Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Remove the VDBE merge sorter.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 1073bb477eb101ebeedb935b1db33d8034edcdb0
User & Date: drh 2012-04-23 14:26:35.355
Context
2012-04-23
14:54
Fix a bug in the nocase collation xMkKey function. check-in: fe9ccd646d user: dan tags: trunk
14:26
Remove the VDBE merge sorter. check-in: 1073bb477e user: drh tags: trunk
14:11
Add an xMkKey callback to the built-in collation sequence "nocase". Fix a bug in encoding text values with collation sequences into database keys. check-in: 6c9adc9acc user: dan tags: trunk
Changes
Unified Diff Ignore Whitespace Patch
Changes to main.mk.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
         mutex.o mutex_noop.o mutex_os2.o mutex_unix.o mutex_w32.o \
         opcodes.o os.o os_os2.o os_unix.o os_win.o \
         parse.o pragma.o prepare.o printf.o \
         random.o resolve.o rowset.o rtree.o select.o status.o storage.o \
         tokenize.o trigger.o \
         update.o util.o varint.o \
         vdbe.o vdbeapi.o vdbeaux.o vdbecodec.o vdbecursor.o \
         vdbemem.o vdbesort.o vdbetrace.o \
         walker.o where.o utf.o vtab.o



# All of the source code files.
#
SRC = \







|







61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
         mutex.o mutex_noop.o mutex_os2.o mutex_unix.o mutex_w32.o \
         opcodes.o os.o os_os2.o os_unix.o os_win.o \
         parse.o pragma.o prepare.o printf.o \
         random.o resolve.o rowset.o rtree.o select.o status.o storage.o \
         tokenize.o trigger.o \
         update.o util.o varint.o \
         vdbe.o vdbeapi.o vdbeaux.o vdbecodec.o vdbecursor.o \
         vdbemem.o vdbetrace.o \
         walker.o where.o utf.o vtab.o



# All of the source code files.
#
SRC = \
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
  $(TOP)/src/util.c \
  $(TOP)/src/varint.c \
  $(TOP)/src/vdbe.c \
  $(TOP)/src/vdbe.h \
  $(TOP)/src/vdbeapi.c \
  $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbemem.c \
  $(TOP)/src/vdbesort.c \
  $(TOP)/src/vdbetrace.c \
  $(TOP)/src/vdbeInt.h \
  $(TOP)/src/vtab.c \
  $(TOP)/src/walker.c \
  $(TOP)/src/where.c

# Source code for extensions







<







139
140
141
142
143
144
145

146
147
148
149
150
151
152
  $(TOP)/src/util.c \
  $(TOP)/src/varint.c \
  $(TOP)/src/vdbe.c \
  $(TOP)/src/vdbe.h \
  $(TOP)/src/vdbeapi.c \
  $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbemem.c \

  $(TOP)/src/vdbetrace.c \
  $(TOP)/src/vdbeInt.h \
  $(TOP)/src/vtab.c \
  $(TOP)/src/walker.c \
  $(TOP)/src/where.c

# Source code for extensions
Changes to src/ctime.c.
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#endif
#ifdef SQLITE_OMIT_LOOKASIDE
  "OMIT_LOOKASIDE",
#endif
#ifdef SQLITE_OMIT_MEMORYDB
  "OMIT_MEMORYDB",
#endif
#ifdef SQLITE_OMIT_MERGE_SORT
  "OMIT_MERGE_SORT",
#endif
#ifdef SQLITE_OMIT_OR_OPTIMIZATION
  "OMIT_OR_OPTIMIZATION",
#endif
#ifdef SQLITE_OMIT_PAGER_PRAGMAS
  "OMIT_PAGER_PRAGMAS",
#endif
#ifdef SQLITE_OMIT_PRAGMA







<
<
<







253
254
255
256
257
258
259



260
261
262
263
264
265
266
#endif
#ifdef SQLITE_OMIT_LOOKASIDE
  "OMIT_LOOKASIDE",
#endif
#ifdef SQLITE_OMIT_MEMORYDB
  "OMIT_MEMORYDB",
#endif



#ifdef SQLITE_OMIT_OR_OPTIMIZATION
  "OMIT_OR_OPTIMIZATION",
#endif
#ifdef SQLITE_OMIT_PAGER_PRAGMAS
  "OMIT_PAGER_PRAGMAS",
#endif
#ifdef SQLITE_OMIT_PRAGMA
Changes to src/sqliteInt.h.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/*#define SQLITE_OMIT_BTREECOUNT 1*/
#define SQLITE_OMIT_WAL 1
#define SQLITE_OMIT_VACUUM 1
#define SQLITE_OMIT_AUTOVACUUM 1
/*#define SQLITE_OMIT_PAGER_PRAGMAS 1*/
#define SQLITE_OMIT_PROGRESS_CALLBACK 1

#define SQLITE_OMIT_MERGE_SORT 1

/*
** These #defines should enable >2GB file support on POSIX if the
** underlying operating system supports it.  If the OS lacks
** large file support, or if the OS is windows, these should be no-ops.
**
** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
** system #includes.  Hence, this block of code must be the very first







<
<







18
19
20
21
22
23
24


25
26
27
28
29
30
31
/*#define SQLITE_OMIT_BTREECOUNT 1*/
#define SQLITE_OMIT_WAL 1
#define SQLITE_OMIT_VACUUM 1
#define SQLITE_OMIT_AUTOVACUUM 1
/*#define SQLITE_OMIT_PAGER_PRAGMAS 1*/
#define SQLITE_OMIT_PROGRESS_CALLBACK 1



/*
** These #defines should enable >2GB file support on POSIX if the
** underlying operating system supports it.  If the OS lacks
** large file support, or if the OS is windows, these should be no-ops.
**
** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
** system #includes.  Hence, this block of code must be the very first
Changes to src/test_config.c.
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  Tcl_SetVar2(interp, "sqlite_options", "memorymanage", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "memorymanage", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_OMIT_MERGE_SORT
  Tcl_SetVar2(interp, "sqlite_options", "mergesort", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "mergesort", "1", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_OMIT_OR_OPTIMIZATION
  Tcl_SetVar2(interp, "sqlite_options", "or_opt", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "or_opt", "1", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_OMIT_PAGER_PRAGMAS







<
<
<
<
<
<







367
368
369
370
371
372
373






374
375
376
377
378
379
380

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  Tcl_SetVar2(interp, "sqlite_options", "memorymanage", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "memorymanage", "0", TCL_GLOBAL_ONLY);
#endif







#ifdef SQLITE_OMIT_OR_OPTIMIZATION
  Tcl_SetVar2(interp, "sqlite_options", "or_opt", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "or_opt", "1", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_OMIT_PAGER_PRAGMAS
Changes to src/vdbe.c.
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
** string that the register itself controls.  In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(P) \
   if( ((P)->flags&MEM_Ephem)!=0 \
       && sqlite4VdbeMemMakeWriteable(P) ){ goto no_mem;}

/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
#ifdef SQLITE_OMIT_MERGE_SORT
# define isSorter(x) 0
#else
# define isSorter(x) ((x)->pSorter!=0)
#endif

/*
** Argument pMem points at a register that will be passed to a
** user-defined function or returned to the user as the result of a query.
** This routine sets the pMem->type variable used by the sqlite4_value_*() 
** routines.
*/
void sqlite4VdbeMemStoreType(Mem *pMem){







