Index: ext/rtree/rtree.c ================================================================== --- ext/rtree/rtree.c +++ ext/rtree/rtree.c @@ -52,66 +52,26 @@ ** child page. */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE) -/* -** This file contains an implementation of a couple of different variants -** of the r-tree algorithm. See the README file for further details. The -** same data-structure is used for all, but the algorithms for insert and -** delete operations vary. The variants used are selected at compile time -** by defining the following symbols: -*/ - -/* Either, both or none of the following may be set to activate -** r*tree variant algorithms. -*/ -#define VARIANT_RSTARTREE_CHOOSESUBTREE 0 -#define VARIANT_RSTARTREE_REINSERT 1 - -/* -** Exactly one of the following must be set to 1. -*/ -#define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0 -#define VARIANT_GUTTMAN_LINEAR_SPLIT 0 -#define VARIANT_RSTARTREE_SPLIT 1 - -#define VARIANT_GUTTMAN_SPLIT \ - (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT) - -#if VARIANT_GUTTMAN_QUADRATIC_SPLIT - #define PickNext QuadraticPickNext - #define PickSeeds QuadraticPickSeeds - #define AssignCells splitNodeGuttman -#endif -#if VARIANT_GUTTMAN_LINEAR_SPLIT - #define PickNext LinearPickNext - #define PickSeeds LinearPickSeeds - #define AssignCells splitNodeGuttman -#endif -#if VARIANT_RSTARTREE_SPLIT - #define AssignCells splitNodeStartree -#endif - -#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) -# define NDEBUG 1 -#endif - #ifndef SQLITE_CORE #include "sqlite3ext.h" SQLITE_EXTENSION_INIT1 #else #include "sqlite3.h" #endif #include #include +#include #ifndef SQLITE_AMALGAMATION #include "sqlite3rtree.h" typedef sqlite3_int64 i64; typedef unsigned char u8; +typedef unsigned short u16; typedef unsigned int u32; #endif /* The following macro is used to suppress compiler warnings. */ @@ -125,19 +85,20 @@ typedef struct RtreeCell RtreeCell; typedef struct RtreeConstraint RtreeConstraint; typedef struct RtreeMatchArg RtreeMatchArg; typedef struct RtreeGeomCallback RtreeGeomCallback; typedef union RtreeCoord RtreeCoord; +typedef struct RtreeSearchPoint RtreeSearchPoint; /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ #define RTREE_MAX_DIMENSIONS 5 /* Size of hash table Rtree.aHash. This hash table is not expected to ** ever contain very many entries, so a fixed number of buckets is ** used. */ -#define HASHSIZE 128 +#define HASHSIZE 97 /* The xBestIndex method of this virtual table requires an estimate of ** the number of rows in the virtual table to calculate the costs of ** various strategies. If possible, this estimate is loaded from the ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum). @@ -149,19 +110,19 @@ /* ** An rtree virtual-table object. */ struct Rtree { - sqlite3_vtab base; + sqlite3_vtab base; /* Base class. Must be first */ sqlite3 *db; /* Host database connection */ int iNodeSize; /* Size in bytes of each node in the node table */ - int nDim; /* Number of dimensions */ - int nBytesPerCell; /* Bytes consumed per cell */ + u8 nDim; /* Number of dimensions */ + u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */ + u8 nBytesPerCell; /* Bytes consumed per cell */ int iDepth; /* Current depth of the r-tree structure */ char *zDb; /* Name of database containing r-tree table */ char *zName; /* Name of r-tree table */ - RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ int nBusy; /* Current number of users of this structure */ i64 nRowEst; /* Estimated number of rows in this table */ /* List of nodes removed during a CondenseTree operation. List is ** linked together via the pointer normally used for hash chains - @@ -184,14 +145,14 @@ /* Statements to read/write/delete a record from xxx_parent */ sqlite3_stmt *pReadParent; sqlite3_stmt *pWriteParent; sqlite3_stmt *pDeleteParent; - int eCoordType; + RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ }; -/* Possible values for eCoordType: */ +/* Possible values for Rtree.eCoordType: */ #define RTREE_COORD_REAL32 0 #define RTREE_COORD_INT32 1 /* ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will @@ -199,14 +160,33 @@ ** will be done. */ #ifdef SQLITE_RTREE_INT_ONLY typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */ typedef int RtreeValue; /* Low accuracy coordinate */ +# define RTREE_ZERO 0 #else typedef double RtreeDValue; /* High accuracy coordinate */ typedef float RtreeValue; /* Low accuracy coordinate */ +# define RTREE_ZERO 0.0 #endif + +/* +** When doing a search of an r-tree, instances of the following structure +** record intermediate results from the tree walk. +** +** The id is always a node-id. For iLevel>=1 the id is the node-id of +** the node that the RtreeSearchPoint represents. When iLevel==0, however, +** the id is of the parent node and the cell that RtreeSearchPoint +** represents is the iCell-th entry in the parent node. +*/ +struct RtreeSearchPoint { + RtreeDValue rScore; /* The score for this node. Smallest goes first. */ + sqlite3_int64 id; /* Node ID */ + u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */ + u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */ + u8 iCell; /* Cell index within the node */ +}; /* ** The minimum number of cells allowed for a node is a third of the ** maximum. In Gutman's notation: ** @@ -226,25 +206,48 @@ ** 2^40 is greater than 2^64, an r-tree structure always has a depth of ** 40 or less. */ #define RTREE_MAX_DEPTH 40 + +/* +** Number of entries in the cursor RtreeNode cache. The first entry is +** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining +** entries cache the RtreeNode for the first elements of the priority queue. +*/ +#define RTREE_CACHE_SZ 5 + /* ** An rtree cursor object. */ struct RtreeCursor { - sqlite3_vtab_cursor base; - RtreeNode *pNode; /* Node cursor is currently pointing at */ - int iCell; /* Index of current cell in pNode */ + sqlite3_vtab_cursor base; /* Base class. Must be first */ + u8 atEOF; /* True if at end of search */ + u8 bPoint; /* True if sPoint is valid */ int iStrategy; /* Copy of idxNum search parameter */ int nConstraint; /* Number of entries in aConstraint */ RtreeConstraint *aConstraint; /* Search constraints. */ + int nPointAlloc; /* Number of slots allocated for aPoint[] */ + int nPoint; /* Number of slots used in aPoint[] */ + int mxLevel; /* iLevel value for root of the tree */ + RtreeSearchPoint *aPoint; /* Priority queue for search points */ + RtreeSearchPoint sPoint; /* Cached next search point */ + RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */ + u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */ }; +/* Return the Rtree of a RtreeCursor */ +#define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab)) + +/* +** A coordinate can be either a floating point number or a integer. All +** coordinates within a single R-Tree are always of the same time. +*/ union RtreeCoord { - RtreeValue f; - int i; + RtreeValue f; /* Floating point value */ + int i; /* Integer value */ + u32 u; /* Unsigned for byte-order conversions */ }; /* ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord ** formatted as a RtreeDValue (double or int64). This macro assumes that local @@ -265,42 +268,71 @@ ** A search constraint. */ struct RtreeConstraint { int iCoord; /* Index of constrained coordinate */ int op; /* Constraining operation */ - RtreeDValue rValue; /* Constraint value. */ - int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); - sqlite3_rtree_geometry *pGeom; /* Constraint callback argument for a MATCH */ + union { + RtreeDValue rValue; /* Constraint value. */ + int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*); + int (*xQueryFunc)(sqlite3_rtree_query_info*); + } u; + sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */ }; /* Possible values for RtreeConstraint.op */ -#define RTREE_EQ 0x41 -#define RTREE_LE 0x42 -#define RTREE_LT 0x43 -#define RTREE_GE 0x44 -#define RTREE_GT 0x45 -#define RTREE_MATCH 0x46 +#define RTREE_EQ 0x41 /* A */ +#define RTREE_LE 0x42 /* B */ +#define RTREE_LT 0x43 /* C */ +#define RTREE_GE 0x44 /* D */ +#define RTREE_GT 0x45 /* E */ +#define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */ +#define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */ + /* ** An rtree structure node. */ struct RtreeNode { - RtreeNode *pParent; /* Parent node */ - i64 iNode; - int nRef; - int isDirty; - u8 *zData; - RtreeNode *pNext; /* Next node in this hash chain */ + RtreeNode *pParent; /* Parent node */ + i64 iNode; /* The node number */ + int nRef; /* Number of references to this node */ + int isDirty; /* True if the node needs to be written to disk */ + u8 *zData; /* Content of the node, as should be on disk */ + RtreeNode *pNext; /* Next node in this hash collision chain */ }; + +/* Return the number of cells in a node */ #define NCELL(pNode) readInt16(&(pNode)->zData[2]) /* -** Structure to store a deserialized rtree record. +** A single cell from a node, deserialized */ struct RtreeCell { - i64 iRowid; - RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; + i64 iRowid; /* Node or entry ID */ + RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */ +}; + + +/* +** This object becomes the sqlite3_user_data() for the SQL functions +** that are created by sqlite3_rtree_geometry_callback() and +** sqlite3_rtree_query_callback() and which appear on the right of MATCH +** operators in order to constrain a search. +** +** xGeom and xQueryFunc are the callback functions. Exactly one of +** xGeom and xQueryFunc fields is non-NULL, depending on whether the +** SQL function was created using sqlite3_rtree_geometry_callback() or +** sqlite3_rtree_query_callback(). +** +** This object is deleted automatically by the destructor mechanism in +** sqlite3_create_function_v2(). +*/ +struct RtreeGeomCallback { + int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); + int (*xQueryFunc)(sqlite3_rtree_query_info*); + void (*xDestructor)(void*); + void *pContext; }; /* ** Value for the first field of every RtreeMatchArg object. The MATCH @@ -308,33 +340,20 @@ ** value to avoid operating on invalid blobs (which could cause a segfault). */ #define RTREE_GEOMETRY_MAGIC 0x891245AB /* -** An instance of this structure must be supplied as a blob argument to -** the right-hand-side of an SQL MATCH operator used to constrain an -** r-tree query. +** An instance of this structure (in the form of a BLOB) is returned by +** the SQL functions that sqlite3_rtree_geometry_callback() and +** sqlite3_rtree_query_callback() create, and is read as the right-hand +** operand to the MATCH operator of an R-Tree. */ struct RtreeMatchArg { - u32 magic; /* Always RTREE_GEOMETRY_MAGIC */ - int (*xGeom)(sqlite3_rtree_geometry *, int, RtreeDValue*, int *); - void *pContext; - int nParam; - RtreeDValue aParam[1]; -}; - -/* -** When a geometry callback is created (see sqlite3_rtree_geometry_callback), -** a single instance of the following structure is allocated. It is used -** as the context for the user-function created by by s_r_g_c(). The