SQLite

Check-in [c8d3bdd91e]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment::-) (CVS 221)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: c8d3bdd91e333f3fc519558e40c07e7e7c2ebeec
User & Date: drh 2001-05-28 00:41:15.000
Context
2001-05-28
00:41
:-) (CVS 1720) (check-in: d78febd197 user: drh tags: trunk)
00:41
:-) (CVS 221) (check-in: c8d3bdd91e user: drh tags: trunk)
2001-05-26
13:15
:-) (CVS 220) (check-in: 45a0e0fc8c user: drh tags: trunk)
Changes
Unified Diff Show Whitespace Changes Patch
Changes to notes/notes2.txt.
1
2








3


4


5
6
7
8
9
10
11


12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40



41

42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
How to do a B*Tree insert:









add_to_page(pageptr, data, pgno){


  pgno.parent = pageptr


  if( data+pgno fits on pageptr ){
    add data+pgno to pageptr
    return
  }
  if( pageptr==root ){
    split pageptr+(data+pgno) into newpage1, center, newpage2
    pageptr = ptr(newpage1) + center + ptr(newpage2);


    return
  }
  if( move_some_data_left || move_some_data_right ){
    add data+pgno to pageptr
    return
  }
  split pageptr+(data+pgno) into pageptr, center, newpage
  add_to_page(parent(pageptr), center, ptr(newpage));
  newpage.parent = parent(pageptr)
}

Cursor: pageptr, idx

unlink_entry(cursor, olddata){
  if( cursor.pageptr is not a leaf page ){
    if( olddata!=nil) copy payload(cursor) into olddata
    n = next_entry(cursor)
    if( payloadsize(n) <= freesize(cursor) + payloadsize(cursor) ){
      copy payload(n) into payload(cursor)
      unlink_entry(n, nil)
      return
    }
    p = prev_entry(cursor)
    if( payloadsize(p) <= freesize(cursor) + payloadsize(cursor) ){
      copy payload(p) into payload(cursor)
      unlink_entry(p, nil)
      return
    }

    unlink(n, leafdata)



    pageptr = cursor.pageptr

    nextpgno = pageptr.aCell[cursor.idx].pgno;

    convert_cursor_to_free_block(cursor)
    add_to_page(pageptr, leafdata, nextpgno)
    return
  }
  pageptr = cursor.pageptr;
  convert_cursor_to_free_block(cursor)
  if( usage(pageptr)<0.65 ){
    consolidate(pageptr)
  }
}

consolidate(pageptr){
  parentpage = parentof(pageptr)
  idx = index_of_page(parentpage, pageptr);
  leftsibling = parentpage.cell[idx].pgno;
  rightsibling = parentpage.cell[idx+1].pgno;
  if( idx>0 ){
    cursor = makecursor(pageptr,idx-1)
    if( try_to_move_down(cursor) ) return
  }
  if( idx<max ){
    cursor = makecursor(pageptr,idx)
    try_to_move_down(cursor)
  }
  return
}

try_to_move_down(cursor){
  pageptr = cursor.pageptr
  if( payload(cursor)+sizeof(left)+sizeof(right)<=pagesize ){
    put cursor and content of left into right
    remove cursor from pageptr
    if( pageptr is root ){
      if( cellcount(pageptr)==0 ){
        copy child into pageptr
        update parent field of child
      }
    }else if( usage(pageptr)<0.65 ){
      try_to_move_down(cursor)
    }
  }
}

cursor_move_next(cursor){
  if( cursor.incr_noop ){
    cursor.incr_noop = FALSE;
    return;
  }
  if( is_leaf(cursor.pageptr) ){
    if( cursor.idx==cursor.pageptr.ncell ){

      if( cursor.pageptr==root ){
        nil cursor
        return
      }
      cursor_move_up(cursor)
      cursor_move_next(cursor)
    }else{
      cursor.idx++;
    }
    return
  }
  pgno = next_pgno(cursor)
  loop {
    cursor.pageptr = get(pgno);
    if( is_leaf(cursor.pageptr) ) break;
    pgno = first_pgno(pageptr);
  }
  cursor.idx = 0;
}
|

>
>
>
>
>
>
>
>
|
>
>
|
>
>
|
|


|
|
|
>
>



|


|
<
|
<
|
|
|
<
<
<
<
<
<
<
<
|
<
<
<
<
|
|
>
|
>
>
>
|
>
|
>
|
|


<
<
<
<
<
<
|
|
<
<
<
<
<
<
<

<
<
<
|
|
<
|
<
<
<
<
<
|
<
|
<
<
<
<
<
<
<
|
<
<
<
|

|
<
>
|
<


<
<
<
<
<
<
<
|
<
<
<
<
<
<

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

34
35
36








37




38
39
40
41
42
43
44
45
46
47
48
49
50
51
52






53
54







55



56
57

58





59

60







61



62
63
64

65
66

67
68







69






70
How to do a B-Tree insert:

  insert(data){
    create a new cursor
    move cursor to the entry nearest data
    if( cursor.key == keyof(data) ){
      replace cursor.data with dataof(data)
      return
    }
    childpg = NULL
    add_to_page(cursor, data+childpg)
    delete the cursor
  }

  add_to_page(cursor, data+childpg ){
    childpg->parent = cursor.page
    if( data+childpg fits on cursor.page ){
      insert data+childpg at cursor
    return
  }
    if( page==root ){
      split page+(data+childpg) into newpage1, center, newpage2
      cursor.page = &newpage1 + center + &newpage2;
      newpage1->parent = cursor.page
      newpage2->parent = cursor.page
    return
  }
  if( move_some_data_left || move_some_data_right ){
      insert data+childpg at cursor
    return
  }
    split page+(data+childpg) into page, center, newpage

    newpage->parent = page->parent

    move cursor to insertion point of center in parent page.
    add_to_page(cursor, center, (newpage));
  }













How to do a B-Tree delete:

  delete(entry){
    if( entry is not a leaf ){
      p = predecessor of entry
      // note: if entry is not a leaf then p must
      // exist and must be a leaf
      free(entry.overflowptr)
      resize entry so that is is big enough to hold p.payload
      entry.payload = p.payload
      entry.overflowptr = p.overflowptr
      p.overflowptr = NULL
      delete(p)
    return
  }






    unlink entry from its page
    refill(page containing entry)







  }




  refill(page){

    if( page is more than half full ) return





    if( page is the root and contains no entries ){

      copy the one child page into this page thus reducing







      the height of the tree by one.



      return
  }
    if( able to merge page with neighbors ){

      do the merge
      refill(parent page)

        return
      }







    borrow entrys from neighbors






}
Changes to src/btree.c.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
** Boston, MA  02111-1307, USA.
**
** Author contact information:
**   drh@hwaci.com
**   http://www.hwaci.com/drh/
**
*************************************************************************
** $Id: btree.c,v 1.8 2001/05/26 13:15:44 drh Exp $
*/
#include "sqliteInt.h"
#include "pager.h"
#include "btree.h"
#include <assert.h>


/*
** Primitive data types.  u32 must be 4 bytes and u16 must be 2 bytes.
** Change these typedefs when porting to new architectures.
*/
typedef unsigned int u32;
typedef unsigned short int u16;


/*
** Forward declarations of structures used only in this file.
*/
typedef struct Page1Header Page1Header;
typedef struct MemPage MemPage;
typedef struct PageHdr PageHdr;







|













>







17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
** Boston, MA  02111-1307, USA.
**
** Author contact information:
**   drh@hwaci.com
**   http://www.hwaci.com/drh/
**
*************************************************************************
** $Id: btree.c,v 1.9 2001/05/28 00:41:15 drh Exp $
*/
#include "sqliteInt.h"
#include "pager.h"
#include "btree.h"
#include <assert.h>


/*
** Primitive data types.  u32 must be 4 bytes and u16 must be 2 bytes.
** Change these typedefs when porting to new architectures.
*/
typedef unsigned int u32;
typedef unsigned short int u16;
typedef unsigned char u8;

/*
** Forward declarations of structures used only in this file.
*/
typedef struct Page1Header Page1Header;
typedef struct MemPage MemPage;
typedef struct PageHdr PageHdr;
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
**
** This might need to change for computer architectures that require
** and 8-byte alignment boundry for structures.
*/
#define ROUNDUP(X)  ((X+3) & ~3)

/*
** The first pages of the database file contains some additional
** information used for housekeeping and sanity checking.  Otherwise,
** the first page is just like any other.  The additional information
** found on the first page is described by the following structure.
*/
struct Page1Header {
  u32 magic1;       /* A magic number for sanity checking */
  u32 magic2;       /* A second magic number for sanity checking */
  Pgno firstList;   /* First free page in a list of all free pages */
};
#define MAGIC_1  0x7264dc61
#define MAGIC_2  0x54e55d9e

/*
** Each database page has a header as follows:
**
**      page1_header          Optional instance of Page1Header structure
**      rightmost_pgno        Page number of the right-most child page
**      first_cell            Index into MemPage.aPage of first cell
**      first_free            Index of first free block
**
** MemPage.pStart always points to the rightmost_pgno.  First_free is
** 0 if there is no free space on this page.  Otherwise, first_free is
** the index in MemPage.aPage[] of a FreeBlk structure that describes
** the first block of free space.  All free space is defined by a linked
** list of FreeBlk structures.
**
** Data is stored in a linked list of Cell structures.  First_cell is
** the index into MemPage.aPage[] of the first cell on the page.  The
** Cells are kept in sorted order.
*/
struct PageHdr {
  Pgno pgno;      /* Child page that comes after all cells on this page */
  u16 firstCell;  /* Index in MemPage.aPage[] of the first cell */
  u16 firstFree;  /* Index in MemPage.aPage[] of the first free block */
};


/*
** Entries on a page of the database are called "Cells".  Each Cell
** has a header and data.  This structure defines the header.  The
** definition of the complete Cell including the data is given below.
*/
struct CellHdr {
  Pgno pgno;      /* Child page that comes before this cell */
  u16 nKey;       /* Number of bytes in the key */
  u16 iNext;      /* Index in MemPage.aPage[] of next cell in sorted order */
  u32 nData;      /* Number of bytes of data */
}

/*
** The minimum size of a complete Cell.  The Cell must contain a header
** and at least 4 bytes of data.
*/







|





|
|










|


|

|




|



|
|
|









|

|







54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
**
** This might need to change for computer architectures that require
** and 8-byte alignment boundry for structures.
*/
#define ROUNDUP(X)  ((X+3) & ~3)