<
<
<
<
<
<
<







147
148
149
150
151
152
153







154
155
156
157
158
159
160
** string that the register itself controls.  In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(P) \
   if( ((P)->flags&MEM_Ephem)!=0 \
       && sqlite4VdbeMemMakeWriteable(P) ){ goto no_mem;}








/*
** Argument pMem points at a register that will be passed to a
** user-defined function or returned to the user as the result of a query.
** This routine sets the pMem->type variable used by the sqlite4_value_*() 
** routines.
*/
void sqlite4VdbeMemStoreType(Mem *pMem){
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
**
** This opcode works like OP_OpenEphemeral except that it opens
** a transient index that is specifically designed to sort large
** tables using an external merge-sort algorithm.
*/
case OP_SorterOpen: {
  /* VdbeCursor *pCx; */
#ifndef SQLITE_OMIT_MERGE_SORT
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->pKeyInfo = pOp->p4.pKeyInfo;
  pCx->pKeyInfo->enc = ENC(p->db);
  pCx->isSorter = 1;
  rc = sqlite4VdbeSorterInit(db, pCx);
#else
  pOp->opcode = OP_OpenEphemeral;
  pc--;
#endif
  break;
}

/* Opcode: OpenPseudo P1 P2 P3 * *
**
** Open a new cursor that points to a fake table that contains a single
** row of data.  The content of that one row is the content of memory







<
<
<
<
<
<
<
<


<







2750
2751
2752
2753
2754
2755
2756








2757
2758

2759
2760
2761
2762
2763
2764
2765
**
** This opcode works like OP_OpenEphemeral except that it opens
** a transient index that is specifically designed to sort large
** tables using an external merge-sort algorithm.
*/
case OP_SorterOpen: {
  /* VdbeCursor *pCx; */








  pOp->opcode = OP_OpenEphemeral;
  pc--;

  break;
}

/* Opcode: OpenPseudo P1 P2 P3 * *
**
** Open a new cursor that points to a fake table that contains a single
** row of data.  The content of that one row is the content of memory
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
*/
case OP_ResetCount: {
  sqlite4VdbeSetChanges(db, p->nChange);
  p->nChange = 0;
  break;
}

/* Opcode: SorterCompare P1 P2 P3
**
** P1 is a sorter cursor. This instruction compares the record blob in 
** register P3 with the entry that the sorter cursor currently points to.
** If, excluding the rowid fields at the end, the two records are a match,
** fall through to the next instruction. Otherwise, jump to instruction P2.
*/
case OP_SorterCompare: {
  VdbeCursor *pC;
  int res;

  pC = p->apCsr[pOp->p1];
  assert( pC->iRoot>0 );
  assert( isSorter(pC) );
  pIn3 = &aMem[pOp->p3];
  rc = sqlite4VdbeSorterCompare(pC, pIn3, &res);
  if( res ){
    pc = pOp->p2-1;
  }
  break;
};

/* Opcode: GrpCompare P1 P2 P3
**
** P1 is a cursor used to sort records. Its keys consist of the fields being
** sorted on encoded as an ordinary database key, followed by a sequence 
** number encoded as defined by the comments surrounding OP_MakeIdxKey. 
** Register P3 either contains NULL, or such a key truncated so as to 
** remove the sequence number.







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







3396
3397
3398
3399
3400
3401
3402






















3403
3404
3405
3406
3407
3408
3409
*/
case OP_ResetCount: {
  sqlite4VdbeSetChanges(db, p->nChange);
  p->nChange = 0;
  break;
}























/* Opcode: GrpCompare P1 P2 P3
**
** P1 is a cursor used to sort records. Its keys consist of the fields being
** sorted on encoded as an ordinary database key, followed by a sequence 
** number encoded as defined by the comments surrounding OP_MakeIdxKey. 
** Register P3 either contains NULL, or such a key truncated so as to 
** remove the sequence number.
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
** Write into register P2 the current sorter data for sorter cursor P1.
*/
case OP_SorterData: {
  VdbeCursor *pC; 
  pOut = &aMem[pOp->p2];
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
#ifndef SQLITE_OMIT_MERGE_SORT
  assert( pC->isSorter );
  rc = sqlite4VdbeSorterRowkey(pC, pOut);
#else
  pOp->opcode = OP_RowData;
  pc--;
#endif
  break;
}

/* Opcode: RowData P1 P2 * * *
**
** Write into register P2 the complete row data for cursor P1.
** There is no interpretation of the data.  







<
<
<
<


<







3442
3443
3444
3445
3446
3447
3448




3449
3450

3451
3452
3453
3454
3455
3456
3457
** Write into register P2 the current sorter data for sorter cursor P1.
*/
case OP_SorterData: {
  VdbeCursor *pC; 
  pOut = &aMem[pOp->p2];
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );




  pOp->opcode = OP_RowData;
  pc--;

  break;
}

/* Opcode: RowData P1 P2 * * *
**
** Write into register P2 the complete row data for cursor P1.
** There is no interpretation of the data.  
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541

  pOut = &aMem[pOp->p2];
  memAboutToChange(p, pOut);

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC->isSorter==0 );
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTableReg==0 );
  assert( !pC->isSorter );
  assert( pC->pKVCur!=0 );
  pCrsr = pC->pKVCur;

  if( pOp->opcode==OP_RowKey ){
    rc = sqlite4KVCursorKey(pCrsr, &pData, &nData);
  }else{
    rc = sqlite4KVCursorData(pCrsr, 0, -1, &pData, &nData);







<



<







3480
3481
3482
3483
3484
3485
3486

3487
3488
3489

3490
3491
3492
3493
3494
3495
3496

  pOut = &aMem[pOp->p2];
  memAboutToChange(p, pOut);

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];

  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTableReg==0 );

  assert( pC->pKVCur!=0 );
  pCrsr = pC->pKVCur;

  if( pOp->opcode==OP_RowKey ){
    rc = sqlite4KVCursorKey(pCrsr, &pData, &nData);
  }else{
    rc = sqlite4KVCursorData(pCrsr, 0, -1, &pData, &nData);
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
** then rewinding that index and playing it back from beginning to
** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
** rewinding so that the global variable will be incremented and
** regression tests can determine whether or not the optimizer is
** correctly optimizing out sorts.
*/
case OP_SorterSort:    /* jump */
#ifdef SQLITE_OMIT_MERGE_SORT
  pOp->opcode = OP_Sort;
#endif
case OP_Sort: {        /* jump */
#ifdef SQLITE_TEST
  sqlite4_sort_count++;
  sqlite4_search_count--;
#endif
  p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
  /* Fall through into OP_Rewind */







<

<







3600
3601
3602
3603
3604
3605
3606

3607

3608
3609
3610
3611
3612
3613
3614
** then rewinding that index and playing it back from beginning to
** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
** rewinding so that the global variable will be incremented and
** regression tests can determine whether or not the optimizer is
** correctly optimizing out sorts.
*/
case OP_SorterSort:    /* jump */

  pOp->opcode = OP_Sort;

case OP_Sort: {        /* jump */
#ifdef SQLITE_TEST
  sqlite4_sort_count++;
  sqlite4_search_count--;
#endif
  p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
  /* Fall through into OP_Rewind */
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
case OP_Rewind: {        /* jump */
  VdbeCursor *pC;
  int doJump;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
  doJump = 1;
  if( isSorter(pC) ){
    rc = sqlite4VdbeSorterRewind(db, pC, &doJump);
  }else{
    rc = sqlite4VdbeSeekEnd(pC, +1);
    if( rc==SQLITE_NOTFOUND ){
      rc = SQLITE_OK;
      doJump = 1;
    }else{
      doJump = 0;
    }
  }
  pC->nullRow = (u8)doJump;
  assert( pOp->p2>0 && pOp->p2<p->nOp );
  if( doJump ){
    pc = pOp->p2 - 1;
  }
  break;







