SQLite

Changes On Branch rowvalue
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Changes In Branch rowvalue Excluding Merge-Ins

This is equivalent to a diff from d8451fe8 to 7f2c5c9e

2016-09-07
19:54
Add support for row-value comparisons, including IN operators, and row-value updates in the UPDATE statement. (check-in: ddb5f055 user: drh tags: trunk)
19:37
Fix a problem handling expressions like "(a, b) IN (SELECT ... ORDER BY 1, 2)" when there is an index on "a" but not "b". (Closed-Leaf check-in: 7f2c5c9e user: dan tags: rowvalue)
18:11
Add the ext/misc/memvfs.c extension that implements a VFS for read-only database files contained in memory. (check-in: 12b7782a user: drh tags: trunk)
13:30
Simplify the affinity handling logic in codeAllEqualityTerms(). Logically the same, just a little easier to read and understand. (check-in: bbab9621 user: drh tags: rowvalue)
13:20
Fix the ".read" command in the command-line shell so that it understands that the input is not interactive. (check-in: 7c2c0d1d user: drh tags: branch-3.14)
13:12
Merge fixes from trunk. (check-in: 193f036c user: drh tags: rowvalue)
10:10
Fix the ".read" command in the command-line shell so that it understands that the input is not interactive. (check-in: d8451fe8 user: drh tags: trunk)
01:51
The ORDER BY LIMIT optimization is not valid unless the inner-most IN operator loop is actually used by the query plan. Fix for ticket [0c4df46116e90f92]. (check-in: 820644b8 user: drh tags: trunk)

Changes to src/expr.c.

9
10
11
12
13
14
15












16
17
18
19
20
21
22
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
*/
#include "sqliteInt.h"













/*
** Return the 'affinity' of the expression pExpr if any.
**
** If pExpr is a column, a reference to a column via an 'AS' alias,
** or a sub-select with a column as the return value, then the 
** affinity of that column is returned. Otherwise, 0x00 is returned,







>
>
>
>
>
>
>
>
>
>
>
>







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
*/
#include "sqliteInt.h"

/* Forward declarations */
static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);

/*
** Return the affinity character for a single column of a table.
*/
char sqlite3TableColumnAffinity(Table *pTab, int iCol){
  assert( iCol<pTab->nCol );
  return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
}

/*
** Return the 'affinity' of the expression pExpr if any.
**
** If pExpr is a column, a reference to a column via an 'AS' alias,
** or a sub-select with a column as the return value, then the 
** affinity of that column is returned. Otherwise, 0x00 is returned,
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50

51
52
53
54
55
56

57
58
59
60
61
62
63
  pExpr = sqlite3ExprSkipCollate(pExpr);
  if( pExpr->flags & EP_Generic ) return 0;
  op = pExpr->op;
  if( op==TK_SELECT ){
    assert( pExpr->flags&EP_xIsSelect );
    return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
  }

#ifndef SQLITE_OMIT_CAST
  if( op==TK_CAST ){
    assert( !ExprHasProperty(pExpr, EP_IntValue) );
    return sqlite3AffinityType(pExpr->u.zToken, 0);
  }
#endif
  if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 
   && pExpr->pTab!=0
  ){

    /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
    ** a TK_COLUMN but was previously evaluated and cached in a register */
    int j = pExpr->iColumn;
    if( j<0 ) return SQLITE_AFF_INTEGER;
    assert( pExpr->pTab && j<pExpr->pTab->nCol );
    return pExpr->pTab->aCol[j].affinity;

  }
  return pExpr->affinity;
}

/*
** Set the collating sequence for expression pExpr to be the collating
** sequence named by pToken.   Return a pointer to a new Expr node that







>






|
|
<
>
|
<
|
|
<
|
>







47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64

65
66

67
68
69
70
71
72
73
74
75
  pExpr = sqlite3ExprSkipCollate(pExpr);
  if( pExpr->flags & EP_Generic ) return 0;
  op = pExpr->op;
  if( op==TK_SELECT ){
    assert( pExpr->flags&EP_xIsSelect );
    return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
  }
  if( op==TK_REGISTER ) op = pExpr->op2;
#ifndef SQLITE_OMIT_CAST
  if( op==TK_CAST ){
    assert( !ExprHasProperty(pExpr, EP_IntValue) );
    return sqlite3AffinityType(pExpr->u.zToken, 0);
  }
#endif
  if( op==TK_AGG_COLUMN || op==TK_COLUMN ){
    return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);

  }
  if( op==TK_SELECT_COLUMN ){

    assert( pExpr->pLeft->flags&EP_xIsSelect );
    return sqlite3ExprAffinity(

        pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
    );
  }
  return pExpr->affinity;
}

/*
** Set the collating sequence for expression pExpr to be the collating
** sequence named by pToken.   Return a pointer to a new Expr node that
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
          pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
  assert( pExpr->pLeft );
  aff = sqlite3ExprAffinity(pExpr->pLeft);
  if( pExpr->pRight ){
    aff = sqlite3CompareAffinity(pExpr->pRight, aff);
  }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
    aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
  }else if( !aff ){
    aff = SQLITE_AFF_BLOB;
  }
  return aff;
}

/*
** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.







|







227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
          pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
  assert( pExpr->pLeft );
  aff = sqlite3ExprAffinity(pExpr->pLeft);
  if( pExpr->pRight ){
    aff = sqlite3CompareAffinity(pExpr->pRight, aff);
  }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
    aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
  }else if( NEVER(aff==0) ){
    aff = SQLITE_AFF_BLOB;
  }
  return aff;
}

/*
** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
304
305
306
307
308
309
310








































































































































































































































































311
312
313
314
315
316
317
  p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
  p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
  addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
                           (void*)p4, P4_COLLSEQ);
  sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
  return addr;
}









































































































































































































































































#if SQLITE_MAX_EXPR_DEPTH>0
/*
** Check that argument nHeight is less than or equal to the maximum
** expression depth allowed. If it is not, leave an error message in
** pParse.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
  p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
  p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
  addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
                           (void*)p4, P4_COLLSEQ);
  sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
  return addr;
}

/*
** Return true if expression pExpr is a vector, or false otherwise.
**
** A vector is defined as any expression that results in two or more
** columns of result.  Every TK_VECTOR node is an vector because the
** parser will not generate a TK_VECTOR with fewer than two entries.
** But a TK_SELECT might be either a vector or a scalar. It is only
** considered a vector if it has two or more result columns.
*/
int sqlite3ExprIsVector(Expr *pExpr){
  return sqlite3ExprVectorSize(pExpr)>1;
}

/*
** If the expression passed as the only argument is of type TK_VECTOR 
** return the number of expressions in the vector. Or, if the expression
** is a sub-select, return the number of columns in the sub-select. For
** any other type of expression, return 1.
*/
int sqlite3ExprVectorSize(Expr *pExpr){
  u8 op = pExpr->op;
  if( op==TK_REGISTER ) op = pExpr->op2;
  if( op==TK_VECTOR ){
    return pExpr->x.pList->nExpr;
  }else if( op==TK_SELECT ){
    return pExpr->x.pSelect->pEList->nExpr;
  }else{
    return 1;
  }
}

#ifndef SQLITE_OMIT_SUBQUERY
/*
** Return a pointer to a subexpression of pVector that is the i-th
** column of the vector (numbered starting with 0).  The caller must
** ensure that i is within range.
**
** If pVector is really a scalar (and "scalar" here includes subqueries
** that return a single column!) then return pVector unmodified.
**
** pVector retains ownership of the returned subexpression.
**
** If the vector is a (SELECT ...) then the expression returned is
** just the expression for the i-th term of the result set, and may
** not be ready for evaluation because the table cursor has not yet
** been positioned.
*/
Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
  assert( i<sqlite3ExprVectorSize(pVector) );
  if( sqlite3ExprIsVector(pVector) ){
    assert( pVector->op2==0 || pVector->op==TK_REGISTER );
    if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
      return pVector->x.pSelect->pEList->a[i].pExpr;
    }else{
      return pVector->x.pList->a[i].pExpr;
    }
  }
  return pVector;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) */

#ifndef SQLITE_OMIT_SUBQUERY
/*
** Compute and return a new Expr object which when passed to
** sqlite3ExprCode() will generate all necessary code to compute
** the iField-th column of the vector expression pVector.
**
** It is ok for pVector to be a scalar (as long as iField==0).  
** In that case, this routine works like sqlite3ExprDup().
**
** The caller owns the returned Expr object and is responsible for
** ensuring that the returned value eventually gets freed.
**
** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
** then the returned object will reference pVector and so pVector must remain
** valid for the life of the returned object.  If pVector is a TK_VECTOR
** or a scalar expression, then it can be deleted as soon as this routine
** returns.
**
** A trick to cause a TK_SELECT pVector to be deleted together with
** the returned Expr object is to attach the pVector to the pRight field
** of the returned TK_SELECT_COLUMN Expr object.
*/
Expr *sqlite3ExprForVectorField(
  Parse *pParse,       /* Parsing context */
  Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
  int iField           /* Which column of the vector to return */
){
  Expr *pRet;
  if( pVector->op==TK_SELECT ){
    assert( pVector->flags & EP_xIsSelect );
    /* The TK_SELECT_COLUMN Expr node:
    **
    ** pLeft:           pVector containing TK_SELECT
    ** pRight:          not used.  But recursively deleted.
    ** iColumn:         Index of a column in pVector
    ** pLeft->iTable:   First in an array of register holding result, or 0
    **                  if the result is not yet computed.
    **
    ** sqlite3ExprDelete() specifically skips the recursive delete of
    ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
    ** can be attached to pRight to cause this node to take ownership of
    ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
    ** with the same pLeft pointer to the pVector, but only one of them
    ** will own the pVector.
    */
    pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0, 0);
    if( pRet ){
      pRet->iColumn = iField;
      pRet->pLeft = pVector;
    }
    assert( pRet==0 || pRet->iTable==0 );
  }else{
    if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
    pRet = sqlite3ExprDup(pParse->db, pVector, 0);
  }
  return pRet;
}
#endif /* !define(SQLITE_OMIT_SUBQUERY) */

/*
** If expression pExpr is of type TK_SELECT, generate code to evaluate
** it. Return the register in which the result is stored (or, if the 
** sub-select returns more than one column, the first in an array
** of registers in which the result is stored).
**
** If pExpr is not a TK_SELECT expression, return 0.
*/
static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
  int reg = 0;
#ifndef SQLITE_OMIT_SUBQUERY
  if( pExpr->op==TK_SELECT ){
    reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
  }
#endif
  return reg;
}

/*
** Argument pVector points to a vector expression - either a TK_VECTOR
** or TK_SELECT that returns more than one column. This function returns
** the register number of a register that contains the value of
** element iField of the vector.
**
** If pVector is a TK_SELECT expression, then code for it must have 
** already been generated using the exprCodeSubselect() routine. In this
** case parameter regSelect should be the first in an array of registers
** containing the results of the sub-select. 
**
** If pVector is of type TK_VECTOR, then code for the requested field
** is generated. In this case (*pRegFree) may be set to the number of
** a temporary register to be freed by the caller before returning.
**
** Before returning, output parameter (*ppExpr) is set to point to the
** Expr object corresponding to element iElem of the vector.
*/
static int exprVectorRegister(
  Parse *pParse,                  /* Parse context */
  Expr *pVector,                  /* Vector to extract element from */
  int iField,                     /* Field to extract from pVector */
  int regSelect,                  /* First in array of registers */
  Expr **ppExpr,                  /* OUT: Expression element */
  int *pRegFree                   /* OUT: Temp register to free */
){
  u8 op = pVector->op;
  assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
  if( op==TK_REGISTER ){
    *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
    return pVector->iTable+iField;
  }
  if( op==TK_SELECT ){
    *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
     return regSelect+iField;
  }
  *ppExpr = pVector->x.pList->a[iField].pExpr;
  return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
}

/*
** Expression pExpr is a comparison between two vector values. Compute
** the result of the comparison (1, 0, or NULL) and write that
** result into register dest.
**
** The caller must satisfy the following preconditions:
**
**    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
**    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
**    otherwise:                op==pExpr->op and p5==0
*/
static void codeVectorCompare(
  Parse *pParse,        /* Code generator context */
  Expr *pExpr,          /* The comparison operation */
  int dest,             /* Write results into this register */
  u8 op,                /* Comparison operator */
  u8 p5                 /* SQLITE_NULLEQ or zero */
){
  Vdbe *v = pParse->pVdbe;
  Expr *pLeft = pExpr->pLeft;
  Expr *pRight = pExpr->pRight;
  int nLeft = sqlite3ExprVectorSize(pLeft);
  int i;
  int regLeft = 0;
  int regRight = 0;
  u8 opx = op;
  int addrDone = sqlite3VdbeMakeLabel(v);

  assert( nLeft==sqlite3ExprVectorSize(pRight) );
  assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 
       || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 
       || pExpr->op==TK_LT || pExpr->op==TK_GT 
       || pExpr->op==TK_LE || pExpr->op==TK_GE 
  );
  assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
            || (pExpr->op==TK_ISNOT && op==TK_NE) );
  assert( p5==0 || pExpr->op!=op );
  assert( p5==SQLITE_NULLEQ || pExpr->op==op );

  p5 |= SQLITE_STOREP2;
  if( opx==TK_LE ) opx = TK_LT;
  if( opx==TK_GE ) opx = TK_GT;

  regLeft = exprCodeSubselect(pParse, pLeft);
  regRight = exprCodeSubselect(pParse, pRight);

  for(i=0; 1 /*Loop exits by "break"*/; i++){
    int regFree1 = 0, regFree2 = 0;
    Expr *pL, *pR; 
    int r1, r2;
    assert( i>=0 && i<nLeft );
    if( i>0 ) sqlite3ExprCachePush(pParse);
    r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
    r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
    codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
    testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
    testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
    testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
    testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
    testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
    testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
    sqlite3ReleaseTempReg(pParse, regFree1);
    sqlite3ReleaseTempReg(pParse, regFree2);
    if( i>0 ) sqlite3ExprCachePop(pParse);
    if( i==nLeft-1 ){
      break;
    }
    if( opx==TK_EQ ){
      sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
      p5 |= SQLITE_KEEPNULL;
    }else if( opx==TK_NE ){
      sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
      p5 |= SQLITE_KEEPNULL;
    }else{
      assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
      sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
      VdbeCoverageIf(v, op==TK_LT);
      VdbeCoverageIf(v, op==TK_GT);
      VdbeCoverageIf(v, op==TK_LE);
      VdbeCoverageIf(v, op==TK_GE);
      if( i==nLeft-2 ) opx = op;
    }
  }
  sqlite3VdbeResolveLabel(v, addrDone);
}

#if SQLITE_MAX_EXPR_DEPTH>0
/*
** Check that argument nHeight is less than or equal to the maximum
** expression depth allowed. If it is not, leave an error message in
** pParse.
*/
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
  assert( p!=0 );
  /* Sanity check: Assert that the IntValue is non-negative if it exists */
  assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
  if( !ExprHasProperty(p, EP_TokenOnly) ){
    /* The Expr.x union is never used at the same time as Expr.pRight */
    assert( p->x.pList==0 || p->pRight==0 );
    sqlite3ExprDelete(db, p->pLeft);
    sqlite3ExprDelete(db, p->pRight);
    if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
    if( ExprHasProperty(p, EP_xIsSelect) ){
      sqlite3SelectDelete(db, p->x.pSelect);
    }else{
      sqlite3ExprListDelete(db, p->x.pList);
    }







|







1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
  assert( p!=0 );
  /* Sanity check: Assert that the IntValue is non-negative if it exists */
  assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
  if( !ExprHasProperty(p, EP_TokenOnly) ){
    /* The Expr.x union is never used at the same time as Expr.pRight */
    assert( p->x.pList==0 || p->pRight==0 );
    if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
    sqlite3ExprDelete(db, p->pRight);
    if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
    if( ExprHasProperty(p, EP_xIsSelect) ){
      sqlite3SelectDelete(db, p->x.pSelect);
    }else{
      sqlite3ExprListDelete(db, p->x.pList);
    }
947
948
949
950
951
952
953



954

955
956
957
958
959
960
961
                       exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
      }
      if( pzBuffer ){
        *pzBuffer = zAlloc;
      }
    }else{
      if( !ExprHasProperty(p, EP_TokenOnly) ){



        pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);

        pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
      }
    }
  }
  return pNew;
}








>
>
>
|
>







1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
                       exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
      }
      if( pzBuffer ){
        *pzBuffer = zAlloc;
      }
    }else{
      if( !ExprHasProperty(p, EP_TokenOnly) ){
        if( pNew->op==TK_SELECT_COLUMN ){
          pNew->pLeft = p->pLeft;
        }else{
          pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
        }
        pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
      }
    }
  }
  return pNew;
}

1187
1188
1189
1190
1191
1192
1193






















































1194
1195
1196
1197
1198
1199
1200

no_mem:     
  /* Avoid leaking memory if malloc has failed. */
  sqlite3ExprDelete(db, pExpr);
  sqlite3ExprListDelete(db, pList);
  return 0;
}























































/*
** Set the sort order for the last element on the given ExprList.
*/
void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
  if( p==0 ) return;
  assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534

no_mem:     
  /* Avoid leaking memory if malloc has failed. */
  sqlite3ExprDelete(db, pExpr);
  sqlite3ExprListDelete(db, pList);
  return 0;
}

/*
** pColumns and pExpr form a vector assignment which is part of the SET
** clause of an UPDATE statement.  Like this:
**
**        (a,b,c) = (expr1,expr2,expr3)
** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
**
** For each term of the vector assignment, append new entries to the
** expression list pList.  In the case of a subquery on the LHS, append
** TK_SELECT_COLUMN expressions.
*/
ExprList *sqlite3ExprListAppendVector(
  Parse *pParse,         /* Parsing context */
  ExprList *pList,       /* List to which to append. Might be NULL */
  IdList *pColumns,      /* List of names of LHS of the assignment */
  Expr *pExpr            /* Vector expression to be appended. Might be NULL */
){
  sqlite3 *db = pParse->db;
  int n;
  int i;
  int iFirst = pList ? pList->nExpr : 0;
  /* pColumns can only be NULL due to an OOM but an OOM will cause an
  ** exit prior to this routine being invoked */
  if( NEVER(pColumns==0) ) goto vector_append_error;
  if( pExpr==0 ) goto vector_append_error;
  n = sqlite3ExprVectorSize(pExpr);
  if( pColumns->nId!=n ){
    sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
                    pColumns->nId, n);
    goto vector_append_error;
  }
  for(i=0; i<n; i++){
    Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
    pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
    if( pList ){
      assert( pList->nExpr==iFirst+i+1 );
      pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
      pColumns->a[i].zName = 0;
    }
  }
  if( pExpr->op==TK_SELECT ){
    if( pList && pList->a[iFirst].pExpr ){
      assert( pList->a[iFirst].pExpr->op==TK_SELECT_COLUMN );
      pList->a[iFirst].pExpr->pRight = pExpr;
      pExpr = 0;
    }
  }

vector_append_error:
  sqlite3ExprDelete(db, pExpr);
  sqlite3IdListDelete(db, pColumns);
  return pList;
}

/*
** Set the sort order for the last element on the given ExprList.
*/
void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
  if( p==0 ) return;
  assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1595
1596
1597
1598
1599
1600
1601
1602
1603

1604
1605
1606
1607
1608
1609
1610
** table, then return NULL.
*/
#ifndef SQLITE_OMIT_SUBQUERY
static Select *isCandidateForInOpt(Expr *pX){
  Select *p;
  SrcList *pSrc;
  ExprList *pEList;
  Expr *pRes;
  Table *pTab;

  if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
  if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
  p = pX->x.pSelect;
  if( p->pPrior ) return 0;              /* Not a compound SELECT */
  if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
    testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
    testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );







<

>







1929
1930
1931
1932
1933
1934
1935

1936
1937
1938
1939
1940
1941
1942
1943
1944
** table, then return NULL.
*/
#ifndef SQLITE_OMIT_SUBQUERY
static Select *isCandidateForInOpt(Expr *pX){
  Select *p;
  SrcList *pSrc;
  ExprList *pEList;

  Table *pTab;
  int i;
  if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
  if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
  p = pX->x.pSelect;
  if( p->pPrior ) return 0;              /* Not a compound SELECT */
  if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
    testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
    testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1619
1620
1621
1622
1623
1624
1625


1626
1627
1628
1629

1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642

1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657

1658
1659
1660
1661
1662
1663
1664
  if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
  if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
  pTab = pSrc->a[0].pTab;
  assert( pTab!=0 );
  assert( pTab->pSelect==0 );            /* FROM clause is not a view */
  if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
  pEList = p->pEList;


  if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
  pRes = pEList->a[0].pExpr;
  if( pRes->op!=TK_COLUMN ) return 0;    /* Result is a column */
  assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */

  return p;
}
#endif /* SQLITE_OMIT_SUBQUERY */

/*
** Code an OP_Once instruction and allocate space for its flag. Return the 
** address of the new instruction.
*/
int sqlite3CodeOnce(Parse *pParse){
  Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
  return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
}


