Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | The optimizer now uses only the index and ignores the table if it can get away with doing so, thus saving a single BTree search per row of result. This could potentially double the speed of certain queries. The code passes all regression tests but new tests to exercise the new functionality are yet to be added. (CVS 2170) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
e5aa489453bf31126da6473ef93c89ec |
User & Date: | drh 2004-12-19 00:11:35.000 |
Context
2004-12-20
| ||
19:01 | Add PRAGMA 'temp_store_directory'. Added os_*.c function sqlite3OsIsDirWritable(), split pragma.c changeTempStorage() function into invalidateTempStorage(). (CVS 2171) (check-in: 772e22cbd6 user: tpoindex tags: trunk) | |
2004-12-19
| ||
00:11 | The optimizer now uses only the index and ignores the table if it can get away with doing so, thus saving a single BTree search per row of result. This could potentially double the speed of certain queries. The code passes all regression tests but new tests to exercise the new functionality are yet to be added. (CVS 2170) (check-in: e5aa489453 user: drh tags: trunk) | |
2004-12-18
| ||
18:40 | Improvements to the query optimizer. This is a work in progress. (CVS 2169) (check-in: 9b86993ff7 user: drh tags: trunk) | |
Changes
Changes to src/sqliteInt.h.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** ** @(#) $Id: sqliteInt.h,v 1.348 2004/12/19 00:11:35 drh Exp $ */ #ifndef _SQLITEINT_H_ #define _SQLITEINT_H_ /* ** These #defines should enable >2GB file support on Posix if the ** underlying operating system supports it. If the OS lacks |
︙ | ︙ | |||
305 306 307 308 309 310 311 312 313 314 315 316 317 318 | typedef struct Db Db; typedef struct AuthContext AuthContext; typedef struct KeyClass KeyClass; typedef struct CollSeq CollSeq; typedef struct KeyInfo KeyInfo; typedef struct SqlCursor SqlCursor; typedef struct Fetch Fetch; /* ** Each database file to be accessed by the system is an instance ** of the following structure. There are normally two of these structures ** in the sqlite.aDb[] array. aDb[0] is the main database file and ** aDb[1] is the database file used to hold temporary tables. Additional ** databases may be attached. | > | 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | typedef struct Db Db; typedef struct AuthContext AuthContext; typedef struct KeyClass KeyClass; typedef struct CollSeq CollSeq; typedef struct KeyInfo KeyInfo; typedef struct SqlCursor SqlCursor; typedef struct Fetch Fetch; typedef struct CursorSubst CursorSubst; /* ** Each database file to be accessed by the system is an instance ** of the following structure. There are normally two of these structures ** in the sqlite.aDb[] array. aDb[0] is the main database file and ** aDb[1] is the database file used to hold temporary tables. Additional ** databases may be attached. |
︙ | ︙ | |||
906 907 908 909 910 911 912 | ** For each nested loop in a WHERE clause implementation, the WhereInfo ** structure contains a single instance of this structure. This structure ** is intended to be private the the where.c module and should not be ** access or modified by other modules. */ struct WhereLevel { int iMem; /* Memory cell used by this level */ | | > | > | 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 | ** For each nested loop in a WHERE clause implementation, the WhereInfo ** structure contains a single instance of this structure. This structure ** is intended to be private the the where.c module and should not be ** access or modified by other modules. */ struct WhereLevel { int iMem; /* Memory cell used by this level */ Index *pIdx; /* Index used. NULL if no index */ int iTabCur; /* The VDBE cursor used to access the table */ int iIdxCur; /* The VDBE cursor used to acesss pIdx */ int score; /* How well this indexed scored */ int brk; /* Jump here to break out of the loop */ int cont; /* Jump here to continue with the next loop cycle */ int op, p1, p2; /* Opcode used to terminate the loop */ int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ int top; /* First instruction of interior of the loop */ int inOp, inP1, inP2;/* Opcode used to implement an IN operator */ int bRev; /* Do the scan in the reverse direction */ }; /* ** The WHERE clause processing routine has two halves. The ** first part does the start of the WHERE loop and the second ** half does the tail of the WHERE loop. An instance of ** this structure is returned by the first half and passed ** into the second half to give some continuity. */ struct WhereInfo { Parse *pParse; SrcList *pTabList; /* List of tables in the join */ int iTop; /* The very beginning of the WHERE loop */ int iContinue; /* Jump here to continue with next record */ int iBreak; /* Jump here to break out of the loop */ int nLevel; /* Number of nested loop */ WhereLevel a[1]; /* Information about each nest loop in the WHERE */ }; /* |
