOVACUUM 1 #define SQLITE_OMIT_SHARED_CACHE 1 /*#define SQLITE_OMIT_PAGER_PRAGMAS 1*/ #define SQLITE_OMIT_PROGRESS_CALLBACK 1 | > | | 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | /*#define SQLITE_OMIT_BTREECOUNT 1*/ #define SQLITE_OMIT_WAL 1 #define SQLITE_OMIT_VACUUM 1 #define SQLITE_OMIT_AUTOVACUUM 1 #define SQLITE_OMIT_SHARED_CACHE 1 /*#define SQLITE_OMIT_PAGER_PRAGMAS 1*/ #define SQLITE_OMIT_PROGRESS_CALLBACK 1 #define SQLITE_OMIT_MERGE_SORT 1 /* ** These #defines should enable >2GB file support on POSIX if the ** underlying operating system supports it. If the OS lacks ** large file support, or if the OS is windows, these should be no-ops. ** ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any |
︙ | ︙ |
Changes to src/test_storage.c.
︙ | ︙ | |||
25 26 27 28 29 30 31 | */ static void storageSetTclErrorName(Tcl_Interp *interp, int rc){ extern const char *sqlite4TestErrorName(int); Tcl_SetObjResult(interp, Tcl_NewStringObj(sqlite4TestErrorName(rc), -1)); } /* | | | | | | > > | 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | */ static void storageSetTclErrorName(Tcl_Interp *interp, int rc){ extern const char *sqlite4TestErrorName(int); Tcl_SetObjResult(interp, Tcl_NewStringObj(sqlite4TestErrorName(rc), -1)); } /* ** TCLCMD: storage_open URI ?FLAGS? ** ** Return a string that identifies the new storage object. */ static int test_storage_open( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ KVStore *pNew = 0; int rc; int flags = 0; sqlite4 db; char zRes[50]; if( objc!=2 && objc!=3 ){ Tcl_WrongNumArgs(interp, 1, objv, "URI ?FLAGS?"); return TCL_ERROR; } if( objc==3 && Tcl_GetIntFromObj(interp, objv[2], &flags) ){ return TCL_ERROR; } memset(&db, 0, sizeof(db)); rc = sqlite4KVStoreOpen(&db, "test", Tcl_GetString(objv[1]), &pNew, flags); if( rc ){ sqlite4KVStoreClose(pNew); storageSetTclErrorName(interp, rc); return TCL_ERROR; } |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 | sqlite4VdbeDestroyDecoder(pCodec); } }else{ sqlite4VdbeMemSetNull(pDest); } UPDATE_MAX_BLOBSIZE(pDest); REGISTER_TRACE(pOp->p3, pDest); break; } /* Opcode: Affinity P1 P2 * P4 * ** ** Apply affinities to a range of P2 registers starting with P1. ** | > | 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 | sqlite4VdbeDestroyDecoder(pCodec); } }else{ sqlite4VdbeMemSetNull(pDest); } UPDATE_MAX_BLOBSIZE(pDest); REGISTER_TRACE(pOp->p3, pDest); assert( rc<100 ); break; } /* Opcode: Affinity P1 P2 * P4 * ** ** Apply affinities to a range of P2 registers starting with P1. ** |
︙ | ︙ | |||
2164 2165 2166 2167 2168 2169 2170 | assert( memIsValid(pIn1) ); applyAffinity(pIn1, cAff, encoding); pIn1++; } break; } | | | | | > > | | < | < < > | < < < < < < < | 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 | assert( memIsValid(pIn1) ); applyAffinity(pIn1, cAff, encoding); pIn1++; } break; } /* Opcode: MakeIdxKey P1 P2 P3 * P5 ** ** P1 is an open cursor. P2 is the first register in a contiguous array ** of N registers containing values to encode into a database key. Normally, ** N is equal to the number of columns indexed by P1, plus the number of ** trailing primary key columns (if any). ** ** Or, if P5 is non-zero, then any trailing primary key columns are omitted. ** ** This instruction encodes the N values into a database key and writes ** the result to register P3. ** ** No