/ Check-in [21695c34]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Reduce the size of the MemPage object by about 32 bytes. Other structure size optimizations.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1:21695c3476804477cb378b5a643196380e7e2281
User & Date: drh 2012-02-02 19:37:18
Context
2012-02-02
21:02
More structure packing for smaller objects and less memory usage. check-in: f14e7f29 user: drh tags: trunk
19:37
Reduce the size of the MemPage object by about 32 bytes. Other structure size optimizations. check-in: 21695c34 user: drh tags: trunk
18:46
When non-aggregate columns occur in an aggregate query with a single min() or max(), then the values of the non-aggregate columns are taken from one of the rows that was the min() or max(). check-in: fa13edd3 user: drh tags: trunk
Changes
Hide Diffs Unified Diffs Show Whitespace Changes Patch

Changes to src/btree.c.

866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
....
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
....
5551
5552
5553
5554
5555
5556
5557
5558

5559
5560
5561
5562
5563
5564
5565
....
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
....
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
....
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
....
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
....
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
....
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
....
6596
6597
6598
6599
6600
6601
6602

6603


6604
6605
6606
6607
6608
6609
6610
....
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
** pages that do contain overflow cells.
*/
static u8 *findOverflowCell(MemPage *pPage, int iCell){
  int i;
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  for(i=pPage->nOverflow-1; i>=0; i--){
    int k;
    struct _OvflCell *pOvfl;
    pOvfl = &pPage->aOvfl[i];
    k = pOvfl->idx;
    if( k<=iCell ){
      if( k==iCell ){
        return pOvfl->pCell;
      }
      iCell--;
    }
  }
  return findCell(pPage, iCell);
}

................................................................................
/*
** Insert a new cell on pPage at cell index "i".  pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there.  If it
** will not fit, then make a copy of the cell content into pTemp if
** pTemp is not null.  Regardless of pTemp, allocate a new entry
** in pPage->aOvfl[] and make it point to the cell content (either
** in pTemp or the original pCell) and also record its index. 
** Allocating a new entry in pPage->aCell[] implies that 
** pPage->nOverflow is incremented.
**
** If nSkip is non-zero, then do not copy the first nSkip bytes of the
** cell. The caller will overwrite them after this function returns. If
** nSkip is non-zero, then pCell may not point to an invalid memory location 
................................................................................

  int nSkip = (iChild ? 4 : 0);

  if( *pRC ) return;

  assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
  assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  /* The cell should normally be sized correctly.  However, when moving a
  ** malformed cell from a leaf page to an interior page, if the cell size
  ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
  ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
  ** the term after the || in the following assert(). */
  assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
................................................................................
      memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
      pCell = pTemp;
    }
    if( iChild ){
      put4byte(pCell, iChild);
    }
    j = pPage->nOverflow++;
    assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
    pPage->aOvfl[j].pCell = pCell;
    pPage->aOvfl[j].idx = (u16)i;
  }else{
    int rc = sqlite3PagerWrite(pPage->pDbPage);
    if( rc!=SQLITE_OK ){
      *pRC = rc;
      return;
    }
    assert( sqlite3PagerIswriteable(pPage->pDbPage) );
................................................................................
  ** may be inserted. If both these operations are successful, proceed.
  */
  rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);

  if( rc==SQLITE_OK ){

    u8 *pOut = &pSpace[4];
    u8 *pCell = pPage->aOvfl[0].pCell;
    u16 szCell = cellSizePtr(pPage, pCell);
    u8 *pStop;

    assert( sqlite3PagerIswriteable(pNew->pDbPage) );
    assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
    zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
    assemblePage(pNew, 1, &pCell, &szCell);
................................................................................
** on page pFrom to page pTo. If page pFrom was not a leaf page, then
** the pointer-map entries for each child page are updated so that the
** parent page stored in the pointer map is page pTo. If pFrom contained
** any cells with overflow page pointers, then the corresponding pointer
** map entries are also updated so that the parent page is page pTo.
**
** If pFrom is currently carrying any overflow cells (entries in the
** MemPage.aOvfl[] array), they are not copied to pTo. 
**
** Before returning, page pTo is reinitialized using btreeInitPage().
**
** The performance of this function is not critical. It is only used by 
** the balance_shallower() and balance_deeper() procedures, neither of
** which are called often under normal circumstances.
*/
................................................................................