︙ | ︙ | |||
1063 1064 1065 1066 1067 1068 1069 | Token sLastToken; /* The last token parsed */ const char *zSql; /* All SQL text */ const char *zTail; /* All SQL text past the last semicolon parsed */ Table *pNewTable; /* A table being constructed by CREATE TABLE */ Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ TriggerStack *trigStack; /* Trigger actions being coded */ const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ | < | 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 | Token sLastToken; /* The last token parsed */ const char *zSql; /* All SQL text */ const char *zTail; /* All SQL text past the last semicolon parsed */ Table *pNewTable; /* A table being constructed by CREATE TABLE */ Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ TriggerStack *trigStack; /* Trigger actions being coded */ const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ }; /* ** An instance of the following structure can be declared on a stack and used ** to save the Parse.zAuthContext value so that it can be restored later. */ struct AuthContext { |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.434 2004/12/19 00:11:35 drh Exp $ */ #include "sqliteInt.h" #include "os.h" #include <ctype.h> #include "vdbeInt.h" /* |
︙ | ︙ | |||
1662 1663 1664 1665 1666 1667 1668 | case OP_SetNumColumns: { assert( (pOp->p1)<p->nCursor ); assert( p->apCsr[pOp->p1]!=0 ); p->apCsr[pOp->p1]->nField = pOp->p2; break; } | < < < < < < | 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 | case OP_SetNumColumns: { assert( (pOp->p1)<p->nCursor ); assert( p->apCsr[pOp->p1]!=0 ); p->apCsr[pOp->p1]->nField = pOp->p2; break; } /* Opcode: Column P1 P2 * ** ** Interpret the data that cursor P1 points to as a structure built using ** the MakeRecord instruction. (See the MakeRecord opcode for additional ** information about the format of the data.) Push onto the stack the value ** of the P2-th column contained in the data. ** ** If the KeyAsData opcode has previously executed on this cursor, then the ** field might be extracted from the key rather than the data. ** ** If P1 is negative, then the record is stored on the stack rather than in ** a table. For P1==-1, the top of the stack is used. For P1==-2, the ** next on the stack is used. And so forth. The value pushed is always ** just a pointer into the record which is stored further down on the ** stack. The column value is not copied. The number of columns in the ** record is stored on the stack just above the record itself. */ case OP_Column: { u32 payloadSize; /* Number of bytes in the record */ int p1 = pOp->p1; /* P1 value of the opcode */ int p2 = pOp->p2; /* column number to retrieve */ Cursor *pC = 0; /* The VDBE cursor */ char *zRec; /* Pointer to complete record-data */ BtCursor *pCrsr; /* The BTree cursor */ |
︙ | ︙ | |||
3478 3479 3480 3481 3482 3483 3484 | pTos--; break; } /* Opcode: IdxRecno P1 * * ** ** Push onto the stack an integer which is the varint located at the | | | 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 | pTos--; break; } /* Opcode: IdxRecno P1 * * ** ** Push onto the stack an integer which is the varint located at the ** end of the index key pointed to by cursor P1. This integer should be ** the record number of the table entry to which this index entry points. ** ** See also: Recno, MakeIdxKey. */ case OP_IdxRecno: { int i = pOp->p1; BtCursor *pCrsr; |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
12 13 14 15 16 17 18 | ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. This module is reponsible for ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". ** | | | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. This module is reponsible for ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". ** ** $Id: where.c,v 1.123 2004/12/19 00:11:35 drh Exp $ */ #include "sqliteInt.h" /* ** The query generator uses an array of instances of this structure to ** help it analyze the subexpressions of the WHERE clause. Each WHERE ** clause subexpression is separated from the others by an AND operator. |
︙ | ︙ | |||
292 293 294 295 296 297 298 | SWAP(unsigned, pInfo->prereqLeft, pInfo->prereqRight); SWAP(short int, pInfo->idxLeft, pInfo->idxRight); } } } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 292 293 294 295 296 297 298 299 300 301 302 303 304 305 | SWAP(unsigned, pInfo->prereqLeft, pInfo->prereqRight); SWAP(short int, pInfo->idxLeft, pInfo->idxRight); } } } /* ** This routine decides if pIdx can be used to satisfy the ORDER BY ** clause. If it can, it returns 1. If pIdx cannot satisfy the ** ORDER BY clause, this routine returns 0. ** ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the ** left-most table in the FROM clause of that same SELECT statement and |