/*
** The first page of the database file contains some additional
** information used for housekeeping and sanity checking.  Otherwise,
** the first page is just like any other.  The additional information
** found on the first page is described by the following structure.
*/
struct Page1Header {
  u32 magic1;       /* A magic number to verify the file really is a database */
  u32 magic2;       /* A second magic number to be extra sure */
  Pgno firstList;   /* First free page in a list of all free pages */
};
#define MAGIC_1  0x7264dc61
#define MAGIC_2  0x54e55d9e

/*
** Each database page has a header as follows:
**
**      page1_header          Optional instance of Page1Header structure
**      rightmost_pgno        Page number of the right-most child page
**      first_cell            Index into MemPage.aDisk of first cell
**      first_free            Index of first free block
**
** MemPage.pHdr always points to the rightmost_pgno.  First_free is
** 0 if there is no free space on this page.  Otherwise, first_free is
** the index in MemPage.aDisk[] of a FreeBlk structure that describes
** the first block of free space.  All free space is defined by a linked
** list of FreeBlk structures.
**
** Data is stored in a linked list of Cell structures.  First_cell is
** the index into MemPage.aDisk[] of the first cell on the page.  The
** Cells are kept in sorted order.
*/
struct PageHdr {
  Pgno rightChild;  /* Child page that comes after all cells on this page */
  u16 firstCell;    /* Index in MemPage.aDisk[] of the first cell */
  u16 firstFree;    /* Index in MemPage.aDisk[] of the first free block */
};


/*
** Entries on a page of the database are called "Cells".  Each Cell
** has a header and data.  This structure defines the header.  The
** definition of the complete Cell including the data is given below.
*/
struct CellHdr {
  Pgno leftChild; /* Child page that comes before this cell */
  u16 nKey;       /* Number of bytes in the key */
  u16 iNext;      /* Index in MemPage.aDisk[] of next cell in sorted order */
  u32 nData;      /* Number of bytes of data */
}

/*
** The minimum size of a complete Cell.  The Cell must contain a header
** and at least 4 bytes of data.
*/
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
** extra goes onto overflow pages.
*/
#define MX_LOCAL_PAYLOAD \
  ((SQLITE_PAGE_SIZE-sizeof(PageHdr))/4-(sizeof(CellHdr)+sizeof(Pgno)))

/*
** Data on a database page is stored as a linked list of Cell structures.
** Both the key and the data are stored in aData[].  The key always comes
** first.  The aData[] field grows as necessary to hold the key and data,
** up to a maximum of MX_LOCAL_PAYLOAD bytes.  If the size of the key and
** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the
** page number of the first overflow page.
**
** Though this structure is fixed in size, the Cell on the database
** page varies in size.  Very cell has a CellHdr and at least 4 bytes
** of payload space.  Additional payload bytes (up to the maximum of
** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as
** needed.
*/
struct Cell {
  CellHdr h;                     /* The cell header */
  char aData[MX_LOCAL_PAYLOAD];  /* Key and data */
  Pgno ovfl;                     /* The first overflow page */
};

/*
** Free space on a page is remembered using a linked list of the FreeBlk
** structures.  Space on a database page is allocated in increments of
** at least 4 bytes and is always aligned to a 4-byte boundry.  The
** linked list of freeblocks is always kept in order by address.
*/
struct FreeBlk {
  u16 iSize;      /* Number of bytes in this block of free space */
  u16 iNext;      /* Index in MemPage.aPage[] of the next free block */
};

/*
** Number of bytes on a single overflow page.
*/
#define OVERFLOW_SIZE (SQLITE_PAGE_SIZE-sizeof(Pgno))

/*
** When the key and data for a single entry in the BTree will not fit in
** the MX_LOACAL_PAYLOAD bytes of space available on the database page,
** then all extra data is written to a linked list of overflow pages.
** Each overflow page is an instance of the following structure.
**
** Unused pages in the database are also represented by instances of
** the OverflowPage structure.  The Page1Header.freeList field is the
** page number of the first page in a linked list of unused database
** pages.
*/
struct OverflowPage {
  Pgno next;
  char aData[OVERFLOW_SIZE];
};

/*
** For every page in the database file, an instance of the following structure
** is stored in memory.  The aPage[] array contains the data obtained from
** the disk.  The rest is auxiliary data that held in memory only.  The
** auxiliary data is only valid for regular database pages - the auxiliary
** data is meaningless for overflow pages and pages on the freelist.
**
** Of particular interest in the auxiliary data is the aCell[] entry.  Each
** aCell[] entry is a pointer to a Cell structure in aPage[].  The cells are
** put in this array so that they can be accessed in constant time, rather
** than in linear time which would be needed if we walked the linked list.
**
** The pParent field points back to the parent page.  This allows us to
** walk up the BTree from any leaf to the root.  Care must be taken to
** unref() the parent page pointer when this page is no longer referenced.
** The pageDestructor() routine handles that.
*/
struct MemPage {
  char aPage[SQLITE_PAGE_SIZE];  /* Page data stored on disk */
  unsigned char isInit;          /* True if auxiliary data is initialized */
  unsigned char validLeft;       /* True if MemPage.left is valid */
  unsigned char validRight;      /* True if MemPage.right is valid */
  MemPage *pParent;              /* The parent of this page.  NULL for root */
  Pgno left;                     /* Left sibling page.  0==none */
  Pgno right;                    /* Right sibling page.  0==none */
  int idxStart;                  /* Index in aPage[] of real data */
  PageHdr *pStart;               /* Points to aPage[idxStart] */
  int nFree;                     /* Number of free bytes in aPage[] */
  int nCell;                     /* Number of entries on this page */
  Cell *aCell[MX_CELL];          /* All data entires in sorted order */
}

/*
** The in-memory image of a disk page has the auxiliary information appended
** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
** that extra information.
*/







|
|












|











|




















|




|




|
|









|
|
<
<

<
<
|
|
|

|







126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202


203


204
205
206
207
208
209
210
211
212
213
214
215
** extra goes onto overflow pages.
*/
#define MX_LOCAL_PAYLOAD \
  ((SQLITE_PAGE_SIZE-sizeof(PageHdr))/4-(sizeof(CellHdr)+sizeof(Pgno)))

/*
** Data on a database page is stored as a linked list of Cell structures.
** Both the key and the data are stored in aPayload[].  The key always comes
** first.  The aPayload[] field grows as necessary to hold the key and data,
** up to a maximum of MX_LOCAL_PAYLOAD bytes.  If the size of the key and
** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the
** page number of the first overflow page.
**
** Though this structure is fixed in size, the Cell on the database
** page varies in size.  Very cell has a CellHdr and at least 4 bytes
** of payload space.  Additional payload bytes (up to the maximum of
** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as
** needed.
*/
struct Cell {
  CellHdr h;                     /* The cell header */
  char aPayload[MX_LOCAL_PAYLOAD];  /* Key and data */
  Pgno ovfl;                     /* The first overflow page */
};

/*
** Free space on a page is remembered using a linked list of the FreeBlk
** structures.  Space on a database page is allocated in increments of
** at least 4 bytes and is always aligned to a 4-byte boundry.  The
** linked list of freeblocks is always kept in order by address.
*/
struct FreeBlk {
  u16 iSize;      /* Number of bytes in this block of free space */
  u16 iNext;      /* Index in MemPage.aDisk[] of the next free block */
};

/*
** Number of bytes on a single overflow page.
*/
#define OVERFLOW_SIZE (SQLITE_PAGE_SIZE-sizeof(Pgno))

/*
** When the key and data for a single entry in the BTree will not fit in
** the MX_LOACAL_PAYLOAD bytes of space available on the database page,
** then all extra data is written to a linked list of overflow pages.
** Each overflow page is an instance of the following structure.
**
** Unused pages in the database are also represented by instances of
** the OverflowPage structure.  The Page1Header.freeList field is the
** page number of the first page in a linked list of unused database
** pages.
*/
struct OverflowPage {
  Pgno next;
  char aPayload[OVERFLOW_SIZE];
};

/*
** For every page in the database file, an instance of the following structure
** is stored in memory.  The aDisk[] array contains the data obtained from
** the disk.  The rest is auxiliary data that held in memory only.  The
** auxiliary data is only valid for regular database pages - the auxiliary
** data is meaningless for overflow pages and pages on the freelist.
**
** Of particular interest in the auxiliary data is the apCell[] entry.  Each
** apCell[] entry is a pointer to a Cell structure in aDisk[].  The cells are
** put in this array so that they can be accessed in constant time, rather
** than in linear time which would be needed if we walked the linked list.
**
** The pParent field points back to the parent page.  This allows us to
** walk up the BTree from any leaf to the root.  Care must be taken to
** unref() the parent page pointer when this page is no longer referenced.
** The pageDestructor() routine handles that.
*/
struct MemPage {
  char aDisk[SQLITE_PAGE_SIZE];  /* Page data stored on disk */
  int isInit;                    /* True if auxiliary data is initialized */


  MemPage *pParent;              /* The parent of this page.  NULL for root */


  int idxStart;                  /* Index in aDisk[] of real data */
  PageHdr *pHdr;                 /* Points to aDisk[idxStart] */
  int nFree;                     /* Number of free bytes in aDisk[] */
  int nCell;                     /* Number of entries on this page */
  Cell *apCell[MX_CELL];         /* All data entires in sorted order */
}

/*
** The in-memory image of a disk page has the auxiliary information appended
** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
** that extra information.
*/
228
229
230
231
232
233
234
235
236
237
238
239
240
241

242
243
244
245
246
247


248
249
250
251
252
253
254
255
  int inTrans;          /* True if a transaction is in progress */
};
typedef Btree Bt;

/*
** A cursor is a pointer to a particular entry in the BTree.
** The entry is identified by its MemPage and the index in
** MemPage.aCell[] of the entry.
*/
struct BtCursor {
  Btree *pBt;                     /* The pointer back to the BTree */
  BtCursor *pPrev, *pNext;        /* List of all cursors */
  MemPage *pPage;                 /* Page that contains the entry */
  int idx;                        /* Index of the entry in pPage->aCell[] */

  int skip_incr;                  /* */
};

/*
** Compute the total number of bytes that a Cell needs on the main
** database page.  The number returned includes the Cell header, but