  /* At this point pParent may have at most one overflow cell. And if
  ** this overflow cell is present, it must be the cell with 
  ** index iParentIdx. This scenario comes about when this function
  ** is called (indirectly) from sqlite3BtreeDelete().
  */
  assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
  assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );

  if( !aOvflSpace ){
    return SQLITE_NOMEM;
  }

  /* Find the sibling pages to balance. Also locate the cells in pParent 
  ** that divide the siblings. An attempt is made to find NN siblings on 
................................................................................
    if( rc ){
      memset(apOld, 0, (i+1)*sizeof(MemPage*));
      goto balance_cleanup;
    }
    nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
    if( (i--)==0 ) break;

    if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
      apDiv[i] = pParent->aOvfl[0].pCell;
      pgno = get4byte(apDiv[i]);
      szNew[i] = cellSizePtr(pParent, apDiv[i]);
      pParent->nOverflow = 0;
    }else{
      apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
      pgno = get4byte(apDiv[i]);
      szNew[i] = cellSizePtr(pParent, apDiv[i]);
................................................................................
    ** setting a pointer map entry is a relatively expensive operation, this
    ** code only sets pointer map entries for child or overflow pages that have
    ** actually moved between pages.  */
    MemPage *pNew = apNew[0];
    MemPage *pOld = apCopy[0];
    int nOverflow = pOld->nOverflow;
    int iNextOld = pOld->nCell + nOverflow;
    int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
    j = 0;                             /* Current 'old' sibling page */
    k = 0;                             /* Current 'new' sibling page */
    for(i=0; i<nCell; i++){
      int isDivider = 0;
      while( i==iNextOld ){
        /* Cell i is the cell immediately following the last cell on old
        ** sibling page j. If the siblings are not leaf pages of an
        ** intkey b-tree, then cell i was a divider cell. */
        assert( j+1 < ArraySize(apCopy) );
        pOld = apCopy[++j];
        iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
        if( pOld->nOverflow ){
          nOverflow = pOld->nOverflow;
          iOverflow = i + !leafData + pOld->aOvfl[0].idx;
        }
        isDivider = !leafData;  
      }

      assert(nOverflow>0 || iOverflow<i );
      assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
      assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
      if( i==iOverflow ){
        isDivider = 1;
        if( (--nOverflow)>0 ){
          iOverflow++;
        }
      }

................................................................................
  assert( sqlite3PagerIswriteable(pChild->pDbPage) );
  assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
  assert( pChild->nCell==pRoot->nCell );

  TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));

  /* Copy the overflow cells from pRoot to pChild */

  memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));


  pChild->nOverflow = pRoot->nOverflow;

  /* Zero the contents of pRoot. Then install pChild as the right-child. */
  zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
  put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);

  *ppChild = pChild;
................................................................................
      int const iIdx = pCur->aiIdx[iPage-1];

      rc = sqlite3PagerWrite(pParent->pDbPage);
      if( rc==SQLITE_OK ){
#ifndef SQLITE_OMIT_QUICKBALANCE
        if( pPage->hasData
         && pPage->nOverflow==1
         && pPage->aOvfl[0].idx==pPage->nCell
         && pParent->pgno!=1
         && pParent->nCell==iIdx
        ){
          /* Call balance_quick() to create a new sibling of pPage on which
          ** to store the overflow cell. balance_quick() inserts a new cell
          ** into pParent, which may cause pParent overflow. If this
          ** happens, the next interation of the do-loop will balance pParent 







|
<
<


|







 







|







 







|
>







 







|
|
|







 







|







 







|







 







|







 







|
|







 







|













|





|
|







 







>
|
>
>







 







|







866
867
868
869
870
871
872
873


874
875
876
877
878
879
880
881
882
883
....
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
....
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
....
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
....
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
....
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
....
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
....
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
....
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
....
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
....
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
** pages that do contain overflow cells.
*/
static u8 *findOverflowCell(MemPage *pPage, int iCell){
  int i;
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  for(i=pPage->nOverflow-1; i>=0; i--){
    int k;
    k = pPage->aiOvfl[i];


    if( k<=iCell ){
      if( k==iCell ){
        return pPage->apOvfl[i];
      }
      iCell--;
    }
  }
  return findCell(pPage, iCell);
}