︙ | ︙ | |||
446 447 448 449 450 451 452 | if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ /* Can not use an index sort on anything that is not a column in the ** left-most table of the FROM clause */ return 0; } pColl = sqlite3ExprCollSeq(pParse, pExpr); if( !pColl ) pColl = db->pDfltColl; | | > | | 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ /* Can not use an index sort on anything that is not a column in the ** left-most table of the FROM clause */ return 0; } pColl = sqlite3ExprCollSeq(pParse, pExpr); if( !pColl ) pColl = db->pDfltColl; if( pExpr->iColumn!=pIdx->aiColumn[i] || pColl!=pIdx->keyInfo.aColl[i] ){ /* Term j of the ORDER BY clause does not match column i of the index */ if( i<nEqCol ){ /* If an index column that is constrained by == fails to match an ** ORDER BY term, that is OK. Just ignore that column of the index */ continue; }else{ /* If an index column fails to match and is not constrained by == ** then the index cannot satisfy the ORDER BY constraint. |
︙ | ︙ | |||
573 574 575 576 577 578 579 | assert( pX->op==TK_EQ ); sqlite3ExprCode(pParse, pX->pRight); }else{ int iTab = pX->iTable; Vdbe *v = pParse->pVdbe; sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk); sqlite3VdbeAddOp(v, OP_KeyAsData, iTab, 1); | | | 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 | assert( pX->op==TK_EQ ); sqlite3ExprCode(pParse, pX->pRight); }else{ int iTab = pX->iTable; Vdbe *v = pParse->pVdbe; sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk); sqlite3VdbeAddOp(v, OP_KeyAsData, iTab, 1); pLevel->inP2 = sqlite3VdbeAddOp(v, OP_Column, iTab, 0); pLevel->inOp = OP_Next; pLevel->inP1 = iTab; } disableTerm(pLevel, &pTerm->p); } /* |
︙ | ︙ | |||
677 678 679 680 681 682 683 | ){ int i; /* Loop counter */ WhereInfo *pWInfo; /* Will become the return value of this function */ Vdbe *v = pParse->pVdbe; /* The virtual database engine */ int brk, cont = 0; /* Addresses used during code generation */ int nExpr; /* Number of subexpressions in the WHERE clause */ Bitmask loopMask; /* One bit set for each outer loop */ | | > > | 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 | ){ int i; /* Loop counter */ WhereInfo *pWInfo; /* Will become the return value of this function */ Vdbe *v = pParse->pVdbe; /* The virtual database engine */ int brk, cont = 0; /* Addresses used during code generation */ int nExpr; /* Number of subexpressions in the WHERE clause */ Bitmask loopMask; /* One bit set for each outer loop */ int haveRowid = 0; /* True if the ROWID is on the stack */ ExprInfo *pTerm; /* A single term in the WHERE clause; ptr to aExpr[] */ ExprMaskSet maskSet; /* The expression mask set */ int iDirectEq[BMS]; /* Term of the form ROWID==X for the N-th table */ int iDirectLt[BMS]; /* Term of the form ROWID<X or ROWID<=X */ int iDirectGt[BMS]; /* Term of the form ROWID>X or ROWID>=X */ ExprInfo aExpr[101]; /* The WHERE clause is divided into these terms */ struct SrcList_item *pTabItem; /* A single entry from pTabList */ WhereLevel *pLevel; /* A single level in the pWInfo list */ /* pushKey is only allowed if there is a single table (as in an INSERT or ** UPDATE statement) */ assert( pushKey==0 || pTabList->nSrc==1 ); /* Split the WHERE clause into separate subexpressions where each |
︙ | ︙ | |||
767 768 769 770 771 772 773 | ** doing a second read of the actual database table. ** ** Actually, if there are more than 32 tables in the join, only the ** first 32 tables are candidates for indices. This is (again) due ** to the limit of 32 bits in an integer bitmask. */ loopMask = 0; | > > | < | | | | 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 | ** doing a second read of the actual database table. ** ** Actually, if there are more than 32 tables in the join, only the ** first 32 tables are candidates for indices. This is (again) due ** to the limit of 32 bits in an integer bitmask. */ loopMask = 0; pTabItem = pTabList->a; pLevel = pWInfo->a; for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++,pTabItem++,pLevel++){ int j; int iCur = pTabItem->iCursor; /* The cursor for this table */ Bitmask mask = getMask(&maskSet, iCur); /* Cursor mask for this table */ Table *pTab = pTabItem->pTab; Index *pIdx; Index *pBestIdx = 0; int bestScore = 0; int bestRev = 0; /* Check to see if there is an expression that uses only the ** ROWID field of this table. For terms of the form ROWID==expr ** set iDirectEq[i] to the index of the term. For terms of the ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index. ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i]. ** ** (Added:) Treat ROWID IN expr like ROWID=expr. */ pLevel->iIdxCur = -1; iDirectEq[i] = -1; iDirectLt[i] = -1; iDirectGt[i] = -1; for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){ Expr *pX = pTerm->p; if( pTerm->idxLeft==iCur && pX->pLeft->iColumn<0 && (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){ |