<

<
<
<
|
|
|
|
|
|
<







3624
3625
3626
3627
3628
3629
3630

3631



3632
3633
3634
3635
3636
3637

3638
3639
3640
3641
3642
3643
3644
case OP_Rewind: {        /* jump */
  VdbeCursor *pC;
  int doJump;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );

  doJump = 1;



  rc = sqlite4VdbeSeekEnd(pC, +1);
  if( rc==SQLITE_NOTFOUND ){
    rc = SQLITE_OK;
    doJump = 1;
  }else{
    doJump = 0;

  }
  pC->nullRow = (u8)doJump;
  assert( pOp->p2>0 && pOp->p2<p->nOp );
  if( doJump ){
    pc = pOp->p2 - 1;
  }
  break;
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771

3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800

3801
3802
3803
3804
3805
3806
3807
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite4VdbePrevious().
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
*/
case OP_SorterNext:    /* jump */
#ifdef SQLITE_OMIT_MERGE_SORT
  pOp->opcode = OP_Next;
#endif
case OP_Prev:          /* jump */
case OP_Next: {        /* jump */
  VdbeCursor *pC;
  int res;

  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5<=ArraySize(p->aCounter) );
  pC = p->apCsr[pOp->p1];
  if( pC==0 ){
    break;  /* See ticket #2273 */
  }
  assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
  if( isSorter(pC) ){
    assert( pOp->opcode==OP_SorterNext );
    rc = sqlite4VdbeSorterNext(db, pC, &res);
    if( rc==SQLITE_OK && res ) rc = SQLITE_NOTFOUND;
  }else{
    res = 1;
    assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite4VdbeNext );
    assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite4VdbePrevious );
    rc = pOp->p4.xAdvance(pC);
  }
  if( rc==SQLITE_OK ){
    pc = pOp->p2 - 1;
    if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
    pC->nullRow = 0;
#ifdef SQLITE_TEST
    sqlite4_search_count++;
#endif
  }else if( rc==SQLITE_NOTFOUND ){
    pC->nullRow = 1;
    rc = SQLITE_OK;
  }
  pC->rowidIsValid = 0;
  break;
}


/* Opcode: SorterInsert P1 P2 P3
*/
case OP_SorterInsert: {      /* in2 */
#ifndef SQLITE_OMIT_MERGE_SORT
  VdbeCursor *pC;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
  pIn2 = &aMem[pOp->p2];
  assert( pIn2->flags & MEM_Blob );
  assert( pC->isTable==0 );
  rc = ExpandBlob(pIn2);
  if( rc==SQLITE_OK ){
    rc = sqlite4VdbeSorterWrite(db, pC, pIn2);
  }
  break;
#endif

  /* If OMIT_MERGE_SORT is defined, fall through to IdxInsert. */
}

/* Opcode: IdxInsert P1 P2 P3 * P5
**
** Register P3 holds the key and register P2 holds the data for an
** index entry.  Write this record into the index specified by the
** cursor P1.
*/

case OP_IdxInsert: {
  VdbeCursor *pC;
  Mem *pKey;
  Mem *pData;

  pC = p->apCsr[pOp->p1];
  pKey = &aMem[pOp->p3];







<

<












<
<
<
<
<
<
|
|
|
|
<














>



<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






>







3673
3674
3675
3676
3677
3678
3679

3680

3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692






3693
3694
3695
3696

3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714




















3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite4VdbePrevious().
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
*/
case OP_SorterNext:    /* jump */

  pOp->opcode = OP_Next;

case OP_Prev:          /* jump */
case OP_Next: {        /* jump */
  VdbeCursor *pC;
  int res;

  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5<=ArraySize(p->aCounter) );
  pC = p->apCsr[pOp->p1];
  if( pC==0 ){
    break;  /* See ticket #2273 */
  }






  res = 1;
  assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite4VdbeNext );
  assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite4VdbePrevious );
  rc = pOp->p4.xAdvance(pC);

  if( rc==SQLITE_OK ){
    pc = pOp->p2 - 1;
    if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
    pC->nullRow = 0;
#ifdef SQLITE_TEST
    sqlite4_search_count++;
#endif
  }else if( rc==SQLITE_NOTFOUND ){
    pC->nullRow = 1;
    rc = SQLITE_OK;
  }
  pC->rowidIsValid = 0;
  break;
}


/* Opcode: SorterInsert P1 P2 P3
*/




















/* Opcode: IdxInsert P1 P2 P3 * P5
**
** Register P3 holds the key and register P2 holds the data for an
** index entry.  Write this record into the index specified by the
** cursor P1.
*/
case OP_SorterInsert:      /* in2 */
case OP_IdxInsert: {
  VdbeCursor *pC;
  Mem *pKey;
  Mem *pData;

  pC = p->apCsr[pOp->p1];
  pKey = &aMem[pOp->p3];
Changes to src/vdbeInt.h.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
  Bool rowidIsValid;    /* True if lastRowid is valid */
  Bool atFirst;         /* True if pointing to first entry */
  Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
  Bool nullRow;         /* True if pointing to a row with no data */
  Bool isTable;         /* True if a table requiring integer keys */
  Bool isIndex;         /* True if an index containing keys only - no data */
  Bool isOrdered;       /* True if the underlying table is BTREE_UNORDERED */
  Bool isSorter;        /* True if a new-style sorter */
  sqlite4_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
  const sqlite4_module *pModule;     /* Module for cursor pVtabCursor */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred move-to */
  i64 lastRowid;        /* Last rowid from a Next or NextIdx operation */
  VdbeSorter *pSorter;  /* Sorter object for OP_SorterOpen cursors */








<







61
62
63
64
65
66
67

68
69
70
71
72
73
74
  Bool rowidIsValid;    /* True if lastRowid is valid */
  Bool atFirst;         /* True if pointing to first entry */
  Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
  Bool nullRow;         /* True if pointing to a row with no data */
  Bool isTable;         /* True if a table requiring integer keys */
  Bool isIndex;         /* True if an index containing keys only - no data */
  Bool isOrdered;       /* True if the underlying table is BTREE_UNORDERED */

  sqlite4_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
  const sqlite4_module *pModule;     /* Module for cursor pVtabCursor */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred move-to */
  i64 lastRowid;        /* Last rowid from a Next or NextIdx operation */
  VdbeSorter *pSorter;  /* Sorter object for OP_SorterOpen cursors */

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
int sqlite4VdbeFrameRestore(VdbeFrame *);
void sqlite4VdbeMemStoreType(Mem *pMem);
int sqlite4VdbeTransferError(Vdbe *p);
int sqlite4VdbeSeekEnd(VdbeCursor*, int);
int sqlite4VdbeNext(VdbeCursor*);
int sqlite4VdbePrevious(VdbeCursor*);

