Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | :-) (CVS 221) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
c8d3bdd91e333f3fc519558e40c07e7e |
User & Date: | drh 2001-05-28 00:41:15.000 |
Context
2001-05-28
| ||
00:41 | :-) (CVS 1720) (check-in: d78febd197 user: drh tags: trunk) | |
00:41 | :-) (CVS 221) (check-in: c8d3bdd91e user: drh tags: trunk) | |
2001-05-26
| ||
13:15 | :-) (CVS 220) (check-in: 45a0e0fc8c user: drh tags: trunk) | |
Changes
Changes to notes/notes2.txt.
|
| | > > > > > > > > | > > | > > | | | | | > > | | < | < | | | < < < < < < < < | < < < < | | > | > > > | > | > | | < < < < < < | | < < < < < < < < < < | | < | < < < < < | < | < < < < < < < | < < < | | < > | < < < < < < < < | < < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | How to do a B-Tree insert: insert(data){ create a new cursor move cursor to the entry nearest data if( cursor.key == keyof(data) ){ replace cursor.data with dataof(data) return } childpg = NULL add_to_page(cursor, data+childpg) delete the cursor } add_to_page(cursor, data+childpg ){ childpg->parent = cursor.page if( data+childpg fits on cursor.page ){ insert data+childpg at cursor return } if( page==root ){ split page+(data+childpg) into newpage1, center, newpage2 cursor.page = &newpage1 + center + &newpage2; newpage1->parent = cursor.page newpage2->parent = cursor.page return } if( move_some_data_left || move_some_data_right ){ insert data+childpg at cursor return } split page+(data+childpg) into page, center, newpage newpage->parent = page->parent move cursor to insertion point of center in parent page. add_to_page(cursor, center, (newpage)); } How to do a B-Tree delete: delete(entry){ if( entry is not a leaf ){ p = predecessor of entry // note: if entry is not a leaf then p must // exist and must be a leaf free(entry.overflowptr) resize entry so that is is big enough to hold p.payload entry.payload = p.payload entry.overflowptr = p.overflowptr p.overflowptr = NULL delete(p) return } unlink entry from its page refill(page containing entry) } refill(page){ if( page is more than half full ) return if( page is the root and contains no entries ){ copy the one child page into this page thus reducing the height of the tree by one. return } if( able to merge page with neighbors ){ do the merge refill(parent page) return } borrow entrys from neighbors } |
Changes to src/btree.c.
︙ | ︙ | |||
17 18 19 20 21 22 23 | ** Boston, MA 02111-1307, USA. ** ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* | | > | 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | ** Boston, MA 02111-1307, USA. ** ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** $Id: btree.c,v 1.9 2001/05/28 00:41:15 drh Exp $ */ #include "sqliteInt.h" #include "pager.h" #include "btree.h" #include <assert.h> /* ** Primitive data types. u32 must be 4 bytes and u16 must be 2 bytes. ** Change these typedefs when porting to new architectures. */ typedef unsigned int u32; typedef unsigned short int u16; typedef unsigned char u8; /* ** Forward declarations of structures used only in this file. */ typedef struct Page1Header Page1Header; typedef struct MemPage MemPage; typedef struct PageHdr PageHdr; |
︙ | ︙ | |||
53 54 55 56 57 58 59 | ** ** This might need to change for computer architectures that require ** and 8-byte alignment boundry for structures. */ #define ROUNDUP(X) ((X+3) & ~3) /* | | | | | | | | | | | | | | 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | ** ** This might need to change for computer architectures that require ** and 8-byte alignment boundry for structures. */ #define ROUNDUP(X) ((X+3) & ~3) /* ** The first page of the database file contains some additional ** information used for housekeeping and sanity checking. Otherwise, ** the first page is just like any other. The additional information ** found on the first page is described by the following structure. */ struct Page1Header { u32 magic1; /* A magic number to verify the file really is a database */ u32 magic2; /* A second magic number to be extra sure */ Pgno firstList; /* First free page in a list of all free pages */ }; #define MAGIC_1 0x7264dc61 #define MAGIC_2 0x54e55d9e /* ** Each database page has a header as follows: ** ** page1_header Optional instance of Page1Header structure ** rightmost_pgno Page number of the right-most child page ** first_cell Index into MemPage.aDisk of first cell ** first_free Index of first free block ** ** MemPage.pHdr always points to the rightmost_pgno. First_free is ** 0 if there is no free space on this page. Otherwise, first_free is ** the index in MemPage.aDisk[] of a FreeBlk structure that describes ** the first block of free space. All free space is defined by a linked ** list of FreeBlk structures. ** ** Data is stored in a linked list of Cell structures. First_cell is ** the index into MemPage.aDisk[] of the first cell on the page. The ** Cells are kept in sorted order. */ struct PageHdr { Pgno rightChild; /* Child page that comes after all cells on this page */ u16 firstCell; /* Index in MemPage.aDisk[] of the first cell */ u16 firstFree; /* Index in MemPage.aDisk[] of the first free block */ }; /* ** Entries on a page of the database are called "Cells". Each Cell ** has a header and data. This structure defines the header. The ** definition of the complete Cell including the data is given below. */ struct CellHdr { Pgno leftChild; /* Child page that comes before this cell */ u16 nKey; /* Number of bytes in the key */ u16 iNext; /* Index in MemPage.aDisk[] of next cell in sorted order */ u32 nData; /* Number of bytes of data */ } /* ** The minimum size of a complete Cell. The Cell must contain a header ** and at least 4 bytes of data. */ |
