SQLite

Check-in [8273c74bd0]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Rework internal data structures to make the VDBE about 15% smaller. (CVS 1203)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 8273c74bd09d1a044cb5154498b0a39939f6e3ed
User & Date: drh 2004-01-31 19:22:56.000
Context
2004-01-31
20:20
A few more optimizations to the VDBE. (CVS 1204) (check-in: 06e7ff4cb8 user: drh tags: trunk)
19:22
Rework internal data structures to make the VDBE about 15% smaller. (CVS 1203) (check-in: 8273c74bd0 user: drh tags: trunk)
2004-01-30
14:49
Rework the VDBE data structures to combine string representations into the same structure with integer and floating point. This opens the door to significant optimizations. (CVS 1202) (check-in: c0faa1c67a user: drh tags: trunk)
Changes
Side-by-Side Diff Ignore Whitespace Patch
Changes to src/vdbe.c.
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53







-
+







**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.252 2004/01/30 14:49:17 drh Exp $
** $Id: vdbe.c,v 1.253 2004/01/31 19:22:56 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
178
179
180
181
182
183
184
185
186


187
188
189
190
191
192
193
194
195
196

197
198

199
200
201
202
203
204
205
206
207
208
209
210


211
212
213
214
215

216
217
218
219
220
221


222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239



240
241
242
243
244
245
246
247
248
249
250
251
252
253


254

255
256
257
258












259
260
261
262
263
264
265
266
178
179
180
181
182
183
184


185
186

187
188
189
190
191
192
193
194

195
196

197
198
199
200
201
202
203
204
205
206
207


208
209

210
211
212

213
214
215
216
217


218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234



235
236
237

238
239
240
241
242
243
244
245
246
247
248
249

250
251
252
253




254
255
256
257
258
259
260
261
262
263
264
265

266
267
268
269
270
271
272







-
-
+
+
-








-
+

-
+










-
-
+
+
-



-
+




-
-
+
+















-
-
-
+
+
+
-












-
+
+

+
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
-







  return pElem ? sqliteHashData(pElem) : 0;
}

/*
** Convert the given stack entity into a string if it isn't one
** already.
*/
#define Stringify(P,I) if((aStack[I].flags & MEM_Str)==0){hardStringify(P,I);}
static int hardStringify(Vdbe *p, int i){
#define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);}
static int hardStringify(Mem *pStack){
  Mem *pStack = &p->aStack[i];
  int fg = pStack->flags;
  if( fg & MEM_Real ){
    sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r);
  }else if( fg & MEM_Int ){
    sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i);
  }else{
    pStack->zShort[0] = 0;
  }
  p->aStack[i].z = pStack->zShort;
  pStack->z = pStack->zShort;
  pStack->n = strlen(pStack->zShort)+1;
  pStack->flags = MEM_Str;
  pStack->flags = MEM_Str | MEM_Short;
  return 0;
}

/*
** Convert the given stack entity into a string that has been obtained
** from sqliteMalloc().  This is different from Stringify() above in that
** Stringify() will use the NBFS bytes of static string space if the string
** will fit but this routine always mallocs for space.
** Return non-zero if we run out of memory.
*/
#define Dynamicify(P,I) ((aStack[I].flags & MEM_Dyn)==0 ? hardDynamicify(P,I):0)
static int hardDynamicify(Vdbe *p, int i){
#define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0)
static int hardDynamicify(Mem *pStack){
  Mem *pStack = &p->aStack[i];
  int fg = pStack->flags;
  char *z;
  if( (fg & MEM_Str)==0 ){
    hardStringify(p, i);
    hardStringify(pStack);
  }
  assert( (fg & MEM_Dyn)==0 );
  z = sqliteMallocRaw( pStack->n );
  if( z==0 ) return 1;
  memcpy(z, p->aStack[i].z, pStack->n);
  p->aStack[i].z = z;
  memcpy(z, pStack->z, pStack->n);
  pStack->z = z;
  pStack->flags |= MEM_Dyn;
  return 0;
}

/*
** An ephemeral string value (signified by the MEM_Ephem flag) contains
** a pointer to a dynamically allocated string where some other entity
** is responsible for deallocating that string.  Because the stack entry
** does not control the string, it might be deleted without the stack
** entry knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the stack entry itself controls.  In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(P,I) \
   if( ((P)->aStack[I].flags&MEM_Ephem)!=0 && hardDeephem(P,I) ){ goto no_mem;}
static int hardDeephem(Vdbe *p, int i){
#define Deephemeralize(P) \
   if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;}
static int hardDeephem(Mem *pStack){
  Mem *pStack = &p->aStack[i];
  char *z;
  assert( (pStack->flags & MEM_Ephem)!=0 );
  z = sqliteMallocRaw( pStack->n );
  if( z==0 ) return 1;
  memcpy(z, pStack->z, pStack->n);
  pStack->z = z;
  pStack->flags &= ~MEM_Ephem;
  pStack->flags |= MEM_Dyn;
  return 0;
}

/*
** Release the memory associated with the given stack level
** Release the memory associated with the given stack level.  This
** leaves the Mem.flags field in an inconsistent state.
*/
#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); }
#define Release(P,I)  if((P)->aStack[I].flags&MEM_Dyn){ hardRelease(P,I); }
static void hardRelease(Vdbe *p, int i){
  sqliteFree(p->aStack[i].z);
  p->aStack[i].z = 0;

/*
** Pop the stack N times.
*/
static void popStack(Mem **ppTos, int N){
  Mem *pTos = *ppTos;
  while( N>0 ){
    N--;
    Release(pTos);
    pTos--;
  }
  *ppTos = pTos;
  p->aStack[i].flags &= ~(MEM_Str|MEM_Dyn|MEM_Static|MEM_Ephem);
}

/*
** Return TRUE if zNum is a 32-bit signed integer and write
** the value of the integer into *pNum.  If zNum is not an integer
** or is an integer that is too large to be expressed with just 32
** bits, then return false.
291
292
293
294
295
296
297
298

299
300
301
302
303
304
305
306







307
308

309
310

311
312
313
314
315
316
317
318
319

320
321
322
323
324
325





326
327

328
329

330
331
332
333
334
335
336
297
298
299
300
301
302
303

304








305
306
307
308
309
310
311
312

313
314

315
316
317
318
319
320
321
322
323

324






325
326
327
328
329
330

331
332

333
334
335
336
337
338
339
340







-
+
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+

-
+

-
+








-
+
-
-
-
-
-
-
+
+
+
+
+

-
+

-
+







/*
** Convert the given stack entity into a integer if it isn't one
** already.
**
** Any prior string or real representation is invalidated.  
** NULLs are converted into 0.
*/
#define Integerify(P,I) \
#define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); }
    if(((P)->aStack[(I)].flags&MEM_Int)==0){ hardIntegerify(P,I); }
static void hardIntegerify(Vdbe *p, int i){
  if( p->aStack[i].flags & MEM_Real ){
    p->aStack[i].i = (int)p->aStack[i].r;
    Release(p, i);
  }else if( p->aStack[i].flags & MEM_Str ){
    toInt(p->aStack[i].z, &p->aStack[i].i);
    Release(p, i);
static void hardIntegerify(Mem *pStack){
  if( pStack->flags & MEM_Real ){
    pStack->i = (int)pStack->r;
    Release(pStack);
  }else if( pStack->flags & MEM_Str ){
    toInt(pStack->z, &pStack->i);
    Release(pStack);
  }else{
    p->aStack[i].i = 0;
    pStack->i = 0;
  }
  p->aStack[i].flags = MEM_Int;
  pStack->flags = MEM_Int;
}

/*
** Get a valid Real representation for the given stack element.
**
** Any prior string or integer representation is retained.
** NULLs are converted into 0.0.
*/
#define Realify(P,I) \
#define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); }
    if(((P)->aStack[(I)].flags&MEM_Real)==0){ hardRealify(P,I); }
static void hardRealify(Vdbe *p, int i){
  if( p->aStack[i].flags & MEM_Str ){
    p->aStack[i].r = sqliteAtoF(p->aStack[i].z);
  }else if( p->aStack[i].flags & MEM_Int ){
    p->aStack[i].r = p->aStack[i].i;
static void hardRealify(Mem *pStack){
  if( pStack->flags & MEM_Str ){
    pStack->r = sqliteAtoF(pStack->z);
  }else if( pStack->flags & MEM_Int ){
    pStack->r = pStack->i;
  }else{
    p->aStack[i].r = 0.0;
    pStack->r = 0.0;
  }
  p->aStack[i].flags |= MEM_Real;
  pStack->flags |= MEM_Real;
}

/*
** The parameters are pointers to the head of two sorted lists
** of Sorter structures.  Merge these two lists together and return
** a single sorted list.  This routine forms the core of the merge-sort
** algorithm.
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
361
362
363
364
365
366
367











368
369
370
371
372
373
374







-
-
-
-
-
-
-
-
-
-
-







    pTail->pNext = pLeft;
  }else if( pRight ){
    pTail->pNext = pRight;
  }
  return sHead.pNext;
}

/*
** Code contained within the VERIFY() macro is not needed for correct
** execution.  It is there only to catch errors.  So when we compile
** with NDEBUG=1, the VERIFY() code is omitted.
*/
#ifdef NDEBUG
# define VERIFY(X)
#else
# define VERIFY(X) X
#endif

/*
** The following routine works like a replacement for the standard
** library routine fgets().  The difference is in how end-of-line (EOL)
** is handled.  Standard fgets() uses LF for EOL under unix, CRLF
** under windows, and CR under mac.  This routine accepts any of these
** character sequences as an EOL mark.  The EOL mark is replaced by
** a single LF character in zBuf.
481
482
483
484
485
486
487
488

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

504
505

506
507
508
509
510

511
512
513
514
515
516
517
474
475
476
477
478
479
480

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

499
500
501
502
503

504
505
506
507
508
509
510
511







-
+















+

-
+




-
+







int sqliteVdbeExec(
  Vdbe *p                    /* The VDBE */
){
  int pc;                    /* The program counter */
  Op *pOp;                   /* Current operation */
  int rc = SQLITE_OK;        /* Value to return */
  sqlite *db = p->db;        /* The database */
  Mem *aStack = p->aStack;   /* The operand stack */
  Mem *pTos;                 /* Top entry in the operand stack */
  char zBuf[100];            /* Space to sprintf() an integer */
#ifdef VDBE_PROFILE
  unsigned long long start;  /* CPU clock count at start of opcode */
  int origPc;                /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
#endif

  if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
  assert( db->magic==SQLITE_MAGIC_BUSY );
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
  p->rc = SQLITE_OK;
  assert( p->explain==0 );
  if( sqlite_malloc_failed ) goto no_mem;
  pTos = p->pTos;
  if( p->popStack ){
    sqliteVdbePopStack(p, p->popStack);
    popStack(&pTos, p->popStack);
    p->popStack = 0;
  }
  for(pc=p->pc; rc==SQLITE_OK; pc++){
    assert( pc>=0 && pc<p->nOp );
    assert( p->tos<=pc );
    assert( pTos<=&p->aStack[pc] );
#ifdef VDBE_PROFILE
    origPc = pc;
    start = hwtime();
#endif
    pOp = &p->aOp[pc];

    /* Only allow tracing if NDEBUG is not defined.
635
636
637
638
639
640
641

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663



664
665
666
667



668
669
670
671
672
673
674
675
676
677
678
679
680


681
682
683
684

685
686
687
688



689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

705
706
707
708



709
710
711
712

713
714
715
716
717
718
719
720
721
722
723



724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744



745
746
747


748
749

750
751
752
753
754
755
756






757
758
759
760
761
762





763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

780
781
782
783
784
785
786
787
788
789
790
791












792
793
794

795
796
797
798
799
800







801
802
803
804
805
806
807
808
809
810
811
812
813

814
815
816
817

818
819
820
821




822
823
824


825
826
827

828
829

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855









856
857


858
859
860
861

862
863

864
865
866

867
868
869
870

871
872
873
874
875


876
877
878
879
880
881
882
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655



656
657
658
659



660
661
662
663
664
665
666
667
668
669
670
671
672



673
674
675



676
677



678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

695
696
697



698
699
700
701



702
703
704
705
706
707
708
709
710
711


712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733


734
735
736



737
738


739







740
741
742
743
744
745






746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766

767

768
769









770
771
772
773
774
775
776
777
778
779
780
781



782
783
784




785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802


803
804



805




806
807
808
809



810
811
812


813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836






837
838
839
840
841
842
843
844
845
846

847
848
849

850

851
852

853
854
855
856
857
858
859
860

861
862
863
864
865

866
867
868
869
870
871
872
873
874







+



















-
-
-
+
+
+

-
-
-
+
+
+










-
-
-
+
+

-
-
-
+

-
-
-
+
+
+














-

+

-
-
-
+
+
+

-
-
-
+









-
-
+
+
+



















-
-
+
+
+
-
-
-
+
+
-
-
+
-
-
-
-
-
-
-
+
+
+
+
+
+
-
-
-
-
-
-
+
+
+
+
+
















-
+
-


-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
+


-
-
-
-
+
+
+
+
+
+
+











-
-
+

-
-
-
+
-
-
-
-
+
+
+
+
-
-
-
+
+

-
-
+


+




















-
-
-
-
-
-
+
+
+
+
+
+
+
+
+

-
+
+

-

-
+

-
+



+



-
+




-
+
+







**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program.  So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {
  p->magic = VDBE_MAGIC_HALT;
  p->pTos = pTos;
  if( pOp->p1!=SQLITE_OK ){
    p->rc = pOp->p1;
    p->errorAction = pOp->p2;
    if( pOp->p3 ){
      sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
    }
    return SQLITE_ERROR;
  }else{
    p->rc = SQLITE_OK;
    return SQLITE_DONE;
  }
}

/* Opcode: Integer P1 * P3
**
** The integer value P1 is pushed onto the stack.  If P3 is not zero
** then it is assumed to be a string representation of the same integer.
*/
case OP_Integer: {
  int i = ++p->tos;
  aStack[i].i = pOp->p1;
  aStack[i].flags = MEM_Int;
  pTos++;
  pTos->i = pOp->p1;
  pTos->flags = MEM_Int;
  if( pOp->p3 ){
    aStack[i].z = pOp->p3;
    aStack[i].flags |= MEM_Str | MEM_Static;
    aStack[i].n = strlen(pOp->p3)+1;
    pTos->z = pOp->p3;
    pTos->flags |= MEM_Str | MEM_Static;
    pTos->n = strlen(pOp->p3)+1;
  }
  break;
}

/* Opcode: String * * P3
**
** The string value P3 is pushed onto the stack.  If P3==0 then a
** NULL is pushed onto the stack.
*/
case OP_String: {
  int i = ++p->tos;
  char *z;
  z = pOp->p3;
  char *z = pOp->p3;
  pTos++;
  if( z==0 ){
    aStack[i].z = 0;
    aStack[i].n = 0;
    aStack[i].flags = MEM_Null;
    pTos->flags = MEM_Null;
  }else{
    aStack[i].z = z;
    aStack[i].n = strlen(z) + 1;
    aStack[i].flags = MEM_Str | MEM_Static;
    pTos->z = z;
    pTos->n = strlen(z) + 1;
    pTos->flags = MEM_Str | MEM_Static;
  }
  break;
}

/* Opcode: Variable P1 * *
**
** Push the value of variable P1 onto the stack.  A variable is
** an unknown in the original SQL string as handed to sqlite_compile().
** Any occurance of the '?' character in the original SQL is considered
** a variable.  Variables in the SQL string are number from left to
** right beginning with 1.  The values of variables are set using the
** sqlite_bind() API.
*/
case OP_Variable: {
  int i = ++p->tos;
  int j = pOp->p1 - 1;
  pTos++;
  if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){
    aStack[i].z = p->azVar[j];
    aStack[i].n = p->anVar[j];
    aStack[i].flags = MEM_Str | MEM_Static;
    pTos->z = p->azVar[j];
    pTos->n = p->anVar[j];
    pTos->flags = MEM_Str | MEM_Static;
  }else{
    aStack[i].z = 0;
    aStack[i].n = 0;
    aStack[i].flags = MEM_Null;
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: Pop P1 * *
**
** P1 elements are popped off of the top of stack and discarded.
*/
case OP_Pop: {
  assert( p->tos+1>=pOp->p1 );
  sqliteVdbePopStack(p, pOp->p1);
  assert( pOp->p1>=0 );
  popStack(&pTos, pOp->p1);
  assert( pTos>=&p->aStack[-1] );
  break;
}

/* Opcode: Dup P1 P2 *
**
** A copy of the P1-th element of the stack 
** is made and pushed onto the top of the stack.
** The top of the stack is element 0.  So the
** instruction "Dup 0 0 0" will make a copy of the
** top of the stack.
**
** If the content of the P1-th element is a dynamically
** allocated string, then a new copy of that string
** is made if P2==0.  If P2!=0, then just a pointer
** to the string is copied.
**
** Also see the Pull instruction.
*/
case OP_Dup: {
  int i = p->tos - pOp->p1;
  int j = ++p->tos;
  Mem *pFrom = &pTos[-pOp->p1];
  assert( pFrom<=pTos && pFrom>=p->aStack );
  pTos++;
  VERIFY( if( i<0 ) goto not_enough_stack; )
  memcpy(&aStack[j], &aStack[i], sizeof(aStack[i])-NBFS);
  if( aStack[j].flags & MEM_Str ){
  memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
  if( pTos->flags & MEM_Str ){
    int isStatic = (aStack[j].flags & MEM_Static)!=0;
    if( pOp->p2 || isStatic ){
    if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
      aStack[j].z = aStack[i].z;
      aStack[j].flags &= ~MEM_Dyn;
      if( !isStatic ) aStack[j].flags |= MEM_Ephem;
    }else if( aStack[i].n<=NBFS ){
      memcpy(aStack[j].zShort, aStack[i].z, aStack[j].n);
      aStack[j].z = aStack[j].zShort;
      aStack[j].flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
      pTos->flags &= ~MEM_Dyn;
      pTos->flags |= MEM_Ephem;
    }else if( pTos->flags & MEM_Short ){
      memcpy(pTos->zShort, pFrom->zShort, pTos->n);
      pTos->z = pTos->zShort;
    }else if( (pTos->flags & MEM_Static)==0 ){
    }else{
      aStack[j].z = sqliteMallocRaw( aStack[j].n );
      if( aStack[j].z==0 ) goto no_mem;
      memcpy(aStack[j].z, aStack[i].z, aStack[j].n);
      aStack[j].flags &= ~(MEM_Static|MEM_Ephem);
      aStack[j].flags |= MEM_Dyn;
      pTos->z = sqliteMallocRaw(pFrom->n);
      if( sqlite_malloc_failed ) goto no_mem;
      memcpy(pTos->z, pFrom->z, pFrom->n);
      pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short);
      pTos->flags |= MEM_Dyn;
    }
  }
  break;
}

/* Opcode: Pull P1 * *
**
** The P1-th element is removed from its current location on 
** the stack and pushed back on top of the stack.  The
** top of the stack is element 0, so "Pull 0 0 0" is
** a no-op.  "Pull 1 0 0" swaps the top two elements of
** the stack.
**
** See also the Dup instruction.
*/
case OP_Pull: {
  int from = p->tos - pOp->p1;
  Mem *pFrom = &pTos[-pOp->p1];
  int to = p->tos;
  int i;
  Mem ts;
  VERIFY( if( from<0 ) goto not_enough_stack; )
  Deephemeralize(p, from);
  ts = aStack[from];
  Deephemeralize(p, to);
  for(i=from; i<to; i++){
    Deephemeralize(p, i+1);
    aStack[i] = aStack[i+1];
    assert( (aStack[i].flags & MEM_Ephem)==0 );
    if( aStack[i].flags & (MEM_Dyn|MEM_Static) ){