#ifdef SQLITE_OMIT_MERGE_SORT
# define sqlite4VdbeSorterInit(Y,Z)      SQLITE_OK
# define sqlite4VdbeSorterWrite(X,Y,Z)   SQLITE_OK
# define sqlite4VdbeSorterClose(Y,Z)
# define sqlite4VdbeSorterRowkey(Y,Z)    SQLITE_OK
# define sqlite4VdbeSorterRewind(X,Y,Z)  SQLITE_OK
# define sqlite4VdbeSorterNext(X,Y,Z)    SQLITE_OK
# define sqlite4VdbeSorterCompare(X,Y,Z) SQLITE_OK
#else
int sqlite4VdbeSorterInit(sqlite4 *, VdbeCursor *);
void sqlite4VdbeSorterClose(sqlite4 *, VdbeCursor *);
int sqlite4VdbeSorterRowkey(VdbeCursor *, Mem *);
int sqlite4VdbeSorterNext(sqlite4 *, VdbeCursor *, int *);
int sqlite4VdbeSorterRewind(sqlite4 *, VdbeCursor *, int *);
int sqlite4VdbeSorterWrite(sqlite4 *, VdbeCursor *, Mem *);
int sqlite4VdbeSorterCompare(VdbeCursor *, Mem *, int *);
#endif

#ifdef SQLITE_DEBUG
void sqlite4VdbeMemAboutToChange(Vdbe*,Mem*);
#endif

#ifndef SQLITE_OMIT_FOREIGN_KEY
int sqlite4VdbeCheckFk(Vdbe *, int);
#else







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







431
432
433
434
435
436
437


















438
439
440
441
442
443
444
int sqlite4VdbeFrameRestore(VdbeFrame *);
void sqlite4VdbeMemStoreType(Mem *pMem);
int sqlite4VdbeTransferError(Vdbe *p);
int sqlite4VdbeSeekEnd(VdbeCursor*, int);
int sqlite4VdbeNext(VdbeCursor*);
int sqlite4VdbePrevious(VdbeCursor*);



















#ifdef SQLITE_DEBUG
void sqlite4VdbeMemAboutToChange(Vdbe*,Mem*);
#endif

#ifndef SQLITE_OMIT_FOREIGN_KEY
int sqlite4VdbeCheckFk(Vdbe *, int);
#else
Changes to src/vdbeaux.c.
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
** Close a VDBE cursor and release all the resources that cursor 
** happens to hold.
*/
void sqlite4VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
  if( pCx==0 ){
    return;
  }
  sqlite4VdbeSorterClose(p->db, pCx);
  if( pCx->pKVCur ){
    sqlite4KVCursorClose(pCx->pKVCur);
  }
  if( pCx->pTmpKV ){
    sqlite4KVStoreClose(pCx->pTmpKV);
  }
#ifndef SQLITE_OMIT_VIRTUALTABLE







<







1493
1494
1495
1496
1497
1498
1499

1500
1501
1502
1503
1504
1505
1506
** Close a VDBE cursor and release all the resources that cursor 
** happens to hold.
*/
void sqlite4VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
  if( pCx==0 ){
    return;
  }

  if( pCx->pKVCur ){
    sqlite4KVCursorClose(pCx->pKVCur);
  }
  if( pCx->pTmpKV ){
    sqlite4KVStoreClose(pCx->pTmpKV);
  }
#ifndef SQLITE_OMIT_VIRTUALTABLE
Deleted src/vdbesort.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
/*
** 2011 July 9
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code for the VdbeSorter object, used in concert with
** a VdbeCursor to sort large numbers of keys (as may be required, for
** example, by CREATE INDEX statements on tables too large to fit in main
** memory).
*/

#include "sqliteInt.h"
#include "vdbeInt.h"

#ifndef SQLITE_OMIT_MERGE_SORT

typedef struct VdbeSorterIter VdbeSorterIter;
typedef struct SorterRecord SorterRecord;

/*
** NOTES ON DATA STRUCTURE USED FOR N-WAY MERGES:
**
** As keys are added to the sorter, they are written to disk in a series
** of sorted packed-memory-arrays (PMAs). The size of each PMA is roughly
** the same as the cache-size allowed for temporary databases. In order
** to allow the caller to extract keys from the sorter in sorted order,
** all PMAs currently stored on disk must be merged together. This comment
** describes the data structure used to do so. The structure supports 
** merging any number of arrays in a single pass with no redundant comparison 
** operations.
**
** The aIter[] array contains an iterator for each of the PMAs being merged.
** An aIter[] iterator either points to a valid key or else is at EOF. For 
** the purposes of the paragraphs below, we assume that the array is actually 
** N elements in size, where N is the smallest power of 2 greater to or equal 
** to the number of iterators being merged. The extra aIter[] elements are 
** treated as if they are empty (always at EOF).
**
** The aTree[] array is also N elements in size. The value of N is stored in
** the VdbeSorter.nTree variable.
**
** The final (N/2) elements of aTree[] contain the results of comparing
** pairs of iterator keys together. Element i contains the result of 
** comparing aIter[2*i-N] and aIter[2*i-N+1]. Whichever key is smaller, the
** aTree element is set to the index of it. 
**
** For the purposes of this comparison, EOF is considered greater than any
** other key value. If the keys are equal (only possible with two EOF
** values), it doesn't matter which index is stored.
**
** The (N/4) elements of aTree[] that preceed the final (N/2) described 
** above contains the index of the smallest of each block of 4 iterators.
** And so on. So that aTree[1] contains the index of the iterator that 
** currently points to the smallest key value. aTree[0] is unused.
**
** Example:
**
**     aIter[0] -> Banana
**     aIter[1] -> Feijoa
**     aIter[2] -> Elderberry
**     aIter[3] -> Currant
**     aIter[4] -> Grapefruit
**     aIter[5] -> Apple
**     aIter[6] -> Durian
**     aIter[7] -> EOF
**
**     aTree[] = { X, 5   0, 5    0, 3, 5, 6 }
**
** The current element is "Apple" (the value of the key indicated by 
** iterator 5). When the Next() operation is invoked, iterator 5 will
** be advanced to the next key in its segment. Say the next key is
** "Eggplant":
**
**     aIter[5] -> Eggplant
**
** The contents of aTree[] are updated first by comparing the new iterator
** 5 key to the current key of iterator 4 (still "Grapefruit"). The iterator
** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree.
** The value of iterator 6 - "Durian" - is now smaller than that of iterator
** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian),
** so the value written into element 1 of the array is 0. As follows:
**
**     aTree[] = { X, 0   0, 6    0, 3, 5, 6 }
**
** In other words, each time we advance to the next sorter element, log2(N)
** key comparison operations are required, where N is the number of segments
** being merged (rounded up to the next power of 2).
*/
struct VdbeSorter {
  int nInMemory;                  /* Current size of pRecord list as PMA */
  int nTree;                      /* Used size of aTree/aIter (power of 2) */
  VdbeSorterIter *aIter;          /* Array of iterators to merge */
  int *aTree;                     /* Current state of incremental merge */
  i64 iWriteOff;                  /* Current write offset within file pTemp1 */
  i64 iReadOff;                   /* Current read offset within file pTemp1 */
  sqlite4_file *pTemp1;           /* PMA file 1 */
  int nPMA;                       /* Number of PMAs stored in pTemp1 */
  SorterRecord *pRecord;          /* Head of in-memory record list */
  int mnPmaSize;                  /* Minimum PMA size, in bytes */
  int mxPmaSize;                  /* Maximum PMA size, in bytes.  0==no limit */
  UnpackedRecord *pUnpacked;      /* Used to unpack keys */
};