** not any overflow pages.
*/
static int cellSize(Cell *pCell){
  int n = pCell->h.nKey + pCell->h.nData;
  if( n>MX_LOCAL_PAYLOAD ){
    n = MX_LOCAL_PAYLOAD + sizeof(Pgno);
  }else{
    n = ROUNDUP(n);







|


|


|
>
|




|
>
>
|







225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
  int inTrans;          /* True if a transaction is in progress */
};
typedef Btree Bt;

/*
** A cursor is a pointer to a particular entry in the BTree.
** The entry is identified by its MemPage and the index in
** MemPage.apCell[] of the entry.
*/
struct BtCursor {
  Btree *pBt;               /* The Btree to which this cursor belongs */
  BtCursor *pPrev, *pNext;        /* List of all cursors */
  MemPage *pPage;                 /* Page that contains the entry */
  u16 idx;                  /* Index of the entry in pPage->apCell[] */
  u8 bSkipNext;             /* sqliteBtreeNext() is no-op if true */
  u8 iMatch;                /* compare result from last sqliteBtreeMoveto() */
};

/*
** Compute the total number of bytes that a Cell needs on the main
** database page.  The number returned includes the Cell header,
** local payload storage, and the pointer to overflow pages (if
** applicable).  The point of this routine is that it does not
** include payload storage on overflow pages.
*/
static int cellSize(Cell *pCell){
  int n = pCell->h.nKey + pCell->h.nData;
  if( n>MX_LOCAL_PAYLOAD ){
    n = MX_LOCAL_PAYLOAD + sizeof(Pgno);
  }else{
    n = ROUNDUP(n);
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385


386
387
388
389
390
391
392
393
394
395
396


397
398
399
400
401



402
403





404

405
406
407
408
409



410
411
412
413
414
415
416
417
418
419
420
421
422

423
424
425
426
427
428
429
static void defragmentPage(MemPage *pPage){
  int pc;
  int i, n;
  FreeBlk *pFBlk;
  char newPage[SQLITE_PAGE_SIZE];

  pc = ROUNDUP(pPage->idxStart + sizeof(PageHdr));
  pPage->pStart->firstCell = pc;
  memcpy(newPage, pPage->aPage, pc);
  for(i=0; i<pPage->nCell; i++){
    Cell *pCell = &pPage->aCell[i];
    n = cellSize(pCell);
    pCell->h.iNext = i<pPage->nCell ? pc + n : 0;
    memcpy(&newPage[pc], pCell, n);
    pPage->aCell[i] = (Cell*)&pPage->aPage[pc];
    pc += n;
  }
  assert( pPage->nFree==SQLITE_PAGE_SIZE-pc );
  memcpy(pPage->aPage, newPage, pc);
  pFBlk = &pPage->aPage[pc];
  pFBlk->iSize = SQLITE_PAGE_SIZE - pc;
  pFBlk->iNext = 0;
  pPage->pStart->firstFree = pc;
  memset(&pFBlk[1], 0, SQLITE_PAGE_SIZE - pc - sizeof(FreeBlk));
}

/*
** Allocate space on a page.  The space needs to be at least
** nByte bytes in size.  (Actually, all allocations are rounded
** up to the next even multiple of 4.)  Return the index into
** pPage->aPage[] of the first byte of the new allocation.
** Or return 0 if there is not enough free space on the page to
** satisfy the allocation request.
**
** If the page contains nBytes of free space but does not contain
** nBytes of contiguous free space, then defragementPage() is
** called to consolidate all free space before allocating the
** new chunk.
*/
static int allocSpace(MemPage *pPage, int nByte){
  FreeBlk *p;
  u16 *pIdx;
  int start;

  nByte = ROUNDUP(nByte);
  if( pPage->nFree<nByte ) return 0;
  pIdx = &pPage->pStart->firstFree;
  p = (FreeBlk*)&pPage->aPage[*pIdx];
  while( p->iSize<nByte ){
    if( p->iNext==0 ){
      defragmentPage(pPage);
      pIdx = &pPage->pStart->firstFree;
    }else{
      pIdx = &p->iNext;
    }
    p = (FreeBlk*)&pPage->aPage[*pIdx];
  }
  if( p->iSize==nByte ){
    start = *pIdx;
    *pIdx = p->iNext;
  }else{
    start = *pIdx;
    FreeBlk *pNew = (FreeBlk*)&pPage->aPage[start + nByte];
    pNew->iNext = p->iNext;
    pNew->iSize = p->iSize - nByte;
    *pIdx = start + nByte;
  }
  pPage->nFree -= nByte;
  return start;
}

/*
** Return a section of the MemPage.aPage[] to the freelist.
** The first byte of the new free block is pPage->aPage[start]
** and the size of the block is "size".
**
** Most of the effort here is involved in coalesing adjacent
** free blocks into a single big free block.
*/
static void freeSpace(MemPage *pPage, int start, int size){
  int end = start + size;
  u16 *pIdx, idx;
  FreeBlk *pFBlk;
  FreeBlk *pNew;
  FreeBlk *pNext;

  assert( size == ROUNDUP(size) );
  assert( start == ROUNDUP(start) );
  pIdx = &pPage->pStart->firstFree;
  idx = *pIdx;
  while( idx!=0 && idx<start ){
    pFBlk = (FreeBlk*)&pPage->aPage[idx];
    if( idx + pFBlk->iSize == start ){
      pFBlk->iSize += size;
      if( idx + pFBlk->iSize == pFBlk->iNext ){
        pNext = (FreeBlk*)&pPage->aPage[pFblk->iNext];
        pFBlk->iSize += pNext->iSize;
        pFBlk->iNext = pNext->iNext;
      }
      pPage->nFree += size;
      return;
    }
    pIdx = &pFBlk->iNext;
    idx = *pIdx;
  }
  pNew = (FreeBlk*)&pPage->aPage[start];
  if( idx != end ){
    pNew->iSize = size;
    pNew->iNext = idx;
  }else{
    pNext = (FreeBlk*)&pPage->aPage[idx];
    pNew->iSize = size + pNext->iSize;
    pNew->iNext = pNext->iNext;
  }
  *pIdx = start;
  pPage->nFree += size;
}

/*
** Initialize the auxiliary information for a disk block.


**
** Return SQLITE_OK on success.  If we see that the page does
** not contained a well-formed database page, then return 
** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed.  It only shows that
** we failed to detect any corruption.
*/
static int initPage(MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
  int idx;
  Cell *pCell;
  FreeBlk *pFBlk;



  pPage->idxStart = (pgnoThis==1) ? sizeof(Page1Header) : 0;
  pPage->pStart = (PageHdr*)&pPage->aPage[pPage->idxStart];
  pPage->isInit = 1;
  assert( pPage->pParent==0 );



  pPage->pParent = pParent;
  if( pParent ) sqlitepager_ref(pParent);





  pPage->nCell = 0;

  idx = pPage->pStart->firstCell;
  while( idx!=0 ){
    if( idx>SQLITE_PAGE_SIZE-MN_CELL_SIZE ) goto page_format_error;
    if( idx<pPage->idxStart + sizeof(PageHeader) ) goto page_format_error;
    pCell = (Cell*)&pPage->aPage[idx];



    pPage->aCell[pPage->nCell++] = pCell;
    idx = pCell->h.iNext;
  }
  pPage->nFree = 0;
  idx = pPage->pStart->firstFree;
  while( idx!=0 ){
    if( idx>SQLITE_PAGE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
    if( idx<pPage->idxStart + sizeof(PageHeader) ) goto page_format_error;
    pFBlk = (FreeBlk*)&pPage->aPage[idx];
    pPage->nFree += pFBlk->iSize;
    if( pFBlk->iNext <= idx ) goto page_format_error;
    idx = pFBlk->iNext;
  }

  return SQLITE_OK;

page_format_error:
  return SQLITE_CORRUPT;
}

/*







|
|

|



|



|
|


|







|













|

|
|



|



|






|









|
|














|


|



|









|




|









>
>








|
|
|
>
>

<
<
|
|
>
>
>

|
>
>
>
>
>

>
|



|
>
>
>
|



|



|




>







266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401


402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
static void defragmentPage(MemPage *pPage){
  int pc;
  int i, n;
  FreeBlk *pFBlk;
  char newPage[SQLITE_PAGE_SIZE];

  pc = ROUNDUP(pPage->idxStart + sizeof(PageHdr));
  pPage->pHdr->firstCell = pc;
  memcpy(newPage, pPage->aDisk, pc);
  for(i=0; i<pPage->nCell; i++){
    Cell *pCell = &pPage->apCell[i];
    n = cellSize(pCell);
    pCell->h.iNext = i<pPage->nCell ? pc + n : 0;
    memcpy(&newPage[pc], pCell, n);
    pPage->apCell[i] = (Cell*)&pPage->aDisk[pc];
    pc += n;
  }
  assert( pPage->nFree==SQLITE_PAGE_SIZE-pc );
  memcpy(pPage->aDisk, newPage, pc);
  pFBlk = &pPage->aDisk[pc];
  pFBlk->iSize = SQLITE_PAGE_SIZE - pc;
  pFBlk->iNext = 0;
  pPage->pHdr->firstFree = pc;
  memset(&pFBlk[1], 0, SQLITE_PAGE_SIZE - pc - sizeof(FreeBlk));
}

/*
** Allocate space on a page.  The space needs to be at least
** nByte bytes in size.  (Actually, all allocations are rounded
** up to the next even multiple of 4.)  Return the index into
** pPage->aDisk[] of the first byte of the new allocation.
** Or return 0 if there is not enough free space on the page to
** satisfy the allocation request.
**
** If the page contains nBytes of free space but does not contain
** nBytes of contiguous free space, then defragementPage() is
** called to consolidate all free space before allocating the
** new chunk.
*/
static int allocSpace(MemPage *pPage, int nByte){
  FreeBlk *p;
  u16 *pIdx;
  int start;

  assert( nByte==ROUNDUP(nByte) );
  if( pPage->nFree<nByte ) return 0;
  pIdx = &pPage->pHdr->firstFree;
  p = (FreeBlk*)&pPage->aDisk[*pIdx];
  while( p->iSize<nByte ){
    if( p->iNext==0 ){
      defragmentPage(pPage);
      pIdx = &pPage->pHdr->firstFree;
    }else{
      pIdx = &p->iNext;
    }
    p = (FreeBlk*)&pPage->aDisk[*pIdx];
  }
  if( p->iSize==nByte ){
    start = *pIdx;
    *pIdx = p->iNext;
  }else{
    start = *pIdx;
    FreeBlk *pNew = (FreeBlk*)&pPage->aDisk[start + nByte];
    pNew->iNext = p->iNext;
    pNew->iSize = p->iSize - nByte;
    *pIdx = start + nByte;
  }
  pPage->nFree -= nByte;
  return start;
}