︙ | ︙ | |||
929 930 931 932 933 934 935 | m = ((Bitmask)1)<<nEq; if( m & ltMask ) score+=4; /* Increase score for a < constraint */ if( m & gtMask ) score+=8; /* Increase score for a > constraint */ if( score==0 && inMask ) score = 16; /* Default score for IN constraint */ /* Give bonus points if this index can be used for sorting */ | | > > > > > > > > > > > > > > > > | < | | | | | | | | | | | | | | | | | | | | | | | | < | > | | < < < < < < < | | | > > | > | > | < > > | | > > > | > > > > > | | | > > | > > > > > > > > < < > < > | | 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 | m = ((Bitmask)1)<<nEq; if( m & ltMask ) score+=4; /* Increase score for a < constraint */ if( m & gtMask ) score+=8; /* Increase score for a > constraint */ if( score==0 && inMask ) score = 16; /* Default score for IN constraint */ /* Give bonus points if this index can be used for sorting */ if( i==0 && score!=16 && ppOrderBy && *ppOrderBy ){ int base = pTabList->a[0].iCursor; if( isSortingIndex(pParse, pIdx, pTab, base, *ppOrderBy, nEq, &bRev) ){ score += 2; } } /* Check to see if we can get away with using just the index without ** ever reading the table. If that is the case, then add one bonus ** point to the score. */ if( score && pTabItem->colUsed < (((Bitmask)1)<<(BMS-1)) ){ for(m=0, j=0; j<pIdx->nColumn; j++){ int x = pIdx->aiColumn[j]; if( x<BMS-1 ){ m |= ((Bitmask)1)<<x; } } if( (pTabItem->colUsed & m)==pTabItem->colUsed ){ score++; } } /* If the score for this index is the best we have seen so far, then ** save it */ if( score>bestScore ){ pBestIdx = pIdx; bestScore = score; bestRev = bRev; } } pLevel->pIdx = pBestIdx; pLevel->score = bestScore; pLevel->bRev = bestRev; loopMask |= mask; if( pBestIdx ){ pLevel->iIdxCur = pParse->nTab++; } } /* Check to see if the ORDER BY clause is or can be satisfied by the ** use of an index on the first table. */ if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){ Index *pIdx; /* Index derived from the WHERE clause */ Table *pTab; /* Left-most table in the FROM clause */ int bRev = 0; /* True to reverse the output order */ int iCur; /* Btree-cursor that will be used by pTab */ WhereLevel *pLevel0 = &pWInfo->a[0]; pTab = pTabList->a[0].pTab; pIdx = pLevel0->pIdx; iCur = pTabList->a[0].iCursor; if( pIdx==0 && sortableByRowid(iCur, *ppOrderBy, &bRev) ){ /* The ORDER BY clause specifies ROWID order, which is what we ** were going to be doing anyway... */ *ppOrderBy = 0; pLevel0->bRev = bRev; }else if( pLevel0->score==16 ){ /* If there is already an IN index on the left-most table, ** it will not give the correct sort order. ** So, pretend that no suitable index is found. */ }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){ /* If the left-most column is accessed using its ROWID, then do ** not try to sort by index. But do delete the ORDER BY clause ** if it is redundant. */ }else if( (pLevel0->score&2)!=0 ){ /* The index that was selected for searching will cause rows to ** appear in sorted order. */ *ppOrderBy = 0; } } /* Open all tables in the pTabList and any indices selected for ** searching those tables. */ sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ pLevel = pWInfo->a; for(i=0, pTabItem=pTabList->a; i<pTabList->nSrc; i++, pTabItem++, pLevel++){ Table *pTab; Index *pIx; int iIdxCur = pLevel->iIdxCur; pTab = pTabItem->pTab; if( pTab->isTransient || pTab->pSelect ) continue; if( (pLevel->score & 1)==0 ){ sqlite3OpenTableForReading(v, pTabItem->iCursor, pTab); } pLevel->iTabCur = pTabItem->iCursor; if( (pIx = pLevel->pIdx)!=0 ){ sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0); sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum, (char*)&pIx->keyInfo, P3_KEYINFO); } if( (pLevel->score & 1)!=0 ){ sqlite3VdbeAddOp(v, OP_KeyAsData, iIdxCur, 1); sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1); } sqlite3CodeVerifySchema(pParse, pTab->iDb); } pWInfo->iTop = sqlite3VdbeCurrentAddr(v); /* Generate the code to do the search */ loopMask = 0; pLevel = pWInfo->a; pTabItem = pTabList->a; for(i=0; i<pTabList->nSrc; i++, pTabItem++, pLevel++){ int j, k; int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ Index *pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int omitTable; /* True if we use the index only */ pIdx = pLevel->pIdx; iIdxCur = pLevel->iIdxCur; pLevel->inOp = OP_Noop; /* Check to see if it is appropriate to omit the use of the table ** here and use its index instead. */ omitTable = (pLevel->score&1)!