/*
** The following type is an iterator for a PMA. It caches the current key in 
** variables nKey/aKey. If the iterator is at EOF, pFile==0.
*/
struct VdbeSorterIter {
  i64 iReadOff;                   /* Current read offset */
  i64 iEof;                       /* 1 byte past EOF for this iterator */
  sqlite4_file *pFile;            /* File iterator is reading from */
  int nAlloc;                     /* Bytes of space at aAlloc */
  u8 *aAlloc;                     /* Allocated space */
  int nKey;                       /* Number of bytes in key */
  u8 *aKey;                       /* Pointer to current key */
};

/*
** A structure to store a single record. All in-memory records are connected
** together into a linked list headed at VdbeSorter.pRecord using the 
** SorterRecord.pNext pointer.
*/
struct SorterRecord {
  void *pVal;
  int nVal;
  SorterRecord *pNext;
};

/* Minimum allowable value for the VdbeSorter.nWorking variable */
#define SORTER_MIN_WORKING 10

/* Maximum number of segments to merge in a single pass. */
#define SORTER_MAX_MERGE_COUNT 16

/*
** Free all memory belonging to the VdbeSorterIter object passed as the second
** argument. All structure fields are set to zero before returning.
*/
static void vdbeSorterIterZero(sqlite4 *db, VdbeSorterIter *pIter){
  sqlite4DbFree(db, pIter->aAlloc);
  memset(pIter, 0, sizeof(VdbeSorterIter));
}

/*
** Advance iterator pIter to the next key in its PMA. Return SQLITE_OK if
** no error occurs, or an SQLite error code if one does.
*/
static int vdbeSorterIterNext(
  sqlite4 *db,                    /* Database handle (for sqlite4DbMalloc() ) */
  VdbeSorterIter *pIter           /* Iterator to advance */
){
  int rc;                         /* Return Code */
  int nRead;                      /* Number of bytes read */
  int nRec = 0;                   /* Size of record in bytes */
  int iOff = 0;                   /* Size of serialized size varint in bytes */

  assert( pIter->iEof>=pIter->iReadOff );
  if( pIter->iEof-pIter->iReadOff>5 ){
    nRead = 5;
  }else{
    nRead = (int)(pIter->iEof - pIter->iReadOff);
  }
  if( nRead<=0 ){
    /* This is an EOF condition */
    vdbeSorterIterZero(db, pIter);
    return SQLITE_OK;
  }

  rc = sqlite4OsRead(pIter->pFile, pIter->aAlloc, nRead, pIter->iReadOff);
  if( rc==SQLITE_OK ){
    iOff = getVarint32(pIter->aAlloc, nRec);
    if( (iOff+nRec)>nRead ){
      int nRead2;                   /* Number of extra bytes to read */
      if( (iOff+nRec)>pIter->nAlloc ){
        int nNew = pIter->nAlloc*2;
        while( (iOff+nRec)>nNew ) nNew = nNew*2;
        pIter->aAlloc = sqlite4DbReallocOrFree(db, pIter->aAlloc, nNew);
        if( !pIter->aAlloc ) return SQLITE_NOMEM;
        pIter->nAlloc = nNew;
      }
  
      nRead2 = iOff + nRec - nRead;
      rc = sqlite4OsRead(
          pIter->pFile, &pIter->aAlloc[nRead], nRead2, pIter->iReadOff+nRead
      );
    }
  }

  assert( rc!=SQLITE_OK || nRec>0 );
  pIter->iReadOff += iOff+nRec;
  pIter->nKey = nRec;
  pIter->aKey = &pIter->aAlloc[iOff];
  return rc;
}

/*
** Write a single varint, value iVal, to file-descriptor pFile. Return
** SQLITE_OK if successful, or an SQLite error code if some error occurs.
**
** The value of *piOffset when this function is called is used as the byte
** offset in file pFile to write to. Before returning, *piOffset is 
** incremented by the number of bytes written.
*/
static int vdbeSorterWriteVarint(
  sqlite4_file *pFile,            /* File to write to */
  i64 iVal,                       /* Value to write as a varint */
  i64 *piOffset                   /* IN/OUT: Write offset in file pFile */
){
  u8 aVarint[9];                  /* Buffer large enough for a varint */
  int nVarint;                    /* Number of used bytes in varint */
  int rc;                         /* Result of write() call */

  nVarint = sqlite4PutVarint(aVarint, iVal);
  rc = sqlite4OsWrite(pFile, aVarint, nVarint, *piOffset);
  *piOffset += nVarint;

  return rc;
}

/*
** Read a single varint from file-descriptor pFile. Return SQLITE_OK if
** successful, or an SQLite error code if some error occurs.
**
** The value of *piOffset when this function is called is used as the
** byte offset in file pFile from whence to read the varint. If successful
** (i.e. if no IO error occurs), then *piOffset is set to the offset of
** the first byte past the end of the varint before returning. *piVal is
** set to the integer value read. If an error occurs, the final values of
** both *piOffset and *piVal are undefined.
*/
static int vdbeSorterReadVarint(
  sqlite4_file *pFile,            /* File to read from */
  i64 *piOffset,                  /* IN/OUT: Read offset in pFile */
  i64 *piVal                      /* OUT: Value read from file */
){
  u8 aVarint[9];                  /* Buffer large enough for a varint */
  i64 iOff = *piOffset;           /* Offset in file to read from */
  int rc;                         /* Return code */

  rc = sqlite4OsRead(pFile, aVarint, 9, iOff);
  if( rc==SQLITE_OK ){
    *piOffset += getVarint(aVarint, (u64 *)piVal);
  }

  return rc;
}

/*
** Initialize iterator pIter to scan through the PMA stored in file pFile
** starting at offset iStart and ending at offset iEof-1. This function 
** leaves the iterator pointing to the first key in the PMA (or EOF if the 
** PMA is empty).
*/
static int vdbeSorterIterInit(
  sqlite4 *db,                    /* Database handle */
  VdbeSorter *pSorter,            /* Sorter object */
  i64 iStart,                     /* Start offset in pFile */
  VdbeSorterIter *pIter,          /* Iterator to populate */
  i64 *pnByte                     /* IN/OUT: Increment this value by PMA size */
){
  int rc;

  assert( pSorter->iWriteOff>iStart );
  assert( pIter->aAlloc==0 );
  pIter->pFile = pSorter->pTemp1;
  pIter->iReadOff = iStart;
  pIter->nAlloc = 128;
  pIter->aAlloc = (u8 *)sqlite4DbMallocRaw(db, pIter->nAlloc);
  if( !pIter->aAlloc ){
    rc = SQLITE_NOMEM;
  }else{
    i64 nByte;                         /* Total size of PMA in bytes */
    rc = vdbeSorterReadVarint(pSorter->pTemp1, &pIter->iReadOff, &nByte);
    *pnByte += nByte;
    pIter->iEof = pIter->iReadOff + nByte;
  }
  if( rc==SQLITE_OK ){
    rc = vdbeSorterIterNext(db, pIter);
  }
  return rc;
}