/*
** Return a section of the MemPage.aDisk[] to the freelist.
** The first byte of the new free block is pPage->aDisk[start]
** and the size of the block is "size".
**
** Most of the effort here is involved in coalesing adjacent
** free blocks into a single big free block.
*/
static void freeSpace(MemPage *pPage, int start, int size){
  int end = start + size;
  u16 *pIdx, idx;
  FreeBlk *pFBlk;
  FreeBlk *pNew;
  FreeBlk *pNext;

  assert( size == ROUNDUP(size) );
  assert( start == ROUNDUP(start) );
  pIdx = &pPage->pHdr->firstFree;
  idx = *pIdx;
  while( idx!=0 && idx<start ){
    pFBlk = (FreeBlk*)&pPage->aDisk[idx];
    if( idx + pFBlk->iSize == start ){
      pFBlk->iSize += size;
      if( idx + pFBlk->iSize == pFBlk->iNext ){
        pNext = (FreeBlk*)&pPage->aDisk[pFblk->iNext];
        pFBlk->iSize += pNext->iSize;
        pFBlk->iNext = pNext->iNext;
      }
      pPage->nFree += size;
      return;
    }
    pIdx = &pFBlk->iNext;
    idx = *pIdx;
  }
  pNew = (FreeBlk*)&pPage->aDisk[start];
  if( idx != end ){
    pNew->iSize = size;
    pNew->iNext = idx;
  }else{
    pNext = (FreeBlk*)&pPage->aDisk[idx];
    pNew->iSize = size + pNext->iSize;
    pNew->iNext = pNext->iNext;
  }
  *pIdx = start;
  pPage->nFree += size;
}

/*
** Initialize the auxiliary information for a disk block.
**
** The pParent field is always
**
** Return SQLITE_OK on success.  If we see that the page does
** not contained a well-formed database page, then return 
** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed.  It only shows that
** we failed to detect any corruption.
*/
static int initPage(MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
  int idx;           /* An index into pPage->aDisk[] */
  Cell *pCell;       /* A pointer to a Cell in pPage->aDisk[] */
  FreeBlk *pFBlk;    /* A pointer to a free block in pPage->aDisk[] */
  int sz;            /* The size of a Cell in bytes */
  int freeSpace;     /* Amount of free space on the page */



  if( pPage->pParent ){
    assert( pPage->pParent==pParent );
    return SQLITE_OK;
  }
  if( pParent ){
  pPage->pParent = pParent;
    sqlitepager_ref(pParent);
  }
  if( pPage->isInit ) return SQLITE_OK;
  pPage->idxStart = (pgnoThis==1) ? sizeof(Page1Header) : 0;
  pPage->pHdr = (PageHdr*)&pPage->aDisk[pPage->idxStart];
  pPage->isInit = 1;
  pPage->nCell = 0;
  freeSpace = SQLITE_PAGE_SIZE - pPage->idxStart - sizeof(PageHeader);
  idx = pPage->pHdr->firstCell;
  while( idx!=0 ){
    if( idx>SQLITE_PAGE_SIZE-MN_CELL_SIZE ) goto page_format_error;
    if( idx<pPage->idxStart + sizeof(PageHeader) ) goto page_format_error;
    pCell = (Cell*)&pPage->aDisk[idx];
    sz = cellSize(pCell);
    if( idx+sz > SQLITE_PAGE_SIZE ) goto page_format_error;
    freeSpace -= sz;
    pPage->apCell[pPage->nCell++] = pCell;
    idx = pCell->h.iNext;
  }
  pPage->nFree = 0;
  idx = pPage->pHdr->firstFree;
  while( idx!=0 ){
    if( idx>SQLITE_PAGE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
    if( idx<pPage->idxStart + sizeof(PageHeader) ) goto page_format_error;
    pFBlk = (FreeBlk*)&pPage->aDisk[idx];
    pPage->nFree += pFBlk->iSize;
    if( pFBlk->iNext <= idx ) goto page_format_error;
    idx = pFBlk->iNext;
  }
  if( pPage->nFree!=freeSpace ) goto page_format_error;
  return SQLITE_OK;

page_format_error:
  return SQLITE_CORRUPT;
}

/*
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
  pCur->pBt = pBt;
  rc = sqlitepager_get(pBt->pPager, 1, &pCur->pPage);
  if( rc!=SQLITE_OK ){
    sqliteFree(pCur);
    *ppCur = 0;
    return rc;
  }
  if( !pCur->pPage->isInit ){
    initPage(pCur->pPage, 1, 0);
  }
  pCur->idx = 0;
  pCur->depth = 0;
  pCur->aPage[0] = pCur->pPage;
  *ppCur = pCur;
  return SQLITE_OK;
}

/*
** Close a cursor. 
*/







<

<

<
<







620
621
622
623
624
625
626

627

628


629
630
631
632
633
634
635
  pCur->pBt = pBt;
  rc = sqlitepager_get(pBt->pPager, 1, &pCur->pPage);
  if( rc!=SQLITE_OK ){
    sqliteFree(pCur);
    *ppCur = 0;
    return rc;
  }

    initPage(pCur->pPage, 1, 0);

  pCur->idx = 0;


  *ppCur = pCur;
  return SQLITE_OK;
}

/*
** Close a cursor. 
*/
635
636
637
638
639
640
641



















642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
  }
  sqlitepager_unref(pCur->pPage);
  if( pBt->pCursor==0 && pBt->inTrans==0 ){
    unlockBtree(pBt);
  }
  sqliteFree(pCur);
}




















/*
** Write the number of bytes of key for the entry the cursor is
** pointing to into *pSize.  Return SQLITE_OK.  Failure is not
** possible.
*/
int sqliteBtreeKeySize(BtCursor *pCur, int *pSize){
  Cell *pCell;
  MemPage *pPage;

  pPage = pCur->pPage;
  assert( pPage!=0 );
  if( pCur->idx >= pPage->nCell ){
    *pSize = 0;
  }else{
    pCell = pPage->aCell[pCur->idx];
    *psize = pCell->h.nKey;
  }
  return SQLITE_OK;
}

/*
** Read payload information from the entry that the pCur cursor is
** pointing to.  Begin reading the payload at "offset" and read
** a total of "amt" bytes.  Put the result in zBuf.
**
** This routine does not make a distinction between key and data.
** It just reads bytes from the payload area.
*/
static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
  char *aData;
  Pgno nextPage;
  assert( pCur!=0 && pCur->pPage!=0 );
  assert( pCur->idx>=0 && pCur->idx<pCur->nCell );
  aData = pCur->pPage->aCell[pCur->idx].aData;
  if( offset<MX_LOCAL_PAYLOAD ){
    int a = amt;
    if( a+offset>MX_LOCAL_PAYLOAD ){
      a = MX_LOCAL_PAYLOAD - offset;
    }
    memcpy(zBuf, &aData[offset], a);
    if( a==amt ){
      return SQLITE_OK;
    }
    offset += a;
    zBuf += a;
    amt -= a;
    if( amt>0 ){
      assert( a==ROUNDUP(a) );
      nextPage = *(Pgno*)&aData[a];
    }
  }
  while( amt>0 && nextPage ){
    OverflowPage *pOvfl;
    rc = sqlitepager_get(pCur->pBt->pPager, nextPage, &pOvfl);
    if( rc!=0 ){
      return rc;
    }
    nextPage = pOvfl->next;
    if( offset<OVERFLOW_SIZE ){
      int a = amt;
      if( a + offset > OVERFLOW_SIZE ){
        a = OVERFLOW_SIZE - offset;
      }
      memcpy(zBuf, &pOvfl->aData[offset], a);
      offset += a;
      amt -= a;
      zBuf += a;
    }
    sqlitepager_unref(pOvfl);
  }
  return amt==0 ? SQLITE_OK : SQLITE_CORRUPT;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>















|














|



|





|








|














|







646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
  }
  sqlitepager_unref(pCur->pPage);
  if( pBt->pCursor==0 && pBt->inTrans==0 ){
    unlockBtree(pBt);
  }
  sqliteFree(pCur);
}

/*
** Make a temporary cursor by filling in the fields of pTempCur.
** The temporary cursor is not on the cursor list for the Btree.
*/
static void createTemporaryCursor(BtCursor *pCur, BtCursor *pTempCur){
  memcpy(pTempCur, pCur, sizeof(*pCur));
  pTempCur->pNext = 0;
  pTempCur->pPrev = 0;
  sqlitepager_ref(pTempCur->pPage);
}

/*
** Delete a temporary cursor such as was made by the createTemporaryCursor()
** function above.
*/
static void destroyTemporaryCursor(BeCursor *pCur){
  sqlitepager_unref(pCur->pPage);
}

/*
** Write the number of bytes of key for the entry the cursor is
** pointing to into *pSize.  Return SQLITE_OK.  Failure is not
** possible.
*/
int sqliteBtreeKeySize(BtCursor *pCur, int *pSize){
  Cell *pCell;
  MemPage *pPage;

  pPage = pCur->pPage;
  assert( pPage!=0 );
  if( pCur->idx >= pPage->nCell ){
    *pSize = 0;
  }else{
    pCell = pPage->apCell[pCur->idx];
    *psize = pCell->h.nKey;
  }
  return SQLITE_OK;
}