  /* Deephemeralize(pFrom); *** not needed */
  ts = *pFrom;
  Deephemeralize(pTos);
  for(i=0; i<pOp->p1; i++, pFrom++){
    Deephemeralize(&pFrom[1]);
    *pFrom = pFrom[1];
    assert( (pFrom->flags & MEM_Ephem)==0 );
    if( pFrom->flags & MEM_Short ){
      assert( pFrom->flags & MEM_Str );
      assert( pFrom->z==pFrom[1].zShort );
      assert( (pTos->flags & (MEM_Dyn|MEM_Static|MEM_Ephem))==0 );
      aStack[i].z = aStack[i+1].z;
    }else{
      aStack[i].z = aStack[i].zShort;
      pFrom->z = pFrom->zShort;
    }
  }
  aStack[to] = ts;
  assert( (aStack[to].flags & MEM_Ephem)==0 );
  if( (aStack[to].flags & (MEM_Dyn|MEM_Static))==0 ){
    aStack[to].z = aStack[to].zShort;
  *pTos = ts;
  /* assert( (pTos->flags & MEM_Ephem)==0 ); *** not needed */
  if( pTos->flags & MEM_Short ){
    assert( pTos->flags & MEM_Str );
    assert( pTos->z==pTos[-pOp->p1].zShort );
    assert( (pTos->flags & (MEM_Dyn|MEM_Static|MEM_Ephem))==0 );
    pTos->z = pTos->zShort;
  }
  break;
}

/* Opcode: Push P1 * *
**
** Overwrite the value of the P1-th element down on the
** stack (P1==0 is the top of the stack) with the value
** of the top of the stack.  Then pop the top of the stack.
*/
case OP_Push: {
  int from = p->tos;
  int to = p->tos - pOp->p1;
  Mem *pTo = &pTos[-pOp->p1];

  VERIFY( if( to<0 ) goto not_enough_stack; )
  if( aStack[to].flags & MEM_Dyn ){
    sqliteFree(aStack[to].z);
  assert( pTo>=p->aStack );
  }
  Deephemeralize(p, from);
  aStack[to] = aStack[from];
  if( aStack[to].flags & (MEM_Dyn|MEM_Static|MEM_Ephem) ){
  Deephemeralize(pTos);
  Release(pTo);
  *pTo = *pTos;
  if( pTo->flags & MEM_Short ){
    aStack[to].z = aStack[from].z;
  }else{
    aStack[to].z = aStack[to].zShort;
    assert( pTo->z==pTos->zShort );
    pTo->z = pTo->zShort;
  }
  aStack[from].flags = 0;
  p->tos--;
  pTos--;
  break;
}


/* Opcode: ColumnName P1 * P3
**
** P3 becomes the P1-th column name (first is 0).  An array of pointers
** to all column names is passed as the 4th parameter to the callback.
*/
case OP_ColumnName: {
  assert( pOp->p1>=0 && pOp->p1<p->nOp );
  p->azColName[pOp->p1] = pOp->p3;
  p->nCallback = 0;
  break;
}

/* Opcode: Callback P1 * *
**
** Pop P1 values off the stack and form them into an array.  Then
** invoke the callback function using the newly formed array as the
** 3rd parameter.
*/
case OP_Callback: {
  int i = p->tos - pOp->p1 + 1;
  int j;
  VERIFY( if( i<0 ) goto not_enough_stack; )
  for(j=i; j<=p->tos; j++){
    if( aStack[j].flags & MEM_Null ){
      aStack[j].z = 0;
  int i;
  char **azArgv = p->zArgv;
  Mem *pCol;

  pCol = &pTos[1-pOp->p1];
  assert( pCol>=p->aStack );
  for(i=0; i<pOp->p1; i++, pCol++){
    if( pCol->flags & MEM_Null ){
      azArgv[i] = 0;
    }else{
      Stringify(p, j);
      Stringify(pCol);
      azArgv[i] = pCol->z;
    }
    p->zArgv[j] = aStack[j].z;
  }
  p->zArgv[p->tos+1] = 0;
  azArgv[i] = 0;
  if( p->xCallback==0 ){
    p->azResColumn = &p->zArgv[i];
    p->azResColumn = azArgv;
    p->nResColumn = pOp->p1;
    p->popStack = pOp->p1;
    p->pc = pc + 1;
    p->pTos = pTos;
    return SQLITE_ROW;
  }
  if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; 
  if( p->xCallback(p->pCbArg, pOp->p1, &p->zArgv[i], p->azColName)!=0 ){
  if( p->xCallback(p->pCbArg, pOp->p1, azArgv, p->azColName)!=0 ){
    rc = SQLITE_ABORT;
  }
  if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
  p->nCallback++;
  sqliteVdbePopStack(p, pOp->p1);
  popStack(&pTos, pOp->p1);
  assert( pTos>=&p->aStack[-1] );
  if( sqlite_malloc_failed ) goto no_mem;
  break;
}

/* Opcode: NullCallback P1 * *
**
** Invoke the callback function once with the 2nd argument (the
922
923
924
925
926
927
928

929
930
931
932
933
934

935
936
937



938
939
940
941
942


943
944
945
946
947
948





949
950
951
952
953
954
955
956
957
958





959
960

961
962
963
964
965
966
967
968
969
970







971
972
973
974
975
976
977
914
915
916
917
918
919
920
921
922
923
924
925
926

927
928


929
930
931
932
933
934


935
936
937
938
939



940
941
942
943
944

945
946
947
948
949




950
951
952
953
954


955
956
957
958
959
960





961
962
963
964
965
966
967
968
969
970
971
972
973
974







+





-
+

-
-
+
+
+



-
-
+
+



-
-
-
+
+
+
+
+
-





-
-
-
-
+
+
+
+
+
-
-
+





-
-
-
-
-
+
+
+
+
+
+
+







case OP_Concat: {
  char *zNew;
  int nByte;
  int nField;
  int i, j;
  char *zSep;
  int nSep;
  Mem *pTerm;

  nField = pOp->p1;
  zSep = pOp->p3;
  if( zSep==0 ) zSep = "";
  nSep = strlen(zSep);
  VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
  assert( &pTos[1-nField] >= p->aStack );
  nByte = 1 - nSep;
  for(i=p->tos-nField+1; i<=p->tos; i++){
    if( aStack[i].flags & MEM_Null ){
  pTerm = &pTos[1-nField];
  for(i=0; i<nField; i++, pTerm++){
    if( pTerm->flags & MEM_Null ){
      nByte = -1;
      break;
    }else{
      Stringify(p, i);
      nByte += aStack[i].n - 1 + nSep;
      Stringify(pTerm);
      nByte += pTerm->n - 1 + nSep;
    }
  }
  if( nByte<0 ){
    if( pOp->p2==0 ) sqliteVdbePopStack(p, nField);
    p->tos++;
    aStack[p->tos].flags = MEM_Null;
    if( pOp->p2==0 ){
      popStack(&pTos, nField);
    }
    pTos++;
    pTos->flags = MEM_Null;
    aStack[p->tos].z = 0;
    break;
  }
  zNew = sqliteMallocRaw( nByte );
  if( zNew==0 ) goto no_mem;
  j = 0;
  for(i=p->tos-nField+1; i<=p->tos; i++){
    if( (aStack[i].flags & MEM_Null)==0 ){
      memcpy(&zNew[j], aStack[i].z, aStack[i].n-1);
      j += aStack[i].n-1;
  pTerm = &pTos[1-nField];
  for(i=j=0; i<nField; i++, pTerm++){
    assert( pTerm->flags & MEM_Str );
    memcpy(&zNew[j], pTerm->z, pTerm->n-1);
    j += pTerm->n-1;
    }
    if( nSep>0 && i<p->tos ){
    if( nSep>0 && i<nField-1 ){
      memcpy(&zNew[j], zSep, nSep);
      j += nSep;
    }
  }
  zNew[j] = 0;
  if( pOp->p2==0 ) sqliteVdbePopStack(p, nField);
  p->tos++;
  aStack[p->tos].n = nByte;
  aStack[p->tos].flags = MEM_Str|MEM_Dyn;
  aStack[p->tos].z = zNew;
  if( pOp->p2==0 ){
    popStack(&pTos, nField);
  }
  pTos++;
  pTos->n = nByte;
  pTos->flags = MEM_Str|MEM_Dyn;
  pTos->z = zNew;
  break;
}

/* Opcode: Add * * *
**
** Pop the top two elements from the stack, add them together,
** and push the result back onto the stack.  If either element
1018
1019
1020
1021
1022
1023
1024
1025
1026


1027
1028
1029
1030
1031
1032






1033
1034
1035


1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

1051
1052
1053
1054




1055
1056
1057
1058
1059
1060




1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077

1078
1079
1080
1081




1082
1083
1084
1085
1086
1087
1088




1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101


1102
1103
1104
1105
1106
1107
1108
1109





1110
1111


1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

1122
1123
1124
1125
1126




1127
1128
1129

1130
1131
1132
1133
1134
1135

1136
1137
1138
1139
1140
1141
1142
1015
1016
1017
1018
1019
1020
1021


1022
1023






1024
1025
1026
1027
1028
1029
1030


1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048




1049
1050
1051
1052
1053
1054




1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076




1077
1078
1079
1080
1081
1082
1083
1084



1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106





1107
1108
1109
1110
1111
1112

1113
1114
1115

1116
1117
1118
1119
1120
1121
1122

1123
1124




1125
1126
1127
1128



1129


1130
1131
1132

1133
1134
1135
1136
1137
1138
1139
1140







-
-
+
+
-
-
-
-
-
-
+
+
+
+
+
+

-
-
+
+















+
-
-
-
-
+
+
+
+


-
-
-
-
+
+
+
+

















+
-
-
-
-
+
+
+
+




-
-
-
+
+
+
+













+
+



-
-
-
-
-
+
+
+
+
+

-
+
+

-







-
+

-
-
-
-
+
+
+
+
-
-
-
+
-
-



-
+







** If either operand is NULL, the result is NULL.
*/
case OP_Add:
case OP_Subtract:
case OP_Multiply:
case OP_Divide:
case OP_Remainder: {
  int tos = p->tos;
  int nos = tos - 1;
  Mem *pNos = &pTos[-1];
  assert( pNos>=p->aStack );
  VERIFY( if( nos<0 ) goto not_enough_stack; )
  if( ((aStack[tos].flags | aStack[nos].flags) & MEM_Null)!=0 ){
    POPSTACK;
    Release(p, nos);
    aStack[nos].flags = MEM_Null;
  }else if( (aStack[tos].flags & aStack[nos].flags & MEM_Int)==MEM_Int ){
  if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
    Release(pTos);
    pTos--;
    Release(pTos);
    pTos->flags = MEM_Null;
  }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
    int a, b;
    a = aStack[tos].i;
    b = aStack[nos].i;
    a = pTos->i;
    b = pNos->i;
    switch( pOp->opcode ){
      case OP_Add:         b += a;       break;
      case OP_Subtract:    b -= a;       break;
      case OP_Multiply:    b *= a;       break;
      case OP_Divide: {
        if( a==0 ) goto divide_by_zero;
        b /= a;
        break;
      }
      default: {
        if( a==0 ) goto divide_by_zero;
        b %= a;
        break;
      }
    }
    Release(pTos);
    POPSTACK;
    Release(p, nos);
    aStack[nos].i = b;
    aStack[nos].flags = MEM_Int;
    pTos--;
    Release(pTos);
    pTos->i = b;
    pTos->flags = MEM_Int;
  }else{
    double a, b;
    Realify(p, tos);
    Realify(p, nos);
    a = aStack[tos].r;
    b = aStack[nos].r;
    Realify(pTos);
    Realify(pNos);
    a = pTos->r;
    b = pNos->r;
    switch( pOp->opcode ){
      case OP_Add:         b += a;       break;
      case OP_Subtract:    b -= a;       break;
      case OP_Multiply:    b *= a;       break;
      case OP_Divide: {
        if( a==0.0 ) goto divide_by_zero;
        b /= a;
        break;
      }
      default: {
        int ia = (int)a;
        int ib = (int)b;
        if( ia==0.0 ) goto divide_by_zero;
        b = ib % ia;
        break;
      }
    }
    Release(pTos);
    POPSTACK;
    Release(p, nos);
    aStack[nos].r = b;
    aStack[nos].flags = MEM_Real;
    pTos--;
    Release(pTos);
    pTos->r = b;
    pTos->flags = MEM_Real;
  }
  break;

divide_by_zero:
  sqliteVdbePopStack(p, 2);
  p->tos = nos;
  aStack[nos].flags = MEM_Null;
  Release(pTos);
  pTos--;
  Release(pTos);
  pTos->flags = MEM_Null;
  break;
}

/* Opcode: Function P1 * P3
**
** Invoke a user function (P3 is a pointer to a Function structure that
** defines the function) with P1 string arguments taken from the stack.
** Pop all arguments from the stack and push back the result.
**
** See also: AggFunc
*/
case OP_Function: {
  int n, i;
  Mem *pArg;
  char **azArgv;
  sqlite_func ctx;

  n = pOp->p1;
  VERIFY( if( n<0 ) goto bad_instruction; )
  VERIFY( if( p->tos+1<n ) goto not_enough_stack; )
  for(i=p->tos-n+1; i<=p->tos; i++){
    if( aStack[i].flags & MEM_Null ){
      aStack[i].z = 0;
  pArg = &pTos[1-n];
  azArgv = p->zArgv;
  for(i=0; i<n; i++, pArg++){
    if( pArg->flags & MEM_Null ){
      azArgv[i] = 0;
    }else{
      Stringify(p, i);
      Stringify(pArg);
      azArgv[i] = pArg->z;
    }
    p->zArgv[i] = aStack[i].z;
  }
  ctx.pFunc = (FuncDef*)pOp->p3;
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.isError = 0;
  ctx.isStep = 0;
  if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
  (*ctx.pFunc->xFunc)(&ctx, n, (const char**)&p->zArgv[p->tos-n+1]);
  (*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv);
  if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
  sqliteVdbePopStack(p, n);
  p->tos++;
  aStack[p->tos] = ctx.s;
  if( ctx.s.flags & MEM_Dyn ){
  popStack(&pTos, n);
  pTos++;
  *pTos = ctx.s;
  if( pTos->flags & MEM_Short ){
    aStack[p->tos].z = ctx.s.z;
  }else if( ctx.s.flags & MEM_Str ){
    aStack[p->tos].z = aStack[p->tos].zShort;
    pTos->z = pTos->zShort;
  }else{
    aStack[p->tos].z = 0;
  }
  if( ctx.isError ){
    sqliteSetString(&p->zErrMsg, 
       aStack[p->tos].z ? aStack[p->tos].z : "user function error", (char*)0);
       (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0);
    rc = SQLITE_ERROR;
  }
  break;
}

/* Opcode: BitAnd * * *
**
1166
1167
1168
1169
1170
1171
1172
1173

1174
1175
1176
1177
1178
1179
1180






1181
1182
1183
1184
1185
1186




1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197





1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

1210
1211
1212


1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232





1233
1234
1235
1236
1237


1238
1239
1240
1241
1242




1243
1244
1245
1246
1247



1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263

1264
1265

1266
1267
1268


1269
1270

1271
1272
1273
1274


1275
1276

1277
1278

1279
1280
1281

1282
1283

1284
1285

1286
1287
1288
1289

1290
1291
1292
1293
1294


1295
1296
1297
1298
1299
1300
1301
1302

1303
1304
1305
1306
1307
1308
1309
1164
1165
1166
1167
1168
1169
1170

1171

1172





1173
1174
1175
1176
1177
1178
1179
1180




1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191




1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207

1208



1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224

1225




1226
1227
1228
1229
1230
1231
1232
1233


1234
1235
1236




1237
1238
1239
1240
1241




1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

1260


1261
1262


1263
1264
1265

1266
1267
1268


1269
1270
1271

1272
1273

1274
1275
1276

1277


1278
1279

1280
1281
1282
1283

1284
1285
1286
1287


1288
1289
1290
1291
1292
1293
1294
1295
1296

1297
1298
1299
1300
1301
1302
1303
1304







-
+
-

-
-
-
-
-
+
+
+
+
+
+


-
-
-
-
+
+
+
+







-
-
-
-
+
+
+
+
+











-
+
-
-
-
+
+














-

-
-
-
-
+
+
+
+
+



-
-
+
+

-
-
-
-
+
+
+
+

-
-
-
-
+
+
+















-
+
-
-
+

-
-
+
+

-
+


-
-
+
+

-
+

-
+


-
+
-
-
+

-
+



-
+



-
-
+
+







-
+







** right by N bits where N is the second element on the stack.
** If either operand is NULL, the result is NULL.
*/
case OP_BitAnd:
case OP_BitOr:
case OP_ShiftLeft:
case OP_ShiftRight: {
  int tos = p->tos;
  Mem *pNos = &pTos[-1];
  int nos = tos - 1;
  int a, b;
  VERIFY( if( nos<0 ) goto not_enough_stack; )
  if( (aStack[tos].flags | aStack[nos].flags) & MEM_Null ){
    POPSTACK;
    Release(p,nos);
    aStack[nos].flags = MEM_Null;

  assert( pNos>=p->aStack );
  if( (pTos->flags | pNos->flags) & MEM_Null ){
    popStack(&pTos, 2);
    pTos++;
    pTos->flags = MEM_Null;
    break;
  }
  Integerify(p, tos);
  Integerify(p, nos);
  a = aStack[tos].i;
  b = aStack[nos].i;
  Integerify(pTos);
  Integerify(pNos);
  a = pTos->i;
  b = pNos->i;
  switch( pOp->opcode ){
    case OP_BitAnd:      a &= b;     break;
    case OP_BitOr:       a |= b;     break;
    case OP_ShiftLeft:   a <<= b;    break;
    case OP_ShiftRight:  a >>= b;    break;
    default:   /* CANT HAPPEN */     break;
  }
  POPSTACK;
  Release(p, nos);
  aStack[nos].i = a;
  aStack[nos].flags = MEM_Int;
  assert( (pTos->flags & MEM_Dyn)==0 );
  assert( (pNos->flags & MEM_Dyn)==0 );
  pTos--;
  pTos->i = a;
  assert( pTos->flags==MEM_Int );
  break;
}

/* Opcode: AddImm  P1 * *
** 
** Add the value P1 to whatever is on top of the stack.  The result
** is always an integer.
**
** To force the top of the stack to be an integer, just add 0.
*/
case OP_AddImm: {
  int tos = p->tos;
  assert( pTos>=p->aStack );
  VERIFY( if( tos<0 ) goto not_enough_stack; )
  Integerify(p, tos);
  aStack[tos].i += pOp->p1;
  Integerify(pTos);
  pTos->i += pOp->p1;
  break;
}