/*
** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2, 
** size nKey2 bytes).  Argument pKeyInfo supplies the collation functions
** used by the comparison. If an error occurs, return an SQLite error code.
** Otherwise, return SQLITE_OK and set *pRes to a negative, zero or positive
** value, depending on whether key1 is smaller, equal to or larger than key2.
**
** If the bOmitRowid argument is non-zero, assume both keys end in a rowid
** field. For the purposes of the comparison, ignore it. Also, if bOmitRowid
** is true and key1 contains even a single NULL value, it is considered to
** be less than key2. Even if key2 also contains NULL values.
**
** If pKey2 is passed a NULL pointer, then it is assumed that the pCsr->aSpace
** has been allocated and contains an unpacked record that is used as key2.
*/
static void vdbeSorterCompare(
  VdbeCursor *pCsr,               /* Cursor object (for pKeyInfo) */
  int bOmitRowid,                 /* Ignore rowid field at end of keys */
  void *pKey1, int nKey1,         /* Left side of comparison */
  void *pKey2, int nKey2,         /* Right side of comparison */
  int *pRes                       /* OUT: Result of comparison */
){
  KeyInfo *pKeyInfo = pCsr->pKeyInfo;
  VdbeSorter *pSorter = pCsr->pSorter;
  UnpackedRecord *r2 = pSorter->pUnpacked;
  int i;

  if( pKey2 ){
    sqlite4VdbeRecordUnpack(pKeyInfo, nKey2, pKey2, r2);
  }

  if( bOmitRowid ){
    r2->nField = pKeyInfo->nField;
    assert( r2->nField>0 );
    for(i=0; i<r2->nField; i++){
      if( r2->aMem[i].flags & MEM_Null ){
        *pRes = -1;
        return;
      }
    }
    r2->flags |= UNPACKED_PREFIX_MATCH;
  }

  *pRes = sqlite4VdbeRecordCompare(nKey1, pKey1, r2);
}

/*
** This function is called to compare two iterator keys when merging 
** multiple b-tree segments. Parameter iOut is the index of the aTree[] 
** value to recalculate.
*/
static int vdbeSorterDoCompare(VdbeCursor *pCsr, int iOut){
  VdbeSorter *pSorter = pCsr->pSorter;
  int i1;
  int i2;
  int iRes;
  VdbeSorterIter *p1;
  VdbeSorterIter *p2;

  assert( iOut<pSorter->nTree && iOut>0 );

  if( iOut>=(pSorter->nTree/2) ){
    i1 = (iOut - pSorter->nTree/2) * 2;
    i2 = i1 + 1;
  }else{
    i1 = pSorter->aTree[iOut*2];
    i2 = pSorter->aTree[iOut*2+1];
  }

  p1 = &pSorter->aIter[i1];
  p2 = &pSorter->aIter[i2];

  if( p1->pFile==0 ){
    iRes = i2;
  }else if( p2->pFile==0 ){
    iRes = i1;
  }else{
    int res;
    assert( pCsr->pSorter->pUnpacked!=0 );  /* allocated in vdbeSorterMerge() */
    vdbeSorterCompare(
        pCsr, 0, p1->aKey, p1->nKey, p2->aKey, p2->nKey, &res
    );
    if( res<=0 ){
      iRes = i1;
    }else{
      iRes = i2;
    }
  }

  pSorter->aTree[iOut] = iRes;
  return SQLITE_OK;
}

/*
** Initialize the temporary index cursor just opened as a sorter cursor.
*/
int sqlite4VdbeSorterInit(sqlite4 *db, VdbeCursor *pCsr){
  int mxCache;                    /* Cache size */
  VdbeSorter *pSorter;            /* The new sorter */
  char *d;                        /* Dummy */

  assert( pCsr->pKeyInfo && pCsr->pBt==0 );
  pCsr->pSorter = pSorter = sqlite4DbMallocZero(db, sizeof(VdbeSorter));
  if( pSorter==0 ){
    return SQLITE_NOMEM;
  }
  
  pSorter->pUnpacked = sqlite4VdbeAllocUnpackedRecord(pCsr->pKeyInfo, 0, 0, &d);
  if( pSorter->pUnpacked==0 ) return SQLITE_NOMEM;
  assert( pSorter->pUnpacked==(UnpackedRecord *)d );

  if( !sqlite4TempInMemory(db) ){
    pSorter->mnPmaSize = 100000;
  }

  return SQLITE_OK;
}

/*
** Free the list of sorted records starting at pRecord.
*/
static void vdbeSorterRecordFree(sqlite4 *db, SorterRecord *pRecord){
  SorterRecord *p;
  SorterRecord *pNext;
  for(p=pRecord; p; p=pNext){
    pNext = p->pNext;
    sqlite4DbFree(db, p);
  }
}

/*
** Free any cursor components allocated by sqlite4VdbeSorterXXX routines.
*/
void sqlite4VdbeSorterClose(sqlite4 *db, VdbeCursor *pCsr){
  VdbeSorter *pSorter = pCsr->pSorter;
  if( pSorter ){
    if( pSorter->aIter ){
      int i;
      for(i=0; i<pSorter->nTree; i++){
        vdbeSorterIterZero(db, &pSorter->aIter[i]);
      }
      sqlite4DbFree(db, pSorter->aIter);
    }
    if( pSorter->pTemp1 ){
      sqlite4OsCloseFree(pSorter->pTemp1);
    }
    vdbeSorterRecordFree(db, pSorter->pRecord);
    sqlite4DbFree(db, pSorter->pUnpacked);
    sqlite4DbFree(db, pSorter);
    pCsr->pSorter = 0;
  }
}

/*
** Allocate space for a file-handle and open a temporary file. If successful,
** set *ppFile to point to the malloc'd file-handle and return SQLITE_OK.
** Otherwise, set *ppFile to 0 and return an SQLite error code.
*/
static int vdbeSorterOpenTempFile(sqlite4 *db, sqlite4_file **ppFile){
  int dummy;
  return sqlite4OsOpenMalloc(db->pVfs, 0, ppFile,
      SQLITE_OPEN_TEMP_JOURNAL |
      SQLITE_OPEN_READWRITE    | SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE    | SQLITE_OPEN_DELETEONCLOSE, &dummy
  );
}

/*
** Merge the two sorted lists p1 and p2 into a single list.
** Set *ppOut to the head of the new list.
*/
static void vdbeSorterMerge(
  VdbeCursor *pCsr,               /* For pKeyInfo */
  SorterRecord *p1,               /* First list to merge */
  SorterRecord *p2,               /* Second list to merge */
  SorterRecord **ppOut            /* OUT: Head of merged list */
){
  SorterRecord *pFinal = 0;
  SorterRecord **pp = &pFinal;
  void *pVal2 = p2 ? p2->pVal : 0;

  while( p1 && p2 ){
    int res;
    vdbeSorterCompare(pCsr, 0, p1->pVal, p1->nVal, pVal2, p2->nVal, &res);
    if( res<=0 ){
      *pp = p1;
      pp = &p1->pNext;
      p1 = p1->pNext;
      pVal2 = 0;
    }else{
      *pp = p2;
       pp = &p2->pNext;
      p2 = p2->pNext;
      if( p2==0 ) break;
      pVal2 = p2->pVal;
    }
  }
  *pp = p1 ? p1 : p2;
  *ppOut = pFinal;
}