object -** is eventually deleted by the destructor mechanism provided by -** sqlite3_create_function_v2() (which is called by s_r_g_c() to create -** the geometry callback function). -*/ -struct RtreeGeomCallback { - int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); - void *pContext; + u32 magic; /* Always RTREE_GEOMETRY_MAGIC */ + RtreeGeomCallback cb; /* Info about the callback functions */ + int nParam; /* Number of parameters to the SQL function */ + RtreeDValue aParam[1]; /* Values for parameters to the SQL function */ }; #ifndef MAX # define MAX(x,y) ((x) < (y) ? (y) : (x)) #endif @@ -424,14 +443,11 @@ /* ** Given a node number iNode, return the corresponding key to use ** in the Rtree.aHash table. */ static int nodeHash(i64 iNode){ - return ( - (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^ - (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0) - ) % HASHSIZE; + return iNode % HASHSIZE; } /* ** Search the node hash table for node iNode. If found, return a pointer ** to it. Otherwise, return 0. @@ -487,12 +503,11 @@ } /* ** Obtain a reference to an r-tree node. */ -static int -nodeAcquire( +static int nodeAcquire( Rtree *pRtree, /* R-tree structure */ i64 iNode, /* Node number to load */ RtreeNode *pParent, /* Either the parent node or NULL */ RtreeNode **ppNode /* OUT: Acquired node */ ){ @@ -577,14 +592,14 @@ /* ** Overwrite cell iCell of node pNode with the contents of pCell. */ static void nodeOverwriteCell( - Rtree *pRtree, - RtreeNode *pNode, - RtreeCell *pCell, - int iCell + Rtree *pRtree, /* The overall R-Tree */ + RtreeNode *pNode, /* The node into which the cell is to be written */ + RtreeCell *pCell, /* The cell to write */ + int iCell /* Index into pNode into which pCell is written */ ){ int ii; u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; p += writeInt64(p, pCell->iRowid); for(ii=0; ii<(pRtree->nDim*2); ii++){ @@ -592,11 +607,11 @@ } pNode->isDirty = 1; } /* -** Remove cell the cell with index iCell from node pNode. +** Remove the cell with index iCell from node pNode. */ static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; u8 *pSrc = &pDst[pRtree->nBytesPerCell]; int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; @@ -609,15 +624,14 @@ ** Insert the contents of cell pCell into node pNode. If the insert ** is successful, return SQLITE_OK. ** ** If there is not enough free space in pNode, return SQLITE_FULL. */ -static int -nodeInsertCell( - Rtree *pRtree, - RtreeNode *pNode, - RtreeCell *pCell +static int nodeInsertCell( + Rtree *pRtree, /* The overall R-Tree */ + RtreeNode *pNode, /* Write new cell into this node */ + RtreeCell *pCell /* The cell to be inserted */ ){ int nCell; /* Current number of cells in pNode */ int nMaxCell; /* Maximum number of cells for pNode */ nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; @@ -634,12 +648,11 @@ } /* ** If the node is dirty, write it out to the database. */ -static int -nodeWrite(Rtree *pRtree, RtreeNode *pNode){ +static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){ int rc = SQLITE_OK; if( pNode->isDirty ){ sqlite3_stmt *p = pRtree->pWriteNode; if( pNode->iNode ){ sqlite3_bind_int64(p, 1, pNode->iNode); @@ -660,12 +673,11 @@ /* ** Release a reference to a node. If the node is dirty and the reference ** count drops to zero, the node data is written to the database. */ -static int -nodeRelease(Rtree *pRtree, RtreeNode *pNode){ +static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ int rc = SQLITE_OK; if( pNode ){ assert( pNode->nRef>0 ); pNode->nRef--; if( pNode->nRef==0 ){ @@ -689,45 +701,50 @@ ** Return the 64-bit integer value associated with cell iCell of ** node pNode. If pNode is a leaf node, this is a rowid. If it is ** an internal node, then the 64-bit integer is a child page number. */ static i64 nodeGetRowid( - Rtree *pRtree, - RtreeNode *pNode, - int iCell + Rtree *pRtree, /* The overall R-Tree */ + RtreeNode *pNode, /* The node from which to extract the ID */ + int iCell /* The cell index from which to extract the ID */ ){ assert( iCellzData[4 + pRtree->nBytesPerCell*iCell]); } /* ** Return coordinate iCoord from cell iCell in node pNode. */ static void nodeGetCoord( - Rtree *pRtree, - RtreeNode *pNode, - int iCell, - int iCoord, - RtreeCoord *pCoord /* Space to write result to */ + Rtree *pRtree, /* The overall R-Tree */ + RtreeNode *pNode, /* The node from which to extract a coordinate */ + int iCell, /* The index of the cell within the node */ + int iCoord, /* Which coordinate to extract */ + RtreeCoord *pCoord /* OUT: Space to write result to */ ){ readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); } /* ** Deserialize cell iCell of node pNode. Populate the structure pointed ** to by pCell with the results. */ static void nodeGetCell( - Rtree *pRtree, - RtreeNode *pNode, - int iCell, - RtreeCell *pCell + Rtree *pRtree, /* The overall R-Tree */ + RtreeNode *pNode, /* The node containing the cell to be read */ + int iCell, /* Index of the cell within the node */ + RtreeCell *pCell /* OUT: Write the cell contents here */ ){ - int ii; + u8 *pData; + u8 *pEnd; + RtreeCoord *pCoord; pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); - for(ii=0; iinDim*2; ii++){ - nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]); + pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell); + pEnd = pData + pRtree->nDim*8; + pCoord = pCell->aCoord; + for(; pDataaConstraint ){ int i; /* Used to iterate through constraint array */ for(i=0; inConstraint; i++){ - sqlite3_rtree_geometry *pGeom = pCsr->aConstraint[i].pGeom; - if( pGeom ){ - if( pGeom->xDelUser ) pGeom->xDelUser(pGeom->pUser); - sqlite3_free(pGeom); + sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo; + if( pInfo ){ + if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser); + sqlite3_free(pInfo); } } sqlite3_free(pCsr->aConstraint); pCsr->aConstraint = 0; } @@ -865,16 +882,17 @@ /* ** Rtree virtual table module xClose method. */ static int rtreeClose(sqlite3_vtab_cursor *cur){ Rtree *pRtree = (Rtree *)(cur->pVtab); - int rc; + int ii; RtreeCursor *pCsr = (RtreeCursor *)cur; freeCursorConstraints(pCsr); - rc = nodeRelease(pRtree, pCsr->pNode); + sqlite3_free(pCsr->aPoint); + for(ii=0; iiaNode[ii]); sqlite3_free(pCsr); - return rc; + return SQLITE_OK; } /* ** Rtree virtual table module xEof method. ** @@ -881,198 +899,168 @@ ** Return non-zero if the cursor does not currently point to a valid ** record (i.e if the scan has finished), or zero otherwise. */ static int rtreeEof(sqlite3_vtab_cursor *cur){ RtreeCursor *pCsr = (RtreeCursor *)cur; - return (pCsr->pNode==0); -} - -/* -** The r-tree constraint passed as the second argument to this function is -** guaranteed to be a MATCH constraint. -*/ -static int testRtreeGeom( - Rtree *pRtree, /* R-Tree object */ - RtreeConstraint *pConstraint, /* MATCH constraint to test */ - RtreeCell *pCell, /* Cell to test */ - int *pbRes /* OUT: Test result */ -){ - int i; - RtreeDValue aCoord[RTREE_MAX_DIMENSIONS*2]; - int nCoord = pRtree->nDim*2; - - assert( pConstraint->op==RTREE_MATCH ); - assert( pConstraint->pGeom ); - - for(i=0; iaCoord[i]); - } - return pConstraint->xGeom(pConstraint->pGeom, nCoord, aCoord, pbRes); -} - -/* -** Cursor pCursor currently points to a cell in a non-leaf page. -** Set *pbEof to true if the sub-tree headed by the cell is filtered -** (excluded) by the constraints in the pCursor->aConstraint[] -** array, or false otherwise. -** -** Return SQLITE_OK if successful or an SQLite error code if an error -** occurs within a geometry callback. -*/ -static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){ - RtreeCell cell; - int ii; - int bRes = 0; - int rc = SQLITE_OK; - - nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); - for(ii=0; bRes==0 && iinConstraint; ii++){ - RtreeConstraint *p = &pCursor->aConstraint[ii]; - RtreeDValue cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]); - RtreeDValue cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]); - - assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE - || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH - ); - - switch( p->op ){ - case RTREE_LE: case RTREE_LT: - bRes = p->rValuerValue>cell_max; - break; - - case RTREE_EQ: - bRes = (p->rValue>cell_max || p->rValueop==RTREE_MATCH ); - rc = testRtreeGeom(pRtree, p, &cell, &bRes); - bRes = !bRes; - break; - } - } - } - - *pbEof = bRes; - return rc; -} - -/* -** Test if the cell that cursor pCursor currently points to -** would be filtered (excluded) by the constraints in the -** pCursor->aConstraint[] array. If so, set *pbEof to true before -** returning. If the cell is not filtered (excluded) by the constraints, -** set pbEof to zero. -** -** Return SQLITE_OK if successful or an SQLite error code if an error -** occurs within a geometry callback. -** -** This function assumes that the cell is part of a leaf node. -*/ -static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){ - RtreeCell cell; - int ii; - *pbEof = 0; - - nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); - for(ii=0; iinConstraint; ii++){ - RtreeConstraint *p = &pCursor->aConstraint[ii]; - RtreeDValue coord = DCOORD(cell.aCoord[p->iCoord]); - int res; - assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE - || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH - ); - switch( p->op ){ - case RTREE_LE: res = (coord<=p->rValue); break; - case RTREE_LT: res = (coordrValue); break; - case RTREE_GE: res = (coord>=p->rValue); break; - case RTREE_GT: res = (coord>p->rValue); break; - case RTREE_EQ: res = (coord==p->rValue); break; - default: { - int rc; - assert( p->op==RTREE_MATCH ); - rc = testRtreeGeom(pRtree, p, &cell, &res); - if( rc!=SQLITE_OK ){ - return rc; - } - break; - } - } - - if( !res ){ - *pbEof = 1; - return SQLITE_OK; - } - } - - return SQLITE_OK; -} - -/* -** Cursor pCursor currently points at a node that heads a sub-tree of -** height iHeight (if iHeight==0, then the node is a leaf). Descend -** to point to the left-most cell of the sub-tree that matches the -** configured constraints. -*/ -static int descendToCell( - Rtree *pRtree, - RtreeCursor *pCursor, - int iHeight, - int *pEof /* OUT: Set to true if cannot descend */ -){ - int isEof; - int rc; - int ii; - RtreeNode *pChild; - sqlite3_int64 iRowid; - - RtreeNode *pSavedNode = pCursor->pNode; - int iSavedCell = pCursor->iCell; - - assert( iHeight>=0 ); - - if( iHeight==0 ){ - rc = testRtreeEntry(pRtree, pCursor, &isEof); - }else{ - rc = testRtreeCell(pRtree, pCursor, &isEof); - } - if( rc!=SQLITE_OK || isEof || iHeight==0 ){ - goto descend_to_cell_out; - } - - iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell); - rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild); - if( rc!=SQLITE_OK ){ - goto descend_to_cell_out; - } - - nodeRelease(pRtree, pCursor->pNode); - pCursor->pNode = pChild; - isEof = 1; - for(ii=0; isEof && iiiCell = ii; - rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof); - if( rc!