................................................................................
/*
** Insert a new cell on pPage at cell index "i".  pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there.  If it
** will not fit, then make a copy of the cell content into pTemp if
** pTemp is not null.  Regardless of pTemp, allocate a new entry
** in pPage->apOvfl[] and make it point to the cell content (either
** in pTemp or the original pCell) and also record its index. 
** Allocating a new entry in pPage->aCell[] implies that 
** pPage->nOverflow is incremented.
**
** If nSkip is non-zero, then do not copy the first nSkip bytes of the
** cell. The caller will overwrite them after this function returns. If
** nSkip is non-zero, then pCell may not point to an invalid memory location 
................................................................................

  int nSkip = (iChild ? 4 : 0);

  if( *pRC ) return;

  assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
  assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
  assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  /* The cell should normally be sized correctly.  However, when moving a
  ** malformed cell from a leaf page to an interior page, if the cell size
  ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
  ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
  ** the term after the || in the following assert(). */
  assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
................................................................................
      memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
      pCell = pTemp;
    }
    if( iChild ){
      put4byte(pCell, iChild);
    }
    j = pPage->nOverflow++;
    assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
    pPage->apOvfl[j] = pCell;
    pPage->aiOvfl[j] = (u16)i;
  }else{
    int rc = sqlite3PagerWrite(pPage->pDbPage);
    if( rc!=SQLITE_OK ){
      *pRC = rc;
      return;
    }
    assert( sqlite3PagerIswriteable(pPage->pDbPage) );
................................................................................
  ** may be inserted. If both these operations are successful, proceed.
  */
  rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);

  if( rc==SQLITE_OK ){

    u8 *pOut = &pSpace[4];
    u8 *pCell = pPage->apOvfl[0];
    u16 szCell = cellSizePtr(pPage, pCell);
    u8 *pStop;

    assert( sqlite3PagerIswriteable(pNew->pDbPage) );
    assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
    zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
    assemblePage(pNew, 1, &pCell, &szCell);
................................................................................
** on page pFrom to page pTo. If page pFrom was not a leaf page, then
** the pointer-map entries for each child page are updated so that the
** parent page stored in the pointer map is page pTo. If pFrom contained
** any cells with overflow page pointers, then the corresponding pointer
** map entries are also updated so that the parent page is page pTo.
**
** If pFrom is currently carrying any overflow cells (entries in the
** MemPage.apOvfl[] array), they are not copied to pTo. 
**
** Before returning, page pTo is reinitialized using btreeInitPage().
**
** The performance of this function is not critical. It is only used by 
** the balance_shallower() and balance_deeper() procedures, neither of
** which are called often under normal circumstances.
*/
................................................................................

  /* At this point pParent may have at most one overflow cell. And if
  ** this overflow cell is present, it must be the cell with 
  ** index iParentIdx. This scenario comes about when this function
  ** is called (indirectly) from sqlite3BtreeDelete().
  */
  assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
  assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );

  if( !aOvflSpace ){
    return SQLITE_NOMEM;
  }

  /* Find the sibling pages to balance. Also locate the cells in pParent 
  ** that divide the siblings. An attempt is made to find NN siblings on 
................................................................................
    if( rc ){
      memset(apOld, 0, (i+1)*sizeof(MemPage*));
      goto balance_cleanup;
    }
    nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
    if( (i--)==0 ) break;

    if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
      apDiv[i] = pParent->apOvfl[0];
      pgno = get4byte(apDiv[i]);
      szNew[i] = cellSizePtr(pParent, apDiv[i]);
      pParent->nOverflow = 0;
    }else{
      apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
      pgno = get4byte(apDiv[i]);
      szNew[i] = cellSizePtr(pParent, apDiv[i]);
................................................................................
    ** setting a pointer map entry is a relatively expensive operation, this
    ** code only sets pointer map entries for child or overflow pages that have
    ** actually moved between pages.  */
    MemPage *pNew = apNew[0];
    MemPage *pOld = apCopy[0];
    int nOverflow = pOld->nOverflow;
    int iNextOld = pOld->nCell + nOverflow;
    int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
    j = 0;                             /* Current 'old' sibling page */
    k = 0;                             /* Current 'new' sibling page */
    for(i=0; i<nCell; i++){
      int isDivider = 0;
      while( i==iNextOld ){
        /* Cell i is the cell immediately following the last cell on old
        ** sibling page j. If the siblings are not leaf pages of an
        ** intkey b-tree, then cell i was a divider cell. */
        assert( j+1 < ArraySize(apCopy) );
        pOld = apCopy[++j];
        iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
        if( pOld->nOverflow ){
          nOverflow = pOld->nOverflow;
          iOverflow = i + !leafData + pOld->aiOvfl[0];
        }
        isDivider = !leafData;  
      }