affinity transformations are applied to the input values before ** they are encoded. */ case OP_MakeIdxKey: { VdbeCursor *pC; KeyInfo *pKeyInfo; Mem *pData0; /* First in array of input registers */ u8 *aRec; /* The constructed database key */ int nRec; /* Size of aRec[] in bytes */ pC = p->apCsr[pOp->p1]; pKeyInfo = pC->pKeyInfo; pData0 = &aMem[pOp->p2]; pOut = &aMem[pOp->p3]; aRec = 0; memAboutToChange(p, pOut); assert( pOp->p5==0 ); rc = sqlite4VdbeEncodeKey( db, pData0, pKeyInfo->nField, pC->iRoot, pKeyInfo, &aRec, &nRec, 0 ); if( rc ){ sqlite4DbFree(db, aRec); }else{ rc = sqlite4VdbeMemSetStr(pOut, aRec, nRec, 0, SQLITE_DYNAMIC); REGISTER_TRACE(pOp->p3, pOut); UPDATE_MAX_BLOBSIZE(pOut); } break; } |
︙ | ︙ | |||
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 | case OP_OpenEphemeral: { VdbeCursor *pCx; assert( pOp->p1>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; rc = sqlite4KVStoreOpen(db, "ephm", ":memory:", &pCx->pTmpKV, SQLITE_KVOPEN_TEMPORARY | SQLITE_KVOPEN_NO_TRANSACTIONS ); | > < | < < | | < | 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 | case OP_OpenEphemeral: { VdbeCursor *pCx; assert( pOp->p1>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; rc = sqlite4KVStoreOpen(db, "ephm", ":memory:", &pCx->pTmpKV, SQLITE_KVOPEN_TEMPORARY | SQLITE_KVOPEN_NO_TRANSACTIONS ); if( rc==SQLITE_OK ) rc = sqlite4KVStoreOpenCursor(pCx->pTmpKV, &pCx->pKVCur); if( rc==SQLITE_OK ) rc = sqlite4KVStoreBegin(pCx->pTmpKV, 2); pCx->pKeyInfo = pOp->p4.pKeyInfo; if( pCx->pKeyInfo ) pCx->pKeyInfo->enc = ENC(p->db); pCx->isIndex = !pCx->isTable; break; } /* Opcode: OpenSorter P1 P2 * P4 * ** ** This opcode works like OP_OpenEphemeral except that it opens |
︙ | ︙ | |||
3403 3404 3405 3406 3407 3408 3409 | pOut = &aMem[pOp->p2]; pC = p->apCsr[pOp->p1]; assert( pC!=0 ); #ifndef SQLITE_OMIT_MERGE_SORT assert( pC->isSorter ); rc = sqlite4VdbeSorterRowkey(pC, pOut); #else | | | 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 | pOut = &aMem[pOp->p2]; pC = p->apCsr[pOp->p1]; assert( pC!=0 ); #ifndef SQLITE_OMIT_MERGE_SORT assert( pC->isSorter ); rc = sqlite4VdbeSorterRowkey(pC, pOut); #else pOp->opcode = OP_RowData; pc--; #endif break; } /* Opcode: RowData P1 P2 * * * ** |
︙ | ︙ | |||
3683 3684 3685 3686 3687 3688 3689 | pC->nullRow = 1; rc = SQLITE_OK; } pC->rowidIsValid = 0; break; } | | < < < < < < < < < < > < > | > | | | | 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 | pC->nullRow = 1; rc = SQLITE_OK; } pC->rowidIsValid = 0; break; } /* Opcode: SorterInsert P1 P2 P3 */ case OP_SorterInsert: { /* in2 */ #ifndef SQLITE_OMIT_MERGE_SORT VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) ); pIn2 = &aMem[pOp->p2]; assert( pIn2->flags & MEM_Blob ); assert( pC->isTable==0 ); rc = ExpandBlob(pIn2); if( rc==SQLITE_OK ){ rc = sqlite4VdbeSorterWrite(db, pC, pIn2); } break; #endif /* If OMIT_MERGE_SORT is defined, fall through to IdxInsert. */ } /* Opcode: IdxInsert P1 P2 P3 * * ** ** Register P3 holds the key and register P2 holds the data for an ** index entry. Write this record into the index specified by the ** cursor P1. */ case OP_IdxInsert: { VdbeCursor *pC; Mem *pKey; Mem *pData; |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