=0; /* If this is the right table of a LEFT OUTER JOIN, allocate and ** initialize a memory cell that records if this table matches any ** row of the left table of the join. */ if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){ if( !pParse->nMem ) pParse->nMem++; pLevel->iLeftJoin = pParse->nMem++; sqlite3VdbeAddOp(v, OP_String8, 0, 0); sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); VdbeComment((v, "# init LEFT JOIN no-match flag")); } if( i<ARRAYSIZE(iDirectEq) && (k = iDirectEq[i])>=0 ){ /* Case 1: We can directly reference a single row using an ** equality comparison against the ROWID field. Or ** we reference multiple rows using a "rowid IN (...)" ** construct. */ assert( k<nExpr ); pTerm = &aExpr[k]; assert( pTerm->p!=0 ); assert( pTerm->idxLeft==iCur ); assert( omitTable==0 ); brk = pLevel->brk = sqlite3VdbeMakeLabel(v); codeEqualityTerm(pParse, pTerm, brk, pLevel); cont = pLevel->cont = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk); sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk); haveRowid = 0; pLevel->op = OP_Noop; }else if( pIdx!=0 && pLevel->score>3 && (pLevel->score&0x0c)==0 ){ /* Case 2: There is an index and all terms of the WHERE clause that ** refer to the index using the "==" or "IN" operators. */ int start; int nColumn = (pLevel->score+16)/32; brk = pLevel->brk = sqlite3VdbeMakeLabel(v); |
︙ | ︙ | |||
1096 1097 1098 1099 1100 1101 1102 | /* Generate code (1) to move to the first matching element of the table. ** Then generate code (2) that jumps to "brk" after the cursor is past ** the last matching element of the table. The code (1) is executed ** once to initialize the search, the code (2) is executed before each ** iteration of the scan to see if the scan has finished. */ if( pLevel->bRev ){ /* Scan in reverse order */ | | | | | | < | | | | | > | 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 | /* Generate code (1) to move to the first matching element of the table. ** Then generate code (2) that jumps to "brk" after the cursor is past ** the last matching element of the table. The code (1) is executed ** once to initialize the search, the code (2) is executed before each ** iteration of the scan to see if the scan has finished. */ if( pLevel->bRev ){ /* Scan in reverse order */ sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk); start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk); pLevel->op = OP_Prev; }else{ /* Scan in the forward order */ sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk); start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC); pLevel->op = OP_Next; } sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0); sqlite3VdbeAddOp(v, OP_IdxIsNull, nColumn, cont); if( omitTable ){ haveRowid = 0; }else{ sqlite3VdbeAddOp(v, OP_IdxRecno, iIdxCur, 0); haveRowid = 1; } pLevel->p1 = iIdxCur; pLevel->p2 = start; }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){ /* Case 3: We have an inequality comparison against the ROWID field. */ int testOp = OP_Noop; int start; int bRev = pLevel->bRev; assert( omitTable==0 ); brk = pLevel->brk = sqlite3VdbeMakeLabel(v); cont = pLevel->cont = sqlite3VdbeMakeLabel(v); if( bRev ){ int t = iDirectGt[i]; iDirectGt[i] = iDirectLt[i]; iDirectLt[i] = t; } |
︙ | ︙ | |||
1174 1175 1176 1177 1178 1179 1180 | pLevel->p1 = iCur; pLevel->p2 = start; if( testOp!=OP_Noop ){ sqlite3VdbeAddOp(v, OP_Recno, iCur, 0); sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); sqlite3VdbeAddOp(v, testOp, 0, brk); } | | > | | 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 | pLevel->p1 = iCur; pLevel->p2 = start; if( testOp!=OP_Noop ){ sqlite3VdbeAddOp(v, OP_Recno, iCur, 0); sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); sqlite3VdbeAddOp(v, testOp, 0, brk); } haveRowid = 0; }else if( pIdx==0 ){ /* Case 4: There is no usable index. We must do a complete ** scan of the entire database table. */ int start; int opRewind; assert( omitTable==0 ); brk = pLevel->brk = sqlite3VdbeMakeLabel(v); cont = pLevel->cont = sqlite3VdbeMakeLabel(v); if( pLevel->bRev ){ opRewind = OP_Last; pLevel->op = OP_Prev; }else{ opRewind = OP_Rewind; pLevel->op = OP_Next; } sqlite3VdbeAddOp(v, opRewind, iCur, brk); start = sqlite3VdbeCurrentAddr(v); pLevel->p1 = iCur; pLevel->p2 = start; haveRowid = 0; }else{ /* Case 5: The WHERE clause term that refers to the right-most ** column of the index is an inequality. For example, if ** the index is on (x,y,z) and the WHERE clause is of the ** form "x=5 AND y<10" then this case is used. Only the ** right-most column can be an inequality - the rest must ** use the "==" operator. |
