SQLite

Check-in [821b0b297c]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Really remove the OP_StrEq opcode this time - appearently I didn't save the file out of the editor before doing the check-in (1397). (CVS 1405)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 821b0b297c11a5e8d08d73b5eff810652e5a0d27
User & Date: drh 2004-05-19 11:31:13.000
Context
2004-05-19
13:13
Bug fixes in where.c. The where.test test works again. (CVS 1406) (check-in: 7c31e257e2 user: drh tags: trunk)
11:31
Really remove the OP_StrEq opcode this time - appearently I didn't save the file out of the editor before doing the check-in (1397). (CVS 1405) (check-in: 821b0b297c user: drh tags: trunk)
11:24
Variable name change: azVar to apVar. (CVS 1404) (check-in: 45169ce015 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/vdbe.c.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.301 2004/05/19 11:24:26 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*







|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.302 2004/05/19 11:31:13 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
      pc = pOp->p2-1;
    }
  }else{
    pTos++;
    pTos->flags = MEM_Int;
    pTos->i = res;
  }
  break;
}
/* INSERT NO CODE HERE!
**
** The opcode numbers are extracted from this source file by doing
**
**    grep '^case OP_' vdbe.c | ... >opcodes.h
**
** The opcodes are numbered in the order that they appear in this file.
** But in order for the expression generating code to work right, the
** string comparison operators that follow must be numbered exactly 6
** greater than the numeric comparison opcodes above.  So no other
** cases can appear between the two.
*/
/* Opcode: StrEq P1 P2 *
**
** Pop the top two elements from the stack.  If they are equal, then
** jump to instruction P2.  Otherwise, continue to the next instruction.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison.  For a
** numeric comparison, use OP_Eq.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrNe P1 P2 *
**
** Pop the top two elements from the stack.  If they are not equal, then
** jump to instruction P2.  Otherwise, continue to the next instruction.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison.  For a
** numeric comparison, use OP_Ne.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrLt P1 P2 *
**
** Pop the top two elements from the stack.  If second element (the
** next on stack) is less than the first (the top of stack), then
** jump to instruction P2.  Otherwise, continue to the next instruction.
** In other words, jump if NOS<TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison.  For a
** numeric comparison, use OP_Lt.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrLe P1 P2 *
**
** Pop the top two elements from the stack.  If second element (the
** next on stack) is less than or equal to the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS<=TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison.  For a
** numeric comparison, use OP_Le.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrGt P1 P2 *
**
** Pop the top two elements from the stack.  If second element (the
** next on stack) is greater than the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS>TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison.  For a
** numeric comparison, use OP_Gt.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrGe P1 P2 *
**
** Pop the top two elements from the stack.  If second element (the next
** on stack) is greater than or equal to the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS>=TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison.  For a
** numeric comparison, use OP_Ge.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
*/
case OP_StrEq:
case OP_StrNe:
case OP_StrLt:
case OP_StrLe:
case OP_StrGt:
case OP_StrGe: {
  Mem *pNos = &pTos[-1];
  int c;
  assert( pNos>=p->aStack );
  if( (pNos->flags | pTos->flags) & MEM_Null ){
    popStack(&pTos, 2);
    if( pOp->p2 ){
      if( pOp->p1 ) pc = pOp->p2-1;
    }else{
      pTos++;
      pTos->flags = MEM_Null;
    }
    break;
  }else{
    Stringify(pTos);
    Stringify(pNos);
    c = strcmp(pNos->z, pTos->z);
  }
  /* The asserts on each case of the following switch are there to verify
  ** that string comparison opcodes are always exactly 6 greater than the
  ** corresponding numeric comparison opcodes.  The code generator depends
  ** on this fact.
  */
  switch( pOp->opcode ){
    case OP_StrEq:    c = c==0;    assert( pOp->opcode-6==OP_Eq );   break;
    case OP_StrNe:    c = c!=0;    assert( pOp->opcode-6==OP_Ne );   break;
    case OP_StrLt:    c = c<0;     assert( pOp->opcode-6==OP_Lt );   break;
    case OP_StrLe:    c = c<=0;    assert( pOp->opcode-6==OP_Le );   break;
    case OP_StrGt:    c = c>0;     assert( pOp->opcode-6==OP_Gt );   break;
    default:          c = c>=0;    assert( pOp->opcode-6==OP_Ge );   break;
  }
  popStack(&pTos, 2);
  if( pOp->p2 ){
    if( c ) pc = pOp->p2-1;
  }else{
    pTos++;
    pTos->flags = MEM_Int;
    pTos->i = c;
  }
  break;
}

/* Opcode: And * * *
**
** Pop two values off the stack.  Take the logical AND of the
** two values and push the resulting boolean value back onto the







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1648
1649
1650
1651
1652
1653
1654

























































































































































1655
1656
1657
1658
1659
1660
1661
      pc = pOp->p2-1;
    }
  }else{
    pTos++;
    pTos->flags = MEM_Int;
    pTos->i = res;
  }

























































































































































  break;
}

/* Opcode: And * * *
**
** Pop two values off the stack.  Take the logical AND of the
** two values and push the resulting boolean value back onto the