=SQLITE_OK ){ - goto descend_to_cell_out; - } - } - - if( isEof ){ - assert( pCursor->pNode==pChild ); - nodeReference(pSavedNode); - nodeRelease(pRtree, pChild); - pCursor->pNode = pSavedNode; - pCursor->iCell = iSavedCell; - } - -descend_to_cell_out: - *pEof = isEof; - return rc; + return pCsr->atEOF; +} + +/* +** Convert raw bits from the on-disk RTree record into a coordinate value. +** The on-disk format is big-endian and needs to be converted for little- +** endian platforms. The on-disk record stores integer coordinates if +** eInt is true and it stores 32-bit floating point records if eInt is +** false. a[] is the four bytes of the on-disk record to be decoded. +** Store the results in "r". +** +** There are three versions of this macro, one each for little-endian and +** big-endian processors and a third generic implementation. The endian- +** specific implementations are much faster and are preferred if the +** processor endianness is known at compile-time. The SQLITE_BYTEORDER +** macro is part of sqliteInt.h and hence the endian-specific +** implementation will only be used if this module is compiled as part +** of the amalgamation. +*/ +#if defined(SQLITE_BYTEORDER) && SQLITE_BYTEORDER==1234 +#define RTREE_DECODE_COORD(eInt, a, r) { \ + RtreeCoord c; /* Coordinate decoded */ \ + memcpy(&c.u,a,4); \ + c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \ + ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \ + r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ +} +#elif defined(SQLITE_BYTEORDER) && SQLITE_BYTEORDER==4321 +#define RTREE_DECODE_COORD(eInt, a, r) { \ + RtreeCoord c; /* Coordinate decoded */ \ + memcpy(&c.u,a,4); \ + r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ +} +#else +#define RTREE_DECODE_COORD(eInt, a, r) { \ + RtreeCoord c; /* Coordinate decoded */ \ + c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \ + +((u32)a[2]<<8) + a[3]; \ + r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ +} +#endif + +/* +** Check the RTree node or entry given by pCellData and p against the MATCH +** constraint pConstraint. +*/ +static int rtreeCallbackConstraint( + RtreeConstraint *pConstraint, /* The constraint to test */ + int eInt, /* True if RTree holding integer coordinates */ + u8 *pCellData, /* Raw cell content */ + RtreeSearchPoint *pSearch, /* Container of this cell */ + sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */ + int *peWithin /* OUT: visibility of the cell */ +){ + int i; /* Loop counter */ + sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */ + int nCoord = pInfo->nCoord; /* No. of coordinates */ + int rc; /* Callback return code */ + sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */ + + assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY ); + assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 ); + + if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){ + pInfo->iRowid = readInt64(pCellData); + } + pCellData += 8; + for(i=0; iop==RTREE_MATCH ){ + rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo, + nCoord, aCoord, &i); + if( i==0 ) *peWithin = NOT_WITHIN; + *prScore = RTREE_ZERO; + }else{ + pInfo->aCoord = aCoord; + pInfo->iLevel = pSearch->iLevel - 1; + pInfo->rScore = pInfo->rParentScore = pSearch->rScore; + pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin; + rc = pConstraint->u.xQueryFunc(pInfo); + if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin; + if( pInfo->rScore<*prScore || *prScorerScore; + } + } + return rc; +} + +/* +** Check the internal RTree node given by pCellData against constraint p. +** If this constraint cannot be satisfied by any child within the node, +** set *peWithin to NOT_WITHIN. +*/ +static void rtreeNonleafConstraint( + RtreeConstraint *p, /* The constraint to test */ + int eInt, /* True if RTree holds integer coordinates */ + u8 *pCellData, /* Raw cell content as appears on disk */ + int *peWithin /* Adjust downward, as appropriate */ +){ + sqlite3_rtree_dbl val; /* Coordinate value convert to a double */ + + /* p->iCoord might point to either a lower or upper bound coordinate + ** in a coordinate pair. But make pCellData point to the lower bound. + */ + pCellData += 8 + 4*(p->iCoord&0xfe); + + assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE + || p->op==RTREE_GT || p->op==RTREE_EQ ); + switch( p->op ){ + case RTREE_LE: + case RTREE_LT: + case RTREE_EQ: + RTREE_DECODE_COORD(eInt, pCellData, val); + /* val now holds the lower bound of the coordinate pair */ + if( p->u.rValue>=val ) return; + if( p->op!=RTREE_EQ ) break; /* RTREE_LE and RTREE_LT end here */ + /* Fall through for the RTREE_EQ case */ + + default: /* RTREE_GT or RTREE_GE, or fallthrough of RTREE_EQ */ + pCellData += 4; + RTREE_DECODE_COORD(eInt, pCellData, val); + /* val now holds the upper bound of the coordinate pair */ + if( p->u.rValue<=val ) return; + } + *peWithin = NOT_WITHIN; +} + +/* +** Check the leaf RTree cell given by pCellData against constraint p. +** If this constraint is not satisfied, set *peWithin to NOT_WITHIN. +** If the constraint is satisfied, leave *peWithin unchanged. +** +** The constraint is of the form: xN op $val +** +** The op is given by p->op. The xN is p->iCoord-th coordinate in +** pCellData. $val is given by p->u.rValue. +*/ +static void rtreeLeafConstraint( + RtreeConstraint *p, /* The constraint to test */ + int eInt, /* True if RTree holds integer coordinates */ + u8 *pCellData, /* Raw cell content as appears on disk */ + int *peWithin /* Adjust downward, as appropriate */ +){ + RtreeDValue xN; /* Coordinate value converted to a double */ + + assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE + || p->op==RTREE_GT || p->op==RTREE_EQ ); + pCellData += 8 + p->iCoord*4; + RTREE_DECODE_COORD(eInt, pCellData, xN); + switch( p->op ){ + case RTREE_LE: if( xN <= p->u.rValue ) return; break; + case RTREE_LT: if( xN < p->u.rValue ) return; break; + case RTREE_GE: if( xN >= p->u.rValue ) return; break; + case RTREE_GT: if( xN > p->u.rValue ) return; break; + default: if( xN == p->u.rValue ) return; break; + } + *peWithin = NOT_WITHIN; } /* ** One of the cells in node pNode is guaranteed to have a 64-bit ** integer value equal to iRowid. Return the index of this cell. @@ -1083,10 +1071,11 @@ i64 iRowid, int *piIndex ){ int ii; int nCell = NCELL(pNode); + assert( nCell<200 ); for(ii=0; iiiNode, piIndex); } *piIndex = -1; return SQLITE_OK; } + +/* +** Compare two search points. Return negative, zero, or positive if the first +** is less than, equal to, or greater than the second. +** +** The rScore is the primary key. Smaller rScore values come first. +** If the rScore is a tie, then use iLevel as the tie breaker with smaller +** iLevel values coming first. In this way, if rScore is the same for all +** SearchPoints, then iLevel becomes the deciding factor and the result +** is a depth-first search, which is the desired default behavior. +*/ +static int rtreeSearchPointCompare( + const RtreeSearchPoint *pA, + const RtreeSearchPoint *pB +){ + if( pA->rScorerScore ) return -1; + if( pA->rScore>pB->rScore ) return +1; + if( pA->iLeveliLevel ) return -1; + if( pA->iLevel>pB->iLevel ) return +1; + return 0; +} + +/* +** Interchange to search points in a cursor. +*/ +static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){ + RtreeSearchPoint t = p->aPoint[i]; + assert( iaPoint[i] = p->aPoint[j]; + p->aPoint[j] = t; + i++; j++; + if( i=RTREE_CACHE_SZ ){ + nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); + p->aNode[i] = 0; + }else{ + RtreeNode *pTemp = p->aNode[i]; + p->aNode[i] = p->aNode[j]; + p->aNode[j] = pTemp; + } + } +} + +/* +** Return the search point with the lowest current score. +*/ +static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){ + return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0; +} + +/* +** Get the RtreeNode for the search point with the lowest score. +*/ +static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){ + sqlite3_int64 id; + int ii = 1 - pCur->bPoint; + assert( ii==0 || ii==1 ); + assert( pCur->bPoint || pCur->nPoint ); + if( pCur->aNode[ii]==0 ){ + assert( pRC!=0 ); + id = ii ? pCur->aPoint[0].id : pCur->sPoint.id; + *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]); + } + return pCur->aNode[ii]; +} + +/* +** Push a new element onto the priority queue +*/ +static RtreeSearchPoint *rtreeEnqueue( + RtreeCursor *pCur, /* The cursor */ + RtreeDValue rScore, /* Score for the new search point */ + u8 iLevel /* Level for the new search point */ +){ + int i, j; + RtreeSearchPoint *pNew; + if( pCur->nPoint>=pCur->nPointAlloc ){ + int nNew = pCur->nPointAlloc*2 + 8; + pNew = sqlite3_realloc(pCur->aPoint, nNew*sizeof(pCur->aPoint[0])); + if( pNew==0 ) return 0; + pCur->aPoint = pNew; + pCur->nPointAlloc = nNew; + } + i = pCur->nPoint++; + pNew = pCur->aPoint + i; + pNew->rScore = rScore; + pNew->iLevel = iLevel; + assert( iLevel>=0 && iLevel<=RTREE_MAX_DEPTH ); + while( i>0 ){ + RtreeSearchPoint *pParent; + j = (i-1)/2; + pParent = pCur->aPoint + j; + if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break; + rtreeSearchPointSwap(pCur, j, i); + i = j; + pNew = pParent; + } + return pNew; +} + +/* +** Allocate a new RtreeSearchPoint and return a pointer to it. Return +** NULL if malloc fails. +*/ +static RtreeSearchPoint *rtreeSearchPointNew( + RtreeCursor *pCur, /* The cursor */ + RtreeDValue rScore, /* Score for the new search point */ + u8 iLevel /* Level for the new search point */ +){ + RtreeSearchPoint *pNew, *pFirst; + pFirst = rtreeSearchPointFirst(pCur); + pCur->anQueue[iLevel]++; + if( pFirst==0 + || pFirst->rScore>rScore + || (pFirst->rScore==rScore && pFirst->iLevel>iLevel) + ){ + if( pCur->bPoint ){ + int ii; + pNew = rtreeEnqueue(pCur, rScore, iLevel); + if( pNew==0 ) return 0; + ii = (int)(pNew - pCur->aPoint) + 1; + if( iiaNode[ii]==0 ); + pCur->aNode[ii] = pCur->aNode[0]; + }else{ + nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]); + } + pCur->aNode[0] = 0; + *pNew = pCur->sPoint; + } + pCur->sPoint.rScore = rScore; + pCur->sPoint.iLevel = iLevel; + pCur->bPoint = 1; + return &pCur->sPoint; + }else{ + return rtreeEnqueue(pCur, rScore, iLevel); + } +} + +#if 0 +/* Tracing routines for the RtreeSearchPoint queue */ +static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){ + if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); } + printf(" %d.%05lld.