/*
** Sort the linked list of records headed at pCsr->pRecord. Return SQLITE_OK
** if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if an error
** occurs.
*/
static int vdbeSorterSort(VdbeCursor *pCsr){
  int i;
  SorterRecord **aSlot;
  SorterRecord *p;
  VdbeSorter *pSorter = pCsr->pSorter;

  aSlot = (SorterRecord **)sqlite4MallocZero(64 * sizeof(SorterRecord *));
  if( !aSlot ){
    return SQLITE_NOMEM;
  }

  p = pSorter->pRecord;
  while( p ){
    SorterRecord *pNext = p->pNext;
    p->pNext = 0;
    for(i=0; aSlot[i]; i++){
      vdbeSorterMerge(pCsr, p, aSlot[i], &p);
      aSlot[i] = 0;
    }
    aSlot[i] = p;
    p = pNext;
  }

  p = 0;
  for(i=0; i<64; i++){
    vdbeSorterMerge(pCsr, p, aSlot[i], &p);
  }
  pSorter->pRecord = p;

  sqlite4_free(aSlot);
  return SQLITE_OK;
}


/*
** Write the current contents of the in-memory linked-list to a PMA. Return
** SQLITE_OK if successful, or an SQLite error code otherwise.
**
** The format of a PMA is:
**
**     * A varint. This varint contains the total number of bytes of content
**       in the PMA (not including the varint itself).
**
**     * One or more records packed end-to-end in order of ascending keys. 
**       Each record consists of a varint followed by a blob of data (the 
**       key). The varint is the number of bytes in the blob of data.
*/
static int vdbeSorterListToPMA(sqlite4 *db, VdbeCursor *pCsr){
  int rc = SQLITE_OK;             /* Return code */
  VdbeSorter *pSorter = pCsr->pSorter;

  if( pSorter->nInMemory==0 ){
    assert( pSorter->pRecord==0 );
    return rc;
  }

  rc = vdbeSorterSort(pCsr);

  /* If the first temporary PMA file has not been opened, open it now. */
  if( rc==SQLITE_OK && pSorter->pTemp1==0 ){
    rc = vdbeSorterOpenTempFile(db, &pSorter->pTemp1);
    assert( rc!=SQLITE_OK || pSorter->pTemp1 );
    assert( pSorter->iWriteOff==0 );
    assert( pSorter->nPMA==0 );
  }

  if( rc==SQLITE_OK ){
    i64 iOff = pSorter->iWriteOff;
    SorterRecord *p;
    SorterRecord *pNext = 0;
    static const char eightZeros[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };

    pSorter->nPMA++;
    rc = vdbeSorterWriteVarint(pSorter->pTemp1, pSorter->nInMemory, &iOff);
    for(p=pSorter->pRecord; rc==SQLITE_OK && p; p=pNext){
      pNext = p->pNext;
      rc = vdbeSorterWriteVarint(pSorter->pTemp1, p->nVal, &iOff);

      if( rc==SQLITE_OK ){
        rc = sqlite4OsWrite(pSorter->pTemp1, p->pVal, p->nVal, iOff);
        iOff += p->nVal;
      }

      sqlite4DbFree(db, p);
    }

    /* This assert verifies that unless an error has occurred, the size of 
    ** the PMA on disk is the same as the expected size stored in
    ** pSorter->nInMemory. */ 
    assert( rc!=SQLITE_OK || pSorter->nInMemory==(
          iOff-pSorter->iWriteOff-sqlite4VarintLen(pSorter->nInMemory)
    ));

    pSorter->iWriteOff = iOff;
    if( rc==SQLITE_OK ){
      /* Terminate each file with 8 extra bytes so that from any offset
      ** in the file we can always read 9 bytes without a SHORT_READ error */
      rc = sqlite4OsWrite(pSorter->pTemp1, eightZeros, 8, iOff);
    }
    pSorter->pRecord = p;
  }

  return rc;
}

/*
** Add a record to the sorter.
*/
int sqlite4VdbeSorterWrite(
  sqlite4 *db,                    /* Database handle */
  VdbeCursor *pCsr,               /* Sorter cursor */
  Mem *pVal                       /* Memory cell containing record */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc = SQLITE_OK;             /* Return Code */
  SorterRecord *pNew;             /* New list element */

  assert( pSorter );
  pSorter->nInMemory += sqlite4VarintLen(pVal->n) + pVal->n;

  pNew = (SorterRecord *)sqlite4DbMallocRaw(db, pVal->n + sizeof(SorterRecord));
  if( pNew==0 ){
    rc = SQLITE_NOMEM;
  }else{
    pNew->pVal = (void *)&pNew[1];
    memcpy(pNew->pVal, pVal->z, pVal->n);
    pNew->nVal = pVal->n;
    pNew->pNext = pSorter->pRecord;
    pSorter->pRecord = pNew;
  }

  /* See if the contents of the sorter should now be written out. They
  ** are written out when either of the following are true:
  **
  **   * The total memory allocated for the in-memory list is greater 
  **     than (page-size * cache-size), or
  **
  **   * The total memory allocated for the in-memory list is greater 
  **     than (page-size * 10) and sqlite4HeapNearlyFull() returns true.
  */
  if( rc==SQLITE_OK && pSorter->mxPmaSize>0 && (
        (pSorter->nInMemory>pSorter->mxPmaSize)
     || (pSorter->nInMemory>pSorter->mnPmaSize && sqlite4HeapNearlyFull())
  )){
    rc = vdbeSorterListToPMA(db, pCsr);
    pSorter->nInMemory = 0;
  }

  return rc;
}

/*
** Helper function for sqlite4VdbeSorterRewind(). 
*/
static int vdbeSorterInitMerge(
  sqlite4 *db,                    /* Database handle */
  VdbeCursor *pCsr,               /* Cursor handle for this sorter */
  i64 *pnByte                     /* Sum of bytes in all opened PMAs */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* Used to iterator through aIter[] */
  i64 nByte = 0;                  /* Total bytes in all opened PMAs */

  /* Initialize the iterators. */
  for(i=0; i<SORTER_MAX_MERGE_COUNT; i++){
    VdbeSorterIter *pIter = &pSorter->aIter[i];
    rc = vdbeSorterIterInit(db, pSorter, pSorter->iReadOff, pIter, &nByte);
    pSorter->iReadOff = pIter->iEof;
    assert( rc!=SQLITE_OK || pSorter->iReadOff<=pSorter->iWriteOff );
    if( rc!=SQLITE_OK || pSorter->iReadOff>=pSorter->iWriteOff ) break;
  }

  /* Initialize the aTree[] array. */
  for(i=pSorter->nTree-1; rc==SQLITE_OK && i>0; i--){
    rc = vdbeSorterDoCompare(pCsr, i);
  }

  *pnByte = nByte;
  return rc;
}

/*
** Once the sorter has been populated, this function is called to prepare
** for iterating through its contents in sorted order.
*/
int sqlite4VdbeSorterRewind(sqlite4 *db, VdbeCursor *pCsr, int *pbEof){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc;                         /* Return code */
  sqlite4_file *pTemp2 = 0;       /* Second temp file to use */
  i64 iWrite2 = 0;                /* Write offset for pTemp2 */
  int nIter;                      /* Number of iterators used */
  int nByte;                      /* Bytes of space required for aIter/aTree */
  int N = 2;                      /* Power of 2 >= nIter */

  assert( pSorter );