/* Opcode: ForceInt P1 P2 *
**
** Convert the top of the stack into an integer.  If the current top of
** the stack is not numeric (meaning that is is a NULL or a string that
** does not look like an integer or floating point number) then pop the
** stack and jump to P2.  If the top of the stack is numeric then
** convert it into the least integer that is greater than or equal to its
** current value if P1==0, or to the least integer that is strictly
** greater than its current value if P1==1.
*/
case OP_ForceInt: {
  int tos = p->tos;
  int v;
  VERIFY( if( tos<0 ) goto not_enough_stack; )
  if( (aStack[tos].flags & (MEM_Int|MEM_Real))==0
         && (aStack[tos].z==0 || sqliteIsNumber(aStack[tos].z)==0) ){
    POPSTACK;
  assert( pTos>=p->aStack );
  if( (pTos->flags & (MEM_Int|MEM_Real))==0
         && ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){
    Release(pTos);
    pTos--;
    pc = pOp->p2 - 1;
    break;
  }
  if( aStack[tos].flags & MEM_Int ){
    v = aStack[tos].i + (pOp->p1!=0);
  if( pTos->flags & MEM_Int ){
    v = pTos->i + (pOp->p1!=0);
  }else{
    Realify(p, tos);
    v = (int)aStack[tos].r;
    if( aStack[tos].r>(double)v ) v++;
    if( pOp->p1 && aStack[tos].r==(double)v ) v++;
    Realify(pTos);
    v = (int)pTos->r;
    if( pTos->r>(double)v ) v++;
    if( pOp->p1 && pTos->r==(double)v ) v++;
  }
  if( aStack[tos].flags & MEM_Dyn ) sqliteFree(aStack[tos].z);
  aStack[tos].z = 0;
  aStack[tos].i = v;
  aStack[tos].flags = MEM_Int;
  Release(pTos);
  pTos->i = v;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: MustBeInt P1 P2 *
** 
** Force the top of the stack to be an integer.  If the top of the
** stack is not an integer and cannot be converted into an integer
** with out data loss, then jump immediately to P2, or if P2==0
** raise an SQLITE_MISMATCH exception.
**
** If the top of the stack is not an integer and P2 is not zero and
** P1 is 1, then the stack is popped.  In all other cases, the depth
** of the stack is unchanged.
*/
case OP_MustBeInt: {
  int tos = p->tos;
  assert( pTos>=p->aStack );
  VERIFY( if( tos<0 ) goto not_enough_stack; )
  if( aStack[tos].flags & MEM_Int ){
  if( pTos->flags & MEM_Int ){
    /* Do nothing */
  }else if( aStack[tos].flags & MEM_Real ){
    int i = aStack[tos].r;
  }else if( pTos->flags & MEM_Real ){
    int i = (int)pTos->r;
    double r = (double)i;
    if( r!=aStack[tos].r ){
    if( r!=pTos->r ){
      goto mismatch;
    }
    aStack[tos].i = i;
  }else if( aStack[tos].flags & MEM_Str ){
    pTos->i = i;
  }else if( pTos->flags & MEM_Str ){
    int v;
    if( !toInt(aStack[tos].z, &v) ){
    if( !toInt(pTos->z, &v) ){
      double r;
      if( !sqliteIsNumber(aStack[tos].z) ){
      if( !sqliteIsNumber(pTos->z) ){
        goto mismatch;
      }
      Realify(p, tos);
      Realify(pTos);
      assert( (aStack[tos].flags & MEM_Real)!=0 );
      v = aStack[tos].r;
      v = (int)pTos->r;
      r = (double)v;
      if( r!=aStack[tos].r ){
      if( r!=pTos->r ){
        goto mismatch;
      }
    }
    aStack[tos].i = v;
    pTos->i = v;
  }else{
    goto mismatch;
  }
  Release(p, tos);
  aStack[tos].flags = MEM_Int;
  Release(pTos);
  pTos->flags = MEM_Int;
  break;

mismatch:
  if( pOp->p2==0 ){
    rc = SQLITE_MISMATCH;
    goto abort_due_to_error;
  }else{
    if( pOp->p1 ) POPSTACK;
    if( pOp->p1 ) popStack(&pTos, 1);
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Eq P1 P2 *
**
1418
1419
1420
1421
1422
1423
1424
1425

1426
1427
1428
1429
1430
1431



1432
1433
1434

1435
1436
1437
1438
1439


1440
1441
1442
1443
1444


1445
1446

1447
1448
1449

1450
1451

1452
1453
1454
1455
1456
1457



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467

1468
1469
1470
1471
1472
1473



1474
1475
1476
1477
1478
1479
1480
1481
1413
1414
1415
1416
1417
1418
1419

1420

1421
1422



1423
1424
1425
1426


1427
1428
1429
1430


1431
1432
1433
1434
1435


1436
1437


1438



1439


1440


1441



1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453

1454

1455
1456
1457


1458
1459
1460

1461
1462
1463
1464
1465
1466
1467







-
+
-


-
-
-
+
+
+

-
-
+



-
-
+
+



-
-
+
+
-
-
+
-
-
-
+
-
-
+
-
-

-
-
-
+
+
+









-
+
-



-
-
+
+
+
-







*/
case OP_Eq:
case OP_Ne:
case OP_Lt:
case OP_Le:
case OP_Gt:
case OP_Ge: {
  int tos = p->tos;
  Mem *pNos = &pTos[-1];
  int nos = tos - 1;
  int c, v;
  int ft, fn;
  VERIFY( if( nos<0 ) goto not_enough_stack; )
  ft = aStack[tos].flags;
  fn = aStack[nos].flags;
  assert( pNos>=p->aStack );
  ft = pTos->flags;
  fn = pNos->flags;
  if( (ft | fn) & MEM_Null ){
    POPSTACK;
    POPSTACK;
    popStack(&pTos, 2);
    if( pOp->p2 ){
      if( pOp->p1 ) pc = pOp->p2-1;
    }else{
      p->tos++;
      aStack[nos].flags = MEM_Null;
      pTos++;
      pTos->flags = MEM_Null;
    }
    break;
  }else if( (ft & fn & MEM_Int)==MEM_Int ){
    c = aStack[nos].i - aStack[tos].i;
  }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(aStack[nos].z,&v) ){
    c = pNos->i - pTos->i;
  }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){
    Release(p, nos);
    aStack[nos].i = v;
    c = v - pTos->i;
    aStack[nos].flags = MEM_Int;
    c = aStack[nos].i - aStack[tos].i;
  }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(aStack[tos].z,&v) ){
  }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){
    Release(p, tos);
    aStack[tos].i = v;
    c = pNos->i - v;
    aStack[tos].flags = MEM_Int;
    c = aStack[nos].i - aStack[tos].i;
  }else{
    Stringify(p, tos);
    Stringify(p, nos);
    c = sqliteCompare(aStack[nos].z, aStack[tos].z);
    Stringify(pTos);
    Stringify(pNos);
    c = sqliteCompare(pNos->z, pTos->z);
  }
  switch( pOp->opcode ){
    case OP_Eq:    c = c==0;     break;
    case OP_Ne:    c = c!=0;     break;
    case OP_Lt:    c = c<0;      break;
    case OP_Le:    c = c<=0;     break;
    case OP_Gt:    c = c>0;      break;
    default:       c = c>=0;     break;
  }
  POPSTACK;
  popStack(&pTos, 2);
  POPSTACK;
  if( pOp->p2 ){
    if( c ) pc = pOp->p2-1;
  }else{
    p->tos++;
    aStack[nos].flags = MEM_Int;
    pTos++;
    pTos->i = c;
    pTos->flags = MEM_Int;
    aStack[nos].i = c;
  }
  break;
}
/* INSERT NO CODE HERE!
**
** The opcode numbers are extracted from this source file by doing
**
1584
1585
1586
1587
1588
1589
1590
1591

1592
1593
1594
1595


1596
1597

1598
1599
1600
1601
1602


1603
1604
1605
1606
1607
1608



1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

1624
1625
1626
1627
1628
1629
1630



1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

1650
1651
1652
1653
1654


1655
1656
1657
1658


1659
1660

1661
1662
1663
1664


1665
1666
1667
1668
1669
1670
1671
1672
1673
1674


1675
1676

1677
1678
1679


1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698

1699
1700
1701
1702
1703




1704
1705
1706
1707
1708
1709





1710
1711
1712


1713
1714
1715
1716
1717
1718




1719
1720

1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732

1733
1734
1735


1736
1737
1738


1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749

1750
1751
1752


1753
1754
1755


1756
1757
1758
1759
1760
1761
1762
1570
1571
1572
1573
1574
1575
1576

1577

1578


1579
1580


1581
1582
1583
1584


1585
1586
1587
1588
1589



1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606

1607

1608
1609
1610



1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631

1632

1633
1634


1635
1636
1637
1638


1639
1640
1641

1642
1643
1644


1645
1646
1647
1648
1649
1650
1651
1652
1653
1654


1655
1656
1657

1658
1659


1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679

1680





1681
1682
1683
1684
1685





1686
1687
1688
1689
1690
1691


1692
1693
1694
1695




1696
1697
1698
1699
1700

1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712

1713



1714
1715



1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

1728



1729
1730



1731
1732
1733
1734
1735
1736
1737
1738
1739







-
+
-

-
-
+
+
-
-
+



-
-
+
+



-
-
-
+
+
+














-
+
-



-
-
-
+
+
+


















-
+
-


-
-
+
+


-
-
+
+

-
+


-
-
+
+








-
-
+
+

-
+

-
-
+
+


















-
+
-
-
-
-
-
+
+
+
+

-
-
-
-
-
+
+
+
+
+

-
-
+
+


-
-
-
-
+
+
+
+

-
+











-
+
-
-
-
+
+
-
-
-
+
+










-
+
-
-
-
+
+
-
-
-
+
+







*/
case OP_StrEq:
case OP_StrNe:
case OP_StrLt:
case OP_StrLe:
case OP_StrGt:
case OP_StrGe: {
  int tos = p->tos;
  Mem *pNos = &pTos[-1];
  int nos = tos - 1;
  int c;
  VERIFY( if( nos<0 ) goto not_enough_stack; )
  if( (aStack[nos].flags | aStack[tos].flags) & MEM_Null ){
  assert( pNos>=p->aStack );
  if( (pNos->flags | pTos->flags) & MEM_Null ){
    POPSTACK;
    POPSTACK;
    popStack(&pTos, 2);
    if( pOp->p2 ){
      if( pOp->p1 ) pc = pOp->p2-1;
    }else{
      p->tos++;
      aStack[nos].flags = MEM_Null;
      pTos++;
      pTos->flags = MEM_Null;
    }
    break;
  }else{
    Stringify(p, tos);
    Stringify(p, nos);
    c = strcmp(aStack[nos].z, aStack[tos].z);
    Stringify(pTos);
    Stringify(pNos);
    c = strcmp(pNos->z, pTos->z);
  }
  /* The asserts on each case of the following switch are there to verify
  ** that string comparison opcodes are always exactly 6 greater than the
  ** corresponding numeric comparison opcodes.  The code generator depends
  ** on this fact.
  */
  switch( pOp->opcode ){
    case OP_StrEq:    c = c==0;    assert( pOp->opcode-6==OP_Eq );   break;
    case OP_StrNe:    c = c!=0;    assert( pOp->opcode-6==OP_Ne );   break;
    case OP_StrLt:    c = c<0;     assert( pOp->opcode-6==OP_Lt );   break;
    case OP_StrLe:    c = c<=0;    assert( pOp->opcode-6==OP_Le );   break;
    case OP_StrGt:    c = c>0;     assert( pOp->opcode-6==OP_Gt );   break;
    default:          c = c>=0;    assert( pOp->opcode-6==OP_Ge );   break;
  }
  POPSTACK;
  popStack(&pTos, 2);
  POPSTACK;
  if( pOp->p2 ){
    if( c ) pc = pOp->p2-1;
  }else{
    p->tos++;
    aStack[nos].flags = MEM_Int;
    aStack[nos].i = c;
    pTos++;
    pTos->flags = MEM_Int;
    pTos->i = c;
  }
  break;
}

/* Opcode: And * * *
**
** Pop two values off the stack.  Take the logical AND of the
** two values and push the resulting boolean value back onto the
** stack. 
*/
/* Opcode: Or * * *
**
** Pop two values off the stack.  Take the logical OR of the
** two values and push the resulting boolean value back onto the
** stack. 
*/
case OP_And:
case OP_Or: {
  int tos = p->tos;
  Mem *pNos = &pTos[-1];
  int nos = tos - 1;
  int v1, v2;    /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */

  VERIFY( if( nos<0 ) goto not_enough_stack; )
  if( aStack[tos].flags & MEM_Null ){
  assert( pNos>=p->aStack );
  if( pTos->flags & MEM_Null ){
    v1 = 2;
  }else{
    Integerify(p, tos);
    v1 = aStack[tos].i==0;
    Integerify(pTos);
    v1 = pTos->i==0;
  }
  if( aStack[nos].flags & MEM_Null ){
  if( pNos->flags & MEM_Null ){
    v2 = 2;
  }else{
    Integerify(p, nos);
    v2 = aStack[nos].i==0;
    Integerify(pNos);
    v2 = pNos->i==0;
  }
  if( pOp->opcode==OP_And ){
    static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
    v1 = and_logic[v1*3+v2];
  }else{
    static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
    v1 = or_logic[v1*3+v2];
  }
  POPSTACK;
  Release(p, nos);
  popStack(&pTos, 2);
  pTos++;
  if( v1==2 ){
    aStack[nos].flags = MEM_Null;
    pTos->flags = MEM_Null;
  }else{
    aStack[nos].i = v1==0;
    aStack[nos].flags = MEM_Int;
    pTos->i = v1==0;
    pTos->flags = MEM_Int;
  }
  break;
}

/* Opcode: Negative * * *
**
** Treat the top of the stack as a numeric quantity.  Replace it
** with its additive inverse.  If the top of the stack is NULL
** its value is unchanged.
*/
/* Opcode: AbsValue * * *
**
** Treat the top of the stack as a numeric quantity.  Replace it
** with its absolute value. If the top of the stack is NULL
** its value is unchanged.
*/
case OP_Negative:
case OP_AbsValue: {
  int tos = p->tos;
  assert( pTos>=p->aStack );
  VERIFY( if( tos<0 ) goto not_enough_stack; )
  if( aStack[tos].flags & MEM_Real ){
    Release(p, tos);
    if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){
      aStack[tos].r = -aStack[tos].r;
  if( pTos->flags & MEM_Real ){
    Release(pTos);
    if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
      pTos->r = -pTos->r;
    }
    aStack[tos].flags = MEM_Real;
  }else if( aStack[tos].flags & MEM_Int ){
    Release(p, tos);
    if( pOp->opcode==OP_Negative ||  aStack[tos].i<0 ){
      aStack[tos].i = -aStack[tos].i;
    pTos->flags = MEM_Real;
  }else if( pTos->flags & MEM_Int ){
    Release(pTos);
    if( pOp->opcode==OP_Negative || pTos->i<0 ){
      pTos->i = -pTos->i;
    }
    aStack[tos].flags = MEM_Int;
  }else if( aStack[tos].flags & MEM_Null ){
    pTos->flags = MEM_Int;
  }else if( pTos->flags & MEM_Null ){
    /* Do nothing */
  }else{
    Realify(p, tos);
    Release(p, tos);
    if( pOp->opcode==OP_Negative ||  aStack[tos].r<0.0 ){
      aStack[tos].r = -aStack[tos].r;
    Realify(pTos);
    Release(pTos);
    if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
      pTos->r = -pTos->r;
    }
    aStack[tos].flags = MEM_Real;
    pTos->flags = MEM_Real;
  }
  break;
}

/* Opcode: Not * * *
**
** Interpret the top of the stack as a boolean value.  Replace it
** with its complement.  If the top of the stack is NULL its value
** is unchanged.
*/
case OP_Not: {
  int tos = p->tos;
  assert( pTos>=p->aStack );
  VERIFY( if( p->tos<0 ) goto not_enough_stack; )
  if( aStack[tos].flags & MEM_Null ) break;  /* Do nothing to NULLs */
  Integerify(p, tos);
  if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
  Integerify(pTos);
  Release(p, tos);
  aStack[tos].i = !aStack[tos].i;
  aStack[tos].flags = MEM_Int;
  assert( pTos->flags==MEM_Int );
  pTos->i = !pTos->i;
  break;
}

/* Opcode: BitNot * * *
**
** Interpret the top of the stack as an value.  Replace it
** with its ones-complement.  If the top of the stack is NULL its
** value is unchanged.
*/
case OP_BitNot: {
  int tos = p->tos;
  assert( pTos>=p->aStack );
  VERIFY( if( p->tos<0 ) goto not_enough_stack; )
  if( aStack[tos].flags & MEM_Null ) break;  /* Do nothing to NULLs */
  Integerify(p, tos);
  if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
  Integerify(pTos);
  Release(p, tos);
  aStack[tos].i = ~aStack[tos].i;
  aStack[tos].flags = MEM_Int;
  assert( pTos->flags==MEM_Int );
  pTos->i = ~pTos->i;
  break;
}

/* Opcode: Noop * * *
**
** Do nothing.  This instruction is often useful as a jump
** destination.
1784
1785
1786
1787
1788
1789
1790
1791
1792


1793
1794
1795
1796


1797
1798

1799

1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811

1812
1813
1814
1815
1816




1817
1818
1819
1820
1821

1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836


1837
1838

1839
1840
1841
1842
1843
1844
1845
1761
1762
1763
1764
1765
1766
1767


1768
1769
1770
1771


1772
1773
1774
1775
1776

1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792



1793
1794
1795
1796
1797
1798
1799
1800

1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814


1815
1816
1817

1818
1819
1820
1821
1822
1823
1824
1825







-
-
+
+


-
-
+
+


+
-
+












+


-
-
-
+
+
+
+




-
+













-
-
+
+

-
+







**
** If the value popped of the stack is NULL, then take the jump if P1
** is true and fall through if P1 is false.
*/
case OP_If:
case OP_IfNot: {
  int c;
  VERIFY( if( p->tos<0 ) goto not_enough_stack; )
  if( aStack[p->tos].flags & MEM_Null ){
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ){
    c = pOp->p1;
  }else{
    Integerify(p, p->tos);
    c = aStack[p->tos].i;
    Integerify(pTos);
    c = pTos->i;
    if( pOp->opcode==OP_IfNot ) c = !c;
  }
  assert( (pTos->flags & MEM_Dyn)==0 );
  POPSTACK;
  pTos--;
  if( c ) pc = pOp->p2-1;
  break;
}

/* Opcode: IsNull P1 P2 *
**
** If any of the top abs(P1) values on the stack are NULL, then jump
** to P2.  Pop the stack P1 times if P1>0.   If P1<0 leave the stack
** unchanged.
*/
case OP_IsNull: {
  int i, cnt;
  Mem *pTerm;
  cnt = pOp->p1;
  if( cnt<0 ) cnt = -cnt;
  VERIFY( if( p->tos+1-cnt<0 ) goto not_enough_stack; )
  for(i=0; i<cnt; i++){
    if( aStack[p->tos-i].flags & MEM_Null ){
  pTerm = &pTos[1-cnt];
  assert( pTerm>=p->aStack );
  for(i=0; i<cnt; i++, pTerm++){
    if( pTerm->flags & MEM_Null ){
      pc = pOp->p2-1;
      break;
    }
  }
  if( pOp->p1>0 ) sqliteVdbePopStack(p, cnt);
  if( pOp->p1>0 ) popStack(&pTos, cnt);
  break;
}

/* Opcode: NotNull P1 P2 *
**
** Jump to P2 if the top P1 values on the stack are all not NULL.  Pop the
** stack if P1 times if P1 is greater than zero.  If P1 is less than
** zero then leave the stack unchanged.
*/
case OP_NotNull: {
  int i, cnt;
  cnt = pOp->p1;
  if( cnt<0 ) cnt = -cnt;
  VERIFY( if( p->tos+1-cnt<0 ) goto not_enough_stack; )
  for(i=0; i<cnt && (aStack[p->tos-i].flags & MEM_Null)==0; i++){}
  assert( &pTos[1-cnt] >= p->aStack );
  for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
  if( i>=cnt ) pc = pOp->p2-1;
  if( pOp->p1>0 ) sqliteVdbePopStack(p, cnt);
  if( pOp->p1>0 ) popStack(&pTos, cnt);
  break;
}

/* Opcode: MakeRecord P1 P2 *
**
** Convert the top P1 entries of the stack into a single entry
** suitable for use as a data record in a database table.  The
1863
1864
1865
1866
1867
1868
1869

1870
1871
1872
1873
1874
1875
1876
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857







+







case OP_MakeRecord: {
  char *zNewRecord;
  int nByte;
  int nField;
  int i, j;
  int idxWidth;
  u32 addr;
  Mem *pRec;
  int addUnique = 0;   /* True to cause bytes to be added to make the
                       ** generated record distinct */
  char zTemp[NBFS];    /* Temp space for small records */

  /* Assuming the record contains N fields, the record format looks
  ** like this:
  **
1886
1887
1888
1889
1890
1891
1892
1893


