SQLite

Check-in Differences
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Difference From ee8a108058c304f9 To 96e3dba2ed3ab0c5

2020-07-31
16:01
Merge latest trunk changes into this branch. (check-in: 0c0d0a77bc user: dan tags: wal2)
2020-07-30
22:33
Provide an alternative "guaranteed-safe" method for overwriting the WAL index on recovery, in case some platform is found for which memcpy() cannot do this safely. (check-in: 168cccbabb user: drh tags: trunk)
19:37
Merge latest trunk change into this branch. (check-in: 2b3241cf67 user: dan tags: begin-concurrent-pnu)
19:19
Merge latest trunk changes into this branch. (check-in: e8a6651539 user: dan tags: begin-concurrent)
17:37
Fix compiler warnings in MSVC. (check-in: 96e3dba2ed user: drh tags: trunk)
17:29
Allow for page numbers as large as 4294967294 (0xfffffffe) which means database files as large as 281 TB. (check-in: 166e82dd20 user: drh tags: trunk)
2020-07-29
16:18
Dozens and dozens of typo fixes in comments. This change adds no value to the end product and is disruptive, so it is questionable whether or not it will ever land on trunk. (Leaf check-in: a80ae2c98b user: drh tags: typos)
2020-07-28
17:51
Merge enhancements from trunk. (check-in: 969c25bb14 user: drh tags: larger-databases)
17:29
If a writer crashes in WAL mode and leave the SHM file in an inconsistent state, subsequent transactions are now able to recover the SHM file even if there are active read transactions. (check-in: ee8a108058 user: drh tags: trunk)
17:17
Add an sqlite3FaultSim() to make an OOM case more accessible and remove the ALWAYS() on the conditional that is false when the OOM actually occurs. (Closed-Leaf check-in: 2a251af84f user: drh tags: unlocked-recovery)
2020-07-24
11:01
Remove a surplus space from a comment (check-in: 73fecc688a user: drh tags: trunk)

Changes to src/analyze.c.
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#endif
    { "sqlite_stat3", 0 },
  };
  int i;
  sqlite3 *db = pParse->db;
  Db *pDb;
  Vdbe *v = sqlite3GetVdbe(pParse);
  int aRoot[ArraySize(aTable)];
  u8 aCreateTbl[ArraySize(aTable)];
#ifdef SQLITE_ENABLE_STAT4
  const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1;
#else
  const int nToOpen = 1;
#endif








|







182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#endif
    { "sqlite_stat3", 0 },
  };
  int i;
  sqlite3 *db = pParse->db;
  Db *pDb;
  Vdbe *v = sqlite3GetVdbe(pParse);
  u32 aRoot[ArraySize(aTable)];
  u8 aCreateTbl[ArraySize(aTable)];
#ifdef SQLITE_ENABLE_STAT4
  const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1;
#else
  const int nToOpen = 1;
#endif

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        /* The sqlite_statN table does not exist. Create it. Note that a 
        ** side-effect of the CREATE TABLE statement is to leave the rootpage 
        ** of the new table in register pParse->regRoot. This is important 
        ** because the OpenWrite opcode below will be needing it. */
        sqlite3NestedParse(pParse,
            "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols
        );
        aRoot[i] = pParse->regRoot;
        aCreateTbl[i] = OPFLAG_P2ISREG;
      }
    }else{
      /* The table already exists. If zWhere is not NULL, delete all entries 
      ** associated with the table zWhere. If zWhere is NULL, delete the
      ** entire contents of the table. */
      aRoot[i] = pStat->tnum;
      sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
      if( zWhere ){
        sqlite3NestedParse(pParse,
           "DELETE FROM %Q.%s WHERE %s=%Q",
           pDb->zDbSName, zTab, zWhereType, zWhere
        );
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
      }else if( db->xPreUpdateCallback ){
        sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab);
#endif
      }else{
        /* The sqlite_stat[134] table already exists.  Delete all rows. */
        sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
      }
    }
  }

  /* Open the sqlite_stat[134] tables for writing. */
  for(i=0; i<nToOpen; i++){
    assert( i<ArraySize(aTable) );
    sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3);
    sqlite3VdbeChangeP5(v, aCreateTbl[i]);
    VdbeComment((v, aTable[i].zName));
  }
}

/*
** Recommended number of samples for sqlite_stat4







|



















|







|







211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        /* The sqlite_statN table does not exist. Create it. Note that a 
        ** side-effect of the CREATE TABLE statement is to leave the rootpage 
        ** of the new table in register pParse->regRoot. This is important 
        ** because the OpenWrite opcode below will be needing it. */
        sqlite3NestedParse(pParse,
            "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols
        );
        aRoot[i] = (u32)pParse->regRoot;
        aCreateTbl[i] = OPFLAG_P2ISREG;
      }
    }else{
      /* The table already exists. If zWhere is not NULL, delete all entries 
      ** associated with the table zWhere. If zWhere is NULL, delete the
      ** entire contents of the table. */
      aRoot[i] = pStat->tnum;
      sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
      if( zWhere ){
        sqlite3NestedParse(pParse,
           "DELETE FROM %Q.%s WHERE %s=%Q",
           pDb->zDbSName, zTab, zWhereType, zWhere
        );
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
      }else if( db->xPreUpdateCallback ){
        sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab);
#endif
      }else{
        /* The sqlite_stat[134] table already exists.  Delete all rows. */
        sqlite3VdbeAddOp2(v, OP_Clear, (int)aRoot[i], iDb);
      }
    }
  }

  /* Open the sqlite_stat[134] tables for writing. */
  for(i=0; i<nToOpen; i++){
    assert( i<ArraySize(aTable) );
    sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, (int)aRoot[i], iDb, 3);
    sqlite3VdbeChangeP5(v, aCreateTbl[i]);
    VdbeComment((v, aTable[i].zName));
  }
}

/*
** Recommended number of samples for sqlite_stat4
Changes to src/btree.c.
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
}

/*
** Return the size of the database file in pages. If there is any kind of
** error, return ((unsigned int)-1).
*/
static Pgno btreePagecount(BtShared *pBt){
  assert( (pBt->nPage & 0x80000000)==0 || CORRUPT_DB );
  return pBt->nPage;
}
u32 sqlite3BtreeLastPage(Btree *p){
  assert( sqlite3BtreeHoldsMutex(p) );
  return btreePagecount(p->pBt) & 0x7fffffff;
}

/*
** Get a page from the pager and initialize it.
**
** If pCur!=0 then the page is being fetched as part of a moveToChild()
** call.  Do additional sanity checking on the page in this case.







<


|

|







2135
2136
2137
2138
2139
2140
2141

2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
}

/*
** Return the size of the database file in pages. If there is any kind of
** error, return ((unsigned int)-1).
*/
static Pgno btreePagecount(BtShared *pBt){

  return pBt->nPage;
}
Pgno sqlite3BtreeLastPage(Btree *p){
  assert( sqlite3BtreeHoldsMutex(p) );
  return btreePagecount(p->pBt);
}

/*
** Get a page from the pager and initialize it.
**
** If pCur!=0 then the page is being fetched as part of a moveToChild()
** call.  Do additional sanity checking on the page in this case.
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943


/*
** Set the maximum page count for a database if mxPage is positive.
** No changes are made if mxPage is 0 or negative.
** Regardless of the value of mxPage, return the maximum page count.
*/
int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
  int n;
  sqlite3BtreeEnter(p);
  n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return n;
}

/*







|
|







2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942


/*
** Set the maximum page count for a database if mxPage is positive.
** No changes are made if mxPage is 0 or negative.
** Regardless of the value of mxPage, return the maximum page count.
*/
Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
  Pgno n;
  sqlite3BtreeEnter(p);
  n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return n;
}

/*
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
** will not work correctly.
**
** It is assumed that the sqlite3BtreeCursorZero() has been called
** on pCur to initialize the memory space prior to invoking this routine.
*/
static int btreeCursor(
  Btree *p,                              /* The btree */
  int iTable,                            /* Root page of table to open */
  int wrFlag,                            /* 1 to write. 0 read-only */
  struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
  BtCursor *pCur                         /* Space for new cursor */
){
  BtShared *pBt = p->pBt;                /* Shared b-tree handle */
  BtCursor *pX;                          /* Looping over other all cursors */








|







4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
** will not work correctly.
**
** It is assumed that the sqlite3BtreeCursorZero() has been called
** on pCur to initialize the memory space prior to invoking this routine.
*/
static int btreeCursor(
  Btree *p,                              /* The btree */
  Pgno iTable,                           /* Root page of table to open */
  int wrFlag,                            /* 1 to write. 0 read-only */
  struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
  BtCursor *pCur                         /* Space for new cursor */
){
  BtShared *pBt = p->pBt;                /* Shared b-tree handle */
  BtCursor *pX;                          /* Looping over other all cursors */

4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
      assert( wrFlag==0 );
      iTable = 0;
    }
  }

  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
  pCur->pgnoRoot = (Pgno)iTable;
  pCur->iPage = -1;
  pCur->pKeyInfo = pKeyInfo;
  pCur->pBtree = p;
  pCur->pBt = pBt;
  pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
  pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
  /* If there are two or more cursors on the same btree, then all such
  ** cursors *must* have the BTCF_Multiple flag set. */
  for(pX=pBt->pCursor; pX; pX=pX->pNext){
    if( pX->pgnoRoot==(Pgno)iTable ){
      pX->curFlags |= BTCF_Multiple;
      pCur->curFlags |= BTCF_Multiple;
    }
  }
  pCur->pNext = pBt->pCursor;
  pBt->pCursor = pCur;
  pCur->eState = CURSOR_INVALID;
  return SQLITE_OK;
}
static int btreeCursorWithLock(
  Btree *p,                              /* The btree */
  int iTable,                            /* Root page of table to open */
  int wrFlag,                            /* 1 to write. 0 read-only */
  struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
  BtCursor *pCur                         /* Space for new cursor */
){
  int rc;
  sqlite3BtreeEnter(p);
  rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
  sqlite3BtreeLeave(p);
  return rc;
}
int sqlite3BtreeCursor(
  Btree *p,                                   /* The btree */
  int iTable,                                 /* Root page of table to open */
  int wrFlag,                                 /* 1 to write. 0 read-only */
  struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
  BtCursor *pCur                              /* Write new cursor here */
){
  if( p->sharable ){
    return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
  }else{







|









|











|












|







4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
      assert( wrFlag==0 );
      iTable = 0;
    }
  }

  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
  pCur->pgnoRoot = iTable;
  pCur->iPage = -1;
  pCur->pKeyInfo = pKeyInfo;
  pCur->pBtree = p;
  pCur->pBt = pBt;
  pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
  pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
  /* If there are two or more cursors on the same btree, then all such
  ** cursors *must* have the BTCF_Multiple flag set. */
  for(pX=pBt->pCursor; pX; pX=pX->pNext){
    if( pX->pgnoRoot==iTable ){
      pX->curFlags |= BTCF_Multiple;
      pCur->curFlags |= BTCF_Multiple;
    }
  }
  pCur->pNext = pBt->pCursor;
  pBt->pCursor = pCur;
  pCur->eState = CURSOR_INVALID;
  return SQLITE_OK;
}
static int btreeCursorWithLock(
  Btree *p,                              /* The btree */
  Pgno iTable,                           /* Root page of table to open */
  int wrFlag,                            /* 1 to write. 0 read-only */
  struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
  BtCursor *pCur                         /* Space for new cursor */
){
  int rc;
  sqlite3BtreeEnter(p);
  rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
  sqlite3BtreeLeave(p);
  return rc;
}
int sqlite3BtreeCursor(
  Btree *p,                                   /* The btree */
  Pgno iTable,                                /* Root page of table to open */
  int wrFlag,                                 /* 1 to write. 0 read-only */
  struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
  BtCursor *pCur                              /* Write new cursor here */
){
  if( p->sharable ){
    return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
  }else{
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846


  if( rc==SQLITE_OK && amt>0 ){
    const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
    Pgno nextPage;

    nextPage = get4byte(&aPayload[pCur->info.nLocal]);

    /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
    **
    ** The aOverflow[] array is sized at one entry for each overflow page
    ** in the overflow chain. The page number of the first overflow page is
    ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
    ** means "not yet known" (the cache is lazily populated).
    */







|







4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845


  if( rc==SQLITE_OK && amt>0 ){
    const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
    Pgno nextPage;

    nextPage = get4byte(&aPayload[pCur->info.nLocal]);
 
    /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
    **
    ** The aOverflow[] array is sized at one entry for each overflow page
    ** in the overflow chain. The page number of the first overflow page is
    ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
    ** means "not yet known" (the cache is lazily populated).
    */
4871
4872
4873
4874
4875
4876
4877

4878
4879
4880
4881
4882
4883
4884
        offset = (offset%ovflSize);
      }
    }

    assert( rc==SQLITE_OK && amt>0 );
    while( nextPage ){
      /* If required, populate the overflow page-list cache. */

      assert( pCur->aOverflow[iIdx]==0
              || pCur->aOverflow[iIdx]==nextPage
              || CORRUPT_DB );
      pCur->aOverflow[iIdx] = nextPage;

      if( offset>=ovflSize ){
        /* The only reason to read this page is to obtain the page







>







4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
        offset = (offset%ovflSize);
      }
    }

    assert( rc==SQLITE_OK && amt>0 );
    while( nextPage ){
      /* If required, populate the overflow page-list cache. */
      if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
      assert( pCur->aOverflow[iIdx]==0
              || pCur->aOverflow[iIdx]==nextPage
              || CORRUPT_DB );
      pCur->aOverflow[iIdx] = nextPage;

      if( offset>=ovflSize ){
        /* The only reason to read this page is to obtain the page
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
    
    /* If eMode==BTALLOC_EXACT and a query of the pointer-map
    ** shows that the page 'nearby' is somewhere on the free-list, then
    ** the entire-list will be searched for that page.
    */
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( eMode==BTALLOC_EXACT ){
      if( nearby<=mxPage ){
        u8 eType;
        assert( nearby>0 );
        assert( pBt->autoVacuum );
        rc = ptrmapGet(pBt, nearby, &eType, 0);
        if( rc ) return rc;
        if( eType==PTRMAP_FREEPAGE ){
          searchList = 1;







|







5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
    
    /* If eMode==BTALLOC_EXACT and a query of the pointer-map
    ** shows that the page 'nearby' is somewhere on the free-list, then
    ** the entire-list will be searched for that page.
    */
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( eMode==BTALLOC_EXACT ){
      if( ALWAYS(nearby<=mxPage) ){
        u8 eType;
        assert( nearby>0 );
        assert( pBt->autoVacuum );
        rc = ptrmapGet(pBt, nearby, &eType, 0);
        if( rc ) return rc;
        if( eType==PTRMAP_FREEPAGE ){
          searchList = 1;
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
  int rc;                             /* Return Code */
  u32 nFree;                          /* Initial number of pages on free-list */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( CORRUPT_DB || iPage>1 );
  assert( !pMemPage || pMemPage->pgno==iPage );

  if( iPage<2 || iPage>pBt->nPage ){
    return SQLITE_CORRUPT_BKPT;
  }
  if( pMemPage ){
    pPage = pMemPage;
    sqlite3PagerRef(pPage->pDbPage);
  }else{
    pPage = btreePageLookup(pBt, iPage);







|







6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
  int rc;                             /* Return Code */
  u32 nFree;                          /* Initial number of pages on free-list */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( CORRUPT_DB || iPage>1 );
  assert( !pMemPage || pMemPage->pgno==iPage );

  if( iPage<2 || NEVER(iPage>pBt->nPage) ){
    return SQLITE_CORRUPT_BKPT;
  }
  if( pMemPage ){
    pPage = pMemPage;
    sqlite3PagerRef(pPage->pDbPage);
  }else{
    pPage = btreePageLookup(pBt, iPage);
6286
6287
6288
6289
6290
6291
6292




6293
6294
6295
6296
6297
6298
6299
  ** first trunk page in the current free-list. This block tests if it
  ** is possible to add the page as a new free-list leaf.
  */
  if( nFree!=0 ){
    u32 nLeaf;                /* Initial number of leaf cells on trunk page */

    iTrunk = get4byte(&pPage1->aData[32]);




    rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
    if( rc!=SQLITE_OK ){
      goto freepage_out;
    }

    nLeaf = get4byte(&pTrunk->aData[4]);
    assert( pBt->usableSize>32 );







>
>
>
>







6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
  ** first trunk page in the current free-list. This block tests if it
  ** is possible to add the page as a new free-list leaf.
  */
  if( nFree!=0 ){
    u32 nLeaf;                /* Initial number of leaf cells on trunk page */

    iTrunk = get4byte(&pPage1->aData[32]);
    if( iTrunk>btreePagecount(pBt) ){
      rc = SQLITE_CORRUPT_BKPT;
      goto freepage_out;
    }
    rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
    if( rc!=SQLITE_OK ){
      goto freepage_out;
    }

    nLeaf = get4byte(&pTrunk->aData[4]);
    assert( pBt->usableSize>32 );
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
** The type of type is determined by the flags parameter.  Only the
** following values of flags are currently in use.  Other values for
** flags might not work:
**
**     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
**     BTREE_ZERODATA                  Used for SQL indices
*/
static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
  BtShared *pBt = p->pBt;
  MemPage *pRoot;
  Pgno pgnoRoot;
  int rc;
  int ptfFlags;          /* Page-type flage for the root page of new table */

  assert( sqlite3BtreeHoldsMutex(p) );







|







9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
** The type of type is determined by the flags parameter.  Only the
** following values of flags are currently in use.  Other values for
** flags might not work:
**
**     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
**     BTREE_ZERODATA                  Used for SQL indices
*/
static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
  BtShared *pBt = p->pBt;
  MemPage *pRoot;
  Pgno pgnoRoot;
  int rc;
  int ptfFlags;          /* Page-type flage for the root page of new table */

  assert( sqlite3BtreeHoldsMutex(p) );
9123
9124
9125
9126
9127
9128
9129



9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
    invalidateAllOverflowCache(pBt);

    /* Read the value of meta[3] from the database to determine where the
    ** root page of the new table should go. meta[3] is the largest root-page
    ** created so far, so the new root-page is (meta[3]+1).
    */
    sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);



    pgnoRoot++;

    /* The new root-page may not be allocated on a pointer-map page, or the
    ** PENDING_BYTE page.
    */
    while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
        pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
      pgnoRoot++;
    }
    assert( pgnoRoot>=3 || CORRUPT_DB );
    testcase( pgnoRoot<3 );

    /* Allocate a page. The page that currently resides at pgnoRoot will
    ** be moved to the allocated page (unless the allocated page happens
    ** to reside at pgnoRoot).
    */
    rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
    if( rc!=SQLITE_OK ){







>
>
>









|
<







9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146

9147
9148
9149
9150
9151
9152
9153
    invalidateAllOverflowCache(pBt);

    /* Read the value of meta[3] from the database to determine where the
    ** root page of the new table should go. meta[3] is the largest root-page
    ** created so far, so the new root-page is (meta[3]+1).
    */
    sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
    if( pgnoRoot>btreePagecount(pBt) ){
      return SQLITE_CORRUPT_BKPT;
    }
    pgnoRoot++;

    /* The new root-page may not be allocated on a pointer-map page, or the
    ** PENDING_BYTE page.
    */
    while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
        pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
      pgnoRoot++;
    }
    assert( pgnoRoot>=3 );


    /* Allocate a page. The page that currently resides at pgnoRoot will
    ** be moved to the allocated page (unless the allocated page happens
    ** to reside at pgnoRoot).
    */
    rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
    if( rc!=SQLITE_OK ){
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
    ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
  }else{
    ptfFlags = PTF_ZERODATA | PTF_LEAF;
  }
  zeroPage(pRoot, ptfFlags);
  sqlite3PagerUnref(pRoot->pDbPage);
  assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
  *piTable = (int)pgnoRoot;
  return SQLITE_OK;
}
int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
  int rc;
  sqlite3BtreeEnter(p);
  rc = btreeCreateTable(p, piTable, flags);
  sqlite3BtreeLeave(p);
  return rc;
}








|


|







9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
    ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
  }else{
    ptfFlags = PTF_ZERODATA | PTF_LEAF;
  }
  zeroPage(pRoot, ptfFlags);
  sqlite3PagerUnref(pRoot->pDbPage);
  assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
  *piTable = pgnoRoot;
  return SQLITE_OK;
}
int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
  int rc;
  sqlite3BtreeEnter(p);
  rc = btreeCreateTable(p, piTable, flags);
  sqlite3BtreeLeave(p);
  return rc;
}

9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
/*
** Check the integrity of the freelist or of an overflow page list.
** Verify that the number of pages on the list is N.
*/
static void checkList(
  IntegrityCk *pCheck,  /* Integrity checking context */
  int isFreeList,       /* True for a freelist.  False for overflow page list */
  int iPage,            /* Page number for first page in the list */
  u32 N                 /* Expected number of pages in the list */
){
  int i;
  u32 expected = N;
  int nErrAtStart = pCheck->nErr;
  while( iPage!=0 && pCheck->mxErr ){
    DbPage *pOvflPage;







|







9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
/*
** Check the integrity of the freelist or of an overflow page list.
** Verify that the number of pages on the list is N.
*/
static void checkList(
  IntegrityCk *pCheck,  /* Integrity checking context */
  int isFreeList,       /* True for a freelist.  False for overflow page list */
  Pgno iPage,           /* Page number for first page in the list */
  u32 N                 /* Expected number of pages in the list */
){
  int i;
  u32 expected = N;
  int nErrAtStart = pCheck->nErr;
  while( iPage!=0 && pCheck->mxErr ){
    DbPage *pOvflPage;
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
**      2.  Make sure integer cell keys are in order.
**      3.  Check the integrity of overflow pages.
**      4.  Recursively call checkTreePage on all children.
**      5.  Verify that the depth of all children is the same.
*/
static int checkTreePage(
  IntegrityCk *pCheck,  /* Context for the sanity check */
  int iPage,            /* Page number of the page to check */
  i64 *piMinKey,        /* Write minimum integer primary key here */
  i64 maxKey            /* Error if integer primary key greater than this */
){
  MemPage *pPage = 0;      /* The page being analyzed */
  int i;                   /* Loop counter */
  int rc;                  /* Result code from subroutine call */
  int depth = -1, d2;      /* Depth of a subtree */







|







9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
**      2.  Make sure integer cell keys are in order.
**      3.  Check the integrity of overflow pages.
**      4.  Recursively call checkTreePage on all children.
**      5.  Verify that the depth of all children is the same.
*/
static int checkTreePage(
  IntegrityCk *pCheck,  /* Context for the sanity check */
  Pgno iPage,           /* Page number of the page to check */
  i64 *piMinKey,        /* Write minimum integer primary key here */
  i64 maxKey            /* Error if integer primary key greater than this */
){
  MemPage *pPage = 0;      /* The page being analyzed */
  int i;                   /* Loop counter */
  int rc;                  /* Result code from subroutine call */
  int depth = -1, d2;      /* Depth of a subtree */
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901