/*
** Read payload information from the entry that the pCur cursor is
** pointing to.  Begin reading the payload at "offset" and read
** a total of "amt" bytes.  Put the result in zBuf.
**
** This routine does not make a distinction between key and data.
** It just reads bytes from the payload area.
*/
static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
  char *aPayload;
  Pgno nextPage;
  assert( pCur!=0 && pCur->pPage!=0 );
  assert( pCur->idx>=0 && pCur->idx<pCur->nCell );
  aPayload = pCur->pPage->apCell[pCur->idx].aPayload;
  if( offset<MX_LOCAL_PAYLOAD ){
    int a = amt;
    if( a+offset>MX_LOCAL_PAYLOAD ){
      a = MX_LOCAL_PAYLOAD - offset;
    }
    memcpy(zBuf, &aPayload[offset], a);
    if( a==amt ){
      return SQLITE_OK;
    }
    offset += a;
    zBuf += a;
    amt -= a;
    if( amt>0 ){
      assert( a==ROUNDUP(a) );
      nextPage = *(Pgno*)&aPayload[a];
    }
  }
  while( amt>0 && nextPage ){
    OverflowPage *pOvfl;
    rc = sqlitepager_get(pCur->pBt->pPager, nextPage, &pOvfl);
    if( rc!=0 ){
      return rc;
    }
    nextPage = pOvfl->next;
    if( offset<OVERFLOW_SIZE ){
      int a = amt;
      if( a + offset > OVERFLOW_SIZE ){
        a = OVERFLOW_SIZE - offset;
      }
      memcpy(zBuf, &pOvfl->aPayload[offset], a);
      offset += a;
      amt -= a;
      zBuf += a;
    }
    sqlitepager_unref(pOvfl);
  }
  return amt==0 ? SQLITE_OK : SQLITE_CORRUPT;
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
  if( offset<0 ) return SQLITE_ERROR;
  if( amt==0 ) return SQLITE_OK;
  pPage = pCur->pPage;
  assert( pPage!=0 );
  if( pCur->idx >= pPage->nCell ){
    return SQLITE_ERROR;
  }
  pCell = pPage->aCell[pCur->idx];
  if( amt+offset > pCell->h.nKey ){
  return getPayload(pCur, offset, amt, zBuf);
}

/*
** Write the number of bytes of data on the entry that the cursor
** is pointing to into *pSize.  Return SQLITE_OK.  Failure is
** not possible.
*/
int sqliteBtreeDataSize(BtCursor *pCur, int *pSize){
  Cell *pCell;
  MemPage *pPage;

  pPage = pCur->pPage;
  assert( pPage!=0 );
  if( pCur->idx >= pPage->nCell ){
    *pSize = 0;
  }else{
    pCell = pPage->aCell[pCur->idx];
    *pSize = pCell->h.nData;
  }
  return SQLITE_OK;
}

/*
** Read part of the data associated with cursor pCur.  A total







|


















|







758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
  if( offset<0 ) return SQLITE_ERROR;
  if( amt==0 ) return SQLITE_OK;
  pPage = pCur->pPage;
  assert( pPage!=0 );
  if( pCur->idx >= pPage->nCell ){
    return SQLITE_ERROR;
  }
  pCell = pPage->apCell[pCur->idx];
  if( amt+offset > pCell->h.nKey ){
  return getPayload(pCur, offset, amt, zBuf);
}

/*
** Write the number of bytes of data on the entry that the cursor
** is pointing to into *pSize.  Return SQLITE_OK.  Failure is
** not possible.
*/
int sqliteBtreeDataSize(BtCursor *pCur, int *pSize){
  Cell *pCell;
  MemPage *pPage;

  pPage = pCur->pPage;
  assert( pPage!=0 );
  if( pCur->idx >= pPage->nCell ){
    *pSize = 0;
  }else{
    pCell = pPage->apCell[pCur->idx];
    *pSize = pCell->h.nData;
  }
  return SQLITE_OK;
}

/*
** Read part of the data associated with cursor pCur.  A total
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
  if( offset<0 ) return SQLITE_ERROR;
  if( amt==0 ) return SQLITE_OK;
  pPage = pCur->pPage;
  assert( pPage!=0 );
  if( pCur->idx >= pPage->nCell ){
    return SQLITE_ERROR;
  }
  pCell = pPage->aCell[pCur->idx];
  if( amt+offset > pCell->h.nKey ){
  return getPayload(pCur, offset + pCell->h.nKey, amt, zBuf);
}

/*
** Compare the key for the entry that pCur points to against the 
** given key (pKey,nKeyOrig).  Put the comparison result in *pResult.







|







802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
  if( offset<0 ) return SQLITE_ERROR;
  if( amt==0 ) return SQLITE_OK;
  pPage = pCur->pPage;
  assert( pPage!=0 );
  if( pCur->idx >= pPage->nCell ){
    return SQLITE_ERROR;
  }
  pCell = pPage->apCell[pCur->idx];
  if( amt+offset > pCell->h.nKey ){
  return getPayload(pCur, offset + pCell->h.nKey, amt, zBuf);
}

/*
** Compare the key for the entry that pCur points to against the 
** given key (pKey,nKeyOrig).  Put the comparison result in *pResult.
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
  Pgno nextPage;
  int nKey = nKeyOrig;
  int n;
  Cell *pCell;

  assert( pCur->pPage );
  assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
  pCell = &pCur->pPage->aCell[pCur->idx];
  if( nKey > pCell->h.nKey ){
    nKey = pCell->h.nKey;
  }
  n = nKey;
  if( n>MX_LOCAL_PAYLOAD ){
    n = MX_LOCAL_PAYLOAD;
  }
  c = memcmp(pCell->aData, pKey, n);
  if( c!=0 ){
    *pResult = c;
    return SQLITE_OK;
  }
  pKey += n;
  nKey -= n;
  nextPage = pCell->ovfl;







|







|







826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
  Pgno nextPage;
  int nKey = nKeyOrig;
  int n;
  Cell *pCell;

  assert( pCur->pPage );
  assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
  pCell = &pCur->pPage->apCell[pCur->idx];
  if( nKey > pCell->h.nKey ){
    nKey = pCell->h.nKey;
  }
  n = nKey;
  if( n>MX_LOCAL_PAYLOAD ){
    n = MX_LOCAL_PAYLOAD;
  }
  c = memcmp(pCell->aPayload, pKey, n);
  if( c!=0 ){
    *pResult = c;
    return SQLITE_OK;
  }
  pKey += n;
  nKey -= n;
  nextPage = pCell->ovfl;
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868





869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888

889
890
891
892
893
894
895
896
897
898
899
900
901
902
















903
904
905





906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930

931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946

947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962

963
964


965






966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
      return rc;
    }
    nextPage = pOvfl->next;
    n = nKey;
    if( n>OVERFLOW_SIZE ){
      n = OVERFLOW_SIZE;
    }
    c = memcmp(pOvfl->aData, pKey, n);
    sqlitepager_unref(pOvfl);
    if( c!=0 ){
      *pResult = c;
      return SQLITE_OK;
    }
    nKey -= n;
    pKey += n;
  }
  c = pCell->h.nKey - nKeyOrig;
  *pResult = c;
  return SQLITE_OK;
}

/*
** Move the cursor down to a new child page.
*/
static int childPage(BtCursor *pCur, int newPgno){
  int rc;
  MemPage *pNewPage;

  rc = sqlitepager_get(pCur->pBt->pPager, newPgno, &pNewPage);
  if( rc ){
    return rc;
  }
  if( !pNewPage->isInit ){
    initPage(pNewPage, newPgno, pCur->pPage);
  }
  sqlitepager_unref(pCur->pPage);
  pCur->pPage = pNewPage;
  pCur->idx = 0;
  return SQLITE_OK;
}

/*
** Move the cursor up to the parent page





*/
static int parentPage(BtCursor *pCur){
  Pgno oldPgno;
  MemPage *pParent;

  pParent = pCur->pPage->pParent;
  oldPgno = sqlitepager_pagenumber(pCur->pPage);
  if( pParent==0 ){
    return SQLITE_INTERNAL;
  }
  sqlitepager_ref(pParent);
  sqlitepager_unref(pCur->pPage);
  pCur->pPage = pParent;
  pCur->idx = pPage->nCell;
  for(i=0; i<pPage->nCell; i++){
    if( pPage->aCell[i].h.pgno==oldPgno ){
      pCur->idx = i;
      break;
    }
  }

}

/*
** Move the cursor to the root page
*/
static int rootPage(BtCursor *pCur){
  MemPage *pNew;
  pNew = pCur->pBt->page1;
  sqlitepager_ref(pNew);
  sqlitepager_unref(pCur->pPage);
  pCur->pPage = pNew;
  pCur->idx = 0;
  return SQLITE_OK;
}

















/* Move the cursor so that it points to an entry near pKey.
** Return a success code.





**
** If pRes!=NULL, then *pRes is written with an integer code to
** describe the results.  *pRes is set to 0 if the cursor is left 
** pointing at an entry that exactly matches pKey.  *pRes is made
** negative if the cursor is on the largest entry less than pKey.
** *pRes is set positive if the cursor is on the smallest entry
** greater than pKey.  *pRes is not changed if the return value
** is something other than SQLITE_OK;
*/
int sqliteBtreeMoveto(BtCursor *pCur, void *pKey, int nKey, int *pRes){
  int rc;
  rc = rootPage(pCur);
  if( rc ) return rc;
  for(;;){
    int lwr, upr;
    Pgno chldPg;
    MemPage *pPage = pCur->pPage;
    lwr = 0;
    upr = pPage->nCell-1;
    while( lwr<=upr ){
      int c;
      pCur->idx = (lwr+upr)/2;
      rc = compareKey(pCur, pKey, nKey, &c);
      if( rc ) return rc;
      if( c==0 ){

        if( pRes ) *pRes = 0;
        return SQLITE_OK;
      }
      if( c<0 ){
        lwr = pCur->idx+1;
      }else{
        upr = pCur->idx-1;
      }
    }
    assert( lwr==upr+1 );
    if( lwr>=pPage->nCell ){
      chldPg = pPage->pStart->pgno;
    }else{
      chldPg = pPage->aCell[lwr].pgno;
    }
    if( chldPg==0 ){

      if( pRes ) *pRes = c;
      return SQLITE_OK;
    }
    rc = childPage(pCur, chldPg);
    if( rc ) return rc;
  }
}

/*
** Advance the cursor to the next entry in the database.  If pRes!=NULL
** then set *pRes=0 on success and set *pRes=1 if the cursor was
** pointing to the last entry in the database.
*/
int sqliteBtreeNext(BtCursor *pCur, int *pRes){
  MemPage *pPage;
  int rc;

  int moved = 0;
  if( pCur->skip_next ){


    pCur->skip_next = 0;






    if( pRes ) *pRes = 0;
    return SQLITE_OK;
  }
  pPage = pCur->pPage;
  pCur->idx++;
  while( pCur->idx>=pPage->nCell ){
    if( pCur->depth==0 ){
      if( pRes ) *pRes = 1;
      return SQLITE_OK;
    }
    rc = parentPage(pCur);
    if( rc ) return rc;
    moved = 1;
    pPage = pCur->pPage;
  }
  if( moved ){
    if( pRes ) *pRes = 0;
    return SQLITE_OK;
  }
  while( pCur->idx<pPage->nCell && pPage->aCell[pCur->idx].pgno>0 ){
    rc = childPage(pCur, pPage->aCell[pCur->idx].pgno);
    if( rc ) return rc;
    pPage = pCur->pPage;
  }
  if( pRes ) *pRes = 0;
  return SQLITE_OK;
}