/*
** Generate code that checks the left-most column of index table iCur to see if
** it contains any NULL entries.  Cause the register at regHasNull to be set
** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
** to be set to NULL if iCur contains one or more NULL values.
*/
static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
  int addr1;
  sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
  addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
  sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
  sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
  VdbeComment((v, "first_entry_in(%d)", iCur));
  sqlite3VdbeJumpHere(v, addr1);
}



#ifndef SQLITE_OMIT_SUBQUERY
/*
** The argument is an IN operator with a list (not a subquery) on the 
** right-hand side.  Return TRUE if that list is constant.
*/







>
>
|
|
|
|
>













>















>







1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
  if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
  if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
  pTab = pSrc->a[0].pTab;
  assert( pTab!=0 );
  assert( pTab->pSelect==0 );            /* FROM clause is not a view */
  if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
  pEList = p->pEList;
  assert( pEList!=0 );
  /* All SELECT results must be columns. */
  for(i=0; i<pEList->nExpr; i++){
    Expr *pRes = pEList->a[i].pExpr;
    if( pRes->op!=TK_COLUMN ) return 0;
    assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
  }
  return p;
}
#endif /* SQLITE_OMIT_SUBQUERY */

/*
** Code an OP_Once instruction and allocate space for its flag. Return the 
** address of the new instruction.
*/
int sqlite3CodeOnce(Parse *pParse){
  Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
  return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
}

#ifndef SQLITE_OMIT_SUBQUERY
/*
** Generate code that checks the left-most column of index table iCur to see if
** it contains any NULL entries.  Cause the register at regHasNull to be set
** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
** to be set to NULL if iCur contains one or more NULL values.
*/
static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
  int addr1;
  sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
  addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
  sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
  sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
  VdbeComment((v, "first_entry_in(%d)", iCur));
  sqlite3VdbeJumpHere(v, addr1);
}
#endif


#ifndef SQLITE_OMIT_SUBQUERY
/*
** The argument is an IN operator with a list (not a subquery) on the 
** right-hand side.  Return TRUE if that list is constant.
*/
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745











1746
1747
1748






1749
1750
1751
1752
1753
1754
1755
1756
















1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767


1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786

1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804






















1805
1806















1807

1808









1809
1810











1811
1812



1813





1814
1815
1816
1817
1818
1819
1820

1821
1822
1823
1824
1825
1826

1827
1828

1829
1830
1831
1832
1833



1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
**                         populated epheremal table.
**   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
**                         implemented as a sequence of comparisons.
**
** An existing b-tree might be used if the RHS expression pX is a simple
** subquery such as:
**
**     SELECT <column> FROM <table>
**
** If the RHS of the IN operator is a list or a more complex subquery, then
** an ephemeral table might need to be generated from the RHS and then
** pX->iTable made to point to the ephemeral table instead of an
** existing table.
**
** The inFlags parameter must contain exactly one of the bits
** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
** fast membership test.  When the IN_INDEX_LOOP bit is set, the
** IN index will be used to loop over all values of the RHS of the
** IN operator.
**
** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
** through the set members) then the b-tree must not contain duplicates.
** An epheremal table must be used unless the selected <column> is guaranteed
** to be unique - either because it is an INTEGER PRIMARY KEY or it
** has a UNIQUE constraint or UNIQUE index.
**
** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 
** for fast set membership tests) then an epheremal table must 
** be used unless <column> is an INTEGER PRIMARY KEY or an index can 
** be found with <column> as its left-most column.
**
** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
** if the RHS of the IN operator is a list (not a subquery) then this
** routine might decide that creating an ephemeral b-tree for membership
** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
** calling routine should implement the IN operator using a sequence
** of Eq or Ne comparison operations.
**
** When the b-tree is being used for membership tests, the calling function
** might need to know whether or not the RHS side of the IN operator
** contains a NULL.  If prRhsHasNull is not a NULL pointer and 
** if there is any chance that the (...) might contain a NULL value at
** runtime, then a register is allocated and the register number written
** to *prRhsHasNull. If there is no chance that the (...) contains a
** NULL value, then *prRhsHasNull is left unchanged.
**
** If a register is allocated and its location stored in *prRhsHasNull, then
** the value in that register will be NULL if the b-tree contains one or more
** NULL values, and it will be some non-NULL value if the b-tree contains no
** NULL values.











*/
#ifndef SQLITE_OMIT_SUBQUERY
int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){






  Select *p;                            /* SELECT to the right of IN operator */
  int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
  int iTab = pParse->nTab++;            /* Cursor of the RHS table */
  int mustBeUnique;                     /* True if RHS must be unique */
  Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */

  assert( pX->op==TK_IN );
  mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;

















  /* Check to see if an existing table or index can be used to
  ** satisfy the query.  This is preferable to generating a new 
  ** ephemeral table.
  */
  if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
    sqlite3 *db = pParse->db;              /* Database connection */
    Table *pTab;                           /* Table <table>. */
    Expr *pExpr;                           /* Expression <column> */
    i16 iCol;                              /* Index of column <column> */
    i16 iDb;                               /* Database idx for pTab */



    assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
    assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
    assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
    pTab = p->pSrc->a[0].pTab;
    pExpr = p->pEList->a[0].pExpr;
    iCol = (i16)pExpr->iColumn;
   
    /* Code an OP_Transaction and OP_TableLock for <table>. */
    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
    sqlite3CodeVerifySchema(pParse, iDb);
    sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

    /* This function is only called from two places. In both cases the vdbe
    ** has already been allocated. So assume sqlite3GetVdbe() is always
    ** successful here.
    */
    assert(v);
    if( iCol<0 ){

      int iAddr = sqlite3CodeOnce(pParse);
      VdbeCoverage(v);

      sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
      eType = IN_INDEX_ROWID;

      sqlite3VdbeJumpHere(v, iAddr);
    }else{
      Index *pIdx;                         /* Iterator variable */

      /* The collation sequence used by the comparison. If an index is to
      ** be used in place of a temp-table, it must be ordered according
      ** to this collation sequence.  */
      CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);

      /* Check that the affinity that will be used to perform the 
      ** comparison is the same as the affinity of the column. If
      ** it is not, it is not possible to use any index.






















      */
      int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);

















      for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){









        if( (pIdx->aiColumn[0]==iCol)
         && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq











         && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
        ){



          int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);





          sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
          sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
          VdbeComment((v, "%s", pIdx->zName));
          assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
          eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];

          if( prRhsHasNull && !pTab->aCol[iCol].notNull ){

#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
            const i64 sOne = 1;
            sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 
                iTab, 0, 0, (u8*)&sOne, P4_INT64);
#endif
            *prRhsHasNull = ++pParse->nMem;

            sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
          }

          sqlite3VdbeJumpHere(v, iAddr);
        }
      }
    }
  }




  /* If no preexisting index is available for the IN clause
  ** and IN_INDEX_NOOP is an allowed reply
  ** and the RHS of the IN operator is a list, not a subquery
  ** and the RHS is not constant or has two or fewer terms,
  ** then it is not worth creating an ephemeral table to evaluate
  ** the IN operator so return IN_INDEX_NOOP.
  */
  if( eType==0
   && (inFlags & IN_INDEX_NOOP_OK)
   && !ExprHasProperty(pX, EP_xIsSelect)
   && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
  ){
    eType = IN_INDEX_NOOP;
  }
     

  if( eType==0 ){
    /* Could not find an existing table or index to use as the RHS b-tree.
    ** We will have to generate an ephemeral table to do the job.
    */
    u32 savedNQueryLoop = pParse->nQueryLoop;
    int rMayHaveNull = 0;







|















|
|
|



|
|




















>
>
>
>
>
>
>
>
>
>
>


|
>
>
>
>
>
>








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|
<



<
<

>
>





<
<
|





<
<
<
<
|
|
>









|
|
<
<
<

|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
|
>
>
>
>
>
>
>
>
>
|
|
>
>
>
>
>
>
>
>
>
>
>
|
<
>
>
>
|
>
>
>
>
>
|
|
|
|
|
|
|
>
|
|
|
|
|
<
>
|
|
>
|
|
<
<
|
>
>
>















<







2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132

2133
2134
2135


2136
2137
2138
2139
2140
2141
2142
2143


2144
2145
2146
2147
2148
2149




2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163



2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232

2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

2255
2256
2257
2258
2259
2260


2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279

2280
2281
2282
2283
2284
2285
2286
**                         populated epheremal table.
**   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
**                         implemented as a sequence of comparisons.
**
** An existing b-tree might be used if the RHS expression pX is a simple
** subquery such as:
**
**     SELECT <column1>, <column2>... FROM <table>
**
** If the RHS of the IN operator is a list or a more complex subquery, then
** an ephemeral table might need to be generated from the RHS and then
** pX->iTable made to point to the ephemeral table instead of an
** existing table.
**
** The inFlags parameter must contain exactly one of the bits
** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
** fast membership test.  When the IN_INDEX_LOOP bit is set, the
** IN index will be used to loop over all values of the RHS of the
** IN operator.
**
** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
** through the set members) then the b-tree must not contain duplicates.
** An epheremal table must be used unless the selected columns are guaranteed
** to be unique - either because it is an INTEGER PRIMARY KEY or due to
** a UNIQUE constraint or index.
**
** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 
** for fast set membership tests) then an epheremal table must 
** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 
** index can be found with the specified <columns> as its left-most.
**
** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
** if the RHS of the IN operator is a list (not a subquery) then this
** routine might decide that creating an ephemeral b-tree for membership
** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
** calling routine should implement the IN operator using a sequence
** of Eq or Ne comparison operations.
**
** When the b-tree is being used for membership tests, the calling function
** might need to know whether or not the RHS side of the IN operator
** contains a NULL.  If prRhsHasNull is not a NULL pointer and 
** if there is any chance that the (...) might contain a NULL value at
** runtime, then a register is allocated and the register number written
** to *prRhsHasNull. If there is no chance that the (...) contains a
** NULL value, then *prRhsHasNull is left unchanged.
**
** If a register is allocated and its location stored in *prRhsHasNull, then
** the value in that register will be NULL if the b-tree contains one or more
** NULL values, and it will be some non-NULL value if the b-tree contains no
** NULL values.
**
** If the aiMap parameter is not NULL, it must point to an array containing
** one element for each column returned by the SELECT statement on the RHS
** of the IN(...) operator. The i'th entry of the array is populated with the
** offset of the index column that matches the i'th column returned by the
** SELECT. For example, if the expression and selected index are:
**
**   (?,?,?) IN (SELECT a, b, c FROM t1)
**   CREATE INDEX i1 ON t1(b, c, a);
**
** then aiMap[] is populated with {2, 0, 1}.
*/
#ifndef SQLITE_OMIT_SUBQUERY
int sqlite3FindInIndex(
  Parse *pParse,             /* Parsing context */
  Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
  u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
  int *prRhsHasNull,         /* Register holding NULL status.  See notes */
  int *aiMap                 /* Mapping from Index fields to RHS fields */
){
  Select *p;                            /* SELECT to the right of IN operator */
  int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
  int iTab = pParse->nTab++;            /* Cursor of the RHS table */
  int mustBeUnique;                     /* True if RHS must be unique */
  Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */

  assert( pX->op==TK_IN );
  mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;

  /* If the RHS of this IN(...) operator is a SELECT, and if it matters 
  ** whether or not the SELECT result contains NULL values, check whether
  ** or not NULL is actually possible (it may not be, for example, due 
  ** to NOT NULL constraints in the schema). If no NULL values are possible,
  ** set prRhsHasNull to 0 before continuing.  */
  if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
    int i;
    ExprList *pEList = pX->x.pSelect->pEList;
    for(i=0; i<pEList->nExpr; i++){
      if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
    }
    if( i==pEList->nExpr ){
      prRhsHasNull = 0;
    }
  }

  /* Check to see if an existing table or index can be used to
  ** satisfy the query.  This is preferable to generating a new 
  ** ephemeral table.  */

  if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
    sqlite3 *db = pParse->db;              /* Database connection */
    Table *pTab;                           /* Table <table>. */


    i16 iDb;                               /* Database idx for pTab */
    ExprList *pEList = p->pEList;
    int nExpr = pEList->nExpr;

    assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
    assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
    assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
    pTab = p->pSrc->a[0].pTab;



    /* Code an OP_Transaction and OP_TableLock for <table>. */
    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
    sqlite3CodeVerifySchema(pParse, iDb);
    sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);





    assert(v);  /* sqlite3GetVdbe() has always been previously called */
    if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
      /* The "x IN (SELECT rowid FROM table)" case */
      int iAddr = sqlite3CodeOnce(pParse);
      VdbeCoverage(v);

      sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
      eType = IN_INDEX_ROWID;

      sqlite3VdbeJumpHere(v, iAddr);
    }else{
      Index *pIdx;                         /* Iterator variable */
      int affinity_ok = 1;
      int i;




      /* Check that the affinity that will be used to perform each 
      ** comparison is the same as the affinity of each column in table
      ** on the RHS of the IN operator.  If it not, it is not possible to
      ** use any index of the RHS table.  */
      for(i=0; i<nExpr && affinity_ok; i++){
        Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
        int iCol = pEList->a[i].pExpr->iColumn;
        char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
        char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
        testcase( cmpaff==SQLITE_AFF_BLOB );
        testcase( cmpaff==SQLITE_AFF_TEXT );
        switch( cmpaff ){
          case SQLITE_AFF_BLOB:
            break;
          case SQLITE_AFF_TEXT:
            /* sqlite3CompareAffinity() only returns TEXT if one side or the
            ** other has no affinity and the other side is TEXT.  Hence,
            ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
            ** and for the term on the LHS of the IN to have no affinity. */
            assert( idxaff==SQLITE_AFF_TEXT );
            break;
          default:
            affinity_ok = sqlite3IsNumericAffinity(idxaff);
        }
      }

      if( affinity_ok ){
        /* Search for an existing index that will work for this IN operator */
        for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
          Bitmask colUsed;      /* Columns of the index used */
          Bitmask mCol;         /* Mask for the current column */
          if( pIdx->nColumn<nExpr ) continue;
          /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
          ** BITMASK(nExpr) without overflowing */
          testcase( pIdx->nColumn==BMS-2 );
          testcase( pIdx->nColumn==BMS-1 );
          if( pIdx->nColumn>=BMS-1 ) continue;
          if( mustBeUnique ){
            if( pIdx->nKeyCol>nExpr
             ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
            ){
              continue;  /* This index is not unique over the IN RHS columns */
            }
          }
  
          colUsed = 0;   /* Columns of index used so far */
          for(i=0; i<nExpr; i++){
            Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
            Expr *pRhs = pEList->a[i].pExpr;
            CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
            int j;
  
            assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
            for(j=0; j<nExpr; j++){
              if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
              assert( pIdx->azColl[j] );
              if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
                continue;
              }
              break;
            }
            if( j==nExpr ) break;
            mCol = MASKBIT(j);
            if( mCol & colUsed ) break; /* Each column used only once */
            colUsed |= mCol;
            if( aiMap ) aiMap[i] = j;
          }
  

          assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
          if( colUsed==(MASKBIT(nExpr)-1) ){
            /* If we reach this point, that means the index pIdx is usable */
            int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
  #ifndef SQLITE_OMIT_EXPLAIN
            sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0,
              sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName),
              P4_DYNAMIC);
  #endif
            sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
            sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
            VdbeComment((v, "%s", pIdx->zName));
            assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
            eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
  
            if( prRhsHasNull ){
              *prRhsHasNull = ++pParse->nMem;
  #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
              i64 mask = (1<<nExpr)-1;
              sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 
                  iTab, 0, 0, (u8*)&mask, P4_INT64);
  #endif

              if( nExpr==1 ){
                sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
              }
            }
            sqlite3VdbeJumpHere(v, iAddr);
          }


        } /* End loop over indexes */
      } /* End if( affinity_ok ) */
    } /* End if not an rowid index */
  } /* End attempt to optimize using an index */

  /* If no preexisting index is available for the IN clause
  ** and IN_INDEX_NOOP is an allowed reply
  ** and the RHS of the IN operator is a list, not a subquery
  ** and the RHS is not constant or has two or fewer terms,
  ** then it is not worth creating an ephemeral table to evaluate
  ** the IN operator so return IN_INDEX_NOOP.
  */
  if( eType==0
   && (inFlags & IN_INDEX_NOOP_OK)
   && !ExprHasProperty(pX, EP_xIsSelect)
   && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
  ){
    eType = IN_INDEX_NOOP;
  }


  if( eType==0 ){
    /* Could not find an existing table or index to use as the RHS b-tree.
    ** We will have to generate an ephemeral table to do the job.
    */
    u32 savedNQueryLoop = pParse->nQueryLoop;
    int rMayHaveNull = 0;
1864
1865
1866
1867
1868
1869
1870






1871
1872
1873















































1874
1875
1876
1877
1878
1879
1880
      *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
    }
    sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
    pParse->nQueryLoop = savedNQueryLoop;
  }else{
    pX->iTable = iTab;
  }






  return eType;
}
#endif
















































/*
** Generate code for scalar subqueries used as a subquery expression, EXISTS,
** or IN operators.  Examples:
**
**     (SELECT a FROM b)          -- subquery
**     EXISTS (SELECT a FROM b)   -- EXISTS subquery







>
>
>
>
>
>



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
      *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
    }
    sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
    pParse->nQueryLoop = savedNQueryLoop;
  }else{
    pX->iTable = iTab;
  }

  if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
    int i, n;
    n = sqlite3ExprVectorSize(pX->pLeft);
    for(i=0; i<n; i++) aiMap[i] = i;
  }
  return eType;
}
#endif

#ifndef SQLITE_OMIT_SUBQUERY
/*
** Argument pExpr is an (?, ?...) IN(...) expression. This 
** function allocates and returns a nul-terminated string containing 
** the affinities to be used for each column of the comparison.
**
** It is the responsibility of the caller to ensure that the returned
** string is eventually freed using sqlite3DbFree().
*/
static char *exprINAffinity(Parse *pParse, Expr *pExpr){
  Expr *pLeft = pExpr->pLeft;
  int nVal = sqlite3ExprVectorSize(pLeft);
  Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
  char *zRet;

  assert( pExpr->op==TK_IN );
  zRet = sqlite3DbMallocZero(pParse->db, nVal+1);
  if( zRet ){
    int i;
    for(i=0; i<nVal; i++){
      Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
      char a = sqlite3ExprAffinity(pA);
      if( pSelect ){
        zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
      }else{
        zRet[i] = a;
      }
    }
    zRet[nVal] = '\0';
  }
  return zRet;
}
#endif

#ifndef SQLITE_OMIT_SUBQUERY
/*
** Load the Parse object passed as the first argument with an error 
** message of the form:
**
**   "sub-select returns N columns - expected M"
*/   
void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
  const char *zFmt = "sub-select returns %d columns - expected %d";
  sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
}
#endif

/*
** Generate code for scalar subqueries used as a subquery expression, EXISTS,
** or IN operators.  Examples:
**
**     (SELECT a FROM b)          -- subquery
**     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1893
1894
1895
1896
1897
1898
1899


1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
** If rMayHaveNull is non-zero, that means that the operation is an IN
** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
** All this routine does is initialize the register given by rMayHaveNull
** to NULL.  Calling routines will take care of changing this register
** value to non-NULL if the RHS is NULL-free.
**
** For a SELECT or EXISTS operator, return the register that holds the


** result.  For IN operators or if an error occurs, the return value is 0.
*/
#ifndef SQLITE_OMIT_SUBQUERY
int sqlite3CodeSubselect(
  Parse *pParse,          /* Parsing context */
  Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
  int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
  int isRowid             /* If true, LHS of IN operator is a rowid */
){
  int jmpIfDynamic = -1;                      /* One-time test address */
  int rReg = 0;                           /* Register storing resulting */
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( NEVER(v==0) ) return 0;
  sqlite3ExprCachePush(pParse);

  /* This code must be run in its entirety every time it is encountered
  ** if any of the following is true:
  **
  **    *  The right-hand side is a correlated subquery
  **    *  The right-hand side is an expression list containing variables
  **    *  We are inside a trigger
  **
  ** If all of the above are false, then we can run this code just once
  ** save the results, and reuse the same result on subsequent invocations.