︙ | ︙ | |||
125 126 127 128 129 130 131 | ** extra goes onto overflow pages. */ #define MX_LOCAL_PAYLOAD \ ((SQLITE_PAGE_SIZE-sizeof(PageHdr))/4-(sizeof(CellHdr)+sizeof(Pgno))) /* ** Data on a database page is stored as a linked list of Cell structures. | | | | | | | | | | | < < < < | | | | | 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | ** extra goes onto overflow pages. */ #define MX_LOCAL_PAYLOAD \ ((SQLITE_PAGE_SIZE-sizeof(PageHdr))/4-(sizeof(CellHdr)+sizeof(Pgno))) /* ** Data on a database page is stored as a linked list of Cell structures. ** Both the key and the data are stored in aPayload[]. The key always comes ** first. The aPayload[] field grows as necessary to hold the key and data, ** up to a maximum of MX_LOCAL_PAYLOAD bytes. If the size of the key and ** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the ** page number of the first overflow page. ** ** Though this structure is fixed in size, the Cell on the database ** page varies in size. Very cell has a CellHdr and at least 4 bytes ** of payload space. Additional payload bytes (up to the maximum of ** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as ** needed. */ struct Cell { CellHdr h; /* The cell header */ char aPayload[MX_LOCAL_PAYLOAD]; /* Key and data */ Pgno ovfl; /* The first overflow page */ }; /* ** Free space on a page is remembered using a linked list of the FreeBlk ** structures. Space on a database page is allocated in increments of ** at least 4 bytes and is always aligned to a 4-byte boundry. The ** linked list of freeblocks is always kept in order by address. */ struct FreeBlk { u16 iSize; /* Number of bytes in this block of free space */ u16 iNext; /* Index in MemPage.aDisk[] of the next free block */ }; /* ** Number of bytes on a single overflow page. */ #define OVERFLOW_SIZE (SQLITE_PAGE_SIZE-sizeof(Pgno)) /* ** When the key and data for a single entry in the BTree will not fit in ** the MX_LOACAL_PAYLOAD bytes of space available on the database page, ** then all extra data is written to a linked list of overflow pages. ** Each overflow page is an instance of the following structure. ** ** Unused pages in the database are also represented by instances of ** the OverflowPage structure. The Page1Header.freeList field is the ** page number of the first page in a linked list of unused database ** pages. */ struct OverflowPage { Pgno next; char aPayload[OVERFLOW_SIZE]; }; /* ** For every page in the database file, an instance of the following structure ** is stored in memory. The aDisk[] array contains the data obtained from ** the disk. The rest is auxiliary data that held in memory only. The ** auxiliary data is only valid for regular database pages - the auxiliary ** data is meaningless for overflow pages and pages on the freelist. ** ** Of particular interest in the auxiliary data is the apCell[] entry. Each ** apCell[] entry is a pointer to a Cell structure in aDisk[]. The cells are ** put in this array so that they can be accessed in constant time, rather ** than in linear time which would be needed if we walked the linked list. ** ** The pParent field points back to the parent page. This allows us to ** walk up the BTree from any leaf to the root. Care must be taken to ** unref() the parent page pointer when this page is no longer referenced. ** The pageDestructor() routine handles that. */ struct MemPage { char aDisk[SQLITE_PAGE_SIZE]; /* Page data stored on disk */ int isInit; /* True if auxiliary data is initialized */ MemPage *pParent; /* The parent of this page. NULL for root */ int idxStart; /* Index in aDisk[] of real data */ PageHdr *pHdr; /* Points to aDisk[idxStart] */ int nFree; /* Number of free bytes in aDisk[] */ int nCell; /* Number of entries on this page */ Cell *apCell[MX_CELL]; /* All data entires in sorted order */ } /* ** The in-memory image of a disk page has the auxiliary information appended ** to the end. EXTRA_SIZE is the number of bytes of space needed to hold ** that extra information. */ |
︙ | ︙ | |||