/*
** Allocate a new page from the database file.
**







|
















|







<

<







|
>
>
>
>
>

|













|




>





|








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



>
>
>
>
>











|













>











|

|


>



|










<

>
|
|
>
>
|
>
>
>
>
>
>



<
|
<
|



|

<
|
<
<



<
|

<
<







856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887

888

889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

1034

1035
1036
1037
1038
1039
1040

1041


1042
1043
1044

1045
1046


1047
1048
1049
1050
1051
1052
1053
      return rc;
    }
    nextPage = pOvfl->next;
    n = nKey;
    if( n>OVERFLOW_SIZE ){
      n = OVERFLOW_SIZE;
    }
    c = memcmp(pOvfl->aPayload, pKey, n);
    sqlitepager_unref(pOvfl);
    if( c!=0 ){
      *pResult = c;
      return SQLITE_OK;
    }
    nKey -= n;
    pKey += n;
  }
  c = pCell->h.nKey - nKeyOrig;
  *pResult = c;
  return SQLITE_OK;
}

/*
** Move the cursor down to a new child page.
*/
static int moveToChild(BtCursor *pCur, int newPgno){
  int rc;
  MemPage *pNewPage;

  rc = sqlitepager_get(pCur->pBt->pPager, newPgno, &pNewPage);
  if( rc ){
    return rc;
  }

    initPage(pNewPage, newPgno, pCur->pPage);

  sqlitepager_unref(pCur->pPage);
  pCur->pPage = pNewPage;
  pCur->idx = 0;
  return SQLITE_OK;
}

/*
** Move the cursor up to the parent page.
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from.  If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largets cell index.
*/
static int moveToParent(BtCursor *pCur){
  Pgno oldPgno;
  MemPage *pParent;

  pParent = pCur->pPage->pParent;
  oldPgno = sqlitepager_pagenumber(pCur->pPage);
  if( pParent==0 ){
    return SQLITE_INTERNAL;
  }
  sqlitepager_ref(pParent);
  sqlitepager_unref(pCur->pPage);
  pCur->pPage = pParent;
  pCur->idx = pPage->nCell;
  for(i=0; i<pPage->nCell; i++){
    if( pPage->apCell[i].h.leftChild==oldPgno ){
      pCur->idx = i;
      break;
    }
  }
  return SQLITE_OK;
}

/*
** Move the cursor to the root page
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pNew;
  pNew = pCur->pBt->page1;
  sqlitepager_ref(pNew);
  sqlitepager_unref(pCur->pPage);
  pCur->pPage = pNew;
  pCur->idx = 0;
  return SQLITE_OK;
}

/*
** Move the cursor down to the left-most leaf entry beneath the
** entry to which it is currently pointing.
*/
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc;

  while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  return SQLITE_OK;
}


/* Move the cursor so that it points to an entry near pKey.
** Return a success code.
**
** If an exact match is not found, then the cursor is always
** left point at a root page which would hold the entry if it
** were present.  The cursor might point to an entry that comes
** before or after the key.
**
** If pRes!=NULL, then *pRes is written with an integer code to
** describe the results.  *pRes is set to 0 if the cursor is left 
** pointing at an entry that exactly matches pKey.  *pRes is made
** negative if the cursor is on the largest entry less than pKey.
** *pRes is set positive if the cursor is on the smallest entry
** greater than pKey.  *pRes is not changed if the return value
** is something other than SQLITE_OK;
*/
int sqliteBtreeMoveto(BtCursor *pCur, void *pKey, int nKey, int *pRes){
  int rc;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  for(;;){
    int lwr, upr;
    Pgno chldPg;
    MemPage *pPage = pCur->pPage;
    lwr = 0;
    upr = pPage->nCell-1;
    while( lwr<=upr ){
      int c;
      pCur->idx = (lwr+upr)/2;
      rc = compareKey(pCur, pKey, nKey, &c);
      if( rc ) return rc;
      if( c==0 ){
        pCur->iMatch = c;
        if( pRes ) *pRes = 0;
        return SQLITE_OK;
      }
      if( c<0 ){
        lwr = pCur->idx+1;
      }else{
        upr = pCur->idx-1;
      }
    }
    assert( lwr==upr+1 );
    if( lwr>=pPage->nCell ){
      chldPg = pPage->pHdr->rightChild;
    }else{
      chldPg = pPage->apCell[lwr]->h.leftChild;
    }
    if( chldPg==0 ){
      pCur->iMatch = c;
      if( pRes ) *pRes = c;
      return SQLITE_OK;
    }
    rc = moveToChild(pCur, chldPg);
    if( rc ) return rc;
  }
}

/*
** Advance the cursor to the next entry in the database.  If pRes!=NULL
** then set *pRes=0 on success and set *pRes=1 if the cursor was
** pointing to the last entry in the database.
*/
int sqliteBtreeNext(BtCursor *pCur, int *pRes){

  int rc;
  if( pCur->bSkipNext ){
    pCur->bSkipNext = 0;
    if( pRes ) *pRes = 0;
    return SQLITE_OK;
  }
  pCur->idx++;
  if( pCur->idx>=pCur->pPage->nCell ){
    if( pPage->pHdr->rightChild ){
      rc = moveToChild(pCur, pPage->pHdr->rightChild);
      if( rc ) return rc;
      rc = moveToLeftmost(pCur);
      if( rc ) return rc;
    if( pRes ) *pRes = 0;
    return SQLITE_OK;
  }

    do{

      if( pCur->pParent==0 ){
      if( pRes ) *pRes = 1;
      return SQLITE_OK;
    }
      rc = moveToParent(pCur);
    if( rc ) return rc;

    }while( pCur->idx>=pCur->pPage->nCell );


    if( pRes ) *pRes = 0;
    return SQLITE_OK;
  }

  rc = moveToLeftmost(pCur);
    if( rc ) return rc;


  if( pRes ) *pRes = 0;
  return SQLITE_OK;
}

/*
** Allocate a new page from the database file.
**
1027
1028
1029
1030
1031
1032
1033



1034
1035
1036
1037
1038
1039
1040
  }
  return rc;
}

/*
** Add a page of the database file to the freelist.  Either pgno or
** pPage but not both may be 0. 



*/
static int freePage(Btree *pBt, void *pPage, Pgno pgno){
  Page1Header *pPage1 = (Page1Header*)pBt->page1;
  OverflowPage *pOvfl = (OverflowPage*)pPage;
  int rc;
  int needOvflUnref = 0;
  if( pgno==0 ){







>
>
>







1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
  }
  return rc;
}

/*
** Add a page of the database file to the freelist.  Either pgno or
** pPage but not both may be 0. 
**
** sqlitepager_unref() is NOT called for pPage.  The calling routine
** needs to do that.
*/
static int freePage(Btree *pBt, void *pPage, Pgno pgno){
  Page1Header *pPage1 = (Page1Header*)pBt->page1;
  OverflowPage *pOvfl = (OverflowPage*)pPage;
  int rc;
  int needOvflUnref = 0;
  if( pgno==0 ){
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076



1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
  rc = sqlitepager_write(pOvfl);
  if( rc ){
    if( needOvflUnref ) sqlitepager_unref(pOvfl);
    return rc;
  }
  pOvfl->next = pPage1->freeList;
  pPage1->freeList = pgno;
  memset(pOvfl->aData, 0, OVERFLOW_SIZE);
  rc = sqlitepager_unref(pOvfl);
  return rc;
}

/*
** Erase all the data out of a cell.  This involves returning overflow
** pages back the freelist.
*/
static int clearCell(Btree *pBt, Cell *pCell){
  Pager *pPager = pBt->pPager;
  OverflowPage *pOvfl;
  Page1Header *pPage1 = (Page1Header*)pBt->page1;
  Pgno ovfl, nextOvfl;
  int rc;




  ovfl = pCell->ovfl;
  pCell->ovfl = 0;
  while( ovfl ){
    rc = sqlitepager_get(pPager, ovfl, &pOvfl);
    if( rc ) return rc;
    nextOvfl = pOvfl->next;
    freePage(pBt, pOvfl, ovfl);
    ovfl = nextOvfl;
    sqlitepager_unref(pOvfl);
  }

}

/*
** Create a new cell from key and data.  Overflow pages are allocated as
** necessary and linked to this cell.  
*/
static int fillInCell(
  Btree *pBt,              /* The whole Btree.  Needed to allocate pages */
  Cell *pCell,             /* Populate this Cell structure */
  void *pKey, int nKey,    /* The key */
  void *pData,int nData    /* The data */
){
  int OverflowPage *pOvfl;
  Pgno *pNext;
  int spaceLeft;
  int n;
  int nPayload;
  char *pPayload;
  char *pSpace;

  pCell->h.pgno = 0;
  pCell->h.nKey = nKey;
  pCell->h.nData = nData;
  pCell->h.iNext = 0;

  pNext = &pCell->ovfl;
  pSpace = pCell->aData;
  spaceLeft = MX_LOCAL_PAYLOAD;
  pPayload = pKey;
  pKey = 0;
  nPayload = nKey;
  while( nPayload>0 ){
    if( spaceLeft==0 ){
      rc = allocatePage(pBt, &pOvfl, pNext);
      if( rc ){
        *pNext = 0;
        clearCell(pCell);
        return rc;
      }
      spaceLeft = OVERFLOW_SIZE;
      pSpace = pOvfl->aData;
      pNextPg = &pOvfl->next;
    }
    n = nPayload;
    if( n>spaceLeft ) n = spaceLeft;
    memcpy(pSpace, pPayload, n);
    nPayload -= n;
    if( nPayload==0 && pData ){







|















>
>
>










>




















|





|









|



|







1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
  rc = sqlitepager_write(pOvfl);
  if( rc ){
    if( needOvflUnref ) sqlitepager_unref(pOvfl);
    return rc;
  }
  pOvfl->next = pPage1->freeList;
  pPage1->freeList = pgno;
  memset(pOvfl->aPayload, 0, OVERFLOW_SIZE);
  rc = sqlitepager_unref(pOvfl);
  return rc;
}