1801 1802 1803 1804 1805 1806 1807 | return SQLITE_OK; } checkActiveVdbeCnt(db); if( p->pc<0 ){ /* No commit or rollback needed if the program never started */ }else{ | | < < < | | > | > > > > > > > > > > > > > > > > > > | < | > | | < | > | < < | < | < < < | | < > | | | | > | > | > | > | | > > > | | | | | | | < > < | 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 | return SQLITE_OK; } checkActiveVdbeCnt(db); if( p->pc<0 ){ /* No commit or rollback needed if the program never started */ }else{ /* eAction: ** ** 0 - Do commit, either statement or transaction. ** 1 - Do rollback, either statement or transaction. ** 2 - Do transaction rollback. */ int eAction; /* Check if an error has already occurred */ if( p->rc==SQLITE_CONSTRAINT ){ if( p->errorAction==OE_Rollback ){ eAction = 2; }else if( p->errorAction==OE_Fail ){ eAction = 0; } }else if( p->rc ){ eAction = 1; } if( eAction==0 && sqlite4VdbeCheckFk(p, 0) ){ eAction = 1; } if( eAction==2 || ( !sqlite4VtabInSync(db)==0 && db->writeVdbeCnt==(p->readOnly==0) && db->autoCommit )){ if( eAction==0 && sqlite4VdbeCheckFk(p, 1) ){ eAction = 1; } if( eAction==0 ){ int rc = vdbeCommit(db, p); if( rc!=SQLITE_OK ){ p->rc = rc; eAction = 1; }else{ assert( db->nDeferredCons<=0 ); sqlite4CommitInternalChanges(db); } } if( eAction ){ sqlite4RollbackAll(db); } db->nDeferredCons = 0; }else if( p->stmtTransMask ){ int i; int (*xFunc)(KVStore *,int); xFunc = (eAction ? sqlite4KVStoreRollback : sqlite4KVStoreCommit); for(i=0; i<db->nDb; i++){ if( p->stmtTransMask & ((yDbMask)1)<<i ){ KVStore *pKV = db->aDb[i].pKV; rc = xFunc(pKV, pKV->iTransLevel-1); if( rc ){ sqlite4RollbackAll(db); break; } } } } } /* We have successfully halted and closed the VM. Record this fact. */ if( p->pc>=0 ){ db->activeVdbeCnt--; if( !p->readOnly ){ db->writeVdbeCnt--; } assert( db->activeVdbeCnt>=db->writeVdbeCnt ); } p->magic = VDBE_MAGIC_HALT; checkActiveVdbeCnt(db); if( p->db->mallocFailed ){ p->rc = SQLITE_NOMEM; } return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); } /* ** Each VDBE holds the result of the most recent sqlite4_step() call ** in p->rc. This routine sets that result back to SQLITE_OK. |
︙ | ︙ |
Changes to src/vdbecodec.c.
︙ | ︙ | |||
591 592 593 594 595 596 597 | u64 dummy; int i; p = aKey; p += sqlite4GetVarint64(p, pEnd-p, &dummy); for(i=0; i<nField; i++){ | > | > | 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 | u64 dummy; int i; p = aKey; p += sqlite4GetVarint64(p, pEnd-p, &dummy); for(i=0; i<nField; i++){ u8 c = *(p++); switch( c ){ case 0x05: /* NULL */ case 0x06: /* NaN */ case 0x07: /* -ve infinity */ case 0x15: /* zero */ case 0x23: /* +ve infinity */ break; |
︙ | ︙ |
Changes to test/conflict.test.
︙ | ︙ | |||
313 314 315 316 317 318 319 | if {$t0} {set t1 {column a is not unique}} if {[info exists TEMP_STORE] && $TEMP_STORE==3} { set t3 0 } else { set t3 [expr {$t3+$t4}] } do_test conflict-6.$i { | | | | 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 | if {$t0} {set t1 {column a is not unique}} if {[info exists TEMP_STORE] && $TEMP_STORE==3} { set t3 0 } else { set t3 [expr {$t3+$t4}] } do_test conflict-6.$i { #db close #sqlite4 db test.db if {$conf1!=""} {set conf1 "ON CONFLICT $conf1"} execsql {pragma temp_store=file} set ::sqlite_opentemp_count 0 set r0 [catch {execsql [subst { DROP TABLE t1; CREATE TABLE t1(a,b,c, UNIQUE(a) $conf1); INSERT INTO t1 SELECT * FROM t2; |
︙ | ︙ |
Changes to test/permutations.test.