%02d %g %d", + p->iLevel, p->id, p->iCell, p->rScore, p->eWithin + ); + idx++; + if( idxaNode[idx]); + }else{ + printf("\n"); + } +} +static void traceQueue(RtreeCursor *pCur, const char *zPrefix){ + int ii; + printf("=== %9s ", zPrefix); + if( pCur->bPoint ){ + tracePoint(&pCur->sPoint, -1, pCur); + } + for(ii=0; iinPoint; ii++){ + if( ii>0 || pCur->bPoint ) printf(" "); + tracePoint(&pCur->aPoint[ii], ii, pCur); + } +} +# define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B) +#else +# define RTREE_QUEUE_TRACE(A,B) /* no-op */ +#endif + +/* Remove the search point with the lowest current score. +*/ +static void rtreeSearchPointPop(RtreeCursor *p){ + int i, j, k, n; + i = 1 - p->bPoint; + assert( i==0 || i==1 ); + if( p->aNode[i] ){ + nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); + p->aNode[i] = 0; + } + if( p->bPoint ){ + p->anQueue[p->sPoint.iLevel]--; + p->bPoint = 0; + }else if( p->nPoint ){ + p->anQueue[p->aPoint[0].iLevel]--; + n = --p->nPoint; + p->aPoint[0] = p->aPoint[n]; + if( naNode[1] = p->aNode[n+1]; + p->aNode[n+1] = 0; + } + i = 0; + while( (j = i*2+1)aPoint[k], &p->aPoint[j])<0 ){ + if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){ + rtreeSearchPointSwap(p, i, k); + i = k; + }else{ + break; + } + }else{ + if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){ + rtreeSearchPointSwap(p, i, j); + i = j; + }else{ + break; + } + } + } + } +} + + +/* +** Continue the search on cursor pCur until the front of the queue +** contains an entry suitable for returning as a result-set row, +** or until the RtreeSearchPoint queue is empty, indicating that the +** query has completed. +*/ +static int rtreeStepToLeaf(RtreeCursor *pCur){ + RtreeSearchPoint *p; + Rtree *pRtree = RTREE_OF_CURSOR(pCur); + RtreeNode *pNode; + int eWithin; + int rc = SQLITE_OK; + int nCell; + int nConstraint = pCur->nConstraint; + int ii; + int eInt; + RtreeSearchPoint x; + + eInt = pRtree->eCoordType==RTREE_COORD_INT32; + while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){ + pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc); + if( rc ) return rc; + nCell = NCELL(pNode); + assert( nCell<200 ); + while( p->iCellzData + (4+pRtree->nBytesPerCell*p->iCell); + eWithin = FULLY_WITHIN; + for(ii=0; iiaConstraint + ii; + if( pConstraint->op>=RTREE_MATCH ){ + rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p, + &rScore, &eWithin); + if( rc ) return rc; + }else if( p->iLevel==1 ){ + rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin); + }else{ + rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin); + } + if( eWithin==NOT_WITHIN ) break; + } + p->iCell++; + if( eWithin==NOT_WITHIN ) continue; + x.iLevel = p->iLevel - 1; + if( x.iLevel ){ + x.id = readInt64(pCellData); + x.iCell = 0; + }else{ + x.id = p->id; + x.iCell = p->iCell - 1; + } + if( p->iCell>=nCell ){ + RTREE_QUEUE_TRACE(pCur, "POP-S:"); + rtreeSearchPointPop(pCur); + } + if( rScoreeWithin = eWithin; + p->id = x.id; + p->iCell = x.iCell; + RTREE_QUEUE_TRACE(pCur, "PUSH-S:"); + break; + } + if( p->iCell>=nCell ){ + RTREE_QUEUE_TRACE(pCur, "POP-Se:"); + rtreeSearchPointPop(pCur); + } + } + pCur->atEOF = p==0; + return SQLITE_OK; +} /* ** Rtree virtual table module xNext method. */ static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ - Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab); RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; int rc = SQLITE_OK; - /* RtreeCursor.pNode must not be NULL. If is is NULL, then this cursor is - ** already at EOF. It is against the rules to call the xNext() method of - ** a cursor that has already reached EOF. - */ - assert( pCsr->pNode ); - - if( pCsr->iStrategy==1 ){ - /* This "scan" is a direct lookup by rowid. There is no next entry. */ - nodeRelease(pRtree, pCsr->pNode); - pCsr->pNode = 0; - }else{ - /* Move to the next entry that matches the configured constraints. */ - int iHeight = 0; - while( pCsr->pNode ){ - RtreeNode *pNode = pCsr->pNode; - int nCell = NCELL(pNode); - for(pCsr->iCell++; pCsr->iCelliCell++){ - int isEof; - rc = descendToCell(pRtree, pCsr, iHeight, &isEof); - if( rc!=SQLITE_OK || !isEof ){ - return rc; - } - } - pCsr->pNode = pNode->pParent; - rc = nodeParentIndex(pRtree, pNode, &pCsr->iCell); - if( rc!=SQLITE_OK ){ - return rc; - } - nodeReference(pCsr->pNode); - nodeRelease(pRtree, pNode); - iHeight++; - } - } - + /* Move to the next entry that matches the configured constraints. */ + RTREE_QUEUE_TRACE(pCsr, "POP-Nx:"); + rtreeSearchPointPop(pCsr); + rc = rtreeStepToLeaf(pCsr); return rc; } /* ** Rtree virtual table module xRowid method. */ static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ - Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; - - assert(pCsr->pNode); - *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); - - return SQLITE_OK; + RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); + int rc = SQLITE_OK; + RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); + if( rc==SQLITE_OK && p ){ + *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell); + } + return rc; } /* ** Rtree virtual table module xColumn method. */ static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ Rtree *pRtree = (Rtree *)cur->pVtab; RtreeCursor *pCsr = (RtreeCursor *)cur; + RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); + RtreeCoord c; + int rc = SQLITE_OK; + RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); + if( rc ) return rc; + if( p==0 ) return SQLITE_OK; if( i==0 ){ - i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); - sqlite3_result_int64(ctx, iRowid); + sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell)); }else{ - RtreeCoord c; - nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c); + if( rc ) return rc; + nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c); #ifndef SQLITE_RTREE_INT_ONLY if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ sqlite3_result_double(ctx, c.f); }else #endif @@ -1186,11 +1435,10 @@ { assert( pRtree->eCoordType==RTREE_COORD_INT32 ); sqlite3_result_int(ctx, c.i); } } - return SQLITE_OK; } /* ** Use nodeAcquire() to obtain the leaf node containing the record with @@ -1197,16 +1445,22 @@ ** rowid iRowid. If successful, set *ppLeaf to point to the node and ** return SQLITE_OK. If there is no such record in the table, set ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf ** to zero and return an SQLite error code. */ -static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){ +static int findLeafNode( + Rtree *pRtree, /* RTree to search */ + i64 iRowid, /* The rowid searching for */ + RtreeNode **ppLeaf, /* Write the node here */ + sqlite3_int64 *piNode /* Write the node-id here */ +){ int rc; *ppLeaf = 0; sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); + if( piNode ) *piNode = iNode; rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); sqlite3_reset(pRtree->pReadRowid); }else{ rc = sqlite3_reset(pRtree->pReadRowid); } @@ -1218,13 +1472,14 @@ ** as the second argument for a MATCH constraint. The value passed as the ** first argument to this function is the right-hand operand to the MATCH ** operator. */ static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ - RtreeMatchArg *p; - sqlite3_rtree_geometry *pGeom; - int nBlob; + RtreeMatchArg *pBlob; /* BLOB returned by geometry function */ + sqlite3_rtree_query_info *pInfo; /* Callback information */ + int nBlob; /* Size of the geometry function blob */ + int nExpected; /* Expected size of the BLOB */ /* Check that value is actually a blob. */ if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR; /* Check that the blob is roughly the right size. */ @@ -1233,31 +1488,33 @@ || ((nBlob-sizeof(RtreeMatchArg))%sizeof(RtreeDValue))!=0 ){ return SQLITE_ERROR; } - pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc( - sizeof(sqlite3_rtree_geometry) + nBlob - ); - if( !pGeom ) return SQLITE_NOMEM; - memset(pGeom, 0, sizeof(sqlite3_rtree_geometry)); - p = (RtreeMatchArg *)&pGeom[1]; - - memcpy(p, sqlite3_value_blob(pValue), nBlob); - if( p->magic!=RTREE_GEOMETRY_MAGIC - || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(RtreeDValue)) - ){ - sqlite3_free(pGeom); + pInfo = (sqlite3_rtree_query_info*)sqlite3_malloc( sizeof(*pInfo)+nBlob ); + if( !pInfo ) return SQLITE_NOMEM; + memset(pInfo, 0, sizeof(*pInfo)); + pBlob = (RtreeMatchArg*)&pInfo[1]; + + memcpy(pBlob, sqlite3_value_blob(pValue), nBlob); + nExpected = (int)(sizeof(RtreeMatchArg) + + (pBlob->nParam-1)*sizeof(RtreeDValue)); + if( pBlob->magic!=RTREE_GEOMETRY_MAGIC || nBlob!=nExpected ){ + sqlite3_free(pInfo); return SQLITE_ERROR; } + pInfo->pContext = pBlob->cb.pContext; + pInfo->nParam = pBlob->nParam; + pInfo->aParam = pBlob->aParam; - pGeom->pContext = p->pContext; - pGeom->nParam = p->nParam; - pGeom->aParam = p->aParam; - - pCons->xGeom = p->xGeom; - pCons->pGeom = pGeom; + if( pBlob->cb.xGeom ){ + pCons->u.xGeom = pBlob->cb.xGeom; + }else{ + pCons->op = RTREE_QUERY; + pCons->u.xQueryFunc = pBlob->cb.xQueryFunc; + } + pCons->pInfo = pInfo; return SQLITE_OK; } /* ** Rtree virtual table module xFilter method. @@ -1267,91 +1524,96 @@ int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; - RtreeNode *pRoot = 0; int ii; int rc = SQLITE_OK; + int iCell = 0; rtreeReference(pRtree); freeCursorConstraints(pCsr); pCsr->iStrategy = idxNum; if( idxNum==1 ){ /* Special case - lookup by rowid. */ RtreeNode *pLeaf; /* Leaf on which the required cell resides */ + RtreeSearchPoint *p; /* Search point for the the leaf */ i64 iRowid = sqlite3_value_int64(argv[0]); - rc = findLeafNode(pRtree, iRowid, &pLeaf); - pCsr->pNode = pLeaf; - if( pLeaf ){ - assert( rc==SQLITE_OK ); - rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &pCsr->iCell); + i64 iNode = 0; + rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode); + if( rc==SQLITE_OK && pLeaf!=0 ){ + p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0); + assert( p!=0 ); /* Always returns pCsr->sPoint */ + pCsr->aNode[0] = pLeaf; + p->id = iNode; + p->eWithin = PARTLY_WITHIN; + rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell); + p->iCell = iCell; + RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:"); + }else{ + pCsr->atEOF = 1; } }else{ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array ** with the configured constraints. */ - if( argc>0 ){ + rc = nodeAcquire(pRtree, 1, 0, &pRoot); + if( rc==SQLITE_OK && argc>0 ){ pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); pCsr->nConstraint = argc; if( !pCsr->aConstraint ){ rc = SQLITE_NOMEM; }else{ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); + memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1)); assert( (idxStr==0 && argc==0) || (idxStr && (int)strlen(idxStr)==argc*2) ); for(ii=0; iiaConstraint[ii]; p->op = idxStr[ii*2]; - p->iCoord = idxStr[ii*2+1]-'a'; - if( p->op==RTREE_MATCH ){ + p->iCoord = idxStr[ii*2+1]-'0'; + if( p->op>=RTREE_MATCH ){ /* A MATCH operator. The right-hand-side must be a blob that ** can be cast into an RtreeMatchArg object. One created using ** an sqlite3_rtree_geometry_callback() SQL user function. */ rc = deserializeGeometry(argv[ii], p); if( rc!