︙ | ︙ | |||
1279 1280 1281 1282 1283 1284 1285 | } if( testOp!=OP_Noop ){ int nCol = nEqColumn + ((score & 4)!=0); pLevel->iMem = pParse->nMem++; buildIndexProbe(v, nCol, brk, pIdx); if( pLevel->bRev ){ int op = leFlag ? OP_MoveLe : OP_MoveLt; | | | | 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 | } if( testOp!=OP_Noop ){ int nCol = nEqColumn + ((score & 4)!=0); pLevel->iMem = pParse->nMem++; buildIndexProbe(v, nCol, brk, pIdx); if( pLevel->bRev ){ int op = leFlag ? OP_MoveLe : OP_MoveLt; sqlite3VdbeAddOp(v, op, iIdxCur, brk); }else{ sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); } }else if( pLevel->bRev ){ sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk); } /* Generate the start key. This is the key that defines the lower ** bound on the search. There is no start key if there are no ** equality terms and if there is no "X>..." term. In ** that case, generate a "Rewind" instruction in place of the ** start key search. |
︙ | ︙ | |||
1323 1324 1325 1326 1327 1328 1329 | buildIndexProbe(v, nCol, brk, pIdx); if( pLevel->bRev ){ pLevel->iMem = pParse->nMem++; sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); testOp = OP_IdxLT; }else{ int op = geFlag ? OP_MoveGe : OP_MoveGt; | | | | | < | | | | | | | > > > | > | | > | | > > > > > > > > > | > > > | | | > > > > > > > > > | | | | > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 | buildIndexProbe(v, nCol, brk, pIdx); if( pLevel->bRev ){ pLevel->iMem = pParse->nMem++; sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); testOp = OP_IdxLT; }else{ int op = geFlag ? OP_MoveGe : OP_MoveGt; sqlite3VdbeAddOp(v, op, iIdxCur, brk); } }else if( pLevel->bRev ){ testOp = OP_Noop; }else{ sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk); } /* Generate the the top of the loop. If there is a termination ** key we have to test for that key and abort at the top of the ** loop. */ start = sqlite3VdbeCurrentAddr(v); if( testOp!=OP_Noop ){ sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); sqlite3VdbeAddOp(v, testOp, iIdxCur, brk); if( (leFlag && !pLevel->bRev) || (!geFlag && pLevel->bRev) ){ sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC); } } sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0); sqlite3VdbeAddOp(v, OP_IdxIsNull, nEqColumn + ((score&4)!=0), cont); if( omitTable ){ haveRowid = 0; }else{ sqlite3VdbeAddOp(v, OP_IdxRecno, iIdxCur, 0); haveRowid = 1; } /* Record the instruction used to terminate the loop. */ pLevel->op = pLevel->bRev ? OP_Prev : OP_Next; pLevel->p1 = iIdxCur; pLevel->p2 = start; } loopMask |= getMask(&maskSet, iCur); /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. */ for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){ if( pTerm->p==0 ) continue; if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue; if( pLevel->iLeftJoin && !ExprHasProperty(pTerm->p,EP_FromJoin) ){ continue; } if( haveRowid ){ haveRowid = 0; if( omitTable ){ sqlite3VdbeAddOp(v, OP_Pop, 1, 0); }else{ sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); } } sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1); pTerm->p = 0; } brk = cont; /* For a LEFT OUTER JOIN, generate code that will record the fact that ** at least one row of the right table has matched the left table. */ if( pLevel->iLeftJoin ){ pLevel->top = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp(v, OP_Integer, 1, 0); sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); VdbeComment((v, "# record LEFT JOIN hit")); for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){ if( pTerm->p==0 ) continue; if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue; if( haveRowid ){ /* Cannot happen. "haveRowid" can only be true if pushKey is true ** an pushKey can only be true for DELETE and UPDATE and there are ** no outer joins with DELETE and UPDATE. */ assert( 0 ); haveRowid = 0; sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); } sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1); pTerm->p = 0; } } if( haveRowid && (i<pTabList->nSrc-1 || !pushKey) ){ haveRowid = 0; if( omitTable ){ sqlite3VdbeAddOp(v, OP_Pop, 1, 0); }else{ sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); } } } pWInfo->iContinue = cont; if( pushKey && !haveRowid ){ sqlite3VdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0); } freeMaskSet(&maskSet); return pWInfo; } /* ** Generate the end of the WHERE loop. See comments on ** sqlite3WhereBegin() for additional information. */ void sqlite3WhereEnd(WhereInfo *pWInfo){ Vdbe *v = pWInfo->pParse->pVdbe; int i; WhereLevel *pLevel; SrcList *pTabList = pWInfo->pTabList; struct SrcList_item *pTabItem; /* Generate loop termination code. */ for(i=pTabList->nSrc-1; i>=0; i--){ pLevel = &pWInfo->a[i]; sqlite3VdbeResolveLabel(v, pLevel->cont); if( pLevel->op!