  /* If no data has been written to disk, then do not do so now. Instead,
  ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly
  ** from the in-memory list.  */
  if( pSorter->nPMA==0 ){
    *pbEof = !pSorter->pRecord;
    assert( pSorter->aTree==0 );
    return vdbeSorterSort(pCsr);
  }

  /* Write the current b-tree to a PMA. Close the b-tree cursor. */
  rc = vdbeSorterListToPMA(db, pCsr);
  if( rc!=SQLITE_OK ) return rc;

  /* Allocate space for aIter[] and aTree[]. */
  nIter = pSorter->nPMA;
  if( nIter>SORTER_MAX_MERGE_COUNT ) nIter = SORTER_MAX_MERGE_COUNT;
  assert( nIter>0 );
  while( N<nIter ) N += N;
  nByte = N * (sizeof(int) + sizeof(VdbeSorterIter));
  pSorter->aIter = (VdbeSorterIter *)sqlite4DbMallocZero(db, nByte);
  if( !pSorter->aIter ) return SQLITE_NOMEM;
  pSorter->aTree = (int *)&pSorter->aIter[N];
  pSorter->nTree = N;

  do {
    int iNew;                     /* Index of new, merged, PMA */

    for(iNew=0; 
        rc==SQLITE_OK && iNew*SORTER_MAX_MERGE_COUNT<pSorter->nPMA; 
        iNew++
    ){
      i64 nWrite;                 /* Number of bytes in new PMA */

      /* If there are SORTER_MAX_MERGE_COUNT or less PMAs in file pTemp1,
      ** initialize an iterator for each of them and break out of the loop.
      ** These iterators will be incrementally merged as the VDBE layer calls
      ** sqlite4VdbeSorterNext().
      **
      ** Otherwise, if pTemp1 contains more than SORTER_MAX_MERGE_COUNT PMAs,
      ** initialize interators for SORTER_MAX_MERGE_COUNT of them. These PMAs
      ** are merged into a single PMA that is written to file pTemp2.
      */
      rc = vdbeSorterInitMerge(db, pCsr, &nWrite);
      assert( rc!=SQLITE_OK || pSorter->aIter[ pSorter->aTree[1] ].pFile );
      if( rc!=SQLITE_OK || pSorter->nPMA<=SORTER_MAX_MERGE_COUNT ){
        break;
      }

      /* Open the second temp file, if it is not already open. */
      if( pTemp2==0 ){
        assert( iWrite2==0 );
        rc = vdbeSorterOpenTempFile(db, &pTemp2);
      }

      if( rc==SQLITE_OK ){
        rc = vdbeSorterWriteVarint(pTemp2, nWrite, &iWrite2);
      }

      if( rc==SQLITE_OK ){
        int bEof = 0;
        while( rc==SQLITE_OK && bEof==0 ){
          int nToWrite;
          VdbeSorterIter *pIter = &pSorter->aIter[ pSorter->aTree[1] ];
          assert( pIter->pFile );
          nToWrite = pIter->nKey + sqlite4VarintLen(pIter->nKey);
          rc = sqlite4OsWrite(pTemp2, pIter->aAlloc, nToWrite, iWrite2);
          iWrite2 += nToWrite;
          if( rc==SQLITE_OK ){
            rc = sqlite4VdbeSorterNext(db, pCsr, &bEof);
          }
        }
      }
    }

    if( pSorter->nPMA<=SORTER_MAX_MERGE_COUNT ){
      break;
    }else{
      sqlite4_file *pTmp = pSorter->pTemp1;
      pSorter->nPMA = iNew;
      pSorter->pTemp1 = pTemp2;
      pTemp2 = pTmp;
      pSorter->iWriteOff = iWrite2;
      pSorter->iReadOff = 0;
      iWrite2 = 0;
    }
  }while( rc==SQLITE_OK );

  if( pTemp2 ){
    sqlite4OsCloseFree(pTemp2);
  }
  *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0);
  return rc;
}

/*
** Advance to the next element in the sorter.
*/
int sqlite4VdbeSorterNext(sqlite4 *db, VdbeCursor *pCsr, int *pbEof){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc;                         /* Return code */

  if( pSorter->aTree ){
    int iPrev = pSorter->aTree[1];/* Index of iterator to advance */
    int i;                        /* Index of aTree[] to recalculate */

    rc = vdbeSorterIterNext(db, &pSorter->aIter[iPrev]);
    for(i=(pSorter->nTree+iPrev)/2; rc==SQLITE_OK && i>0; i=i/2){
      rc = vdbeSorterDoCompare(pCsr, i);
    }

    *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0);
  }else{
    SorterRecord *pFree = pSorter->pRecord;
    pSorter->pRecord = pFree->pNext;
    pFree->pNext = 0;
    vdbeSorterRecordFree(db, pFree);
    *pbEof = !pSorter->pRecord;
    rc = SQLITE_OK;
  }
  return rc;
}

/*
** Return a pointer to a buffer owned by the sorter that contains the 
** current key.
*/
static void *vdbeSorterRowkey(
  VdbeSorter *pSorter,            /* Sorter object */
  int *pnKey                      /* OUT: Size of current key in bytes */
){
  void *pKey;
  if( pSorter->aTree ){
    VdbeSorterIter *pIter;
    pIter = &pSorter->aIter[ pSorter->aTree[1] ];
    *pnKey = pIter->nKey;
    pKey = pIter->aKey;
  }else{
    *pnKey = pSorter->pRecord->nVal;
    pKey = pSorter->pRecord->pVal;
  }
  return pKey;
}

/*
** Copy the current sorter key into the memory cell pOut.
*/
int sqlite4VdbeSorterRowkey(VdbeCursor *pCsr, Mem *pOut){
  VdbeSorter *pSorter = pCsr->pSorter;
  void *pKey; int nKey;           /* Sorter key to copy into pOut */

  pKey = vdbeSorterRowkey(pSorter, &nKey);
  if( sqlite4VdbeMemGrow(pOut, nKey, 0) ){
    return SQLITE_NOMEM;
  }
  pOut->n = nKey;
  MemSetTypeFlag(pOut, MEM_Blob);
  memcpy(pOut->z, pKey, nKey);

  return SQLITE_OK;
}

/*
** Compare the key in memory cell pVal with the key that the sorter cursor
** passed as the first argument currently points to. For the purposes of
** the comparison, ignore the rowid field at the end of each record.
**
** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM).
** Otherwise, set *pRes to a negative, zero or positive value if the
** key in pVal is smaller than, equal to or larger than the current sorter
** key.
*/
int sqlite4VdbeSorterCompare(
  VdbeCursor *pCsr,               /* Sorter cursor */
  Mem *pVal,                      /* Value to compare to current sorter key */
  int *pRes                       /* OUT: Result of comparison */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  void *pKey; int nKey;           /* Sorter key to compare pVal with */

  pKey = vdbeSorterRowkey(pSorter, &nKey);
  vdbeSorterCompare(pCsr, 1, pVal->z, pVal->n, pKey, nKey, pRes);
  return SQLITE_OK;
}

#endif /* #ifndef SQLITE_OMIT_MERGE_SORT */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<