︙ | ︙ | |||
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | ############################################################################# # Start of tests # #------------------------------------------------------------------------- # Define the generic test suites: # # veryquick # quick # full # lappend ::testsuitelist xxx test_suite "veryquick" -prefix "" -description { "Very" quick test suite. Runs in less than 5 minutes on a workstation. This test suite is the same as the "quick" tests, except that some files that test malloc and IO errors are omitted. } -files [ test_set $allquicktests -exclude *malloc* *ioerr* *fault* | > > > > > > | 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | ############################################################################# # Start of tests # #------------------------------------------------------------------------- # Define the generic test suites: # # src4 # veryquick # quick # full # lappend ::testsuitelist xxx test_suite "src4" -prefix "" -description { } -files [ test_set simple.test fkey1.test ] test_suite "veryquick" -prefix "" -description { "Very" quick test suite. Runs in less than 5 minutes on a workstation. This test suite is the same as the "quick" tests, except that some files that test malloc and IO errors are omitted. } -files [ test_set $allquicktests -exclude *malloc* *ioerr* *fault* |
︙ | ︙ |
Changes to test/simple.test.
︙ | ︙ | |||
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 | do_execsql_test 8.1 { CREATE TABLE t1(a PRIMARY KEY, b); INSERT INTO t1 VALUES('a', 'b'); } do_execsql_test 8.2 { DELETE FROM t1 WHERE b = 'b' } do_execsql_test 8.3 { SELECT * FROM t1 } {} do_execsql_test 8.4 { INSERT INTO t1 VALUES('a', 'A'); INSERT INTO t1 VALUES('b', 'B'); INSERT INTO t1 VALUES('c', 'A'); INSERT INTO t1 VALUES('d', 'B'); INSERT INTO t1 VALUES('e', 'A'); INSERT INTO t1 VALUES('f', 'B'); | > > > > > | 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | do_execsql_test 8.1 { CREATE TABLE t1(a PRIMARY KEY, b); INSERT INTO t1 VALUES('a', 'b'); } do_execsql_test 8.2 { DELETE FROM t1 WHERE b = 'b' } execsql {PRAGMA vdbe_trace = 1} breakpoint do_execsql_test 8.3 { SELECT * FROM t1 } {} finish_test do_execsql_test 8.4 { INSERT INTO t1 VALUES('a', 'A'); INSERT INTO t1 VALUES('b', 'B'); INSERT INTO t1 VALUES('c', 'A'); INSERT INTO t1 VALUES('d', 'B'); INSERT INTO t1 VALUES('e', 'A'); INSERT INTO t1 VALUES('f', 'B'); |
︙ | ︙ | |||
257 258 259 260 261 262 263 264 265 266 267 268 269 270 | CREATE TABLE t1(a, b, c, UNIQUE(a)); INSERT INTO t1 VALUES(1,2,3); } do_catchsql_test 11.2 { INSERT INTO t1 VALUES(1,2,4) } {1 {column a is not unique}} finish_test #proc populate_t1 {} { # db eval { # INSERT INTO t1(a, b) VALUES(4, 'four'); # INSERT INTO t1(a, b) VALUES(9, 'nine'); | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 | CREATE TABLE t1(a, b, c, UNIQUE(a)); INSERT INTO t1 VALUES(1,2,3); } do_catchsql_test 11.2 { INSERT INTO t1 VALUES(1,2,4) } {1 {column a is not unique}} #------------------------------------------------------------------------- reset_db do_execsql_test 12.1 { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(3, 'three'); INSERT INTO t1 VALUES(1, 'one'); INSERT INTO t1 VALUES(2, 'two'); } do_execsql_test 12.2 { SELECT * FROM t1 ORDER BY a } {1 one 2 two 3 three} do_execsql_test 12.3 { SELECT * FROM t1 ORDER BY b } {1 one 3 three 2 two} #------------------------------------------------------------------------- reset_db do_execsql_test 13.1 { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(3, 'three'); INSERT INTO t1 VALUES(1, 'one'); INSERT INTO t1 VALUES(2, 'two'); } do_execsql_test 13.2 { SELECT a FROM t1 } {3 1 2} do_execsql_test 13.3 { CREATE TABLE t2(x, y) } do_execsql_test 13.4 { SELECT a FROM t1 } {3 1 2} do_execsql_test 13.5 { DROP TABLE t2 } do_execsql_test 13.6 { SELECT a FROM t1 } {3 1 2} do_execsql_test 13.7 { CREATE TABLE t2 AS SELECT * FROM t1 } do_execsql_test 13.8 { SELECT a FROM t2 } {3 1 2} do_execsql_test 13.9 { DROP TABLE t1 } do_execsql_test 13.10 { SELECT a FROM t2 } {3 1 2} #------------------------------------------------------------------------- reset_db do_execsql_test 14.1 { CREATE TABLE t1(a,b,c NOT NULL DEFAULT 5); CREATE TABLE t2(a,b,c); CREATE TABLE t3(x); INSERT INTO t2 VALUES(1,2,1); INSERT INTO t2 VALUES(2,3,2); INSERT INTO t2 VALUES(3,4,1); INSERT INTO t2 VALUES(4,5,4); INSERT INTO t3 VALUES(1); } do_execsql_test 14.2 { DROP TABLE t1 } do_execsql_test 14.3 { SELECT * FROM t3 } 1 #------------------------------------------------------------------------- reset_db do_execsql_test 15.1.1 { CREATE TABLE t1(x PRIMARY KEY); BEGIN; INSERT INTO t1 VALUES('rollback is not implemented yet'); } do_execsql_test 15.1.2 { ROLLBACK } do_execsql_test 15.1.3 { SELECT * FROM t1 } {} #------------------------------------------------------------------------- reset_db do_execsql_test 16.1.1 { PRAGMA foreign_keys = ON; CREATE TABLE p1(x PRIMARY KEY); CREATE TABLE c1(y REFERENCES p1); INSERT INTO p1 VALUES(2); INSERT INTO p1 VALUES(4); INSERT INTO p1 VALUES(6); } do_execsql_test 16.1.2 { INSERT INTO c1 VALUES(2) } do_catchsql_test 16.1.3 { INSERT INTO c1 VALUES(3) } {1 {foreign key constraint failed}} do_execsql_test 16.1.4 { SELECT * FROM c1 } {2} #------------------------------------------------------------------------- reset_db do_execsql_test 17.1 { PRAGMA foreign_keys = ON; CREATE TABLE t1(x PRIMARY KEY); CREATE TABLE t2(a PRIMARY KEY, b); INSERT INTO t1 VALUES('X'); INSERT INTO t2 VALUES(1, 'A'); INSERT INTO t2 VALUES(2, 'B'); INSERT INTO t2 VALUES(3, 'C'); INSERT INTO t2 VALUES(4, 'D'); INSERT INTO t2 VALUES(5, 'A'); } breakpoint do_catchsql_test 17.2 { INSERT INTO t1 SELECT b FROM t2; } {1 {column x is not unique}} do_execsql_test 17.3 { SELECT * FROM t1 } {X} finish_test #proc populate_t1 {} { # db eval { # INSERT INTO t1(a, b) VALUES(4, 'four'); # INSERT INTO t1(a, b) VALUES(9, 'nine'); |
︙ | ︙ |
Changes to test/storage1.test.
︙ | ︙ | |||
65 66 67 68 69 70 71 | lappend res [storage_prev $c1] lappend res [storage_key $c1] lappend res [storage_data $c1] lappend res [storage_prev $c1] storage_close_cursor $c1 storage_close $x set res | | | 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | lappend res [storage_prev $c1] lappend res [storage_key $c1] lappend res [storage_data $c1] lappend res [storage_prev $c1] storage_close_cursor $c1 storage_close $x set res } {SQLITE_INEXACT 014557 EF01 SQLITE_OK 012345 ABCD SQLITE_NOTFOUND} do_test storage1-1.6 { set x [storage_open :memory:] storage_begin $x 2 storage_replace $x 012345 abcd storage_replace $x 014567 ef01 storage_replace $x 013456 deaf storage_replace $x 012345 eeaa |
︙ | ︙ |