1894
1895
1896


1897
1898
1899
1900


1901
1902
1903
1904
1905
1906
1907
1867
1868
1869
1870
1871
1872
1873

1874
1875
1876


1877
1878
1879
1880


1881
1882
1883
1884
1885
1886
1887
1888
1889







-
+
+

-
-
+
+


-
-
+
+







  **
  ** Each of the idx() entries is either 1, 2, or 3 bytes depending on
  ** how big the total record is.  Idx(0) contains the offset to the start
  ** of data(0).  Idx(k) contains the offset to the start of data(k).
  ** Idx(N) contains the total number of bytes in the record.
  */
  nField = pOp->p1;
  VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
  pRec = &pTos[1-nField];
  assert( pRec>=p->aStack );
  nByte = 0;
  for(i=p->tos-nField+1; i<=p->tos; i++){
    if( (aStack[i].flags & MEM_Null) ){
  for(i=0; i<nField; i++, pRec++){
    if( pRec->flags & MEM_Null ){
      addUnique = pOp->p2;
    }else{
      Stringify(p, i);
      nByte += aStack[i].n;
      Stringify(pRec);
      nByte += pRec->n;
    }
  }
  if( addUnique ) nByte += sizeof(p->uniqueCnt);
  if( nByte + nField + 1 < 256 ){
    idxWidth = 1;
  }else if( nByte + 2*nField + 2 < 65536 ){
    idxWidth = 2;
1917
1918
1919
1920
1921
1922
1923
1924

1925
1926
1927
1928
1929
1930
1931
1932
1933


1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951




1952
1953
1954
1955
1956



1957
1958
1959
1960
1961



1962
1963

1964

1965
1966
1967
1968
1969
1970
1971
1972
1899
1900
1901
1902
1903
1904
1905

1906
1907
1908
1909
1910
1911
1912
1913


1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929




1930
1931
1932
1933
1934
1935



1936
1937
1938
1939
1940



1941
1942
1943
1944
1945
1946

1947

1948
1949
1950
1951
1952
1953
1954







-
+







-
-
+
+














-
-
-
-
+
+
+
+


-
-
-
+
+
+


-
-
-
+
+
+


+
-
+
-







    zNewRecord = zTemp;
  }else{
    zNewRecord = sqliteMallocRaw( nByte );
    if( zNewRecord==0 ) goto no_mem;
  }
  j = 0;
  addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt);
  for(i=p->tos-nField+1; i<=p->tos; i++){
  for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
    zNewRecord[j++] = addr & 0xff;
    if( idxWidth>1 ){
      zNewRecord[j++] = (addr>>8)&0xff;
      if( idxWidth>2 ){
        zNewRecord[j++] = (addr>>16)&0xff;
      }
    }
    if( (aStack[i].flags & MEM_Null)==0 ){
      addr += aStack[i].n;
    if( (pRec->flags & MEM_Null)==0 ){
      addr += pRec->n;
    }
  }
  zNewRecord[j++] = addr & 0xff;
  if( idxWidth>1 ){
    zNewRecord[j++] = (addr>>8)&0xff;
    if( idxWidth>2 ){
      zNewRecord[j++] = (addr>>16)&0xff;
    }
  }
  if( addUnique ){
    memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt));
    p->uniqueCnt++;
    j += sizeof(p->uniqueCnt);
  }
  for(i=p->tos-nField+1; i<=p->tos; i++){
    if( (aStack[i].flags & MEM_Null)==0 ){
      memcpy(&zNewRecord[j], aStack[i].z, aStack[i].n);
      j += aStack[i].n;
  for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
    if( (pRec->flags & MEM_Null)==0 ){
      memcpy(&zNewRecord[j], pRec->z, pRec->n);
      j += pRec->n;
    }
  }
  sqliteVdbePopStack(p, nField);
  p->tos++;
  aStack[p->tos].n = nByte;
  popStack(&pTos, nField);
  pTos++;
  pTos->n = nByte;
  if( nByte<=NBFS ){
    assert( zNewRecord==zTemp );
    memcpy(aStack[p->tos].zShort, zTemp, nByte);
    aStack[p->tos].z = aStack[p->tos].zShort;
    aStack[p->tos].flags = MEM_Str;
    memcpy(pTos->zShort, zTemp, nByte);
    pTos->z = pTos->zShort;
    pTos->flags = MEM_Str | MEM_Short;
  }else{
    assert( zNewRecord!=zTemp );
    pTos->z = zNewRecord;
    aStack[p->tos].flags = MEM_Str | MEM_Dyn;
    pTos->flags = MEM_Str | MEM_Dyn;
    aStack[p->tos].z = zNewRecord;
  }
  break;
}

/* Opcode: MakeKey P1 P2 P3
**
** Convert the top P1 entries of the stack into a single entry suitable
2043
2044
2045
2046
2047
2048
2049

2050
2051
2052
2053
2054


2055
2056
2057


2058
2059
2060
2061
2062
2063
2064
2065
2066
2067




2068
2069

2070
2071

2072
2073
2074
2075



2076
2077
2078
2079
2080




2081
2082

2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098



2099
2100
2101

2102
2103
2104
2105






2106
2107
2108
2109


2110
2111
2112
2113


2114
2115


2116
2117

2118
2119
2120

2121
2122
2123


2124
2125
2126
2127
2128



2129
2130
2131


2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146

2147
2148
2149
2150
2151
2152
2153





2154
2155
2156


2157
2158
2159
2160
2161
2162
2163
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036

2037
2038
2039


2040
2041
2042
2043
2044
2045
2046
2047




2048
2049
2050
2051
2052

2053
2054

2055
2056



2057
2058
2059
2060




2061
2062
2063
2064
2065

2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080


2081
2082
2083
2084
2085

2086




2087
2088
2089
2090
2091
2092




2093
2094
2095
2096
2097
2098
2099
2100


2101
2102
2103

2104
2105
2106

2107
2108


2109
2110
2111
2112



2113
2114
2115
2116


2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131


2132







2133
2134
2135
2136
2137



2138
2139
2140
2141
2142
2143
2144
2145
2146







+




-
+
+

-
-
+
+






-
-
-
-
+
+
+
+

-
+

-
+

-
-
-
+
+
+

-
-
-
-
+
+
+
+

-
+














-
-
+
+
+


-
+
-
-
-
-
+
+
+
+
+
+
-
-
-
-
+
+




+
+
-
-
+
+

-
+


-
+

-
-
+
+


-
-
-
+
+
+

-
-
+
+













-
-
+
-
-
-
-
-
-
-
+
+
+
+
+
-
-
-
+
+







case OP_MakeKey: {
  char *zNewKey;
  int nByte;
  int nField;
  int addRowid;
  int i, j;
  int containsNull = 0;
  Mem *pRec;
  char zTemp[NBFS];

  addRowid = pOp->opcode==OP_MakeIdxKey;
  nField = pOp->p1;
  VERIFY( if( p->tos+1+addRowid<nField ) goto not_enough_stack; )
  pRec = &pTos[1-nField];
  assert( pRec>=p->aStack );
  nByte = 0;
  for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){
    int flags = aStack[i].flags;
  for(j=0, i=0; i<nField; i++, j++, pRec++){
    int flags = pRec->flags;
    int len;
    char *z;
    if( flags & MEM_Null ){
      nByte += 2;
      containsNull = 1;
    }else if( pOp->p3 && pOp->p3[j]=='t' ){
      Stringify(p, i);
      aStack[i].flags &= ~(MEM_Int|MEM_Real);
      nByte += aStack[i].n+1;
    }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(aStack[i].z) ){
      Stringify(pRec);
      pRec->flags &= ~(MEM_Int|MEM_Real);
      nByte += pRec->n+1;
    }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){
      if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){
        aStack[i].r = aStack[i].i;
        pRec->r = pRec->i;
      }else if( (flags & (MEM_Real|MEM_Int))==0 ){
        aStack[i].r = sqliteAtoF(aStack[i].z);
        pRec->r = sqliteAtoF(pRec->z);
      }
      Release(p, i);
      z = aStack[i].zShort;
      sqliteRealToSortable(aStack[i].r, z);
      Release(pRec);
      z = pRec->zShort;
      sqliteRealToSortable(pRec->r, z);
      len = strlen(z);
      aStack[i].z = 0;
      aStack[i].flags = MEM_Real;
      aStack[i].n = len+1;
      nByte += aStack[i].n+1;
      pRec->z = 0;
      pRec->flags = MEM_Real;
      pRec->n = len+1;
      nByte += pRec->n+1;
    }else{
      nByte += aStack[i].n+1;
      nByte += pRec->n+1;
    }
  }
  if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
    rc = SQLITE_TOOBIG;
    goto abort_due_to_error;
  }
  if( addRowid ) nByte += sizeof(u32);
  if( nByte<=NBFS ){
    zNewKey = zTemp;
  }else{
    zNewKey = sqliteMallocRaw( nByte );
    if( zNewKey==0 ) goto no_mem;
  }
  j = 0;
  for(i=p->tos-nField+1; i<=p->tos; i++){
    if( aStack[i].flags & MEM_Null ){
  pRec = &pTos[1-nField];
  for(i=0; i<nField; i++, pRec++){
    if( pRec->flags & MEM_Null ){
      zNewKey[j++] = 'a';
      zNewKey[j++] = 0;
    }else{
    }else if( pRec->flags==MEM_Real ){
      if( aStack[i].flags & (MEM_Int|MEM_Real) ){
        zNewKey[j++] = 'b';
      }else{
        zNewKey[j++] = 'c';
      zNewKey[j++] = 'b';
      memcpy(&zNewKey[j], pRec->zShort, pRec->n);
      j += pRec->n;
    }else{
      assert( pRec->flags & MEM_Str );
      zNewKey[j++] = 'c';
      }
      /*** Is this right? ****/
      memcpy(&zNewKey[j],aStack[i].z?aStack[i].z:aStack[i].zShort,aStack[i].n);
      j += aStack[i].n;
      memcpy(&zNewKey[j], pRec->z, pRec->n);
      j += pRec->n;
    }
  }
  if( addRowid ){
    u32 iKey;
    pRec = &pTos[-nField];
    assert( pRec>=p->aStack );
    Integerify(p, p->tos-nField);
    iKey = intToKey(aStack[p->tos-nField].i);
    Integerify(pRec);
    iKey = intToKey(pRec->i);
    memcpy(&zNewKey[j], &iKey, sizeof(u32));
    sqliteVdbePopStack(p, nField+1);
    popStack(&pTos, nField+1);
    if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
  }else{
    if( pOp->p2==0 ) sqliteVdbePopStack(p, nField+addRowid);
    if( pOp->p2==0 ) popStack(&pTos, nField);
  }
  p->tos++;
  aStack[p->tos].n = nByte;
  pTos++;
  pTos->n = nByte;
  if( nByte<=NBFS ){
    assert( zNewKey==zTemp );
    aStack[p->tos].z = aStack[p->tos].zShort;
    memcpy(aStack[p->tos].z, zTemp, nByte);
    aStack[p->tos].flags = MEM_Str;
    pTos->z = pTos->zShort;
    memcpy(pTos->zShort, zTemp, nByte);
    pTos->flags = MEM_Str | MEM_Short;
  }else{
    aStack[p->tos].flags = MEM_Str|MEM_Dyn;
    aStack[p->tos].z = zNewKey;
    pTos->z = zNewKey;
    pTos->flags = MEM_Str | MEM_Dyn;
  }
  break;
}

/* Opcode: IncrKey * * *
**
** The top of the stack should contain an index key generated by
** The MakeKey opcode.  This routine increases the least significant
** byte of that key by one.  This is used so that the MoveTo opcode
** will move to the first entry greater than the key rather than to
** the key itself.
*/
case OP_IncrKey: {
  int tos = p->tos;

  assert( pTos>=p->aStack );
  VERIFY( if( tos<0 ) goto bad_instruction );
  Stringify(p, tos);
  if( aStack[tos].flags & (MEM_Static|MEM_Ephem) ){
    /* CANT HAPPEN.  The IncrKey opcode is only applied to keys
    ** generated by MakeKey or MakeIdxKey and the results of those
    ** operands are always dynamic strings.
    */
  /* The IncrKey opcode is only applied to keys generated by
  ** MakeKey or MakeIdxKey and the results of those operands
  ** are always dynamic strings or zShort[] strings.  So we
  ** are always free to modify the string in place.
  */
    goto abort_due_to_error;
  }
  aStack[tos].z[aStack[tos].n-1]++;
  assert( pTos->flags & (MEM_Dyn|MEM_Short) );
  pTos->z[pTos->n-1]++;
  break;
}

/* Opcode: Checkpoint P1 * *
**
** Begin a checkpoint.  A checkpoint is the beginning of a operation that
** is part of a larger transaction but which might need to be rolled back
2202
2203
2204
2205
2206
2207
2208

2209
2210
2211
2212
2213
2214
2215
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199







+







    rc = sqliteBtreeBeginTrans(db->aDb[i].pBt);
    switch( rc ){
      case SQLITE_BUSY: {
        if( db->xBusyCallback==0 ){
          p->pc = pc;
          p->undoTransOnError = 1;
          p->rc = SQLITE_BUSY;
          p->pTos = pTos;
          return SQLITE_BUSY;
        }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){
          sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
          busy = 0;
        }
        break;
      }
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303

2304
2305


2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325


2326
2327
2328

2329
2330

2331

2332
2333
2334
2335
2336
2337
2338
2275
2276
2277
2278
2279
2280
2281

2282
2283
2284
2285
2286
2287


2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307


2308
2309
2310
2311

2312
2313
2314
2315

2316
2317
2318
2319
2320
2321
2322
2323







-





+
-
-
+
+


















-
-
+
+


-
+


+
-
+







** temporary tables.
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: {
  int i = ++p->tos;
  int aMeta[SQLITE_N_BTREE_META];
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( db->aDb[pOp->p1].pBt!=0 );
  rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
  pTos++;
  aStack[i].i = aMeta[1+pOp->p2];
  aStack[i].flags = MEM_Int;
  pTos->i = aMeta[1+pOp->p2];
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: SetCookie P1 P2 *
**
** Write the top of the stack into cookie number P2 of database P1.
** P2==0 is the schema version.  P2==1 is the database format.
** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {
  int aMeta[SQLITE_N_BTREE_META];
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( db->aDb[pOp->p1].pBt!=0 );
  VERIFY( if( p->tos<0 ) goto not_enough_stack; )
  Integerify(p, p->tos)
  assert( pTos>=p->aStack );
  Integerify(pTos)
  rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
  if( rc==SQLITE_OK ){
    aMeta[1+pOp->p2] = aStack[p->tos].i;
    aMeta[1+pOp->p2] = pTos->i;
    rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta);
  }
  assert( pTos->flags==MEM_Int );
  POPSTACK;
  pTos--;
  break;
}

/* Opcode: VerifyCookie P1 P2 *
**
** Check the value of global database parameter number 0 (the
** schema version) and make sure it is equal to P2.  
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420





2421
2422

2423
2424
2425
2426
2427
2428




2429
2430
2431
2432
2433
2434
2435

2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447

2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2388
2389
2390
2391
2392
2393
2394

2395
2396
2397
2398
2399





2400
2401
2402
2403
2404

2405
2406
2407
2408




2409
2410
2411
2412
2413
2414
2415
2416
2417
2418

2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448




2449
2450
2451
2452
2453
2454
2455







-





-
-
-
-
-
+
+
+
+
+
-

+


-
-
-
-
+
+
+
+






-
+












+
















-
-
-
-







**
** See also OpenRead.
*/
case OP_OpenRead:
case OP_OpenWrite: {
  int busy = 0;
  int i = pOp->p1;
  int tos = p->tos;
  int p2 = pOp->p2;
  int wrFlag;
  Btree *pX;
  int iDb;
  
  VERIFY( if( tos<0 ) goto not_enough_stack; );
  Integerify(p, tos);
  iDb = p->aStack[tos].i;
  tos--;
  VERIFY( if( iDb<0 || iDb>=db->nDb ) goto bad_instruction; );
  assert( pTos>=p->aStack );
  Integerify(pTos);
  iDb = pTos->i;
  pTos--;
  assert( iDb>=0 && iDb<db->nDb );
  VERIFY( if( db->aDb[iDb].pBt==0 ) goto bad_instruction; );
  pX = db->aDb[iDb].pBt;
  assert( pX!=0 );
  wrFlag = pOp->opcode==OP_OpenWrite;
  if( p2<=0 ){
    VERIFY( if( tos<0 ) goto not_enough_stack; );
    Integerify(p, tos);
    p2 = p->aStack[tos].i;
    POPSTACK;
    assert( pTos>=p->aStack );
    Integerify(pTos);
    p2 = pTos->i;
    pTos--;
    if( p2<2 ){
      sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0);
      rc = SQLITE_INTERNAL;
      break;
    }
  }
  VERIFY( if( i<0 ) goto bad_instruction; )
  assert( i>=0 );
  if( expandCursorArraySize(p, i) ) goto no_mem;
  sqliteVdbeCleanupCursor(&p->aCsr[i]);
  memset(&p->aCsr[i], 0, sizeof(Cursor));
  p->aCsr[i].nullRow = 1;
  if( pX==0 ) break;
  do{
    rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor);
    switch( rc ){
      case SQLITE_BUSY: {
        if( db->xBusyCallback==0 ){
          p->pc = pc;
          p->rc = SQLITE_BUSY;
          p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
          return SQLITE_BUSY;
        }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){
          sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
          busy = 0;
        }
        break;
      }
      case SQLITE_OK: {
        busy = 0;
        break;
      }
      default: {
        goto abort_due_to_error;
      }
    }
  }while( busy );
  if( p2<=0 ){
    POPSTACK;
  }
  POPSTACK;
  break;
}

/* Opcode: OpenTemp P1 P2 *
**
** Open a new cursor to a transient table.
** The transient cursor is always opened read/write even if 
2485
2486
2487
2488
2489
2490
2491
2492

2493
2494
2495
2496
2497
2498
2499
2466
2467
2468
2469
2470
2471
2472

2473
2474
2475
2476
2477
2478
2479
2480







-
+







** context of this opcode means for the duration of a single SQL statement
** whereas "Temporary" in the context of CREATE TABLE means for the duration
** of the connection to the database.  Same word; different meanings.
*/
case OP_OpenTemp: {
  int i = pOp->p1;
  Cursor *pCx;
  VERIFY( if( i<0 ) goto bad_instruction; )
  assert( i>=0 );
  if( expandCursorArraySize(p, i) ) goto no_mem;
  pCx = &p->aCsr[i];
  sqliteVdbeCleanupCursor(pCx);
  memset(pCx, 0, sizeof(*pCx));
  pCx->nullRow = 1;
  rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);

2523
2524
2525
2526
2527
2528
2529
2530

2531
2532
2533
2534
2535
2536
2537
2504
2505
2506
2507
2508
2509
2510

2511
2512
2513
2514
2515
2516
2517
2518







-
+







**
** A pseudo-table created by this opcode is useful for holding the
** NEW or OLD tables in a trigger.
*/
case OP_OpenPseudo: {
  int i = pOp->p1;
  Cursor *pCx;
  VERIFY( if( i<0 ) goto bad_instruction; )
  assert( i>=0 );
  if( expandCursorArraySize(p, i) ) goto no_mem;
  pCx = &p->aCsr[i];
  sqliteVdbeCleanupCursor(pCx);
  memset(pCx, 0, sizeof(*pCx));
  pCx->nullRow = 1;
  pCx->pseudoTable = 1;
  break;
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580

2581
2582
2583
2584
2585
2586
2587


2588
2589
2590

2591

2592
2593
2594
2595

2596
2597
2598
2599


2600
2601
2602
2603
2604
2605
2606
2551
2552
2553
2554
2555
2556
2557

2558
2559

2560
2561
2562
2563
2564
2565


2566
2567
2568
2569
2570
2571

2572
2573
2574
2575

2576
2577
2578


2579
2580
2581
2582
2583
2584
2585
2586
2587







-


-
+





-
-
+
+



+
-
+



-
+


-
-
+
+







** is not zero then an immediate jump to P2 is made.
**
** See also: MoveTo
*/
case OP_MoveLt:
case OP_MoveTo: {
  int i = pOp->p1;
  int tos = p->tos;
  Cursor *pC;