>
>
|














|
|







2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
** If rMayHaveNull is non-zero, that means that the operation is an IN
** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
** All this routine does is initialize the register given by rMayHaveNull
** to NULL.  Calling routines will take care of changing this register
** value to non-NULL if the RHS is NULL-free.
**
** For a SELECT or EXISTS operator, return the register that holds the
** result.  For a multi-column SELECT, the result is stored in a contiguous
** array of registers and the return value is the register of the left-most
** result column.  Return 0 for IN operators or if an error occurs.
*/
#ifndef SQLITE_OMIT_SUBQUERY
int sqlite3CodeSubselect(
  Parse *pParse,          /* Parsing context */
  Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
  int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
  int isRowid             /* If true, LHS of IN operator is a rowid */
){
  int jmpIfDynamic = -1;                      /* One-time test address */
  int rReg = 0;                           /* Register storing resulting */
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( NEVER(v==0) ) return 0;
  sqlite3ExprCachePush(pParse);

  /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
  ** is encountered if any of the following is true:
  **
  **    *  The right-hand side is a correlated subquery
  **    *  The right-hand side is an expression list containing variables
  **    *  We are inside a trigger
  **
  ** If all of the above are false, then we can run this code just once
  ** save the results, and reuse the same result on subsequent invocations.
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945

1946
1947

1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963

1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976





1977
1978
1979
1980
1981
1982
1983

1984
1985
1986
1987

1988
1989
1990
1991


1992
1993



1994
1995
1996
1997
1998
1999
2000
2001

2002
2003
2004
2005
2006

2007
2008
2009
2010
2011
2012
2013
    );
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
#endif

  switch( pExpr->op ){
    case TK_IN: {
      char affinity;              /* Affinity of the LHS of the IN */
      int addr;                   /* Address of OP_OpenEphemeral instruction */
      Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
      KeyInfo *pKeyInfo = 0;      /* Key information */


      affinity = sqlite3ExprAffinity(pLeft);


      /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
      ** expression it is handled the same way.  An ephemeral table is 
      ** filled with single-field index keys representing the results
      ** from the SELECT or the <exprlist>.
      **
      ** If the 'x' expression is a column value, or the SELECT...
      ** statement returns a column value, then the affinity of that
      ** column is used to build the index keys. If both 'x' and the
      ** SELECT... statement are columns, then numeric affinity is used
      ** if either column has NUMERIC or INTEGER affinity. If neither
      ** 'x' nor the SELECT... statement are columns, then numeric affinity
      ** is used.
      */
      pExpr->iTable = pParse->nTab++;
      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);

      pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);

      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */
        Select *pSelect = pExpr->x.pSelect;
        SelectDest dest;
        ExprList *pEList;

        assert( !isRowid );





        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
        dest.affSdst = (u8)affinity;
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
        pSelect->iLimit = 0;
        testcase( pSelect->selFlags & SF_Distinct );
        testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
        if( sqlite3Select(pParse, pSelect, &dest) ){

          sqlite3KeyInfoUnref(pKeyInfo);
          return 0;
        }
        pEList = pSelect->pEList;

        assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
        assert( pEList!=0 );
        assert( pEList->nExpr>0 );
        assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );


        pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
                                                         pEList->a[0].pExpr);



      }else if( ALWAYS(pExpr->x.pList!=0) ){
        /* Case 2:     expr IN (exprlist)
        **
        ** For each expression, build an index key from the evaluation and
        ** store it in the temporary table. If <expr> is a column, then use
        ** that columns affinity when building index keys. If <expr> is not
        ** a column, use numeric affinity.
        */

        int i;
        ExprList *pList = pExpr->x.pList;
        struct ExprList_item *pItem;
        int r1, r2, r3;


        if( !affinity ){
          affinity = SQLITE_AFF_BLOB;
        }
        if( pKeyInfo ){
          assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
          pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
        }







<



>
|
|
>



|
|










|
>
|








<
|


>
>
>
>
>
|
|
|
|
|
|
|
>
|
|
|
<
>
|
|
|
|
>
>
|
|
>
>
>








>





>







2420
2421
2422
2423
2424
2425
2426

2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459

2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478

2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
    );
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
#endif

  switch( pExpr->op ){
    case TK_IN: {

      int addr;                   /* Address of OP_OpenEphemeral instruction */
      Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
      KeyInfo *pKeyInfo = 0;      /* Key information */
      int nVal;                   /* Size of vector pLeft */
      
      nVal = sqlite3ExprVectorSize(pLeft);
      assert( !isRowid || nVal==1 );

      /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
      ** expression it is handled the same way.  An ephemeral table is 
      ** filled with index keys representing the results from the 
      ** SELECT or the <exprlist>.
      **
      ** If the 'x' expression is a column value, or the SELECT...
      ** statement returns a column value, then the affinity of that
      ** column is used to build the index keys. If both 'x' and the
      ** SELECT... statement are columns, then numeric affinity is used
      ** if either column has NUMERIC or INTEGER affinity. If neither
      ** 'x' nor the SELECT... statement are columns, then numeric affinity
      ** is used.
      */
      pExpr->iTable = pParse->nTab++;
      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 
          pExpr->iTable, (isRowid?0:nVal));
      pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);

      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */
        Select *pSelect = pExpr->x.pSelect;

        ExprList *pEList = pSelect->pEList;

        assert( !isRowid );
        /* If the LHS and RHS of the IN operator do not match, that
        ** error will have been caught long before we reach this point. */
        if( ALWAYS(pEList->nExpr==nVal) ){
          SelectDest dest;
          int i;
          sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
          dest.zAffSdst = exprINAffinity(pParse, pExpr);
          assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
          pSelect->iLimit = 0;
          testcase( pSelect->selFlags & SF_Distinct );
          testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
          if( sqlite3Select(pParse, pSelect, &dest) ){
            sqlite3DbFree(pParse->db, dest.zAffSdst);
            sqlite3KeyInfoUnref(pKeyInfo);
            return 0;
          }

          sqlite3DbFree(pParse->db, dest.zAffSdst);
          assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
          assert( pEList!=0 );
          assert( pEList->nExpr>0 );
          assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
          for(i=0; i<nVal; i++){
            Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
            pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
                pParse, p, pEList->a[i].pExpr
            );
          }
        }
      }else if( ALWAYS(pExpr->x.pList!=0) ){
        /* Case 2:     expr IN (exprlist)
        **
        ** For each expression, build an index key from the evaluation and
        ** store it in the temporary table. If <expr> is a column, then use
        ** that columns affinity when building index keys. If <expr> is not
        ** a column, use numeric affinity.
        */
        char affinity;            /* Affinity of the LHS of the IN */
        int i;
        ExprList *pList = pExpr->x.pList;
        struct ExprList_item *pItem;
        int r1, r2, r3;

        affinity = sqlite3ExprAffinity(pLeft);
        if( !affinity ){
          affinity = SQLITE_AFF_BLOB;
        }
        if( pKeyInfo ){
          assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
          pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
        }
2055
2056
2057
2058
2059
2060
2061



2062

2063
2064

2065
2066




2067
2068
2069

2070
2071
2072
2073
2074
2075

2076

2077

2078
2079
2080

2081
2082
2083
2084
2085
2086
2087
2088
      }
      break;
    }

    case TK_EXISTS:
    case TK_SELECT:
    default: {



      /* If this has to be a scalar SELECT.  Generate code to put the

      ** value of this select in a memory cell and record the number
      ** of the memory cell in iColumn.  If this is an EXISTS, write

      ** an integer 0 (not exists) or 1 (exists) into a memory cell
      ** and record that memory cell in iColumn.




      */
      Select *pSel;                         /* SELECT statement to encode */
      SelectDest dest;                      /* How to deal with SELECt result */


      testcase( pExpr->op==TK_EXISTS );
      testcase( pExpr->op==TK_SELECT );
      assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );

      assert( ExprHasProperty(pExpr, EP_xIsSelect) );

      pSel = pExpr->x.pSelect;

      sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);

      if( pExpr->op==TK_SELECT ){
        dest.eDest = SRT_Mem;
        dest.iSdst = dest.iSDParm;

        sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
        VdbeComment((v, "Init subquery result"));
      }else{
        dest.eDest = SRT_Exists;
        sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
        VdbeComment((v, "Init EXISTS result"));
      }
      sqlite3ExprDelete(pParse->db, pSel->pLimit);







>
>
>
|
>
|
<
>
|
<
>
>
>
>


|
>




<

>

>
|
>



>
|







2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566

2567
2568

2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580

2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
      }
      break;
    }

    case TK_EXISTS:
    case TK_SELECT:
    default: {
      /* Case 3:    (SELECT ... FROM ...)
      **     or:    EXISTS(SELECT ... FROM ...)
      **
      ** For a SELECT, generate code to put the values for all columns of
      ** the first row into an array of registers and return the index of
      ** the first register.

      **
      ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)

      ** into a register and return that register number.
      **
      ** In both cases, the query is augmented with "LIMIT 1".  Any 
      ** preexisting limit is discarded in place of the new LIMIT 1.
      */
      Select *pSel;                         /* SELECT statement to encode */
      SelectDest dest;                      /* How to deal with SELECT result */
      int nReg;                             /* Registers to allocate */

      testcase( pExpr->op==TK_EXISTS );
      testcase( pExpr->op==TK_SELECT );
      assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );

      assert( ExprHasProperty(pExpr, EP_xIsSelect) );

      pSel = pExpr->x.pSelect;
      nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
      sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
      pParse->nMem += nReg;
      if( pExpr->op==TK_SELECT ){
        dest.eDest = SRT_Mem;
        dest.iSdst = dest.iSDParm;
        dest.nSdst = nReg;
        sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
        VdbeComment((v, "Init subquery result"));
      }else{
        dest.eDest = SRT_Exists;
        sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
        VdbeComment((v, "Init EXISTS result"));
      }
      sqlite3ExprDelete(pParse->db, pSel->pLimit);
2107
2108
2109
2110
2111
2112
2113


























2114
2115
2116
2117
2118
2119
2120
2121
2122
2123




2124

2125
2126
2127
2128
2129
2130
2131



2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142

2143











2144








2145


2146
2147

2148
2149
2150
2151
2152
2153
2154
2155
2156

2157

2158
2159




2160


2161







2162
2163







2164

2165


2166
2167
2168
2169


2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210


2211
2212
2213
2214
2215
2216
2217
2218



2219

2220
2221
2222
2223
2224
2225
2226




2227
2228
2229

2230
2231

2232











2233


2234

2235


2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247



2248
2249
2250
2251

2252
2253


2254
2255
2256
2257


2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

2268


2269



2270
2271


2272
2273
2274


2275

2276
2277
2278



2279
2280
2281
2282
2283
2284
2285
    sqlite3VdbeJumpHere(v, jmpIfDynamic);
  }
  sqlite3ExprCachePop(pParse);

  return rReg;
}
#endif /* SQLITE_OMIT_SUBQUERY */



























#ifndef SQLITE_OMIT_SUBQUERY
/*
** Generate code for an IN expression.
**
**      x IN (SELECT ...)
**      x IN (value, value, ...)
**
** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
** is an array of zero or more values.  The expression is true if the LHS is




** contained within the RHS.  The value of the expression is unknown (NULL)

** if the LHS is NULL or if the LHS is not contained within the RHS and the
** RHS contains one or more NULL values.
**
** This routine generates code that jumps to destIfFalse if the LHS is not 
** contained within the RHS.  If due to NULLs we cannot determine if the LHS
** is contained in the RHS then jump to destIfNull.  If the LHS is contained
** within the RHS then fall through.



*/
static void sqlite3ExprCodeIN(
  Parse *pParse,        /* Parsing and code generating context */
  Expr *pExpr,          /* The IN expression */
  int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
  int destIfNull        /* Jump here if the results are unknown due to NULLs */
){
  int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
  char affinity;        /* Comparison affinity to use */
  int eType;            /* Type of the RHS */
  int r1;               /* Temporary use register */

  Vdbe *v;              /* Statement under construction */




















  /* Compute the RHS.   After this step, the table with cursor


  ** pExpr->iTable will contains the values that make up the RHS.
  */

  v = pParse->pVdbe;
  assert( v!=0 );       /* OOM detected prior to this routine */
  VdbeNoopComment((v, "begin IN expr"));
  eType = sqlite3FindInIndex(pParse, pExpr,
                             IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
                             destIfFalse==destIfNull ? 0 : &rRhsHasNull);

  /* Figure out the affinity to use to create a key from the results
  ** of the expression. affinityStr stores a static string suitable for

  ** P4 of OP_MakeRecord.

  */
  affinity = comparisonAffinity(pExpr);







  /* Code the LHS, the <expr> from "<expr> IN (...)".







  */
  sqlite3ExprCachePush(pParse);







  r1 = sqlite3GetTempReg(pParse);

  sqlite3ExprCode(pParse, pExpr->pLeft, r1);



  /* If sqlite3FindInIndex() did not find or create an index that is
  ** suitable for evaluating the IN operator, then evaluate using a
  ** sequence of comparisons.


  */
  if( eType==IN_INDEX_NOOP ){
    ExprList *pList = pExpr->x.pList;
    CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
    int labelOk = sqlite3VdbeMakeLabel(v);
    int r2, regToFree;
    int regCkNull = 0;
    int ii;
    assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
    if( destIfNull!=destIfFalse ){
      regCkNull = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
    }
    for(ii=0; ii<pList->nExpr; ii++){
      r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
      if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
        sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
      }
      if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
        sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
                          (void*)pColl, P4_COLLSEQ);
        VdbeCoverageIf(v, ii<pList->nExpr-1);
        VdbeCoverageIf(v, ii==pList->nExpr-1);
        sqlite3VdbeChangeP5(v, affinity);
      }else{
        assert( destIfNull==destIfFalse );
        sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
                          (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
        sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
      }
      sqlite3ReleaseTempReg(pParse, regToFree);
    }
    if( regCkNull ){
      sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
      sqlite3VdbeGoto(v, destIfFalse);
    }
    sqlite3VdbeResolveLabel(v, labelOk);
    sqlite3ReleaseTempReg(pParse, regCkNull);
  }else{
  
    /* If the LHS is NULL, then the result is either false or NULL depending


    ** on whether the RHS is empty or not, respectively.
    */
    if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
      if( destIfNull==destIfFalse ){
        /* Shortcut for the common case where the false and NULL outcomes are
        ** the same. */
        sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
      }else{



        int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);

        sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
        VdbeCoverage(v);
        sqlite3VdbeGoto(v, destIfNull);
        sqlite3VdbeJumpHere(v, addr1);
      }
    }
  




    if( eType==IN_INDEX_ROWID ){
      /* In this case, the RHS is the ROWID of table b-tree
      */

      sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, r1);
      VdbeCoverage(v);

    }else{











      /* In this case, the RHS is an index b-tree.


      */

      sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);


  
      /* If the set membership test fails, then the result of the 
      ** "x IN (...)" expression must be either 0 or NULL. If the set
      ** contains no NULL values, then the result is 0. If the set 
      ** contains one or more NULL values, then the result of the
      ** expression is also NULL.
      */
      assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
      if( rRhsHasNull==0 ){
        /* This branch runs if it is known at compile time that the RHS
        ** cannot contain NULL values. This happens as the result
        ** of a "NOT NULL" constraint in the database schema.



        **
        ** Also run this branch if NULL is equivalent to FALSE
        ** for this particular IN operator.
        */

        sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
        VdbeCoverage(v);


      }else{
        /* In this branch, the RHS of the IN might contain a NULL and
        ** the presence of a NULL on the RHS makes a difference in the
        ** outcome.


        */
        int addr1;
  
        /* First check to see if the LHS is contained in the RHS.  If so,
        ** then the answer is TRUE the presence of NULLs in the RHS does
        ** not matter.  If the LHS is not contained in the RHS, then the
        ** answer is NULL if the RHS contains NULLs and the answer is
        ** FALSE if the RHS is NULL-free.
        */
        addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);

        VdbeCoverage(v);


        sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);



        VdbeCoverage(v);
        sqlite3VdbeGoto(v, destIfFalse);


        sqlite3VdbeJumpHere(v, addr1);
      }
    }


  }

  sqlite3ReleaseTempReg(pParse, r1);
  sqlite3ExprCachePop(pParse);
  VdbeComment((v, "end IN expr"));



}
#endif /* SQLITE_OMIT_SUBQUERY */

#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Generate an instruction that will put the floating point
** value described by z[0..n-1] into register iMem.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>








|
|
>
>
>
>
|
>
|
|





>
>
>








<

|
>

>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
|
>
>
|
<
>





|

|
|
>
|
>
|
<
>
>
>
>
|
>
>
|
>
>
>
>
>
>
>


>
>
>
>
>
>
>
|
>
|
>
>




>
>











|







|



|


|

|









|
|
|
>
>
|
|
<
|
<
<
|
|
>
>
>
|
>
|
|
<
<
|
|
|
>
>
>
>
|
|
|
>
|
|
>
|
>
>
>
>
>
>
>
>
>
>
>
|
>
>
|
>
|
>
>
|
|
<
|
<
<
|
|
|
<
<
<
>
>
>
|
|
|
|
>
|
|
>
>
|
|
|
|
>
>
|
<
|
|
|
|
|
<
<
|
>
|
>
>
|
>
>
>
|
|
>
>
|
|
|
>
>
|
>
|


>
>
>







2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683

2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711

2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725

2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805

2806


2807
2808
2809
2810
2811
2812
2813
2814
2815


2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851

2852


2853
2854
2855



2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874

2875
2876
2877
2878
2879


2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
    sqlite3VdbeJumpHere(v, jmpIfDynamic);
  }
  sqlite3ExprCachePop(pParse);

  return rReg;
}
#endif /* SQLITE_OMIT_SUBQUERY */

#ifndef SQLITE_OMIT_SUBQUERY
/*
** Expr pIn is an IN(...) expression. This function checks that the 
** sub-select on the RHS of the IN() operator has the same number of 
** columns as the vector on the LHS. Or, if the RHS of the IN() is not 
** a sub-query, that the LHS is a vector of size 1.
*/
int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
  int nVector = sqlite3ExprVectorSize(pIn->pLeft);
  if( (pIn->flags & EP_xIsSelect) ){
    if( nVector!=pIn->x.pSelect->pEList->nExpr ){
      sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
      return 1;
    }
  }else if( nVector!=1 ){
    if( (pIn->pLeft->flags & EP_xIsSelect) ){
      sqlite3SubselectError(pParse, nVector, 1);
    }else{
      sqlite3ErrorMsg(pParse, "row value misused");
    }
    return 1;
  }
  return 0;
}
#endif

#ifndef SQLITE_OMIT_SUBQUERY
/*
** Generate code for an IN expression.
**
**      x IN (SELECT ...)
**      x IN (value, value, ...)
**
** The left-hand side (LHS) is a scalar or vector expression.  The 
** right-hand side (RHS) is an array of zero or more scalar values, or a
** subquery.  If the RHS is a subquery, the number of result columns must
** match the number of columns in the vector on the LHS.  If the RHS is
** a list of values, the LHS must be a scalar. 
**
** The IN operator is true if the LHS value is contained within the RHS.
** The result is false if the LHS is definitely not in the RHS.  The 
** result is NULL if the presence of the LHS in the RHS cannot be 
** determined due to NULLs.
**
** This routine generates code that jumps to destIfFalse if the LHS is not 
** contained within the RHS.  If due to NULLs we cannot determine if the LHS
** is contained in the RHS then jump to destIfNull.  If the LHS is contained
** within the RHS then fall through.
**
** See the separate in-operator.md documentation file in the canonical
** SQLite source tree for additional information.
*/
static void sqlite3ExprCodeIN(
  Parse *pParse,        /* Parsing and code generating context */
  Expr *pExpr,          /* The IN expression */
  int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
  int destIfNull        /* Jump here if the results are unknown due to NULLs */
){
  int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */

  int eType;            /* Type of the RHS */
  int rLhs;             /* Register(s) holding the LHS values */
  int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
  Vdbe *v;              /* Statement under construction */
  int *aiMap = 0;       /* Map from vector field to index column */
  char *zAff = 0;       /* Affinity string for comparisons */
  int nVector;          /* Size of vectors for this IN operator */
  int iDummy;           /* Dummy parameter to exprCodeVector() */
  Expr *pLeft;          /* The LHS of the IN operator */
  int i;                /* loop counter */
  int destStep2;        /* Where to jump when NULLs seen in step 2 */
  int destStep6 = 0;    /* Start of code for Step 6 */
  int addrTruthOp;      /* Address of opcode that determines the IN is true */
  int destNotNull;      /* Jump here if a comparison is not true in step 6 */
  int addrTop;          /* Top of the step-6 loop */ 

  pLeft = pExpr->pLeft;
  if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
  zAff = exprINAffinity(pParse, pExpr);
  nVector = sqlite3ExprVectorSize(pExpr->pLeft);
  aiMap = (int*)sqlite3DbMallocZero(
      pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
  );
  if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;

  /* Attempt to compute the RHS. After this step, if anything other than
  ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable 
  ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,

  ** the RHS has not yet been coded.  */
  v = pParse->pVdbe;
  assert( v!=0 );       /* OOM detected prior to this routine */
  VdbeNoopComment((v, "begin IN expr"));
  eType = sqlite3FindInIndex(pParse, pExpr,
                             IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
                             destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);

  assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
       || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 
  );
#ifdef SQLITE_DEBUG
  /* Confirm that aiMap[] contains nVector integer values between 0 and
  ** nVector-1. */

  for(i=0; i<nVector; i++){
    int j, cnt;
    for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
    assert( cnt==1 );
  }
#endif

  /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 
  ** vector, then it is stored in an array of nVector registers starting 
  ** at r1.
  **
  ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
  ** so that the fields are in the same order as an existing index.   The
  ** aiMap[] array contains a mapping from the original LHS field order to
  ** the field order that matches the RHS index.
  */
  sqlite3ExprCachePush(pParse);
  rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
  for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
  if( i==nVector ){
    /* LHS fields are not reordered */
    rLhs = rLhsOrig;
  }else{
    /* Need to reorder the LHS fields according to aiMap */
    rLhs = sqlite3GetTempRange(pParse, nVector);
    for(i=0; i<nVector; i++){
      sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
    }
  }