      assert(nOverflow>0 || iOverflow<i );
      assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
      assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
      if( i==iOverflow ){
        isDivider = 1;
        if( (--nOverflow)>0 ){
          iOverflow++;
        }
      }

................................................................................
  assert( sqlite3PagerIswriteable(pChild->pDbPage) );
  assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
  assert( pChild->nCell==pRoot->nCell );

  TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));

  /* Copy the overflow cells from pRoot to pChild */
  memcpy(pChild->aiOvfl, pRoot->aiOvfl,
         pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
  memcpy(pChild->apOvfl, pRoot->apOvfl,
         pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
  pChild->nOverflow = pRoot->nOverflow;

  /* Zero the contents of pRoot. Then install pChild as the right-child. */
  zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
  put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);

  *ppChild = pChild;
................................................................................
      int const iIdx = pCur->aiIdx[iPage-1];

      rc = sqlite3PagerWrite(pParent->pDbPage);
      if( rc==SQLITE_OK ){
#ifndef SQLITE_OMIT_QUICKBALANCE
        if( pPage->hasData
         && pPage->nOverflow==1
         && pPage->aiOvfl[0]==pPage->nCell
         && pParent->pgno!=1
         && pParent->nCell==iIdx
        ){
          /* Call balance_quick() to create a new sibling of pPage on which
          ** to store the overflow cell. balance_quick() inserts a new cell
          ** into pParent, which may cause pParent overflow. If this
          ** happens, the next interation of the do-loop will balance pParent 

Changes to src/btreeInt.h.

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
...
491
492
493
494
495
496
497



498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
...
631
632
633
634
635
636
637
638
639

640
641
642
643
644
645
646
647
648
649
650
651
652
  u8 max1bytePayload;  /* min(maxLocal,127) */
  u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
  u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
  u16 cellOffset;      /* Index in aData of first cell pointer */
  u16 nFree;           /* Number of free bytes on the page */
  u16 nCell;           /* Number of cells on this page, local and ovfl */
  u16 maskPage;        /* Mask for page offset */
  struct _OvflCell {   /* Cells that will not fit on aData[] */
    u8 *pCell;          /* Pointers to the body of the overflow cell */
    u16 idx;            /* Insert this cell before idx-th non-overflow cell */
  } aOvfl[5];
  BtShared *pBt;       /* Pointer to BtShared that this page is part of */
  u8 *aData;           /* Pointer to disk image of the page data */
  u8 *aDataEnd;        /* One byte past the end of usable data */
  u8 *aCellIdx;        /* The cell index area */
  DbPage *pDbPage;     /* Pager page handle */
  Pgno pgno;           /* Page number for this page */
};
................................................................................
** found at self->pBt->mutex. 
*/
struct BtCursor {
  Btree *pBtree;            /* The Btree to which this cursor belongs */
  BtShared *pBt;            /* The BtShared this cursor points to */
  BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
  struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */



  Pgno pgnoRoot;            /* The root page of this tree */
  sqlite3_int64 cachedRowid; /* Next rowid cache.  0 means not valid */
  CellInfo info;            /* A parse of the cell we are pointing at */
  i64 nKey;        /* Size of pKey, or last integer key */
  void *pKey;      /* Saved key that was cursor's last known position */
  int skipNext;    /* Prev() is noop if negative. Next() is noop if positive */
  u8 wrFlag;                /* True if writable */
  u8 atLast;                /* Cursor pointing to the last entry */
  u8 validNKey;             /* True if info.nKey is valid */
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
#ifndef SQLITE_OMIT_INCRBLOB
  Pgno *aOverflow;          /* Cache of overflow page locations */
  u8 isIncrblobHandle;      /* True if this cursor is an incr. io handle */
#endif
  i16 iPage;                            /* Index of current page in apPage */
  u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
  MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
};