228 229 230 231 232 233 234 | int inTrans; /* True if a transaction is in progress */ }; typedef Btree Bt; /* ** A cursor is a pointer to a particular entry in the BTree. ** The entry is identified by its MemPage and the index in | | | | > | | > > | | 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 | int inTrans; /* True if a transaction is in progress */ }; typedef Btree Bt; /* ** A cursor is a pointer to a particular entry in the BTree. ** The entry is identified by its MemPage and the index in ** MemPage.apCell[] of the entry. */ struct BtCursor { Btree *pBt; /* The Btree to which this cursor belongs */ BtCursor *pPrev, *pNext; /* List of all cursors */ MemPage *pPage; /* Page that contains the entry */ u16 idx; /* Index of the entry in pPage->apCell[] */ u8 bSkipNext; /* sqliteBtreeNext() is no-op if true */ u8 iMatch; /* compare result from last sqliteBtreeMoveto() */ }; /* ** Compute the total number of bytes that a Cell needs on the main ** database page. The number returned includes the Cell header, ** local payload storage, and the pointer to overflow pages (if ** applicable). The point of this routine is that it does not ** include payload storage on overflow pages. */ static int cellSize(Cell *pCell){ int n = pCell->h.nKey + pCell->h.nData; if( n>MX_LOCAL_PAYLOAD ){ n = MX_LOCAL_PAYLOAD + sizeof(Pgno); }else{ n = ROUNDUP(n); |
︙ | ︙ | |||
266 267 268 269 270 271 272 | static void defragmentPage(MemPage *pPage){ int pc; int i, n; FreeBlk *pFBlk; char newPage[SQLITE_PAGE_SIZE]; pc = ROUNDUP(pPage->idxStart + sizeof(PageHdr)); | | | | | | | | | | | | | | | | | | | | | | > > | | | > > < < | | > > > | > > > > > > | | > > > | | | > | 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 | static void defragmentPage(MemPage *pPage){ int pc; int i, n; FreeBlk *pFBlk; char newPage[SQLITE_PAGE_SIZE]; pc = ROUNDUP(pPage->idxStart + sizeof(PageHdr)); pPage->pHdr->firstCell = pc; memcpy(newPage, pPage->aDisk, pc); for(i=0; i<pPage->nCell; i++){ Cell *pCell = &pPage->apCell[i]; n = cellSize(pCell); pCell->h.iNext = i<pPage->nCell ? pc + n : 0; memcpy(&newPage[pc], pCell, n); pPage->apCell[i] = (Cell*)&pPage->aDisk[pc]; pc += n; } assert( pPage->nFree==SQLITE_PAGE_SIZE-pc ); memcpy(pPage->aDisk, newPage, pc); pFBlk = &pPage->aDisk[pc]; pFBlk->iSize = SQLITE_PAGE_SIZE - pc; pFBlk->iNext = 0; pPage->pHdr->firstFree = pc; memset(&pFBlk[1], 0, SQLITE_PAGE_SIZE - pc - sizeof(FreeBlk)); } /* ** Allocate space on a page. The space needs to be at least ** nByte bytes in size. (Actually, all allocations are rounded ** up to the next even multiple of 4.) Return the index into ** pPage->aDisk[] of the first byte of the new allocation. ** Or return 0 if there is not enough free space on the page to ** satisfy the allocation request. ** ** If the page contains nBytes of free space but does not contain ** nBytes of contiguous free space, then defragementPage() is ** called to consolidate all free space before allocating the ** new chunk. */ static int allocSpace(MemPage *pPage, int nByte){ FreeBlk *p; u16 *pIdx; int start; assert( nByte==ROUNDUP(nByte) ); if( pPage->nFree<nByte ) return 0; pIdx = &pPage->pHdr->firstFree; p = (FreeBlk*)&pPage->aDisk[*pIdx]; while( p->iSize<nByte ){ if( p->iNext==0 ){ defragmentPage(pPage); pIdx = &pPage->pHdr->firstFree; }else{ pIdx = &p->iNext; } p = (FreeBlk*)&pPage->aDisk[*pIdx]; } if( p->iSize==nByte ){ start = *pIdx; *pIdx = p->iNext; }else{ start = *pIdx; FreeBlk *pNew = (FreeBlk*)&pPage->aDisk[start + nByte]; pNew->iNext = p->iNext; pNew->iSize = p->iSize - nByte; *pIdx = start + nByte; } pPage->nFree -= nByte; return start; } /* ** Return a section of the MemPage.aDisk[] to the freelist. ** The first byte of the new free block is pPage->aDisk[start] ** and the size of the block is "size". ** ** Most of the effort here is involved in coalesing adjacent ** free blocks into a single big free block. */ static void freeSpace(MemPage *pPage, int start, int size){ int end = start + size; u16 *pIdx, idx; FreeBlk *pFBlk; FreeBlk *pNew; FreeBlk *pNext; assert( size == ROUNDUP(size) ); assert( start == ROUNDUP(start) ); pIdx = &pPage->pHdr->firstFree; idx = *pIdx; while( idx!=0 && idx<start ){ pFBlk = (FreeBlk*)&pPage->aDisk[idx]; if( idx + pFBlk->iSize == start ){ pFBlk->iSize += size; if( idx + pFBlk->iSize == pFBlk->iNext ){ pNext = (FreeBlk*)&pPage->aDisk[pFblk->iNext]; pFBlk->iSize += pNext->iSize; pFBlk->iNext = pNext->iNext; } pPage->nFree += size; return; } pIdx = &pFBlk->iNext; idx = *pIdx; } pNew = (FreeBlk*)&pPage->aDisk[start]; if( idx != end ){ pNew->iSize = size; pNew->iNext = idx; }else{ pNext = (FreeBlk*)&pPage->aDisk[idx]; pNew->iSize = size + pNext->iSize; pNew->iNext = pNext->iNext; } *pIdx = start; pPage->nFree += size; } /* ** Initialize the auxiliary information for a disk block. ** ** The pParent field is always ** ** Return SQLITE_OK on success. If we see that the page does ** not contained a well-formed database page, then return ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not ** guarantee that the page is well-formed. It only shows that ** we failed to detect any corruption. */ static int initPage(MemPage *pPage, Pgno pgnoThis, MemPage *pParent){ int idx; /* An index into pPage->aDisk[] */ Cell *pCell; /* A pointer to a Cell in pPage->aDisk[] */ FreeBlk *pFBlk; /* A pointer to a free block in pPage->aDisk[] */ int sz; /* The size of a Cell in bytes */ int freeSpace; /* Amount of free space on the page */ if( pPage->pParent ){ assert( pPage->pParent==pParent ); return SQLITE_OK; } if( pParent ){ pPage->pParent = pParent; sqlitepager_ref(pParent); } if( pPage->isInit ) return SQLITE_OK; pPage->idxStart = (pgnoThis==1) ? sizeof(Page1Header) : 0; pPage->pHdr = (PageHdr*)&pPage->aDisk[pPage->idxStart]; pPage->isInit = 1; pPage->nCell = 0; freeSpace = SQLITE_PAGE_SIZE - pPage->idxStart - sizeof(PageHeader); idx = pPage->pHdr->firstCell; while( idx!