  /* If sqlite3FindInIndex() did not find or create an index that is
  ** suitable for evaluating the IN operator, then evaluate using a
  ** sequence of comparisons.
  **
  ** This is step (1) in the in-operator.md optimized algorithm.
  */
  if( eType==IN_INDEX_NOOP ){
    ExprList *pList = pExpr->x.pList;
    CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
    int labelOk = sqlite3VdbeMakeLabel(v);
    int r2, regToFree;
    int regCkNull = 0;
    int ii;
    assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
    if( destIfNull!=destIfFalse ){
      regCkNull = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
    }
    for(ii=0; ii<pList->nExpr; ii++){
      r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
      if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
        sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
      }
      if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
        sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
                          (void*)pColl, P4_COLLSEQ);
        VdbeCoverageIf(v, ii<pList->nExpr-1);
        VdbeCoverageIf(v, ii==pList->nExpr-1);
        sqlite3VdbeChangeP5(v, zAff[0]);
      }else{
        assert( destIfNull==destIfFalse );
        sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
                          (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
        sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
      }
      sqlite3ReleaseTempReg(pParse, regToFree);
    }
    if( regCkNull ){
      sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
      sqlite3VdbeGoto(v, destIfFalse);
    }
    sqlite3VdbeResolveLabel(v, labelOk);
    sqlite3ReleaseTempReg(pParse, regCkNull);
    goto sqlite3ExprCodeIN_finished;
  }

  /* Step 2: Check to see if the LHS contains any NULL columns.  If the
  ** LHS does contain NULLs then the result must be either FALSE or NULL.
  ** We will then skip the binary search of the RHS.
  */

  if( destIfNull==destIfFalse ){


    destStep2 = destIfFalse;
  }else{
    destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
  }
  for(i=0; i<nVector; i++){
    Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
    if( sqlite3ExprCanBeNull(p) ){
      sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
      VdbeCoverage(v);


    }
  }

  /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
  ** of the RHS using the LHS as a probe.  If found, the result is
  ** true.
  */
  if( eType==IN_INDEX_ROWID ){
    /* In this case, the RHS is the ROWID of table b-tree and so we also
    ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
    ** into a single opcode. */
    sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
    VdbeCoverage(v);
    addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
  }else{
    sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
    if( destIfFalse==destIfNull ){
      /* Combine Step 3 and Step 5 into a single opcode */
      sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
                           rLhs, nVector); VdbeCoverage(v);
      goto sqlite3ExprCodeIN_finished;
    }
    /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
    addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
                                      rLhs, nVector); VdbeCoverage(v);
  }

  /* Step 4.  If the RHS is known to be non-NULL and we did not find
  ** an match on the search above, then the result must be FALSE.
  */
  if( rRhsHasNull && nVector==1 ){
    sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
    VdbeCoverage(v);
  }

  /* Step 5.  If we do not care about the difference between NULL and

  ** FALSE, then just return false. 


  */
  if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);




  /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
  ** If any comparison is NULL, then the result is NULL.  If all
  ** comparisons are FALSE then the final result is FALSE.
  **
  ** For a scalar LHS, it is sufficient to check just the first row
  ** of the RHS.
  */
  if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
  addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
  VdbeCoverage(v);
  if( nVector>1 ){
    destNotNull = sqlite3VdbeMakeLabel(v);
  }else{
    /* For nVector==1, combine steps 6 and 7 by immediately returning
    ** FALSE if the first comparison is not NULL */
    destNotNull = destIfFalse;
  }
  for(i=0; i<nVector; i++){
    Expr *p;

    CollSeq *pColl;
    int r3 = sqlite3GetTempReg(pParse);
    p = sqlite3VectorFieldSubexpr(pLeft, i);
    pColl = sqlite3ExprCollSeq(pParse, p);
    sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);


    sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
                      (void*)pColl, P4_COLLSEQ);
    VdbeCoverage(v);
    sqlite3ReleaseTempReg(pParse, r3);
  }
  sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
  if( nVector>1 ){
    sqlite3VdbeResolveLabel(v, destNotNull);
    sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
    VdbeCoverage(v);

    /* Step 7:  If we reach this point, we know that the result must
    ** be false. */
    sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
  }

  /* Jumps here in order to return true. */
  sqlite3VdbeJumpHere(v, addrTruthOp);

sqlite3ExprCodeIN_finished:
  if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
  sqlite3ExprCachePop(pParse);
  VdbeComment((v, "end IN expr"));
sqlite3ExprCodeIN_oom_error:
  sqlite3DbFree(pParse->db, aiMap);
  sqlite3DbFree(pParse->db, zAff);
}
#endif /* SQLITE_OMIT_SUBQUERY */

#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Generate an instruction that will put the floating point
** value described by z[0..n-1] into register iMem.
2656
2657
2658
2659
2660
2661
2662
2663


2664
2665
2666
2667
2668
2669
2670
































2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691

2692
2693
2694
2695
2696
2697
2698
  }
  return 0;
}
#endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */


/*
** Convert an expression node to a TK_REGISTER


*/
static void exprToRegister(Expr *p, int iReg){
  p->op2 = p->op;
  p->op = TK_REGISTER;
  p->iTable = iReg;
  ExprClearProperty(p, EP_Skip);
}

































/*
** Generate code into the current Vdbe to evaluate the given
** expression.  Attempt to store the results in register "target".
** Return the register where results are stored.
**
** With this routine, there is no guarantee that results will
** be stored in target.  The result might be stored in some other
** register if it is convenient to do so.  The calling function
** must check the return code and move the results to the desired
** register.
*/
int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
  Vdbe *v = pParse->pVdbe;  /* The VM under construction */
  int op;                   /* The opcode being coded */
  int inReg = target;       /* Results stored in register inReg */
  int regFree1 = 0;         /* If non-zero free this temporary register */
  int regFree2 = 0;         /* If non-zero free this temporary register */
  int r1, r2, r3, r4;       /* Various register numbers */
  sqlite3 *db = pParse->db; /* The database connection */
  Expr tempX;               /* Temporary expression node */


  assert( target>0 && target<=pParse->nMem );
  if( v==0 ){
    assert( pParse->db->mallocFailed );
    return 0;
  }








|
>
>







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


















|


>







3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
  }
  return 0;
}
#endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */


/*
** Convert a scalar expression node to a TK_REGISTER referencing
** register iReg.  The caller must ensure that iReg already contains
** the correct value for the expression.
*/
static void exprToRegister(Expr *p, int iReg){
  p->op2 = p->op;
  p->op = TK_REGISTER;
  p->iTable = iReg;
  ExprClearProperty(p, EP_Skip);
}

/*
** Evaluate an expression (either a vector or a scalar expression) and store
** the result in continguous temporary registers.  Return the index of
** the first register used to store the result.
**
** If the returned result register is a temporary scalar, then also write
** that register number into *piFreeable.  If the returned result register
** is not a temporary or if the expression is a vector set *piFreeable
** to 0.
*/
static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
  int iResult;
  int nResult = sqlite3ExprVectorSize(p);
  if( nResult==1 ){
    iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
  }else{
    *piFreeable = 0;
    if( p->op==TK_SELECT ){
      iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
    }else{
      int i;
      iResult = pParse->nMem+1;
      pParse->nMem += nResult;
      for(i=0; i<nResult; i++){
        sqlite3ExprCode(pParse, p->x.pList->a[i].pExpr, i+iResult);
      }
    }
  }
  return iResult;
}


/*
** Generate code into the current Vdbe to evaluate the given
** expression.  Attempt to store the results in register "target".
** Return the register where results are stored.
**
** With this routine, there is no guarantee that results will
** be stored in target.  The result might be stored in some other
** register if it is convenient to do so.  The calling function
** must check the return code and move the results to the desired
** register.
*/
int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
  Vdbe *v = pParse->pVdbe;  /* The VM under construction */
  int op;                   /* The opcode being coded */
  int inReg = target;       /* Results stored in register inReg */
  int regFree1 = 0;         /* If non-zero free this temporary register */
  int regFree2 = 0;         /* If non-zero free this temporary register */
  int r1, r2;               /* Various register numbers */
  sqlite3 *db = pParse->db; /* The database connection */
  Expr tempX;               /* Temporary expression node */
  int p5 = 0;

  assert( target>0 && target<=pParse->nMem );
  if( v==0 ){
    assert( pParse->db->mallocFailed );
    return 0;
  }

2797
2798
2799
2800
2801
2802
2803





2804
2805
2806
2807
2808
2809




2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
      sqlite3VdbeAddOp2(v, OP_Cast, target,
                        sqlite3AffinityType(pExpr->u.zToken, 0));
      testcase( usedAsColumnCache(pParse, inReg, inReg) );
      sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
      break;
    }
#endif /* SQLITE_OMIT_CAST */





    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ: {




      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
                  r1, r2, inReg, SQLITE_STOREP2);
      assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
      assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
      assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
      assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
      assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
      assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
      testcase( regFree1==0 );
      testcase( regFree2==0 );
      break;
    }
    case TK_IS:
    case TK_ISNOT: {
      testcase( op==TK_IS );
      testcase( op==TK_ISNOT );
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
      op = (op==TK_IS) ? TK_EQ : TK_NE;
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
                  r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
      VdbeCoverageIf(v, op==TK_EQ);
      VdbeCoverageIf(v, op==TK_NE);
      testcase( regFree1==0 );
      testcase( regFree2==0 );
      break;
    }
    case TK_AND:
    case TK_OR:
    case TK_PLUS:
    case TK_STAR:
    case TK_MINUS:







>
>
>
>
>






>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<







3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492

3493













3494
3495
3496
3497
3498
3499
3500
      sqlite3VdbeAddOp2(v, OP_Cast, target,
                        sqlite3AffinityType(pExpr->u.zToken, 0));
      testcase( usedAsColumnCache(pParse, inReg, inReg) );
      sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
      break;
    }
#endif /* SQLITE_OMIT_CAST */
    case TK_IS:
    case TK_ISNOT:
      op = (op==TK_IS) ? TK_EQ : TK_NE;
      p5 = SQLITE_NULLEQ;
      /* fall-through */
    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ: {
      Expr *pLeft = pExpr->pLeft;
      if( sqlite3ExprIsVector(pLeft) ){
        codeVectorCompare(pParse, pExpr, target, op, p5);
      }else{
        r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
        r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
        codeCompare(pParse, pLeft, pExpr->pRight, op,
            r1, r2, inReg, SQLITE_STOREP2 | p5);
        assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
        assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
        assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
        assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
        assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
        assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
        testcase( regFree1==0 );
        testcase( regFree2==0 );

      }













      break;
    }
    case TK_AND:
    case TK_OR:
    case TK_PLUS:
    case TK_STAR:
    case TK_MINUS:
3055
3056
3057
3058
3059
3060
3061

3062
3063



3064








3065
3066
3067
3068
3069
3070
3071
        sqlite3ReleaseTempRange(pParse, r1, nFarg);
      }
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_EXISTS:
    case TK_SELECT: {

      testcase( op==TK_EXISTS );
      testcase( op==TK_SELECT );



      inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);








      break;
    }
    case TK_IN: {
      int destIfFalse = sqlite3VdbeMakeLabel(v);
      int destIfNull = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeAddOp2(v, OP_Null, 0, target);
      sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);







>


>
>
>
|
>
>
>
>
>
>
>
>







3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
        sqlite3ReleaseTempRange(pParse, r1, nFarg);
      }
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_EXISTS:
    case TK_SELECT: {
      int nCol;
      testcase( op==TK_EXISTS );
      testcase( op==TK_SELECT );
      if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
        sqlite3SubselectError(pParse, nCol, 1);
      }else{
        inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
      }
      break;
    }
    case TK_SELECT_COLUMN: {
      if( pExpr->pLeft->iTable==0 ){
        pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0);
      }
      inReg = pExpr->pLeft->iTable + pExpr->iColumn;
      break;
    }
    case TK_IN: {
      int destIfFalse = sqlite3VdbeMakeLabel(v);
      int destIfNull = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeAddOp2(v, OP_Null, 0, target);
      sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
    **    x>=y AND x<=z
    **
    ** X is stored in pExpr->pLeft.
    ** Y is stored in pExpr->pList->a[0].pExpr.
    ** Z is stored in pExpr->pList->a[1].pExpr.
    */
    case TK_BETWEEN: {
      Expr *pLeft = pExpr->pLeft;
      struct ExprList_item *pLItem = pExpr->x.pList->a;
      Expr *pRight = pLItem->pExpr;

      r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
      r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
      testcase( regFree1==0 );
      testcase( regFree2==0 );
      r3 = sqlite3GetTempReg(pParse);
      r4 = sqlite3GetTempReg(pParse);
      codeCompare(pParse, pLeft, pRight, OP_Ge,
                  r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
      pLItem++;
      pRight = pLItem->pExpr;
      sqlite3ReleaseTempReg(pParse, regFree2);
      r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
      testcase( regFree2==0 );
      codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
      VdbeCoverage(v);
      sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
      sqlite3ReleaseTempReg(pParse, r3);
      sqlite3ReleaseTempReg(pParse, r4);
      break;
    }
    case TK_SPAN:
    case TK_COLLATE: 
    case TK_UPLUS: {
      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
      break;







<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







3755
3756
3757
3758
3759
3760
3761



3762


















3763
3764
3765
3766
3767
3768
3769
    **    x>=y AND x<=z
    **
    ** X is stored in pExpr->pLeft.
    ** Y is stored in pExpr->pList->a[0].pExpr.
    ** Z is stored in pExpr->pList->a[1].pExpr.
    */
    case TK_BETWEEN: {



      exprCodeBetween(pParse, pExpr, target, 0, 0);


















      break;
    }
    case TK_SPAN:
    case TK_COLLATE: 
    case TK_UPLUS: {
      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
      break;
3173
3174
3175
3176
3177
3178
3179




3180
3181
3182
3183
3184
3185
3186
      ){
        sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
      }
#endif
      break;
    }






    /*
    ** Form A:
    **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
    **
    ** Form B:
    **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END







>
>
>
>







3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
      ){
        sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
      }
#endif
      break;
    }

    case TK_VECTOR: {
      sqlite3ErrorMsg(pParse, "row value misused");
      break;
    }

    /*
    ** Form A:
    **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
    **
    ** Form B:
    **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3216
3217
3218
3219
3220
3221
3222
3223
3224

3225
3226
3227
3228
3229
3230
3231
      pEList = pExpr->x.pList;
      aListelem = pEList->a;
      nExpr = pEList->nExpr;
      endLabel = sqlite3VdbeMakeLabel(v);
      if( (pX = pExpr->pLeft)!=0 ){
        tempX = *pX;
        testcase( pX->op==TK_COLUMN );
        exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
        testcase( regFree1==0 );

        opCompare.op = TK_EQ;
        opCompare.pLeft = &tempX;
        pTest = &opCompare;
        /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
        ** The value in regFree1 might get SCopy-ed into the file result.
        ** So make sure that the regFree1 register is not reused for other
        ** purposes and possibly overwritten.  */







|

>







3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
      pEList = pExpr->x.pList;
      aListelem = pEList->a;
      nExpr = pEList->nExpr;
      endLabel = sqlite3VdbeMakeLabel(v);
      if( (pX = pExpr->pLeft)!=0 ){
        tempX = *pX;
        testcase( pX->op==TK_COLUMN );
        exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
        testcase( regFree1==0 );
        memset(&opCompare, 0, sizeof(opCompare));
        opCompare.op = TK_EQ;
        opCompare.pLeft = &tempX;
        pTest = &opCompare;
        /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
        ** The value in regFree1 might get SCopy-ed into the file result.
        ** So make sure that the regFree1 register is not reused for other
        ** purposes and possibly overwritten.  */
3496
3497
3498
3499
3500
3501
3502








3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516





3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531

3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544

3545
3546
3547
3548
3549
3550
3551
**
** The above is equivalent to 
**
**    x>=y AND x<=z
**
** Code it as such, taking care to do the common subexpression
** elimination of x.








*/
static void exprCodeBetween(
  Parse *pParse,    /* Parsing and code generating context */
  Expr *pExpr,      /* The BETWEEN expression */
  int dest,         /* Jump here if the jump is taken */
  int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
  int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
){
  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
  Expr compLeft;    /* The  x>=y  term */
  Expr compRight;   /* The  x<=z  term */
  Expr exprX;       /* The  x  subexpression */
  int regFree1 = 0; /* Temporary use register */






  assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
  exprX = *pExpr->pLeft;
  exprAnd.op = TK_AND;
  exprAnd.pLeft = &compLeft;
  exprAnd.pRight = &compRight;
  compLeft.op = TK_GE;
  compLeft.pLeft = &exprX;
  compLeft.pRight = pExpr->x.pList->a[0].pExpr;
  compRight.op = TK_LE;
  compRight.pLeft = &exprX;
  compRight.pRight = pExpr->x.pList->a[1].pExpr;
  exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
  if( jumpIfTrue ){
    sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
  }else{

    sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
  }
  sqlite3ReleaseTempReg(pParse, regFree1);

  /* Ensure adequate test coverage */
  testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
  testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
  testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
  testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
  testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
  testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
  testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
  testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );

}

/*
** Generate code for a boolean expression such that a jump is made
** to the label "dest" if the expression is true but execution
** continues straight thru if the expression is false.
**







>
>
>
>
>
>
>
>




|
|


|





>
>
>
>
>











|
|
|

>
|




|
|
|
|
|
|
|
|
>







4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
**
** The above is equivalent to 
**
**    x>=y AND x<=z
**
** Code it as such, taking care to do the common subexpression
** elimination of x.
**
** The xJumpIf parameter determines details:
**
**    NULL:                   Store the boolean result in reg[dest]
**    sqlite3ExprIfTrue:      Jump to dest if true
**    sqlite3ExprIfFalse:     Jump to dest if false
**
** The jumpIfNull parameter is ignored if xJumpIf is NULL.
*/
static void exprCodeBetween(
  Parse *pParse,    /* Parsing and code generating context */
  Expr *pExpr,      /* The BETWEEN expression */
  int dest,         /* Jump destination or storage location */
  void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
  int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
){
 Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
  Expr compLeft;    /* The  x>=y  term */
  Expr compRight;   /* The  x<=z  term */
  Expr exprX;       /* The  x  subexpression */
  int regFree1 = 0; /* Temporary use register */


  memset(&compLeft, 0, sizeof(Expr));
  memset(&compRight, 0, sizeof(Expr));
  memset(&exprAnd, 0, sizeof(Expr));

  assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
  exprX = *pExpr->pLeft;
  exprAnd.op = TK_AND;
  exprAnd.pLeft = &compLeft;
  exprAnd.pRight = &compRight;
  compLeft.op = TK_GE;
  compLeft.pLeft = &exprX;
  compLeft.pRight = pExpr->x.pList->a[0].pExpr;
  compRight.op = TK_LE;
  compRight.pLeft = &exprX;
  compRight.pRight = pExpr->x.pList->a[1].pExpr;
  exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
  if( xJump ){
    xJump(pParse, &exprAnd, dest, jumpIfNull);
  }else{
    exprX.flags |= EP_FromJoin;
    sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
  }
  sqlite3ReleaseTempReg(pParse, regFree1);

  /* Ensure adequate test coverage */
  testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
  testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
  testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
  testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
  testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
  testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
  testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
  testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
  testcase( xJump==0 );
}

/*
** Generate code for a boolean expression such that a jump is made
** to the label "dest" if the expression is true but execution
** continues straight thru if the expression is false.
**
3602
3603
3604
3605
3606
3607
3608

3609
3610
3611
3612
3613
3614
3615
      /* Fall thru */
    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ: {

      testcase( jumpIfNull==0 );
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
                  r1, r2, dest, jumpIfNull);
      assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
      assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);







>







4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
      /* Fall thru */
    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ: {
      if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
      testcase( jumpIfNull==0 );
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
                  r1, r2, dest, jumpIfNull);
      assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
      assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654

3655
3656
3657
3658
3659
3660
3661
      VdbeCoverageIf(v, op==TK_ISNULL);
      VdbeCoverageIf(v, op==TK_NOTNULL);
      testcase( regFree1==0 );
      break;
    }
    case TK_BETWEEN: {
      testcase( jumpIfNull==0 );
      exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_IN: {
      int destIfFalse = sqlite3VdbeMakeLabel(v);
      int destIfNull = jumpIfNull ? dest : destIfFalse;
      sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
      sqlite3VdbeGoto(v, dest);
      sqlite3VdbeResolveLabel(v, destIfFalse);
      break;
    }
#endif
    default: {

      if( exprAlwaysTrue(pExpr) ){
        sqlite3VdbeGoto(v, dest);
      }else if( exprAlwaysFalse(pExpr) ){
        /* No-op */
      }else{
        r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
        sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);







|













>







4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
      VdbeCoverageIf(v, op==TK_ISNULL);
      VdbeCoverageIf(v, op==TK_NOTNULL);
      testcase( regFree1==0 );
      break;
    }
    case TK_BETWEEN: {
      testcase( jumpIfNull==0 );
      exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_IN: {
      int destIfFalse = sqlite3VdbeMakeLabel(v);
      int destIfNull = jumpIfNull ? dest : destIfFalse;
      sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
      sqlite3VdbeGoto(v, dest);
      sqlite3VdbeResolveLabel(v, destIfFalse);
      break;
    }
#endif
    default: {
    default_expr:
      if( exprAlwaysTrue(pExpr) ){
        sqlite3VdbeGoto(v, dest);
      }else if( exprAlwaysFalse(pExpr) ){
        /* No-op */
      }else{
        r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
        sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3754
3755
3756
3757
3758
3759
3760