/*
** Erase all the data out of a cell.  This involves returning overflow
** pages back the freelist.
*/
static int clearCell(Btree *pBt, Cell *pCell){
  Pager *pPager = pBt->pPager;
  OverflowPage *pOvfl;
  Page1Header *pPage1 = (Page1Header*)pBt->page1;
  Pgno ovfl, nextOvfl;
  int rc;

  if( pCell->h.nKey + pCell->h.nData <= MX_LOCAL_PAYLOAD ){
    return SQLITE_OK;
  }
  ovfl = pCell->ovfl;
  pCell->ovfl = 0;
  while( ovfl ){
    rc = sqlitepager_get(pPager, ovfl, &pOvfl);
    if( rc ) return rc;
    nextOvfl = pOvfl->next;
    freePage(pBt, pOvfl, ovfl);
    ovfl = nextOvfl;
    sqlitepager_unref(pOvfl);
  }
  return SQLITE_OK;
}

/*
** Create a new cell from key and data.  Overflow pages are allocated as
** necessary and linked to this cell.  
*/
static int fillInCell(
  Btree *pBt,              /* The whole Btree.  Needed to allocate pages */
  Cell *pCell,             /* Populate this Cell structure */
  void *pKey, int nKey,    /* The key */
  void *pData,int nData    /* The data */
){
  int OverflowPage *pOvfl;
  Pgno *pNext;
  int spaceLeft;
  int n;
  int nPayload;
  char *pPayload;
  char *pSpace;

  pCell->h.leftChild = 0;
  pCell->h.nKey = nKey;
  pCell->h.nData = nData;
  pCell->h.iNext = 0;

  pNext = &pCell->ovfl;
  pSpace = pCell->aPayload;
  spaceLeft = MX_LOCAL_PAYLOAD;
  pPayload = pKey;
  pKey = 0;
  nPayload = nKey;
  while( nPayload>0 ){
    if( spaceLeft==0 ){
      rc = allocatePage(pBt, &pOvfl, pNext);
      if( rc ){
        *pNext = 0;
        clearCell(pBt, pCell);
        return rc;
      }
      spaceLeft = OVERFLOW_SIZE;
      pSpace = pOvfl->aPayload;
      pNextPg = &pOvfl->next;
    }
    n = nPayload;
    if( n>spaceLeft ) n = spaceLeft;
    memcpy(pSpace, pPayload, n);
    nPayload -= n;
    if( nPayload==0 && pData ){
1143
1144
1145
1146
1147
1148
1149
1150

1151
1152
1153
1154
1155
1156
1157

































1158
1159










1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174




1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185


































1186
1187
1188
1189














1190
1191








































1192
1193
1194
1195
1196
1197






1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215

1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235

1236
1237
1238
1239

1240
1241
1242
1243
1244
1245
1246
  }
  return SQLITE_OK;
}

/*
** Attempt to move N or more bytes out of the page that the cursor
** points to into the left sibling page.  (The left sibling page
** contains cells that are less than the cells on this page.)  Return

** TRUE if successful and FALSE if not.
**
** Reasons for not being successful include: 
**
**    (1) there is no left sibling,
**    (2) we could only move N-1 bytes or less,
**    (3) some kind of file I/O error occurred

































*/
static int rotateLeft(BtCursor *pCur, int N){










}

/*
** Split a single database page into two roughly equal-sized pages.
**
** The input is an existing page and a new Cell.  The Cell might contain
** a valid Cell.pgno field pointing to a child page.
**
** The output is the Cell that divides the two new pages.  The content
** of this divider Cell is written into *pCenter.  pCenter->pgno points
** to the new page that was created to hold the smaller half of the
** cells from the divided page.  The larger cells from the divided
** page are written to a newly allocated page and *ppOut is made to
** point to that page.  Except, if ppOut==NULL then the larger cells
** remain on pIn.




*/
static int split(
  MemPage *pIn,       /* The page that is to be divided */
  Cell *pNewCell,     /* A new cell to add to pIn before dividing it up */
  Cell *pCenter,      /* Write the cell that divides the two pages here */
  MemPage **ppOut     /* If not NULL, put larger cells in new page at *ppOut */
){
  
}

/*


































** With this routine, we know that the Cell pNewCell will fit into the
** database page that pCur points to.  The calling routine has made
** sure it will fit.  All this routine needs to do is add the Cell
** to the page.














*/
static int insertCell(BtCursor *pCur, Cell *pNewCell){








































}

/*
** Insert pNewCell into the database page that pCur is pointing to.
** pNewCell->h.pgno points to a child page that comes before pNewCell->data[],
** unless pCur is a leaf page.






*/
static int addToPage(BtCursor *pCur, Cell *pNewCell){
  Cell tempCell;
  Cell centerCell;

  for(;;){
    MemPage *pPage = pCur->pPage;
    int sz = cellSize(pNewCell);
    if( sz<=pPage->nFree ){
      insertCell(pCur, pNewCell);
      return SQLITE_OK;
    }
    if( pPage->pParent==0 ){
      MemPage *pRight;
      PageHdr *pHdr;
      FreeBlk *pFBlk;
      int pc;
      rc = split(pPage, pNewCell, &centerCell, &pRight);

      pHdr = pPage->pStart;
      pHdr->pgno = sqlitepager_pagenumber(pRight);
      sqlitepager_unref(pRight);
      pHdr->firstCell = pc = pPage->idxStart + sizeof(*pHdr);
      sz = cellSize(&centerCell);
      memcpy(&pPage->aPage[pc], &centerCell, sz);
      pc += sz;
      pHdr->firstFree = pc;
      pFBlk = (FreeBlk*)&pPage->aPage[pc];
      pFBlk->iSize = SQLITE_PAGE_SIZE - pc;
      pFBlk->iNext = 0;
      memset(&pFBlk[1], 0, pFBlk->iSize-sizeof(*pFBlk));
      return SQLITE_OK;
    }
    if( rotateLeft(pCur, sz - pPage->nFree) 
           || rotateRight(pCur, sz - pPage->nFree) ){
      insertCell(pCur, pNewCell);
      return SQLITE_OK;
    }
    rc = split(pPage, pNewCell, &centerCell, 0);

    parentPage(pCur);
    tempCell = centerCell;
    pNewPage = &tempCell;
  }

}

/*
** Insert a new record into the BTree.  The key is given by (pKey,nKey)
** and the data is given by (pData,nData).  The cursor is used only to
** define what database the record should be inserted into.  The cursor
** is NOT left pointing at the new record.







|
>







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


>
>
>
>
>
>
>
>
>
>






|


|
|
|
|
|

>
>
>
>


|








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|
>
>
>
>
>
>
>
>
>
>
>
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|
<
|
>
>
>
>
>
>

















|
>
|
|



|


|










|
>
|



>







1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395

1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
  }
  return SQLITE_OK;
}

/*
** Attempt to move N or more bytes out of the page that the cursor
** points to into the left sibling page.  (The left sibling page
** contains cells that are less than the cells on this page.)  The
** entry that the cursor is pointing to cannot be moved.  Return
** TRUE if successful and FALSE if not.
**
** Reasons for not being successful include: 
**
**    (1) there is no left sibling,
**    (2) we could only move N-1 bytes or less,
**    (3) some kind of file I/O error occurred
**
** Note that a partial rotation may have occurred even if this routine
** returns FALSE.  Failure means we could not rotation a fill N bytes.
** If it is possible to rotation some smaller number M, then the 
** rotation occurs but we still return false.
**
** Example:  Consider a segment of the Btree that looks like the
** figure below prior to rotation.  The cursor is pointing to the
** entry *.  The sort order of the entries is A B C D E * F Y.
**
**
**            -------------------------
**                ... | C | Y | ...
**            -------------------------
**                     /     \
**            ---------       -----------------
**            | A | B |       | D | E | * | F |
**            ---------       -----------------
**
** After rotation of two cells (D and E), the same Btree segment 
** looks like this:
**
**            -------------------------
**                ... | E | Y | ...
**            -------------------------
**                     /     \
**    -----------------       ---------
**    | A | B | C | D |       | * | F |
**    -----------------       ---------
**
** The size of this rotation is the size by which the page containing
** the cursor was reduced.  In this case, the size of D and E.
**
*/
static int rotateLeft(BtCursor *pCur, int N){
  return 0;
}

/*
** This routine is the same as rotateLeft() except that it move data
** to the right instead of to the left.  See comments on the rotateLeft()
** routine for additional information.
*/
static int rotateRight(BtCursor *pCur, int N){
  return 0;
}

/*
** Split a single database page into two roughly equal-sized pages.
**
** The input is an existing page and a new Cell.  The Cell might contain
** a valid Cell.h.leftChild field pointing to a child page.
**
** The output is the Cell that divides the two new pages.  The content
** of this divider Cell is written into *pCenter.  pCenter->h.leftChild
** holds the page number of the new page that was created to hold the 
** smaller of the cells from the divided page.  The larger cells from
** the divided page are written to a newly allocated page and *ppOut 
** is made to point to that page.  Or if ppOut==NULL then the larger cells
** remain on pIn.
**
** Upon return, pCur should be pointing to the same cell, even if that
** cell has moved to a new page.  The cell that pCur points to cannot
** be the pCenter cell.
*/
static int split(
  BtCursor *pCur,     /* A cursor pointing at a cell on the page to be split */
  Cell *pNewCell,     /* A new cell to add to pIn before dividing it up */
  Cell *pCenter,      /* Write the cell that divides the two pages here */
  MemPage **ppOut     /* If not NULL, put larger cells in new page at *ppOut */
){
  
}

/*
** Unlink a cell from a database page.  Add the space used by the cell
** back to the freelist for the database page on which the cell used to
** reside.
**
** This operation overwrites the cell header and content.
*/
static void unlinkCell(BtCursor *pCur){
  MemPage *pPage;    /* Page containing cell to be unlinked */
  int idx;           /* The index of the cell to be unlinked */
  Cell *pCell;       /* Pointer to the cell to be unlinked */
  u16 *piCell;       /* iNext pointer from prior cell */
  int iCell;         /* Index in pPage->aDisk[] of cell to be unlinked */
  int i;             /* Loop counter */

  pPage = pCur->pPage;
  idx = pCur->idx;
  pCell = pPage->apCell[idx];
  if( idx==0 ){
    piCell = &pPage->pHdr->firstCell;
  }else{
    piCell = &pPage->apCell[idx-1]->h.iNext;
  }
  iCell = *piCell;
  *piCell = pCell->h.iNext;
  freeSpace(pPage, iCell, cellSize(pCell));
  pPage->nCell--;
  for(i=idx; i<pPage->nCell; i++){
    pPage->apCell[i] = pPage->apCell[i+1];
  }
}