=0 ){ if( idx>SQLITE_PAGE_SIZE-MN_CELL_SIZE ) goto page_format_error; if( idx<pPage->idxStart + sizeof(PageHeader) ) goto page_format_error; pCell = (Cell*)&pPage->aDisk[idx]; sz = cellSize(pCell); if( idx+sz > SQLITE_PAGE_SIZE ) goto page_format_error; freeSpace -= sz; pPage->apCell[pPage->nCell++] = pCell; idx = pCell->h.iNext; } pPage->nFree = 0; idx = pPage->pHdr->firstFree; while( idx!=0 ){ if( idx>SQLITE_PAGE_SIZE-sizeof(FreeBlk) ) goto page_format_error; if( idx<pPage->idxStart + sizeof(PageHeader) ) goto page_format_error; pFBlk = (FreeBlk*)&pPage->aDisk[idx]; pPage->nFree += pFBlk->iSize; if( pFBlk->iNext <= idx ) goto page_format_error; idx = pFBlk->iNext; } if( pPage->nFree!=freeSpace ) goto page_format_error; return SQLITE_OK; page_format_error: return SQLITE_CORRUPT; } /* |
︙ | ︙ | |||
605 606 607 608 609 610 611 | pCur->pBt = pBt; rc = sqlitepager_get(pBt->pPager, 1, &pCur->pPage); if( rc!=SQLITE_OK ){ sqliteFree(pCur); *ppCur = 0; return rc; } | < < < < | 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 | pCur->pBt = pBt; rc = sqlitepager_get(pBt->pPager, 1, &pCur->pPage); if( rc!=SQLITE_OK ){ sqliteFree(pCur); *ppCur = 0; return rc; } initPage(pCur->pPage, 1, 0); pCur->idx = 0; *ppCur = pCur; return SQLITE_OK; } /* ** Close a cursor. */ |
︙ | ︙ | |||
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 | } sqlitepager_unref(pCur->pPage); if( pBt->pCursor==0 && pBt->inTrans==0 ){ unlockBtree(pBt); } sqliteFree(pCur); } /* ** Write the number of bytes of key for the entry the cursor is ** pointing to into *pSize. Return SQLITE_OK. Failure is not ** possible. */ int sqliteBtreeKeySize(BtCursor *pCur, int *pSize){ Cell *pCell; MemPage *pPage; pPage = pCur->pPage; assert( pPage!=0 ); if( pCur->idx >= pPage->nCell ){ *pSize = 0; }else{ | > > > > > > > > > > > > > > > > > > > | | | | | | | 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 | } sqlitepager_unref(pCur->pPage); if( pBt->pCursor==0 && pBt->inTrans==0 ){ unlockBtree(pBt); } sqliteFree(pCur); } /* ** Make a temporary cursor by filling in the fields of pTempCur. ** The temporary cursor is not on the cursor list for the Btree. */ static void createTemporaryCursor(BtCursor *pCur, BtCursor *pTempCur){ memcpy(pTempCur, pCur, sizeof(*pCur)); pTempCur->pNext = 0; pTempCur->pPrev = 0; sqlitepager_ref(pTempCur->pPage); } /* ** Delete a temporary cursor such as was made by the createTemporaryCursor() ** function above. */ static void destroyTemporaryCursor(BeCursor *pCur){ sqlitepager_unref(pCur->pPage); } /* ** Write the number of bytes of key for the entry the cursor is ** pointing to into *pSize. Return SQLITE_OK. Failure is not ** possible. */ int sqliteBtreeKeySize(BtCursor *pCur, int *pSize){ Cell *pCell; MemPage *pPage; pPage = pCur->pPage; assert( pPage!=0 ); if( pCur->idx >= pPage->nCell ){ *pSize = 0; }else{ pCell = pPage->apCell[pCur->idx]; *psize = pCell->h.nKey; } return SQLITE_OK; } /* ** Read payload information from the entry that the pCur cursor is ** pointing to. Begin reading the payload at "offset" and read ** a total of "amt" bytes. Put the result in zBuf. ** ** This routine does not make a distinction between key and data. ** It just reads bytes from the payload area. */ static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){ char *aPayload; Pgno nextPage; assert( pCur!=0 && pCur->pPage!=0 ); assert( pCur->idx>=0 && pCur->idx<pCur->nCell ); aPayload = pCur->pPage->apCell[pCur->idx].aPayload; if( offset<MX_LOCAL_PAYLOAD ){ int a = amt; if( a+offset>MX_LOCAL_PAYLOAD ){ a = MX_LOCAL_PAYLOAD - offset; } memcpy(zBuf, &aPayload[offset], a); if( a==amt ){ return SQLITE_OK; } offset += a; zBuf += a; amt -= a; if( amt>0 ){ assert( a==ROUNDUP(a) ); nextPage = *(Pgno*)&aPayload[a]; } } while( amt>0 && nextPage ){ OverflowPage *pOvfl; rc = sqlitepager_get(pCur->pBt->pPager, nextPage, &pOvfl); if( rc!=0 ){ return rc; } nextPage = pOvfl->next; if( offset<OVERFLOW_SIZE ){ int a = amt; if( a + offset > OVERFLOW_SIZE ){ a = OVERFLOW_SIZE - offset; } memcpy(zBuf, &pOvfl->aPayload[offset], a); offset += a; amt -= a; zBuf += a; } sqlitepager_unref(pOvfl); } return amt==0 ? SQLITE_OK : SQLITE_CORRUPT; |
︙ | ︙ | |||
728 729 730 731 732 733 734 | if( offset<0 ) return SQLITE_ERROR; if( amt==0 ) return SQLITE_OK; pPage = pCur->pPage; assert( pPage!=0 ); if( pCur->idx >= pPage->nCell ){ return SQLITE_ERROR; } | | | | 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 | if( offset<0 ) return SQLITE_ERROR; if( amt==0 ) return SQLITE_OK; pPage = pCur->pPage; assert( pPage!=0 ); if( pCur->idx >= pPage->nCell ){ return SQLITE_ERROR; } pCell = pPage->apCell[pCur->idx]; if( amt+offset > pCell->h.nKey ){ return getPayload(pCur, offset, amt, zBuf); } /* ** Write the number of bytes of data on the entry that the cursor ** is pointing to into *pSize. Return SQLITE_OK. Failure is ** not possible. */ int sqliteBtreeDataSize(BtCursor *pCur, int *pSize){ Cell *pCell; MemPage *pPage; pPage = pCur->pPage; assert( pPage!=0 ); if( pCur->idx >= pPage->nCell ){ *pSize = 0; }else{ pCell = pPage->apCell[pCur->idx]; *pSize = pCell->h.nData; } return SQLITE_OK; } /* ** Read part of the data associated with cursor pCur. A total |