  /* Check that the page exists
  */
  pBt = pCheck->pBt;
  usableSize = pBt->usableSize;
  if( iPage==0 ) return 0;
  if( checkRef(pCheck, iPage) ) return 0;
  pCheck->zPfx = "Page %d: ";
  pCheck->v1 = iPage;
  if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
    checkAppendMsg(pCheck,
       "unable to get the page. error code=%d", rc);
    goto end_of_check;
  }

  /* Clear MemPage.isInit to make sure the corruption detection code in
  ** btreeInitPage() is executed.  */







|

|







9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907

  /* Check that the page exists
  */
  pBt = pCheck->pBt;
  usableSize = pBt->usableSize;
  if( iPage==0 ) return 0;
  if( checkRef(pCheck, iPage) ) return 0;
  pCheck->zPfx = "Page %u: ";
  pCheck->v1 = iPage;
  if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
    checkAppendMsg(pCheck,
       "unable to get the page. error code=%d", rc);
    goto end_of_check;
  }

  /* Clear MemPage.isInit to make sure the corruption detection code in
  ** btreeInitPage() is executed.  */
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
    checkAppendMsg(pCheck, "free space corruption", rc);
    goto end_of_check;
  }
  data = pPage->aData;
  hdr = pPage->hdrOffset;

  /* Set up for cell analysis */
  pCheck->zPfx = "On tree page %d cell %d: ";
  contentOffset = get2byteNotZero(&data[hdr+5]);
  assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */

  /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
  ** number of cells on the page. */
  nCell = get2byte(&data[hdr+3]);
  assert( pPage->nCell==nCell );

  /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
  ** immediately follows the b-tree page header. */
  cellStart = hdr + 12 - 4*pPage->leaf;
  assert( pPage->aCellIdx==&data[cellStart] );
  pCellIdx = &data[cellStart + 2*(nCell-1)];

  if( !pPage->leaf ){
    /* Analyze the right-child page of internal pages */
    pgno = get4byte(&data[hdr+8]);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      pCheck->zPfx = "On page %d at right child: ";
      checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
    }
#endif
    depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
    keyCanBeEqual = 0;
  }else{
    /* For leaf pages, the coverage check will occur in the same loop







|



















|







9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
    checkAppendMsg(pCheck, "free space corruption", rc);
    goto end_of_check;
  }
  data = pPage->aData;
  hdr = pPage->hdrOffset;

  /* Set up for cell analysis */
  pCheck->zPfx = "On tree page %u cell %d: ";
  contentOffset = get2byteNotZero(&data[hdr+5]);
  assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */

  /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
  ** number of cells on the page. */
  nCell = get2byte(&data[hdr+3]);
  assert( pPage->nCell==nCell );

  /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
  ** immediately follows the b-tree page header. */
  cellStart = hdr + 12 - 4*pPage->leaf;
  assert( pPage->aCellIdx==&data[cellStart] );
  pCellIdx = &data[cellStart + 2*(nCell-1)];

  if( !pPage->leaf ){
    /* Analyze the right-child page of internal pages */
    pgno = get4byte(&data[hdr+8]);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      pCheck->zPfx = "On page %u at right child: ";
      checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
    }
#endif
    depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
    keyCanBeEqual = 0;
  }else{
    /* For leaf pages, the coverage check will occur in the same loop
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
    ** that gap is added to the fragmentation count.
    */
    nFrag = 0;
    prev = contentOffset - 1;   /* Implied first min-heap entry */
    while( btreeHeapPull(heap,&x) ){
      if( (prev&0xffff)>=(x>>16) ){
        checkAppendMsg(pCheck,
          "Multiple uses for byte %u of page %d", x>>16, iPage);
        break;
      }else{
        nFrag += (x>>16) - (prev&0xffff) - 1;
        prev = x;
      }
    }
    nFrag += usableSize - (prev&0xffff) - 1;
    /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
    ** is stored in the fifth field of the b-tree page header.
    ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
    ** number of fragmented free bytes within the cell content area.
    */
    if( heap[0]==0 && nFrag!=data[hdr+7] ){
      checkAppendMsg(pCheck,
          "Fragmentation of %d bytes reported as %d on page %d",
          nFrag, data[hdr+7], iPage);
    }
  }

end_of_check:
  if( !doCoverageCheck ) pPage->isInit = savedIsInit;
  releasePage(pPage);







|














|







10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
    ** that gap is added to the fragmentation count.
    */
    nFrag = 0;
    prev = contentOffset - 1;   /* Implied first min-heap entry */
    while( btreeHeapPull(heap,&x) ){
      if( (prev&0xffff)>=(x>>16) ){
        checkAppendMsg(pCheck,
          "Multiple uses for byte %u of page %u", x>>16, iPage);
        break;
      }else{
        nFrag += (x>>16) - (prev&0xffff) - 1;
        prev = x;
      }
    }
    nFrag += usableSize - (prev&0xffff) - 1;
    /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
    ** is stored in the fifth field of the b-tree page header.
    ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
    ** number of fragmented free bytes within the cell content area.
    */
    if( heap[0]==0 && nFrag!=data[hdr+7] ){
      checkAppendMsg(pCheck,
          "Fragmentation of %d bytes reported as %d on page %u",
          nFrag, data[hdr+7], iPage);
    }
  }

end_of_check:
  if( !doCoverageCheck ) pPage->isInit = savedIsInit;
  releasePage(pPage);
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148

10149
10150
10151
10152
10153
10154
10155
** since obviously it is not possible to know which pages are covered by
** the unverified btrees.  Except, if aRoot[1] is 1, then the freelist
** checks are still performed.
*/
char *sqlite3BtreeIntegrityCheck(
  sqlite3 *db,  /* Database connection that is running the check */
  Btree *p,     /* The btree to be checked */
  int *aRoot,   /* An array of root pages numbers for individual trees */
  int nRoot,    /* Number of entries in aRoot[] */
  int mxErr,    /* Stop reporting errors after this many */
  int *pnErr    /* Write number of errors seen to this variable */
){
  Pgno i;
  IntegrityCk sCheck;
  BtShared *pBt = p->pBt;
  u64 savedDbFlags = pBt->db->flags;
  char zErr[100];
  VVA_ONLY( int nRef );
  int bPartial = 0;            /* True if not checking all btrees */
  int bCkFreelist = 1;         /* True to scan the freelist */

  assert( nRoot>0 );

  /* aRoot[0]==0 means this is a partial check */
  if( aRoot[0]==0 ){
    assert( nRoot>1 );
    bPartial = 1;
    if( aRoot[1]!=1 ) bCkFreelist = 0;







|









<


>







10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151

10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
** since obviously it is not possible to know which pages are covered by
** the unverified btrees.  Except, if aRoot[1] is 1, then the freelist
** checks are still performed.
*/
char *sqlite3BtreeIntegrityCheck(
  sqlite3 *db,  /* Database connection that is running the check */
  Btree *p,     /* The btree to be checked */
  Pgno *aRoot,  /* An array of root pages numbers for individual trees */
  int nRoot,    /* Number of entries in aRoot[] */
  int mxErr,    /* Stop reporting errors after this many */
  int *pnErr    /* Write number of errors seen to this variable */
){
  Pgno i;
  IntegrityCk sCheck;
  BtShared *pBt = p->pBt;
  u64 savedDbFlags = pBt->db->flags;
  char zErr[100];

  int bPartial = 0;            /* True if not checking all btrees */
  int bCkFreelist = 1;         /* True to scan the freelist */
  VVA_ONLY( int nRef );
  assert( nRoot>0 );

  /* aRoot[0]==0 means this is a partial check */
  if( aRoot[0]==0 ){
    assert( nRoot>1 );
    bPartial = 1;
    if( aRoot[1]!=1 ) bCkFreelist = 0;
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
  }

  /* Check all the tables.
  */
#ifndef SQLITE_OMIT_AUTOVACUUM
  if( !bPartial ){
    if( pBt->autoVacuum ){
      int mx = 0;
      int mxInHdr;
      for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
      mxInHdr = get4byte(&pBt->pPage1->aData[52]);
      if( mx!=mxInHdr ){
        checkAppendMsg(&sCheck,
          "max rootpage (%d) disagrees with header (%d)",
          mx, mxInHdr
        );







|
|







10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
  }

  /* Check all the tables.
  */
#ifndef SQLITE_OMIT_AUTOVACUUM
  if( !bPartial ){
    if( pBt->autoVacuum ){
      Pgno mx = 0;
      Pgno mxInHdr;
      for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
      mxInHdr = get4byte(&pBt->pPage1->aData[52]);
      if( mx!=mxInHdr ){
        checkAppendMsg(&sCheck,
          "max rootpage (%d) disagrees with header (%d)",
          mx, mxInHdr
        );
Changes to src/btree.h.
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
int sqlite3BtreeSetSpillSize(Btree*,int);
#if SQLITE_MAX_MMAP_SIZE>0
  int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64);
#endif
int sqlite3BtreeSetPagerFlags(Btree*,unsigned);
int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
int sqlite3BtreeGetPageSize(Btree*);
int sqlite3BtreeMaxPageCount(Btree*,int);
u32 sqlite3BtreeLastPage(Btree*);
int sqlite3BtreeSecureDelete(Btree*,int);
int sqlite3BtreeGetRequestedReserve(Btree*);
int sqlite3BtreeGetReserveNoMutex(Btree *p);
int sqlite3BtreeSetAutoVacuum(Btree *, int);
int sqlite3BtreeGetAutoVacuum(Btree *);
int sqlite3BtreeBeginTrans(Btree*,int,int*);
int sqlite3BtreeCommitPhaseOne(Btree*, const char*);
int sqlite3BtreeCommitPhaseTwo(Btree*, int);
int sqlite3BtreeCommit(Btree*);
int sqlite3BtreeRollback(Btree*,int,int);
int sqlite3BtreeBeginStmt(Btree*,int);
int sqlite3BtreeCreateTable(Btree*, int*, int flags);
int sqlite3BtreeIsInTrans(Btree*);
int sqlite3BtreeIsInReadTrans(Btree*);
int sqlite3BtreeIsInBackup(Btree*);
void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
int sqlite3BtreeSchemaLocked(Btree *pBtree);
#ifndef SQLITE_OMIT_SHARED_CACHE
int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock);







|
|











|







67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
int sqlite3BtreeSetSpillSize(Btree*,int);
#if SQLITE_MAX_MMAP_SIZE>0
  int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64);
#endif
int sqlite3BtreeSetPagerFlags(Btree*,unsigned);
int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
int sqlite3BtreeGetPageSize(Btree*);
Pgno sqlite3BtreeMaxPageCount(Btree*,Pgno);
Pgno sqlite3BtreeLastPage(Btree*);
int sqlite3BtreeSecureDelete(Btree*,int);
int sqlite3BtreeGetRequestedReserve(Btree*);
int sqlite3BtreeGetReserveNoMutex(Btree *p);
int sqlite3BtreeSetAutoVacuum(Btree *, int);
int sqlite3BtreeGetAutoVacuum(Btree *);
int sqlite3BtreeBeginTrans(Btree*,int,int*);
int sqlite3BtreeCommitPhaseOne(Btree*, const char*);
int sqlite3BtreeCommitPhaseTwo(Btree*, int);
int sqlite3BtreeCommit(Btree*);
int sqlite3BtreeRollback(Btree*,int,int);
int sqlite3BtreeBeginStmt(Btree*,int);
int sqlite3BtreeCreateTable(Btree*, Pgno*, int flags);
int sqlite3BtreeIsInTrans(Btree*);
int sqlite3BtreeIsInReadTrans(Btree*);
int sqlite3BtreeIsInBackup(Btree*);
void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
int sqlite3BtreeSchemaLocked(Btree *pBtree);
#ifndef SQLITE_OMIT_SHARED_CACHE
int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock);
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
** FORDELETE cursor may return a null row: 0x01 0x00.
*/
#define BTREE_WRCSR     0x00000004     /* read-write cursor */
#define BTREE_FORDELETE 0x00000008     /* Cursor is for seek/delete only */

int sqlite3BtreeCursor(
  Btree*,                              /* BTree containing table to open */
  int iTable,                          /* Index of root page */
  int wrFlag,                          /* 1 for writing.  0 for read-only */
  struct KeyInfo*,                     /* First argument to compare function */
  BtCursor *pCursor                    /* Space to write cursor structure */
);
BtCursor *sqlite3BtreeFakeValidCursor(void);
int sqlite3BtreeCursorSize(void);
void sqlite3BtreeCursorZero(BtCursor*);







|







221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
** FORDELETE cursor may return a null row: 0x01 0x00.
*/
#define BTREE_WRCSR     0x00000004     /* read-write cursor */
#define BTREE_FORDELETE 0x00000008     /* Cursor is for seek/delete only */

int sqlite3BtreeCursor(
  Btree*,                              /* BTree containing table to open */
  Pgno iTable,                         /* Index of root page */
  int wrFlag,                          /* 1 for writing.  0 for read-only */
  struct KeyInfo*,                     /* First argument to compare function */
  BtCursor *pCursor                    /* Space to write cursor structure */
);
BtCursor *sqlite3BtreeFakeValidCursor(void);
int sqlite3BtreeCursorSize(void);
void sqlite3BtreeCursorZero(BtCursor*);
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
i64 sqlite3BtreeOffset(BtCursor*);
#endif
int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*);
const void *sqlite3BtreePayloadFetch(BtCursor*, u32 *pAmt);
u32 sqlite3BtreePayloadSize(BtCursor*);
sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor*);

char *sqlite3BtreeIntegrityCheck(sqlite3*,Btree*,int*aRoot,int nRoot,int,int*);
struct Pager *sqlite3BtreePager(Btree*);
i64 sqlite3BtreeRowCountEst(BtCursor*);

#ifndef SQLITE_OMIT_INCRBLOB
int sqlite3BtreePayloadChecked(BtCursor*, u32 offset, u32 amt, void*);
int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
void sqlite3BtreeIncrblobCursor(BtCursor *);







|







312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
i64 sqlite3BtreeOffset(BtCursor*);
#endif
int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*);
const void *sqlite3BtreePayloadFetch(BtCursor*, u32 *pAmt);
u32 sqlite3BtreePayloadSize(BtCursor*);
sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor*);

char *sqlite3BtreeIntegrityCheck(sqlite3*,Btree*,Pgno*aRoot,int nRoot,int,int*);
struct Pager *sqlite3BtreePager(Btree*);
i64 sqlite3BtreeRowCountEst(BtCursor*);

#ifndef SQLITE_OMIT_INCRBLOB
int sqlite3BtreePayloadChecked(BtCursor*, u32 offset, u32 amt, void*);
int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
void sqlite3BtreeIncrblobCursor(BtCursor *);
Changes to src/btreeInt.h.
677
678
679
680
681
682
683

684
685
686
687
688
689
690
691
  Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
  u8 *aPgRef;       /* 1 bit per page in the db (see above) */
  Pgno nPage;       /* Number of pages in the database */
  int mxErr;        /* Stop accumulating errors when this reaches zero */
  int nErr;         /* Number of messages written to zErrMsg so far */
  int bOomFault;    /* A memory allocation error has occurred */
  const char *zPfx; /* Error message prefix */

  int v1, v2;       /* Values for up to two %d fields in zPfx */
  StrAccum errMsg;  /* Accumulate the error message text here */
  u32 *heap;        /* Min-heap used for analyzing cell coverage */
  sqlite3 *db;      /* Database connection running the check */
};

/*
** Routines to read or write a two- and four-byte big-endian integer values.







>
|







677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
  Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
  u8 *aPgRef;       /* 1 bit per page in the db (see above) */
  Pgno nPage;       /* Number of pages in the database */
  int mxErr;        /* Stop accumulating errors when this reaches zero */
  int nErr;         /* Number of messages written to zErrMsg so far */
  int bOomFault;    /* A memory allocation error has occurred */
  const char *zPfx; /* Error message prefix */
  Pgno v1;          /* Value for first %u substitution in zPfx */
  int v2;           /* Value for second %d substitution in zPfx */
  StrAccum errMsg;  /* Accumulate the error message text here */
  u32 *heap;        /* Min-heap used for analyzing cell coverage */
  sqlite3 *db;      /* Database connection running the check */
};

/*
** Routines to read or write a two- and four-byte big-endian integer values.
Changes to src/build.c.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** The TableLock structure is only used by the sqlite3TableLock() and
** codeTableLocks() functions.
*/
struct TableLock {
  int iDb;               /* The database containing the table to be locked */
  int iTab;              /* The root page of the table to be locked */
  u8 isWriteLock;        /* True for write lock.  False for a read lock */
  const char *zLockName; /* Name of the table */
};

/*
** Record the fact that we want to lock a table at run-time.  
**
** The table to be locked has root page iTab and is found in database iDb.
** A read or a write lock can be taken depending on isWritelock.
**
** This routine just records the fact that the lock is desired.  The
** code to make the lock occur is generated by a later call to
** codeTableLocks() which occurs during sqlite3FinishCoding().
*/
void sqlite3TableLock(
  Parse *pParse,     /* Parsing context */
  int iDb,           /* Index of the database containing the table to lock */
  int iTab,          /* Root page number of the table to be locked */
  u8 isWriteLock,    /* True for a write lock */
  const char *zName  /* Name of the table to be locked */
){
  Parse *pToplevel = sqlite3ParseToplevel(pParse);
  int i;
  int nBytes;
  TableLock *p;







|

















|







27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** The TableLock structure is only used by the sqlite3TableLock() and
** codeTableLocks() functions.
*/
struct TableLock {
  int iDb;               /* The database containing the table to be locked */
  Pgno iTab;             /* The root page of the table to be locked */
  u8 isWriteLock;        /* True for write lock.  False for a read lock */
  const char *zLockName; /* Name of the table */
};

/*
** Record the fact that we want to lock a table at run-time.  
**
** The table to be locked has root page iTab and is found in database iDb.
** A read or a write lock can be taken depending on isWritelock.
**
** This routine just records the fact that the lock is desired.  The
** code to make the lock occur is generated by a later call to
** codeTableLocks() which occurs during sqlite3FinishCoding().
*/
void sqlite3TableLock(
  Parse *pParse,     /* Parsing context */
  int iDb,           /* Index of the database containing the table to lock */
  Pgno iTab,         /* Root page number of the table to be locked */
  u8 isWriteLock,    /* True for a write lock */
  const char *zName  /* Name of the table to be locked */
){
  Parse *pToplevel = sqlite3ParseToplevel(pParse);
  int i;
  int nBytes;
  TableLock *p;
884
885
886
887
888
889
890
891



892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
int sqlite3CheckObjectName(
  Parse *pParse,            /* Parsing context */
  const char *zName,        /* Name of the object to check */
  const char *zType,        /* Type of this object */
  const char *zTblName      /* Parent table name for triggers and indexes */
){
  sqlite3 *db = pParse->db;
  if( sqlite3WritableSchema(db) || db->init.imposterTable ){



    /* Skip these error checks for writable_schema=ON */
    return SQLITE_OK;
  }
  if( db->init.busy ){
    if( sqlite3_stricmp(zType, db->init.azInit[0])
     || sqlite3_stricmp(zName, db->init.azInit[1])
     || sqlite3_stricmp(zTblName, db->init.azInit[2])
    ){
      if( sqlite3Config.bExtraSchemaChecks ){
        sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
        return SQLITE_ERROR;
      }
    }
  }else{
    if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
     || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
    ){
      sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
                      zName);







|
>
>
>








<
|
|
<







884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902

903
904

905
906
907
908
909
910
911
int sqlite3CheckObjectName(
  Parse *pParse,            /* Parsing context */
  const char *zName,        /* Name of the object to check */
  const char *zType,        /* Type of this object */
  const char *zTblName      /* Parent table name for triggers and indexes */
){
  sqlite3 *db = pParse->db;
  if( sqlite3WritableSchema(db)
   || db->init.imposterTable
   || !sqlite3Config.bExtraSchemaChecks
  ){
    /* Skip these error checks for writable_schema=ON */
    return SQLITE_OK;
  }
  if( db->init.busy ){
    if( sqlite3_stricmp(zType, db->init.azInit[0])
     || sqlite3_stricmp(zName, db->init.azInit[1])
     || sqlite3_stricmp(zTblName, db->init.azInit[2])
    ){

      sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
      return SQLITE_ERROR;

    }
  }else{
    if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
     || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
    ){
      sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
                      zName);
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124

  /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
  ** table entry. This is only required if currently generating VDBE
  ** code for a CREATE TABLE (not when parsing one as part of reading
  ** a database schema).  */
  if( v && pPk->tnum>0 ){
    assert( db->init.busy==0 );
    sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
  }

  /* The root page of the PRIMARY KEY is the table root page */
  pPk->tnum = pTab->tnum;

  /* Update the in-memory representation of all UNIQUE indices by converting
  ** the final rowid column into one or more columns of the PRIMARY KEY.