3761
3762
3763
3764
3765
3766
3767
      /* Fall thru */
    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ: {

      testcase( jumpIfNull==0 );
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
                  r1, r2, dest, jumpIfNull);
      assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
      assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);







>







4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
      /* Fall thru */
    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ: {
      if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
      testcase( jumpIfNull==0 );
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
                  r1, r2, dest, jumpIfNull);
      assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
      assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806

3807
3808
3809
3810
3811
3812
3813
      testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
      testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
      testcase( regFree1==0 );
      break;
    }
    case TK_BETWEEN: {
      testcase( jumpIfNull==0 );
      exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_IN: {
      if( jumpIfNull ){
        sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
      }else{
        int destIfNull = sqlite3VdbeMakeLabel(v);
        sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
        sqlite3VdbeResolveLabel(v, destIfNull);
      }
      break;
    }
#endif
    default: {

      if( exprAlwaysFalse(pExpr) ){
        sqlite3VdbeGoto(v, dest);
      }else if( exprAlwaysTrue(pExpr) ){
        /* no-op */
      }else{
        r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
        sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);







|















>







4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
      testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
      testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
      testcase( regFree1==0 );
      break;
    }
    case TK_BETWEEN: {
      testcase( jumpIfNull==0 );
      exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_IN: {
      if( jumpIfNull ){
        sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
      }else{
        int destIfNull = sqlite3VdbeMakeLabel(v);
        sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
        sqlite3VdbeResolveLabel(v, destIfNull);
      }
      break;
    }
#endif
    default: {
    default_expr: 
      if( exprAlwaysFalse(pExpr) ){
        sqlite3VdbeGoto(v, dest);
      }else if( exprAlwaysTrue(pExpr) ){
        /* no-op */
      }else{
        r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
        sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325

4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338




4339
4340
4341
4342
4343
4344
4345
      }
    }
    pParse->aTempReg[pParse->nTempReg++] = iReg;
  }
}

/*
** Allocate or deallocate a block of nReg consecutive registers
*/
int sqlite3GetTempRange(Parse *pParse, int nReg){
  int i, n;

  i = pParse->iRangeReg;
  n = pParse->nRangeReg;
  if( nReg<=n ){
    assert( !usedAsColumnCache(pParse, i, i+n-1) );
    pParse->iRangeReg += nReg;
    pParse->nRangeReg -= nReg;
  }else{
    i = pParse->nMem+1;
    pParse->nMem += nReg;
  }
  return i;
}
void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){




  sqlite3ExprCacheRemove(pParse, iReg, nReg);
  if( nReg>pParse->nRangeReg ){
    pParse->nRangeReg = nReg;
    pParse->iRangeReg = iReg;
  }
}








|



>













>
>
>
>







4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
      }
    }
    pParse->aTempReg[pParse->nTempReg++] = iReg;
  }
}

/*
** Allocate or deallocate a block of nReg consecutive registers.
*/
int sqlite3GetTempRange(Parse *pParse, int nReg){
  int i, n;
  if( nReg==1 ) return sqlite3GetTempReg(pParse);
  i = pParse->iRangeReg;
  n = pParse->nRangeReg;
  if( nReg<=n ){
    assert( !usedAsColumnCache(pParse, i, i+n-1) );
    pParse->iRangeReg += nReg;
    pParse->nRangeReg -= nReg;
  }else{
    i = pParse->nMem+1;
    pParse->nMem += nReg;
  }
  return i;
}
void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
  if( nReg==1 ){
    sqlite3ReleaseTempReg(pParse, iReg);
    return;
  }
  sqlite3ExprCacheRemove(pParse, iReg, nReg);
  if( nReg>pParse->nRangeReg ){
    pParse->nRangeReg = nReg;
    pParse->iRangeReg = iReg;
  }
}

Added src/in-operator.md.























































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
IN-Operator Implementation Notes
================================

## Definitions:

An IN operator has one of the following formats:

>
     x IN (y1,y2,y3,...,yN)
     x IN (subquery)

The "x" is referred to as the LHS (left-hand side).  The list or subquery
on the right is called the RHS (right-hand side).  If the RHS is a list
it must be a non-empty list.  But if the RHS is a subquery, it can be an
empty set.

The LHS can be a scalar (a single quantity) or a vector (a list of
two or or more values) or a subquery that returns one or more columns.
We use the term "vector" to mean an actually list of values or a
subquery that returns two or more columns.  An isolated value or
a subquery that returns a single columns is called a scalar.

The RHS can be a subquery that returns a single column, a subquery
that returns two or more columns, or a list of scalars.  It is not
currently support for the RHS to be a list of vectors.

The number of columns for LHS must match the number of columns for
the RHS.  If the RHS is a list of values, then the LHS must be a 
scalar.  If the RHS is a subquery returning N columns, then the LHS
must be a vector of size N.

NULL values can occur in either or both of the LHS and RHS.
If the LHS contains only
NULL values then we say that it is a "total-NULL".  If the LHS contains
some NULL values and some non-NULL values, then it is a "partial-NULL".
For a scalar, there is no difference between a partial-NULL and a total-NULL.
The RHS is a partial-NULL if any row contains a NULL value.  The RHS is
a total-NULL if it contains one or more rows that contain only NULL values.
The LHS is called "non-NULL" if it contains no NULL values.  The RHS is
called "non-NULL" if it contains no NULL values in any row.

The result of an IN operator is one of TRUE, FALSE, or NULL.  A NULL result
means that it cannot be determined if the LHS is contained in the RHS due
to the presence of NULL values.  In some contexts (for example, when the IN
operator occurs in a WHERE clause)
the system only needs a binary result: TRUE or NOT-TRUE.  One can also
to define a binary result of FALSE and NOT-FALSE, but
it turns out that no extra optimizations are possible in that case, so if
the FALSE/NOT-FALSE binary is needed, we have to compute the three-state
TRUE/FALSE/NULL result and then combine the TRUE and NULL values into 
NOT-FALSE.

A "NOT IN" operator is computed by first computing the equivalent IN
operator, then interchanging the TRUE and FALSE results.

## Simple Full-Scan Algorithm

The following algorithm always compute the correct answer.  However, this
algorithm is suboptimal, especially if there are many rows on the RHS.

  1.  Set the null-flag to false
  2.  For each row in the RHS:
      <ol type='a'>
      <li>  Compare the LHS against the RHS
      <li>  If the LHS exactly matches the RHS, immediately return TRUE
      <li>  If the comparison result is NULL, set the null-flag to true
      </ol>
  3.  If the null-flag is true, return NULL.
  4.  Return FALSE

## Optimized Algorithm

The following procedure computes the same answer as the simple full-scan
algorithm, though it does so with less work in the common case.  This
is the algorithm that is implemented in SQLite.

  1.  If the RHS is a constant list of length 1 or 2, then rewrite the
      IN operator as a simple expression.  Implement

            x IN (y1,y2)

      as if it were

            x=y1 OR x=y2

      This is the INDEX_NOOP optimization and is only undertaken if the
      IN operator is used for membership testing.  If the IN operator is
      driving a loop, then skip this step entirely.

  2.  Check the LHS to see if it is a partial-NULL and if it is, jump
      ahead to step 5.

  3.  Do a binary search of the RHS using the LHS as a probe.  If
      an exact match is found, return TRUE.

  4.  If the RHS is non-NULL then return FALSE.

  5.  If we do not need to distinguish between FALSE and NULL,
      then return FALSE.
  
  6.  For each row in the RHS, compare that row against the LHS and
      if the result is NULL, immediately return NULL.  In the case
      of a scalar IN operator, we only need to look at the very first
      row the RHS because for a scalar RHS, all NULLs will always come 
      first.  If the RHS is empty, this step is a no-op.

  7.  Return FALSE.

Changes to src/parse.y.

785
786
787
788
789
790
791



792
793
794
795



796
797
798
799
800
801
802
%type setlist {ExprList*}
%destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}

setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {
  A = sqlite3ExprListAppend(pParse, A, Y.pExpr);
  sqlite3ExprListSetName(pParse, A, &X, 1);
}



setlist(A) ::= nm(X) EQ expr(Y). {
  A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
  sqlite3ExprListSetName(pParse, A, &X, 1);
}




////////////////////////// The INSERT command /////////////////////////////////
//
cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). {
  sqlite3WithPush(pParse, W, 1);
  sqlite3Insert(pParse, X, S, F, R);
}







>
>
>




>
>
>







785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
%type setlist {ExprList*}
%destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}

setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {
  A = sqlite3ExprListAppend(pParse, A, Y.pExpr);
  sqlite3ExprListSetName(pParse, A, &X, 1);
}
setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). {
  A = sqlite3ExprListAppendVector(pParse, A, X, Y.pExpr);
}
setlist(A) ::= nm(X) EQ expr(Y). {
  A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
  sqlite3ExprListSetName(pParse, A, &X, 1);
}
setlist(A) ::= LP idlist(X) RP EQ expr(Y). {
  A = sqlite3ExprListAppendVector(pParse, 0, X, Y.pExpr);
}

////////////////////////// The INSERT command /////////////////////////////////
//
cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). {
  sqlite3WithPush(pParse, W, 1);
  sqlite3Insert(pParse, X, S, F, R);
}
941
942
943
944
945
946
947











948
949
950
951
952
953
954
  */
  static void exprNot(Parse *pParse, int doNot, ExprSpan *pSpan){
    if( doNot ){
      pSpan->pExpr = sqlite3PExpr(pParse, TK_NOT, pSpan->pExpr, 0, 0);
    }
  }
}












expr(A) ::= expr(A) AND(OP) expr(Y).    {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) OR(OP) expr(Y).     {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y).
                                        {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) EQ|NE(OP) expr(Y).  {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).







>
>
>
>
>
>
>
>
>
>
>







947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
  */
  static void exprNot(Parse *pParse, int doNot, ExprSpan *pSpan){
    if( doNot ){
      pSpan->pExpr = sqlite3PExpr(pParse, TK_NOT, pSpan->pExpr, 0, 0);
    }
  }
}

expr(A) ::= LP(L) nexprlist(X) COMMA expr(Y) RP(R). {
  ExprList *pList = sqlite3ExprListAppend(pParse, X, Y.pExpr);
  A.pExpr = sqlite3PExpr(pParse, TK_VECTOR, 0, 0, 0);
  if( A.pExpr ){
    A.pExpr->x.pList = pList;
    spanSet(&A, &L, &R);
  }else{
    sqlite3ExprListDelete(pParse->db, pList);
  }
}

expr(A) ::= expr(A) AND(OP) expr(Y).    {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) OR(OP) expr(Y).     {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y).
                                        {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) EQ|NE(OP) expr(Y).  {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).

Changes to src/resolve.c.

771
772
773
774
775
776
777



























778
779
780
781
782
783
784
        }
      }
      break;
    }
    case TK_VARIABLE: {
      notValid(pParse, pNC, "parameters", NC_IsCheck|NC_PartIdx|NC_IdxExpr);
      break;



























    }
  }
  return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue;
}

/*
** pEList is a list of expressions which are really the result set of the







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
        }
      }
      break;
    }
    case TK_VARIABLE: {
      notValid(pParse, pNC, "parameters", NC_IsCheck|NC_PartIdx|NC_IdxExpr);
      break;
    }
    case TK_EQ:
    case TK_NE:
    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_IS:
    case TK_ISNOT: {
      int nLeft, nRight;
      if( pParse->db->mallocFailed ) break;
      assert( pExpr->pRight!=0 );
      assert( pExpr->pLeft!=0 );
      nLeft = sqlite3ExprVectorSize(pExpr->pLeft);
      nRight = sqlite3ExprVectorSize(pExpr->pRight);
      if( nLeft!=nRight ){
        testcase( pExpr->op==TK_EQ );
        testcase( pExpr->op==TK_NE );
        testcase( pExpr->op==TK_LT );
        testcase( pExpr->op==TK_LE );
        testcase( pExpr->op==TK_GT );
        testcase( pExpr->op==TK_GE );
        testcase( pExpr->op==TK_IS );
        testcase( pExpr->op==TK_ISNOT );
        sqlite3ErrorMsg(pParse, "row value misused");
      }
      break; 
    }
  }
  return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue;
}

/*
** pEList is a list of expressions which are really the result set of the

Changes to src/select.c.

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

/*
** Initialize a SelectDest structure.
*/
void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
  pDest->eDest = (u8)eDest;
  pDest->iSDParm = iParm;
  pDest->affSdst = 0;
  pDest->iSdst = 0;
  pDest->nSdst = 0;
}


/*
** Allocate a new Select structure and return a pointer to that







|







84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

/*
** Initialize a SelectDest structure.
*/
void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
  pDest->eDest = (u8)eDest;
  pDest->iSDParm = iParm;
  pDest->zAffSdst = 0;
  pDest->iSdst = 0;
  pDest->nSdst = 0;
}


/*
** Allocate a new Select structure and return a pointer to that
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
  r1 = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
  sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
  sqlite3ReleaseTempReg(pParse, r1);
}

#ifndef SQLITE_OMIT_SUBQUERY
/*
** Generate an error message when a SELECT is used within a subexpression
** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
** column.  We do this in a subroutine because the error used to occur
** in multiple places.  (The error only occurs in one place now, but we
** retain the subroutine to minimize code disruption.)
*/
static int checkForMultiColumnSelectError(
  Parse *pParse,       /* Parse context. */
  SelectDest *pDest,   /* Destination of SELECT results */
  int nExpr            /* Number of result columns returned by SELECT */
){
  int eDest = pDest->eDest;
  if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
    sqlite3ErrorMsg(pParse, "only a single result allowed for "
       "a SELECT that is part of an expression");
    return 1;
  }else{
    return 0;
  }
}
#endif

/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
** If srcTab is negative, then the pEList expressions
** are evaluated in order to get the data for this row.  If srcTab is
** zero or more, then data is pulled from srcTab and pEList is used only 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







655
656
657
658
659
660
661
























662
663
664
665
666
667
668
  r1 = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
  sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
  sqlite3ReleaseTempReg(pParse, r1);
}

























/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
** If srcTab is negative, then the pEList expressions
** are evaluated in order to get the data for this row.  If srcTab is
** zero or more, then data is pulled from srcTab and pEList is used only 
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902

903
904
905

906

907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936

#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {
      assert( nResultCol==1 );
      pDest->affSdst =
                  sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
      if( pSort ){
        /* At first glance you would think we could optimize out the
        ** ORDER BY in this case since the order of entries in the set
        ** does not matter.  But there might be a LIMIT clause, in which
        ** case the order does matter */

        pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg);
      }else{
        int r1 = sqlite3GetTempReg(pParse);

        sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);

        sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
        sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
        sqlite3ReleaseTempReg(pParse, r1);
      }
      break;
    }

    /* If any row exist in the result set, record that fact and abort.
    */
    case SRT_Exists: {
      sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell and break out
    ** of the scan loop.
    */
    case SRT_Mem: {
      assert( nResultCol==1 );
      if( pSort ){

        pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg);
      }else{
        assert( regResult==iParm );
        /* The LIMIT clause will jump out of the loop for us */
      }
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */







<
<
<





>
|


>
|
>
|















|
|


|

>
|







864
865
866
867
868
869
870



871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913

#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {



      if( pSort ){
        /* At first glance you would think we could optimize out the
        ** ORDER BY in this case since the order of entries in the set
        ** does not matter.  But there might be a LIMIT clause, in which
        ** case the order does matter */
        pushOntoSorter(
            pParse, pSort, p, regResult, regResult, nResultCol, nPrefixReg);
      }else{
        int r1 = sqlite3GetTempReg(pParse);
        assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
        sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 
            r1, pDest->zAffSdst, nResultCol);
        sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
        sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
        sqlite3ReleaseTempReg(pParse, r1);
      }
      break;
    }

    /* If any row exist in the result set, record that fact and abort.
    */
    case SRT_Exists: {
      sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell or array of 
    ** memory cells and break out of the scan loop.
    */
    case SRT_Mem: {
      assert( nResultCol==pDest->nSdst );
      if( pSort ){
        pushOntoSorter(
            pParse, pSort, p, regResult, regResult, nResultCol, nPrefixReg);
      }else{
        assert( regResult==iParm );
        /* The LIMIT clause will jump out of the loop for us */
      }
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
  assert( addrBreak<0 );
  if( pSort->labelBkOut ){
    sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
    sqlite3VdbeGoto(v, addrBreak);
    sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
  }
  iTab = pSort->iECursor;
  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    regRowid = 0;
    regRow = pDest->iSdst;
    nSortData = nColumn;
  }else{
    regRowid = sqlite3GetTempReg(pParse);
    regRow = sqlite3GetTempReg(pParse);
    nSortData = 1;
  }
  nKey = pOrderBy->nExpr - pSort->nOBSat;
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    int regSortOut = ++pParse->nMem;
    iSortTab = pParse->nTab++;
    if( pSort->labelBkOut ){
      addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);







|





|
|







1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
  assert( addrBreak<0 );
  if( pSort->labelBkOut ){
    sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
    sqlite3VdbeGoto(v, addrBreak);
    sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
  }
  iTab = pSort->iECursor;
  if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
    regRowid = 0;
    regRow = pDest->iSdst;
    nSortData = nColumn;
  }else{
    regRowid = sqlite3GetTempReg(pParse);
    regRow = sqlite3GetTempRange(pParse, nColumn);
    nSortData = nColumn;
  }
  nKey = pOrderBy->nExpr - pSort->nOBSat;
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    int regSortOut = ++pParse->nMem;
    iSortTab = pParse->nTab++;
    if( pSort->labelBkOut ){
      addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313



1314

1315
1316
1317
1318
1319
1320
1321
      sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case SRT_Set: {
      assert( nColumn==1 );
      sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
                        &pDest->affSdst, 1);
      sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
      sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
      break;
    }
    case SRT_Mem: {
      assert( nColumn==1 );
      sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }
#endif
    default: {
      assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 
      testcase( eDest==SRT_Output );
      testcase( eDest==SRT_Coroutine );
      if( eDest==SRT_Output ){
        sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
        sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
      }else{
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
      }
      break;
    }
  }
  if( regRowid ){



    sqlite3ReleaseTempReg(pParse, regRow);

    sqlite3ReleaseTempReg(pParse, regRowid);
  }
  /* The bottom of the loop
  */
  sqlite3VdbeResolveLabel(v, addrContinue);
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);







|
|
|
|




<
<


















>
>
>
|
>







1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270


1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
      sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case SRT_Set: {
      assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
      sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
                        pDest->zAffSdst, nColumn);
      sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
      sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
      break;
    }
    case SRT_Mem: {


      /* The LIMIT clause will terminate the loop for us */
      break;
    }
#endif
    default: {
      assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 
      testcase( eDest==SRT_Output );
      testcase( eDest==SRT_Coroutine );
      if( eDest==SRT_Output ){
        sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
        sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
      }else{
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
      }
      break;
    }
  }
  if( regRowid ){
    if( eDest==SRT_Set ){
      sqlite3ReleaseTempRange(pParse, regRow, nColumn);
    }else{
      sqlite3ReleaseTempReg(pParse, regRow);
    }
    sqlite3ReleaseTempReg(pParse, regRowid);
  }
  /* The bottom of the loop
  */
  sqlite3VdbeResolveLabel(v, addrContinue);
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823

/*
** Get a VDBE for the given parser context.  Create a new one if necessary.
** If an error occurs, return NULL and leave a message in pParse.
*/
static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){
  Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
  if( v ) sqlite3VdbeAddOp0(v, OP_Init);
  if( pParse->pToplevel==0
   && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
  ){
    pParse->okConstFactor = 1;
  }
  return v;
}







|







1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802

/*
** Get a VDBE for the given parser context.  Create a new one if necessary.
** If an error occurs, return NULL and leave a message in pParse.
*/
static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){
  Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
  if( v ) sqlite3VdbeAddOp2(v, OP_Init, 0, 1);
  if( pParse->pToplevel==0
   && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
  ){
    pParse->okConstFactor = 1;
  }
  return v;
}
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665

2666
2667
2668
2669
2670
2671
2672
2673
      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
      sqlite3ReleaseTempReg(pParse, r2);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {
      int r1;
      assert( pIn->nSdst==1 || pParse->nErr>0 );
      pDest->affSdst = 
         sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
      r1 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);

      sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
      sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell and break out







|
<
<



|
<
<

|
>
|







2627
2628
2629
2630
2631
2632
2633
2634


2635
2636
2637
2638


2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
      sqlite3ReleaseTempReg(pParse, r2);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)".


    */
    case SRT_Set: {
      int r1;
      testcase( pIn->nSdst>1 );


      r1 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 
          r1, pDest->zAffSdst, pIn->nSdst);
      sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
      sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell and break out
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
  assert( p->pEList!=0 );
  isAgg = (p->selFlags & SF_Aggregate)!=0;
#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x100 ){
    SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif


  /* If writing to memory or generating a set
  ** only a single column may be output.
  */
#ifndef SQLITE_OMIT_SUBQUERY
  if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){
    goto select_end;
  }
#endif

  /* Try to flatten subqueries in the FROM clause up into the main query
  */
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
    struct SrcList_item *pItem = &pTabList->a[i];







<
<
<
<
<
<
<
<
<
<







4867
4868
4869
4870
4871
4872
4873










4874
4875
4876
4877
4878
4879
4880
  assert( p->pEList!=0 );
  isAgg = (p->selFlags & SF_Aggregate)!=0;
#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x100 ){
    SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }










#endif

  /* Try to flatten subqueries in the FROM clause up into the main query
  */
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
    struct SrcList_item *pItem = &pTabList->a[i];

Changes to src/sqliteInt.h.