  VERIFY( if( tos<0 ) goto not_enough_stack; )
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  pC = &p->aCsr[i];
  if( pC->pCursor!=0 ){
    int res, oc;
    pC->nullRow = 0;
    if( aStack[tos].flags & MEM_Int ){
      int iKey = intToKey(aStack[tos].i);
    if( pTos->flags & MEM_Int ){
      int iKey = intToKey(pTos->i);
      if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){
        pC->movetoTarget = iKey;
        pC->deferredMoveto = 1;
        Release(pTos);
        POPSTACK;
        pTos--;
        break;
      }
      sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
      pC->lastRecno = aStack[tos].i;
      pC->lastRecno = pTos->i;
      pC->recnoIsValid = res==0;
    }else{
      Stringify(p, tos);
      sqliteBtreeMoveto(pC->pCursor, aStack[tos].z, aStack[tos].n, &res);
      Stringify(pTos);
      sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
      pC->recnoIsValid = 0;
    }
    pC->deferredMoveto = 0;
    sqlite_search_count++;
    oc = pOp->opcode;
    if( oc==OP_MoveTo && res<0 ){
      sqliteBtreeNext(pC->pCursor, &res);
2620
2621
2622
2623
2624
2625
2626

2627

2628
2629
2630
2631
2632
2633
2634
2601
2602
2603
2604
2605
2606
2607
2608

2609
2610
2611
2612
2613
2614
2615
2616







+
-
+







        res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0;
      }
      if( res && pOp->p2>0 ){
        pc = pOp->p2 - 1;
      }
    }
  }
  Release(pTos);
  POPSTACK;
  pTos--;
  break;
}

/* Opcode: Distinct P1 P2 *
**
** Use the top of the stack as a string key.  If a record with that key does
** not exist in the table of cursor P1, then jump to P2.  If the record
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670

2671
2672


2673
2674
2675


2676
2677
2678
2679
2680
2681
2682
2683
2684

2685

2686
2687
2688
2689
2690
2691
2692
2643
2644
2645
2646
2647
2648
2649

2650
2651
2652


2653
2654
2655


2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667

2668
2669
2670
2671
2672
2673
2674
2675







-


+
-
-
+
+

-
-
+
+









+
-
+







**
** See also: Distinct, Found, MoveTo, NotExists, IsUnique
*/
case OP_Distinct:
case OP_NotFound:
case OP_Found: {
  int i = pOp->p1;
  int tos = p->tos;
  int alreadyExists = 0;
  Cursor *pC;
  assert( pTos>=p->aStack );
  VERIFY( if( tos<0 ) goto not_enough_stack; )
  if( VERIFY( i>=0 && i<p->nCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){
  assert( i>=0 && i<p->nCursor );
  if( (pC = &p->aCsr[i])->pCursor!=0 ){
    int res, rx;
    Stringify(p, tos);
    rx = sqliteBtreeMoveto(pC->pCursor, aStack[tos].z, aStack[tos].n, &res);
    Stringify(pTos);
    rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
    alreadyExists = rx==SQLITE_OK && res==0;
    pC->deferredMoveto = 0;
  }
  if( pOp->opcode==OP_Found ){
    if( alreadyExists ) pc = pOp->p2 - 1;
  }else{
    if( !alreadyExists ) pc = pOp->p2 - 1;
  }
  if( pOp->opcode!=OP_Distinct ){
    Release(pTos);
    POPSTACK;
    pTos--;
  }
  break;
}

/* Opcode: IsUnique P1 P2 *
**
** The top of the stack is an integer record number.  Call this
2705
2706
2707
2708
2709
2710
2711
2712

2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723






2724
2725
2726
2727
2728
2729
2730
2731
2732
2733



2734
2735
2736
2737
2738
2739
2740
2688
2689
2690
2691
2692
2693
2694

2695

2696
2697
2698
2699
2700





2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713



2714
2715
2716
2717
2718
2719
2720
2721
2722
2723







-
+
-





-
-
-
-
-
+
+
+
+
+
+







-
-
-
+
+
+







** number for that entry is pushed onto the stack and control
** falls through to the next instruction.
**
** See also: Distinct, NotFound, NotExists, Found
*/
case OP_IsUnique: {
  int i = pOp->p1;
  int tos = p->tos;
  Mem *pNos = &pTos[-1];
  int nos = tos-1;
  BtCursor *pCrsr;
  int R;

  /* Pop the value R off the top of the stack
  */
  VERIFY( if( nos<0 ) goto not_enough_stack; )
  Integerify(p, tos);
  R = aStack[tos].i;   
  POPSTACK;
  if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
  assert( pNos>=p->aStack );
  Integerify(pTos);
  R = pTos->i;
  pTos--;
  assert( i>=0 && i<=p->nCursor );
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int res, rc;
    int v;         /* The record number on the P1 entry that matches K */
    char *zKey;    /* The value of K */
    int nKey;      /* Number of bytes in K */

    /* Make sure K is a string and make zKey point to K
    */
    Stringify(p, nos);
    zKey = aStack[nos].z;
    nKey = aStack[nos].n;
    Stringify(pNos);
    zKey = pNos->z;
    nKey = pNos->n;
    assert( nKey >= 4 );

    /* Search for an entry in P1 where all but the last four bytes match K.
    ** If there is no such entry, jump immediately to P2.
    */
    assert( p->aCsr[i].deferredMoveto==0 );
    rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775



2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796

2797
2798


2799
2800
2801


2802
2803

2804
2805
2806
2807
2808
2809
2810

2811

2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825

2826

2827
2828
2829
2830
2831
2832
2833
2749
2750
2751
2752
2753
2754
2755



2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

2778
2779


2780
2781
2782


2783
2784
2785

2786
2787
2788
2789
2790
2791
2792
2793
2794

2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810

2811
2812
2813
2814
2815
2816
2817
2818







-
-
-
+
+
+



















-

+
-
-
+
+

-
-
+
+

-
+







+
-
+














+
-
+







    }

    /* The last four bytes of the key are different from R.  Convert the
    ** last four bytes of the key into an integer and push it onto the
    ** stack.  (These bytes are the record number of an entry that
    ** violates a UNIQUE constraint.)
    */
    p->tos++;
    aStack[tos].i = v;
    aStack[tos].flags = MEM_Int;
    pTos++;
    pTos->i = v;
    pTos->flags = MEM_Int;
  }
  break;
}

/* Opcode: NotExists P1 P2 *
**
** Use the top of the stack as a integer key.  If a record with that key
** does not exist in table of P1, then jump to P2.  If the record
** does exist, then fall thru.  The cursor is left pointing to the
** record if it exists.  The integer key is popped from the stack.
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and NotFound assumes it
** is a string.
**
** See also: Distinct, Found, MoveTo, NotFound, IsUnique
*/
case OP_NotExists: {
  int i = pOp->p1;
  int tos = p->tos;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  VERIFY( if( tos<0 ) goto not_enough_stack; )
  if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
  assert( i>=0 && i<p->nCursor );
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int res, rx, iKey;
    assert( aStack[tos].flags & MEM_Int );
    iKey = intToKey(aStack[tos].i);
    assert( pTos->flags & MEM_Int );
    iKey = intToKey(pTos->i);
    rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
    p->aCsr[i].lastRecno = aStack[tos].i;
    p->aCsr[i].lastRecno = pTos->i;
    p->aCsr[i].recnoIsValid = res==0;
    p->aCsr[i].nullRow = 0;
    if( rx!=SQLITE_OK || res!=0 ){
      pc = pOp->p2 - 1;
      p->aCsr[i].recnoIsValid = 0;
    }
  }
  Release(pTos);
  POPSTACK;
  pTos--;
  break;
}

/* Opcode: NewRecno P1 * *
**
** Get a new integer record number used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to.  The new record number is pushed 
** onto the stack.
*/
case OP_NewRecno: {
  int i = pOp->p1;
  int v = 0;
  Cursor *pC;
  assert( i>=0 && i<p->nCursor );
  if( VERIFY( i<0 || i>=p->nCursor || ) (pC = &p->aCsr[i])->pCursor==0 ){
  if( (pC = &p->aCsr[i])->pCursor==0 ){
    v = 0;
  }else{
    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.
    **
    ** First we attempt to find the largest existing rowid and add one
    ** to that.  But if the largest existing rowid is already the maximum
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912



2913
2914
2915
2916
2917
2918
2919
2888
2889
2890
2891
2892
2893
2894



2895
2896
2897
2898
2899
2900
2901
2902
2903
2904







-
-
-
+
+
+







        rc = SQLITE_FULL;
        goto abort_due_to_error;
      }
    }
    pC->recnoIsValid = 0;
    pC->deferredMoveto = 0;
  }
  p->tos++;
  aStack[p->tos].i = v;
  aStack[p->tos].flags = MEM_Int;
  pTos++;
  pTos->i = v;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: PutIntKey P1 P2 *
**
** Write an entry into the table of cursor P1.  A new entry is
** created if it doesn't already exist or the data for an existing
2933
2934
2935
2936
2937
2938
2939
2940

2941
2942
2943
2944
2945
2946



2947
2948
2949
2950
2951
2952



2953
2954

2955
2956

2957
2958
2959
2960

2961
2962

2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976



2977
2978

2979
2980
2981
2982

2983
2984
2985
2986
2987

2988
2989
2990
2991
2992
2993

2994
2995
2996
2997
2998
2999
3000
3001
2918
2919
2920
2921
2922
2923
2924

2925

2926
2927



2928
2929
2930
2931
2932
2933



2934
2935
2936
2937

2938
2939

2940
2941
2942
2943

2944
2945

2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957



2958
2959
2960


2961
2962
2963
2964

2965
2966
2967
2968
2969

2970

2971
2972
2973
2974

2975

2976
2977
2978
2979
2980
2981
2982







-
+
-


-
-
-
+
+
+



-
-
-
+
+
+

-
+

-
+



-
+

-
+











-
-
-
+
+
+
-
-
+



-
+




-
+
-




-
+
-







** stack.  The key is the next value down on the stack.  The key must
** be a string.  The stack is popped twice by this instruction.
**
** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
*/
case OP_PutIntKey:
case OP_PutStrKey: {
  int tos = p->tos;
  Mem *pNos = &pTos[-1];
  int nos = p->tos-1;
  int i = pOp->p1;
  Cursor *pC;
  VERIFY( if( nos<0 ) goto not_enough_stack; )
  if( VERIFY( i>=0 && i<p->nCursor && )
      ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){
  assert( pNos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){
    char *zKey;
    int nKey, iKey;
    if( pOp->opcode==OP_PutStrKey ){
      Stringify(p, nos);
      nKey = aStack[nos].n;
      zKey = aStack[nos].z;
      Stringify(pNos);
      nKey = pNos->n;
      zKey = pNos->z;
    }else{
      assert( aStack[nos].flags & MEM_Int );
      assert( pNos->flags & MEM_Int );
      nKey = sizeof(int);
      iKey = intToKey(aStack[nos].i);
      iKey = intToKey(pNos->i);
      zKey = (char*)&iKey;
      if( pOp->p2 ){
        db->nChange++;
        db->lastRowid = aStack[nos].i;
        db->lastRowid = pNos->i;
      }
      if( pC->nextRowidValid && aStack[nos].i>=pC->nextRowid ){
      if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){
        pC->nextRowidValid = 0;
      }
    }
    if( pC->pseudoTable ){
      /* PutStrKey does not work for pseudo-tables.
      ** The following assert makes sure we are not trying to use
      ** PutStrKey on a pseudo-table
      */
      assert( pOp->opcode==OP_PutIntKey );
      sqliteFree(pC->pData);
      pC->iKey = iKey;
      pC->nData = aStack[tos].n;
      if( aStack[tos].flags & MEM_Dyn ){
        pC->pData = aStack[tos].z;
      pC->nData = pTos->n;
      if( pTos->flags & MEM_Dyn ){
        pC->pData = pTos->z;
        aStack[tos].z = 0;
        aStack[tos].flags = MEM_Null;
        pTos->flags = MEM_Null;
      }else{
        pC->pData = sqliteMallocRaw( pC->nData );
        if( pC->pData ){
          memcpy(pC->pData, aStack[tos].z, pC->nData);
          memcpy(pC->pData, pTos->z, pC->nData);
        }
      }
      pC->nullRow = 0;
    }else{
      rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey,
      rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
                          aStack[tos].z, aStack[tos].n);
    }
    pC->recnoIsValid = 0;
    pC->deferredMoveto = 0;
  }
  POPSTACK;
  popStack(&pTos, 2);
  POPSTACK;
  break;
}

/* Opcode: Delete P1 P2 *
**
** Delete the record at which the P1 cursor is currently pointing.
**
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064

3065
3066
3067
3068

3069
3070
3071
3072
3073

3074
3075
3076
3077
3078
3079
3080

3081
3082
3083


3084
3085
3086
3087
3088


3089
3090
3091

3092
3093

3094
3095
3096
3097
3098



3099
3100

3101
3102
3103
3104
3105
3106
3107
3035
3036
3037
3038
3039
3040
3041

3042
3043
3044
3045
3046
3047
3048

3049
3050
3051
3052
3053

3054
3055
3056
3057
3058
3059
3060

3061
3062


3063
3064
3065
3066
3067


3068
3069
3070
3071

3072
3073

3074
3075
3076



3077
3078
3079
3080

3081
3082
3083
3084
3085
3086
3087
3088







-



+



-
+




-
+






-
+

-
-
+
+



-
-
+
+


-
+

-
+


-
-
-
+
+
+

-
+







**
** If the cursor is not pointing to a valid row, a NULL is pushed
** onto the stack.
*/
case OP_RowKey:
case OP_RowData: {
  int i = pOp->p1;
  int tos = ++p->tos;
  Cursor *pC;
  int n;

  pTos++;
  assert( i>=0 && i<p->nCursor );
  pC = &p->aCsr[i];
  if( pC->nullRow ){
    aStack[tos].flags = MEM_Null;
    pTos->flags = MEM_Null;
  }else if( pC->pCursor!=0 ){
    BtCursor *pCrsr = pC->pCursor;
    sqliteVdbeCursorMoveto(pC);
    if( pC->nullRow ){
      aStack[tos].flags = MEM_Null;
      pTos->flags = MEM_Null;
      break;
    }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){
      sqliteBtreeKeySize(pCrsr, &n);
    }else{
      sqliteBtreeDataSize(pCrsr, &n);
    }
    aStack[tos].n = n;
    pTos->n = n;
    if( n<=NBFS ){
      aStack[tos].flags = MEM_Str;
      aStack[tos].z = aStack[tos].zShort;
      pTos->flags = MEM_Str | MEM_Short;
      pTos->z = pTos->zShort;
    }else{
      char *z = sqliteMallocRaw( n );
      if( z==0 ) goto no_mem;
      aStack[tos].flags = MEM_Str | MEM_Dyn;
      aStack[tos].z = z;
      pTos->flags = MEM_Str | MEM_Dyn;
      pTos->z = z;
    }
    if( pC->keyAsData || pOp->opcode==OP_RowKey ){
      sqliteBtreeKey(pCrsr, 0, n, aStack[tos].z);
      sqliteBtreeKey(pCrsr, 0, n, pTos->z);
    }else{
      sqliteBtreeData(pCrsr, 0, n, aStack[tos].z);
      sqliteBtreeData(pCrsr, 0, n, pTos->z);
    }
  }else if( pC->pseudoTable ){
    aStack[tos].n = pC->nData;
    aStack[tos].z = pC->pData;
    aStack[tos].flags = MEM_Str|MEM_Ephem;
    pTos->n = pC->nData;
    pTos->z = pC->pData;
    pTos->flags = MEM_Str|MEM_Ephem;
  }else{
    aStack[tos].flags = MEM_Null;
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: Column P1 P2 *
**
** Interpret the data that cursor P1 points to as
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135

3136
3137
3138
3139
3140




3141
3142
3143
3144
3145
3146
3147
3102
3103
3104
3105
3106
3107
3108

3109
3110
3111
3112
3113
3114
3115
3116
3117




3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128







-







+

-
-
-
-
+
+
+
+







** value pushed is always just a pointer into the record which is
** stored further down on the stack.  The column value is not copied.
*/
case OP_Column: {
  int amt, offset, end, payloadSize;
  int i = pOp->p1;
  int p2 = pOp->p2;
  int tos = p->tos+1;
  Cursor *pC;
  char *zRec;
  BtCursor *pCrsr;
  int idxWidth;
  unsigned char aHdr[10];

  assert( i<p->nCursor );
  pTos++;
  if( i<0 ){
    VERIFY( if( tos+i<0 ) goto bad_instruction; )
    VERIFY( if( (aStack[tos+i].flags & MEM_Str)==0 ) goto bad_instruction; )
    zRec = aStack[tos+i].z;
    payloadSize = aStack[tos+i].n;
    assert( &pTos[i]>=p->aStack );
    assert( pTos[i].flags & MEM_Str );
    zRec = pTos[i].z;
    payloadSize = pTos[i].n;
  }else if( (pC = &p->aCsr[i])->pCursor!=0 ){
    sqliteVdbeCursorMoveto(pC);
    zRec = 0;
    pCrsr = pC->pCursor;
    if( pC->nullRow ){
      payloadSize = 0;
    }else if( pC->keyAsData ){
3157
3158
3159
3160
3161
3162
3163
3164

3165
3166
3167
3168
3169
3170
3171
3172
3138
3139
3140
3141
3142
3143
3144

3145

3146
3147
3148
3149
3150
3151
3152







-
+
-







    payloadSize = 0;
  }

  /* Figure out how many bytes in the column data and where the column
  ** data begins.
  */
  if( payloadSize==0 ){
    aStack[tos].flags = MEM_Null;
    pTos->flags = MEM_Null;
    p->tos = tos;
    break;
  }else if( payloadSize<256 ){
    idxWidth = 1;
  }else if( payloadSize<65536 ){
    idxWidth = 2;
  }else{
    idxWidth = 3;
3200
3201
3202
3203
3204
3205
3206

3207
3208

3209
3210

3211
3212

3213
3214
3215
3216


3217
3218
3219
3220
3221
3222


3223
3224
3225
3226

3227
3228

3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250

3251
3252
3253
3254
3255
3256

3257
3258
3259
3260
3261
3262
3263
3264


3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286





3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299

3300
3301
3302


3303
3304
3305
3306


3307
3308
3309
3310
3311
3312
3313
3180
3181
3182
3183
3184
3185
3186
3187
3188

3189
3190

3191


3192
3193
3194


3195
3196

3197
3198
3199


3200
3201

3202
3203

3204
3205

3206
3207
3208

3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220

3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232

3233
3234
3235
3236
3237
3238
3239


3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257

3258
3259



3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276

3277
3278


3279
3280
3281
3282


3283
3284
3285
3286
3287
3288
3289
3290
3291







+

-
+

-
+
-
-
+


-
-
+
+
-



-
-
+
+
-


-
+

-
+


-












-






+





-
+






-
-
+
+
















-


-
-
-
+
+
+
+
+












-
+

-
-
+
+


-
-
+
+







    rc = SQLITE_CORRUPT;
    goto abort_due_to_error;
  }

  /* amt and offset now hold the offset to the start of data and the
  ** amount of data.  Go get the data and put it on the stack.
  */
  pTos->n = amt;
  if( amt==0 ){
    aStack[tos].flags = MEM_Null;
    pTos->flags = MEM_Null;
  }else if( zRec ){
    aStack[tos].flags = MEM_Str | MEM_Ephem;
    pTos->flags = MEM_Str | MEM_Ephem;
    aStack[tos].n = amt;
    aStack[tos].z = &zRec[offset];
    pTos->z = &zRec[offset];
  }else{
    if( amt<=NBFS ){
      aStack[tos].flags = MEM_Str;
      aStack[tos].z = aStack[tos].zShort;
      pTos->flags = MEM_Str | MEM_Short;
      pTos->z = pTos->zShort;
      aStack[tos].n = amt;
    }else{
      char *z = sqliteMallocRaw( amt );
      if( z==0 ) goto no_mem;
      aStack[tos].flags = MEM_Str | MEM_Dyn;
      aStack[tos].z = z;
      pTos->flags = MEM_Str | MEM_Dyn;
      pTos->z = z;
      aStack[tos].n = amt;
    }
    if( pC->keyAsData ){
      sqliteBtreeKey(pCrsr, offset, amt, aStack[tos].z);
      sqliteBtreeKey(pCrsr, offset, amt, pTos->z);
    }else{
      sqliteBtreeData(pCrsr, offset, amt, aStack[tos].z);
      sqliteBtreeData(pCrsr, offset, amt, pTos->z);
    }
  }
  p->tos = tos;
  break;
}