|







2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125

  /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
  ** table entry. This is only required if currently generating VDBE
  ** code for a CREATE TABLE (not when parsing one as part of reading
  ** a database schema).  */
  if( v && pPk->tnum>0 ){
    assert( db->init.busy==0 );
    sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
  }

  /* The root page of the PRIMARY KEY is the table root page */
  pPk->tnum = pTab->tnum;

  /* Update the in-memory representation of all UNIQUE indices by converting
  ** the final rowid column into one or more columns of the PRIMARY KEY.
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
** because the first match might be for one of the deleted indices
** or tables and not the table/index that is actually being moved.
** We must continue looping until all tables and indices with
** rootpage==iFrom have been converted to have a rootpage of iTo
** in order to be certain that we got the right one.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
  HashElem *pElem;
  Hash *pHash;
  Db *pDb;

  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  pDb = &db->aDb[iDb];
  pHash = &pDb->pSchema->tblHash;







|







2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
** because the first match might be for one of the deleted indices
** or tables and not the table/index that is actually being moved.
** We must continue looping until all tables and indices with
** rootpage==iFrom have been converted to have a rootpage of iTo
** in order to be certain that we got the right one.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
  HashElem *pElem;
  Hash *pHash;
  Db *pDb;

  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  pDb = &db->aDb[iDb];
  pHash = &pDb->pSchema->tblHash;
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
** Also write code to modify the sqlite_schema table and internal schema
** if a root-page of another table is moved by the btree-layer whilst
** erasing iTable (this can happen with an auto-vacuum database).
*/ 
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  int r1 = sqlite3GetTempReg(pParse);
  if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
  sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
  sqlite3MayAbort(pParse);
#ifndef SQLITE_OMIT_AUTOVACUUM
  /* OP_Destroy stores an in integer r1. If this integer
  ** is non-zero, then it is the root page number of a table moved to
  ** location iTable. The following code modifies the sqlite_schema table to
  ** reflect this.







|







2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
** Also write code to modify the sqlite_schema table and internal schema
** if a root-page of another table is moved by the btree-layer whilst
** erasing iTable (this can happen with an auto-vacuum database).
*/ 
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  int r1 = sqlite3GetTempReg(pParse);
  if( NEVER(iTable<2) ) return;
  sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
  sqlite3MayAbort(pParse);
#ifndef SQLITE_OMIT_AUTOVACUUM
  /* OP_Destroy stores an in integer r1. If this integer
  ** is non-zero, then it is the root page number of a table moved to
  ** location iTable. The following code modifies the sqlite_schema table to
  ** reflect this.
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
  ** OP_Destroy 5 0
  **
  ** and root page 5 happened to be the largest root-page number in the
  ** database, then root page 5 would be moved to page 4 by the 
  ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
  ** a free-list page.
  */
  int iTab = pTab->tnum;
  int iDestroyed = 0;

  while( 1 ){
    Index *pIdx;
    int iLargest = 0;

    if( iDestroyed==0 || iTab<iDestroyed ){
      iLargest = iTab;
    }
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      int iIdx = pIdx->tnum;
      assert( pIdx->pSchema==pTab->pSchema );
      if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
        iLargest = iIdx;
      }
    }
    if( iLargest==0 ){
      return;







|
|



|





|







2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
  ** OP_Destroy 5 0
  **
  ** and root page 5 happened to be the largest root-page number in the
  ** database, then root page 5 would be moved to page 4 by the 
  ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
  ** a free-list page.
  */
  Pgno iTab = pTab->tnum;
  Pgno iDestroyed = 0;

  while( 1 ){
    Index *pIdx;
    Pgno iLargest = 0;

    if( iDestroyed==0 || iTab<iDestroyed ){
      iLargest = iTab;
    }
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      Pgno iIdx = pIdx->tnum;
      assert( pIdx->pSchema==pTab->pSchema );
      if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
        iLargest = iIdx;
      }
    }
    if( iLargest==0 ){
      return;
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
  Table *pTab = pIndex->pTable;  /* The table that is indexed */
  int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
  int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
  int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
  int addr1;                     /* Address of top of loop */
  int addr2;                     /* Address to jump to for next iteration */
  int tnum;                      /* Root page of index */
  int iPartIdxLabel;             /* Jump to this label to skip a row */
  Vdbe *v;                       /* Generate code into this virtual machine */
  KeyInfo *pKey;                 /* KeyInfo for index */
  int regRecord;                 /* Register holding assembled index record */
  sqlite3 *db = pParse->db;      /* The database connection */
  int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);

#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
      db->aDb[iDb].zDbSName ) ){
    return;
  }
#endif

  /* Require a write-lock on the table to perform this operation */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);

  v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;
  if( memRootPage>=0 ){
    tnum = memRootPage;
  }else{
    tnum = pIndex->tnum;
  }
  pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
  assert( pKey!=0 || db->mallocFailed || pParse->nErr );

  /* Open the sorter cursor if we are to use one. */







|




















|







3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
  Table *pTab = pIndex->pTable;  /* The table that is indexed */
  int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
  int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
  int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
  int addr1;                     /* Address of top of loop */
  int addr2;                     /* Address to jump to for next iteration */
  Pgno tnum;                     /* Root page of index */
  int iPartIdxLabel;             /* Jump to this label to skip a row */
  Vdbe *v;                       /* Generate code into this virtual machine */
  KeyInfo *pKey;                 /* KeyInfo for index */
  int regRecord;                 /* Register holding assembled index record */
  sqlite3 *db = pParse->db;      /* The database connection */
  int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);

#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
      db->aDb[iDb].zDbSName ) ){
    return;
  }
#endif

  /* Require a write-lock on the table to perform this operation */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);

  v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;
  if( memRootPage>=0 ){
    tnum = (Pgno)memRootPage;
  }else{
    tnum = pIndex->tnum;
  }
  pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
  assert( pKey!=0 || db->mallocFailed || pParse->nErr );

  /* Open the sorter cursor if we are to use one. */
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377

  sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
  sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
  sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
  sqlite3VdbeJumpHere(v, addr1);
  if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
  sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 
                    (char *)pKey, P4_KEYINFO);
  sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));

  addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
  if( IsUniqueIndex(pIndex) ){
    int j2 = sqlite3VdbeGoto(v, 1);
    addr2 = sqlite3VdbeCurrentAddr(v);







|







3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378

  sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
  sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
  sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
  sqlite3VdbeJumpHere(v, addr1);
  if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
  sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, 
                    (char *)pKey, P4_KEYINFO);
  sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));

  addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
  if( IsUniqueIndex(pIndex) ){
    int j2 = sqlite3VdbeGoto(v, 1);
    addr2 = sqlite3VdbeCurrentAddr(v);
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986

      /* Create the rootpage for the index using CreateIndex. But before
      ** doing so, code a Noop instruction and store its address in 
      ** Index.tnum. This is required in case this index is actually a 
      ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 
      ** that case the convertToWithoutRowidTable() routine will replace
      ** the Noop with a Goto to jump over the VDBE code generated below. */
      pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
      sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);

      /* Gather the complete text of the CREATE INDEX statement into
      ** the zStmt variable
      */
      assert( pName!=0 || pStart==0 );
      if( pStart ){







|







3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987

      /* Create the rootpage for the index using CreateIndex. But before
      ** doing so, code a Noop instruction and store its address in 
      ** Index.tnum. This is required in case this index is actually a 
      ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 
      ** that case the convertToWithoutRowidTable() routine will replace
      ** the Noop with a Goto to jump over the VDBE code generated below. */
      pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
      sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);

      /* Gather the complete text of the CREATE INDEX statement into
      ** the zStmt variable
      */
      assert( pName!=0 || pStart==0 );
      if( pStart ){
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
        sqlite3RefillIndex(pParse, pIndex, iMem);
        sqlite3ChangeCookie(pParse, iDb);
        sqlite3VdbeAddParseSchemaOp(v, iDb,
            sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
        sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
      }

      sqlite3VdbeJumpHere(v, pIndex->tnum);
    }
  }
  if( db->init.busy || pTblName==0 ){
    pIndex->pNext = pTab->pIndex;
    pTab->pIndex = pIndex;
    pIndex = 0;
  }







|







4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
        sqlite3RefillIndex(pParse, pIndex, iMem);
        sqlite3ChangeCookie(pParse, iDb);
        sqlite3VdbeAddParseSchemaOp(v, iDb,
            sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
        sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
      }

      sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
    }
  }
  if( db->init.busy || pTblName==0 ){
    pIndex->pNext = pTab->pIndex;
    pTab->pIndex = pIndex;
    pIndex = 0;
  }
Changes to src/insert.c.
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#endif

  for(i=1; i<iEnd; i++){
    VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
    assert( pOp!=0 );
    if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
      Index *pIndex;
      int tnum = pOp->p2;
      if( tnum==pTab->tnum ){
        return 1;
      }
      for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
        if( tnum==pIndex->tnum ){
          return 1;
        }







|







176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#endif

  for(i=1; i<iEnd; i++){
    VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
    assert( pOp!=0 );
    if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
      Index *pIndex;
      Pgno tnum = pOp->p2;
      if( tnum==pTab->tnum ){
        return 1;
      }
      for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
        if( tnum==pIndex->tnum ){
          return 1;
        }
Changes to src/main.c.
4087
4088
4089
4090
4091
4092
4093






4094
4095
4096
4097
4098
4099
4100
    }

    /*   sqlite3_test_control(SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS, int);
    **
    ** Set or clear a flag that causes SQLite to verify that type, name,
    ** and tbl_name fields of the sqlite_schema table.  This is normally
    ** on, but it is sometimes useful to turn it off for testing.






    */
    case SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS: {
      sqlite3GlobalConfig.bExtraSchemaChecks = va_arg(ap, int);
      break;
    }

    /* Set the threshold at which OP_Once counters reset back to zero.







>
>
>
>
>
>







4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
    }

    /*   sqlite3_test_control(SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS, int);
    **
    ** Set or clear a flag that causes SQLite to verify that type, name,
    ** and tbl_name fields of the sqlite_schema table.  This is normally
    ** on, but it is sometimes useful to turn it off for testing.
    **
    ** 2020-07-22:  Disabling EXTRA_SCHEMA_CHECKS also disables the
    ** verification of rootpage numbers when parsing the schema.  This
    ** is useful to make it easier to reach strange internal error states
    ** during testing.  The EXTRA_SCHEMA_CHECKS settting is always enabled
    ** in production.
    */
    case SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS: {
      sqlite3GlobalConfig.bExtraSchemaChecks = va_arg(ap, int);
      break;
    }

    /* Set the threshold at which OP_Once counters reset back to zero.
Changes to src/pager.c.
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
*/
#if SQLITE_MAX_MMAP_SIZE>0
# define USEFETCH(x) ((x)->bUseFetch)
#else
# define USEFETCH(x) 0
#endif

/*
** The maximum legal page number is (2^31 - 1).
*/
#define PAGER_MAX_PGNO 2147483647

/*
** The argument to this macro is a file descriptor (type sqlite3_file*).
** Return 0 if it is not open, or non-zero (but not 1) if it is.
**
** This is so that expressions can be written as:
**
**   if( isOpen(pPager->jfd) ){ ...







<
<
<
<
<







782
783
784
785
786
787
788





789
790
791
792
793
794
795
*/
#if SQLITE_MAX_MMAP_SIZE>0
# define USEFETCH(x) ((x)->bUseFetch)
#else
# define USEFETCH(x) 0
#endif






/*
** The argument to this macro is a file descriptor (type sqlite3_file*).
** Return 0 if it is not open, or non-zero (but not 1) if it is.
**
** This is so that expressions can be written as:
**
**   if( isOpen(pPager->jfd) ){ ...
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
/*
** Attempt to set the maximum database page count if mxPage is positive. 
** Make no changes if mxPage is zero or negative.  And never reduce the
** maximum page count below the current size of the database.
**
** Regardless of mxPage, return the current maximum page count.
*/
int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
  if( mxPage>0 ){
    pPager->mxPgno = mxPage;
  }
  assert( pPager->eState!=PAGER_OPEN );      /* Called only by OP_MaxPgcnt */
  /* assert( pPager->mxPgno>=pPager->dbSize ); */
  /* OP_MaxPgcnt ensures that the parameter passed to this function is not
  ** less than the total number of valid pages in the database. But this







|







3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
/*
** Attempt to set the maximum database page count if mxPage is positive. 
** Make no changes if mxPage is zero or negative.  And never reduce the
** maximum page count below the current size of the database.
**
** Regardless of mxPage, return the current maximum page count.
*/
Pgno sqlite3PagerMaxPageCount(Pager *pPager, Pgno mxPage){
  if( mxPage>0 ){
    pPager->mxPgno = mxPage;
  }
  assert( pPager->eState!=PAGER_OPEN );      /* Called only by OP_MaxPgcnt */
  /* assert( pPager->mxPgno>=pPager->dbSize ); */
  /* OP_MaxPgcnt ensures that the parameter passed to this function is not
  ** less than the total number of valid pages in the database. But this
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
  assert( pPg->pgno==pgno );
  assert( pPg->pPager==pPager || pPg->pPager==0 );

  noContent = (flags & PAGER_GET_NOCONTENT)!=0;
  if( pPg->pPager && !noContent ){
    /* In this case the pcache already contains an initialized copy of
    ** the page. Return without further ado.  */
    assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) );
    pPager->aStat[PAGER_STAT_HIT]++;
    return SQLITE_OK;

  }else{
    /* The pager cache has created a new page. Its content needs to 
    ** be initialized. But first some error checks:
    **
    ** (1) The maximum page number is 2^31
    ** (2) Never try to fetch the locking page
    */
    if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){
      rc = SQLITE_CORRUPT_BKPT;
      goto pager_acquire_err;
    }

    pPg->pPager = pPager;

    assert( !isOpen(pPager->fd) || !MEMDB );







|







|


|







5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
  assert( pPg->pgno==pgno );
  assert( pPg->pPager==pPager || pPg->pPager==0 );

  noContent = (flags & PAGER_GET_NOCONTENT)!=0;
  if( pPg->pPager && !noContent ){
    /* In this case the pcache already contains an initialized copy of
    ** the page. Return without further ado.  */
    assert( pgno!=PAGER_MJ_PGNO(pPager) );
    pPager->aStat[PAGER_STAT_HIT]++;
    return SQLITE_OK;

  }else{
    /* The pager cache has created a new page. Its content needs to 
    ** be initialized. But first some error checks:
    **
    ** (*) obsolete.  Was: maximum page number is 2^31
    ** (2) Never try to fetch the locking page
    */
    if( pgno==PAGER_MJ_PGNO(pPager) ){
      rc = SQLITE_CORRUPT_BKPT;
      goto pager_acquire_err;
    }

    pPg->pPager = pPager;

    assert( !isOpen(pPager->fd) || !MEMDB );
Changes to src/pager.h.
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
);
int sqlite3PagerClose(Pager *pPager, sqlite3*);
int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);

/* Functions used to configure a Pager object. */
void sqlite3PagerSetBusyHandler(Pager*, int(*)(void *), void *);
int sqlite3PagerSetPagesize(Pager*, u32*, int);
int sqlite3PagerMaxPageCount(Pager*, int);
void sqlite3PagerSetCachesize(Pager*, int);
int sqlite3PagerSetSpillsize(Pager*, int);
void sqlite3PagerSetMmapLimit(Pager *, sqlite3_int64);
void sqlite3PagerShrink(Pager*);
void sqlite3PagerSetFlags(Pager*,unsigned);
int sqlite3PagerLockingMode(Pager *, int);
int sqlite3PagerSetJournalMode(Pager *, int);







|







124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
);
int sqlite3PagerClose(Pager *pPager, sqlite3*);
int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);

/* Functions used to configure a Pager object. */
void sqlite3PagerSetBusyHandler(Pager*, int(*)(void *), void *);
int sqlite3PagerSetPagesize(Pager*, u32*, int);
Pgno sqlite3PagerMaxPageCount(Pager*, Pgno);
void sqlite3PagerSetCachesize(Pager*, int);
int sqlite3PagerSetSpillsize(Pager*, int);
void sqlite3PagerSetMmapLimit(Pager *, sqlite3_int64);
void sqlite3PagerShrink(Pager*);
void sqlite3PagerSetFlags(Pager*,unsigned);
int sqlite3PagerLockingMode(Pager *, int);
int sqlite3PagerSetJournalMode(Pager *, int);
Changes to src/pragma.c.
607
608
609
610
611
612
613

614
615
616
617
618






619
620
621
622
623
624
625
626
627
  **
  **  PRAGMA [schema.]page_count
  **
  ** Return the number of pages in the specified database.
  */
  case PragTyp_PAGE_COUNT: {
    int iReg;

    sqlite3CodeVerifySchema(pParse, iDb);
    iReg = ++pParse->nMem;
    if( sqlite3Tolower(zLeft[0])=='p' ){
      sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
    }else{






      sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, 
                        sqlite3AbsInt32(sqlite3Atoi(zRight)));
    }
    sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
    break;
  }

  /*
  **  PRAGMA [schema.]locking_mode







>





>
>
>
>
>
>
|
<







607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

627
628
629
630
631
632
633
  **
  **  PRAGMA [schema.]page_count
  **
  ** Return the number of pages in the specified database.
  */
  case PragTyp_PAGE_COUNT: {
    int iReg;
    i64 x = 0;
    sqlite3CodeVerifySchema(pParse, iDb);
    iReg = ++pParse->nMem;
    if( sqlite3Tolower(zLeft[0])=='p' ){
      sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
    }else{
      if( zRight && sqlite3DecOrHexToI64(zRight,&x)==0 ){
        if( x<0 ) x = 0;
        else if( x>0xfffffffe ) x = 0xfffffffe;
      }else{
        x = 0;
      }
      sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, (int)x);

    }
    sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
    break;
  }

  /*
  **  PRAGMA [schema.]locking_mode
Changes to src/prepare.c.
111
112
113
114
115
116
117
118






119
120
121
122
123
124
125
    int rc;
    u8 saved_iDb = db->init.iDb;
    sqlite3_stmt *pStmt;
    TESTONLY(int rcp);            /* Return code from sqlite3_prepare() */

    assert( db->init.busy );
    db->init.iDb = iDb;
    db->init.newTnum = sqlite3Atoi(argv[3]);






    db->init.orphanTrigger = 0;
    db->init.azInit = argv;
    pStmt = 0;
    TESTONLY(rcp = ) sqlite3Prepare(db, argv[4], -1, 0, 0, &pStmt, 0);
    rc = db->errCode;
    assert( (rc&0xFF)==(rcp&0xFF) );
    db->init.iDb = saved_iDb;







|
>
>
>
>
>
>







111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    int rc;
    u8 saved_iDb = db->init.iDb;
    sqlite3_stmt *pStmt;
    TESTONLY(int rcp);            /* Return code from sqlite3_prepare() */

    assert( db->init.busy );
    db->init.iDb = iDb;
    if( sqlite3GetUInt32(argv[3], &db->init.newTnum)==0
     || (db->init.newTnum>pData->mxPage && pData->mxPage>0)
    ){
      if( sqlite3Config.bExtraSchemaChecks ){
        corruptSchema(pData, argv[1], "invalid rootpage");
      }
    }
    db->init.orphanTrigger = 0;
    db->init.azInit = argv;
    pStmt = 0;
    TESTONLY(rcp = ) sqlite3Prepare(db, argv[4], -1, 0, 0, &pStmt, 0);
    rc = db->errCode;
    assert( (rc&0xFF)==(rcp&0xFF) );
    db->init.iDb = saved_iDb;
144
145
146
147
148
149
150
151


152
153

154
155

156

157
158
159
160
161
162
163
    ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
    ** constraint for a CREATE TABLE.  The index should have already
    ** been created when we processed the CREATE TABLE.  All we have
    ** to do here is record the root page number for that index.
    */
    Index *pIndex;
    pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName);
    if( pIndex==0


     || sqlite3GetInt32(argv[3],&pIndex->tnum)==0
     || pIndex->tnum<2

     || sqlite3IndexHasDuplicateRootPage(pIndex)
    ){

      corruptSchema(pData, argv[1], pIndex?"invalid rootpage":"orphan index");

    }
  }
  return 0;
}

/*
** Attempt to read the database schema and initialize internal







|
>
>
|

>


>
|
>







150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
    ** constraint for a CREATE TABLE.  The index should have already
    ** been created when we processed the CREATE TABLE.  All we have
    ** to do here is record the root page number for that index.
    */
    Index *pIndex;
    pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName);
    if( pIndex==0 ){
      corruptSchema(pData, argv[1], "orphan index");
    }else
    if( sqlite3GetUInt32(argv[3],&pIndex->tnum)==0
     || pIndex->tnum<2
     || pIndex->tnum>pData->mxPage
     || sqlite3IndexHasDuplicateRootPage(pIndex)
    ){
      if( sqlite3Config.bExtraSchemaChecks ){
        corruptSchema(pData, argv[1], "invalid rootpage");
      }
    }
  }
  return 0;
}

/*
** Attempt to read the database schema and initialize internal
203
204
205
206
207
208
209

210
211
212
213
214
215
216
  azArg[5] = 0;
  initData.db = db;
  initData.iDb = iDb;
  initData.rc = SQLITE_OK;
  initData.pzErrMsg = pzErrMsg;
  initData.mInitFlags = mFlags;
  initData.nInitRow = 0;

  sqlite3InitCallback(&initData, 5, (char **)azArg, 0);
  db->mDbFlags &= mask;
  if( initData.rc ){
    rc = initData.rc;
    goto error_out;
  }








>







214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
  azArg[5] = 0;
  initData.db = db;
  initData.iDb = iDb;
  initData.rc = SQLITE_OK;
  initData.pzErrMsg = pzErrMsg;
  initData.mInitFlags = mFlags;
  initData.nInitRow = 0;
  initData.mxPage = 0;
  sqlite3InitCallback(&initData, 5, (char **)azArg, 0);
  db->mDbFlags &= mask;
  if( initData.rc ){
    rc = initData.rc;
    goto error_out;
  }