︙ | ︙ | |||
772 773 774 775 776 777 778 | if( offset<0 ) return SQLITE_ERROR; if( amt==0 ) return SQLITE_OK; pPage = pCur->pPage; assert( pPage!=0 ); if( pCur->idx >= pPage->nCell ){ return SQLITE_ERROR; } | | | 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 | if( offset<0 ) return SQLITE_ERROR; if( amt==0 ) return SQLITE_OK; pPage = pCur->pPage; assert( pPage!=0 ); if( pCur->idx >= pPage->nCell ){ return SQLITE_ERROR; } pCell = pPage->apCell[pCur->idx]; if( amt+offset > pCell->h.nKey ){ return getPayload(pCur, offset + pCell->h.nKey, amt, zBuf); } /* ** Compare the key for the entry that pCur points to against the ** given key (pKey,nKeyOrig). Put the comparison result in *pResult. |
︙ | ︙ | |||
796 797 798 799 800 801 802 | Pgno nextPage; int nKey = nKeyOrig; int n; Cell *pCell; assert( pCur->pPage ); assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); | | | | 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 | Pgno nextPage; int nKey = nKeyOrig; int n; Cell *pCell; assert( pCur->pPage ); assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); pCell = &pCur->pPage->apCell[pCur->idx]; if( nKey > pCell->h.nKey ){ nKey = pCell->h.nKey; } n = nKey; if( n>MX_LOCAL_PAYLOAD ){ n = MX_LOCAL_PAYLOAD; } c = memcmp(pCell->aPayload, pKey, n); if( c!=0 ){ *pResult = c; return SQLITE_OK; } pKey += n; nKey -= n; nextPage = pCell->ovfl; |
︙ | ︙ | |||
826 827 828 829 830 831 832 | return rc; } nextPage = pOvfl->next; n = nKey; if( n>OVERFLOW_SIZE ){ n = OVERFLOW_SIZE; } | | | < < | > > > > > | | > | > > > > > > > > > > > > > > > > > > > > > | > | | > | < > | | > > | > > > > > > < | < | | < | < < < | < < | 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 | return rc; } nextPage = pOvfl->next; n = nKey; if( n>OVERFLOW_SIZE ){ n = OVERFLOW_SIZE; } c = memcmp(pOvfl->aPayload, pKey, n); sqlitepager_unref(pOvfl); if( c!=0 ){ *pResult = c; return SQLITE_OK; } nKey -= n; pKey += n; } c = pCell->h.nKey - nKeyOrig; *pResult = c; return SQLITE_OK; } /* ** Move the cursor down to a new child page. */ static int moveToChild(BtCursor *pCur, int newPgno){ int rc; MemPage *pNewPage; rc = sqlitepager_get(pCur->pBt->pPager, newPgno, &pNewPage); if( rc ){ return rc; } initPage(pNewPage, newPgno, pCur->pPage); sqlitepager_unref(pCur->pPage); pCur->pPage = pNewPage; pCur->idx = 0; return SQLITE_OK; } /* ** Move the cursor up to the parent page. ** ** pCur->idx is set to the cell index that contains the pointer ** to the page we are coming from. If we are coming from the ** right-most child page then pCur->idx is set to one more than ** the largets cell index. */ static int moveToParent(BtCursor *pCur){ Pgno oldPgno; MemPage *pParent; pParent = pCur->pPage->pParent; oldPgno = sqlitepager_pagenumber(pCur->pPage); if( pParent==0 ){ return SQLITE_INTERNAL; } sqlitepager_ref(pParent); sqlitepager_unref(pCur->pPage); pCur->pPage = pParent; pCur->idx = pPage->nCell; for(i=0; i<pPage->nCell; i++){ if( pPage->apCell[i].h.leftChild==oldPgno ){ pCur->idx = i; break; } } return SQLITE_OK; } /* ** Move the cursor to the root page */ static int moveToRoot(BtCursor *pCur){ MemPage *pNew; pNew = pCur->pBt->page1; sqlitepager_ref(pNew); sqlitepager_unref(pCur->pPage); pCur->pPage = pNew; pCur->idx = 0; return SQLITE_OK; } /* ** Move the cursor down to the left-most leaf entry beneath the ** entry to which it is currently pointing. */ static int moveToLeftmost(BtCursor *pCur){ Pgno pgno; int rc; while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){ rc = moveToChild(pCur, pgno); if( rc ) return rc; } return SQLITE_OK; } /* Move the cursor so that it points to an entry near pKey. ** Return a success code. ** ** If an exact match is not found, then the cursor is always ** left point at a root page which would hold the entry if it ** were present. The cursor might point to an entry that comes ** before or after the key. ** ** If pRes!=NULL, then *pRes is written with an integer code to ** describe the results. *pRes is set to 0 if the cursor is left ** pointing at an entry that exactly matches pKey. *pRes is made ** negative if the cursor is on the largest entry less than pKey. ** *pRes is set positive if the cursor is on the smallest entry ** greater than pKey. *pRes is not changed if the return value ** is something other than SQLITE_OK; */ int sqliteBtreeMoveto(BtCursor *pCur, void *pKey, int nKey, int *pRes){ int rc; rc = moveToRoot(pCur); if( rc ) return rc; for(;;){ int lwr, upr; Pgno chldPg; MemPage *pPage = pCur->pPage; lwr = 0; upr = pPage->nCell-1; while( lwr<=upr ){ int c; pCur->idx = (lwr+upr)/2; rc = compareKey(pCur, pKey, nKey, &c); if( rc ) return rc; if( c==0 ){ pCur->iMatch = c; if( pRes ) *pRes = 0; return SQLITE_OK; } if( c<0 ){ lwr = pCur->idx+1; }else{ upr = pCur->idx-1; } } assert( lwr==upr+1 ); if( lwr>=pPage->nCell ){ chldPg = pPage->pHdr->rightChild; }else{ chldPg = pPage->apCell[lwr]->h.leftChild; } if( chldPg==0 ){ pCur->iMatch = c; if( pRes ) *pRes = c; return SQLITE_OK; } rc = moveToChild(pCur, chldPg); if( rc ) return rc; } } /* ** Advance the cursor to the next entry in the database. If pRes!