=SQLITE_OK ){ break; } + p->pInfo->nCoord = pRtree->nDim*2; + p->pInfo->anQueue = pCsr->anQueue; + p->pInfo->mxLevel = pRtree->iDepth + 1; }else{ #ifdef SQLITE_RTREE_INT_ONLY - p->rValue = sqlite3_value_int64(argv[ii]); + p->u.rValue = sqlite3_value_int64(argv[ii]); #else - p->rValue = sqlite3_value_double(argv[ii]); + p->u.rValue = sqlite3_value_double(argv[ii]); #endif } } } } - - if( rc==SQLITE_OK ){ - pCsr->pNode = 0; - rc = nodeAcquire(pRtree, 1, 0, &pRoot); - } - if( rc==SQLITE_OK ){ - int isEof = 1; - int nCell = NCELL(pRoot); - pCsr->pNode = pRoot; - for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCelliCell++){ - assert( pCsr->pNode==pRoot ); - rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof); - if( !isEof ){ - break; - } - } - if( rc==SQLITE_OK && isEof ){ - assert( pCsr->pNode==pRoot ); - nodeRelease(pRtree, pRoot); - pCsr->pNode = 0; - } - assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCellpNode) ); - } - } - + if( rc==SQLITE_OK ){ + RtreeSearchPoint *pNew; + pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, pRtree->iDepth+1); + if( pNew==0 ) return SQLITE_NOMEM; + pNew->id = 1; + pNew->iCell = 0; + pNew->eWithin = PARTLY_WITHIN; + assert( pCsr->bPoint==1 ); + pCsr->aNode[0] = pRoot; + pRoot = 0; + RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:"); + rc = rtreeStepToLeaf(pCsr); + } + } + + nodeRelease(pRtree, pRoot); rtreeRelease(pRtree); return rc; } /* @@ -1449,11 +1711,11 @@ assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH ); op = RTREE_MATCH; break; } zIdxStr[iIdx++] = op; - zIdxStr[iIdx++] = p->iColumn - 1 + 'a'; + zIdxStr[iIdx++] = p->iColumn - 1 + '0'; pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); pIdxInfo->aConstraintUsage[ii].omit = 1; } } @@ -1542,66 +1804,36 @@ area = cellArea(pRtree, &cell); cellUnion(pRtree, &cell, pCell); return (cellArea(pRtree, &cell)-area); } -#if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT static RtreeDValue cellOverlap( Rtree *pRtree, RtreeCell *p, RtreeCell *aCell, - int nCell, - int iExclude + int nCell ){ int ii; - RtreeDValue overlap = 0.0; + RtreeDValue overlap = RTREE_ZERO; for(ii=0; iinDim*2); jj+=2){ - RtreeDValue x1, x2; - - x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); - x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); - - if( x2nDim*2); jj+=2){ + RtreeDValue x1, x2; + x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); + x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); + if( x2iDepth-iHeight); ii++){ int iCell; sqlite3_int64 iBest = 0; - RtreeDValue fMinGrowth = 0.0; - RtreeDValue fMinArea = 0.0; -#if VARIANT_RSTARTREE_CHOOSESUBTREE - RtreeDValue fMinOverlap = 0.0; - RtreeDValue overlap; -#endif + RtreeDValue fMinGrowth = RTREE_ZERO; + RtreeDValue fMinArea = RTREE_ZERO; int nCell = NCELL(pNode); RtreeCell cell; RtreeNode *pChild; RtreeCell *aCell = 0; -#if VARIANT_RSTARTREE_CHOOSESUBTREE - if( ii==(pRtree->iDepth-1) ){ - int jj; - aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell); - if( !aCell ){ - rc = SQLITE_NOMEM; - nodeRelease(pRtree, pNode); - pNode = 0; - continue; - } - for(jj=0; jjiDepth-1) ){ - overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell); - }else{ - overlap = 0.0; - } - if( (iCell==0) - || (overlappWriteParent); } static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); -#if VARIANT_GUTTMAN_LINEAR_SPLIT -/* -** Implementation of the linear variant of the PickNext() function from -** Guttman[84]. -*/ -static RtreeCell *LinearPickNext( - Rtree *pRtree, - RtreeCell *aCell, - int nCell, - RtreeCell *pLeftBox, - RtreeCell *pRightBox, - int *aiUsed -){ - int ii; - for(ii=0; aiUsed[ii]; ii++); - aiUsed[ii] = 1; - return &aCell[ii]; -} - -/* -** Implementation of the linear variant of the PickSeeds() function from -** Guttman[84]. -*/ -static void LinearPickSeeds( - Rtree *pRtree, - RtreeCell *aCell, - int nCell, - int *piLeftSeed, - int *piRightSeed -){ - int i; - int iLeftSeed = 0; - int iRightSeed = 1; - RtreeDValue maxNormalInnerWidth = (RtreeDValue)0; - - /* Pick two "seed" cells from the array of cells. The algorithm used - ** here is the LinearPickSeeds algorithm from Gutman[1984]. The - ** indices of the two seed cells in the array are stored in local - ** variables iLeftSeek and iRightSeed. - */ - for(i=0; inDim; i++){ - RtreeDValue x1 = DCOORD(aCell[0].aCoord[i*2]); - RtreeDValue x2 = DCOORD(aCell[0].aCoord[i*2+1]); - RtreeDValue x3 = x1; - RtreeDValue x4 = x2; - int jj; - - int iCellLeft = 0; - int iCellRight = 0; - - for(jj=1; jjx4 ) x4 = right; - if( left>x3 ){ - x3 = left; - iCellRight = jj; - } - if( rightmaxNormalInnerWidth ){ - iLeftSeed = iCellLeft; - iRightSeed = iCellRight; - } - } - } - - *piLeftSeed = iLeftSeed; - *piRightSeed = iRightSeed; -} -#endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */ - -#if VARIANT_GUTTMAN_QUADRATIC_SPLIT -/* -** Implementation of the quadratic variant of the PickNext() function from -** Guttman[84]. -*/ -static RtreeCell *QuadraticPickNext( - Rtree *pRtree, - RtreeCell *aCell, - int nCell, - RtreeCell *pLeftBox, - RtreeCell *pRightBox, - int *aiUsed -){ - #define FABS(a) ((a)<0.0?-1.0*(a):(a)) - - int iSelect = -1; - RtreeDValue fDiff; - int ii; - for(ii=0; iifDiff ){ - fDiff = diff; - iSelect = ii; - } - } - } - aiUsed[iSelect] = 1; - return &aCell[iSelect]; -} - -/* -** Implementation of the quadratic variant of the PickSeeds() function from -** Guttman[84]. -*/ -static void QuadraticPickSeeds( - Rtree *pRtree, - RtreeCell *aCell, - int nCell, - int *piLeftSeed, - int *piRightSeed -){ - int ii; - int jj; - - int iLeftSeed = 0; - int iRightSeed = 1; - RtreeDValue fWaste = 0.0; - - for(ii=0; iifWaste ){ - iLeftSeed = ii; - iRightSeed = jj; - fWaste = waste; - } - } - } - - *piLeftSeed = iLeftSeed; - *piRightSeed = iRightSeed; -} -#endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */ /* ** Arguments aIdx, aDistance and aSpare all point to arrays of size ** nIdx. The aIdx array contains the set of integers from 0 to ** (nIdx-1) in no particular order. This function sorts the values @@ -2038,11 +2084,10 @@ } #endif } } -#if VARIANT_RSTARTREE_SPLIT /* ** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. */ static int splitNodeStartree( Rtree *pRtree, @@ -2057,11 +2102,11 @@ int *aSpare; int ii; int iBestDim = 0; int iBestSplit = 0; - RtreeDValue fBestMargin = 0.0; + RtreeDValue fBestMargin = RTREE_ZERO; int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); aaSorted = (int **)sqlite3_malloc(nByte); if( !aaSorted ){ @@ -2078,13 +2123,13 @@ } SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare); } for(ii=0; iinDim; ii++){ - RtreeDValue margin = 0.0; - RtreeDValue fBestOverlap = 0.0; - RtreeDValue fBestArea = 0.0; + RtreeDValue margin = RTREE_ZERO; + RtreeDValue fBestOverlap = RTREE_ZERO; + RtreeDValue fBestArea = RTREE_ZERO; int iBestLeft = 0; int nLeft; for( nLeft=RTREE_MINCELLS(pRtree); @@ -2106,11 +2151,11 @@ cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); } } margin += cellMargin(pRtree, &left); margin += cellMargin(pRtree, &right); - overlap = cellOverlap(pRtree, &left, &right, 1, -1); + overlap = cellOverlap(pRtree, &left, &right, 1); area = cellArea(pRtree, &left) + cellArea(pRtree, &right); if( (nLeft==RTREE_MINCELLS(pRtree)) || (overlap0; i--){ - RtreeCell *pNext; - pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed); - RtreeDValue diff = - cellGrowth(pRtree, pBboxLeft, pNext) - - cellGrowth(pRtree, pBboxRight, pNext) - ; - if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i) - || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i)) - ){ - nodeInsertCell(pRtree, pRight, pNext); - cellUnion(pRtree, pBboxRight, pNext); - }else{ - nodeInsertCell(pRtree, pLeft, pNext); - cellUnion(pRtree, pBboxLeft, pNext); - } - } - - sqlite3_free(aiUsed); - return SQLITE_OK; -} -#endif + static int updateMapping( Rtree *pRtree, i64 iRowid, RtreeNode *pNode, @@ -2272,11 +2261,12 @@ } memset(pLeft->zData, 0, pRtree->iNodeSize); memset(pRight->zData, 0, pRtree->iNodeSize); - rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox); + rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight, + &leftbbox, &rightbbox); if( rc!=SQLITE_OK ){ goto splitnode_out; } /* Ensure both child nodes have node numbers assigned to them by calling @@ -2555,11 +2545,11 @@ for(iDim=0; iDimnDim; iDim++){ aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2)); } for(ii=0; iinDim; iDim++){ RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - DCOORD(aCell[ii].aCoord[iDim*2])); aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); } @@ -2621,20 +2611,16 @@ nodeReference(pNode); pChild->pParent = pNode; } } if( nodeInsertCell(pRtree, pNode, pCell) ){ -#if VARIANT_RSTARTREE_REINSERT if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ rc = SplitNode(pRtree, pNode, pCell, iHeight); }else{ pRtree->iReinsertHeight = iHeight; rc = Reinsert(pRtree, pNode, pCell, iHeight); } -#else - rc = SplitNode(pRtree, pNode, pCell, iHeight); -#endif }else{ rc = AdjustTree(pRtree, pNode, pCell); if( rc==SQLITE_OK ){ if( iHeight==0 ){ rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); @@ -2700,11 +2686,11 @@ /* Obtain a reference to the leaf node that contains the entry ** about to be deleted. */ if( rc==SQLITE_OK ){ - rc = findLeafNode(pRtree, iDelete, &pLeaf); + rc = findLeafNode(pRtree, iDelete, &pLeaf, 0); } /* Delete the cell in question from the leaf node. */ if( rc==SQLITE_OK ){ int rc2; @@ -3037,11 +3023,12 @@ if( isCreate ){ char *zCreate = sqlite3_mprintf( "CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);" "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);" -"CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY, parentnode INTEGER);" +"CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY," + " parentnode INTEGER);" "INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))", zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize ); if( !zCreate ){ return SQLITE_NOMEM; @@ -3251,14 +3238,14 @@ /* ** Implementation of a scalar function that decodes r-tree nodes to ** human readable strings. This can be used for debugging and analysis. ** -** The scalar function takes two arguments, a blob of data containing -** an r-tree node, and the number of dimensions the r-tree indexes. -** For a two-dimensional r-tree structure called "rt", to deserialize -** all nodes, a statement like: +** The scalar function takes two arguments: (1) the number of dimensions +** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing +** an r-tree node. For a two-dimensional r-tree structure called "rt", to +** deserialize all nodes, a statement like: ** ** SELECT rtreenode(2, data) FROM rt_node; ** ** The human readable string takes the form of a Tcl list with one ** entry for each cell in the r-tree node. Each entry is itself a @@ -3287,11 +3274,11 @@ nodeGetCell(&tree, &node, ii, &cell); sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid); nCell = (int)strlen(zCell); for(jj=0; jjxDestructor ) pInfo->xDestructor(pInfo->pContext); sqlite3_free(p); } /* -** Each call to sqlite3_rtree_geometry_callback() creates an ordinary SQLite -** scalar user function. This C function is the callback used for all such -** registered SQL functions. +** Each call to sqlite3_rtree_geometry_callback() or +** sqlite3_rtree_query_callback() creates an ordinary SQLite +** scalar function that is implemented by this routine. +** +** All this function does is construct an RtreeMatchArg object that +** contains the geometry-checking callback routines and a list of +** parameters to this function, then return that RtreeMatchArg object +** as a BLOB. ** -** The scalar user functions return a blob that is interpreted by r-tree -** table