325
326
327
328
329
330
331

332
333
334
335
336
337
338
  if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){
    db->flags &= ~(u64)SQLITE_LegacyFileFmt;
  }

  /* Read the schema information out of the schema tables
  */
  assert( db->init.busy );

  {
    char *zSql;
    zSql = sqlite3MPrintf(db, 
        "SELECT*FROM\"%w\".%s ORDER BY rowid",
        db->aDb[iDb].zDbSName, zSchemaTabName);
#ifndef SQLITE_OMIT_AUTHORIZATION
    {







>







337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
  if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){
    db->flags &= ~(u64)SQLITE_LegacyFileFmt;
  }

  /* Read the schema information out of the schema tables
  */
  assert( db->init.busy );
  initData.mxPage = sqlite3BtreeLastPage(pDb->pBt);
  {
    char *zSql;
    zSql = sqlite3MPrintf(db, 
        "SELECT*FROM\"%w\".%s ORDER BY rowid",
        db->aDb[iDb].zDbSName, zSchemaTabName);
#ifndef SQLITE_OMIT_AUTHORIZATION
    {
Changes to src/select.c.
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
  int addr1;            /* Jump instructions that get retargetted */
  int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
  KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
  KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
  sqlite3 *db;          /* Database connection */
  ExprList *pOrderBy;   /* The ORDER BY clause */
  int nOrderBy;         /* Number of terms in the ORDER BY clause */
  int *aPermute;        /* Mapping from ORDER BY terms to result set columns */

  assert( p->pOrderBy!=0 );
  assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
  db = pParse->db;
  v = pParse->pVdbe;
  assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
  labelEnd = sqlite3VdbeMakeLabel(pParse);







|







3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
  int addr1;            /* Jump instructions that get retargetted */
  int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
  KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
  KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
  sqlite3 *db;          /* Database connection */
  ExprList *pOrderBy;   /* The ORDER BY clause */
  int nOrderBy;         /* Number of terms in the ORDER BY clause */
  u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */

  assert( p->pOrderBy!=0 );
  assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
  db = pParse->db;
  v = pParse->pVdbe;
  assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
  labelEnd = sqlite3VdbeMakeLabel(pParse);
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
  /* Compute the comparison permutation and keyinfo that is used with
  ** the permutation used to determine if the next
  ** row of results comes from selectA or selectB.  Also add explicit
  ** collations to the ORDER BY clause terms so that when the subqueries
  ** to the right and the left are evaluated, they use the correct
  ** collation.
  */
  aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
  if( aPermute ){
    struct ExprList_item *pItem;
    aPermute[0] = nOrderBy;
    for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
      assert( pItem->u.x.iOrderByCol>0 );
      assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
      aPermute[i] = pItem->u.x.iOrderByCol - 1;







|







3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
  /* Compute the comparison permutation and keyinfo that is used with
  ** the permutation used to determine if the next
  ** row of results comes from selectA or selectB.  Also add explicit
  ** collations to the ORDER BY clause terms so that when the subqueries
  ** to the right and the left are evaluated, they use the correct
  ** collation.
  */
  aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
  if( aPermute ){
    struct ExprList_item *pItem;
    aPermute[0] = nOrderBy;
    for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
      assert( pItem->u.x.iOrderByCol>0 );
      assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
      aPermute[i] = pItem->u.x.iOrderByCol - 1;
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
        ** always spread across less pages than their corresponding tables.
        */
        const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
        const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
        Index *pIdx;                         /* Iterator variable */
        KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
        Index *pBest = 0;                    /* Best index found so far */
        int iRoot = pTab->tnum;              /* Root page of scanned b-tree */

        sqlite3CodeVerifySchema(pParse, iDb);
        sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

        /* Search for the index that has the lowest scan cost.
        **
        ** (2011-04-15) Do not do a full scan of an unordered index.







|







6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
        ** always spread across less pages than their corresponding tables.
        */
        const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
        const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
        Index *pIdx;                         /* Iterator variable */
        KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
        Index *pBest = 0;                    /* Best index found so far */
        Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */

        sqlite3CodeVerifySchema(pParse, iDb);
        sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

        /* Search for the index that has the lowest scan cost.
        **
        ** (2011-04-15) Do not do a full scan of an unordered index.
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
        }
        if( pBest ){
          iRoot = pBest->tnum;
          pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
        }

        /* Open a read-only cursor, execute the OP_Count, close the cursor. */
        sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
        if( pKeyInfo ){
          sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
        }
        sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
        sqlite3VdbeAddOp1(v, OP_Close, iCsr);
        explainSimpleCount(pParse, pTab, pBest);
      }else{







|







6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
        }
        if( pBest ){
          iRoot = pBest->tnum;
          pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
        }

        /* Open a read-only cursor, execute the OP_Count, close the cursor. */
        sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
        if( pKeyInfo ){
          sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
        }
        sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
        sqlite3VdbeAddOp1(v, OP_Close, iCsr);
        explainSimpleCount(pParse, pTab, pBest);
      }else{
Changes to src/sqliteInt.h.
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
typedef int VList;

/*
** Defer sourcing vdbe.h and btree.h until after the "u8" and
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
** pointer types (i.e. FuncDef) defined above.
*/
#include "btree.h"
#include "vdbe.h"
#include "pager.h"
#include "pcache.h"
#include "os.h"
#include "mutex.h"

/* The SQLITE_EXTRA_DURABLE compile-time option used to set the default
** synchronous setting to EXTRA.  It is no longer supported.
*/







|
|
|







1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
typedef int VList;

/*
** Defer sourcing vdbe.h and btree.h until after the "u8" and
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
** pointer types (i.e. FuncDef) defined above.
*/
#include "pager.h"
#include "btree.h"
#include "vdbe.h"
#include "pcache.h"
#include "os.h"
#include "mutex.h"

/* The SQLITE_EXTRA_DURABLE compile-time option used to set the default
** synchronous setting to EXTRA.  It is no longer supported.
*/
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
  int nextPagesize;             /* Pagesize after VACUUM if >0 */
  u32 magic;                    /* Magic number for detect library misuse */
  int nChange;                  /* Value returned by sqlite3_changes() */
  int nTotalChange;             /* Value returned by sqlite3_total_changes() */
  int aLimit[SQLITE_N_LIMIT];   /* Limits */
  int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
  struct sqlite3InitInfo {      /* Information used during initialization */
    int newTnum;                /* Rootpage of table being initialized */
    u8 iDb;                     /* Which db file is being initialized */
    u8 busy;                    /* TRUE if currently initializing */
    unsigned orphanTrigger : 1; /* Last statement is orphaned TEMP trigger */
    unsigned imposterTable : 1; /* Building an imposter table */
    unsigned reopenMemdb : 1;   /* ATTACH is really a reopen using MemDB */
    char **azInit;              /* "type", "name", and "tbl_name" columns */
  } init;







|







1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
  int nextPagesize;             /* Pagesize after VACUUM if >0 */
  u32 magic;                    /* Magic number for detect library misuse */
  int nChange;                  /* Value returned by sqlite3_changes() */
  int nTotalChange;             /* Value returned by sqlite3_total_changes() */
  int aLimit[SQLITE_N_LIMIT];   /* Limits */
  int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
  struct sqlite3InitInfo {      /* Information used during initialization */
    Pgno newTnum;               /* Rootpage of table being initialized */
    u8 iDb;                     /* Which db file is being initialized */
    u8 busy;                    /* TRUE if currently initializing */
    unsigned orphanTrigger : 1; /* Last statement is orphaned TEMP trigger */
    unsigned imposterTable : 1; /* Building an imposter table */
    unsigned reopenMemdb : 1;   /* ATTACH is really a reopen using MemDB */
    char **azInit;              /* "type", "name", and "tbl_name" columns */
  } init;
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
  Column *aCol;        /* Information about each column */
  Index *pIndex;       /* List of SQL indexes on this table. */
  Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
  FKey *pFKey;         /* Linked list of all foreign keys in this table */
  char *zColAff;       /* String defining the affinity of each column */
  ExprList *pCheck;    /* All CHECK constraints */
                       /*   ... also used as column name list in a VIEW */
  int tnum;            /* Root BTree page for this table */
  u32 nTabRef;         /* Number of pointers to this Table */
  u32 tabFlags;        /* Mask of TF_* values */
  i16 iPKey;           /* If not negative, use aCol[iPKey] as the rowid */
  i16 nCol;            /* Number of columns in this table */
  i16 nNVCol;          /* Number of columns that are not VIRTUAL */
  LogEst nRowLogEst;   /* Estimated rows in table - from sqlite_stat1 table */
  LogEst szTabRow;     /* Estimated size of each table row in bytes */







|







2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
  Column *aCol;        /* Information about each column */
  Index *pIndex;       /* List of SQL indexes on this table. */
  Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
  FKey *pFKey;         /* Linked list of all foreign keys in this table */
  char *zColAff;       /* String defining the affinity of each column */
  ExprList *pCheck;    /* All CHECK constraints */
                       /*   ... also used as column name list in a VIEW */
  Pgno tnum;           /* Root BTree page for this table */
  u32 nTabRef;         /* Number of pointers to this Table */
  u32 tabFlags;        /* Mask of TF_* values */
  i16 iPKey;           /* If not negative, use aCol[iPKey] as the rowid */
  i16 nCol;            /* Number of columns in this table */
  i16 nNVCol;          /* Number of columns that are not VIRTUAL */
  LogEst nRowLogEst;   /* Estimated rows in table - from sqlite_stat1 table */
  LogEst szTabRow;     /* Estimated size of each table row in bytes */
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
  char *zColAff;           /* String defining the affinity of each column */
  Index *pNext;            /* The next index associated with the same table */
  Schema *pSchema;         /* Schema containing this index */
  u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
  const char **azColl;     /* Array of collation sequence names for index */
  Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
  ExprList *aColExpr;      /* Column expressions */
  int tnum;                /* DB Page containing root of this index */
  LogEst szIdxRow;         /* Estimated average row size in bytes */
  u16 nKeyCol;             /* Number of columns forming the key */
  u16 nColumn;             /* Number of columns stored in the index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  unsigned idxType:2;      /* 0:Normal 1:UNIQUE, 2:PRIMARY KEY, 3:IPK */
  unsigned bUnordered:1;   /* Use this index for == or IN queries only */
  unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */







|







2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
  char *zColAff;           /* String defining the affinity of each column */
  Index *pNext;            /* The next index associated with the same table */
  Schema *pSchema;         /* Schema containing this index */
  u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
  const char **azColl;     /* Array of collation sequence names for index */
  Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
  ExprList *aColExpr;      /* Column expressions */
  Pgno tnum;               /* DB Page containing root of this index */
  LogEst szIdxRow;         /* Estimated average row size in bytes */
  u16 nKeyCol;             /* Number of columns forming the key */
  u16 nColumn;             /* Number of columns stored in the index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  unsigned idxType:2;      /* 0:Normal 1:UNIQUE, 2:PRIMARY KEY, 3:IPK */
  unsigned bUnordered:1;   /* Use this index for == or IN queries only */
  unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
3625
3626
3627
3628
3629
3630
3631

3632
3633
3634
3635
3636
3637
3638
typedef struct {
  sqlite3 *db;        /* The database being initialized */
  char **pzErrMsg;    /* Error message stored here */
  int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
  int rc;             /* Result code stored here */
  u32 mInitFlags;     /* Flags controlling error messages */
  u32 nInitRow;       /* Number of rows processed */

} InitData;

/*
** Allowed values for mInitFlags
*/
#define INITFLAG_AlterTable   0x0001  /* This is a reparse after ALTER TABLE */








>







3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
typedef struct {
  sqlite3 *db;        /* The database being initialized */
  char **pzErrMsg;    /* Error message stored here */
  int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
  int rc;             /* Result code stored here */
  u32 mInitFlags;     /* Flags controlling error messages */
  u32 nInitRow;       /* Number of rows processed */
  Pgno mxPage;        /* Maximum page number.  0 for no limit. */
} InitData;

/*
** Allowed values for mInitFlags
*/
#define INITFLAG_AlterTable   0x0001  /* This is a reparse after ALTER TABLE */

4461
4462
4463
4464
4465
4466
4467

4468
4469
4470
4471
4472
4473
4474
int sqlite3FixExpr(DbFixer*, Expr*);
int sqlite3FixExprList(DbFixer*, ExprList*);
int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
int sqlite3RealSameAsInt(double,sqlite3_int64);
void sqlite3Int64ToText(i64,char*);
int sqlite3AtoF(const char *z, double*, int, u8);
int sqlite3GetInt32(const char *, int*);

int sqlite3Atoi(const char*);
#ifndef SQLITE_OMIT_UTF16
int sqlite3Utf16ByteLen(const void *pData, int nChar);
#endif
int sqlite3Utf8CharLen(const char *pData, int nByte);
u32 sqlite3Utf8Read(const u8**);
LogEst sqlite3LogEst(u64);







>







4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
int sqlite3FixExpr(DbFixer*, Expr*);
int sqlite3FixExprList(DbFixer*, ExprList*);
int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
int sqlite3RealSameAsInt(double,sqlite3_int64);
void sqlite3Int64ToText(i64,char*);
int sqlite3AtoF(const char *z, double*, int, u8);
int sqlite3GetInt32(const char *, int*);
int sqlite3GetUInt32(const char*, u32*);
int sqlite3Atoi(const char*);
#ifndef SQLITE_OMIT_UTF16
int sqlite3Utf16ByteLen(const void *pData, int nChar);
#endif
int sqlite3Utf8CharLen(const char *pData, int nByte);
u32 sqlite3Utf8Read(const u8**);
LogEst sqlite3LogEst(u64);
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
#ifndef SQLITE_OMIT_WSD
extern int sqlite3PendingByte;
#endif
#endif /* SQLITE_AMALGAMATION */
#ifdef VDBE_PROFILE
extern sqlite3_uint64 sqlite3NProfileCnt;
#endif
void sqlite3RootPageMoved(sqlite3*, int, int, int);
void sqlite3Reindex(Parse*, Token*, Token*);
void sqlite3AlterFunctions(void);
void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
void sqlite3AlterRenameColumn(Parse*, SrcList*, Token*, Token*);
int sqlite3GetToken(const unsigned char *, int *);
void sqlite3NestedParse(Parse*, const char*, ...);
void sqlite3ExpirePreparedStatements(sqlite3*, int);







|







4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
#ifndef SQLITE_OMIT_WSD
extern int sqlite3PendingByte;
#endif
#endif /* SQLITE_AMALGAMATION */
#ifdef VDBE_PROFILE
extern sqlite3_uint64 sqlite3NProfileCnt;
#endif
void sqlite3RootPageMoved(sqlite3*, int, Pgno, Pgno);
void sqlite3Reindex(Parse*, Token*, Token*);
void sqlite3AlterFunctions(void);
void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
void sqlite3AlterRenameColumn(Parse*, SrcList*, Token*, Token*);
int sqlite3GetToken(const unsigned char *, int *);
void sqlite3NestedParse(Parse*, const char*, ...);
void sqlite3ExpirePreparedStatements(sqlite3*, int);
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
#ifndef SQLITE_OMIT_LOAD_EXTENSION
  void sqlite3CloseExtensions(sqlite3*);
#else
# define sqlite3CloseExtensions(X)
#endif

#ifndef SQLITE_OMIT_SHARED_CACHE
  void sqlite3TableLock(Parse *, int, int, u8, const char *);
#else
  #define sqlite3TableLock(v,w,x,y,z)
#endif

#ifdef SQLITE_TEST
  int sqlite3Utf8To8(unsigned char*);
#endif







|







4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
#ifndef SQLITE_OMIT_LOAD_EXTENSION
  void sqlite3CloseExtensions(sqlite3*);
#else
# define sqlite3CloseExtensions(X)
#endif

#ifndef SQLITE_OMIT_SHARED_CACHE
  void sqlite3TableLock(Parse *, int, Pgno, u8, const char *);
#else
  #define sqlite3TableLock(v,w,x,y,z)
#endif

#ifdef SQLITE_TEST
  int sqlite3Utf8To8(unsigned char*);
#endif
Changes to src/test1.c.
6432
6433
6434
6435
6436
6437
6438
























6439
6440
6441
6442
6443
6444
6445
  if( Tcl_GetIntFromObj(interp,objv[0],&i) ) return TCL_ERROR;
  if( objc==3 && getDbPointer(interp, Tcl_GetString(objv[2]), &db) ){
    return TCL_ERROR;
  }
  sqlite3_test_control(SQLITE_TESTCTRL_PRNG_SEED, i, db);
  return TCL_OK;
}

























/*
** tclcmd:  database_may_be_corrupt
**
** Indicate that database files might be corrupt. In other words, set the normal
** state of operation.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
  if( Tcl_GetIntFromObj(interp,objv[0],&i) ) return TCL_ERROR;
  if( objc==3 && getDbPointer(interp, Tcl_GetString(objv[2]), &db) ){
    return TCL_ERROR;
  }
  sqlite3_test_control(SQLITE_TESTCTRL_PRNG_SEED, i, db);
  return TCL_OK;
}

/*
** tclcmd:  extra_schema_checks BOOLEAN
**
** Enable or disable schema checks when parsing the sqlite_schema file.
** This is always enabled in production, but it is sometimes useful to
** disable the checks in order to make some internal error states reachable
** for testing.
*/
static int SQLITE_TCLAPI extra_schema_checks(
  ClientData clientData, /* Pointer to sqlite3_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  int i = 0;
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "BOOLEAN");
    return TCL_ERROR;
  }
  if( Tcl_GetBooleanFromObj(interp,objv[1],&i) ) return TCL_ERROR;
  sqlite3_test_control(SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS, i);
  return TCL_OK;
}

/*
** tclcmd:  database_may_be_corrupt
**
** Indicate that database files might be corrupt. In other words, set the normal
** state of operation.
*/
7999
8000
8001
8002
8003
8004
8005

8006
8007
8008
8009
8010
8011
8012
     { "sqlite3_limit",                 test_limit,                 0},
     { "dbconfig_maindbname_icecube",   test_dbconfig_maindbname_icecube },

     { "save_prng_state",               save_prng_state,    0 },
     { "restore_prng_state",            restore_prng_state, 0 },
     { "reset_prng_state",              reset_prng_state,   0 },
     { "prng_seed",                     prng_seed,          0 },

     { "database_never_corrupt",        database_never_corrupt, 0},
     { "database_may_be_corrupt",       database_may_be_corrupt, 0},
     { "optimization_control",          optimization_control,0},
#if SQLITE_OS_WIN
     { "lock_win32_file",               win32_file_lock,    0 },
     { "exists_win32_path",             win32_exists_path,  0 },
     { "find_win32_file",               win32_find_file,    0 },







>







8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
     { "sqlite3_limit",                 test_limit,                 0},
     { "dbconfig_maindbname_icecube",   test_dbconfig_maindbname_icecube },

     { "save_prng_state",               save_prng_state,    0 },
     { "restore_prng_state",            restore_prng_state, 0 },
     { "reset_prng_state",              reset_prng_state,   0 },
     { "prng_seed",                     prng_seed,          0 },
     { "extra_schema_checks",           extra_schema_checks,    0},
     { "database_never_corrupt",        database_never_corrupt, 0},
     { "database_may_be_corrupt",       database_may_be_corrupt, 0},
     { "optimization_control",          optimization_control,0},
#if SQLITE_OS_WIN
     { "lock_win32_file",               win32_file_lock,    0 },
     { "exists_win32_path",             win32_exists_path,  0 },
     { "find_win32_file",               win32_find_file,    0 },
Changes to src/util.c.
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
** The caller must ensure that zOut[] is at least 21 bytes in size.
*/
void sqlite3Int64ToText(i64 v, char *zOut){
  int i;
  u64 x;
  char zTemp[22];
  if( v<0 ){
    x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : -v;
  }else{
    x = v;
  }
  i = sizeof(zTemp)-2;
  zTemp[sizeof(zTemp)-1] = 0;
  do{
    zTemp[i--] = (x%10) + '0';







|







601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
** The caller must ensure that zOut[] is at least 21 bytes in size.
*/
void sqlite3Int64ToText(i64 v, char *zOut){
  int i;
  u64 x;
  char zTemp[22];
  if( v<0 ){
    x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
  }else{
    x = v;
  }
  i = sizeof(zTemp)-2;
  zTemp[sizeof(zTemp)-1] = 0;
  do{
    zTemp[i--] = (x%10) + '0';
855
856
857
858
859
860
861
862
863
864


















865
866
867
868
869
870
871

/*
** Return a 32-bit integer value extracted from a string.  If the
** string is not an integer, just return 0.
*/
int sqlite3Atoi(const char *z){
  int x = 0;
  if( z ) sqlite3GetInt32(z, &x);
  return x;
}



















/*
** The variable-length integer encoding is as follows:
**
** KEY:
**         A = 0xxxxxxx    7 bits of data and one flag bit
**         B = 1xxxxxxx    7 bits of data and one flag bit







|


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889

/*
** Return a 32-bit integer value extracted from a string.  If the
** string is not an integer, just return 0.
*/
int sqlite3Atoi(const char *z){
  int x = 0;
  sqlite3GetInt32(z, &x);
  return x;
}

/*
** Try to convert z into an unsigned 32-bit integer.  Return true on
** success and false if there is an error.
**
** Only decimal notation is accepted.
*/
int sqlite3GetUInt32(const char *z, u32 *pI){
  u64 v = 0;
  int i;
  for(i=0; sqlite3Isdigit(z[i]); i++){
    v = v*10 + z[i] - '0';
    if( v>4294967296LL ){ *pI = 0; return 0; }
  }
  if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
  *pI = (u32)v;
  return 1;
}