1729
1730
1731
1732
1733
1734
1735

1736
1737
1738
1739
1740
1741
1742
** changing the affinity.
**
** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
** It causes an assert() to fire if either operand to a comparison
** operator is NULL.  It is added to certain comparison operators to
** prove that the operands are always NOT NULL.
*/

#define SQLITE_JUMPIFNULL   0x10  /* jumps if either operand is NULL */
#define SQLITE_STOREP2      0x20  /* Store result in reg[P2] rather than jump */
#define SQLITE_NULLEQ       0x80  /* NULL=NULL */
#define SQLITE_NOTNULL      0x90  /* Assert that operands are never NULL */

/*
** An object of this type is created for each virtual table present in







>







1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
** changing the affinity.
**
** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
** It causes an assert() to fire if either operand to a comparison
** operator is NULL.  It is added to certain comparison operators to
** prove that the operands are always NOT NULL.
*/
#define SQLITE_KEEPNULL     0x08  /* Used by vector == or <> */
#define SQLITE_JUMPIFNULL   0x10  /* jumps if either operand is NULL */
#define SQLITE_STOREP2      0x20  /* Store result in reg[P2] rather than jump */
#define SQLITE_NULLEQ       0x80  /* NULL=NULL */
#define SQLITE_NOTNULL      0x90  /* Assert that operands are never NULL */

/*
** An object of this type is created for each virtual table present in
2293
2294
2295
2296
2297
2298
2299
2300

2301
2302

2303
2304
2305
2306
2307
2308
2309

#if SQLITE_MAX_EXPR_DEPTH>0
  int nHeight;           /* Height of the tree headed by this node */
#endif
  int iTable;            /* TK_COLUMN: cursor number of table holding column
                         ** TK_REGISTER: register number
                         ** TK_TRIGGER: 1 -> new, 0 -> old
                         ** EP_Unlikely:  134217728 times likelihood */

  ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
                         ** TK_VARIABLE: variable number (always >= 1). */

  i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  u8 op2;                /* TK_REGISTER: original value of Expr.op
                         ** TK_COLUMN: the value of p5 for OP_Column
                         ** TK_AGG_FUNCTION: nesting depth */
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  Table *pTab;           /* Table for TK_COLUMN expressions. */







|
>

|
>







2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312

#if SQLITE_MAX_EXPR_DEPTH>0
  int nHeight;           /* Height of the tree headed by this node */
#endif
  int iTable;            /* TK_COLUMN: cursor number of table holding column
                         ** TK_REGISTER: register number
                         ** TK_TRIGGER: 1 -> new, 0 -> old
                         ** EP_Unlikely:  134217728 times likelihood
                         ** TK_SELECT: 1st register of result vector */
  ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
                         ** TK_VARIABLE: variable number (always >= 1).
                         ** TK_SELECT_COLUMN: column of the result vector */
  i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  u8 op2;                /* TK_REGISTER: original value of Expr.op
                         ** TK_COLUMN: the value of p5 for OP_Column
                         ** TK_AGG_FUNCTION: nesting depth */
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  Table *pTab;           /* Table for TK_COLUMN expressions. */
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790

/*
** An instance of this object describes where to put of the results of
** a SELECT statement.
*/
struct SelectDest {
  u8 eDest;            /* How to dispose of the results.  On of SRT_* above. */
  char affSdst;        /* Affinity used when eDest==SRT_Set */
  int iSDParm;         /* A parameter used by the eDest disposal method */
  int iSdst;           /* Base register where results are written */
  int nSdst;           /* Number of registers allocated */
  ExprList *pOrderBy;  /* Key columns for SRT_Queue and SRT_DistQueue */
};

/*







|







2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793

/*
** An instance of this object describes where to put of the results of
** a SELECT statement.
*/
struct SelectDest {
  u8 eDest;            /* How to dispose of the results.  On of SRT_* above. */
  char *zAffSdst;      /* Affinity used when eDest==SRT_Set */
  int iSDParm;         /* A parameter used by the eDest disposal method */
  int iSdst;           /* Base register where results are written */
  int nSdst;           /* Number of registers allocated */
  ExprList *pOrderBy;  /* Key columns for SRT_Queue and SRT_DistQueue */
};

/*
3508
3509
3510
3511
3512
3513
3514

3515
3516
3517
3518
3519
3520
3521
#endif
#if defined(SQLITE_TEST)
  void *sqlite3TestTextToPtr(const char*);
#endif

#if defined(SQLITE_DEBUG)
  void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);

  void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
  void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
  void sqlite3TreeViewWith(TreeView*, const With*, u8);
#endif


void sqlite3SetString(char **, sqlite3*, const char*);







>







3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
#endif
#if defined(SQLITE_TEST)
  void *sqlite3TestTextToPtr(const char*);
#endif

#if defined(SQLITE_DEBUG)
  void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
  void sqlite3TreeViewBareExprList(TreeView*, const ExprList*, const char*);
  void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
  void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
  void sqlite3TreeViewWith(TreeView*, const With*, u8);
#endif


void sqlite3SetString(char **, sqlite3*, const char*);
3539
3540
3541
3542
3543
3544
3545

3546
3547
3548
3549
3550
3551
3552
Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
void sqlite3PExprAddSelect(Parse*, Expr*, Select*);
Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
void sqlite3ExprAssignVarNumber(Parse*, Expr*);
void sqlite3ExprDelete(sqlite3*, Expr*);
ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);

void sqlite3ExprListSetSortOrder(ExprList*,int);
void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
void sqlite3ExprListDelete(sqlite3*, ExprList*);
u32 sqlite3ExprListFlags(const ExprList*);
int sqlite3Init(sqlite3*, char**);
int sqlite3InitCallback(void*, int, char**, char**);







>







3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
void sqlite3PExprAddSelect(Parse*, Expr*, Select*);
Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
void sqlite3ExprAssignVarNumber(Parse*, Expr*);
void sqlite3ExprDelete(sqlite3*, Expr*);
ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
ExprList *sqlite3ExprListAppendVector(Parse*,ExprList*,IdList*,Expr*);
void sqlite3ExprListSetSortOrder(ExprList*,int);
void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
void sqlite3ExprListDelete(sqlite3*, ExprList*);
u32 sqlite3ExprListFlags(const ExprList*);
int sqlite3Init(sqlite3*, char**);
int sqlite3InitCallback(void*, int, char**, char**);
3874
3875
3876
3877
3878
3879
3880

3881
3882
3883
3884
3885
3886
3887
#define putVarint    sqlite3PutVarint


const char *sqlite3IndexAffinityStr(sqlite3*, Index*);
void sqlite3TableAffinity(Vdbe*, Table*, int);
char sqlite3CompareAffinity(Expr *pExpr, char aff2);
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);

char sqlite3ExprAffinity(Expr *pExpr);
int sqlite3Atoi64(const char*, i64*, int, u8);
int sqlite3DecOrHexToI64(const char*, i64*);
void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...);
void sqlite3Error(sqlite3*,int);
void sqlite3SystemError(sqlite3*,int);
void *sqlite3HexToBlob(sqlite3*, const char *z, int n);







>







3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
#define putVarint    sqlite3PutVarint


const char *sqlite3IndexAffinityStr(sqlite3*, Index*);
void sqlite3TableAffinity(Vdbe*, Table*, int);
char sqlite3CompareAffinity(Expr *pExpr, char aff2);
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
char sqlite3TableColumnAffinity(Table*,int);
char sqlite3ExprAffinity(Expr *pExpr);
int sqlite3Atoi64(const char*, i64*, int, u8);
int sqlite3DecOrHexToI64(const char*, i64*);
void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...);
void sqlite3Error(sqlite3*,int);
void sqlite3SystemError(sqlite3*,int);
void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
void sqlite3RootPageMoved(sqlite3*, int, int, int);
void sqlite3Reindex(Parse*, Token*, Token*);
void sqlite3AlterFunctions(void);
void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
int sqlite3GetToken(const unsigned char *, int *);
void sqlite3NestedParse(Parse*, const char*, ...);
void sqlite3ExpirePreparedStatements(sqlite3*);
int sqlite3CodeSubselect(Parse *, Expr *, int, int);
void sqlite3SelectPrep(Parse*, Select*, NameContext*);
void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p);
int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
int sqlite3ResolveExprNames(NameContext*, Expr*);
int sqlite3ResolveExprListNames(NameContext*, ExprList*);
void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);







|







3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
void sqlite3RootPageMoved(sqlite3*, int, int, int);
void sqlite3Reindex(Parse*, Token*, Token*);
void sqlite3AlterFunctions(void);
void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
int sqlite3GetToken(const unsigned char *, int *);
void sqlite3NestedParse(Parse*, const char*, ...);
void sqlite3ExpirePreparedStatements(sqlite3*);
int sqlite3CodeSubselect(Parse*, Expr *, int, int);
void sqlite3SelectPrep(Parse*, Select*, NameContext*);
void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p);
int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
int sqlite3ResolveExprNames(NameContext*, Expr*);
int sqlite3ResolveExprListNames(NameContext*, ExprList*);
void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
3993
3994
3995
3996
3997
3998
3999






4000
4001
4002
4003

4004
4005
4006

4007
4008
4009
4010
4011
4012
4013
char *sqlite3StrAccumFinish(StrAccum*);
void sqlite3StrAccumReset(StrAccum*);
void sqlite3SelectDestInit(SelectDest*,int,int);
Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);

void sqlite3BackupRestart(sqlite3_backup *);
void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);







#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
void sqlite3AnalyzeFunctions(void);
int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*);

int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**);
void sqlite3Stat4ProbeFree(UnpackedRecord*);
int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);

#endif

/*
** The interface to the LEMON-generated parser
*/
void *sqlite3ParserAlloc(void*(*)(u64));
void sqlite3ParserFree(void*, void(*)(void*));







>
>
>
>
>
>



|
>



>







3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
char *sqlite3StrAccumFinish(StrAccum*);
void sqlite3StrAccumReset(StrAccum*);
void sqlite3SelectDestInit(SelectDest*,int,int);
Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);

void sqlite3BackupRestart(sqlite3_backup *);
void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);

#ifndef SQLITE_OMIT_SUBQUERY
int sqlite3ExprCheckIN(Parse*, Expr*);
#else
# define sqlite3ExprCheckIN(x,y) SQLITE_OK
#endif

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
void sqlite3AnalyzeFunctions(void);
int sqlite3Stat4ProbeSetValue(
    Parse*,Index*,UnpackedRecord**,Expr*,int,int,int*);
int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**);
void sqlite3Stat4ProbeFree(UnpackedRecord*);
int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
char sqlite3IndexColumnAffinity(sqlite3*, Index*, int);
#endif

/*
** The interface to the LEMON-generated parser
*/
void *sqlite3ParserAlloc(void*(*)(u64));
void sqlite3ParserFree(void*, void(*)(void*));
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
#define IN_INDEX_NOOP         5   /* No table available. Use comparisons */
/*
** Allowed flags for the 3rd parameter to sqlite3FindInIndex().
*/
#define IN_INDEX_NOOP_OK     0x0001  /* OK to return IN_INDEX_NOOP */
#define IN_INDEX_MEMBERSHIP  0x0002  /* IN operator used for membership test */
#define IN_INDEX_LOOP        0x0004  /* IN operator used as a loop */
int sqlite3FindInIndex(Parse *, Expr *, u32, int*);

int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
int sqlite3JournalSize(sqlite3_vfs *);
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
  int sqlite3JournalCreate(sqlite3_file *);
#endif








|







4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
#define IN_INDEX_NOOP         5   /* No table available. Use comparisons */
/*
** Allowed flags for the 3rd parameter to sqlite3FindInIndex().
*/
#define IN_INDEX_NOOP_OK     0x0001  /* OK to return IN_INDEX_NOOP */
#define IN_INDEX_MEMBERSHIP  0x0002  /* IN operator used for membership test */
#define IN_INDEX_LOOP        0x0004  /* IN operator used as a loop */
int sqlite3FindInIndex(Parse *, Expr *, u32, int*, int*);

int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
int sqlite3JournalSize(sqlite3_vfs *);
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
  int sqlite3JournalCreate(sqlite3_file *);
#endif

4257
4258
4259
4260
4261
4262
4263





4264
int sqlite3ThreadJoin(SQLiteThread*, void**);
#endif

#if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)
int sqlite3DbstatRegister(sqlite3*);
#endif






#endif /* SQLITEINT_H */







>
>
>
>
>

4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
int sqlite3ThreadJoin(SQLiteThread*, void**);
#endif

#if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)
int sqlite3DbstatRegister(sqlite3*);
#endif

int sqlite3ExprVectorSize(Expr *pExpr);
int sqlite3ExprIsVector(Expr *pExpr);
Expr *sqlite3VectorFieldSubexpr(Expr*, int);
Expr *sqlite3ExprForVectorField(Parse*,Expr*,int);

#endif /* SQLITEINT_H */

Changes to src/treeview.c.

446
447
448
449
450
451
452









453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

485
486
487
488
489
490
491
492
493
494
495









496
497
498
499
    }
#endif
    case TK_MATCH: {
      sqlite3TreeViewLine(pView, "MATCH {%d:%d}%s",
                          pExpr->iTable, pExpr->iColumn, zFlgs);
      sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
      break;









    }
    default: {
      sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
      break;
    }
  }
  if( zBinOp ){
    sqlite3TreeViewLine(pView, "%s%s", zBinOp, zFlgs);
    sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
    sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
  }else if( zUniOp ){
    sqlite3TreeViewLine(pView, "%s%s", zUniOp, zFlgs);
    sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
  }
  sqlite3TreeViewPop(pView);
}


/*
** Generate a human-readable explanation of an expression list.
*/
void sqlite3TreeViewExprList(
  TreeView *pView,
  const ExprList *pList,
  u8 moreToFollow,
  const char *zLabel
){
  int i;
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
  if( pList==0 ){
    sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
  }else{

    sqlite3TreeViewLine(pView, "%s", zLabel);
    for(i=0; i<pList->nExpr; i++){
      int j = pList->a[i].u.x.iOrderByCol;
      if( j ){
        sqlite3TreeViewPush(pView, 0);
        sqlite3TreeViewLine(pView, "iOrderByCol=%d", j);
      }
      sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);
      if( j ) sqlite3TreeViewPop(pView);
    }
  }









  sqlite3TreeViewPop(pView);
}

#endif /* SQLITE_DEBUG */







>
>
>
>
>
>
>
>
>
















>




|


<


<
<




>











>
>
>
>
>
>
>
>
>




446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487


488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    }
#endif
    case TK_MATCH: {
      sqlite3TreeViewLine(pView, "MATCH {%d:%d}%s",
                          pExpr->iTable, pExpr->iColumn, zFlgs);
      sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
      break;
    }
    case TK_VECTOR: {
      sqlite3TreeViewBareExprList(pView, pExpr->x.pList, "VECTOR");
      break;
    }
    case TK_SELECT_COLUMN: {
      sqlite3TreeViewLine(pView, "SELECT-COLUMN %d", pExpr->iColumn);
      sqlite3TreeViewSelect(pView, pExpr->pLeft->x.pSelect, 0);
      break;
    }
    default: {
      sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
      break;
    }
  }
  if( zBinOp ){
    sqlite3TreeViewLine(pView, "%s%s", zBinOp, zFlgs);
    sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
    sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
  }else if( zUniOp ){
    sqlite3TreeViewLine(pView, "%s%s", zUniOp, zFlgs);
    sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
  }
  sqlite3TreeViewPop(pView);
}


/*
** Generate a human-readable explanation of an expression list.
*/
void sqlite3TreeViewBareExprList(
  TreeView *pView,
  const ExprList *pList,

  const char *zLabel
){


  if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
  if( pList==0 ){
    sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
  }else{
    int i;
    sqlite3TreeViewLine(pView, "%s", zLabel);
    for(i=0; i<pList->nExpr; i++){
      int j = pList->a[i].u.x.iOrderByCol;
      if( j ){
        sqlite3TreeViewPush(pView, 0);
        sqlite3TreeViewLine(pView, "iOrderByCol=%d", j);
      }
      sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);
      if( j ) sqlite3TreeViewPop(pView);
    }
  }
}
void sqlite3TreeViewExprList(
  TreeView *pView,
  const ExprList *pList,
  u8 moreToFollow,
  const char *zLabel
){
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  sqlite3TreeViewBareExprList(pView, pList, zLabel);
  sqlite3TreeViewPop(pView);
}

#endif /* SQLITE_DEBUG */

Changes to src/vdbe.c.

569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
#ifdef SQLITE_DEBUG
  int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
#endif
  int rc = SQLITE_OK;        /* Value to return */
  sqlite3 *db = p->db;       /* The database */
  u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
  u8 encoding = ENC(db);     /* The database encoding */
  int iCompare = 0;          /* Result of last OP_Compare operation */
  unsigned nVmStep = 0;      /* Number of virtual machine steps */
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
#endif
  Mem *aMem = p->aMem;       /* Copy of p->aMem */
  Mem *pIn1 = 0;             /* 1st input operand */
  Mem *pIn2 = 0;             /* 2nd input operand */







|







569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
#ifdef SQLITE_DEBUG
  int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
#endif
  int rc = SQLITE_OK;        /* Value to return */
  sqlite3 *db = p->db;       /* The database */
  u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
  u8 encoding = ENC(db);     /* The database encoding */
  int iCompare = 0;          /* Result of last comparison */
  unsigned nVmStep = 0;      /* Number of virtual machine steps */
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
#endif
  Mem *aMem = p->aMem;       /* Copy of p->aMem */
  Mem *pIn1 = 0;             /* 1st input operand */
  Mem *pIn2 = 0;             /* 2nd input operand */
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
  pIn1->u.i = (int)(pOp - aOp);
  REGISTER_TRACE(pOp->p1, pIn1);
  pOp = &aOp[pcDest];
  break;
}

/* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
** Synopsis:  if r[P3]=null halt
**
** Check the value in register P3.  If it is NULL then Halt using
** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
** value in register P3 is not NULL, then this routine is a no-op.
** The P5 parameter should be 1.
*/
case OP_HaltIfNull: {      /* in3 */







|







901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
  pIn1->u.i = (int)(pOp - aOp);
  REGISTER_TRACE(pOp->p1, pIn1);
  pOp = &aOp[pcDest];
  break;
}

/* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
** Synopsis: if r[P3]=null halt
**
** Check the value in register P3.  If it is NULL then Halt using
** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
** value in register P3 is not NULL, then this routine is a no-op.
** The P5 parameter should be 1.
*/
case OP_HaltIfNull: {      /* in3 */
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
  }
#endif
  break;
}

/* Opcode: Null P1 P2 P3 * *
** Synopsis:  r[P2..P3]=NULL
**
** Write a NULL into registers P2.  If P3 greater than P2, then also write
** NULL into register P3 and every register in between P2 and P3.  If P3
** is less than P2 (typically P3 is zero) then only register P2 is
** set to NULL.
**
** If the P1 value is non-zero, then also set the MEM_Cleared flag so that







|







1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
  }
#endif
  break;
}

/* Opcode: Null P1 P2 P3 * *
** Synopsis: r[P2..P3]=NULL
**
** Write a NULL into registers P2.  If P3 greater than P2, then also write
** NULL into register P3 and every register in between P2 and P3.  If P3
** is less than P2 (typically P3 is zero) then only register P2 is
** set to NULL.
**
** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
    pOut->flags = nullFlag;
    cnt--;
  }
  break;
}

/* Opcode: SoftNull P1 * * * *
** Synopsis:  r[P1]=NULL
**
** Set register P1 to have the value NULL as seen by the OP_MakeRecord
** instruction, but do not free any string or blob memory associated with
** the register, so that if the value was a string or blob that was
** previously copied using OP_SCopy, the copies will continue to be valid.
*/
case OP_SoftNull: {







|







1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
    pOut->flags = nullFlag;
    cnt--;
  }
  break;
}

/* Opcode: SoftNull P1 * * * *
** Synopsis: r[P1]=NULL
**
** Set register P1 to have the value NULL as seen by the OP_MakeRecord
** instruction, but do not free any string or blob memory associated with
** the register, so that if the value was a string or blob that was
** previously copied using OP_SCopy, the copies will continue to be valid.
*/
case OP_SoftNull: {
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
  pOut = out2Prerelease(p, pOp);
  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Move P1 P2 P3 * *
** Synopsis:  r[P2@P3]=r[P1@P3]
**
** Move the P3 values in register P1..P1+P3-1 over into
** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
** for P3 to be less than 1.
*/







|







1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
  pOut = out2Prerelease(p, pOp);
  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Move P1 P2 P3 * *
** Synopsis: r[P2@P3]=r[P1@P3]
**
** Move the P3 values in register P1..P1+P3-1 over into
** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
** for P3 to be less than 1.
*/
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
  assert( (pIn1->flags & MEM_Int)!=0 );
  pOut = &aMem[pOp->p2];
  sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
  break;
}