................................................................................
** This structure is passed around through all the sanity checking routines
** in order to keep track of some global state information.
*/
typedef struct IntegrityCk IntegrityCk;
struct IntegrityCk {
  BtShared *pBt;    /* The tree being checked out */
  Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
  Pgno nPage;       /* Number of pages in the database */
  int *anRef;       /* Number of times each page is referenced */

  int mxErr;        /* Stop accumulating errors when this reaches zero */
  int nErr;         /* Number of messages written to zErrMsg so far */
  int mallocFailed; /* A memory allocation error has occurred */
  StrAccum errMsg;  /* Accumulate the error message text here */
};

/*
** Routines to read or write a two- and four-byte big-endian integer values.
*/
#define get2byte(x)   ((x)[0]<<8 | (x)[1])
#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
#define get4byte sqlite3Get4byte
#define put4byte sqlite3Put4byte







|
|
|
<







 







>
>
>











<







 







<

>













280
281
282
283
284
285
286
287
288
289

290
291
292
293
294
295
296
...
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

511
512
513
514
515
516
517
...
632
633
634
635
636
637
638

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
  u8 max1bytePayload;  /* min(maxLocal,127) */
  u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
  u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
  u16 cellOffset;      /* Index in aData of first cell pointer */
  u16 nFree;           /* Number of free bytes on the page */
  u16 nCell;           /* Number of cells on this page, local and ovfl */
  u16 maskPage;        /* Mask for page offset */
  u16 aiOvfl[5];       /* Insert the i-th overflow cell before the aiOvfl-th
                       ** non-overflow cell */
  u8 *apOvfl[5];       /* Pointers to the body of overflow cells */

  BtShared *pBt;       /* Pointer to BtShared that this page is part of */
  u8 *aData;           /* Pointer to disk image of the page data */
  u8 *aDataEnd;        /* One byte past the end of usable data */
  u8 *aCellIdx;        /* The cell index area */
  DbPage *pDbPage;     /* Pager page handle */
  Pgno pgno;           /* Page number for this page */
};
................................................................................
** found at self->pBt->mutex. 
*/
struct BtCursor {
  Btree *pBtree;            /* The Btree to which this cursor belongs */
  BtShared *pBt;            /* The BtShared this cursor points to */
  BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
  struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
#ifndef SQLITE_OMIT_INCRBLOB
  Pgno *aOverflow;          /* Cache of overflow page locations */
#endif
  Pgno pgnoRoot;            /* The root page of this tree */
  sqlite3_int64 cachedRowid; /* Next rowid cache.  0 means not valid */
  CellInfo info;            /* A parse of the cell we are pointing at */
  i64 nKey;        /* Size of pKey, or last integer key */
  void *pKey;      /* Saved key that was cursor's last known position */
  int skipNext;    /* Prev() is noop if negative. Next() is noop if positive */
  u8 wrFlag;                /* True if writable */
  u8 atLast;                /* Cursor pointing to the last entry */
  u8 validNKey;             /* True if info.nKey is valid */
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
#ifndef SQLITE_OMIT_INCRBLOB

  u8 isIncrblobHandle;      /* True if this cursor is an incr. io handle */
#endif
  i16 iPage;                            /* Index of current page in apPage */
  u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
  MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
};

................................................................................
** This structure is passed around through all the sanity checking routines
** in order to keep track of some global state information.
*/
typedef struct IntegrityCk IntegrityCk;
struct IntegrityCk {
  BtShared *pBt;    /* The tree being checked out */
  Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */

  int *anRef;       /* Number of times each page is referenced */
  Pgno nPage;       /* Number of pages in the database */
  int mxErr;        /* Stop accumulating errors when this reaches zero */
  int nErr;         /* Number of messages written to zErrMsg so far */
  int mallocFailed; /* A memory allocation error has occurred */
  StrAccum errMsg;  /* Accumulate the error message text here */
};

/*
** Routines to read or write a two- and four-byte big-endian integer values.
*/
#define get2byte(x)   ((x)[0]<<8 | (x)[1])
#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
#define get4byte sqlite3Get4byte
#define put4byte sqlite3Put4byte

Changes to src/pcache1.c.