/*
** The variable-length integer encoding is as follows:
**
** KEY:
**         A = 0xxxxxxx    7 bits of data and one flag bit
**         B = 1xxxxxxx    7 bits of data and one flag bit
Changes to src/vdbe.c.
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
*/
case OP_Compare: {
  int n;
  int i;
  int p1;
  int p2;
  const KeyInfo *pKeyInfo;
  int idx;
  CollSeq *pColl;    /* Collating sequence to use on this term */
  int bRev;          /* True for DESCENDING sort order */
  int *aPermute;     /* The permutation */

  if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
    aPermute = 0;
  }else{
    assert( pOp>aOp );
    assert( pOp[-1].opcode==OP_Permutation );
    assert( pOp[-1].p4type==P4_INTARRAY );







|


|







2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
*/
case OP_Compare: {
  int n;
  int i;
  int p1;
  int p2;
  const KeyInfo *pKeyInfo;
  u32 idx;
  CollSeq *pColl;    /* Collating sequence to use on this term */
  int bRev;          /* True for DESCENDING sort order */
  u32 *aPermute;     /* The permutation */

  if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
    aPermute = 0;
  }else{
    assert( pOp>aOp );
    assert( pOp[-1].opcode==OP_Permutation );
    assert( pOp[-1].p4type==P4_INTARRAY );
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
    assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
  }else{
    assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
    assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
  }
#endif /* SQLITE_DEBUG */
  for(i=0; i<n; i++){
    idx = aPermute ? aPermute[i] : i;
    assert( memIsValid(&aMem[p1+idx]) );
    assert( memIsValid(&aMem[p2+idx]) );
    REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
    REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
    assert( i<pKeyInfo->nKeyField );
    pColl = pKeyInfo->aColl[i];
    bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);







|







2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
    assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
  }else{
    assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
    assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
  }
#endif /* SQLITE_DEBUG */
  for(i=0; i<n; i++){
    idx = aPermute ? aPermute[i] : (u32)i;
    assert( memIsValid(&aMem[p1+idx]) );
    assert( memIsValid(&aMem[p2+idx]) );
    REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
    REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
    assert( i<pKeyInfo->nKeyField );
    pColl = pKeyInfo->aColl[i];
    bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
**
** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
** the result is guaranteed to only be used as the argument of a length()
** or typeof() function, respectively.  The loading of large blobs can be
** skipped for length() and all content loading can be skipped for typeof().
*/
case OP_Column: {
  int p2;            /* column number to retrieve */
  VdbeCursor *pC;    /* The VDBE cursor */
  BtCursor *pCrsr;   /* The BTree cursor */
  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  int len;           /* The length of the serialized data for the column */
  int i;             /* Loop counter */
  Mem *pDest;        /* Where to write the extracted value */
  Mem sMem;          /* For storing the record being decoded */
  const u8 *zData;   /* Part of the record being decoded */
  const u8 *zHdr;    /* Next unparsed byte of the header */
  const u8 *zEndHdr; /* Pointer to first byte after the header */
  u64 offset64;      /* 64-bit offset */
  u32 t;             /* A type code from the record header */
  Mem *pReg;         /* PseudoTable input register */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  p2 = pOp->p2;

  /* If the cursor cache is stale (meaning it is not currently point at
  ** the correct row) then bring it up-to-date by doing the necessary 
  ** B-Tree seek. */
  rc = sqlite3VdbeCursorMoveto(&pC, &p2);
  if( rc ) goto abort_due_to_error;








|

















|







2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
**
** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
** the result is guaranteed to only be used as the argument of a length()
** or typeof() function, respectively.  The loading of large blobs can be
** skipped for length() and all content loading can be skipped for typeof().
*/
case OP_Column: {
  u32 p2;            /* column number to retrieve */
  VdbeCursor *pC;    /* The VDBE cursor */
  BtCursor *pCrsr;   /* The BTree cursor */
  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  int len;           /* The length of the serialized data for the column */
  int i;             /* Loop counter */
  Mem *pDest;        /* Where to write the extracted value */
  Mem sMem;          /* For storing the record being decoded */
  const u8 *zData;   /* Part of the record being decoded */
  const u8 *zHdr;    /* Next unparsed byte of the header */
  const u8 *zEndHdr; /* Pointer to first byte after the header */
  u64 offset64;      /* 64-bit offset */
  u32 t;             /* A type code from the record header */
  Mem *pReg;         /* PseudoTable input register */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  p2 = (u32)pOp->p2;

  /* If the cursor cache is stale (meaning it is not currently point at
  ** the correct row) then bring it up-to-date by doing the necessary 
  ** B-Tree seek. */
  rc = sqlite3VdbeCursorMoveto(&pC, &p2);
  if( rc ) goto abort_due_to_error;

2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
          offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
        }else{
          zHdr += sqlite3GetVarint32(zHdr, &t);
          pC->aType[i] = t;
          offset64 += sqlite3VdbeSerialTypeLen(t);
        }
        aOffset[++i] = (u32)(offset64 & 0xffffffff);
      }while( i<=p2 && zHdr<zEndHdr );

      /* The record is corrupt if any of the following are true:
      ** (1) the bytes of the header extend past the declared header size
      ** (2) the entire header was used but not all data was used
      ** (3) the end of the data extends beyond the end of the record.
      */
      if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))







|







2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
          offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
        }else{
          zHdr += sqlite3GetVarint32(zHdr, &t);
          pC->aType[i] = t;
          offset64 += sqlite3VdbeSerialTypeLen(t);
        }
        aOffset[++i] = (u32)(offset64 & 0xffffffff);
      }while( (u32)i<=p2 && zHdr<zEndHdr );

      /* The record is corrupt if any of the following are true:
      ** (1) the bytes of the header extend past the declared header size
      ** (2) the entire header was used but not all data was used
      ** (3) the end of the data extends beyond the end of the record.
      */
      if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
** in read/write mode.
**
** See also: OP_OpenRead, OP_ReopenIdx
*/
case OP_ReopenIdx: {
  int nField;
  KeyInfo *pKeyInfo;
  int p2;
  int iDb;
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;

  assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );







|







3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
** in read/write mode.
**
** See also: OP_OpenRead, OP_ReopenIdx
*/
case OP_ReopenIdx: {
  int nField;
  KeyInfo *pKeyInfo;
  u32 p2;
  int iDb;
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;

  assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
  if( p->expired==1 ){
    rc = SQLITE_ABORT_ROLLBACK;
    goto abort_due_to_error;
  }

  nField = 0;
  pKeyInfo = 0;
  p2 = pOp->p2;
  iDb = pOp->p3;
  assert( iDb>=0 && iDb<db->nDb );
  assert( DbMaskTest(p->btreeMask, iDb) );
  pDb = &db->aDb[iDb];
  pX = pDb->pBt;
  assert( pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){







|







3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
  if( p->expired==1 ){
    rc = SQLITE_ABORT_ROLLBACK;
    goto abort_due_to_error;
  }

  nField = 0;
  pKeyInfo = 0;
  p2 = (u32)pOp->p2;
  iDb = pOp->p3;
  assert( iDb>=0 && iDb<db->nDb );
  assert( DbMaskTest(p->btreeMask, iDb) );
  pDb = &db->aDb[iDb];
  pX = pDb->pBt;
  assert( pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
      /* If a transient index is required, create it by calling
      ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
      ** opening it. If a transient table is required, just use the
      ** automatically created table with root-page 1 (an BLOB_INTKEY table).
      */
      if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
        assert( pOp->p4type==P4_KEYINFO );
        rc = sqlite3BtreeCreateTable(pCx->pBtx, (int*)&pCx->pgnoRoot,
                                     BTREE_BLOBKEY | pOp->p5); 
        if( rc==SQLITE_OK ){
          assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
          assert( pKeyInfo->db==db );
          assert( pKeyInfo->enc==ENC(db) );
          rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
                                  pKeyInfo, pCx->uc.pCursor);







|







3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
      /* If a transient index is required, create it by calling
      ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
      ** opening it. If a transient table is required, just use the
      ** automatically created table with root-page 1 (an BLOB_INTKEY table).
      */
      if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
        assert( pOp->p4type==P4_KEYINFO );
        rc = sqlite3BtreeCreateTable(pCx->pBtx, &pCx->pgnoRoot,
                                     BTREE_BLOBKEY | pOp->p5); 
        if( rc==SQLITE_OK ){
          assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
          assert( pKeyInfo->db==db );
          assert( pKeyInfo->enc==ENC(db) );
          rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
                                  pKeyInfo, pCx->uc.pCursor);
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
  ** If this where not the case, on of the following assert()s
  ** would fail.  Should this ever change (because of changes in the code
  ** generator) then the fix would be to insert a call to
  ** sqlite3VdbeCursorMoveto().
  */
  assert( pC->deferredMoveto==0 );
  assert( sqlite3BtreeCursorIsValid(pCrsr) );
#if 0  /* Not required due to the previous to assert() statements */
  rc = sqlite3VdbeCursorMoveto(pC);
  if( rc!=SQLITE_OK ) goto abort_due_to_error;
#endif

  n = sqlite3BtreePayloadSize(pCrsr);
  if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }
  testcase( n==0 );
  rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);







<
<
<
<







5225
5226
5227
5228
5229
5230
5231




5232
5233
5234
5235
5236
5237
5238
  ** If this where not the case, on of the following assert()s
  ** would fail.  Should this ever change (because of changes in the code
  ** generator) then the fix would be to insert a call to
  ** sqlite3VdbeCursorMoveto().
  */
  assert( pC->deferredMoveto==0 );
  assert( sqlite3BtreeCursorIsValid(pCrsr) );





  n = sqlite3BtreePayloadSize(pCrsr);
  if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }
  testcase( n==0 );
  rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
  int nChange;
 
  sqlite3VdbeIncrWriteCounter(p, 0);
  nChange = 0;
  assert( p->readOnly==0 );
  assert( DbMaskTest(p->btreeMask, pOp->p2) );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
  );
  if( pOp->p3 ){
    p->nChange += nChange;
    if( pOp->p3>0 ){
      assert( memIsValid(&aMem[pOp->p3]) );
      memAboutToChange(p, &aMem[pOp->p3]);
      aMem[pOp->p3].u.i += nChange;







|







5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
  int nChange;
 
  sqlite3VdbeIncrWriteCounter(p, 0);
  nChange = 0;
  assert( p->readOnly==0 );
  assert( DbMaskTest(p->btreeMask, pOp->p2) );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, (u32)pOp->p1, (pOp->p3 ? &nChange : 0)
  );
  if( pOp->p3 ){
    p->nChange += nChange;
    if( pOp->p3>0 ){
      assert( memIsValid(&aMem[pOp->p3]) );
      memAboutToChange(p, &aMem[pOp->p3]);
      aMem[pOp->p3].u.i += nChange;
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
** Allocate a new b-tree in the main database file if P1==0 or in the
** TEMP database file if P1==1 or in an attached database if
** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
** The root page number of the new b-tree is stored in register P2.
*/
case OP_CreateBtree: {          /* out2 */
  int pgno;
  Db *pDb;

  sqlite3VdbeIncrWriteCounter(p, 0);
  pOut = out2Prerelease(p, pOp);
  pgno = 0;
  assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );







|







6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
** Allocate a new b-tree in the main database file if P1==0 or in the
** TEMP database file if P1==1 or in an attached database if
** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
** The root page number of the new b-tree is stored in register P2.
*/
case OP_CreateBtree: {          /* out2 */
  Pgno pgno;
  Db *pDb;

  sqlite3VdbeIncrWriteCounter(p, 0);
  pOut = out2Prerelease(p, pOp);
  pgno = 0;
  assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
6122
6123
6124
6125
6126
6127
6128

6129
6130
6131
6132
6133
6134
6135
#endif
  {
    zSchema = DFLT_SCHEMA_TABLE;
    initData.db = db;
    initData.iDb = iDb;
    initData.pzErrMsg = &p->zErrMsg;
    initData.mInitFlags = 0;

    zSql = sqlite3MPrintf(db,
       "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
       db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
    if( zSql==0 ){
      rc = SQLITE_NOMEM_BKPT;
    }else{
      assert( db->init.busy==0 );







>







6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
#endif
  {
    zSchema = DFLT_SCHEMA_TABLE;
    initData.db = db;
    initData.iDb = iDb;
    initData.pzErrMsg = &p->zErrMsg;
    initData.mInitFlags = 0;
    initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
    zSql = sqlite3MPrintf(db,
       "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
       db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
    if( zSql==0 ){
      rc = SQLITE_NOMEM_BKPT;
    }else{
      assert( db->init.busy==0 );
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
** If P5 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used to implement the integrity_check pragma.
*/
case OP_IntegrityCk: {
  int nRoot;      /* Number of tables to check.  (Number of root pages.) */
  int *aRoot;     /* Array of rootpage numbers for tables to be checked */
  int nErr;       /* Number of errors reported */
  char *z;        /* Text of the error report */
  Mem *pnErr;     /* Register keeping track of errors remaining */

  assert( p->bIsReader );
  nRoot = pOp->p2;
  aRoot = pOp->p4.ai;







|







6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
** If P5 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used to implement the integrity_check pragma.
*/
case OP_IntegrityCk: {
  int nRoot;      /* Number of tables to check.  (Number of root pages.) */
  Pgno *aRoot;    /* Array of rootpage numbers for tables to be checked */
  int nErr;       /* Number of errors reported */
  char *z;        /* Text of the error report */
  Mem *pnErr;     /* Register keeping track of errors remaining */

  assert( p->bIsReader );
  nRoot = pOp->p2;
  aRoot = pOp->p4.ai;
Changes to src/vdbe.h.
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    double *pReal;         /* Used when p4type is P4_REAL */
    FuncDef *pFunc;        /* Used when p4type is P4_FUNCDEF */
    sqlite3_context *pCtx; /* Used when p4type is P4_FUNCCTX */
    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */
    Table *pTab;           /* Used when p4type is P4_TABLE */
#ifdef SQLITE_ENABLE_CURSOR_HINTS
    Expr *pExpr;           /* Used when p4type is P4_EXPR */
#endif
    int (*xAdvance)(BtCursor *, int);
  } p4;







|







53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    double *pReal;         /* Used when p4type is P4_REAL */
    FuncDef *pFunc;        /* Used when p4type is P4_FUNCDEF */
    sqlite3_context *pCtx; /* Used when p4type is P4_FUNCCTX */
    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    u32 *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */
    Table *pTab;           /* Used when p4type is P4_TABLE */
#ifdef SQLITE_ENABLE_CURSOR_HINTS
    Expr *pExpr;           /* Used when p4type is P4_EXPR */
#endif
    int (*xAdvance)(BtCursor *, int);
  } p4;
Changes to src/vdbeInt.h.
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#endif
  Bool isEphemeral:1;     /* True for an ephemeral table */
  Bool useRandomRowid:1;  /* Generate new record numbers semi-randomly */
  Bool isOrdered:1;       /* True if the table is not BTREE_UNORDERED */
  Bool seekHit:1;         /* See the OP_SeekHit and OP_IfNoHope opcodes */
  Btree *pBtx;            /* Separate file holding temporary table */
  i64 seqCount;           /* Sequence counter */
  int *aAltMap;           /* Mapping from table to index column numbers */

  /* Cached OP_Column parse information is only valid if cacheStatus matches
  ** Vdbe.cacheCtr.  Vdbe.cacheCtr will never take on the value of
  ** CACHE_STALE (0) and so setting cacheStatus=CACHE_STALE guarantees that
  ** the cache is out of date. */
  u32 cacheStatus;        /* Cache is valid if this matches Vdbe.cacheCtr */
  int seekResult;         /* Result of previous sqlite3BtreeMoveto() or 0







|







85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#endif
  Bool isEphemeral:1;     /* True for an ephemeral table */
  Bool useRandomRowid:1;  /* Generate new record numbers semi-randomly */
  Bool isOrdered:1;       /* True if the table is not BTREE_UNORDERED */
  Bool seekHit:1;         /* See the OP_SeekHit and OP_IfNoHope opcodes */
  Btree *pBtx;            /* Separate file holding temporary table */
  i64 seqCount;           /* Sequence counter */
  u32 *aAltMap;           /* Mapping from table to index column numbers */

  /* Cached OP_Column parse information is only valid if cacheStatus matches
  ** Vdbe.cacheCtr.  Vdbe.cacheCtr will never take on the value of
  ** CACHE_STALE (0) and so setting cacheStatus=CACHE_STALE guarantees that
  ** the cache is out of date. */
  u32 cacheStatus;        /* Cache is valid if this matches Vdbe.cacheCtr */
  int seekResult;         /* Result of previous sqlite3BtreeMoveto() or 0
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
/*
** Function prototypes
*/
void sqlite3VdbeError(Vdbe*, const char *, ...);
void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
void sqliteVdbePopStack(Vdbe*,int);
int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor*);
int sqlite3VdbeCursorMoveto(VdbeCursor**, int*);
int sqlite3VdbeCursorRestore(VdbeCursor*);
u32 sqlite3VdbeSerialTypeLen(u32);
u8 sqlite3VdbeOneByteSerialTypeLen(u8);
u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(sqlite3*, AuxData**, int, int);








|







481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
/*
** Function prototypes
*/
void sqlite3VdbeError(Vdbe*, const char *, ...);
void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
void sqliteVdbePopStack(Vdbe*,int);
int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor*);
int sqlite3VdbeCursorMoveto(VdbeCursor**, u32*);
int sqlite3VdbeCursorRestore(VdbeCursor*);
u32 sqlite3VdbeSerialTypeLen(u32);
u8 sqlite3VdbeOneByteSerialTypeLen(u8);
u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(sqlite3*, AuxData**, int, int);

Changes to src/vdbeaux.c.
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
    case P4_VTAB: {
      sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
      sqlite3_str_appendf(&x, "vtab:%p", pVtab);
      break;
    }
#endif
    case P4_INTARRAY: {
      int i;
      int *ai = pOp->p4.ai;
      int n = ai[0];   /* The first element of an INTARRAY is always the
                       ** count of the number of elements to follow */
      for(i=1; i<=n; i++){
        sqlite3_str_appendf(&x, "%c%d", (i==1 ? '[' : ','), ai[i]);
      }
      sqlite3_str_append(&x, "]", 1);
      break;
    }
    case P4_SUBPROGRAM: {
      zP4 = "program";
      break;







|
|
|


|







1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
    case P4_VTAB: {
      sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
      sqlite3_str_appendf(&x, "vtab:%p", pVtab);
      break;
    }
#endif
    case P4_INTARRAY: {
      u32 i;
      u32 *ai = pOp->p4.ai;
      u32 n = ai[0];   /* The first element of an INTARRAY is always the
                       ** count of the number of elements to follow */
      for(i=1; i<=n; i++){
        sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
      }
      sqlite3_str_append(&x, "]", 1);
      break;
    }
    case P4_SUBPROGRAM: {
      zP4 = "program";
      break;
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
** MoveTo now.  If no move is pending, check to see if the row has been
** deleted out from under the cursor and if it has, mark the row as
** a NULL row.
**
** If the cursor is already pointing to the correct row and that row has
** not been deleted out from under the cursor, then this routine is a no-op.
*/
int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
  VdbeCursor *p = *pp;
  assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
  if( p->deferredMoveto ){
    int iMap;
    if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){
      *pp = p->pAltCursor;
      *piCol = iMap - 1;
      return SQLITE_OK;
    }
    return sqlite3VdbeFinishMoveto(p);
  }







|



|







3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
** MoveTo now.  If no move is pending, check to see if the row has been
** deleted out from under the cursor and if it has, mark the row as
** a NULL row.
**
** If the cursor is already pointing to the correct row and that row has
** not been deleted out from under the cursor, then this routine is a no-op.
*/
int sqlite3VdbeCursorMoveto(VdbeCursor **pp, u32 *piCol){
  VdbeCursor *p = *pp;
  assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
  if( p->deferredMoveto ){
    u32 iMap;
    if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){
      *pp = p->pAltCursor;
      *piCol = iMap - 1;
      return SQLITE_OK;
    }
    return sqlite3VdbeFinishMoveto(p);
  }
Changes to src/vdbevtab.c.
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    if( i==4 ){
      i = 8;
    }else{
      if( i<=2 && pCur->zType==0 ){
        Schema *pSchema;
        HashElem *k;
        int iDb = pOp->p3;
        int iRoot = pOp->p2;
        sqlite3 *db = pVTab->db;
        pSchema = db->aDb[iDb].pSchema;
        pCur->zSchema = db->aDb[iDb].zDbSName;
        for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
          Table *pTab = (Table*)sqliteHashData(k);
          if( !IsVirtual(pTab) && pTab->tnum==iRoot ){
            pCur->zName = pTab->zName;







|







202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    if( i==4 ){
      i = 8;
    }else{
      if( i<=2 && pCur->zType==0 ){
        Schema *pSchema;
        HashElem *k;
        int iDb = pOp->p3;
        Pgno iRoot = (Pgno)pOp->p2;
        sqlite3 *db = pVTab->db;
        pSchema = db->aDb[iDb].pSchema;
        pCur->zSchema = db->aDb[iDb].zDbSName;
        for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
          Table *pTab = (Table*)sqliteHashData(k);
          if( !IsVirtual(pTab) && pTab->tnum==iRoot ){
            pCur->zName = pTab->zName;
Changes to src/wal.c.
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
**   walIteratorInit() - Create a new iterator,
**   walIteratorNext() - Step an iterator,
**   walIteratorFree() - Free an iterator.
**
** This functionality is used by the checkpoint code (see walCheckpoint()).
*/
struct WalIterator {
  int iPrior;                     /* Last result returned from the iterator */
  int nSegment;                   /* Number of entries in aSegment[] */
  struct WalSegment {
    int iNext;                    /* Next slot in aIndex[] not yet returned */
    ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
    u32 *aPgno;                   /* Array of page numbers. */
    int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
    int iZero;                    /* Frame number associated with aPgno[0] */







|







504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
**   walIteratorInit() - Create a new iterator,
**   walIteratorNext() - Step an iterator,
**   walIteratorFree() - Free an iterator.
**
** This functionality is used by the checkpoint code (see walCheckpoint()).
*/
struct WalIterator {
  u32 iPrior;                     /* Last result returned from the iterator */
  int nSegment;                   /* Number of entries in aSegment[] */
  struct WalSegment {
    int iNext;                    /* Next slot in aIndex[] not yet returned */
    ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
    u32 *aPgno;                   /* Array of page numbers. */
    int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
    int iZero;                    /* Frame number associated with aPgno[0] */
963
964
965
966
967
968
969