=NULL ** then set *pRes=0 on success and set *pRes=1 if the cursor was ** pointing to the last entry in the database. */ int sqliteBtreeNext(BtCursor *pCur, int *pRes){ int rc; if( pCur->bSkipNext ){ pCur->bSkipNext = 0; if( pRes ) *pRes = 0; return SQLITE_OK; } pCur->idx++; if( pCur->idx>=pCur->pPage->nCell ){ if( pPage->pHdr->rightChild ){ rc = moveToChild(pCur, pPage->pHdr->rightChild); if( rc ) return rc; rc = moveToLeftmost(pCur); if( rc ) return rc; if( pRes ) *pRes = 0; return SQLITE_OK; } do{ if( pCur->pParent==0 ){ if( pRes ) *pRes = 1; return SQLITE_OK; } rc = moveToParent(pCur); if( rc ) return rc; }while( pCur->idx>=pCur->pPage->nCell ); if( pRes ) *pRes = 0; return SQLITE_OK; } rc = moveToLeftmost(pCur); if( rc ) return rc; if( pRes ) *pRes = 0; return SQLITE_OK; } /* ** Allocate a new page from the database file. ** |
︙ | ︙ | |||
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 | } return rc; } /* ** Add a page of the database file to the freelist. Either pgno or ** pPage but not both may be 0. */ static int freePage(Btree *pBt, void *pPage, Pgno pgno){ Page1Header *pPage1 = (Page1Header*)pBt->page1; OverflowPage *pOvfl = (OverflowPage*)pPage; int rc; int needOvflUnref = 0; if( pgno==0 ){ | > > > | 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 | } return rc; } /* ** Add a page of the database file to the freelist. Either pgno or ** pPage but not both may be 0. ** ** sqlitepager_unref() is NOT called for pPage. The calling routine ** needs to do that. */ static int freePage(Btree *pBt, void *pPage, Pgno pgno){ Page1Header *pPage1 = (Page1Header*)pBt->page1; OverflowPage *pOvfl = (OverflowPage*)pPage; int rc; int needOvflUnref = 0; if( pgno==0 ){ |
︙ | ︙ | |||
1054 1055 1056 1057 1058 1059 1060 | rc = sqlitepager_write(pOvfl); if( rc ){ if( needOvflUnref ) sqlitepager_unref(pOvfl); return rc; } pOvfl->next = pPage1->freeList; pPage1->freeList = pgno; | | > > > > | | | | | 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 | rc = sqlitepager_write(pOvfl); if( rc ){ if( needOvflUnref ) sqlitepager_unref(pOvfl); return rc; } pOvfl->next = pPage1->freeList; pPage1->freeList = pgno; memset(pOvfl->aPayload, 0, OVERFLOW_SIZE); rc = sqlitepager_unref(pOvfl); return rc; } /* ** Erase all the data out of a cell. This involves returning overflow ** pages back the freelist. */ static int clearCell(Btree *pBt, Cell *pCell){ Pager *pPager = pBt->pPager; OverflowPage *pOvfl; Page1Header *pPage1 = (Page1Header*)pBt->page1; Pgno ovfl, nextOvfl; int rc; if( pCell->h.nKey + pCell->h.nData <= MX_LOCAL_PAYLOAD ){ return SQLITE_OK; } ovfl = pCell->ovfl; pCell->ovfl = 0; while( ovfl ){ rc = sqlitepager_get(pPager, ovfl, &pOvfl); if( rc ) return rc; nextOvfl = pOvfl->next; freePage(pBt, pOvfl, ovfl); ovfl = nextOvfl; sqlitepager_unref(pOvfl); } return SQLITE_OK; } /* ** Create a new cell from key and data. Overflow pages are allocated as ** necessary and linked to this cell. */ static int fillInCell( Btree *pBt, /* The whole Btree. Needed to allocate pages */ Cell *pCell, /* Populate this Cell structure */ void *pKey, int nKey, /* The key */ void *pData,int nData /* The data */ ){ int OverflowPage *pOvfl; Pgno *pNext; int spaceLeft; int n; int nPayload; char *pPayload; char *pSpace; pCell->h.leftChild = 0; pCell->h.nKey = nKey; pCell->h.nData = nData; pCell->h.iNext = 0; pNext = &pCell->ovfl; pSpace = pCell->aPayload; spaceLeft = MX_LOCAL_PAYLOAD; pPayload = pKey; pKey = 0; nPayload = nKey; while( nPayload>0 ){ if( spaceLeft==0 ){ rc = allocatePage(pBt, &pOvfl, pNext); if( rc ){ *pNext = 0; clearCell(pBt, pCell); return rc; } spaceLeft = OVERFLOW_SIZE; pSpace = pOvfl->aPayload; pNextPg = &pOvfl->next; } n = nPayload; if( n>spaceLeft ) n = spaceLeft; memcpy(pSpace, pPayload, n); nPayload -= n; if( nPayload==0 && pData ){ |
︙ | ︙ | |||
1143 1144 1145 1146 1147 1148 1149 | } return SQLITE_OK; } /* ** Attempt to move N or more bytes out of the page that the cursor ** points to into the left sibling page. (The left sibling page | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < | > > > > > > | > | | | | | > | > | 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 | } return SQLITE_OK; } /* ** Attempt to move N or more bytes out of the page that the cursor ** points to into the left sibling page. (The left sibling page ** contains cells that are less than the cells on this page.) The ** entry that the cursor is pointing to cannot be moved. Return ** TRUE if successful and FALSE if not. ** ** Reasons for not being successful include: ** ** (1) there is no left sibling, ** (2) we could only move N-1 bytes or less, ** (3) some kind of file I/O error occurred ** ** Note that a partial rotation may have occurred even if this routine ** returns FALSE. Failure means we could not rotation a fill N bytes. ** If it is possible to rotation some smaller number M, then the ** rotation occurs but we still return false. ** ** Example: Consider a segment of the Btree that looks like the ** figure below prior to rotation. The cursor is pointing to the ** entry *. The sort order of the entries is A B C D E * F Y. ** ** ** ------------------------- ** ... | C | Y | ... ** ------------------------- ** / \ ** --------- ----------------- ** | A | B | | D | E | * | F | ** --------- ----------------- ** ** After rotation of two cells (D and E), the same Btree segment ** looks like this: ** ** ------------------------- ** ... | E | Y | ... ** ------------------------- ** / \ ** ----------------- --------- ** | A | B | C | D | | * | F | ** ----------------- --------- ** ** The size of this rotation is the size by which the page containing ** the cursor was reduced. In this case, the size of D and E. ** */ static int rotateLeft(BtCursor *pCur, int N){ return 0; } /* ** This routine is the same as rotateLeft() except that it move data ** to the right instead of to the left. See comments on the rotateLeft() ** routine for additional information. */ static int rotateRight(BtCursor *pCur, int N){ return 0; } /* ** Split a single database page into two roughly equal-sized pages. ** ** The input is an existing page and a new Cell. The Cell might contain ** a valid Cell.h.leftChild field pointing to a child page. ** ** The output is the Cell that divides the two new pages. The content ** of this divider Cell is written into *pCenter. pCenter->h.leftChild ** holds the page number of the new page that was created to hold the ** smaller of the cells from the divided page. The larger cells from ** the divided page are written to a newly allocated page and *ppOut ** is made to point to that page. Or if ppOut==NULL then the larger cells ** remain on pIn. ** ** Upon return, pCur should be pointing to the same cell, even if that ** cell has moved to a new page. The cell that pCur points to cannot ** be the pCenter cell. */ static int split( BtCursor *pCur, /* A cursor pointing at a cell on the page to be split */ Cell *pNewCell, /* A new cell to add to pIn before dividing it up */ Cell *pCenter, /* Write the cell that divides the two pages here */ MemPage **ppOut /* If not NULL, put larger cells in new page at *ppOut */ ){ } /* ** Unlink a cell from a database page. Add the space used by the cell ** back to the freelist for the database page on which the cell used to ** reside. ** ** This operation overwrites the cell header and content. */ static void unlinkCell(BtCursor *pCur){ MemPage *pPage; /* Page containing cell to be unlinked */ int idx; /* The index of the cell to be unlinked */ Cell *pCell; /* Pointer to the cell to be unlinked */ u16 *piCell; /* iNext pointer from prior cell */ int iCell; /* Index in pPage->aDisk[] of cell to be unlinked */ int i; /* Loop counter */ pPage = pCur->pPage; idx = pCur->idx; pCell = pPage->apCell[idx]; if( idx==0 ){ piCell = &pPage->pHdr->firstCell; }else{ piCell = &pPage->apCell[idx-1]->h.iNext; } iCell = *piCell; *piCell = pCell->h.iNext; freeSpace(pPage, iCell, cellSize(pCell)); pPage->nCell--; for(i=idx; i<pPage->nCell; i++){ pPage->apCell[i] = pPage->apCell[i+1]; } } /* ** Add a Cell to a database page at the spot indicated by the cursor. ** ** With this routine, we know that the Cell pNewCell will fit into the ** database page that pCur points to. The calling routine has made ** sure it will fit. All this routine needs to do is add the Cell ** to the page. The addToPage() routine should be used for cases ** were it is not know if the new cell will fit. ** ** The new cell is added to the page either before or after the cell ** to which the cursor is pointing. The new cell is added before ** the cursor cell if pCur->iMatch>0 and the new cell is added after ** the cursor cell if pCur->iMatch<0. pCur->iMatch should have been set ** by a prior call to sqliteBtreeMoveto() where the key was the key ** of the cell being inserted. If sqliteBtreeMoveto() ended up on a ** cell that is larger than the key, then pCur->iMatch was set to a ** positive number, hence we insert the new record before the pointer ** if pCur->iMatch is positive. If sqliteBtreeMaveto() ended up on a ** cell that is smaller than the key then pCur->iMatch was set to a ** negative number, hence we insert the new record after then pointer ** if pCur->iMatch is negative. */ static int insertCell(BtCursor *pCur, Cell *pNewCell){ int sz; int idx; int i; Cell *pCell, *pIdx; MemPage *pPage; pPage = pCur->pPage; sz = cellSize(pNewCell); idx = allocateSpace(pPage, sz); assert( idx>0 && idx<=SQLITE_PAGE_SIZE - sz ); pCell = (Cell*)&pPage->aDisk[idx]; memcpy(pCell, pNewCell, sz); pIdx = pPage->aDisk[pCur->idx]; if( pCur->iMatch<0 ){ /* Insert the new cell after the cell pCur points to */ pCell->h.iNext = pIdx->h.iNext; pIdx->h.iNext = idx; for(i=pPage->nCell-1; i>pCur->idx; i--){ pPage->apCell[i+1] = pPage->apCell[i]; } pPage->apCell[pCur->idx+1] = pCell; }else{ /* Insert the new cell before the cell pCur points to */ pCell->h.iNext = pPage->pHdr->firstCell; pPage->pHdr->firstCell = idx; for(i=pPage->nCell; i>0; i++){ pPage->apCell[i] = pPage->apCell[i-1]; } pPage->apCell[0] = pCell; } pPage->nCell++; if( pCell->h.leftChild ){ MemPage *pChild = sqlitepager_lookup(pCur->pBt, pCell->h.leftChild); if( pChild && pChild->pParent ){ sqlitepager_unref(pChild->pParent); pChild->pParent = pPage; sqlitepager_ref(pChild->pParent); } } return SQLITE_OK; } /* ** Insert pNewCell into