72
73
74
75
76
77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
...
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140
  PGroup *pGroup;                     /* PGroup this cache belongs to */
  int szPage;                         /* Size of allocated pages in bytes */
  int szExtra;                        /* Size of extra space in bytes */
  int bPurgeable;                     /* True if cache is purgeable */
  unsigned int nMin;                  /* Minimum number of pages reserved */
  unsigned int nMax;                  /* Configured "cache_size" value */
  unsigned int n90pct;                /* nMax*9/10 */


  /* Hash table of all pages. The following variables may only be accessed
  ** when the accessor is holding the PGroup mutex.
  */
  unsigned int nRecyclable;           /* Number of pages in the LRU list */
  unsigned int nPage;                 /* Total number of pages in apHash */
  unsigned int nHash;                 /* Number of slots in apHash[] */
  PgHdr1 **apHash;                    /* Hash table for fast lookup by key */

  unsigned int iMaxKey;               /* Largest key seen since xTruncate() */
};

/*
** Each cache entry is represented by an instance of the following 
** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
** PgHdr1.pCache->szPage bytes is allocated directly before this structure 
** in memory.
................................................................................
  int isInit;                    /* True if initialized */
  int szSlot;                    /* Size of each free slot */
  int nSlot;                     /* The number of pcache slots */
  int nReserve;                  /* Try to keep nFreeSlot above this */
  void *pStart, *pEnd;           /* Bounds of pagecache malloc range */
  /* Above requires no mutex.  Use mutex below for variable that follow. */
  sqlite3_mutex *mutex;          /* Mutex for accessing the following: */
  int nFreeSlot;                 /* Number of unused pcache slots */
  PgFreeslot *pFree;             /* Free page blocks */

  /* The following value requires a mutex to change.  We skip the mutex on
  ** reading because (1) most platforms read a 32-bit integer atomically and
  ** (2) even if an incorrect value is read, no great harm is done since this
  ** is really just an optimization. */
  int bUnderPressure;            /* True if low on PAGECACHE memory */
} pcache1_g;








>








<
<







 







<

>







72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87


88
89
90
91
92
93
94
...
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
  PGroup *pGroup;                     /* PGroup this cache belongs to */
  int szPage;                         /* Size of allocated pages in bytes */
  int szExtra;                        /* Size of extra space in bytes */
  int bPurgeable;                     /* True if cache is purgeable */
  unsigned int nMin;                  /* Minimum number of pages reserved */
  unsigned int nMax;                  /* Configured "cache_size" value */
  unsigned int n90pct;                /* nMax*9/10 */
  unsigned int iMaxKey;               /* Largest key seen since xTruncate() */

  /* Hash table of all pages. The following variables may only be accessed
  ** when the accessor is holding the PGroup mutex.
  */
  unsigned int nRecyclable;           /* Number of pages in the LRU list */
  unsigned int nPage;                 /* Total number of pages in apHash */
  unsigned int nHash;                 /* Number of slots in apHash[] */
  PgHdr1 **apHash;                    /* Hash table for fast lookup by key */


};

/*
** Each cache entry is represented by an instance of the following 
** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
** PgHdr1.pCache->szPage bytes is allocated directly before this structure 
** in memory.
................................................................................
  int isInit;                    /* True if initialized */
  int szSlot;                    /* Size of each free slot */
  int nSlot;                     /* The number of pcache slots */
  int nReserve;                  /* Try to keep nFreeSlot above this */
  void *pStart, *pEnd;           /* Bounds of pagecache malloc range */
  /* Above requires no mutex.  Use mutex below for variable that follow. */
  sqlite3_mutex *mutex;          /* Mutex for accessing the following: */

  PgFreeslot *pFree;             /* Free page blocks */
  int nFreeSlot;                 /* Number of unused pcache slots */
  /* The following value requires a mutex to change.  We skip the mutex on
  ** reading because (1) most platforms read a 32-bit integer atomically and
  ** (2) even if an incorrect value is read, no great harm is done since this
  ** is really just an optimization. */
  int bUnderPressure;            /* True if low on PAGECACHE memory */
} pcache1_g;