/*
** Add a Cell to a database page at the spot indicated by the cursor.
**
** With this routine, we know that the Cell pNewCell will fit into the
** database page that pCur points to.  The calling routine has made
** sure it will fit.  All this routine needs to do is add the Cell
** to the page.  The addToPage() routine should be used for cases
** were it is not know if the new cell will fit.
**
** The new cell is added to the page either before or after the cell
** to which the cursor is pointing.  The new cell is added before
** the cursor cell if pCur->iMatch>0 and the new cell is added after
** the cursor cell if pCur->iMatch<0.  pCur->iMatch should have been set
** by a prior call to sqliteBtreeMoveto() where the key was the key
** of the cell being inserted.  If sqliteBtreeMoveto() ended up on a
** cell that is larger than the key, then pCur->iMatch was set to a
** positive number, hence we insert the new record before the pointer
** if pCur->iMatch is positive.  If sqliteBtreeMaveto() ended up on a
** cell that is smaller than the key then pCur->iMatch was set to a
** negative number, hence we insert the new record after then pointer
** if pCur->iMatch is negative.
*/
static int insertCell(BtCursor *pCur, Cell *pNewCell){
  int sz;
  int idx;
  int i;
  Cell *pCell, *pIdx;
  MemPage *pPage;

  pPage = pCur->pPage;
  sz = cellSize(pNewCell);
  idx = allocateSpace(pPage, sz);
  assert( idx>0 && idx<=SQLITE_PAGE_SIZE - sz );
  pCell = (Cell*)&pPage->aDisk[idx];
  memcpy(pCell, pNewCell, sz);
  pIdx = pPage->aDisk[pCur->idx];
  if( pCur->iMatch<0 ){
    /* Insert the new cell after the cell pCur points to */
    pCell->h.iNext = pIdx->h.iNext;
    pIdx->h.iNext = idx;
    for(i=pPage->nCell-1; i>pCur->idx; i--){
      pPage->apCell[i+1] = pPage->apCell[i];
    }
    pPage->apCell[pCur->idx+1] = pCell;
  }else{
    /* Insert the new cell before the cell pCur points to */
    pCell->h.iNext = pPage->pHdr->firstCell;
    pPage->pHdr->firstCell = idx;
    for(i=pPage->nCell; i>0; i++){
      pPage->apCell[i] = pPage->apCell[i-1];
    }
    pPage->apCell[0] = pCell;
  }
  pPage->nCell++;
  if( pCell->h.leftChild ){
    MemPage *pChild = sqlitepager_lookup(pCur->pBt, pCell->h.leftChild);
    if( pChild && pChild->pParent ){
      sqlitepager_unref(pChild->pParent);
      pChild->pParent = pPage;
      sqlitepager_ref(pChild->pParent);
    }
  }
  return SQLITE_OK;
}

/*
** Insert pNewCell into the database page that pCur is pointing to at

** the place where pCur is pointing.  
**
** This routine works just like insertCell() except that the cell
** to be inserted need not fit on the page.  If the new cell does 
** not fit, then the page sheds data to its siblings to try to get 
** down to a size where the new cell will fit.  If that effort fails,
** then the page is split.
*/
static int addToPage(BtCursor *pCur, Cell *pNewCell){
  Cell tempCell;
  Cell centerCell;

  for(;;){
    MemPage *pPage = pCur->pPage;
    int sz = cellSize(pNewCell);
    if( sz<=pPage->nFree ){
      insertCell(pCur, pNewCell);
      return SQLITE_OK;
    }
    if( pPage->pParent==0 ){
      MemPage *pRight;
      PageHdr *pHdr;
      FreeBlk *pFBlk;
      int pc;
      rc = split(pCur, pNewCell, &centerCell, &pRight);
      if( rc ) return rc;
      pHdr = pPage->pHdr;
      pHdr->right = sqlitepager_pagenumber(pRight);
      sqlitepager_unref(pRight);
      pHdr->firstCell = pc = pPage->idxStart + sizeof(*pHdr);
      sz = cellSize(&centerCell);
      memcpy(&pPage->aDisk[pc], &centerCell, sz);
      pc += sz;
      pHdr->firstFree = pc;
      pFBlk = (FreeBlk*)&pPage->aDisk[pc];
      pFBlk->iSize = SQLITE_PAGE_SIZE - pc;
      pFBlk->iNext = 0;
      memset(&pFBlk[1], 0, pFBlk->iSize-sizeof(*pFBlk));
      return SQLITE_OK;
    }
    if( rotateLeft(pCur, sz - pPage->nFree) 
           || rotateRight(pCur, sz - pPage->nFree) ){
      insertCell(pCur, pNewCell);
      return SQLITE_OK;
    }
    rc = split(pCur, pNewCell, &centerCell, 0);
    if( rc ) return rc;
    moveToParent(pCur);
    tempCell = centerCell;
    pNewPage = &tempCell;
  }
  /* NOT REACHED */
}

/*
** Insert a new record into the BTree.  The key is given by (pKey,nKey)
** and the data is given by (pData,nData).  The cursor is used only to
** define what database the record should be inserted into.  The cursor
** is NOT left pointing at the new record.
1256
1257
1258
1259
1260
1261
1262
1263
1264

1265
1266













1267
1268



1269
1270
























1271


1272
1273
1274
1275


1276

1277
1278

1279
1280



















1281














  MemPage *pPage;
  Btree *pBt = pCur->pBt;

  rc = sqliteBtreeMoveTo(pCur, pKey, nKey, &loc);
  if( rc ) return rc;
  rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
  if( rc ) return rc;
  newCell.h.pgno = pCur->pPage->aCell[pCur->idx].h.pgno;
  if( loc==0 ){

    rc = clearCell(pBt, &pCur->pPage->aCell[pCur->idx]);
    if( rc ){













      return SQLITE_CORRUPT;
    }



    unlinkCell(pCur);
  }
























  return addToPage(pCur, &newCell);


}

/*
** Delete the record that the cursor is pointing to.  Leave the cursor


** pointing at the next record after the one to which it currently points.

** Also, set the pCur->skip_next flag so that the next sqliteBtreeNext() 
** called for this cursor will be a no-op.

*/
int sqliteBtreeDelete(BtCursor *pCur){



















}





















<

>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
|

>
>
>
|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>



|
>
>
|
>
|
|
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
1464
1465
1466
1467
1468
1469
1470

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
  MemPage *pPage;
  Btree *pBt = pCur->pBt;

  rc = sqliteBtreeMoveTo(pCur, pKey, nKey, &loc);
  if( rc ) return rc;
  rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
  if( rc ) return rc;

  if( loc==0 ){
    newCell.h.leftChild = pCur->pPage->apCell[pCur->idx]->h.leftChild;
    rc = clearCell(pBt, pCur->pPage->apCell[pCur->idx]);
    if( rc ) return rc;
    unlinkCell(pCur);
  }
  return addToPage(pCur, &newCell);
}

/*
** Check the page given as the argument to see if it is less than
** half full.  If it is less than half full, then try to increase
** its fill factor by grabbing cells from siblings or by merging
** the page with siblings.
*/
static int refillPage(Btree *pBt, MemPage *pPage){
  if( pPage->nFree < SQLITE_PAGE_SIZE/2 ){
    return SQLITE_OK;
    }
  if( pPage->nCell==0 ){
    assert( pPage->pParent==0 );
    if( pPage->pHdr->rightChild ){
      
  }
    return SQLITE_OK;
  }
  /** merge with siblings **/
  /** borrow from siblings **/
}

/*
** Replace the content of the cell that pCur is pointing to with the content
** in pNewContent.  The pCur cell is not unlinked or moved in the Btree,
** its content is just replaced.
**
** If the size of pNewContent is greater than the current size of the
** cursor cell then the page that cursor points to might have to split.
*/
static int replaceContent(BtCursor *pCur, Cell *pNewContent){
  Cell *pCell;       /* The cell whose content will be changed */
  Pgno pgno;         /* Temporary storage for a page number */

  pCell = pCur->pPage->apCell[pCur->idx];
  rc = clearCell(pCur->pBt, pCell);
  if( rc ) return rc;
  pgno = pNewCell->h.leftChild;
  pNewCell->h.leftChild = pCell->h.leftChild;
  unlinkCell(pCur);
  rc = addToPage(pCur, pNewCell);
  pNewCell->h.leftChild = pgno;
  return rc;
}

/*
** Delete the record that the cursor is pointing to.
**
** The cursor is left point at either the next or the previous
** entry.  If left pointing to the next entry, then the pCur->bSkipNext
** flag is set which forces the next call to sqliteBtreeNext() to be
** a no-op.  That way, you can always call sqliteBtreeNext() after
** a delete and the cursor will be left pointing to the first entry
** after the deleted entry.
*/
int sqliteBtreeDelete(BtCursor *pCur){
  MemPage *pPage = pCur->pPage;
  Cell *pCell;
  int rc;
  pCell = pPage->apCell[pCur->idx];
  if( pPage->pHdr->rightChild ){
    /* The entry to be deleted is not on a leaf page.  Non-leaf entries 
    ** cannot be deleted directly because they have to be present to
    ** hold pointers to subpages.  So what we do is look at the next 
    ** entry in sequence.  The next entry is guaranteed to exist and 
    ** be a leaf.  We copy the payload from the next entry into this
    ** entry, then delete the next entry.
    */
    BtCursor origCur;
    createTemporaryCursor(pCur, &origCur);
    rc = sqliteBtreeNext(pCur, 0);
    if( rc==SQLITE_OK ){
      pPage = pCur->pPage;
      pCell = pPage->apCell[pCur->idx];
      rc = replaceContent(&origCur, pCell);
}
    destroyTemporaryCursor(&origCur);
    if( rc ) return rc;
  }
  rc = clearCell(pCell);
  if( rc ) return rc;
  unlinkCell(pCur->pBt, pCell);
  if( pCur->idx == 0 ){
    pCur->bSkipNext = 1;
  }else{
    pCur->idx--;
  }
  rc = refillPage(pCur->pBt, pPage);
  return rc;
}