=OP_Noop ){ sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); } sqlite3VdbeResolveLabel(v, pLevel->brk); if( pLevel->inOp!=OP_Noop ){ sqlite3VdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2); } if( pLevel->iLeftJoin ){ int addr; addr = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0); sqlite3VdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iIdxCur>=0)); sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); if( pLevel->iIdxCur>=0 ){ sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0); } sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top); } } /* The "break" point is here, just past the end of the outer loop. ** Set it. */ sqlite3VdbeResolveLabel(v, pWInfo->iBreak); /* Close all of the cursors */ pLevel = pWInfo->a; pTabItem = pTabList->a; for(i=0; i<pTabList->nSrc; i++, pTabItem++, pLevel++){ Table *pTab = pTabItem->pTab; assert( pTab!=0 ); if( pTab->isTransient || pTab->pSelect ) continue; if( (pLevel->score & 1)==0 ){ sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0); } if( pLevel->pIdx!=0 ){ sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0); } /* Make all cursor substitutions for cases where we want to use ** just the index and never reference the table. ** ** Calls to the code generator in between sqlite3WhereBegin and ** sqlite3WhereEnd will have created code that references the table ** directly. This loop scans all that code looking for opcodes ** that reference the table and converts them into opcodes that ** reference the index. */ if( pLevel->score & 1 ){ int i, j, last; VdbeOp *pOp; Index *pIdx = pLevel->pIdx; assert( pIdx!=0 ); pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); last = sqlite3VdbeCurrentAddr(v); for(i=pWInfo->iTop; i<last; i++, pOp++){ if( pOp->p1!=pLevel->iTabCur ) continue; if( pOp->opcode==OP_Column ){ pOp->p1 = pLevel->iIdxCur; for(j=0; j<pIdx->nColumn; j++){ if( pOp->p2==pIdx->aiColumn[j] ){ pOp->p2 = j; break; } } }else if( pOp->opcode==OP_Recno ){ pOp->p1 = pLevel->iIdxCur; pOp->opcode = OP_IdxRecno; } } } } /* Final cleanup */ sqliteFree(pWInfo); return; } |
Changes to test/collate4.test.
︙ | ︙ | |||
8 9 10 11 12 13 14 | # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is page cache subsystem. # | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is page cache subsystem. # # $Id: collate4.test,v 1.6 2004/12/19 00:11:36 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl db collate TEXT text_collate proc text_collate {a b} { return [string compare $a $b] |
︙ | ︙ | |||
347 348 349 350 351 352 353 | do_test collate4-2.1.2 { execsql { CREATE INDEX collate4i1 ON collate4t1(a); } count { SELECT * FROM collate4t2, collate4t1 WHERE a = b; } | | | | | | 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | do_test collate4-2.1.2 { execsql { CREATE INDEX collate4i1 ON collate4t1(a); } count { SELECT * FROM collate4t2, collate4t1 WHERE a = b; } } {A a A A 5} do_test collate4-2.1.3 { count { SELECT * FROM collate4t2, collate4t1 WHERE b = a; } } {A A 19} do_test collate4-2.1.4 { execsql { DROP INDEX collate4i1; CREATE INDEX collate4i1 ON collate4t1(a COLLATE TEXT); } count { SELECT * FROM collate4t2, collate4t1 WHERE a = b; } } {A a A A 19} do_test collate4-2.1.5 { count { SELECT * FROM collate4t2, collate4t1 WHERE b = a; } } {A A 4} do_test collate4-2.1.6 { count { SELECT a FROM collate4t1 WHERE a IN (SELECT * FROM collate4t2); } } {a A 10} do_test collate4-2.1.7 { execsql { DROP INDEX collate4i1; CREATE INDEX collate4i1 ON collate4t1(a); } count { SELECT a FROM collate4t1 WHERE a IN (SELECT * FROM collate4t2); } } {a A 6} do_test collate4-2.1.8 { count { SELECT a FROM collate4t1 WHERE a IN ('z', 'a'); } } {a A 5} do_test collate4-2.1.9 { execsql { DROP INDEX collate4i1; CREATE INDEX collate4i1 ON collate4t1(a COLLATE TEXT); } count { SELECT a FROM collate4t1 WHERE a IN ('z', 'a'); |
︙ | ︙ | |||
423 424 425 426 427 428 429 | } } {} do_test collate4-2.2.1 { count { SELECT * FROM collate4t2 NATURAL JOIN collate4t1; } } {0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 63} | | | | 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 | } } {} do_test collate4-2.2.1 { count { SELECT * FROM collate4t2 NATURAL JOIN collate4t1; } } {0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 63} do_test collate4-2.2.1b { execsql { CREATE INDEX collate4i1 ON collate4t1(a, b, c); } count { SELECT * FROM collate4t2 NATURAL JOIN collate4t1; } } {0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 29} do_test collate4-2.2.2 { execsql { DROP INDEX collate4i1; CREATE INDEX collate4i1 ON collate4t1(a, b, c COLLATE text); } count { SELECT * FROM collate4t2 NATURAL JOIN collate4t1; |
︙ | ︙ |
Changes to test/where.test.