970
971
972
973
974
975
976
  int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
  assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
       && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
       && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
       && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
       && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
  );

  return iHash;
}

/*
** Return the page number associated with frame iFrame in this WAL.
*/
static u32 walFramePgno(Wal *pWal, u32 iFrame){







>







963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
  int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
  assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
       && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
       && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
       && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
       && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
  );
  assert( iHash>=0 );
  return iHash;
}

/*
** Return the page number associated with frame iFrame in this WAL.
*/
static u32 walFramePgno(Wal *pWal, u32 iFrame){
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
    u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
    int szFrame;                  /* Number of bytes in buffer aFrame[] */
    u8 *aData;                    /* Pointer to data part of aFrame buffer */
    int szPage;                   /* Page size according to the log */
    u32 magic;                    /* Magic value read from WAL header */
    u32 version;                  /* Magic value read from WAL header */
    int isValid;                  /* True if this frame is valid */
    int iPg;                      /* Current 32KB wal-index page */
    int iLastFrame;               /* Last frame in wal, based on nSize alone */

    /* Read in the WAL header. */
    rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
    if( rc!=SQLITE_OK ){
      goto recovery_error;
    }








|
|







1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
    u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
    int szFrame;                  /* Number of bytes in buffer aFrame[] */
    u8 *aData;                    /* Pointer to data part of aFrame buffer */
    int szPage;                   /* Page size according to the log */
    u32 magic;                    /* Magic value read from WAL header */
    u32 version;                  /* Magic value read from WAL header */
    int isValid;                  /* True if this frame is valid */
    u32 iPg;                      /* Current 32KB wal-index page */
    u32 iLastFrame;               /* Last frame in wal, based on nSize alone */

    /* Read in the WAL header. */
    rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
    if( rc!=SQLITE_OK ){
      goto recovery_error;
    }

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
      goto recovery_error;
    }
    aData = &aFrame[WAL_FRAME_HDRSIZE];
    aPrivate = (u32*)&aData[szPage];

    /* Read all frames from the log file. */
    iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
    for(iPg=0; iPg<=walFramePage(iLastFrame); iPg++){
      u32 *aShare;
      int iFrame;                 /* Index of last frame read */
      int iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
      int iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
      int nHdr, nHdr32;
      rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
      if( rc ) break;
      pWal->apWiData[iPg] = aPrivate;
      
      for(iFrame=iFirst; iFrame<=iLast; iFrame++){
        i64 iOffset = walFrameOffset(iFrame, szPage);
        u32 pgno;                 /* Database page number for frame */







|

|
|
|
|







1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
      goto recovery_error;
    }
    aData = &aFrame[WAL_FRAME_HDRSIZE];
    aPrivate = (u32*)&aData[szPage];

    /* Read all frames from the log file. */
    iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
    for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){
      u32 *aShare;
      u32 iFrame;                 /* Index of last frame read */
      u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
      u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
      u32 nHdr, nHdr32;
      rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
      if( rc ) break;
      pWal->apWiData[iPg] = aPrivate;
      
      for(iFrame=iFirst; iFrame<=iLast; iFrame++){
        i64 iOffset = walFrameOffset(iFrame, szPage);
        u32 pgno;                 /* Database page number for frame */
Changes to src/wherecode.c.
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
  pWInfo->bDeferredSeek = 1;
  sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
  if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
   && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
  ){
    int i;
    Table *pTab = pIdx->pTable;
    int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
    if( ai ){
      ai[0] = pTab->nCol;
      for(i=0; i<pIdx->nColumn-1; i++){
        int x1, x2;
        assert( pIdx->aiColumn[i]<pTab->nCol );
        x1 = pIdx->aiColumn[i];
        x2 = sqlite3TableColumnToStorage(pTab, x1);







|







1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
  pWInfo->bDeferredSeek = 1;
  sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
  if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
   && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
  ){
    int i;
    Table *pTab = pIdx->pTable;
    u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
    if( ai ){
      ai[0] = pTab->nCol;
      for(i=0; i<pIdx->nColumn-1; i++){
        int x1, x2;
        assert( pIdx->aiColumn[i]<pTab->nCol );
        x1 = pIdx->aiColumn[i];
        x2 = sqlite3TableColumnToStorage(pTab, x1);
Changes to test/corrupt3.test.
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
do_test corrupt3-1.9 {
  db close
  hexio_write test.db 2044 [hexio_render_int32 4]
  sqlite3 db test.db
  catchsql {
    SELECT substr(x,1,10) FROM t1
  }
} [list 0 0123456789]
do_test corrupt3-1.10 {
  catchsql {
    PRAGMA integrity_check
  }
} {0 {{*** in database main ***
On tree page 2 cell 0: invalid page number 4
Page 3 is never used}}}







|







90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
do_test corrupt3-1.9 {
  db close
  hexio_write test.db 2044 [hexio_render_int32 4]
  sqlite3 db test.db
  catchsql {
    SELECT substr(x,1,10) FROM t1
  }
} [list 1 {database disk image is malformed}]
do_test corrupt3-1.10 {
  catchsql {
    PRAGMA integrity_check
  }
} {0 {{*** in database main ***
On tree page 2 cell 0: invalid page number 4
Page 3 is never used}}}
Changes to test/corruptL.test.
1170
1171
1172
1173
1174
1175
1176

1177
1178
1179
1180
1181
1182
1183

1184
1185
1186
1187
1188
1189
1190
|    448: 32 03 43 52 45 41 54 45 20 54 41 42 4c 45 20 74   2.CREATE TABLE t
|    464: 32 28 63 2c 64 2c 65 2c 66 29 24 01 06 17 11 11   2(c,d,e,f)$.....
|    480: 01 35 74 61 62 6c 65 74 31 74 31 02 43 52 45 41   .5tablet1t1.CREA
|    496: 54 45 20 54 41 42 4c 45 20 74 31 28 61 2c 63 29   TE TABLE t1(a,c)
| end clusterfuzz-testcase-minimized-sqlite3_dbfuzz2_fuzzer-4806406219825152
}]} {}


do_catchsql_test 14.1 {
  PRAGMA integrity_check;
} {1 {database disk image is malformed}}

do_catchsql_test 14.2 {
  ALTER TABLE t1 RENAME TO alkjalkjdfiiiwuer987lkjwer82mx97sf98788s9789s; 
} {1 {database disk image is malformed}}


#-------------------------------------------------------------------------
reset_db
do_test 15.0 {
  sqlite3 db {}
  db deserialize [decode_hexdb {
| size 28672 pagesize 4096 filename crash-3afa1ca9e9c1bd.db







>







>







1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
|    448: 32 03 43 52 45 41 54 45 20 54 41 42 4c 45 20 74   2.CREATE TABLE t
|    464: 32 28 63 2c 64 2c 65 2c 66 29 24 01 06 17 11 11   2(c,d,e,f)$.....
|    480: 01 35 74 61 62 6c 65 74 31 74 31 02 43 52 45 41   .5tablet1t1.CREA
|    496: 54 45 20 54 41 42 4c 45 20 74 31 28 61 2c 63 29   TE TABLE t1(a,c)
| end clusterfuzz-testcase-minimized-sqlite3_dbfuzz2_fuzzer-4806406219825152
}]} {}

extra_schema_checks 0
do_catchsql_test 14.1 {
  PRAGMA integrity_check;
} {1 {database disk image is malformed}}

do_catchsql_test 14.2 {
  ALTER TABLE t1 RENAME TO alkjalkjdfiiiwuer987lkjwer82mx97sf98788s9789s; 
} {1 {database disk image is malformed}}
extra_schema_checks 1

#-------------------------------------------------------------------------
reset_db
do_test 15.0 {
  sqlite3 db {}
  db deserialize [decode_hexdb {
| size 28672 pagesize 4096 filename crash-3afa1ca9e9c1bd.db
1259
1260
1261
1262
1263
1264
1265

1266
1267
1268

1269
1270
1271
1272
1273
1274
1275
|   4032: 62 31 37 20 31 0c 04 04 11 13 13 62 31 62 31 63   b17 1......b1b1c
|   4048: 37 20 31 0b 03 04 11 11 13 63 31 63 31 37 20 31   7 1......c1c17 1
|   4064: 0e 02 04 11 13 07 63 31 63 31 64 37 20 31 20 31   ......c1c1d7 1 1
|   4080: 0e 01 04 11 13 17 63 31 63 31 63 37 20 31 00 00   ......c1c1c7 1..
| end crash-3afa1ca9e9c1bd.db
}]} {}


do_execsql_test 15.1 {
  UPDATE c1 SET c= NOT EXISTS(SELECT 1 FROM c1 ORDER BY (SELECT 1 FROM c1 ORDER BY a)) +10 WHERE d BETWEEN 4 AND 7;
} {}


#-------------------------------------------------------------------------
reset_db
do_execsql_test 16.0 {
  CREATE TABLE t1(w, x, y, z, UNIQUE(w, x), UNIQUE(y, z));
  INSERT INTO t1 VALUES(1, 1, 1, 1);








>



>







1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
|   4032: 62 31 37 20 31 0c 04 04 11 13 13 62 31 62 31 63   b17 1......b1b1c
|   4048: 37 20 31 0b 03 04 11 11 13 63 31 63 31 37 20 31   7 1......c1c17 1
|   4064: 0e 02 04 11 13 07 63 31 63 31 64 37 20 31 20 31   ......c1c1d7 1 1
|   4080: 0e 01 04 11 13 17 63 31 63 31 63 37 20 31 00 00   ......c1c1c7 1..
| end crash-3afa1ca9e9c1bd.db
}]} {}

extra_schema_checks 0
do_execsql_test 15.1 {
  UPDATE c1 SET c= NOT EXISTS(SELECT 1 FROM c1 ORDER BY (SELECT 1 FROM c1 ORDER BY a)) +10 WHERE d BETWEEN 4 AND 7;
} {}
extra_schema_checks 1

#-------------------------------------------------------------------------
reset_db
do_execsql_test 16.0 {
  CREATE TABLE t1(w, x, y, z, UNIQUE(w, x), UNIQUE(y, z));
  INSERT INTO t1 VALUES(1, 1, 1, 1);

1287
1288
1289
1290
1291
1292
1293
1294
1295

do_catchsql_test 16.1 {
  PRAGMA writable_schema = ON;
  INSERT INTO t1(rowid, w, x, y, z) VALUES(5, 10, 11, 10, NULL);
} {1 {database disk image is malformed}}

finish_test









<
<
1291
1292
1293
1294
1295
1296
1297



do_catchsql_test 16.1 {
  PRAGMA writable_schema = ON;
  INSERT INTO t1(rowid, w, x, y, z) VALUES(5, 10, 11, 10, NULL);
} {1 {database disk image is malformed}}

finish_test


Changes to test/dbfuzz001.test.
357
358
359
360
361
362
363

364
365
366
367
368
369
370

371
372
|    464: 69 67 68 74 0a 06 02 07 40 18 00 00 00 00 00 00   ight....@.......
|    480: 0a 05 02 07 40 18 00 00 00 00 00 00 03 04 02 01   ....@...........
|    496: 04 03 03 02 01 04 03 02 02 01 02 03 01 02 01 02   ................
| end x/c02.db
  }]
} {}


do_catchsql_test dbfuzz001-320 {
  PRAGMA integrity_check;
} {1 {database disk image is malformed}}

do_catchsql_test dbfuzz001-330 {
  DELETE FROM t3 WHERE x IN (SELECT x FROM t4);
} {1 {database disk image is malformed}}


finish_test







>







>


357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|    464: 69 67 68 74 0a 06 02 07 40 18 00 00 00 00 00 00   ight....@.......
|    480: 0a 05 02 07 40 18 00 00 00 00 00 00 03 04 02 01   ....@...........
|    496: 04 03 03 02 01 04 03 02 02 01 02 03 01 02 01 02   ................
| end x/c02.db
  }]
} {}

extra_schema_checks 0
do_catchsql_test dbfuzz001-320 {
  PRAGMA integrity_check;
} {1 {database disk image is malformed}}

do_catchsql_test dbfuzz001-330 {
  DELETE FROM t3 WHERE x IN (SELECT x FROM t4);
} {1 {database disk image is malformed}}
extra_schema_checks 1

finish_test
Changes to test/fts3corrupt4.test.
23
24
25
26
27
28
29

30
31
32
33
34
35
36
ifcapable !fts3 {
  finish_test
  return
}

sqlite3_fts3_may_be_corrupt 1
database_may_be_corrupt


do_execsql_test 1.0 {
  BEGIN;
    CREATE VIRTUAL TABLE ft USING fts3;
    INSERT INTO ft VALUES('aback');
    INSERT INTO ft VALUES('abaft');
    INSERT INTO ft VALUES('abandon');







>







23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
ifcapable !fts3 {
  finish_test
  return
}

sqlite3_fts3_may_be_corrupt 1
database_may_be_corrupt
extra_schema_checks 0

do_execsql_test 1.0 {
  BEGIN;
    CREATE VIRTUAL TABLE ft USING fts3;
    INSERT INTO ft VALUES('aback');
    INSERT INTO ft VALUES('abaft');
    INSERT INTO ft VALUES('abandon');
6277
6278
6279
6280
6281
6282
6283

6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300

do_catchsql_test 46.2 {
  SELECT * FROM t0
    WHERE t0 MATCH x'2b0a312b0a312a312a2a0b5d0a0b0b0a312a0a0b0b0a312a0b310a392a0b0a27312a2a0b5d0a312a0b310a31315d0b310a312a316d2a0b313b15bceaa50a312a0b0a27312a2a0b5d0a312a0b310a312b0b2a310a312a0b2a0b2a0b2e5d0a0bff313336e34a2a312a0b0a3c310b0a0b4b4b0b4b2a4bec40322b2a0b310a0a312a0a0a0a0a0a0a0a0a0b310a312a2a2a0b5d0a0b0b0a312a0b310a312a0b0a4e4541530b310a5df5ced70a0a0a0a0a4f520a0a0a0a0a0a0a312a0b0a4e4541520b310a5d616161610a0a0a0a4f520a0a0a0a0a0a312b0a312a312a0a0a0a0a0a0a004a0b0a310b220a0b0a310a4a22310a0b0a7e6fe0e0e030e0e0e0e0e01176e02000e0e0e0e0e01131320226310a0b0a310a4a22310a0b0a310a766f8b8b4ee0e0300ae0090909090909090909090909090909090909090909090909090909090909090947aaaa540b09090909090909090909090909090909090909090909090909090909090909fae0e0f2f22164e0e0f273e07fefefef7d6dfafafafa6d6d6d6d';
} {1 {database disk image is malformed}}

set sqlite_fts3_enable_parentheses $saved


#-------------------------------------------------------------------------
reset_db
do_execsql_test 47.1 {
  CREATE VIRTUAL TABLE t1 USING fts3(a,b,c);
}
do_execsql_test 47.2 {
  INSERT INTO t1_segdir VALUES(0,0,0,0,0,X'000130120106000106000106001f030001030001030000083230313630363039090107000107000107000001340901050001050001050000013509010400010400010400010730303030303030091c0400010400010400000662696e6172793c0301020200030102020003010202000301020200030102020003010202000301020200030102020003010202000301020200030102020003010202000008636f6d70696c657209010200010200010200000664627374617409070300010300010300010465627567090402000102000102000006656e61626c653f07020001020001020001020001020001020001020001020001020001020001020001020001010001020001020001020001020001020001020001020001020001087874656e73696f6e091f0400010400010400000466747334090a0300010300010300030135090d03000103000103000003676363090103000103000103000106656f706f6c790910030001030001030000056a736f6e310913030001030001030000046c6f6164091f030001030001030000036d6178091c02000102000102000105656d6f7279091c03000103000103000304737973350916030001030001030000066e6f636173653c02010202000301020200030102020003010202000301020200030102020003010202000301020200030102020003010202000301020200030102020000046f6d6974091f020001020001020000057274726565091903000103000103000302696d3c01010202000301020200030102020003010202000301020200030102020003010202000301a202000301020200030102020003010202000301020200000a746872656164736166650922020001020001020000047674616209070400010400010400000178b401010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200');
  INSERT INTO t1_segdir VALUES(0,1,0,0,0,X'0001300425061b000008323031363036303903250700000134032505000001350325040001073030303030303003251a000008636f6d70696c657203250200000664627374617403250a00010465627567032508000006656e61626c650925090504040404040001087874656e73696f6e03251d0000046674733403250d0003013503250f000003676363032503000106656f706f6c790325110000056a736f6e310325130000046c6f616403251c0000036d6178032518000105656d6f7279032519000304737973350325150000046f6d697403251b000005727472656503251700000a7468726561647361666503251e0000047674616333250b00');
}

do_catchsql_test 47.3 {
  SELECT matchinfo(t1) FROM t1 WHERE t1 MATCH '"json1 enable"';
} {1 {database disk image is malformed}}


finish_test







>















<

6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300

6301

do_catchsql_test 46.2 {
  SELECT * FROM t0
    WHERE t0 MATCH x'2b0a312b0a312a312a2a0b5d0a0b0b0a312a0a0b0b0a312a0b310a392a0b0a27312a2a0b5d0a312a0b310a31315d0b310a312a316d2a0b313b15bceaa50a312a0b0a27312a2a0b5d0a312a0b310a312b0b2a310a312a0b2a0b2a0b2e5d0a0bff313336e34a2a312a0b0a3c310b0a0b4b4b0b4b2a4bec40322b2a0b310a0a312a0a0a0a0a0a0a0a0a0b310a312a2a2a0b5d0a0b0b0a312a0b310a312a0b0a4e4541530b310a5df5ced70a0a0a0a0a4f520a0a0a0a0a0a0a312a0b0a4e4541520b310a5d616161610a0a0a0a4f520a0a0a0a0a0a312b0a312a312a0a0a0a0a0a0a004a0b0a310b220a0b0a310a4a22310a0b0a7e6fe0e0e030e0e0e0e0e01176e02000e0e0e0e0e01131320226310a0b0a310a4a22310a0b0a310a766f8b8b4ee0e0300ae0090909090909090909090909090909090909090909090909090909090909090947aaaa540b09090909090909090909090909090909090909090909090909090909090909fae0e0f2f22164e0e0f273e07fefefef7d6dfafafafa6d6d6d6d';
} {1 {database disk image is malformed}}

set sqlite_fts3_enable_parentheses $saved
extra_schema_checks 1

#-------------------------------------------------------------------------
reset_db
do_execsql_test 47.1 {
  CREATE VIRTUAL TABLE t1 USING fts3(a,b,c);
}
do_execsql_test 47.2 {
  INSERT INTO t1_segdir VALUES(0,0,0,0,0,X'000130120106000106000106001f030001030001030000083230313630363039090107000107000107000001340901050001050001050000013509010400010400010400010730303030303030091c0400010400010400000662696e6172793c0301020200030102020003010202000301020200030102020003010202000301020200030102020003010202000301020200030102020003010202000008636f6d70696c657209010200010200010200000664627374617409070300010300010300010465627567090402000102000102000006656e61626c653f07020001020001020001020001020001020001020001020001020001020001020001020001010001020001020001020001020001020001020001020001020001087874656e73696f6e091f0400010400010400000466747334090a0300010300010300030135090d03000103000103000003676363090103000103000103000106656f706f6c790910030001030001030000056a736f6e310913030001030001030000046c6f6164091f030001030001030000036d6178091c02000102000102000105656d6f7279091c03000103000103000304737973350916030001030001030000066e6f636173653c02010202000301020200030102020003010202000301020200030102020003010202000301020200030102020003010202000301020200030102020000046f6d6974091f020001020001020000057274726565091903000103000103000302696d3c01010202000301020200030102020003010202000301020200030102020003010202000301a202000301020200030102020003010202000301020200000a746872656164736166650922020001020001020000047674616209070400010400010400000178b401010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200010101020001010102000101010200');
  INSERT INTO t1_segdir VALUES(0,1,0,0,0,X'0001300425061b000008323031363036303903250700000134032505000001350325040001073030303030303003251a000008636f6d70696c657203250200000664627374617403250a00010465627567032508000006656e61626c650925090504040404040001087874656e73696f6e03251d0000046674733403250d0003013503250f000003676363032503000106656f706f6c790325110000056a736f6e310325130000046c6f616403251c0000036d6178032518000105656d6f7279032519000304737973350325150000046f6d697403251b000005727472656503251700000a7468726561647361666503251e0000047674616333250b00');
}

do_catchsql_test 47.3 {
  SELECT matchinfo(t1) FROM t1 WHERE t1 MATCH '"json1 enable"';
} {1 {database disk image is malformed}}


finish_test
Changes to test/pager1.test.
1926
1927
1928
1929
1930
1931
1932

1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946

1947
1948
1949
1950
1951
1952
1953
db2 close
do_test pager1-18.4 {
  hexio_write test.db [expr ($pgno-1)*1024] 90000000
  sqlite3 db2 test.db
  catchsql { SELECT length(x||'') FROM t2 } db2
} {1 {database disk image is malformed}}
db2 close

do_test pager1-18.5 {
  sqlite3 db ""
  sqlite3_db_config db DEFENSIVE 0
  execsql {
    CREATE TABLE t1(a, b);
    CREATE TABLE t2(a, b);
    PRAGMA writable_schema = 1;
    UPDATE sqlite_master SET rootpage=5 WHERE tbl_name = 't1';
    PRAGMA writable_schema = 0;
    ALTER TABLE t1 RENAME TO x1;
  }
  catchsql { SELECT * FROM x1 }
} {1 {database disk image is malformed}}
db close


do_test pager1-18.6 {
  faultsim_delete_and_reopen
  db func a_string a_string
  execsql {
    PRAGMA page_size = 1024;
    CREATE TABLE t1(x);