/* Opcode: Recno P1 * *
**
** Push onto the stack an integer which is the first 4 bytes of the
** the key to the current entry in a sequential scan of the database
** file P1.  The sequential scan should have been started using the 
** Next opcode.
*/
case OP_Recno: {
  int i = pOp->p1;
  int tos = ++p->tos;
  Cursor *pC;
  int v;

  assert( i>=0 && i<p->nCursor );
  pC = &p->aCsr[i];
  sqliteVdbeCursorMoveto(pC);
  pTos++;
  if( pC->recnoIsValid ){
    v = pC->lastRecno;
  }else if( pC->pseudoTable ){
    v = keyToInt(pC->iKey);
  }else if( pC->nullRow || pC->pCursor==0 ){
    aStack[tos].flags = MEM_Null;
    pTos->flags = MEM_Null;
    break;
  }else{
    assert( pC->pCursor!=0 );
    sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v);
    v = keyToInt(v);
  }
  aStack[tos].i = v;
  aStack[tos].flags = MEM_Int;
  pTos->i = v;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: FullKey P1 * *
**
** Extract the complete key from the record that cursor P1 is currently
** pointing to and push the key onto the stack as a string.
**
** Compare this opcode to Recno.  The Recno opcode extracts the first
** 4 bytes of the key and pushes those bytes onto the stack as an
** integer.  This instruction pushes the entire key as a string.
**
** This opcode may not be used on a pseudo-table.
*/
case OP_FullKey: {
  int i = pOp->p1;
  int tos = ++p->tos;
  BtCursor *pCrsr;

  VERIFY( if( !p->aCsr[i].keyAsData ) goto bad_instruction; )
  VERIFY( if( p->aCsr[i].pseudoTable ) goto bad_instruction; )
  if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
  assert( p->aCsr[i].keyAsData );
  assert( !p->aCsr[i].pseudoTable );
  assert( i>=0 && i<p->nCursor );
  pTos++;
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int amt;
    char *z;

    sqliteVdbeCursorMoveto(&p->aCsr[i]);
    sqliteBtreeKeySize(pCrsr, &amt);
    if( amt<=0 ){
      rc = SQLITE_CORRUPT;
      goto abort_due_to_error;
    }
    if( amt>NBFS ){
      z = sqliteMallocRaw( amt );
      if( z==0 ) goto no_mem;
      aStack[tos].flags = MEM_Str | MEM_Dyn;
      pTos->flags = MEM_Str | MEM_Dyn;
    }else{
      z = aStack[tos].zShort;
      aStack[tos].flags = MEM_Str;
      z = pTos->zShort;
      pTos->flags = MEM_Str | MEM_Short;
    }
    sqliteBtreeKey(pCrsr, 0, amt, z);
    aStack[tos].z = z;
    aStack[tos].n = amt;
    pTos->z = z;
    pTos->n = amt;
  }
  break;
}

/* Opcode: NullRow P1 * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
3436
3437
3438
3439
3440
3441
3442
3443
3444

3445
3446
3447
3448





3449
3450
3451

3452
3453
3454
3455
3456
3457
3458
3414
3415
3416
3417
3418
3419
3420

3421
3422




3423
3424
3425
3426
3427
3428
3429

3430
3431
3432
3433
3434
3435
3436
3437







-

+
-
-
-
-
+
+
+
+
+


-
+







** If P2==1, then the key must be unique.  If the key is not unique,
** the program aborts with a SQLITE_CONSTRAINT error and the database
** is rolled back.  If P3 is not null, then it becomes part of the
** error message returned with the SQLITE_CONSTRAINT.
*/
case OP_IdxPut: {
  int i = pOp->p1;
  int tos = p->tos;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  VERIFY( if( tos<0 ) goto not_enough_stack; )
  if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int nKey = aStack[tos].n;
    const char *zKey = aStack[tos].z;
  assert( i>=0 && i<p->nCursor );
  assert( pTos->flags & MEM_Str );
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int nKey = pTos->n;
    const char *zKey = pTos->z;
    if( pOp->p2 ){
      int res, n;
      assert( aStack[tos].n >= 4 );
      assert( nKey >= 4 );
      rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
      while( res!=0 ){
        int c;
        sqliteBtreeKeySize(pCrsr, &n);
        if( n==nKey
           && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK
3471
3472
3473
3474
3475
3476
3477

3478

3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490

3491
3492



3493
3494

3495
3496
3497
3498
3499

3500

3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517


3518

3519
3520
3521
3522
3523
3524

3525
3526
3527
3528
3529


3530


3531
3532
3533
3534
3535
3536
3537
3450
3451
3452
3453
3454
3455
3456
3457

3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468

3469
3470


3471
3472
3473
3474

3475
3476
3477
3478
3479
3480
3481

3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496

3497
3498
3499
3500

3501
3502
3503
3504
3505
3506

3507
3508
3509
3510


3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522







+
-
+










-

+
-
-
+
+
+

-
+





+
-
+














-


+
+
-
+





-
+



-
-
+
+

+
+







          break;
        }
      }
    }
    rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0);
    assert( p->aCsr[i].deferredMoveto==0 );
  }
  Release(pTos);
  POPSTACK;
  pTos--;
  break;
}

/* Opcode: IdxDelete P1 * *
**
** The top of the stack is an index key built using the MakeIdxKey opcode.
** This opcode removes that entry from the index.
*/
case OP_IdxDelete: {
  int i = pOp->p1;
  int tos = p->tos;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  VERIFY( if( tos<0 ) goto not_enough_stack; )
  if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
  assert( pTos->flags & MEM_Str );
  assert( i>=0 && i<p->nCursor );
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int rx, res;
    rx = sqliteBtreeMoveto(pCrsr, aStack[tos].z, aStack[tos].n, &res);
    rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
    if( rx==SQLITE_OK && res==0 ){
      rc = sqliteBtreeDelete(pCrsr);
    }
    assert( p->aCsr[i].deferredMoveto==0 );
  }
  Release(pTos);
  POPSTACK;
  pTos--;
  break;
}

/* Opcode: IdxRecno P1 * *
**
** Push onto the stack an integer which is the last 4 bytes of the
** the key to the current entry in index P1.  These 4 bytes should
** be the record number of the table entry to which this index entry
** points.
**
** See also: Recno, MakeIdxKey.
*/
case OP_IdxRecno: {
  int i = pOp->p1;
  int tos = ++p->tos;
  BtCursor *pCrsr;

  assert( i>=0 && i<p->nCursor );
  pTos++;
  if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int v;
    int sz;
    assert( p->aCsr[i].deferredMoveto==0 );
    sqliteBtreeKeySize(pCrsr, &sz);
    if( sz<sizeof(u32) ){
      aStack[tos].flags = MEM_Null;
      pTos->flags = MEM_Null;
    }else{
      sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
      v = keyToInt(v);
      aStack[tos].i = v;
      aStack[tos].flags = MEM_Int;
      pTos->i = v;
      pTos->flags = MEM_Int;
    }
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: IdxGT P1 P2 *
**
** Compare the top of the stack against the key on the index entry that
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566


3567

3568
3569
3570

3571
3572

3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584

3585

3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607




3608
3609
3610
3611
3612
3613
3614
3615

3616

3617
3618
3619
3620
3621
3622
3623
3542
3543
3544
3545
3546
3547
3548

3549
3550
3551
3552

3553
3554
3555

3556
3557

3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571

3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586

3587
3588
3589




3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602

3603
3604
3605
3606
3607
3608
3609
3610







-


+
+
-
+


-
+

-
+












+
-
+














-



-
-
-
-
+
+
+
+








+
-
+







** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
case OP_IdxLT:
case OP_IdxGT:
case OP_IdxGE: {
  int i= pOp->p1;
  int tos = p->tos;
  BtCursor *pCrsr;

  assert( i>=0 && i<p->nCursor );
  assert( pTos>=p->aStack );
  if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int res, rc;
 
    Stringify(p, tos);
    Stringify(pTos);
    assert( p->aCsr[i].deferredMoveto==0 );
    rc = sqliteBtreeKeyCompare(pCrsr, aStack[tos].z, aStack[tos].n, 4, &res);
    rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res);
    if( rc!=SQLITE_OK ){
      break;
    }
    if( pOp->opcode==OP_IdxLT ){
      res = -res;
    }else if( pOp->opcode==OP_IdxGE ){
      res++;
    }
    if( res>0 ){
      pc = pOp->p2 - 1 ;
    }
  }
  Release(pTos);
  POPSTACK;
  pTos--;
  break;
}

/* Opcode: IdxIsNull P1 P2 *
**
** The top of the stack contains an index entry such as might be generated
** by the MakeIdxKey opcode.  This routine looks at the first P1 fields of
** that key.  If any of the first P1 fields are NULL, then a jump is made
** to address P2.  Otherwise we fall straight through.
**
** The index entry is always popped from the stack.
*/
case OP_IdxIsNull: {
  int i = pOp->p1;
  int tos = p->tos;
  int k, n;
  const char *z;

  assert( tos>=0 );
  assert( aStack[tos].flags & MEM_Str );
  z = aStack[tos].z;
  n = aStack[tos].n;
  assert( pTos>=p->aStack );
  assert( pTos->flags & MEM_Str );
  z = pTos->z;
  n = pTos->n;
  for(k=0; k<n && i>0; i--){
    if( z[k]=='a' ){
      pc = pOp->p2-1;
      break;
    }
    while( k<n && z[k] ){ k++; }
    k++;
  }
  Release(pTos);
  POPSTACK;
  pTos--;
  break;
}

/* Opcode: Destroy P1 P2 *
**
** Delete an entire database table or index whose root page in the database
** file is given by P1.
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689

3690
3691
3692


3693
3694
3695
3696
3697
3698
3699
3660
3661
3662
3663
3664
3665
3666

3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677


3678
3679
3680
3681
3682
3683
3684
3685
3686







-









+

-
-
+
+







** auxiliary database file if P2==1.  Push the page number of the
** root page of the new index onto the stack.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex:
case OP_CreateTable: {
  int i = ++p->tos;
  int pgno;
  assert( pOp->p3!=0 && pOp->p3type==P3_POINTER );
  assert( pOp->p2>=0 && pOp->p2<db->nDb );
  assert( db->aDb[pOp->p2].pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){
    rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno);
  }else{
    rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno);
  }
  pTos++;
  if( rc==SQLITE_OK ){
    aStack[i].i = pgno;
    aStack[i].flags = MEM_Int;
    pTos->i = pgno;
    pTos->flags = MEM_Int;
    *(u32*)pOp->p3 = pgno;
    pOp->p3 = 0;
  }
  break;
}

/* Opcode: IntegrityCk P1 P2 *
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725


3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741



3742
3743
3744
3745



3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758

3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771




3772
3773
3774
3775
3776
3777
3778
3698
3699
3700
3701
3702
3703
3704

3705
3706
3707
3708
3709
3710

3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725



3726
3727
3728
3729



3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744

3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755



3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766







-






-
+
+













-
-
-
+
+
+

-
-
-
+
+
+












-
+










-
-
-
+
+
+
+







** file, not the main database file.
**
** This opcode is used for testing purposes only.
*/
case OP_IntegrityCk: {
  int nRoot;
  int *aRoot;
  int tos = ++p->tos;
  int iSet = pOp->p1;
  Set *pSet;
  int j;
  HashElem *i;
  char *z;

  VERIFY( if( iSet<0 || iSet>=p->nSet ) goto bad_instruction; )
  assert( iSet>=0 && iSet<p->nSet );
  pTos++;
  pSet = &p->aSet[iSet];
  nRoot = sqliteHashCount(&pSet->hash);
  aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) );
  if( aRoot==0 ) goto no_mem;
  for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){
    toInt((char*)sqliteHashKey(i), &aRoot[j]);
  }
  aRoot[j] = 0;
  sqliteHashClear(&pSet->hash);
  pSet->prev = 0;
  z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
  if( z==0 || z[0]==0 ){
    if( z ) sqliteFree(z);
    aStack[tos].z = "ok";
    aStack[tos].n = 3;
    aStack[tos].flags = MEM_Str | MEM_Static;
    pTos->z = "ok";
    pTos->n = 3;
    pTos->flags = MEM_Str | MEM_Static;
  }else{
    aStack[tos].z = z;
    aStack[tos].n = strlen(z) + 1;
    aStack[tos].flags = MEM_Str | MEM_Dyn;
    pTos->z = z;
    pTos->n = strlen(z) + 1;
    pTos->flags = MEM_Str | MEM_Dyn;
  }
  sqliteFree(aRoot);
  break;
}

/* Opcode: ListWrite * * *
**
** Write the integer on the top of the stack
** into the temporary storage list.
*/
case OP_ListWrite: {
  Keylist *pKeylist;
  VERIFY( if( p->tos<0 ) goto not_enough_stack; )
  assert( pTos>=p->aStack );
  pKeylist = p->pList;
  if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
    pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
    if( pKeylist==0 ) goto no_mem;
    pKeylist->nKey = 1000;
    pKeylist->nRead = 0;
    pKeylist->nUsed = 0;
    pKeylist->pNext = p->pList;
    p->pList = pKeylist;
  }
  Integerify(p, p->tos);
  pKeylist->aKey[pKeylist->nUsed++] = aStack[p->tos].i;
  POPSTACK;
  Integerify(pTos);
  pKeylist->aKey[pKeylist->nUsed++] = pTos->i;
  assert( pTos->flags==MEM_Int );
  pTos--;
  break;
}

/* Opcode: ListRewind * * *
**
** Rewind the temporary buffer back to the beginning.  This is 
** now a no-op.
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799



3800
3801
3802
3803



3804
3805
3806
3807
3808
3809
3810
3811
3777
3778
3779
3780
3781
3782
3783




3784
3785
3786




3787
3788
3789

3790
3791
3792
3793
3794
3795
3796







-
-
-
-
+
+
+
-
-
-
-
+
+
+
-







** push nothing but instead jump to P2.
*/
case OP_ListRead: {
  Keylist *pKeylist;
  CHECK_FOR_INTERRUPT;
  pKeylist = p->pList;
  if( pKeylist!=0 ){
    VERIFY(
      if( pKeylist->nRead<0 
        || pKeylist->nRead>=pKeylist->nUsed
        || pKeylist->nRead>=pKeylist->nKey ) goto bad_instruction;
    assert( pKeylist->nRead>=0 );
    assert( pKeylist->nRead<pKeylist->nUsed );
    assert( pKeylist->nRead<pKeylist->nKey );
    )
    p->tos++;
    aStack[p->tos].i = pKeylist->aKey[pKeylist->nRead++];
    aStack[p->tos].flags = MEM_Int;
    pTos++;
    pTos->i = pKeylist->aKey[pKeylist->nRead++];
    pTos->flags = MEM_Int;
    aStack[p->tos].z = 0;
    if( pKeylist->nRead>=pKeylist->nUsed ){
      p->pList = pKeylist->pNext;
      sqliteFree(pKeylist);
    }
  }else{
    pc = pOp->p2 - 1;
  }
3861
3862
3863
3864
3865
3866
3867
3868

3869
3870
3871
3872


3873
3874
3875
3876
3877
3878
3879
3880





3881
3882

3883
3884
3885
3886
3887
3888
3889
3890

3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905


3906
3907
3908


3909
3910
3911
3912
3913




3914
3915
3916
3917
3918
3919
3920
3921
3922



3923
3924
3925
3926



3927
3928
3929
3930
3931
3932
3933





3934
3935
3936
3937
3938
3939
3940
3846
3847
3848
3849
3850
3851
3852

3853

3854


3855
3856
3857
3858
3859
3860




3861
3862
3863
3864
3865


3866








3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881

3882
3883
3884
3885

3886
3887
3888




3889
3890
3891
3892
3893
3894
3895
3896
3897
3898



3899
3900
3901
3902



3903
3904
3905
3906
3907





3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919







-
+
-

-
-
+
+




-
-
-
-
+
+
+
+
+
-
-
+
-
-
-
-
-
-
-
-
+














-
+
+


-
+
+

-
-
-
-
+
+
+
+






-
-
-
+
+
+

-
-
-
+
+
+


-
-
-
-
-
+
+
+
+
+







/* Opcode: SortPut * * *
**
** The TOS is the key and the NOS is the data.  Pop both from the stack
** and put them on the sorter.  The key and data should have been
** made using SortMakeKey and SortMakeRec, respectively.
*/
case OP_SortPut: {
  int tos = p->tos;
  Mem *pNos = &pTos[-1];
  int nos = tos - 1;
  Sorter *pSorter;
  VERIFY( if( tos<1 ) goto not_enough_stack; )
  if( Dynamicify(p, tos) || Dynamicify(p, nos) ) goto no_mem;
  assert( pNos>=p->aStack );
  if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem;
  pSorter = sqliteMallocRaw( sizeof(Sorter) );
  if( pSorter==0 ) goto no_mem;
  pSorter->pNext = p->pSort;
  p->pSort = pSorter;
  assert( aStack[tos].flags & MEM_Dyn );
  pSorter->nKey = aStack[tos].n;
  pSorter->zKey = aStack[tos].z;
  pSorter->nData = aStack[nos].n;
  assert( pTos->flags & MEM_Dyn );
  pSorter->nKey = pTos->n;
  pSorter->zKey = pTos->z;
  assert( pNos->flags & MEM_Dyn );
  pSorter->nData = pNos->n;
  if( aStack[nos].flags & MEM_Dyn ){
    pSorter->pData = aStack[nos].z;
  pSorter->pData = pNos->z;
  }else{
    pSorter->pData = sqliteStrDup(aStack[nos].z);
  }
  aStack[tos].flags = 0;
  aStack[nos].flags = 0;
  aStack[tos].z = 0;
  aStack[nos].z = 0;
  p->tos -= 2;
  pTos -= 2;
  break;
}

/* Opcode: SortMakeRec P1 * *
**
** The top P1 elements are the arguments to a callback.  Form these
** elements into a single data entry that can be stored on a sorter
** using SortPut and later fed to a callback using SortCallback.
*/
case OP_SortMakeRec: {
  char *z;
  char **azArg;
  int nByte;
  int nField;
  int i, j;
  int i;
  Mem *pRec;

  nField = pOp->p1;
  VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
  pRec = &pTos[1-nField];
  assert( pRec>=p->aStack );
  nByte = 0;
  for(i=p->tos-nField+1; i<=p->tos; i++){
    if( (aStack[i].flags & MEM_Null)==0 ){
      Stringify(p, i);
      nByte += aStack[i].n;
  for(i=0; i<nField; i++, pRec++){
    if( (pRec->flags & MEM_Null)==0 ){
      Stringify(pRec);
      nByte += pRec->n;
    }
  }
  nByte += sizeof(char*)*(nField+1);
  azArg = sqliteMallocRaw( nByte );
  if( azArg==0 ) goto no_mem;
  z = (char*)&azArg[nField+1];
  for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){
    if( aStack[i].flags & MEM_Null ){
      azArg[j] = 0;
  for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
    if( pRec->flags & MEM_Null ){
      azArg[i] = 0;
    }else{
      azArg[j] = z;
      strcpy(z, aStack[i].z);
      z += aStack[i].n;
      azArg[i] = z;
      memcpy(z, pRec->z, pRec->n);
      z += pRec->n;
    }
  }
  sqliteVdbePopStack(p, nField);
  p->tos++;
  aStack[p->tos].n = nByte;
  aStack[p->tos].z = (char*)azArg;
  aStack[p->tos].flags = MEM_Str|MEM_Dyn;
  popStack(&pTos, nField);
  pTos++;
  pTos->n = nByte;
  pTos->z = (char*)azArg;
  pTos->flags = MEM_Str | MEM_Dyn;
  break;
}

/* Opcode: SortMakeKey * * P3
**
** Convert the top few entries of the stack into a sort key.  The
** number of stack entries consumed is the number of characters in 
3950
3951
3952
3953
3954
3955
3956

3957
3958
3959

3960
3961
3962


3963
3964
3965
3966


3967
3968
3969
3970
3971
3972
3973
3974


3975
3976
3977
3978
3979
3980
3981


3982
3983
3984
3985
3986
3987
3988
3989
3990
3991





3992
3993
3994
3995
3996
3997
3998
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938