/* Opcode: ResultRow P1 P2 * * *
** Synopsis:  output=r[P1@P2]
**
** The registers P1 through P1+P2-1 contain a single row of
** results. This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
** structure to provide access to the r(P1)..r(P1+P2-1) values as
** the result row.
*/







|







1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
  assert( (pIn1->flags & MEM_Int)!=0 );
  pOut = &aMem[pOp->p2];
  sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
  break;
}

/* Opcode: ResultRow P1 P2 * * *
** Synopsis: output=r[P1@P2]
**
** The registers P1 through P1+P2-1 contain a single row of
** results. This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
** structure to provide access to the r(P1)..r(P1+P2-1) values as
** the result row.
*/
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
  pOut->n = (int)nByte;
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Add P1 P2 P3 * *
** Synopsis:  r[P3]=r[P1]+r[P2]
**
** Add the value in register P1 to the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Multiply P1 P2 P3 * *
** Synopsis:  r[P3]=r[P1]*r[P2]
**
**
** Multiply the value in register P1 by the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Subtract P1 P2 P3 * *
** Synopsis:  r[P3]=r[P2]-r[P1]
**
** Subtract the value in register P1 from the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Divide P1 P2 P3 * *
** Synopsis:  r[P3]=r[P2]/r[P1]
**
** Divide the value in register P1 by the value in register P2
** and store the result in register P3 (P3=P2/P1). If the value in 
** register P1 is zero, then the result is NULL. If either input is 
** NULL, the result is NULL.
*/
/* Opcode: Remainder P1 P2 P3 * *
** Synopsis:  r[P3]=r[P2]%r[P1]
**
** Compute the remainder after integer register P2 is divided by 
** register P1 and store the result in register P3. 
** If the value in register P1 is zero the result is NULL.
** If either operand is NULL, the result is NULL.
*/
case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */







|






|







|






|







|







1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
  pOut->n = (int)nByte;
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Add P1 P2 P3 * *
** Synopsis: r[P3]=r[P1]+r[P2]
**
** Add the value in register P1 to the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Multiply P1 P2 P3 * *
** Synopsis: r[P3]=r[P1]*r[P2]
**
**
** Multiply the value in register P1 by the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Subtract P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]-r[P1]
**
** Subtract the value in register P1 from the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Divide P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]/r[P1]
**
** Divide the value in register P1 by the value in register P2
** and store the result in register P3 (P3=P2/P1). If the value in 
** register P1 is zero, then the result is NULL. If either input is 
** NULL, the result is NULL.
*/
/* Opcode: Remainder P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]%r[P1]
**
** Compute the remainder after integer register P2 is divided by 
** register P1 and store the result in register P3. 
** If the value in register P1 is zero the result is NULL.
** If either operand is NULL, the result is NULL.
*/
case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738

  REGISTER_TRACE(pOp->p3, pCtx->pOut);
  UPDATE_MAX_BLOBSIZE(pCtx->pOut);
  break;
}

/* Opcode: BitAnd P1 P2 P3 * *
** Synopsis:  r[P3]=r[P1]&r[P2]
**
** Take the bit-wise AND of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: BitOr P1 P2 P3 * *
** Synopsis:  r[P3]=r[P1]|r[P2]
**
** Take the bit-wise OR of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftLeft P1 P2 P3 * *
** Synopsis:  r[P3]=r[P2]<<r[P1]
**
** Shift the integer value in register P2 to the left by the
** number of bits specified by the integer in register P1.
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftRight P1 P2 P3 * *
** Synopsis:  r[P3]=r[P2]>>r[P1]
**
** Shift the integer value in register P2 to the right by the
** number of bits specified by the integer in register P1.
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */







|






|






|







|







1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738

  REGISTER_TRACE(pOp->p3, pCtx->pOut);
  UPDATE_MAX_BLOBSIZE(pCtx->pOut);
  break;
}

/* Opcode: BitAnd P1 P2 P3 * *
** Synopsis: r[P3]=r[P1]&r[P2]
**
** Take the bit-wise AND of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: BitOr P1 P2 P3 * *
** Synopsis: r[P3]=r[P1]|r[P2]
**
** Take the bit-wise OR of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftLeft P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]<<r[P1]
**
** Shift the integer value in register P2 to the left by the
** number of bits specified by the integer in register P1.
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftRight P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]>>r[P1]
**
** Shift the integer value in register P2 to the right by the
** number of bits specified by the integer in register P1.
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
  }
  pOut->u.i = iA;
  MemSetTypeFlag(pOut, MEM_Int);
  break;
}

/* Opcode: AddImm  P1 P2 * * *
** Synopsis:  r[P1]=r[P1]+P2
** 
** Add the constant P2 to the value in register P1.
** The result is always an integer.
**
** To force any register to be an integer, just add 0.
*/
case OP_AddImm: {            /* in1 */







|







1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
  }
  pOut->u.i = iA;
  MemSetTypeFlag(pOut, MEM_Int);
  break;
}

/* Opcode: AddImm  P1 P2 * * *
** Synopsis: r[P1]=r[P1]+P2
** 
** Add the constant P2 to the value in register P1.
** The result is always an integer.
**
** To force any register to be an integer, just add 0.
*/
case OP_AddImm: {            /* in1 */
1876
1877
1878
1879
1880
1881
1882














































1883
1884
1885
1886
1887

1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
  sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
  UPDATE_MAX_BLOBSIZE(pIn1);
  if( rc ) goto abort_due_to_error;
  break;
}
#endif /* SQLITE_OMIT_CAST */















































/* Opcode: Lt P1 P2 P3 P4 P5
** Synopsis: IF r[P3]<r[P1]
**
** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
** jump to address P2.  

**
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL 
** bit is clear then fall through if either operand is NULL.
**
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
** to coerce both inputs according to this affinity before the
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
** affinity is used. Note that the affinity conversions are stored
** back into the input registers P1 and P3.  So this opcode can cause
** persistent changes to registers P1 and P3.
**
** Once any conversions have taken place, and neither value is NULL, 
** the values are compared. If both values are blobs then memcmp() is
** used to determine the results of the comparison.  If both values
** are text, then the appropriate collating function specified in
** P4 is  used to do the comparison.  If P4 is not specified then
** memcmp() is used to compare text string.  If both values are
** numeric, then a numeric comparison is used. If the two values
** are of different types, then numbers are considered less than
** strings and strings are considered less than blobs.
**
** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
** store a boolean result (either 0, or 1, or NULL) in register P2.
**
** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
** equal to one another, provided that they do not have their MEM_Cleared
** bit set.
*/
/* Opcode: Ne P1 P2 P3 P4 P5
** Synopsis: IF r[P3]!=r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
** additional information.
**
** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
** true or false and is never NULL.  If both operands are NULL then the result
** of comparison is false.  If either operand is NULL then the result is true.
** If neither operand is NULL the result is the same as it would be if
** the SQLITE_NULLEQ flag were omitted from P5.
*/
/* Opcode: Eq P1 P2 P3 P4 P5
** Synopsis: IF r[P3]==r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are equal.
** See the Lt opcode for additional information.
**
** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
** true or false and is never NULL.  If both operands are NULL then the result
** of comparison is true.  If either operand is NULL then the result is false.
** If neither operand is NULL the result is the same as it would be if
** the SQLITE_NULLEQ flag were omitted from P5.
*/
/* Opcode: Le P1 P2 P3 P4 P5
** Synopsis: IF r[P3]<=r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is less than or equal to the content of
** register P1.  See the Lt opcode for additional information.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




|
>


|



















<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956

































1957
1958
1959
1960
1961
1962
1963
  sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
  UPDATE_MAX_BLOBSIZE(pIn1);
  if( rc ) goto abort_due_to_error;
  break;
}
#endif /* SQLITE_OMIT_CAST */

/* Opcode: Eq P1 P2 P3 P4 P5
** Synopsis: IF r[P3]==r[P1]
**
** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5, then
** store the result of comparison in register P2.
**
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
** to coerce both inputs according to this affinity before the
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
** affinity is used. Note that the affinity conversions are stored
** back into the input registers P1 and P3.  So this opcode can cause
** persistent changes to registers P1 and P3.
**
** Once any conversions have taken place, and neither value is NULL, 
** the values are compared. If both values are blobs then memcmp() is
** used to determine the results of the comparison.  If both values
** are text, then the appropriate collating function specified in
** P4 is used to do the comparison.  If P4 is not specified then
** memcmp() is used to compare text string.  If both values are
** numeric, then a numeric comparison is used. If the two values
** are of different types, then numbers are considered less than
** strings and strings are considered less than blobs.
**
** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
** true or false and is never NULL.  If both operands are NULL then the result
** of comparison is true.  If either operand is NULL then the result is false.
** If neither operand is NULL the result is the same as it would be if
** the SQLITE_NULLEQ flag were omitted from P5.
**
** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
** content of r[P2] is only changed if the new value is NULL or 0 (false).
** In other words, a prior r[P2] value will not be overwritten by 1 (true).
*/
/* Opcode: Ne P1 P2 P3 P4 P5
** Synopsis: IF r[P3]!=r[P1]
**
** This works just like the Eq opcode except that the jump is taken if
** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
** additional information.
**
** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
** content of r[P2] is only changed if the new value is NULL or 1 (true).
** In other words, a prior r[P2] value will not be overwritten by 0 (false).
*/
/* Opcode: Lt P1 P2 P3 P4 P5
** Synopsis: IF r[P3]<r[P1]
**
** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5 store
** the result of comparison (0 or 1 or NULL) into register P2.
**
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL 
** bit is clear then fall through if either operand is NULL.
**
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
** to coerce both inputs according to this affinity before the
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
** affinity is used. Note that the affinity conversions are stored
** back into the input registers P1 and P3.  So this opcode can cause
** persistent changes to registers P1 and P3.
**
** Once any conversions have taken place, and neither value is NULL, 
** the values are compared. If both values are blobs then memcmp() is
** used to determine the results of the comparison.  If both values
** are text, then the appropriate collating function specified in
** P4 is  used to do the comparison.  If P4 is not specified then
** memcmp() is used to compare text string.  If both values are
** numeric, then a numeric comparison is used. If the two values
** are of different types, then numbers are considered less than
** strings and strings are considered less than blobs.

































*/
/* Opcode: Le P1 P2 P3 P4 P5
** Synopsis: IF r[P3]<=r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is less than or equal to the content of
** register P1.  See the Lt opcode for additional information.
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
*/
case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
case OP_Le:               /* same as TK_LE, jump, in1, in3 */
case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
  int res;            /* Result of the comparison of pIn1 against pIn3 */
  char affinity;      /* Affinity to use for comparison */
  u16 flags1;         /* Copy of initial value of pIn1->flags */
  u16 flags3;         /* Copy of initial value of pIn3->flags */

  pIn1 = &aMem[pOp->p1];
  pIn3 = &aMem[pOp->p3];
  flags1 = pIn1->flags;







|







1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
*/
case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
case OP_Le:               /* same as TK_LE, jump, in1, in3 */
case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
  int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
  char affinity;      /* Affinity to use for comparison */
  u16 flags1;         /* Copy of initial value of pIn1->flags */
  u16 flags3;         /* Copy of initial value of pIn3->flags */

  pIn1 = &aMem[pOp->p1];
  pIn3 = &aMem[pOp->p3];
  flags1 = pIn1->flags;
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004

2005
2006
2007
2008
2009
2010
2011
      assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
      assert( (flags1 & MEM_Cleared)==0 );
      assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
      if( (flags1&MEM_Null)!=0
       && (flags3&MEM_Null)!=0
       && (flags3&MEM_Cleared)==0
      ){
        res = 0;  /* Results are equal */
      }else{
        res = 1;  /* Results are not equal */
      }
    }else{
      /* SQLITE_NULLEQ is clear and at least one operand is NULL,
      ** then the result is always NULL.
      ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
      */
      if( pOp->p5 & SQLITE_STOREP2 ){
        pOut = &aMem[pOp->p2];

        memAboutToChange(p, pOut);
        MemSetTypeFlag(pOut, MEM_Null);
        REGISTER_TRACE(pOp->p2, pOut);
      }else{
        VdbeBranchTaken(2,3);
        if( pOp->p5 & SQLITE_JUMPIFNULL ){
          goto jump_to_p2;







|

|








>







2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
      assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
      assert( (flags1 & MEM_Cleared)==0 );
      assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
      if( (flags1&MEM_Null)!=0
       && (flags3&MEM_Null)!=0
       && (flags3&MEM_Cleared)==0
      ){
        res = 0;  /* Operands are equal */
      }else{
        res = 1;  /* Operands are not equal */
      }
    }else{
      /* SQLITE_NULLEQ is clear and at least one operand is NULL,
      ** then the result is always NULL.
      ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
      */
      if( pOp->p5 & SQLITE_STOREP2 ){
        pOut = &aMem[pOp->p2];
        iCompare = 1;    /* Operands are not equal */
        memAboutToChange(p, pOut);
        MemSetTypeFlag(pOut, MEM_Null);
        REGISTER_TRACE(pOp->p2, pOut);
      }else{
        VdbeBranchTaken(2,3);
        if( pOp->p5 & SQLITE_JUMPIFNULL ){
          goto jump_to_p2;
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073


















2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085


















2086
2087
2088
2089
2090
2091
2092
    if( flags3 & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn3);
      flags3 &= ~MEM_Zero;
    }
    res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
  }
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
    case OP_Gt:    res = res>0;      break;
    default:       res = res>=0;     break;
  }

  /* Undo any changes made by applyAffinity() to the input registers. */
  assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
  pIn1->flags = flags1;
  assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
  pIn3->flags = flags3;

  if( pOp->p5 & SQLITE_STOREP2 ){
    pOut = &aMem[pOp->p2];


















    memAboutToChange(p, pOut);
    MemSetTypeFlag(pOut, MEM_Int);
    pOut->u.i = res;
    REGISTER_TRACE(pOp->p2, pOut);
  }else{
    VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
    if( res ){
      goto jump_to_p2;
    }
  }
  break;
}



















/* Opcode: Permutation * * * P4 *
**
** Set the permutation used by the OP_Compare operator to be the array
** of integers in P4.
**
** The permutation is only valid until the next OP_Compare that has







|
|
|
|
|
|










>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|



|





>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
    if( flags3 & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn3);
      flags3 &= ~MEM_Zero;
    }
    res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
  }
  switch( pOp->opcode ){
    case OP_Eq:    res2 = res==0;     break;
    case OP_Ne:    res2 = res;        break;
    case OP_Lt:    res2 = res<0;      break;
    case OP_Le:    res2 = res<=0;     break;
    case OP_Gt:    res2 = res>0;      break;
    default:       res2 = res>=0;     break;
  }

  /* Undo any changes made by applyAffinity() to the input registers. */
  assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
  pIn1->flags = flags1;
  assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
  pIn3->flags = flags3;

  if( pOp->p5 & SQLITE_STOREP2 ){
    pOut = &aMem[pOp->p2];
    iCompare = res;
    res2 = res2!=0;  /* For this path res2 must be exactly 0 or 1 */
    if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
      /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
      ** and prevents OP_Ne from overwriting NULL with 0.  This flag
      ** is only used in contexts where either:
      **   (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
      **   (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
      ** Therefore it is not necessary to check the content of r[P2] for
      ** NULL. */
      assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
      assert( res2==0 || res2==1 );
      testcase( res2==0 && pOp->opcode==OP_Eq );
      testcase( res2==1 && pOp->opcode==OP_Eq );
      testcase( res2==0 && pOp->opcode==OP_Ne );
      testcase( res2==1 && pOp->opcode==OP_Ne );
      if( (pOp->opcode==OP_Eq)==res2 ) break;
    }
    memAboutToChange(p, pOut);
    MemSetTypeFlag(pOut, MEM_Int);
    pOut->u.i = res2;
    REGISTER_TRACE(pOp->p2, pOut);
  }else{
    VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
    if( res2 ){
      goto jump_to_p2;
    }
  }
  break;
}

/* Opcode: ElseNotEq * P2 * * *
**
** This opcode must immediately follow an Lt or Gt comparison operator.
** If the operands in that previous comparison had been used with an Eq
** operator and if the result of that Eq would be NULL or false (0), then
** then jump to P2.  If the result of comparing the two previous operands
** using Eq would have been true (1), then fall through.
*/
case OP_ElseNotEq: {       /* same as TK_ESCAPE, jump */
  assert( pOp>aOp );
  assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt );
  assert( pOp[-1].p5 & SQLITE_STOREP2 );
  VdbeBranchTaken(iCompare!=0, 2);
  if( iCompare!=0 ) goto jump_to_p2;
  break;
}


/* Opcode: Permutation * * * P4 *
**
** Set the permutation used by the OP_Compare operator to be the array
** of integers in P4.
**
** The permutation is only valid until the next OP_Compare that has
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
  if( c ){
    goto jump_to_p2;
  }
  break;
}

/* Opcode: IsNull P1 P2 * * *
** Synopsis:  if r[P1]==NULL goto P2
**
** Jump to P2 if the value in register P1 is NULL.
*/
case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
  pIn1 = &aMem[pOp->p1];
  VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
  if( (pIn1->flags & MEM_Null)!=0 ){







|







2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
  if( c ){
    goto jump_to_p2;
  }
  break;
}

/* Opcode: IsNull P1 P2 * * *
** Synopsis: if r[P1]==NULL goto P2
**
** Jump to P2 if the value in register P1 is NULL.
*/
case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
  pIn1 = &aMem[pOp->p1];
  VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
  if( (pIn1->flags & MEM_Null)!=0 ){
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
  if( (pIn1->flags & MEM_Null)==0 ){
    goto jump_to_p2;
  }
  break;
}

/* Opcode: Column P1 P2 P3 P4 P5
** Synopsis:  r[P3]=PX
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction.  (See the MakeRecord opcode for additional
** information about the format of the data.)  Extract the P2-th column
** from this record.  If there are less that (P2+1) 
** values in the record, extract a NULL.
**







|







2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
  if( (pIn1->flags & MEM_Null)==0 ){
    goto jump_to_p2;
  }
  break;
}

/* Opcode: Column P1 P2 P3 P4 P5
** Synopsis: r[P3]=PX
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction.  (See the MakeRecord opcode for additional
** information about the format of the data.)  Extract the P2-th column
** from this record.  If there are less that (P2+1) 
** values in the record, extract a NULL.
**
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
    goto jump_to_p2;
  }else if( eqOnly ){
    assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
    pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
  }
  break;
}
  

/* Opcode: Found P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.