MATCH operators. +** The R-Tree MATCH operator will read the returned BLOB, deserialize +** the RtreeMatchArg object, and use the RtreeMatchArg object to figure +** out which elements of the R-Tree should be returned by the query. */ static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); RtreeMatchArg *pBlob; int nBlob; @@ -3379,45 +3384,68 @@ if( !pBlob ){ sqlite3_result_error_nomem(ctx); }else{ int i; pBlob->magic = RTREE_GEOMETRY_MAGIC; - pBlob->xGeom = pGeomCtx->xGeom; - pBlob->pContext = pGeomCtx->pContext; + pBlob->cb = pGeomCtx[0]; pBlob->nParam = nArg; for(i=0; iaParam[i] = sqlite3_value_int64(aArg[i]); #else pBlob->aParam[i] = sqlite3_value_double(aArg[i]); #endif } - sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free); + sqlite3_result_blob(ctx, pBlob, nBlob, sqlite3_free); } } /* ** Register a new geometry function for use with the r-tree MATCH operator. */ int sqlite3_rtree_geometry_callback( - sqlite3 *db, - const char *zGeom, - int (*xGeom)(sqlite3_rtree_geometry *, int, RtreeDValue *, int *), - void *pContext + sqlite3 *db, /* Register SQL function on this connection */ + const char *zGeom, /* Name of the new SQL function */ + int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */ + void *pContext /* Extra data associated with the callback */ ){ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ /* Allocate and populate the context object. */ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); if( !pGeomCtx ) return SQLITE_NOMEM; pGeomCtx->xGeom = xGeom; + pGeomCtx->xQueryFunc = 0; + pGeomCtx->xDestructor = 0; pGeomCtx->pContext = pContext; - - /* Create the new user-function. Register a destructor function to delete - ** the context object when it is no longer required. */ return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, - (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free + (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback + ); +} + +/* +** Register a new 2nd-generation geometry function for use with the +** r-tree MATCH operator. +*/ +int sqlite3_rtree_query_callback( + sqlite3 *db, /* Register SQL function on this connection */ + const char *zQueryFunc, /* Name of new SQL function */ + int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */ + void *pContext, /* Extra data passed into the callback */ + void (*xDestructor)(void*) /* Destructor for the extra data */ +){ + RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ + + /* Allocate and populate the context object. */ + pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); + if( !pGeomCtx ) return SQLITE_NOMEM; + pGeomCtx->xGeom = 0; + pGeomCtx->xQueryFunc = xQueryFunc; + pGeomCtx->xDestructor = xDestructor; + pGeomCtx->pContext = pContext; + return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY, + (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback ); } #if !SQLITE_CORE #ifdef _WIN32 Index: ext/rtree/rtree1.test ================================================================== --- ext/rtree/rtree1.test +++ ext/rtree/rtree1.test @@ -118,16 +118,17 @@ } # Test that it is possible to open an existing database that contains # r-tree tables. # -do_test rtree-1.4.1 { - execsql { - CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2); - INSERT INTO t1 VALUES(1, 5.0, 10.0); - INSERT INTO t1 VALUES(2, 15.0, 20.0); - } +do_execsql_test rtree-1.4.1a { + CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2); + INSERT INTO t1 VALUES(1, 5.0, 10.0); + SELECT substr(hex(data),1,40) FROM t1_node; +} {00000001000000000000000140A0000041200000} +do_execsql_test rtree-1.4.1b { + INSERT INTO t1 VALUES(2, 15.0, 20.0); } {} do_test rtree-1.4.2 { db close sqlite3 db test.db execsql_intout { SELECT * FROM t1 ORDER BY ii } @@ -433,20 +434,22 @@ #------------------------------------------------------------------------- # Test on-conflict clause handling. # db_delete_and_reopen -do_execsql_test 12.0 { +do_execsql_test 12.0.1 { CREATE VIRTUAL TABLE t1 USING rtree_i32(idx, x1, x2, y1, y2); INSERT INTO t1 VALUES(1, 1, 2, 3, 4); + SELECT substr(hex(data),1,56) FROM t1_node; +} {00000001000000000000000100000001000000020000000300000004} +do_execsql_test 12.0.2 { INSERT INTO t1 VALUES(2, 2, 3, 4, 5); INSERT INTO t1 VALUES(3, 3, 4, 5, 6); CREATE TABLE source(idx, x1, x2, y1, y2); INSERT INTO source VALUES(5, 8, 8, 8, 8); INSERT INTO source VALUES(2, 7, 7, 7, 7); - } db_save_and_close foreach {tn sql_template testdata} { 1 "INSERT %CONF% INTO t1 VALUES(2, 7, 7, 7, 7)" { ROLLBACK 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6} Index: ext/rtree/rtree6.test ================================================================== --- ext/rtree/rtree6.test +++ ext/rtree/rtree6.test @@ -55,35 +55,35 @@ } } {} do_test rtree6-1.2 { rtree_strategy {SELECT * FROM t1 WHERE x1>10} -} {Ea} +} {E0} do_test rtree6-1.3 { rtree_strategy {SELECT * FROM t1 WHERE x1<10} -} {Ca} +} {C0} do_test rtree6-1.4 { rtree_strategy {SELECT * FROM t1,t2 WHERE k=ii AND x1<10} -} {Ca} +} {C0} do_test rtree6-1.5 { rtree_strategy {SELECT * FROM t1,t2 WHERE k=+ii AND x1<10} -} {Ca} +} {C0} do_eqp_test rtree6.2.1 { SELECT * FROM t1,t2 WHERE k=+ii AND x1<10 } { - 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:Ca} + 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0} 0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)} } do_eqp_test rtree6.2.2 { SELECT * FROM t1,t2 WHERE k=ii AND x1<10 } { - 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:Ca} + 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0} 0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)} } do_eqp_test rtree6.2.3 { SELECT * FROM t1,t2 WHERE k=ii @@ -93,11 +93,11 @@ } do_eqp_test rtree6.2.4 { SELECT * FROM t1,t2 WHERE v=10 and x1<10 and x2>10 } { - 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:CaEb} + 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1} 0 1 1 {SEARCH TABLE t2 USING AUTOMATIC COVERING INDEX (v=?)} } do_eqp_test rtree6.2.5 { SELECT * FROM t1,t2 WHERE k=ii AND x10.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 } -} {EaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEa} +} {E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0} do_test rtree6.3.3 { rtree_strategy { SELECT * FROM t3 WHERE x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND @@ -135,11 +135,11 @@ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 } -} {EaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEa} +} {E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0} do_execsql_test rtree6-3.4 { SELECT * FROM t3 WHERE x1>0.5 AND x1>0.8 AND x1>1.1 } {} do_execsql_test rtree6-3.5 { Index: ext/rtree/rtreeB.test ================================================================== --- ext/rtree/rtreeB.test +++ ext/rtree/rtreeB.test @@ -39,9 +39,9 @@ INSERT INTO t1 VALUES(4294967296, 0.0, 0.0, 300.0, 300.0); INSERT INTO t1 VALUES(8589934592, 20.0, 20.0, 150.0, 150.0); INSERT INTO t1 VALUES(9223372036854775807, 150, 150, 400, 400); SELECT rtreenode(2, data) FROM t1_node; } - } {{{1073741824 0.000000 0.000000 100.000000 100.000000} {2147483646 0.000000 0.000000 200.000000 200.000000} {4294967296 0.000000 0.000000 300.000000 300.000000} {8589934592 20.000000 20.000000 150.000000 150.000000} {9223372036854775807 150.000000 150.000000 400.000000 400.000000}}} + } {{{1073741824 0 0 100 100} {2147483646 0 0 200 200} {4294967296 0 0 300 300} {8589934592 20 20 150 150} {9223372036854775807 150 150 400 400}}} } finish_test Index: ext/rtree/rtreeC.test ================================================================== --- ext/rtree/rtreeC.test +++ ext/rtree/rtreeC.test @@ -27,27 +27,27 @@ do_eqp_test 1.1 { SELECT * FROM r_tree, t WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y } { 0 0 1 {SCAN TABLE t} - 0 1 0 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:DdBcDbBa} + 0 1 0 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0} } do_eqp_test 1.2 { SELECT * FROM t, r_tree WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y } { 0 0 0 {SCAN TABLE t} - 0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:DdBcDbBa} + 0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0} } do_eqp_test 1.3 { SELECT * FROM t, r_tree WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND ?<=max_y } { 0 0 0 {SCAN TABLE t} - 0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:DdBcDbBa} + 0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0} } do_eqp_test 1.5 { SELECT * FROM t, r_tree } { @@ -80,27 +80,27 @@ do_eqp_test 2.1 { SELECT * FROM r_tree, t WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y } { 0 0 1 {SCAN TABLE t} - 0 1 0 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:DdBcDbBa} + 0 1 0 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0} } do_eqp_test 2.2 { SELECT * FROM t, r_tree WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y } { 0 0 0 {SCAN TABLE t} - 0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:DdBcDbBa} + 0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0} } do_eqp_test 2.3 { SELECT * FROM t, r_tree WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND ?<=max_y } { 0 0 0 {SCAN TABLE t} - 0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:DdBcDbBa} + 0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0} } do_eqp_test 2.5 { SELECT * FROM t, r_tree } { @@ -269,6 +269,5 @@ db close } finish_test - ADDED ext/rtree/rtreeE.test Index: ext/rtree/rtreeE.test ================================================================== --- /dev/null +++ ext/rtree/rtreeE.test @@ -0,0 +1,129 @@ +# 2010 August 28 +# +# The author disclaims copyright to this source code. In place of +# a legal notice, here is a blessing: +# +# May you do good and not evil. +# May you find forgiveness for yourself and forgive others. +# May you share freely, never taking more than you give. +# +#*********************************************************************** +# This file contains tests for the r-tree module. Specifically, it tests +# that new-style custom r-tree queries (geometry callbacks) work. +# + +if {![info exists testdir]} { + set testdir [file join [file dirname [info script]] .. .. test] +} +source $testdir/tester.tcl +ifcapable !rtree { finish_test ; return } +ifcapable rtree_int_only { finish_test; return } + + +#------------------------------------------------------------------------- +# Test the example 2d "circle" geometry callback. +# +register_circle_geom db + +do_execsql_test rtreeE-1.1 { + PRAGMA page_size=512; + CREATE VIRTUAL TABLE rt1 USING rtree(id,x0,x1,y0,y1); + + /* A tight pattern of small boxes near 0,0 */ + WITH RECURSIVE + x(x) AS (VALUES(0) UNION ALL SELECT x+1 FROM x WHERE x<4), + y(y) AS (VALUES(0) UNION ALL SELECT y+1 FROM y WHERE y<4) + INSERT INTO rt1 SELECT x+5*y, x, x+2, y, y+2 FROM x, y; + + /* A looser pattern of small boxes near 100, 0 */ + WITH RECURSIVE + x(x) AS (VALUES(0) UNION ALL SELECT x+1 FROM x WHERE x<4), + y(y) AS (VALUES(0) UNION ALL SELECT y+1 FROM y WHERE y<4) + INSERT INTO rt1 SELECT 100+x+5*y, x*3+100, x*3+102, y*3, y*3+2 FROM x, y; + + /* A looser pattern of larger boxes near 0, 200 */ + WITH RECURSIVE + x(x) AS (VALUES(0) UNION ALL SELECT x+1 FROM x WHERE x<4), + y(y) AS (VALUES(0) UNION ALL SELECT y+1 FROM y WHERE y<4) + INSERT INTO rt1 SELECT 200+x+5*y, x*7, x*7+15, y*7+200, y*7+215 FROM x, y; +} {} + +# Queries against each of the three clusters */ +do_execsql_test rtreeE-1.1 { + SELECT id FROM rt1 WHERE id MATCH Qcircle(0.0, 0.0, 50.0, 3) ORDER BY id; +} {0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24} +do_execsql_test rtreeE-1.2 { + SELECT id FROM rt1 WHERE id MATCH Qcircle(100.0, 0.0, 50.0, 3) ORDER BY id; +} {100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124} +do_execsql_test rtreeE-1.3 { + SELECT id FROM rt1 WHERE id MATCH Qcircle(0.0, 200.0, 50.0, 3) ORDER BY id; +} {200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224} + +# The Qcircle geometry function gives a lower score to larger leaf-nodes. +# This causes the 200s to sort before the 100s and the 0s to sort before +# last. +# +do_execsql_test rtreeE-1.4 { + SELECT id FROM rt1 WHERE id MATCH Qcircle(0,0,1000,3) AND id%100==0 +} {200 100 0} + +# Exclude odd rowids on a depth-first search +do_execsql_test rtreeE-1.5 { + SELECT id FROM rt1 WHERE id MATCH Qcircle(0,0,1000,4) ORDER BY +id +} {0 2 4 6 8 10 12 14 16 18 20 22 24 100 102 104 106 108 110 112 114 116 118 120 122 124 200 202 204 206 208 210 212 214 216 218 220 222 224} + +# Exclude odd rowids on a breadth-first search. +do_execsql_test rtreeE-1.6 { + SELECT id FROM rt1 WHERE id MATCH Qcircle(0,0,1000,5) ORDER BY +id +} {0 2 4 6 8 10 12 14 16 18 20 22 24 100 102 104 106 108 110 112 114 116 118 120 122 124 200 202 204 206 208 210 212 214 216 218 220 222 224} + +# Construct a large 2-D RTree with thousands of random entries. +# +do_test rtreeE-2.1 { + db eval { + CREATE TABLE t2(id,x0,x1,y0,y1); + CREATE VIRTUAL TABLE rt2 USING rtree(id,x0,x1,y0,y1); + BEGIN; + } + expr srand(0) + for {set i 1} {$i<=10000} {incr i} { + set dx [expr {int(rand()*40)+1}] + set dy [expr {int(rand()*40)+1}] + set x0 [expr {int(rand()*(10000 - $dx))}] + set x1 [expr {$x0+$dx}] + set y0 [expr {int(rand()*(10000 - $dy))}] + set y1 [expr {$y0+$dy}] + set id [expr {$i+10000}] + db eval {INSERT INTO t2 VALUES($id,$x0,$x1,$y0,$y1)} + } + db eval { + INSERT INTO rt2 SELECT * FROM t2; + COMMIT; + } +} {} + +for {set i 1} {$i<=200} {incr i} { + set dx [expr {int(rand()*100)}] + set dy [expr {int(rand()*100)}] + set x0 [expr {int(rand()*(10000 - $dx))}] + set x1 [expr {$x0+$dx}] + set y0 [expr {int(rand()*(10000 - $dy))}] + set y1 [expr {$y0+$dy}] + set ans [db eval {SELECT id FROM t2 WHERE x1>=$x0 AND x0<=$x1 AND y1>=$y0 AND y0<=$y1 ORDER BY id}] + do_execsql_test rtreeE-2.2.$i { + SELECT id FROM rt2 WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ORDER BY id + } $ans +} + +# Run query that have very deep priority queues +# +set ans [db eval {SELECT id FROM t2 WHERE x1>=0 AND x0<=5000 AND y1>=0 AND y0<=5000 ORDER BY id}] +do_execsql_test rtreeE-2.3 { + SELECT id FROM rt2 WHERE id MATCH breadthfirstsearch(0,5000,0,5000) ORDER BY id +} $ans +set ans [db eval {SELECT id FROM t2 WHERE x1>=0 AND x0<=10000 AND y1>=0 AND y0<=10000 ORDER BY id}] +do_execsql_test rtreeE-2.4 { + SELECT id FROM rt2 WHERE id MATCH breadthfirstsearch(0,10000,0,10000) ORDER BY id +} $ans + +finish_test Index: ext/rtree/sqlite3rtree.h ================================================================== --- ext/rtree/sqlite3rtree.h +++ ext/rtree/sqlite3rtree.h @@ -19,10 +19,20 @@ #ifdef __cplusplus extern "C" { #endif typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry; +typedef struct sqlite3_rtree_query_info sqlite3_rtree_query_info; + +/* The double-precision datatype used by RTree depends on the +** SQLITE_RTREE_INT_ONLY compile-time option. +*/ +#ifdef SQLITE_RTREE_INT_ONLY + typedef sqlite3_int64 sqlite3_rtree_dbl; +#else + typedef double sqlite3_rtree_dbl; +#endif /* ** Register a geometry callback named zGeom that can be used as part of an ** R-Tree geometry query as follows: ** @@ -29,15 +39,11 @@ ** SELECT ... FROM WHERE MATCH $zGeom(... params ...) */ int sqlite3_rtree_geometry_callback( sqlite3 *db, const char *zGeom, -#ifdef SQLITE_RTREE_INT_ONLY - int (*xGeom)(sqlite3_rtree_geometry*, int n, sqlite3_int64 *a, int *pRes), -#else - int (*xGeom)(sqlite3_rtree_geometry*, int n, double *a, int *pRes), -#endif + int (*xGeom)(sqlite3_rtree_geometry*, int, sqlite3_rtree_dbl*,int*), void *pContext ); /* @@ -45,16 +51,65 @@ ** argument to callbacks registered using rtree_geometry_callback(). */ struct sqlite3_rtree_geometry { void *pContext; /* Copy of pContext passed to s_r_g_c() */ int nParam; /* Size of array aParam[] */ - double *aParam; /* Parameters passed to SQL geom function */ + sqlite3_rtree_dbl *aParam; /* Parameters passed to SQL geom function */ void *pUser; /* Callback implementation user data */ void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */ }; +/* +** Register a 2nd-generation geometry callback named zScore that can be +** used as part of an R-Tree geometry query as follows: +** +** SELECT ... FROM WHERE MATCH $zQueryFunc(... params ...) +*/ +int sqlite3_rtree_query_callback( + sqlite3 *db, + const char *zQueryFunc, + int (*xQueryFunc)(sqlite3_rtree_query_info*), + void *pContext, + void (*xDestructor)(void*) +); + + +/* +** A pointer to a structure of the following type is passed as the +** argument to scored geometry callback registered using +** sqlite3_rtree_query_callback(). +** +** Note that the first 5 fields of this structure are identical to +** sqlite3_rtree_geometry. This structure is a subclass of +** sqlite3_rtree_geometry. +*/ +struct sqlite3_rtree_query_info { + void *pContext; /* pContext from when function registered */ + int nParam; /* Number of function parameters */ + sqlite3_rtree_dbl *aParam; /* value of function parameters */ + void *pUser; /* callback can use this, if desired */ + void (*xDelUser)(void*); /* function to free pUser */ + sqlite3_rtree_dbl *aCoord; /* Coordinates of node or entry to check */ + unsigned int *anQueue; /* Number of pending entries in the queue */ + int nCoord; /* Number of coordinates */ + int iLevel; /* Level of current node or entry */ + int mxLevel; /* The largest iLevel value in the tree */ + sqlite3_int64 iRowid; /* Rowid for current entry */ + sqlite3_rtree_dbl rParentScore; /* Score of parent node */ + int eParentWithin; /* Visibility of parent node */ + int eWithin; /* OUT: Visiblity */ + sqlite3_rtree_dbl rScore; /* OUT: Write the score here */ +}; + +/* +** Allowed values for sqlite3_rtree_query.eWithin and .eParentWithin. +*/ +#define NOT_WITHIN 0 /* Object completely outside of query region */ +#define PARTLY_WITHIN 1 /* Object partially overlaps query region */ +#define FULLY_WITHIN 2 /* Object fully contained within query region */ + #ifdef __cplusplus } /* end of the 'extern "C"' block */ #endif #endif /* ifndef _SQLITE3RTREE_H_ */ Index: main.mk ================================================================== --- main.mk +++ main.mk @@ -481,11 +481,11 @@ rm -f parse.h ./lemon $(OPTS) parse.y mv parse.h parse.h.temp $(NAWK) -f $(TOP)/addopcodes.awk parse.h.temp >parse.h -sqlite3.h: $(TOP)/src/sqlite.h.in $(TOP)/manifest.uuid $(TOP)/VERSION +sqlite3.h: $(TOP)/src/sqlite.h.in $(TOP)/manifest.uuid $(TOP)/VERSION $(TOP)/ext/rtree/sqlite3rtree.h tclsh $(TOP)/tool/mksqlite3h.tcl $(TOP) >sqlite3.h keywordhash.h: $(TOP)/tool/mkkeywordhash.c $(BCC) -o mkkeywordhash $(OPTS) $(TOP)/tool/mkkeywordhash.c ./mkkeywordhash >keywordhash.h Index: src/test_rtree.c ================================================================== --- src/test_rtree.c +++ src/test_rtree.c @@ -33,10 +33,12 @@ double ymax; } aBox[2]; double centerx; double centery; double radius; + double mxArea; + int eScoreType; }; /* ** Destructor function for Circle objects allocated by circle_geom(). */ @@ -48,23 +50,24 @@ ** Implementation of "circle" r-tree geometry callback. */ static int circle_geom( sqlite3_rtree_geometry *p, int nCoord, -#ifdef SQLITE_RTREE_INT_ONLY - sqlite3_int64 *aCoord, -#else - double *aCoord, -#endif + sqlite3_rtree_dbl *aCoord, int *pRes ){ int i; /* Iterator variable */ Circle *pCircle; /* Structure defining circular region */ double xmin, xmax; /* X dimensions of box being tested */ double ymin, ymax; /* X dimensions of box being tested */ - if( p->pUser==0 ){ + xmin = aCoord[0]; + xmax = aCoord[1]; + ymin = aCoord[2]; + ymax = aCoord[3]; + pCircle = (Circle *)p->pUser; + if( pCircle==0 ){ /* If pUser is still 0, then the parameter values have not been tested ** for correctness or stored into a Circle structure yet. Do this now. */ /* This geometry callback is for use with a 2-dimensional r-tree table. ** Return an error if the table does not have exactly 2 dimensions. */ @@ -106,18 +109,13 @@ pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; pCircle->aBox[1].ymin = pCircle->centery; pCircle->aBox[1].ymax = pCircle->centery; + pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0; } - pCircle = (Circle *)p->pUser; - xmin = aCoord[0]; - xmax = aCoord[1]; - ymin = aCoord[2]; - ymax = aCoord[3]; - /* Check if any of the 4 corners of the bounding-box being tested lie ** inside the circular region. If they do, then the bounding-box does ** intersect the region of interest. Set the output variable to true and ** return SQLITE_OK in this case. */ for(i=0; i<4; i++){ @@ -151,10 +149,174 @@ /* The specified bounding box does not intersect the circular region. Set ** the output variable to zero and return SQLITE_OK. */ *pRes = 0; return SQLITE_OK; } + +/* +** Implementation of "circle" r-tree geometry callback using the +** 2nd-generation interface that allows scoring. +*/ +static int circle_query_func(sqlite3_rtree_query_info *p){ + int i; /* Iterator variable */ + Circle *pCircle; /* Structure defining circular region */ + double xmin, xmax; /* X dimensions of box being tested */ + double ymin, ymax; /* X dimensions of box being tested */ + int nWithin = 0; /* Number of corners inside the circle */ + + xmin = p->aCoord[0]; + xmax = p->aCoord[1]; + ymin = p->aCoord[2]; + ymax = p->aCoord[3]; + pCircle = (Circle *)p->pUser; + if( pCircle==0 ){ + /* If pUser is still 0, then the parameter values have not been tested + ** for correctness or stored into a Circle structure yet. Do this now. */ + + /* This geometry callback is for use with a 2-dimensional r-tree table. + ** Return an error if the table does not have exactly 2 dimensions. */ + if( p->nCoord!=4 ) return SQLITE_ERROR; + + /* Test that the correct number of parameters (4) have been supplied, + ** and that the parameters are in range (that the radius of the circle + ** radius is greater than zero). */ + if( p->nParam!