3939
3940


3941
3942
3943
3944


3945
3946
3947
3948
3949
3950
3951
3952


3953
3954
3955
3956
3957
3958
3959


3960
3961
3962
3963
3964
3965
3966





3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978







+


-
+

-
-
+
+


-
-
+
+






-
-
+
+





-
-
+
+





-
-
-
-
-
+
+
+
+
+







** See also the MakeKey and MakeIdxKey opcodes.
*/
case OP_SortMakeKey: {
  char *zNewKey;
  int nByte;
  int nField;
  int i, j, k;
  Mem *pRec;

  nField = strlen(pOp->p3);
  VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
  pRec = &pTos[1-nField];
  nByte = 1;
  for(i=p->tos-nField+1; i<=p->tos; i++){
    if( (aStack[i].flags & MEM_Null)!=0 ){
  for(i=0; i<nField; i++, pRec++){
    if( pRec->flags & MEM_Null ){
      nByte += 2;
    }else{
      Stringify(p, i);
      nByte += aStack[i].n+2;
      Stringify(pRec);
      nByte += pRec->n+2;
    }
  }
  zNewKey = sqliteMallocRaw( nByte );
  if( zNewKey==0 ) goto no_mem;
  j = 0;
  k = 0;
  for(i=p->tos-nField+1; i<=p->tos; i++){
    if( (aStack[i].flags & MEM_Null)!=0 ){
  for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
    if( pRec->flags & MEM_Null ){
      zNewKey[j++] = 'N';
      zNewKey[j++] = 0;
      k++;
    }else{
      zNewKey[j++] = pOp->p3[k++];
      memcpy(&zNewKey[j], aStack[i].z, aStack[i].n-1);
      j += aStack[i].n-1;
      memcpy(&zNewKey[j], pRec->z, pRec->n-1);
      j += pRec->n-1;
      zNewKey[j++] = 0;
    }
  }
  zNewKey[j] = 0;
  assert( j<nByte );
  sqliteVdbePopStack(p, nField);
  p->tos++;
  aStack[p->tos].n = nByte;
  aStack[p->tos].flags = MEM_Str|MEM_Dyn;
  aStack[p->tos].z = zNewKey;
  popStack(&pTos, nField);
  pTos++;
  pTos->n = nByte;
  pTos->flags = MEM_Str|MEM_Dyn;
  pTos->z = zNewKey;
  break;
}

/* Opcode: Sort * * *
**
** Sort all elements on the sorter.  The algorithm is a
** mergesort.
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047




4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065


4066
4067
4068

4069
4070

4071
4072
4073
4074

4075
4076
4077
4078
4079

4080

4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100

4101
4102
4103
4104
4105
4106
4107
4017
4018
4019
4020
4021
4022
4023




4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043


4044
4045
4046
4047

4048
4049
4050
4051
4052
4053
4054

4055
4056
4057
4058
4059
4060
4061

4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081

4082
4083
4084
4085
4086
4087
4088
4089







-
-
-
-
+
+
+
+
















-
-
+
+


-
+


+



-
+





+
-
+



















-
+







** to instruction P2.
*/
case OP_SortNext: {
  Sorter *pSorter = p->pSort;
  CHECK_FOR_INTERRUPT;
  if( pSorter!=0 ){
    p->pSort = pSorter->pNext;
    p->tos++;
    aStack[p->tos].z = pSorter->pData;
    aStack[p->tos].n = pSorter->nData;
    aStack[p->tos].flags = MEM_Str|MEM_Dyn;
    pTos++;
    pTos->z = pSorter->pData;
    pTos->n = pSorter->nData;
    pTos->flags = MEM_Str|MEM_Dyn;
    sqliteFree(pSorter->zKey);
    sqliteFree(pSorter);
  }else{
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: SortCallback P1 * *
**
** The top of the stack contains a callback record built using
** the SortMakeRec operation with the same P1 value as this
** instruction.  Pop this record from the stack and invoke the
** callback on it.
*/
case OP_SortCallback: {
  int i = p->tos;
  VERIFY( if( i<0 ) goto not_enough_stack; )
  assert( pTos>=p->aStack );
  assert( pTos->flags & MEM_Str );
  if( p->xCallback==0 ){
    p->pc = pc+1;
    p->azResColumn = (char**)aStack[i].z;
    p->azResColumn = (char**)pTos->z;
    p->nResColumn = pOp->p1;
    p->popStack = 1;
    p->pTos = pTos;
    return SQLITE_ROW;
  }else{
    if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
    if( p->xCallback(p->pCbArg, pOp->p1, (char**)aStack[i].z, p->azColName)!=0){
    if( p->xCallback(p->pCbArg, pOp->p1, (char**)pTos->z, p->azColName)!=0){
      rc = SQLITE_ABORT;
    }
    if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
    p->nCallback++;
  }
  Release(pTos);
  POPSTACK;
  pTos--;
  if( sqlite_malloc_failed ) goto no_mem;
  break;
}

/* Opcode: SortReset * * *
**
** Remove any elements that remain on the sorter.
*/
case OP_SortReset: {
  sqliteVdbeSorterReset(p);
  break;
}

/* Opcode: FileOpen * * P3
**
** Open the file named by P3 for reading using the FileRead opcode.
** If P3 is "stdin" then open standard input for reading.
*/
case OP_FileOpen: {
  VERIFY( if( pOp->p3==0 ) goto bad_instruction; )
  assert( pOp->p3!=0 );
  if( p->pFile ){
    if( p->pFile!=stdin ) fclose(p->pFile);
    p->pFile = 0;
  }
  if( sqliteStrICmp(pOp->p3,"stdin")==0 ){
    p->pFile = stdin;
  }else{
4238
4239
4240
4241
4242
4243
4244
4245


4246
4247
4248
4249
4250

4251
4252
4253
4254



4255
4256
4257
4258

4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279

4280
4281
4282
4283
4284
4285
4286
4287
4288
4289

4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306

4307
4308
4309
4310
4311





4312
4313
4314

4315
4316
4317
4318

4319
4320
4321
4322
4323
4324


4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344




4345
4346
4347


4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364

4365
4366

4367
4368
4369
4370
4371
4372
4373
4220
4221
4222
4223
4224
4225
4226

4227
4228
4229
4230
4231
4232

4233
4234



4235
4236
4237
4238



4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255

4256
4257
4258

4259
4260
4261
4262
4263
4264
4265
4266
4267
4268

4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285

4286
4287




4288
4289
4290
4291
4292
4293
4294

4295


4296

4297
4298
4299
4300
4301


4302
4303

4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317

4318



4319
4320
4321
4322



4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340

4341
4342

4343
4344
4345
4346
4347
4348
4349
4350







-
+
+




-
+

-
-
-
+
+
+

-
-
-
+
















-



-
+









-
+
















-
+

-
-
-
-
+
+
+
+
+


-
+
-
-

-
+




-
-
+
+
-














-

-
-
-
+
+
+
+
-
-
-
+
+
















-
+

-
+







**
** Push onto the stack the P1-th column of the most recently read line
** from the input file.
*/
case OP_FileColumn: {
  int i = pOp->p1;
  char *z;
  if( VERIFY( i>=0 && i<p->nField && ) p->azField ){
  assert( i>=0 && i<p->nField );
  if( p->azField ){
    z = p->azField[i];
  }else{
    z = 0;
  }
  p->tos++;
  pTos++;
  if( z ){
    aStack[p->tos].n = strlen(z) + 1;
    aStack[p->tos].z = z;
    aStack[p->tos].flags = MEM_Str;
    pTos->n = strlen(z) + 1;
    pTos->z = z;
    pTos->flags = MEM_Str | MEM_Ephem;
  }else{
    aStack[p->tos].n = 0;
    aStack[p->tos].z = 0;
    aStack[p->tos].flags = MEM_Null;
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: MemStore P1 P2 *
**
** Write the top of the stack into memory location P1.
** P1 should be a small integer since space is allocated
** for all memory locations between 0 and P1 inclusive.
**
** After the data is stored in the memory location, the
** stack is popped once if P2 is 1.  If P2 is zero, then
** the original data remains on the stack.
*/
case OP_MemStore: {
  int i = pOp->p1;
  int tos = p->tos;
  char *zOld;
  Mem *pMem;
  int flags;
  VERIFY( if( tos<0 ) goto not_enough_stack; )
  assert( pTos>=p->aStack );
  if( i>=p->nMem ){
    int nOld = p->nMem;
    Mem *aMem;
    p->nMem = i + 5;
    aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
    if( aMem==0 ) goto no_mem;
    if( aMem!=p->aMem ){
      int j;
      for(j=0; j<nOld; j++){
        if( aMem[j].z==p->aMem[j].zShort ){
        if( aMem[j].flags & MEM_Short ){
          aMem[j].z = aMem[j].zShort;
        }
      }
    }
    p->aMem = aMem;
    if( nOld<p->nMem ){
      memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
    }
  }
  pMem = &p->aMem[i];
  flags = pMem->flags;
  if( flags & MEM_Dyn ){
    zOld = pMem->z;
  }else{
    zOld = 0;
  }
  *pMem = aStack[tos];
  *pMem = *pTos;
  flags = pMem->flags;
  if( flags & (MEM_Static|MEM_Dyn|MEM_Ephem) ){
    if( (flags & MEM_Static)!=0 || (pOp->p2 && (flags & MEM_Dyn)!=0) ){
      /* pMem->z = zStack[tos]; *** do nothing */
    }else if( flags & MEM_Str ){
  if( flags & MEM_Dyn ){
    if( pOp->p2 ){
      pTos->flags = MEM_Null;
    }else{
      /* OR: perhaps just make the stack ephermeral */
      pMem->z = sqliteMallocRaw( pMem->n );
      if( pMem->z==0 ) goto no_mem;
      memcpy(pMem->z, aStack[tos].z, pMem->n);
      memcpy(pMem->z, pTos->z, pMem->n);
      pMem->flags |= MEM_Dyn;
      pMem->flags &= ~(MEM_Static|MEM_Ephem);
    }
  }else{
  }else if( flags & MEM_Short ){
    pMem->z = pMem->zShort;
  }
  if( zOld ) sqliteFree(zOld);
  if( pOp->p2 ){
    aStack[tos].z = 0;
    aStack[tos].flags = 0;
    Release(pTos);
    pTos--;
    POPSTACK;
  }
  break;
}

/* Opcode: MemLoad P1 * *
**
** Push a copy of the value in memory location P1 onto the stack.
**
** If the value is a string, then the value pushed is a pointer to
** the string that is stored in the memory location.  If the memory
** location is subsequently changed (using OP_MemStore) then the
** value pushed onto the stack will change too.
*/
case OP_MemLoad: {
  int tos = ++p->tos;
  int i = pOp->p1;
  VERIFY( if( i<0 || i>=p->nMem ) goto bad_instruction; )
  memcpy(&aStack[tos], &p->aMem[i], sizeof(aStack[tos])-NBFS);;
  if( aStack[tos].flags & MEM_Str ){
  assert( i>=0 && i<p->nMem );
  pTos++;
  memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);;
  if( pTos->flags & MEM_Str ){
    /* aStack[tos].z = p->aMem[i].z; */
    aStack[tos].flags |= MEM_Ephem;
    aStack[tos].flags &= ~(MEM_Dyn|MEM_Static);
    pTos->flags |= MEM_Ephem;
    pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
  }
  break;
}

/* Opcode: MemIncr P1 P2 *
**
** Increment the integer valued memory cell P1 by 1.  If P2 is not zero
** and the result after the increment is greater than zero, then jump
** to P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemIncr: {
  int i = pOp->p1;
  Mem *pMem;
  VERIFY( if( i<0 || i>=p->nMem ) goto bad_instruction; )
  assert( i>=0 && i<p->nMem );
  pMem = &p->aMem[i];
  VERIFY( if( pMem->flags != MEM_Int ) goto bad_instruction; )
  assert( pMem->flags==MEM_Int );
  pMem->i++;
  if( pOp->p2>0 && pMem->i>0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

4388
4389
4390
4391
4392
4393
4394
4395

4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414


4415
4416
4417

4418
4419
4420
4421
4422






4423
4424


4425
4426
4427
4428
4429


4430
4431
4432
4433
4434
4435
4436
4437

4438
4439
4440

4441
4442
4443
4444
4445
4446
4447
4365
4366
4367
4368
4369
4370
4371

4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390

4391
4392
4393
4394

4395





4396
4397
4398
4399
4400
4401
4402

4403
4404
4405

4406


4407
4408
4409
4410
4411
4412
4413
4414
4415

4416
4417
4418

4419
4420
4421
4422
4423
4424
4425
4426







-
+


















-
+
+


-
+
-
-
-
-
-
+
+
+
+
+
+

-
+
+

-

-
-
+
+







-
+


-
+







**
** Initialize the function parameters for an aggregate function.
** The aggregate will operate out of aggregate column P2.
** P3 is a pointer to the FuncDef structure for the function.
*/
case OP_AggInit: {
  int i = pOp->p2;
  VERIFY( if( i<0 || i>=p->agg.nMem ) goto bad_instruction; )
  assert( i>=0 && i<p->agg.nMem );
  p->agg.apFunc[i] = (FuncDef*)pOp->p3;
  break;
}

/* Opcode: AggFunc * P2 P3
**
** Execute the step function for an aggregate.  The
** function has P2 arguments.  P3 is a pointer to the FuncDef
** structure that specifies the function.
**
** The top of the stack must be an integer which is the index of
** the aggregate column that corresponds to this aggregate function.
** Ideally, this index would be another parameter, but there are
** no free parameters left.  The integer is popped from the stack.
*/
case OP_AggFunc: {
  int n = pOp->p2;
  int i;
  Mem *pMem;
  Mem *pMem, *pRec;
  char **azArgv = p->zArgv;
  sqlite_func ctx;

  VERIFY( if( n<0 ) goto bad_instruction; )
  assert( n>=0 );
  VERIFY( if( p->tos+1<n ) goto not_enough_stack; )
  VERIFY( if( aStack[p->tos].flags!=MEM_Int ) goto bad_instruction; )
  for(i=p->tos-n; i<p->tos; i++){
    if( aStack[i].flags & MEM_Null ){
      aStack[i].z = 0;
  assert( pTos->flags==MEM_Int );
  pRec = &pTos[-n];
  assert( pRec>=p->aStack );
  for(i=0; i<n; i++, pRec++){
    if( pRec->flags & MEM_Null ){
      azArgv[i] = 0;
    }else{
      Stringify(p, i);
      Stringify(pRec);
      azArgv[i] = pRec->z;
    }
    p->zArgv[i] = aStack[i].z;
  }
  i = aStack[p->tos].i;
  VERIFY( if( i<0 || i>=p->agg.nMem ) goto bad_instruction; )
  i = pTos->i;
  assert( i>=0 && i<p->agg.nMem );
  ctx.pFunc = (FuncDef*)pOp->p3;
  pMem = &p->agg.pCurrent->aMem[i];
  ctx.s.z = pMem->zShort;  /* Space used for small aggregate contexts */
  ctx.pAgg = pMem->z;
  ctx.cnt = ++pMem->i;
  ctx.isError = 0;
  ctx.isStep = 1;
  (ctx.pFunc->xStep)(&ctx, n, (const char**)&p->zArgv[p->tos-n]);
  (ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv);
  pMem->z = ctx.pAgg;
  pMem->flags = MEM_AggCtx;
  sqliteVdbePopStack(p, n+1);
  popStack(&pTos, n+1);
  if( ctx.isError ){
    rc = SQLITE_ERROR;
  }
  break;
}

/* Opcode: AggFocus * P2 *
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470




4471
4472
4473
4474
4475
4476
4477
4478

4479

4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491

4492
4493


4494

4495
4496
4497
4498
4499
4500
4501
4502
4503


4504
4505
4506

4507
4508
4509

4510
4511
4512
4513

4514

4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528



4529

4530
4531
4532
4533



4534
4535
4536
4537
4538
4539
4540
4434
4435
4436
4437
4438
4439
4440

4441
4442
4443
4444




4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457

4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469

4470

4471
4472
4473

4474
4475
4476
4477
4478
4479
4480
4481


4482
4483
4484


4485



4486
4487
4488
4489
4490
4491

4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504

4505
4506
4507
4508

4509
4510



4511
4512
4513
4514
4515
4516
4517
4518
4519
4520







-




-
-
-
-
+
+
+
+








+
-
+











-
+
-

+
+
-
+







-
-
+
+

-
-
+
-
-
-
+




+
-
+












-

+
+
+
-
+

-
-
-
+
+
+







** The order of aggregator opcodes is important.  The order is:
** AggReset AggFocus AggNext.  In other words, you must execute
** AggReset first, then zero or more AggFocus operations, then
** zero or more AggNext operations.  You must not execute an AggFocus
** in between an AggNext and an AggReset.
*/
case OP_AggFocus: {
  int tos = p->tos;
  AggElem *pElem;
  char *zKey;
  int nKey;

  VERIFY( if( tos<0 ) goto not_enough_stack; )
  Stringify(p, tos);
  zKey = aStack[tos].z; 
  nKey = aStack[tos].n;
  assert( pTos>=p->aStack );
  Stringify(pTos);
  zKey = pTos->z;
  nKey = pTos->n;
  pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
  if( pElem ){
    p->agg.pCurrent = pElem;
    pc = pOp->p2 - 1;
  }else{
    AggInsert(&p->agg, zKey, nKey);
    if( sqlite_malloc_failed ) goto no_mem;
  }
  Release(pTos);
  POPSTACK;
  pTos--;
  break; 
}

/* Opcode: AggSet * P2 *
**
** Move the top of the stack into the P2-th field of the current
** aggregate.  String values are duplicated into new memory.
*/
case OP_AggSet: {
  AggElem *pFocus = AggInFocus(p->agg);
  int i = pOp->p2;
  int tos = p->tos;
  assert( pTos>=p->aStack );
  VERIFY( if( tos<0 ) goto not_enough_stack; )
  if( pFocus==0 ) goto no_mem;
  assert( i>=0 );
  assert( i<p->agg.nMem );
  if( VERIFY( i>=0 && ) i<p->agg.nMem ){
  if( i<p->agg.nMem ){
    Mem *pMem = &pFocus->aMem[i];
    char *zOld;
    if( pMem->flags & MEM_Dyn ){
      zOld = pMem->z;
    }else{
      zOld = 0;
    }
    Deephemeralize(p, tos);
    *pMem = aStack[tos];
    Deephemeralize(pTos);
    *pMem = *pTos;
    if( pMem->flags & MEM_Dyn ){
      aStack[tos].z = 0;
      aStack[tos].flags = 0;
      pTos->flags = MEM_Null;
    }else if( pMem->flags & (MEM_Static|MEM_AggCtx) ){
      /* pMem->z = zStack[tos]; *** do nothing */
    }else if( pMem->flags & MEM_Str ){
    }else if( pMem->flags & MEM_Short ){
      pMem->z = pMem->zShort;
    }
    if( zOld ) sqliteFree(zOld);
  }
  Release(pTos);
  POPSTACK;
  pTos--;
  break;
}

/* Opcode: AggGet * P2 *
**
** Push a new entry onto the stack which is a copy of the P2-th field
** of the current aggregate.  Strings are not duplicated so
** string values will be ephemeral.
*/
case OP_AggGet: {
  AggElem *pFocus = AggInFocus(p->agg);
  int i = pOp->p2;
  int tos = ++p->tos;
  if( pFocus==0 ) goto no_mem;
  assert( i>=0 );
  pTos++;
  assert( i<p->agg.nMem );
  if( VERIFY( i>=0 && ) i<p->agg.nMem ){
  if( i<p->agg.nMem ){
    Mem *pMem = &pFocus->aMem[i];
    aStack[tos] = *pMem;
    aStack[tos].flags &= ~MEM_Dyn;
    aStack[tos].flags |= MEM_Ephem;
    *pTos = *pMem;
    pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
    pTos->flags |= MEM_Ephem;
  }
  break;
}

/* Opcode: AggNext * P2 *
**
** Make the next aggregate value the current aggregate.  The prior
4574
4575
4576
4577
4578
4579
4580
4581