1 2 3 4 5 6 7 8 9 10 11 12 13 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the use of indices in WHERE clases. # | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the use of indices in WHERE clases. # # $Id: where.test,v 1.26 2004/12/19 00:11:36 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Build some test data # do_test where-1.0 { |
︙ | ︙ | |||
147 148 149 150 151 152 153 | do_test where-1.29 { count {SELECT w FROM t1 WHERE y==121} } {10 99} do_test where-1.30 { count {SELECT w FROM t1 WHERE w>97} | | | | | | | | | | | 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | do_test where-1.29 { count {SELECT w FROM t1 WHERE y==121} } {10 99} do_test where-1.30 { count {SELECT w FROM t1 WHERE w>97} } {98 99 100 3} do_test where-1.31 { count {SELECT w FROM t1 WHERE w>=97} } {97 98 99 100 4} do_test where-1.33 { count {SELECT w FROM t1 WHERE w==97} } {97 2} do_test where-1.34 { count {SELECT w FROM t1 WHERE w+1==98} } {97 99} do_test where-1.35 { count {SELECT w FROM t1 WHERE w<3} } {1 2 2} do_test where-1.36 { count {SELECT w FROM t1 WHERE w<=3} } {1 2 3 3} do_test where-1.37 { count {SELECT w FROM t1 WHERE w+1<=4 ORDER BY w} } {1 2 3 99} do_test where-1.38 { count {SELECT (w) FROM t1 WHERE (w)>(97)} } {98 99 100 3} do_test where-1.39 { count {SELECT (w) FROM t1 WHERE (w)>=(97)} } {97 98 99 100 4} do_test where-1.40 { count {SELECT (w) FROM t1 WHERE (w)==(97)} } {97 2} do_test where-1.41 { count {SELECT (w) FROM t1 WHERE ((w)+(1))==(98)} } {97 99} # Do the same kind of thing except use a join as the data source. # |
︙ | ︙ | |||
233 234 235 236 237 238 239 | # Lets do a 3-way join. # do_test where-3.1 { count { SELECT A.w, B.p, C.w FROM t1 as A, t2 as B, t1 as C WHERE C.w=101-B.p AND B.r=10202-A.y AND A.w=11 } | | | | | 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 | # Lets do a 3-way join. # do_test where-3.1 { count { SELECT A.w, B.p, C.w FROM t1 as A, t2 as B, t1 as C WHERE C.w=101-B.p AND B.r=10202-A.y AND A.w=11 } } {11 90 11 8} do_test where-3.2 { count { SELECT A.w, B.p, C.w FROM t1 as A, t2 as B, t1 as C WHERE C.w=101-B.p AND B.r=10202-A.y AND A.w=12 } } {12 89 12 8} do_test where-3.3 { count { SELECT A.w, B.p, C.w FROM t1 as A, t2 as B, t1 as C WHERE A.w=15 AND B.p=C.w AND B.r=10202-A.y } } {15 86 86 8} # Test to see that the special case of a constant WHERE clause is # handled. # do_test where-4.1 { count { SELECT * FROM t1 WHERE 0 |
︙ | ︙ | |||
413 414 415 416 417 418 419 | SELECT * FROM t3 WHERE b>0 ORDER BY a LIMIT 3 } } {1 100 4 2 99 9 3 98 16 sort} do_test where-6.8 { cksort { SELECT * FROM t3 WHERE a IN (3,5,7,1,9,4,2) ORDER BY a LIMIT 3 } | | | 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 | SELECT * FROM t3 WHERE b>0 ORDER BY a LIMIT 3 } } {1 100 4 2 99 9 3 98 16 sort} do_test where-6.8 { cksort { SELECT * FROM t3 WHERE a IN (3,5,7,1,9,4,2) ORDER BY a LIMIT 3 } } {1 100 4 2 99 9 3 98 16 sort} do_test where-6.9.1 { cksort { SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY a LIMIT 3 } } {1 100 4 nosort} do_test where-6.9.2 { cksort { |
︙ | ︙ | |||
453 454 455 456 457 458 459 | SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY c,a LIMIT 3 } } {1 100 4 sort} do_test where-6.9.8 { cksort { SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY a DESC, c ASC LIMIT 3 } | | | | 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 | SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY c,a LIMIT 3 } } {1 100 4 sort} do_test where-6.9.8 { cksort { SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY a DESC, c ASC LIMIT 3 } } {1 100 4 nosort} do_test where-6.9.9 { cksort { SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY a ASC, c DESC LIMIT 3 } } {1 100 4 nosort} do_test where-6.10 { cksort { SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY a LIMIT 3 } } {1 100 4 nosort} do_test where-6.11 { cksort { |
︙ | ︙ |