=4 || p->aParam[2]<0.0 ) return SQLITE_ERROR; + + /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM + ** if the allocation fails. */ + pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); + if( !pCircle ) return SQLITE_NOMEM; + p->xDelUser = circle_del; + + /* Record the center and radius of the circular region. One way that + ** tested bounding boxes that intersect the circular region are detected + ** is by testing if each corner of the bounding box lies within radius + ** units of the center of the circle. */ + pCircle->centerx = p->aParam[0]; + pCircle->centery = p->aParam[1]; + pCircle->radius = p->aParam[2]; + pCircle->eScoreType = (int)p->aParam[3]; + + /* Define two bounding box regions. The first, aBox[0], extends to + ** infinity in the X dimension. It covers the same range of the Y dimension + ** as the circular region. The second, aBox[1], extends to infinity in + ** the Y dimension and is constrained to the range of the circle in the + ** X dimension. + ** + ** Then imagine each box is split in half along its short axis by a line + ** that intersects the center of the circular region. A bounding box + ** being tested can be said to intersect the circular region if it contains + ** points from each half of either of the two infinite bounding boxes. + */ + pCircle->aBox[0].xmin = pCircle->centerx; + pCircle->aBox[0].xmax = pCircle->centerx; + pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; + pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; + pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; + pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; + pCircle->aBox[1].ymin = pCircle->centery; + pCircle->aBox[1].ymax = pCircle->centery; + pCircle->mxArea = 200.0*200.0; + } + + /* Check if any of the 4 corners of the bounding-box being tested lie + ** inside the circular region. If they do, then the bounding-box does + ** intersect the region of interest. Set the output variable to true and + ** return SQLITE_OK in this case. */ + for(i=0; i<4; i++){ + double x = (i&0x01) ? xmax : xmin; + double y = (i&0x02) ? ymax : ymin; + double d2; + + d2 = (x-pCircle->centerx)*(x-pCircle->centerx); + d2 += (y-pCircle->centery)*(y-pCircle->centery); + if( d2<(pCircle->radius*pCircle->radius) ) nWithin++; + } + + /* Check if the bounding box covers any other part of the circular region. + ** See comments above for a description of how this test works. If it does + ** cover part of the circular region, set the output variable to true + ** and return SQLITE_OK. */ + if( nWithin==0 ){ + for(i=0; i<2; i++){ + if( xmin<=pCircle->aBox[i].xmin + && xmax>=pCircle->aBox[i].xmax + && ymin<=pCircle->aBox[i].ymin + && ymax>=pCircle->aBox[i].ymax + ){ + nWithin = 1; + break; + } + } + } + + if( pCircle->eScoreType==1 ){ + /* Depth first search */ + p->rScore = p->iLevel; + }else if( pCircle->eScoreType==2 ){ + /* Breadth first search */ + p->rScore = 100 - p->iLevel; + }else if( pCircle->eScoreType==3 ){ + /* Depth-first search, except sort the leaf nodes by area with + ** the largest area first */ + if( p->iLevel==1 ){ + p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea; + if( p->rScore<0.01 ) p->rScore = 0.01; + }else{ + p->rScore = 0.0; + } + }else if( pCircle->eScoreType==4 ){ + /* Depth-first search, except exclude odd rowids */ + p->rScore = p->iLevel; + if( p->iRowid&1 ) nWithin = 0; + }else{ + /* Breadth-first search, except exclude odd rowids */ + p->rScore = 100 - p->iLevel; + if( p->iRowid&1 ) nWithin = 0; + } + if( nWithin==0 ){ + p->eWithin = NOT_WITHIN; + }else if( nWithin>=4 ){ + p->eWithin = FULLY_WITHIN; + }else{ + p->eWithin = PARTLY_WITHIN; + } + return SQLITE_OK; +} +/* +** Implementation of "breadthfirstsearch" r-tree geometry callback using the +** 2nd-generation interface that allows scoring. +** +** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ... +** +** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1. +*/ +static int bfs_query_func(sqlite3_rtree_query_info *p){ + double x0,x1,y0,y1; /* Dimensions of box being tested */ + double bx0,bx1,by0,by1; /* Boundary of the query function */ + + if( p->nParam!=4 ) return SQLITE_ERROR; + x0 = p->aCoord[0]; + x1 = p->aCoord[1]; + y0 = p->aCoord[2]; + y1 = p->aCoord[3]; + bx0 = p->aParam[0]; + bx1 = p->aParam[1]; + by0 = p->aParam[2]; + by1 = p->aParam[3]; + p->rScore = 100 - p->iLevel; + if( p->eParentWithin==FULLY_WITHIN ){ + p->eWithin = FULLY_WITHIN; + }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){ + p->eWithin = FULLY_WITHIN; + }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){ + p->eWithin = PARTLY_WITHIN; + }else{ + p->eWithin = NOT_WITHIN; + } + return SQLITE_OK; +} /* END of implementation of "circle" geometry callback. ************************************************************************** *************************************************************************/ @@ -192,15 +354,11 @@ ** The width, height and depth parameters must all be greater than zero. */ static int cube_geom( sqlite3_rtree_geometry *p, int nCoord, -#ifdef SQLITE_RTREE_INT_ONLY - sqlite3_int64 *aCoord, -#else - double *aCoord, -#endif + sqlite3_rtree_dbl *aCoord, int *piRes ){ Cube *pCube = (Cube *)p->pUser; assert( p->pContext==(void *)&gHere ); @@ -291,10 +449,18 @@ Tcl_WrongNumArgs(interp, 1, objv, "DB"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0); + if( rc==SQLITE_OK ){ + rc = sqlite3_rtree_query_callback(db, "Qcircle", + circle_query_func, 0, 0); + } + if( rc==SQLITE_OK ){ + rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch", + bfs_query_func, 0, 0); + } Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); #endif return TCL_OK; } ADDED test/show_speedtest1_rtree.tcl Index: test/show_speedtest1_rtree.tcl ================================================================== --- /dev/null +++ test/show_speedtest1_rtree.tcl @@ -0,0 +1,57 @@ +#!/usr/bin/tclsh +# +# This script displays the field of rectangles used by --testset rtree +# of speedtest1. Run this script as follows: +# +# rm test.db +# ./speedtest1 --testset rtree --size 25 test.db +# sqlite3 --separator ' ' test.db 'SELECT * FROM rt1' >data.txt +# wish show_speedtest1_rtree.tcl +# +# The filename "data.txt" is hard coded into this script and so that name +# must be used on lines 3 and 4 above. Elsewhere, different filenames can +# be used. The --size N parameter can be adjusted as desired. +# +package require Tk +set f [open data.txt rb] +set data [read $f] +close $f +canvas .c +frame .b +button .b.b1 -text X-Y -command refill-xy +button .b.b2 -text X-Z -command refill-xz +button .b.b3 -text Y-Z -command refill-yz +pack .b.b1 .b.b2 .b.b3 -side left +pack .c -side top -fill both -expand 1 +pack .b -side top +proc resize_canvas_to_fit {} { + foreach {x0 y0 x1 y1} [.c bbox all] break + set w [expr {$x1-$x0}] + set h [expr {$y1-$y0}] + .c config -width $w -height $h +} +proc refill-xy {} { + .c delete all + foreach {id x0 x1 y0 y1 z0 z1} $::data { + .c create rectangle $x0 $y0 $x1 $y1 + } + .c scale all 0 0 0.05 0.05 + resize_canvas_to_fit +} +proc refill-xz {} { + .c delete all + foreach {id x0 x1 y0 y1 z0 z1} $::data { + .c create rectangle $x0 $z0 $x1 $z1 + } + .c scale all 0 0 0.05 0.05 + resize_canvas_to_fit +} +proc refill-yz {} { + .c delete all + foreach {id x0 x1 y0 y1 z0 z1} $::data { + .c create rectangle $y0 $z0 $y1 $z1 + } + .c scale all 0 0 0.05 0.05 + resize_canvas_to_fit +} +refill-xy Index: test/speedtest1.c ================================================================== --- test/speedtest1.c +++ test/speedtest1.c @@ -27,10 +27,11 @@ " --stats Show statistics at the end\n" " --testset T Run test-set T\n" " --trace Turn on SQL tracing\n" " --utf16be Set text encoding to UTF-16BE\n" " --utf16le Set text encoding to UTF-16LE\n" + " --verify Run additional verification steps.\n" " --without-rowid Use WITHOUT ROWID where appropriate\n" ; #include "sqlite3.h" @@ -49,10 +50,11 @@ sqlite3_int64 iTotal; /* Total time */ int bWithoutRowid; /* True for --without-rowid */ int bReprepare; /* True to reprepare the SQL on each rerun */ int bSqlOnly; /* True to print the SQL once only */ int bExplain; /* Print SQL with EXPLAIN prefix */ + int bVerify; /* Try to verify that results are correct */ int szTest; /* Scale factor for test iterations */ const char *zWR; /* Might be WITHOUT ROWID */ const char *zNN; /* Might be NOT NULL */ const char *zPK; /* Might be UNIQUE or PRIMARY KEY */ unsigned int x, y; /* Pseudo-random number generator state */ @@ -928,10 +930,187 @@ ); speedtest1_run(); speedtest1_end_test(); } + +/* Generate two numbers between 1 and mx. The first number is less than +** the second. Usually the numbers are near each other but can sometimes +** be far apart. +*/ +static void twoCoords( + int p1, int p2, /* Parameters adjusting sizes */ + unsigned mx, /* Range of 1..mx */ + unsigned *pX0, unsigned *pX1 /* OUT: write results here */ +){ + unsigned d, x0, x1, span; + + span = mx/100 + 1; + if( speedtest1_random()%3==0 ) span *= p1; + if( speedtest1_random()%p2==0 ) span = mx/2; + d = speedtest1_random()%span + 1; + x0 = speedtest1_random()%(mx-d) + 1; + x1 = x0 + d; + *pX0 = x0; + *pX1 = x1; +} + +/* The following routine is an R-Tree geometry callback. It returns +** true if the object overlaps a slice on the Y coordinate between the +** two values given as arguments. In other words +** +** SELECT count(*) FROM rt1 WHERE id MATCH xslice(10,20); +** +** Is the same as saying: +** +** SELECT count(*) FROM rt1 WHERE y1>=10 AND y0<=20; +*/ +static int xsliceGeometryCallback( + sqlite3_rtree_geometry *p, + int nCoord, + double *aCoord, + int *pRes +){ + *pRes = aCoord[3]>=p->aParam[0] && aCoord[2]<=p->aParam[1]; + return SQLITE_OK; +} + +/* +** A testset for the R-Tree virtual table +*/ +void testset_rtree(int p1, int p2){ + unsigned i, n; + unsigned mxCoord; + unsigned x0, x1, y0, y1, z0, z1; + unsigned iStep; + int *aCheck = sqlite3_malloc( sizeof(int)*g.szTest*100 ); + + mxCoord = 15000; + n = g.szTest*100; + speedtest1_begin_test(100, "%d INSERTs into an r-tree", n); + speedtest1_exec("BEGIN"); + speedtest1_exec("CREATE VIRTUAL TABLE rt1 USING rtree(id,x0,x1,y0,y1,z0,z1)"); + speedtest1_prepare("INSERT INTO rt1(id,x0,x1,y0,y1,z0,z1)" + "VALUES(?1,?2,?3,?4,?5,?6,?7)"); + for(i=1; i<=n; i++){ + twoCoords(p1, p2, mxCoord, &x0, &x1); + twoCoords(p1, p2, mxCoord, &y0, &y1); + twoCoords(p1, p2, mxCoord, &z0, &z1); + sqlite3_bind_int(g.pStmt, 1, i); + sqlite3_bind_int(g.pStmt, 2, x0); + sqlite3_bind_int(g.pStmt, 3, x1); + sqlite3_bind_int(g.pStmt, 4, y0); + sqlite3_bind_int(g.pStmt, 5, y1); + sqlite3_bind_int(g.pStmt, 6, z0); + sqlite3_bind_int(g.pStmt, 7, z1); + speedtest1_run(); + } + speedtest1_exec("COMMIT"); + speedtest1_end_test(); + + speedtest1_begin_test(101, "Copy from rtree to a regular table"); + speedtest1_exec("CREATE TABLE t1(id INTEGER PRIMARY KEY,x0,x1,y0,y1,z0,z1)"); + speedtest1_exec("INSERT INTO t1 SELECT * FROM rt1"); + speedtest1_end_test(); + + n = g.szTest*20; + speedtest1_begin_test(110, "%d one-dimensional intersect slice queries", n); + speedtest1_prepare("SELECT count(*) FROM rt1 WHERE x0>=?1 AND x1<=?2"); + iStep = mxCoord/n; + for(i=0; i=?1 AND x1<=?2"); + iStep = mxCoord/n; + for(i=0; i=?1 AND y0<=?2"); + iStep = mxCoord/n; + for(i=0; i=?1 AND y0<=?2"); + iStep = mxCoord/n; + for(i=0; i=?1 AND x0<=?2" + " AND y1>=?1 AND y0<=?2 AND z1>=?1 AND z0<=?2"); + iStep = mxCoord/n; + for(i=0; i