the database page that pCur is pointing to at ** the place where pCur is pointing. ** ** This routine works just like insertCell() except that the cell ** to be inserted need not fit on the page. If the new cell does ** not fit, then the page sheds data to its siblings to try to get ** down to a size where the new cell will fit. If that effort fails, ** then the page is split. */ static int addToPage(BtCursor *pCur, Cell *pNewCell){ Cell tempCell; Cell centerCell; for(;;){ MemPage *pPage = pCur->pPage; int sz = cellSize(pNewCell); if( sz<=pPage->nFree ){ insertCell(pCur, pNewCell); return SQLITE_OK; } if( pPage->pParent==0 ){ MemPage *pRight; PageHdr *pHdr; FreeBlk *pFBlk; int pc; rc = split(pCur, pNewCell, ¢erCell, &pRight); if( rc ) return rc; pHdr = pPage->pHdr; pHdr->right = sqlitepager_pagenumber(pRight); sqlitepager_unref(pRight); pHdr->firstCell = pc = pPage->idxStart + sizeof(*pHdr); sz = cellSize(¢erCell); memcpy(&pPage->aDisk[pc], ¢erCell, sz); pc += sz; pHdr->firstFree = pc; pFBlk = (FreeBlk*)&pPage->aDisk[pc]; pFBlk->iSize = SQLITE_PAGE_SIZE - pc; pFBlk->iNext = 0; memset(&pFBlk[1], 0, pFBlk->iSize-sizeof(*pFBlk)); return SQLITE_OK; } if( rotateLeft(pCur, sz - pPage->nFree) || rotateRight(pCur, sz - pPage->nFree) ){ insertCell(pCur, pNewCell); return SQLITE_OK; } rc = split(pCur, pNewCell, ¢erCell, 0); if( rc ) return rc; moveToParent(pCur); tempCell = centerCell; pNewPage = &tempCell; } /* NOT REACHED */ } /* ** Insert a new record into the BTree. The key is given by (pKey,nKey) ** and the data is given by (pData,nData). The cursor is used only to ** define what database the record should be inserted into. The cursor ** is NOT left pointing at the new record. |
︙ | ︙ | |||
1256 1257 1258 1259 1260 1261 1262 | MemPage *pPage; Btree *pBt = pCur->pBt; rc = sqliteBtreeMoveTo(pCur, pKey, nKey, &loc); if( rc ) return rc; rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData); if( rc ) return rc; | < > | | > > > > > > > > > > > > > | > > > | > > > > > > > > > > > > > > > > > > > > > > > > | > > | > > | > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 | MemPage *pPage; Btree *pBt = pCur->pBt; rc = sqliteBtreeMoveTo(pCur, pKey, nKey, &loc); if( rc ) return rc; rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData); if( rc ) return rc; if( loc==0 ){ newCell.h.leftChild = pCur->pPage->apCell[pCur->idx]->h.leftChild; rc = clearCell(pBt, pCur->pPage->apCell[pCur->idx]); if( rc ) return rc; unlinkCell(pCur); } return addToPage(pCur, &newCell); } /* ** Check the page given as the argument to see if it is less than ** half full. If it is less than half full, then try to increase ** its fill factor by grabbing cells from siblings or by merging ** the page with siblings. */ static int refillPage(Btree *pBt, MemPage *pPage){ if( pPage->nFree < SQLITE_PAGE_SIZE/2 ){ return SQLITE_OK; } if( pPage->nCell==0 ){ assert( pPage->pParent==0 ); if( pPage->pHdr->rightChild ){ } return SQLITE_OK; } /** merge with siblings **/ /** borrow from siblings **/ } /* ** Replace the content of the cell that pCur is pointing to with the content ** in pNewContent. The pCur cell is not unlinked or moved in the Btree, ** its content is just replaced. ** ** If the size of pNewContent is greater than the current size of the ** cursor cell then the page that cursor points to might have to split. */ static int replaceContent(BtCursor *pCur, Cell *pNewContent){ Cell *pCell; /* The cell whose content will be changed */ Pgno pgno; /* Temporary storage for a page number */ pCell = pCur->pPage->apCell[pCur->idx]; rc = clearCell(pCur->pBt, pCell); if( rc ) return rc; pgno = pNewCell->h.leftChild; pNewCell->h.leftChild = pCell->h.leftChild; unlinkCell(pCur); rc = addToPage(pCur, pNewCell); pNewCell->h.leftChild = pgno; return rc; } /* ** Delete the record that the cursor is pointing to. ** ** The cursor is left point at either the next or the previous ** entry. If left pointing to the next entry, then the pCur->bSkipNext ** flag is set which forces the next call to sqliteBtreeNext() to be ** a no-op. That way, you can always call sqliteBtreeNext() after ** a delete and the cursor will be left pointing to the first entry ** after the deleted entry. */ int sqliteBtreeDelete(BtCursor *pCur){ MemPage *pPage = pCur->pPage; Cell *pCell; int rc; pCell = pPage->apCell[pCur->idx]; if( pPage->pHdr->rightChild ){ /* The entry to be deleted is not on a leaf page. Non-leaf entries ** cannot be deleted directly because they have to be present to ** hold pointers to subpages. So what we do is look at the next ** entry in sequence. The next entry is guaranteed to exist and ** be a leaf. We copy the payload from the next entry into this ** entry, then delete the next entry. */ BtCursor origCur; createTemporaryCursor(pCur, &origCur); rc = sqliteBtreeNext(pCur, 0); if( rc==SQLITE_OK ){ pPage = pCur->pPage; pCell = pPage->apCell[pCur->idx]; rc = replaceContent(&origCur, pCell); } destroyTemporaryCursor(&origCur); if( rc ) return rc; } rc = clearCell(pCell); if( rc ) return rc; unlinkCell(pCur->pBt, pCell); if( pCur->idx == 0 ){ pCur->bSkipNext = 1; }else{ pCur->idx--; } rc = refillPage(pCur->pBt, pPage); return rc; } |