4582
4583
4584
4585
4586
4587
4588
4589
4554
4555
4556
4557
4558
4559
4560

4561

4562
4563
4564
4565
4566
4567
4568







-
+
-







      ctx.isStep = 0;
      ctx.pFunc = p->agg.apFunc[i];
      (*p->agg.apFunc[i]->xFinalize)(&ctx);
      if( freeCtx ){
        sqliteFree( aMem[i].z );
      }
      aMem[i] = ctx.s;
      if( (aMem[i].flags & MEM_Str) &&
      if( aMem[i].flags & MEM_Short ){
              (aMem[i].flags & (MEM_Dyn|MEM_Static|MEM_Ephem))==0 ){
        aMem[i].z = aMem[i].zShort;
      }
    }
  }
  break;
}

4604
4605
4606
4607
4608
4609
4610
4611

4612
4613
4614
4615




4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629

4630
4631
4632


4633
4634
4635

4636

4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648

4649
4650

4651
4652

4653
4654

4655

4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688

4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699




4700
4701
4702
4703
4704
4705
4706
4583
4584
4585
4586
4587
4588
4589

4590




4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607

4608



4609
4610

4611
4612
4613

4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625

4626


4627
4628

4629
4630
4631
4632

4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651

4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664

4665
4666
4667
4668
4669
4670
4671
4672




4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683







-
+
-
-
-
-
+
+
+
+













-
+
-
-
-
+
+
-


+
-
+











-
+
-
-
+

-
+


+
-
+


















-













-
+







-
-
-
-
+
+
+
+







      sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1);
    }
    p->nSet = i+1;
  }
  if( pOp->p3 ){
    sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
  }else{
    int tos = p->tos;
    assert( pTos>=p->aStack );
    if( tos<0 ) goto not_enough_stack;
    Stringify(p, tos);
    sqliteHashInsert(&p->aSet[i].hash, aStack[tos].z, aStack[tos].n, p);
    POPSTACK;
    Stringify(pTos);
    sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p);
    Release(pTos);
    pTos--;
  }
  if( sqlite_malloc_failed ) goto no_mem;
  break;
}

/* Opcode: SetFound P1 P2 *
**
** Pop the stack once and compare the value popped off with the
** contents of set P1.  If the element popped exists in set P1,
** then jump to P2.  Otherwise fall through.
*/
case OP_SetFound: {
  int i = pOp->p1;
  int tos = p->tos;
  assert( pTos>=p->aStack );
  VERIFY( if( tos<0 ) goto not_enough_stack; )
  Stringify(p, tos);
  if( i>=0 && i<p->nSet &&
  Stringify(pTos);
  if( i>=0 && i<p->nSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){
       sqliteHashFind(&p->aSet[i].hash, aStack[tos].z, aStack[tos].n)){
    pc = pOp->p2 - 1;
  }
  Release(pTos);
  POPSTACK;
  pTos--;
  break;
}

/* Opcode: SetNotFound P1 P2 *
**
** Pop the stack once and compare the value popped off with the
** contents of set P1.  If the element popped does not exists in 
** set P1, then jump to P2.  Otherwise fall through.
*/
case OP_SetNotFound: {
  int i = pOp->p1;
  int tos = p->tos;
  assert( pTos>=p->aStack );
  VERIFY( if( tos<0 ) goto not_enough_stack; )
  Stringify(p, tos);
  Stringify(pTos);
  if( i<0 || i>=p->nSet ||
       sqliteHashFind(&p->aSet[i].hash, aStack[tos].z, aStack[tos].n)==0 ){
       sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){
    pc = pOp->p2 - 1;
  }
  Release(pTos);
  POPSTACK;
  pTos--;
  break;
}

/* Opcode: SetFirst P1 P2 *
**
** Read the first element from set P1 and push it onto the stack.  If the
** set is empty, push nothing and jump immediately to P2.  This opcode is
** used in combination with OP_SetNext to loop over all elements of a set.
*/
/* Opcode: SetNext P1 P2 *
**
** Read the next element from set P1 and push it onto the stack.  If there
** are no more elements in the set, do not do the push and fall through.
** Otherwise, jump to P2 after pushing the next set element.
*/
case OP_SetFirst: 
case OP_SetNext: {
  Set *pSet;
  int tos;
  CHECK_FOR_INTERRUPT;
  if( pOp->p1<0 || pOp->p1>=p->nSet ){
    if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1;
    break;
  }
  pSet = &p->aSet[pOp->p1];
  if( pOp->opcode==OP_SetFirst ){
    pSet->prev = sqliteHashFirst(&pSet->hash);
    if( pSet->prev==0 ){
      pc = pOp->p2 - 1;
      break;
    }
  }else{
    VERIFY( if( pSet->prev==0 ) goto bad_instruction; )
    assert( pSet->prev );
    pSet->prev = sqliteHashNext(pSet->prev);
    if( pSet->prev==0 ){
      break;
    }else{
      pc = pOp->p2 - 1;
    }
  }
  tos = ++p->tos;
  aStack[tos].z = sqliteHashKey(pSet->prev);
  aStack[tos].n = sqliteHashKeysize(pSet->prev);
  aStack[tos].flags = MEM_Str | MEM_Ephem;
  pTos++;
  pTos->z = sqliteHashKey(pSet->prev);
  pTos->n = sqliteHashKeysize(pSet->prev);
  pTos->flags = MEM_Str | MEM_Ephem;
  break;
}

/* Opcode: Vacuum * * *
**
** Vacuum the entire database.  This opcode will cause other virtual
** machines to be created and run.  It may not be called from within
4748
4749
4750
4751
4752
4753
4754
4755

4756
4757
4758
4759


4760
4761
4762
4763
4764
4765
4766
4767







4768
4769
4770
4771

4772
4773
4774


4775
4776
4777


4778
4779

4780
4781
4782
4783
4784
4785
4786
4787



4788
4789
4790
4791
4792
4793
4794
4725
4726
4727
4728
4729
4730
4731

4732
4733
4734


4735
4736
4737







4738
4739
4740
4741
4742
4743
4744
4745
4746
4747

4748
4749


4750
4751
4752


4753
4754
4755

4756
4757
4758
4759
4760
4761



4762
4763
4764
4765
4766
4767
4768
4769
4770
4771







-
+


-
-
+
+

-
-
-
-
-
-
-
+
+
+
+
+
+
+



-
+

-
-
+
+

-
-
+
+

-
+





-
-
-
+
+
+







    ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
    */
#ifndef NDEBUG
    if( pc<-1 || pc>=p->nOp ){
      sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0);
      rc = SQLITE_INTERNAL;
    }
    if( p->trace && p->tos>=0 ){
    if( p->trace && pTos>=p->aStack ){
      int i;
      fprintf(p->trace, "Stack:");
      for(i=p->tos; i>=0 && i>p->tos-5; i--){
        if( aStack[i].flags & MEM_Null ){
      for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
        if( pTos[i].flags & MEM_Null ){
          fprintf(p->trace, " NULL");
        }else if( (aStack[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
          fprintf(p->trace, " si:%d", aStack[i].i);
        }else if( aStack[i].flags & MEM_Int ){
          fprintf(p->trace, " i:%d", aStack[i].i);
        }else if( aStack[i].flags & MEM_Real ){
          fprintf(p->trace, " r:%g", aStack[i].r);
        }else if( aStack[i].flags & MEM_Str ){
        }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
          fprintf(p->trace, " si:%d", pTos[i].i);
        }else if( pTos[i].flags & MEM_Int ){
          fprintf(p->trace, " i:%d", pTos[i].i);
        }else if( pTos[i].flags & MEM_Real ){
          fprintf(p->trace, " r:%g", pTos[i].r);
        }else if( pTos[i].flags & MEM_Str ){
          int j, k;
          char zBuf[100];
          zBuf[0] = ' ';
          if( aStack[i].flags & MEM_Dyn ){
          if( pTos[i].flags & MEM_Dyn ){
            zBuf[1] = 'z';
            assert( (aStack[i].flags & (MEM_Static|MEM_Ephem))==0 );
          }else if( aStack[i].flags & MEM_Static ){
            assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 );
          }else if( pTos[i].flags & MEM_Static ){
            zBuf[1] = 't';
            assert( (aStack[i].flags & (MEM_Dyn|MEM_Ephem))==0 );
          }else if( aStack[i].flags & MEM_Ephem ){
            assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 );
          }else if( pTos[i].flags & MEM_Ephem ){
            zBuf[1] = 'e';
            assert( (aStack[i].flags & (MEM_Static|MEM_Dyn))==0 );
            assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 );
          }else{
            zBuf[1] = 's';
          }
          zBuf[2] = '[';
          k = 3;
          for(j=0; j<20 && j<aStack[i].n; j++){
            int c = aStack[i].z[j];
            if( c==0 && j==aStack[i].n-1 ) break;
          for(j=0; j<20 && j<pTos[i].n; j++){
            int c = pTos[i].z[j];
            if( c==0 && j==pTos[i].n-1 ) break;
            if( isprint(c) && !isspace(c) ){
              zBuf[k++] = c;
            }else{
              zBuf[k++] = '.';
            }
          }
          zBuf[k++] = ']';
4810
4811
4812
4813
4814
4815
4816

4817
4818
4819
4820
4821
4822
4823
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801







+







  if( rc ){
    p->rc = rc;
    rc = SQLITE_ERROR;
  }else{
    rc = SQLITE_DONE;
  }
  p->magic = VDBE_MAGIC_HALT;
  p->pTos = pTos;
  return rc;

  /* Jump to here if a malloc() fails.  It's hard to get a malloc()
  ** to fail on a modern VM computer, so this code is untested.
  */
no_mem:
  sqliteSetString(&p->zErrMsg, "out of memory", (char*)0);
4848
4849
4850
4851
4852
4853
4854
4855

4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4826
4827
4828
4829
4830
4831
4832

4833


























-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
  if( db->magic!=SQLITE_MAGIC_BUSY ){
    rc = SQLITE_MISUSE;
  }else{
    rc = SQLITE_INTERRUPT;
  }
  sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
  goto vdbe_halt;

}
  /* Jump to here if a operator is encountered that requires more stack
  ** operands than are currently available on the stack.
  */
not_enough_stack:
  sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pc);
  sqliteSetString(&p->zErrMsg, "too few operands on stack at ", zBuf, (char*)0);
  rc = SQLITE_INTERNAL;
  goto vdbe_halt;

  /* Jump here if an illegal or illformed instruction is executed.
  */
VERIFY(
bad_instruction:
  sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pc);
  sqliteSetString(&p->zErrMsg, "illegal operation at ", zBuf, (char*)0);
  rc = SQLITE_INTERNAL;
  goto vdbe_halt;
)
}
Changes to src/vdbeInt.h.
125
126
127
128
129
130
131

132
133
134
135
136
137

138
139
140
141
142
143
144
125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140
141
142
143
144
145







+





-
+







#define MEM_Null      0x0001   /* Value is NULL */
#define MEM_Str       0x0002   /* Value is a string */
#define MEM_Int       0x0004   /* Value is an integer */
#define MEM_Real      0x0008   /* Value is a real number */
#define MEM_Dyn       0x0010   /* Need to call sqliteFree() on Mem.z */
#define MEM_Static    0x0020   /* Mem.z points to a static string */
#define MEM_Ephem     0x0040   /* Mem.z points to an ephemeral string */
#define MEM_Short     0x0080   /* Mem.z points to Mem.zShort */

/* The following MEM_ value appears only in AggElem.aMem.s.flag fields.
** It indicates that the corresponding AggElem.aMem.z points to a
** aggregate function context that needs to be finalized.
*/
#define MEM_AggCtx    0x0040   /* Mem.z points to an agg function context */
#define MEM_AggCtx    0x0100   /* Mem.z points to an agg function context */

/*
** The "context" argument for a installable function.  A pointer to an
** instance of this structure is the first argument to the routines used
** implement the SQL functions.
**
** There is a typedef for this structure in sqlite.h.  So all routines,
219
220
221
222
223
224
225
226
227

228
229
230
231
232
233
234
220
221
222
223
224
225
226

227
228
229
230
231
232
233
234
235







-

+







  FILE *trace;        /* Write an execution trace here, if not NULL */
  int nOp;            /* Number of instructions in the program */
  int nOpAlloc;       /* Number of slots allocated for aOp[] */
  Op *aOp;            /* Space to hold the virtual machine's program */
  int nLabel;         /* Number of labels used */
  int nLabelAlloc;    /* Number of slots allocated in aLabel[] */
  int *aLabel;        /* Space to hold the labels */
  int tos;            /* Index of top of stack */
  Mem *aStack;        /* The operand stack, except string values */
  Mem *pTos;          /* Top entry in the operand stack */
  char **zArgv;       /* Text values used by the callback */
  char **azColName;   /* Becomes the 4th parameter to callbacks */
  int nCursor;        /* Number of slots in aCsr[] */
  Cursor *aCsr;       /* One element of this array for each open cursor */
  Sorter *pSort;      /* A linked list of objects to be sorted */
  FILE *pFile;        /* At most one open file handler */
  int nField;         /* Number of file fields */
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
271
272
273
274
275
276
277










278
279
280
281
282
283
284
285
286
287
288
289
290







-
-
-
-
-
-
-
-
-
-













** The following are allowed values for Vdbe.magic
*/
#define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
#define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */
#define VDBE_MAGIC_HALT     0x519c2973    /* VDBE has completed execution */
#define VDBE_MAGIC_DEAD     0xb606c3c8    /* The VDBE has been deallocated */

/*
** Here is a macro to handle the common case of popping the stack
** once.  This macro only works from within the sqliteVdbeExec()
** function.
*/
#define POPSTACK \
  assert(p->tos>=0); \
  if( aStack[p->tos].flags & MEM_Dyn ) sqliteFree(aStack[p->tos].z); \
  p->tos--;

/*
** Function prototypes
*/
void sqliteVdbeCleanupCursor(Cursor*);
void sqliteVdbeSorterReset(Vdbe*);
void sqliteVdbeAggReset(Agg*);
void sqliteVdbeKeylistFree(Keylist*);
void sqliteVdbePopStack(Vdbe*,int);
int sqliteVdbeCursorMoveto(Cursor*);
int sqliteVdbeByteSwap(int);
#if !defined(NDEBUG) || defined(VDBE_PROFILE)
void sqliteVdbePrintOp(FILE*, int, Op*);
#endif
Changes to src/vdbeaux.c.
384
385
386
387
388
389
390
391

392
393
394
395
396
397
398
384
385
386
387
388
389
390

391
392
393
394
395
396
397
398







-
+







    p->s.z = 0;
    p->s.n = 0;
  }else{
    if( n<0 ) n = strlen(zResult);
    if( n<NBFS-1 ){
      memcpy(p->s.zShort, zResult, n);
      p->s.zShort[n] = 0;
      p->s.flags = MEM_Str;
      p->s.flags = MEM_Str | MEM_Short;
      p->s.z = p->s.zShort;
    }else{
      p->s.z = sqliteMallocRaw( n+1 );
      if( p->s.z ){
        memcpy(p->s.z, zResult, n);
        p->s.z[n] = 0;
      }
593
594
595
596
597
598
599
600
601


602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

618
619
620
621
622
623
624
593
594
595
596
597
598
599


600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

617
618
619
620
621
622
623
624







-
-
+
+















-
+







  ** Allocation all the stack space we will ever need.
  */
  if( p->aStack==0 ){
    p->nVar = nVar;
    assert( nVar>=0 );
    n = isExplain ? 10 : p->nOp;
    p->aStack = sqliteMalloc(
    n*(sizeof(p->aStack[0]) + 2*sizeof(char*))     /* aStack and zArgv */
      + p->nVar*(sizeof(char*)+sizeof(int)+1)      /* azVar, anVar, abVar */
      n*(sizeof(p->aStack[0]) + 2*sizeof(char*))     /* aStack and zArgv */
        + p->nVar*(sizeof(char*)+sizeof(int)+1)    /* azVar, anVar, abVar */
    );
    p->zArgv = (char**)&p->aStack[n];
    p->azColName = (char**)&p->zArgv[n];
    p->azVar = (char**)&p->azColName[n];
    p->anVar = (int*)&p->azVar[p->nVar];
    p->abVar = (u8*)&p->anVar[p->nVar];
  }

  sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0);
  p->agg.pSearch = 0;
#ifdef MEMORY_DEBUG
  if( sqliteOsFileExists("vdbe_trace") ){
    p->trace = stdout;
  }
#endif
  p->tos = -1;
  p->pTos = &p->aStack[-1];
  p->pc = 0;
  p->rc = SQLITE_OK;
  p->uniqueCnt = 0;
  p->returnDepth = 0;
  p->errorAction = OE_Abort;
  p->undoTransOnError = 0;
  p->xCallback = xCallback;
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
647
648
649
650
651
652
653
















654
655
656
657
658
659
660







-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-







    p->pSort = pSorter->pNext;
    sqliteFree(pSorter->zKey);
    sqliteFree(pSorter->pData);
    sqliteFree(pSorter);
  }
}

/*
** Pop the stack N times.  Free any memory associated with the
** popped stack elements.
*/
void sqliteVdbePopStack(Vdbe *p, int N){
  assert( N>=0 );
  if( p->aStack==0 ) return;
  while( N-- > 0 ){
    if( p->aStack[p->tos].flags & MEM_Dyn ){
      sqliteFree(p->aStack[p->tos].z);
    }
    p->aStack[p->tos].flags = 0;
    p->tos--;
  }
}

/*
** Reset an Agg structure.  Delete all its contents. 
**
** For installable aggregate functions, if the step function has been
** called, make sure the finalizer function has also been called.  The
** finalizer might need to free memory that was allocated as part of its
** private context.  If the finalizer has not been called yet, call it
754
755
756
757
758
759
760




761






762
763
764
765
766
767
768
738
739
740
741
742
743
744
745
746
747
748

749
750
751
752
753
754
755
756
757
758
759
760
761







+
+
+
+
-
+
+
+
+
+
+







**
** This routine will automatically close any cursors, lists, and/or
** sorters that were left open.  It also deletes the values of
** variables in the azVariable[] array.
*/
static void Cleanup(Vdbe *p){
  int i;
  if( p->aStack ){
    Mem *pTos = p->pTos;
    while( pTos>=p->aStack ){
      if( pTos->flags & MEM_Dyn ){
  sqliteVdbePopStack(p, p->tos+1);
        sqliteFree(pTos->z);
      }
      pTos--;
    }
    p->pTos = pTos;
  }
  closeAllCursors(p);
  if( p->aMem ){
    for(i=0; i<p->nMem; i++){
      if( p->aMem[i].flags & MEM_Dyn ){
        sqliteFree(p->aMem[i].z);
      }
    }
867
868
869
870
871
872
873
874

875
876
877
878
879
880
881
860
861
862
863
864
865
866

867
868
869
870
871
872
873
874







-
+







  }
  for(i=0; i<db->nDb; i++){
    if( db->aDb[i].pBt && db->aDb[i].inTrans==2 ){
      sqliteBtreeCommitCkpt(db->aDb[i].pBt);
      db->aDb[i].inTrans = 1;
    }
  }
  assert( p->tos<p->pc || sqlite_malloc_failed==1 );
  assert( p->pTos<&p->aStack[p->pc] || sqlite_malloc_failed==1 );
#ifdef VDBE_PROFILE
  {
    FILE *out = fopen("vdbe_profile.out", "a");
    if( out ){
      int i;
      fprintf(out, "---- ");
      for(i=0; i<p->nOp; i++){
Changes to tool/memleak.awk.
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22












+
+
+







#
# This script looks for memory leaks by analyzing the output of "sqlite" 
# when compiled with the MEMORY_DEBUG=2 option.
#
/[0-9]+ malloc / {
  mem[$6] = $0
}
/[0-9]+ realloc / {
  mem[$8] = "";
  mem[$10] = $0
}
/[0-9]+ free / {
  if (mem[$6]=="") {
    print "*** free without a malloc at",$6
  }
  mem[$6] = "";
  str[$6] = ""
}
/^string at / {
  addr = $4
  sub("string at " addr " is ","")
  str[addr] = $0