>














>







1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
db2 close
do_test pager1-18.4 {
  hexio_write test.db [expr ($pgno-1)*1024] 90000000
  sqlite3 db2 test.db
  catchsql { SELECT length(x||'') FROM t2 } db2
} {1 {database disk image is malformed}}
db2 close
extra_schema_checks 0
do_test pager1-18.5 {
  sqlite3 db ""
  sqlite3_db_config db DEFENSIVE 0
  execsql {
    CREATE TABLE t1(a, b);
    CREATE TABLE t2(a, b);
    PRAGMA writable_schema = 1;
    UPDATE sqlite_master SET rootpage=5 WHERE tbl_name = 't1';
    PRAGMA writable_schema = 0;
    ALTER TABLE t1 RENAME TO x1;
  }
  catchsql { SELECT * FROM x1 }
} {1 {database disk image is malformed}}
db close
extra_schema_checks 1

do_test pager1-18.6 {
  faultsim_delete_and_reopen
  db func a_string a_string
  execsql {
    PRAGMA page_size = 1024;
    CREATE TABLE t1(x);
Changes to test/tester.tcl.
2475
2476
2477
2478
2479
2480
2481

2482
2483
2484
set sqlite_fts3_enable_parentheses 0

# During testing, assume that all database files are well-formed.  The
# few test cases that deliberately corrupt database files should rescind 
# this setting by invoking "database_can_be_corrupt"
#
database_never_corrupt


source $testdir/thread_common.tcl
source $testdir/malloc_common.tcl







>



2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
set sqlite_fts3_enable_parentheses 0

# During testing, assume that all database files are well-formed.  The
# few test cases that deliberately corrupt database files should rescind 
# this setting by invoking "database_can_be_corrupt"
#
database_never_corrupt
extra_schema_checks 1

source $testdir/thread_common.tcl
source $testdir/malloc_common.tcl
Added tool/enlargedb.c.








































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/*
** Try to enlarge an SQLite database by appending many unused pages.
** The resulting database will fail PRAGMA integrity_check due to the
** appended unused pages, but it should work otherwise.
**
** Usage:
**
**        enlargedb  DATABASE   N
**
** Adds N blank pages onto the end of DATABASE.  N can be decimal
** or hex.  The total number of pages after adding must be no greater
** than 4294967297
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(int argc, char **argv){
  char *zEnd;
  long long int toAppend;
  long long int currentSz;
  long long int newSz;
  FILE *f;
  size_t got;
  int pgsz;
  char zero = 0;
  unsigned char buf[100];

  if( argc!=3 ) goto usage_error;
  toAppend = strtoll(argv[2], &zEnd, 0);
  if( zEnd==argv[2] || zEnd[0] ) goto usage_error;
  if( toAppend<1 ){
    fprintf(stderr, "N must be at least 1\n");
    exit(1);
  }
  f = fopen(argv[1], "r+b");
  if( f==0 ){
    fprintf(stderr, "cannot open \"%s\" for reading and writing\n", argv[1]);
    exit(1);
  }
  got = fread(buf, 1, sizeof(buf), f);
  if( got!=sizeof(buf) ) goto not_valid_db;
  if( strcmp((char*)buf,"SQLite format 3")!=0 ) goto not_valid_db;
  pgsz = (buf[16]<<8) + buf[17];
  if( pgsz==1 ) pgsz = 65536;
  if( pgsz<512 || pgsz>65536 || (pgsz&(pgsz-1))!=0 ) goto not_valid_db;
  currentSz = (buf[28]<<24) + (buf[29]<<16) + (buf[30]<<8) + buf[31];
  newSz = currentSz + toAppend;
  if( newSz > 0xffffffff ) newSz = 0xffffffff;
  buf[28] = (newSz>>24) & 0xff;
  buf[29] = (newSz>>16) & 0xff;
  buf[30] = (newSz>>8) & 0xff;
  buf[31] = newSz & 0xff;
  fseek(f, 28, SEEK_SET);
  fwrite(&buf[28],4,1,f);
  fseek(f, (long)(newSz*pgsz - 1), SEEK_SET);
  fwrite(&zero,1,1,f);
  fclose(f);
  return 0;  

not_valid_db:
  fprintf(stderr,"not a valid database: %s\n", argv[1]);
  exit(1);  

usage_error:
  fprintf(stderr,"Usage: %s DATABASE N\n", argv[0]);
  exit(1);
}
Changes to tool/showdb.c.
16
17
18
19
20
21
22




23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#endif

#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "sqlite3.h"







static struct GlobalData {
  int pagesize;                   /* Size of a database page */
  int dbfd;                       /* File descriptor for reading the DB */
  int mxPage;                     /* Last page number */
  int perLine;                    /* HEX elements to print per line */
  int bRaw;                       /* True to access db file via OS APIs */
  sqlite3_file *pFd;              /* File descriptor for non-raw mode */
  sqlite3 *pDb;                   /* Database handle that owns pFd */
} g = {1024, -1, 0, 16,   0, 0, 0};


typedef long long int i64;      /* Datatype for 64-bit integers */


/*
** Convert the var-int format into i64.  Return the number of bytes
** in the var-int.  Write the var-int value into *pVal.
*/
static int decodeVarint(const unsigned char *z, i64 *pVal){
  i64 v = 0;
  int i;
  for(i=0; i<8; i++){
    v = (v<<7) + (z[i]&0x7f);
    if( (z[i]&0x80)==0 ){ *pVal = v; return i+1; }
  }
  v = (v<<8) + (z[i]&0xff);
  *pVal = v;
  return 9;
}

/*
** Extract a big-endian 32-bit integer
*/
static unsigned int decodeInt32(const unsigned char *z){
  return (z[0]<<24) + (z[1]<<16) + (z[2]<<8) + z[3];
}

/* Report an out-of-memory error and die.
*/
static void out_of_memory(void){
  fprintf(stderr,"Out of memory...\n");







>
>
>
>

>

|

|





<
<
<
<




















|







16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37




38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#endif

#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "sqlite3.h"

typedef unsigned char u8;         /* unsigned 8-bit */
typedef unsigned int u32;         /* unsigned 32-bit */
typedef sqlite3_int64 i64;        /* signed 64-bit */
typedef sqlite3_uint64 u64;       /* unsigned 64-bit */


static struct GlobalData {
  u32 pagesize;                   /* Size of a database page */
  int dbfd;                       /* File descriptor for reading the DB */
  u32 mxPage;                     /* Last page number */
  int perLine;                    /* HEX elements to print per line */
  int bRaw;                       /* True to access db file via OS APIs */
  sqlite3_file *pFd;              /* File descriptor for non-raw mode */
  sqlite3 *pDb;                   /* Database handle that owns pFd */
} g = {1024, -1, 0, 16,   0, 0, 0};





/*
** Convert the var-int format into i64.  Return the number of bytes
** in the var-int.  Write the var-int value into *pVal.
*/
static int decodeVarint(const unsigned char *z, i64 *pVal){
  i64 v = 0;
  int i;
  for(i=0; i<8; i++){
    v = (v<<7) + (z[i]&0x7f);
    if( (z[i]&0x80)==0 ){ *pVal = v; return i+1; }
  }
  v = (v<<8) + (z[i]&0xff);
  *pVal = v;
  return 9;
}

/*
** Extract a big-endian 32-bit integer
*/
static u32 decodeInt32(const u8 *z){
  return (z[0]<<24) + (z[1]<<16) + (z[2]<<8) + z[3];
}

/* Report an out-of-memory error and die.
*/
static void out_of_memory(void){
  fprintf(stderr,"Out of memory...\n");
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
**
** Space to hold the content is obtained from sqlite3_malloc() and needs 
** to be freed by the caller.
*/
static unsigned char *fileRead(sqlite3_int64 ofst, int nByte){
  unsigned char *aData;
  int got;
  aData = sqlite3_malloc(nByte+32);
  if( aData==0 ) out_of_memory();
  memset(aData, 0, nByte+32);
  if( g.bRaw==0 ){
    int rc = g.pFd->pMethods->xRead(g.pFd, (void*)aData, nByte, ofst);
    if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
      fprintf(stderr, "error in xRead() - %d\n", rc);
      exit(1);
    }
  }else{
    lseek(g.dbfd, (long)ofst, SEEK_SET);
    got = read(g.dbfd, aData, nByte);
    if( got>0 && got<nByte ) memset(aData+got, 0, nByte-got);
  }
  return aData;
}

/*
** Return the size of the file in byte.
*/
static sqlite3_int64 fileGetsize(void){
  sqlite3_int64 res = 0;
  if( g.bRaw==0 ){
    int rc = g.pFd->pMethods->xFileSize(g.pFd, &res);
    if( rc!=SQLITE_OK ){
      fprintf(stderr, "error in xFileSize() - %d\n", rc);
      exit(1);
    }
  }else{







|



















|
|







138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
**
** Space to hold the content is obtained from sqlite3_malloc() and needs 
** to be freed by the caller.
*/
static unsigned char *fileRead(sqlite3_int64 ofst, int nByte){
  unsigned char *aData;
  int got;
  aData = sqlite3_malloc64(32+(i64)nByte);
  if( aData==0 ) out_of_memory();
  memset(aData, 0, nByte+32);
  if( g.bRaw==0 ){
    int rc = g.pFd->pMethods->xRead(g.pFd, (void*)aData, nByte, ofst);
    if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
      fprintf(stderr, "error in xRead() - %d\n", rc);
      exit(1);
    }
  }else{
    lseek(g.dbfd, (long)ofst, SEEK_SET);
    got = read(g.dbfd, aData, nByte);
    if( got>0 && got<nByte ) memset(aData+got, 0, nByte-got);
  }
  return aData;
}

/*
** Return the size of the file in byte.
*/
static i64 fileGetsize(void){
  i64 res = 0;
  if( g.bRaw==0 ){
    int rc = g.pFd->pMethods->xFileSize(g.pFd, &res);
    if( rc!=SQLITE_OK ){
      fprintf(stderr, "error in xFileSize() - %d\n", rc);
      exit(1);
    }
  }else{
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209






210
211
212
213
214
215
216
** End of low-level file access functions.
**************************************************************************/

/*
** Print a range of bytes as hex and as ascii.
*/
static unsigned char *print_byte_range(
  int ofst,          /* First byte in the range of bytes to print */
  int nByte,         /* Number of bytes to print */
  int printOfst      /* Add this amount to the index on the left column */
){
  unsigned char *aData;
  int i, j;
  const char *zOfstFmt;

  if( ((printOfst+nByte)&~0xfff)==0 ){
    zOfstFmt = " %03x: ";
  }else if( ((printOfst+nByte)&~0xffff)==0 ){
    zOfstFmt = " %04x: ";
  }else if( ((printOfst+nByte)&~0xfffff)==0 ){
    zOfstFmt = " %05x: ";
  }else if( ((printOfst+nByte)&~0xffffff)==0 ){
    zOfstFmt = " %06x: ";
  }else{
    zOfstFmt = " %08x: ";
  }

  aData = fileRead(ofst, nByte);
  for(i=0; i<nByte; i += g.perLine){






    fprintf(stdout, zOfstFmt, i+printOfst);
    for(j=0; j<g.perLine; j++){
      if( i+j>nByte ){
        fprintf(stdout, "   ");
      }else{
        fprintf(stdout,"%02x ", aData[i+j]);
      }







|
|
|



















>
>
>
>
>
>







182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
** End of low-level file access functions.
**************************************************************************/

/*
** Print a range of bytes as hex and as ascii.
*/
static unsigned char *print_byte_range(
  sqlite3_int64 ofst,  /* First byte in the range of bytes to print */
  int nByte,           /* Number of bytes to print */
  int printOfst        /* Add this amount to the index on the left column */
){
  unsigned char *aData;
  int i, j;
  const char *zOfstFmt;

  if( ((printOfst+nByte)&~0xfff)==0 ){
    zOfstFmt = " %03x: ";
  }else if( ((printOfst+nByte)&~0xffff)==0 ){
    zOfstFmt = " %04x: ";
  }else if( ((printOfst+nByte)&~0xfffff)==0 ){
    zOfstFmt = " %05x: ";
  }else if( ((printOfst+nByte)&~0xffffff)==0 ){
    zOfstFmt = " %06x: ";
  }else{
    zOfstFmt = " %08x: ";
  }

  aData = fileRead(ofst, nByte);
  for(i=0; i<nByte; i += g.perLine){
    int go = 0;
    for(j=0; j<g.perLine; j++){
      if( i+j>nByte ){ break; }
      if( aData[i+j] ){ go = 1; break; }
    }
    if( !go && i>0 && i+g.perLine<nByte ) continue;
    fprintf(stdout, zOfstFmt, i+printOfst);
    for(j=0; j<g.perLine; j++){
      if( i+j>nByte ){
        fprintf(stdout, "   ");
      }else{
        fprintf(stdout,"%02x ", aData[i+j]);
      }
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
  }
  return aData;
}

/*
** Print an entire page of content as hex
*/
static void print_page(int iPg){
  int iStart;
  unsigned char *aData;
  iStart = (iPg-1)*g.pagesize;
  fprintf(stdout, "Page %d:   (offsets 0x%x..0x%x)\n",
          iPg, iStart, iStart+g.pagesize-1);
  aData = print_byte_range(iStart, g.pagesize, 0);
  sqlite3_free(aData);
}


/* Print a line of decode output showing a 4-byte integer.
*/
static void print_decode_line(
  unsigned char *aData,      /* Content being decoded */
  int ofst, int nByte,       /* Start and size of decode */
  const char *zMsg           /* Message to append */
){
  int i, j;
  int val = aData[ofst];
  char zBuf[100];
  sprintf(zBuf, " %03x: %02x", ofst, aData[ofst]);
  i = (int)strlen(zBuf);
  for(j=1; j<4; j++){
    if( j>=nByte ){
      sprintf(&zBuf[i], "   ");
    }else{
      sprintf(&zBuf[i], " %02x", aData[ofst+j]);
      val = val*256 + aData[ofst+j];
    }
    i += (int)strlen(&zBuf[i]);
  }
  sprintf(&zBuf[i], "   %9d", val);
  printf("%s  %s\n", zBuf, zMsg);
}

/*
** Decode the database header.
*/
static void print_db_header(void){







|
|

|
|






|







|












|







233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
  }
  return aData;
}

/*
** Print an entire page of content as hex
*/
static void print_page(u32 iPg){
  i64 iStart;
  unsigned char *aData;
  iStart = ((i64)(iPg-1))*g.pagesize;
  fprintf(stdout, "Page %u:   (offsets 0x%llx..0x%llx)\n",
          iPg, iStart, iStart+g.pagesize-1);
  aData = print_byte_range(iStart, g.pagesize, 0);
  sqlite3_free(aData);
}


/* Print a line of decoded output showing a 4-byte unsigned integer.
*/
static void print_decode_line(
  unsigned char *aData,      /* Content being decoded */
  int ofst, int nByte,       /* Start and size of decode */
  const char *zMsg           /* Message to append */
){
  int i, j;
  u32 val = aData[ofst];
  char zBuf[100];
  sprintf(zBuf, " %03x: %02x", ofst, aData[ofst]);
  i = (int)strlen(zBuf);
  for(j=1; j<4; j++){
    if( j>=nByte ){
      sprintf(&zBuf[i], "   ");
    }else{
      sprintf(&zBuf[i], " %02x", aData[ofst+j]);
      val = val*256 + aData[ofst+j];
    }
    i += (int)strlen(&zBuf[i]);
  }
  sprintf(&zBuf[i], "   %10u", val);
  printf("%s  %s\n", zBuf, zMsg);
}

/*
** Decode the database header.
*/
static void print_db_header(void){
292
293
294
295
296
297
298

299
300
301
302
303
304
305
  print_decode_line(aData, 72, 4, "meta[8]");
  print_decode_line(aData, 76, 4, "meta[9]");
  print_decode_line(aData, 80, 4, "meta[10]");
  print_decode_line(aData, 84, 4, "meta[11]");
  print_decode_line(aData, 88, 4, "meta[12]");
  print_decode_line(aData, 92, 4, "Change counter for version number");
  print_decode_line(aData, 96, 4, "SQLite version number");

}

/*
** Describe cell content.
*/
static i64 describeContent(
  unsigned char *a,       /* Cell content */







>







299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
  print_decode_line(aData, 72, 4, "meta[8]");
  print_decode_line(aData, 76, 4, "meta[9]");
  print_decode_line(aData, 80, 4, "meta[10]");
  print_decode_line(aData, 84, 4, "meta[11]");
  print_decode_line(aData, 88, 4, "meta[12]");
  print_decode_line(aData, 92, 4, "Change counter for version number");
  print_decode_line(aData, 96, 4, "SQLite version number");
  sqlite3_free(aData);
}

/*
** Describe cell content.
*/
static i64 describeContent(
  unsigned char *a,       /* Cell content */
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
  unsigned char *a,       /* Cell content */
  int showCellContent,    /* Show cell content if true */
  char **pzDesc           /* Store description here */
){
  int i;
  i64 nDesc = 0;
  int n = 0;
  int leftChild;
  i64 nPayload;
  i64 rowid;
  i64 nLocal;
  static char zDesc[1000];
  i = 0;
  if( cType<=5 ){
    leftChild = ((a[0]*256 + a[1])*256 + a[2])*256 + a[3];
    a += 4;
    n += 4;
    sprintf(zDesc, "lx: %d ", leftChild);
    nDesc = strlen(zDesc);
  }
  if( cType!=5 ){
    i = decodeVarint(a, &nPayload);
    a += i;
    n += i;
    sprintf(&zDesc[nDesc], "n: %lld ", nPayload);
    nDesc += strlen(&zDesc[nDesc]);
    nLocal = localPayload(nPayload, cType);
  }else{
    nPayload = nLocal = 0;
  }
  if( cType==5 || cType==13 ){
    i = decodeVarint(a, &rowid);
    a += i;
    n += i;
    sprintf(&zDesc[nDesc], "r: %lld ", rowid);
    nDesc += strlen(&zDesc[nDesc]);
  }
  if( nLocal<nPayload ){
    int ovfl;
    unsigned char *b = &a[nLocal];
    ovfl = ((b[0]*256 + b[1])*256 + b[2])*256 + b[3];
    sprintf(&zDesc[nDesc], "ov: %d ", ovfl);
    nDesc += strlen(&zDesc[nDesc]);
    n += 4;
  }
  if( showCellContent && cType!=5 ){
    nDesc += describeContent(a, nLocal, &zDesc[nDesc-1]);
  }
  *pzDesc = zDesc;







|









|




















|


|







412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
  unsigned char *a,       /* Cell content */
  int showCellContent,    /* Show cell content if true */
  char **pzDesc           /* Store description here */
){
  int i;
  i64 nDesc = 0;
  int n = 0;
  u32 leftChild;
  i64 nPayload;
  i64 rowid;
  i64 nLocal;
  static char zDesc[1000];
  i = 0;
  if( cType<=5 ){
    leftChild = ((a[0]*256 + a[1])*256 + a[2])*256 + a[3];
    a += 4;
    n += 4;
    sprintf(zDesc, "lx: %u ", leftChild);
    nDesc = strlen(zDesc);
  }
  if( cType!=5 ){
    i = decodeVarint(a, &nPayload);
    a += i;
    n += i;
    sprintf(&zDesc[nDesc], "n: %lld ", nPayload);
    nDesc += strlen(&zDesc[nDesc]);
    nLocal = localPayload(nPayload, cType);
  }else{
    nPayload = nLocal = 0;
  }
  if( cType==5 || cType==13 ){
    i = decodeVarint(a, &rowid);
    a += i;
    n += i;
    sprintf(&zDesc[nDesc], "r: %lld ", rowid);
    nDesc += strlen(&zDesc[nDesc]);
  }
  if( nLocal<nPayload ){
    u32 ovfl;
    unsigned char *b = &a[nLocal];
    ovfl = ((b[0]*256 + b[1])*256 + b[2])*256 + b[3];
    sprintf(&zDesc[nDesc], "ov: %u ", ovfl);
    nDesc += strlen(&zDesc[nDesc]);
    n += 4;
  }
  if( showCellContent && cType!=5 ){
    nDesc += describeContent(a, nLocal, &zDesc[nDesc-1]);
  }
  *pzDesc = zDesc;
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
  unsigned char *a,       /* Page content (without the page-1 header) */
  unsigned pgno,          /* Page number */
  int iCell,              /* Cell index */
  int szPgHdr,            /* Size of the page header.  0 or 100 */
  int ofst                /* Cell begins at a[ofst] */
){
  int i, j = 0;
  int leftChild;
  i64 k;
  i64 nPayload;
  i64 rowid;
  i64 nHdr;
  i64 iType;
  i64 nLocal;
  unsigned char *x = a + ofst;
  unsigned char *end;
  unsigned char cType = a[0];
  int nCol = 0;
  int szCol[2000];
  int ofstCol[2000];
  int typeCol[2000];

  printf("Cell[%d]:\n", iCell);
  if( cType<=5 ){
    leftChild = ((x[0]*256 + x[1])*256 + x[2])*256 + x[3];
    printBytes(a, x, 4);
    printf("left child page:: %d\n", leftChild);
    x += 4;
  }
  if( cType!=5 ){
    i = decodeVarint(x, &nPayload);
    printBytes(a, x, i);
    nLocal = localPayload(nPayload, cType);
    if( nLocal==nPayload ){







|


















|







489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
  unsigned char *a,       /* Page content (without the page-1 header) */
  unsigned pgno,          /* Page number */
  int iCell,              /* Cell index */
  int szPgHdr,            /* Size of the page header.  0 or 100 */
  int ofst                /* Cell begins at a[ofst] */
){
  int i, j = 0;
  u32 leftChild;
  i64 k;
  i64 nPayload;
  i64 rowid;
  i64 nHdr;
  i64 iType;
  i64 nLocal;
  unsigned char *x = a + ofst;
  unsigned char *end;
  unsigned char cType = a[0];
  int nCol = 0;
  int szCol[2000];
  int ofstCol[2000];
  int typeCol[2000];

  printf("Cell[%d]:\n", iCell);
  if( cType<=5 ){
    leftChild = ((x[0]*256 + x[1])*256 + x[2])*256 + x[3];
    printBytes(a, x, 4);
    printf("left child page:: %u\n", leftChild);
    x += 4;
  }
  if( cType!=5 ){
    i = decodeVarint(x, &nPayload);
    printBytes(a, x, i);
    nLocal = localPayload(nPayload, cType);
    if( nLocal==nPayload ){
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
  }
  if( j<nLocal ){
    printBytes(a, x+j, 0);
    printf("... %lld bytes of content ...\n", nLocal-j);
  }
  if( nLocal<nPayload ){
    printBytes(a, x+nLocal, 4);
    printf("overflow-page: %d\n", decodeInt32(x+nLocal));
  }
}


/*
** Decode a btree page
*/







|







626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
  }
  if( j<nLocal ){
    printBytes(a, x+j, 0);
    printf("... %lld bytes of content ...\n", nLocal-j);
  }
  if( nLocal<nPayload ){
    printBytes(a, x+nLocal, 4);
    printf("overflow-page: %u\n", decodeInt32(x+nLocal));
  }
}


/*
** Decode a btree page
*/
725
726
727
728
729
730
731
732
733
734
735
736

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
  }
}

/*
** Decode a freelist trunk page.
*/
static void decode_trunk_page(
  int pgno,             /* The page number */
  int detail,           /* Show leaf pages if true */
  int recursive         /* Follow the trunk change if true */
){
  int n, i;

  unsigned char *a;
  while( pgno>0 ){
    a = fileRead((pgno-1)*g.pagesize, g.pagesize);
    printf("Decode of freelist trunk page %d:\n", pgno);
    print_decode_line(a, 0, 4, "Next freelist trunk page");
    print_decode_line(a, 4, 4, "Number of entries on this page");
    if( detail ){
      n = (int)decodeInt32(&a[4]);
      for(i=0; i<n; i++){
        unsigned int x = decodeInt32(&a[8+4*i]);
        char zIdx[10];
        sprintf(zIdx, "[%d]", i);
        printf("  %5s %7u", zIdx, x);
        if( i%5==4 ) printf("\n");
      }
      if( i%5!=0 ) printf("\n");
    }
    if( !recursive ){
      pgno = 0;
    }else{
      pgno = (int)decodeInt32(&a[0]);
    }
    sqlite3_free(a);
  }
}

/*
** A short text comment on the use of each page.
*/
static char **zPageUse;

/*
** Add a comment on the use of a page.
*/
static void page_usage_msg(int pgno, const char *zFormat, ...){
  va_list ap;
  char *zMsg;

  va_start(ap, zFormat);
  zMsg = sqlite3_vmprintf(zFormat, ap);
  va_end(ap);
  if( pgno<=0 || pgno>g.mxPage ){
    printf("ERROR: page %d out of range 1..%d: %s\n",
            pgno, g.mxPage, zMsg);
    sqlite3_free(zMsg);
    return;
  }
  if( zPageUse[pgno]!=0 ){
    printf("ERROR: page %d used multiple times:\n", pgno);
    printf("ERROR:    previous: %s\n", zPageUse[pgno]);
    printf("ERROR:    current:  %s\n", zMsg);
    sqlite3_free(zPageUse[pgno]);
  }
  zPageUse[pgno] = zMsg;
}

/*
** Find overflow pages of a cell and describe their usage.
*/
static void page_usage_cell(
  unsigned char cType,    /* Page type */
  unsigned char *a,       /* Cell content */
  int pgno,               /* page containing the cell */
  int cellno              /* Index of the cell on the page */
){
  int i;
  int n = 0;
  i64 nPayload;
  i64 rowid;
  i64 nLocal;







|



|
>







|
|
|










|













|







|



















|







733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
  }
}

/*
** Decode a freelist trunk page.
*/
static void decode_trunk_page(
  u32 pgno,             /* The page number */
  int detail,           /* Show leaf pages if true */
  int recursive         /* Follow the trunk change if true */
){
  u32 i;
  u32 n;
  unsigned char *a;
  while( pgno>0 ){
    a = fileRead((pgno-1)*g.pagesize, g.pagesize);
    printf("Decode of freelist trunk page %d:\n", pgno);
    print_decode_line(a, 0, 4, "Next freelist trunk page");
    print_decode_line(a, 4, 4, "Number of entries on this page");
    if( detail ){
      n = decodeInt32(&a[4]);
      for(i=0; i<n && i<g.pagesize/4; i++){
        u32 x = decodeInt32(&a[8+4*i]);
        char zIdx[10];
        sprintf(zIdx, "[%d]", i);
        printf("  %5s %7u", zIdx, x);
        if( i%5==4 ) printf("\n");
      }
      if( i%5!=0 ) printf("\n");
    }
    if( !recursive ){
      pgno = 0;
    }else{
      pgno = decodeInt32(&a[0]);
    }
    sqlite3_free(a);
  }
}

/*
** A short text comment on the use of each page.
*/
static char **zPageUse;

/*
** Add a comment on the use of a page.
*/
static void page_usage_msg(u32 pgno, const char *zFormat, ...){
  va_list ap;
  char *zMsg;

  va_start(ap, zFormat);
  zMsg = sqlite3_vmprintf(zFormat, ap);
  va_end(ap);
  if( pgno<=0 || pgno>g.mxPage ){
    printf("ERROR: page %d out of range 1..%u: %s\n",
            pgno, g.mxPage, zMsg);
    sqlite3_free(zMsg);
    return;
  }
  if( zPageUse[pgno]!=0 ){
    printf("ERROR: page %d used multiple times:\n", pgno);
    printf("ERROR:    previous: %s\n", zPageUse[pgno]);
    printf("ERROR:    current:  %s\n", zMsg);
    sqlite3_free(zPageUse[pgno]);
  }
  zPageUse[pgno] = zMsg;
}

/*
** Find overflow pages of a cell and describe their usage.
*/
static void page_usage_cell(
  unsigned char cType,    /* Page type */
  unsigned char *a,       /* Cell content */
  u32 pgno,               /* page containing the cell */
  int cellno              /* Index of the cell on the page */
){
  int i;
  int n = 0;
  i64 nPayload;
  i64 rowid;
  i64 nLocal;
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
  }
  if( cType==5 || cType==13 ){
    i = decodeVarint(a, &rowid);
    a += i;
    n += i;
  }
  if( nLocal<nPayload ){
    int ovfl = decodeInt32(a+nLocal);
    int cnt = 0;
    while( ovfl && (cnt++)<g.mxPage ){
      page_usage_msg(ovfl, "overflow %d from cell %d of page %d",
                     cnt, cellno, pgno);
      a = fileRead((ovfl-1)*(sqlite3_int64)g.pagesize, 4);
      ovfl = decodeInt32(a);
      sqlite3_free(a);
    }
  }
}







|
|

|







828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
  }
  if( cType==5 || cType==13 ){
    i = decodeVarint(a, &rowid);
    a += i;
    n += i;
  }
  if( nLocal<nPayload ){
    u32 ovfl = decodeInt32(a+nLocal);
    u32 cnt = 0;
    while( ovfl && (cnt++)<g.mxPage ){
      page_usage_msg(ovfl, "overflow %d from cell %d of page %u",
                     cnt, cellno, pgno);
      a = fileRead((ovfl-1)*(sqlite3_int64)g.pagesize, 4);
      ovfl = decodeInt32(a);
      sqlite3_free(a);
    }
  }
}
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
/*
** Describe the usages of a b-tree page.
**
** If parent==0, then this is the root of a btree.  If parent<0 then
** this is an orphan page.
*/
static void page_usage_btree(
  int pgno,             /* Page to describe */
  int parent,           /* Parent of this page.  0 for root pages */
  int idx,              /* Which child of the parent */
  const char *zName     /* Name of the table */
){
  unsigned char *a;
  const char *zType = "corrupt node";
  int nCell;
  int i;







|
|







856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/*
** Describe the usages of a b-tree page.
**
** If parent==0, then this is the root of a btree.  If parent<0 then
** this is an orphan page.
*/
static void page_usage_btree(
  u32 pgno,             /* Page to describe */
  u32 parent,           /* Parent of this page.  0 for root pages */
  int idx,              /* Which child of the parent */
  const char *zName     /* Name of the table */
){
  unsigned char *a;
  const char *zType = "corrupt node";
  int nCell;
  int i;
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
  }else if( parent==0 ){
    page_usage_msg(pgno, "root %s [%s], %s", zType, zName, zEntry);
  }else{
    page_usage_msg(pgno, "orphaned %s, %s", zType, zEntry);
  }
  if( a[hdr]==2 || a[hdr]==5 ){
    int cellstart = hdr+12;
    unsigned int child;
    for(i=0; i<nCell; i++){
      int ofst;

      ofst = cellstart + i*2;
      ofst = a[ofst]*256 + a[ofst+1];
      child = decodeInt32(a+ofst);
      page_usage_btree(child, pgno, i, zName);
    }
    child = decodeInt32(a+cellstart-4);







|

|







906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
  }else if( parent==0 ){
    page_usage_msg(pgno, "root %s [%s], %s", zType, zName, zEntry);
  }else{
    page_usage_msg(pgno, "orphaned %s, %s", zType, zEntry);
  }
  if( a[hdr]==2 || a[hdr]==5 ){
    int cellstart = hdr+12;
    u32 child;
    for(i=0; i<nCell; i++){
      u32 ofst;

      ofst = cellstart + i*2;
      ofst = a[ofst]*256 + a[ofst+1];
      child = decodeInt32(a+ofst);
      page_usage_btree(child, pgno, i, zName);
    }
    child = decodeInt32(a+cellstart-4);
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
  }
  sqlite3_free(a);
}

/*
** Determine page usage by the freelist
*/
static void page_usage_freelist(int pgno){
  unsigned char *a;
  int cnt = 0;
  int i;
  int n;
  int iNext;
  int parent = 1;








|







933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
  }
  sqlite3_free(a);
}

/*
** Determine page usage by the freelist
*/
static void page_usage_freelist(u32 pgno){
  unsigned char *a;
  int cnt = 0;
  int i;
  int n;
  int iNext;
  int parent = 1;

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
    pgno = iNext;
  }
}

/*
** Determine pages used as PTRMAP pages
*/
static void page_usage_ptrmap(unsigned char *a){
  if( decodeInt32(a+52) ){
    int usable = g.pagesize - a[20];
    int pgno = 2;
    int perPage = usable/5;
    while( pgno<=g.mxPage ){
      page_usage_msg(pgno, "PTRMAP page covering %d..%d",
                           pgno+1, pgno+perPage);
      pgno += perPage + 1;
    }
  }
}

/*
** Try to figure out how every page in the database file is being used.
*/
static void page_usage_report(const char *zPrg, const char *zDbName){
  int i, j;
  int rc;
  sqlite3 *db;
  sqlite3_stmt *pStmt;
  unsigned char *a;
  char zQuery[200];

  /* Avoid the pathological case */
  if( g.mxPage<1 ){
    printf("empty database\n");
    return;
  }

  /* Open the database file */
  db = openDatabase(zPrg, zDbName);

  /* Set up global variables zPageUse[] and g.mxPage to record page
  ** usages */
  zPageUse = sqlite3_malloc( sizeof(zPageUse[0])*(g.mxPage+1) );
  if( zPageUse==0 ) out_of_memory();
  memset(zPageUse, 0, sizeof(zPageUse[0])*(g.mxPage+1));

  /* Discover the usage of each page */
  a = fileRead(0, 100);
  page_usage_freelist(decodeInt32(a+32));
  page_usage_ptrmap(a);
  sqlite3_free(a);
  page_usage_btree(1, 0, 0, "sqlite_schema");
  sqlite3_exec(db, "PRAGMA writable_schema=ON", 0, 0, 0);
  for(j=0; j<2; j++){
    sqlite3_snprintf(sizeof(zQuery), zQuery,
             "SELECT type, name, rootpage FROM SQLITE_MASTER WHERE rootpage"
             " ORDER BY rowid %s", j?"DESC":"");
    rc = sqlite3_prepare_v2(db, zQuery, -1, &pStmt, 0);
    if( rc==SQLITE_OK ){
      while( sqlite3_step(pStmt)==SQLITE_ROW ){
        int pgno = sqlite3_column_int(pStmt, 2);
        page_usage_btree(pgno, 0, 0, (const char*)sqlite3_column_text(pStmt,1));
      }
    }else{
      printf("ERROR: cannot query database: %s\n", sqlite3_errmsg(db));
    }
    rc = sqlite3_finalize(pStmt);
    if( rc==SQLITE_OK ) break;
  }
  sqlite3_close(db);

  /* Print the report and free memory used */
  for(i=1; i<=g.mxPage; i++){
    if( zPageUse[i]==0 ) page_usage_btree(i, -1, 0, 0);
    printf("%5d: %s\n", i, zPageUse[i] ? zPageUse[i] : "???");
    sqlite3_free(zPageUse[i]);
  }
  sqlite3_free(zPageUse);
  zPageUse = 0;
}

/*
** Try to figure out how every page in the database file is being used.
*/
static void ptrmap_coverage_report(const char *zDbName){
  int pgno;
  unsigned char *aHdr;
  unsigned char *a;
  int usable;
  int perPage;
  int i;

  /* Avoid the pathological case */







|


|


|










|

















|

















|













|










|







960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
    pgno = iNext;
  }
}

/*
** Determine pages used as PTRMAP pages
*/
static void page_usage_ptrmap(u8 *a){
  if( decodeInt32(a+52) ){
    int usable = g.pagesize - a[20];
    u64 pgno = 2;
    int perPage = usable/5;
    while( pgno<=g.mxPage ){
      page_usage_msg((u32)pgno, "PTRMAP page covering %llu..%llu",
                           pgno+1, pgno+perPage);
      pgno += perPage + 1;
    }
  }
}

/*
** Try to figure out how every page in the database file is being used.
*/
static void page_usage_report(const char *zPrg, const char *zDbName){
  u32 i, j;
  int rc;
  sqlite3 *db;
  sqlite3_stmt *pStmt;
  unsigned char *a;
  char zQuery[200];

  /* Avoid the pathological case */
  if( g.mxPage<1 ){
    printf("empty database\n");
    return;
  }

  /* Open the database file */
  db = openDatabase(zPrg, zDbName);

  /* Set up global variables zPageUse[] and g.mxPage to record page
  ** usages */
  zPageUse = sqlite3_malloc64( sizeof(zPageUse[0])*(g.mxPage+1) );
  if( zPageUse==0 ) out_of_memory();
  memset(zPageUse, 0, sizeof(zPageUse[0])*(g.mxPage+1));

  /* Discover the usage of each page */
  a = fileRead(0, 100);
  page_usage_freelist(decodeInt32(a+32));
  page_usage_ptrmap(a);
  sqlite3_free(a);
  page_usage_btree(1, 0, 0, "sqlite_schema");
  sqlite3_exec(db, "PRAGMA writable_schema=ON", 0, 0, 0);
  for(j=0; j<2; j++){
    sqlite3_snprintf(sizeof(zQuery), zQuery,
             "SELECT type, name, rootpage FROM SQLITE_MASTER WHERE rootpage"
             " ORDER BY rowid %s", j?"DESC":"");
    rc = sqlite3_prepare_v2(db, zQuery, -1, &pStmt, 0);
    if( rc==SQLITE_OK ){
      while( sqlite3_step(pStmt)==SQLITE_ROW ){
        u32 pgno = (u32)sqlite3_column_int64(pStmt, 2);
        page_usage_btree(pgno, 0, 0, (const char*)sqlite3_column_text(pStmt,1));
      }
    }else{
      printf("ERROR: cannot query database: %s\n", sqlite3_errmsg(db));
    }
    rc = sqlite3_finalize(pStmt);
    if( rc==SQLITE_OK ) break;
  }
  sqlite3_close(db);

  /* Print the report and free memory used */
  for(i=1; i<=g.mxPage; i++){
    if( zPageUse[i]==0 ) page_usage_btree(i, -1, 0, 0);
    printf("%5u: %s\n", i, zPageUse[i] ? zPageUse[i] : "???");
    sqlite3_free(zPageUse[i]);
  }
  sqlite3_free(zPageUse);
  zPageUse = 0;
}

/*
** Try to figure out how every page in the database file is being used.
*/
static void ptrmap_coverage_report(const char *zDbName){
  u64 pgno;
  unsigned char *aHdr;
  unsigned char *a;
  int usable;
  int perPage;
  int i;

  /* Avoid the pathological case */
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
    return;
  }
  usable = g.pagesize - aHdr[20];
  perPage = usable/5;
  sqlite3_free(aHdr);
  printf("%5d: root of sqlite_schema\n", 1);
  for(pgno=2; pgno<=g.mxPage; pgno += perPage+1){
    printf("%5d: PTRMAP page covering %d..%d\n", pgno,
           pgno+1, pgno+perPage);
    a = fileRead((pgno-1)*g.pagesize, usable);
    for(i=0; i+5<=usable && pgno+1+i/5<=g.mxPage; i+=5){
      const char *zType = "???";
      unsigned int iFrom = decodeInt32(&a[i+1]);
      switch( a[i] ){
        case 1:  zType = "b-tree root page";        break;
        case 2:  zType = "freelist page";           break;
        case 3:  zType = "first page of overflow";  break;
        case 4:  zType = "later page of overflow";  break;
        case 5:  zType = "b-tree non-root page";    break;
      }
      printf("%5d: %s, parent=%u\n", pgno+1+i/5, zType, iFrom);
    }
    sqlite3_free(a);
  }
}

/*
** Print a usage comment







|




|







|







1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
    return;
  }
  usable = g.pagesize - aHdr[20];
  perPage = usable/5;
  sqlite3_free(aHdr);
  printf("%5d: root of sqlite_schema\n", 1);
  for(pgno=2; pgno<=g.mxPage; pgno += perPage+1){
    printf("%5llu: PTRMAP page covering %llu..%llu\n", pgno,
           pgno+1, pgno+perPage);
    a = fileRead((pgno-1)*g.pagesize, usable);
    for(i=0; i+5<=usable && pgno+1+i/5<=g.mxPage; i+=5){
      const char *zType = "???";
      u32 iFrom = decodeInt32(&a[i+1]);
      switch( a[i] ){
        case 1:  zType = "b-tree root page";        break;
        case 2:  zType = "freelist page";           break;
        case 3:  zType = "first page of overflow";  break;
        case 4:  zType = "later page of overflow";  break;
        case 5:  zType = "b-tree non-root page";    break;
      }
      printf("%5llu: %s, parent=%u\n", pgno+1+i/5, zType, iFrom);
    }
    sqlite3_free(a);
  }
}

/*
** Print a usage comment
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151

  zPgSz = fileRead(16, 2);
  g.pagesize = zPgSz[0]*256 + zPgSz[1]*65536;
  if( g.pagesize==0 ) g.pagesize = 1024;
  sqlite3_free(zPgSz);

  printf("Pagesize: %d\n", g.pagesize);
  g.mxPage = (int)((szFile+g.pagesize-1)/g.pagesize);

  printf("Available pages: 1..%d\n", g.mxPage);
  if( nArg==2 ){
    int i;
    for(i=1; i<=g.mxPage; i++) print_page(i);
  }else{
    int i;
    for(i=2; i<nArg; i++){
      int iStart, iEnd;
      char *zLeft;
      if( strcmp(azArg[i], "dbheader")==0 ){
        print_db_header();
        continue;
      }
      if( strcmp(azArg[i], "pgidx")==0 ){
        page_usage_report(zPrg, azArg[1]);







|

|

|




|







1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

  zPgSz = fileRead(16, 2);
  g.pagesize = zPgSz[0]*256 + zPgSz[1]*65536;
  if( g.pagesize==0 ) g.pagesize = 1024;
  sqlite3_free(zPgSz);

  printf("Pagesize: %d\n", g.pagesize);
  g.mxPage = (u32)((szFile+g.pagesize-1)/g.pagesize);

  printf("Available pages: 1..%u\n", g.mxPage);
  if( nArg==2 ){
    u32 i;
    for(i=1; i<=g.mxPage; i++) print_page(i);
  }else{
    int i;
    for(i=2; i<nArg; i++){
      u32 iStart, iEnd;
      char *zLeft;
      if( strcmp(azArg[i], "dbheader")==0 ){
        print_db_header();
        continue;
      }
      if( strcmp(azArg[i], "pgidx")==0 ){
        page_usage_report(zPrg, azArg[1]);
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
        usage(zPrg);
        continue;
      }
      if( !ISDIGIT(azArg[i][0]) ){
        fprintf(stderr, "%s: unknown option: [%s]\n", zPrg, azArg[i]);
        continue;
      }
      iStart = strtol(azArg[i], &zLeft, 0);
      if( zLeft && strcmp(zLeft,"..end")==0 ){
        iEnd = g.mxPage;
      }else if( zLeft && zLeft[0]=='.' && zLeft[1]=='.' ){
        iEnd = strtol(&zLeft[2], 0, 0);
      }else if( zLeft && zLeft[0]=='b' ){
        int ofst, nByte, hdrSize;
        unsigned char *a;







|







1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
        usage(zPrg);
        continue;
      }
      if( !ISDIGIT(azArg[i][0]) ){
        fprintf(stderr, "%s: unknown option: [%s]\n", zPrg, azArg[i]);
        continue;
      }
      iStart = strtoul(azArg[i], &zLeft, 0);
      if( zLeft && strcmp(zLeft,"..end")==0 ){
        iEnd = g.mxPage;
      }else if( zLeft && zLeft[0]=='.' && zLeft[1]=='.' ){
        iEnd = strtol(&zLeft[2], 0, 0);
      }else if( zLeft && zLeft[0]=='b' ){
        int ofst, nByte, hdrSize;
        unsigned char *a;