<







3918
3919
3920
3921
3922
3923
3924

3925
3926
3927
3928
3929
3930
3931
    goto jump_to_p2;
  }else if( eqOnly ){
    assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
    pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
  }
  break;
}


/* Opcode: Found P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
** value of register P2 will then change.  Make sure this does not
** cause any problems.)
**
** This instruction only works on tables.  The equivalent instruction
** for indices is OP_IdxInsert.
*/
/* Opcode: InsertInt P1 P2 P3 P4 P5
** Synopsis:  intkey=P3 data=r[P2]
**
** This works exactly like OP_Insert except that the key is the
** integer value P3, not the value of the integer stored in register P3.
*/
case OP_Insert: 
case OP_InsertInt: {
  Mem *pData;       /* MEM cell holding data for the record to be inserted */







|







4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
** value of register P2 will then change.  Make sure this does not
** cause any problems.)
**
** This instruction only works on tables.  The equivalent instruction
** for indices is OP_IdxInsert.
*/
/* Opcode: InsertInt P1 P2 P3 P4 P5
** Synopsis: intkey=P3 data=r[P2]
**
** This works exactly like OP_Insert except that the key is the
** integer value P3, not the value of the integer stored in register P3.
*/
case OP_Insert: 
case OP_InsertInt: {
  Mem *pData;       /* MEM cell holding data for the record to be inserted */
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
case OP_ResetCount: {
  sqlite3VdbeSetChanges(db, p->nChange);
  p->nChange = 0;
  break;
}

/* Opcode: SorterCompare P1 P2 P3 P4
** Synopsis:  if key(P1)!=trim(r[P3],P4) goto P2
**
** P1 is a sorter cursor. This instruction compares a prefix of the
** record blob in register P3 against a prefix of the entry that 
** the sorter cursor currently points to.  Only the first P4 fields
** of r[P3] and the sorter record are compared.
**
** If either P3 or the sorter contains a NULL in one of their significant







|







4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
case OP_ResetCount: {
  sqlite3VdbeSetChanges(db, p->nChange);
  p->nChange = 0;
  break;
}

/* Opcode: SorterCompare P1 P2 P3 P4
** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
**
** P1 is a sorter cursor. This instruction compares a prefix of the
** record blob in register P3 against a prefix of the entry that 
** the sorter cursor currently points to.  Only the first P4 fields
** of r[P3] and the sorter record are compared.
**
** If either P3 or the sorter contains a NULL in one of their significant
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
  }
  assert( pC->deferredMoveto==0 );
  pC->cacheStatus = CACHE_STALE;
  break;
}

/* Opcode: Seek P1 * P3 P4 *
** Synopsis:  Move P3 to P1.rowid
**
** P1 is an open index cursor and P3 is a cursor on the corresponding
** table.  This opcode does a deferred seek of the P3 table cursor
** to the row that corresponds to the current row of P1.
**
** This is a deferred seek.  Nothing actually happens until
** the cursor is used to read a record.  That way, if no reads







|







5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
  }
  assert( pC->deferredMoveto==0 );
  pC->cacheStatus = CACHE_STALE;
  break;
}

/* Opcode: Seek P1 * P3 P4 *
** Synopsis: Move P3 to P1.rowid
**
** P1 is an open index cursor and P3 is a cursor on the corresponding
** table.  This opcode does a deferred seek of the P3 table cursor
** to the row that corresponds to the current row of P1.
**
** This is a deferred seek.  Nothing actually happens until
** the cursor is used to read a record.  That way, if no reads
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
  UPDATE_MAX_BLOBSIZE(pIn1);
  sqlite3VdbeChangeEncoding(pIn1, encoding);
  break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/* Opcode: RowSetAdd P1 P2 * * *
** Synopsis:  rowset(P1)=r[P2]
**
** Insert the integer value held by register P2 into a boolean index
** held in register P1.
**
** An assertion fails if P2 is not an integer.
*/
case OP_RowSetAdd: {       /* in1, in2 */
  pIn1 = &aMem[pOp->p1];
  pIn2 = &aMem[pOp->p2];
  assert( (pIn2->flags & MEM_Int)!=0 );
  if( (pIn1->flags & MEM_RowSet)==0 ){
    sqlite3VdbeMemSetRowSet(pIn1);
    if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
  }
  sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
  break;
}

/* Opcode: RowSetRead P1 P2 P3 * *
** Synopsis:  r[P3]=rowset(P1)
**
** Extract the smallest value from boolean index P1 and put that value into
** register P3.  Or, if boolean index P1 is initially empty, leave P3
** unchanged and jump to instruction P2.
*/
case OP_RowSetRead: {       /* jump, in1, out3 */
  i64 val;







|



















|







5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
  UPDATE_MAX_BLOBSIZE(pIn1);
  sqlite3VdbeChangeEncoding(pIn1, encoding);
  break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/* Opcode: RowSetAdd P1 P2 * * *
** Synopsis: rowset(P1)=r[P2]
**
** Insert the integer value held by register P2 into a boolean index
** held in register P1.
**
** An assertion fails if P2 is not an integer.
*/
case OP_RowSetAdd: {       /* in1, in2 */
  pIn1 = &aMem[pOp->p1];
  pIn2 = &aMem[pOp->p2];
  assert( (pIn2->flags & MEM_Int)!=0 );
  if( (pIn1->flags & MEM_RowSet)==0 ){
    sqlite3VdbeMemSetRowSet(pIn1);
    if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
  }
  sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
  break;
}

/* Opcode: RowSetRead P1 P2 P3 * *
** Synopsis: r[P3]=rowset(P1)
**
** Extract the smallest value from boolean index P1 and put that value into
** register P3.  Or, if boolean index P1 is initially empty, leave P3
** unchanged and jump to instruction P2.
*/
case OP_RowSetRead: {       /* jump, in1, out3 */
  i64 val;
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
  pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
  break;
}
#endif


/* Opcode: Init * P2 * P4 *
** Synopsis:  Start at P2
**
** Programs contain a single instance of this opcode as the very first
** opcode.
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
** Or if P4 is blank, use the string returned by sqlite3_sql().







|







6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
  pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
  break;
}
#endif


/* Opcode: Init * P2 * P4 *
** Synopsis: Start at P2
**
** Programs contain a single instance of this opcode as the very first
** opcode.
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
** Or if P4 is blank, use the string returned by sqlite3_sql().
6824
6825
6826
6827
6828
6829
6830

6831
6832
6833
6834
6835
6836
6837
6838
6839
  if( (db->flags & SQLITE_SqlTrace)!=0
   && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
  ){
    sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
  }
#endif /* SQLITE_DEBUG */
#endif /* SQLITE_OMIT_TRACE */

  if( pOp->p2 ) goto jump_to_p2;
  break;
}

#ifdef SQLITE_ENABLE_CURSOR_HINTS
/* Opcode: CursorHint P1 * * P4 *
**
** Provide a hint to cursor P1 that it only needs to return rows that
** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer







>
|
<







6874
6875
6876
6877
6878
6879
6880
6881
6882

6883
6884
6885
6886
6887
6888
6889
  if( (db->flags & SQLITE_SqlTrace)!=0
   && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
  ){
    sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
  }
#endif /* SQLITE_DEBUG */
#endif /* SQLITE_OMIT_TRACE */
  assert( pOp->p2>0 );
  goto jump_to_p2;

}

#ifdef SQLITE_ENABLE_CURSOR_HINTS
/* Opcode: CursorHint P1 * * P4 *
**
** Provide a hint to cursor P1 that it only needs to return rows that
** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer

Changes to src/vdbemem.c.

1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533




1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557

1558


1559
1560
1561
1562
1563





1564



1565

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
}

/*
** This function is used to allocate and populate UnpackedRecord 
** structures intended to be compared against sample index keys stored 
** in the sqlite_stat4 table.
**
** A single call to this function attempts to populates field iVal (leftmost 
** is 0 etc.) of the unpacked record with a value extracted from expression
** pExpr. Extraction of values is possible if:
**
**  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
**
**  * The expression is a bound variable, and this is a reprepare, or
**
**  * The sqlite3ValueFromExpr() function is able to extract a value 
**    from the expression (i.e. the expression is a literal value).
**




** If a value can be extracted, the affinity passed as the 5th argument
** is applied to it before it is copied into the UnpackedRecord. Output
** parameter *pbOk is set to true if a value is extracted, or false 
** otherwise.
**
** When this function is called, *ppRec must either point to an object
** allocated by an earlier call to this function, or must be NULL. If it
** is NULL and a value can be successfully extracted, a new UnpackedRecord
** is allocated (and *ppRec set to point to it) before returning.
**
** Unless an error is encountered, SQLITE_OK is returned. It is not an
** error if a value cannot be extracted from pExpr. If an error does
** occur, an SQLite error code is returned.
*/
int sqlite3Stat4ProbeSetValue(
  Parse *pParse,                  /* Parse context */
  Index *pIdx,                    /* Index being probed */
  UnpackedRecord **ppRec,         /* IN/OUT: Probe record */
  Expr *pExpr,                    /* The expression to extract a value from */
  u8 affinity,                    /* Affinity to use */
  int iVal,                       /* Array element to populate */
  int *pbOk                       /* OUT: True if value was extracted */
){
  int rc;

  sqlite3_value *pVal = 0;


  struct ValueNewStat4Ctx alloc;

  alloc.pParse = pParse;
  alloc.pIdx = pIdx;
  alloc.ppRec = ppRec;





  alloc.iVal = iVal;





  rc = stat4ValueFromExpr(pParse, pExpr, affinity, &alloc, &pVal);
  assert( pVal==0 || pVal->db==pParse->db );
  *pbOk = (pVal!=0);
  return rc;
}

/*
** Attempt to extract a value from expression pExpr using the methods
** as described for sqlite3Stat4ProbeSetValue() above. 
**







|
|
|








>
>
>
>
|
|
|
|















|

|

|
>
|
>
>
|

|
|
|
>
>
>
>
>
|
>
>
>
|
>
|
<
|







1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582

1583
1584
1585
1586
1587
1588
1589
1590
}

/*
** This function is used to allocate and populate UnpackedRecord 
** structures intended to be compared against sample index keys stored 
** in the sqlite_stat4 table.
**
** A single call to this function populates zero or more fields of the
** record starting with field iVal (fields are numbered from left to
** right starting with 0). A single field is populated if:
**
**  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
**
**  * The expression is a bound variable, and this is a reprepare, or
**
**  * The sqlite3ValueFromExpr() function is able to extract a value 
**    from the expression (i.e. the expression is a literal value).
**
** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
** vector components that match either of the two latter criteria listed
** above.
**
** Before any value is appended to the record, the affinity of the 
** corresponding column within index pIdx is applied to it. Before
** this function returns, output parameter *pnExtract is set to the
** number of values appended to the record.
**
** When this function is called, *ppRec must either point to an object
** allocated by an earlier call to this function, or must be NULL. If it
** is NULL and a value can be successfully extracted, a new UnpackedRecord
** is allocated (and *ppRec set to point to it) before returning.
**
** Unless an error is encountered, SQLITE_OK is returned. It is not an
** error if a value cannot be extracted from pExpr. If an error does
** occur, an SQLite error code is returned.
*/
int sqlite3Stat4ProbeSetValue(
  Parse *pParse,                  /* Parse context */
  Index *pIdx,                    /* Index being probed */
  UnpackedRecord **ppRec,         /* IN/OUT: Probe record */
  Expr *pExpr,                    /* The expression to extract a value from */
  int nElem,                      /* Maximum number of values to append */
  int iVal,                       /* Array element to populate */
  int *pnExtract                  /* OUT: Values appended to the record */
){
  int rc = SQLITE_OK;
  int nExtract = 0;

  if( pExpr==0 || pExpr->op!=TK_SELECT ){
    int i;
    struct ValueNewStat4Ctx alloc;

    alloc.pParse = pParse;
    alloc.pIdx = pIdx;
    alloc.ppRec = ppRec;

    for(i=0; i<nElem; i++){
      sqlite3_value *pVal = 0;
      Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
      u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
      alloc.iVal = iVal+i;
      rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
      if( !pVal ) break;
      nExtract++;
    }
  }


  *pnExtract = nExtract;
  return rc;
}

/*
** Attempt to extract a value from expression pExpr using the methods
** as described for sqlite3Stat4ProbeSetValue() above. 
**

Changes to src/where.c.

822
823
824
825
826
827
828
829

830
831
832
833
834
835
836
837
838

839
840
841
842
843
844
845
** by passing the pointer returned by this function to sqlite3_free().
*/
static sqlite3_index_info *allocateIndexInfo(
  Parse *pParse,
  WhereClause *pWC,
  Bitmask mUnusable,              /* Ignore terms with these prereqs */
  struct SrcList_item *pSrc,
  ExprList *pOrderBy

){
  int i, j;
  int nTerm;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_orderby *pIdxOrderBy;
  struct sqlite3_index_constraint_usage *pUsage;
  WhereTerm *pTerm;
  int nOrderBy;
  sqlite3_index_info *pIdxInfo;


  /* Count the number of possible WHERE clause constraints referring
  ** to this virtual table */
  for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    if( pTerm->prereqRight & mUnusable ) continue;
    assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );







|
>









>







822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
** by passing the pointer returned by this function to sqlite3_free().
*/
static sqlite3_index_info *allocateIndexInfo(
  Parse *pParse,
  WhereClause *pWC,
  Bitmask mUnusable,              /* Ignore terms with these prereqs */
  struct SrcList_item *pSrc,
  ExprList *pOrderBy,
  u16 *pmNoOmit                   /* Mask of terms not to omit */
){
  int i, j;
  int nTerm;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_orderby *pIdxOrderBy;
  struct sqlite3_index_constraint_usage *pUsage;
  WhereTerm *pTerm;
  int nOrderBy;
  sqlite3_index_info *pIdxInfo;
  u16 mNoOmit = 0;

  /* Count the number of possible WHERE clause constraints referring
  ** to this virtual table */
  for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    if( pTerm->prereqRight & mUnusable ) continue;
    assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
920
921
922
923
924
925
926









927
928
929
930
931
932
933
934

935
936
937
938
939
940
941
    assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
    assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
    assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
    assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
    assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
    assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
    assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );









    j++;
  }
  for(i=0; i<nOrderBy; i++){
    Expr *pExpr = pOrderBy->a[i].pExpr;
    pIdxOrderBy[i].iColumn = pExpr->iColumn;
    pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
  }


  return pIdxInfo;
}

/*
** The table object reference passed as the second argument to this function
** must represent a virtual table. This function invokes the xBestIndex()
** method of the virtual table with the sqlite3_index_info object that







>
>
>
>
>
>
>
>
>








>







922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
    assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
    assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
    assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
    assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
    assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
    assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
    assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );

    if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
     && sqlite3ExprIsVector(pTerm->pExpr->pRight) 
    ){
      if( i<16 ) mNoOmit |= (1 << i);
      if( op==WO_LT ) pIdxCons[j].op = WO_LE;
      if( op==WO_GT ) pIdxCons[j].op = WO_GE;
    }

    j++;
  }
  for(i=0; i<nOrderBy; i++){
    Expr *pExpr = pOrderBy->a[i].pExpr;
    pIdxOrderBy[i].iColumn = pExpr->iColumn;
    pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
  }

  *pmNoOmit = mNoOmit;
  return pIdxInfo;
}

/*
** The table object reference passed as the second argument to this function
** must represent a virtual table. This function invokes the xBestIndex()
** method of the virtual table with the sqlite3_index_info object that
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
}


#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Return the affinity for a single column of an index.
*/
static char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
  assert( iCol>=0 && iCol<pIdx->nColumn );
  if( !pIdx->zColAff ){
    if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
  }
  return pIdx->zColAff[iCol];
}
#endif







|







1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
}


#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Return the affinity for a single column of an index.
*/
char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
  assert( iCol>=0 && iCol<pIdx->nColumn );
  if( !pIdx->zColAff ){
    if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
  }
  return pIdx->zColAff[iCol];
}
#endif
1380
1381
1382
1383
1384
1385
1386
1387

1388
1389
1390
1391
1392
1393
1394
  Index *p = pLoop->u.btree.pIndex;
  int nEq = pLoop->u.btree.nEq;

  if( p->nSample>0 && nEq<p->nSampleCol ){
    if( nEq==pBuilder->nRecValid ){
      UnpackedRecord *pRec = pBuilder->pRec;
      tRowcnt a[2];
      u8 aff;


      /* Variable iLower will be set to the estimate of the number of rows in 
      ** the index that are less than the lower bound of the range query. The
      ** lower bound being the concatenation of $P and $L, where $P is the
      ** key-prefix formed by the nEq values matched against the nEq left-most
      ** columns of the index, and $L is the value in pLower.
      **







|
>







1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
  Index *p = pLoop->u.btree.pIndex;
  int nEq = pLoop->u.btree.nEq;

  if( p->nSample>0 && nEq<p->nSampleCol ){
    if( nEq==pBuilder->nRecValid ){
      UnpackedRecord *pRec = pBuilder->pRec;
      tRowcnt a[2];
      int nBtm = pLoop->u.btree.nBtm;
      int nTop = pLoop->u.btree.nTop;

      /* Variable iLower will be set to the estimate of the number of rows in 
      ** the index that are less than the lower bound of the range query. The
      ** lower bound being the concatenation of $P and $L, where $P is the
      ** key-prefix formed by the nEq values matched against the nEq left-most
      ** columns of the index, and $L is the value in pLower.
      **
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436

1437
1438
1439
1440
1441
1442
1443
1444
1445


1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460


1461
1462
1463
1464
1465
1466
1467
1468
1469
      int iLwrIdx = -2;   /* aSample[] for the lower bound */
      int iUprIdx = -1;   /* aSample[] for the upper bound */

      if( pRec ){
        testcase( pRec->nField!=pBuilder->nRecValid );
        pRec->nField = pBuilder->nRecValid;
      }
      aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq);
      assert( nEq!=p->nKeyCol || aff==SQLITE_AFF_INTEGER );
      /* Determine iLower and iUpper using ($P) only. */
      if( nEq==0 ){
        iLower = 0;
        iUpper = p->nRowEst0;
      }else{
        /* Note: this call could be optimized away - since the same values must 
        ** have been requested when testing key $P in whereEqualScanEst().  */
        whereKeyStats(pParse, p, pRec, 0, a);
        iLower = a[0];
        iUpper = a[0] + a[1];
      }

      assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
      assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
      assert( p->aSortOrder!=0 );
      if( p->aSortOrder[nEq] ){
        /* The roles of pLower and pUpper are swapped for a DESC index */
        SWAP(WhereTerm*, pLower, pUpper);

      }

      /* If possible, improve on the iLower estimate using ($P:$L). */
      if( pLower ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pLower->pExpr->pRight;
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;


          iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
          iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
          if( iNew>iLower ) iLower = iNew;
          nOut--;
          pLower = 0;
        }
      }

      /* If possible, improve on the iUpper estimate using ($P:$U). */
      if( pUpper ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pUpper->pExpr->pRight;
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;


          iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
          iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
          if( iNew<iUpper ) iUpper = iNew;
          nOut--;
          pUpper = 0;
        }
      }

      pBuilder->pRec = pRec;







<
<


















>




|

|
|

>
>

|








|

|
|

>
>

|







1423
1424
1425
1426
1427
1428
1429


1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
      int iLwrIdx = -2;   /* aSample[] for the lower bound */
      int iUprIdx = -1;   /* aSample[] for the upper bound */

      if( pRec ){
        testcase( pRec->nField!=pBuilder->nRecValid );
        pRec->nField = pBuilder->nRecValid;
      }


      /* Determine iLower and iUpper using ($P) only. */
      if( nEq==0 ){
        iLower = 0;
        iUpper = p->nRowEst0;
      }else{
        /* Note: this call could be optimized away - since the same values must 
        ** have been requested when testing key $P in whereEqualScanEst().  */
        whereKeyStats(pParse, p, pRec, 0, a);
        iLower = a[0];
        iUpper = a[0] + a[1];
      }

      assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
      assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
      assert( p->aSortOrder!=0 );
      if( p->aSortOrder[nEq] ){
        /* The roles of pLower and pUpper are swapped for a DESC index */
        SWAP(WhereTerm*, pLower, pUpper);
        SWAP(int, nBtm, nTop);
      }

      /* If possible, improve on the iLower estimate using ($P:$L). */
      if( pLower ){
        int n;                    /* Values extracted from pExpr */
        Expr *pExpr = pLower->pExpr->pRight;
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
        if( rc==SQLITE_OK && n ){
          tRowcnt iNew;
          u16 mask = WO_GT|WO_LE;
          if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
          iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
          iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
          if( iNew>iLower ) iLower = iNew;
          nOut--;
          pLower = 0;
        }
      }

      /* If possible, improve on the iUpper estimate using ($P:$U). */
      if( pUpper ){
        int n;                    /* Values extracted from pExpr */
        Expr *pExpr = pUpper->pExpr->pRight;
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
        if( rc==SQLITE_OK && n ){
          tRowcnt iNew;
          u16 mask = WO_GT|WO_LE;
          if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
          iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
          iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
          if( iNew<iUpper ) iUpper = iNew;
          nOut--;
          pUpper = 0;
        }
      }

      pBuilder->pRec = pRec;
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
  WhereLoopBuilder *pBuilder,
  Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
  tRowcnt *pnRow       /* Write the revised row estimate here */
){
  Index *p = pBuilder->pNew->u.btree.pIndex;
  int nEq = pBuilder->pNew->u.btree.nEq;
  UnpackedRecord *pRec = pBuilder->pRec;
  u8 aff;                   /* Column affinity */
  int rc;                   /* Subfunction return code */
  tRowcnt a[2];             /* Statistics */
  int bOk;

  assert( nEq>=1 );
  assert( nEq<=p->nColumn );
  assert( p->aSample!=0 );







<







1561
1562
1563
1564
1565
1566
1567

1568
1569
1570
1571
1572
1573
1574
  WhereLoopBuilder *pBuilder,
  Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
  tRowcnt *pnRow       /* Write the revised row estimate here */
){
  Index *p = pBuilder->pNew->u.btree.pIndex;
  int nEq = pBuilder->pNew->u.btree.nEq;
  UnpackedRecord *pRec = pBuilder->pRec;

  int rc;                   /* Subfunction return code */
  tRowcnt a[2];             /* Statistics */
  int bOk;

  assert( nEq>=1 );
  assert( nEq<=p->nColumn );
  assert( p->aSample!=0 );
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
  /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
  ** below would return the same value.  */
  if( nEq>=p->nColumn ){
    *pnRow = 1;
    return SQLITE_OK;
  }

  aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq-1);
  rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk);
  pBuilder->pRec = pRec;
  if( rc!=SQLITE_OK ) return rc;
  if( bOk==0 ) return SQLITE_NOTFOUND;
  pBuilder->nRecValid = nEq;

  whereKeyStats(pParse, p, pRec, 0, a);
  WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",







<
|







1584
1585
1586
1587
1588
1589
1590

1591
1592
1593
1594
1595
1596
1597
1598
  /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
  ** below would return the same value.  */
  if( nEq>=p->nColumn ){
    *pnRow = 1;
    return SQLITE_OK;
  }


  rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
  pBuilder->pRec = pRec;
  if( rc!=SQLITE_OK ) return rc;
  if( bOk==0 ) return SQLITE_NOTFOUND;
  pBuilder->nRecValid = nEq;

  whereKeyStats(pParse, p, pRec, 0, a);
  WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668





1669
1670
1671
1672
1673
1674
1675
    }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
      sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld", 
                       pTerm->u.pOrInfo->indexable);
    }else{
      sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
    }
    sqlite3DebugPrintf(
       "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x\n",
       iTerm, pTerm, zType, zLeft, pTerm->truthProb,
       pTerm->eOperator, pTerm->wtFlags);





    sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
  }
}
#endif

#ifdef WHERETRACE_ENABLED
/*







|


>
>
>
>
>







1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
    }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
      sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld", 
                       pTerm->u.pOrInfo->indexable);
    }else{
      sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
    }
    sqlite3DebugPrintf(
       "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
       iTerm, pTerm, zType, zLeft, pTerm->truthProb,
       pTerm->eOperator, pTerm->wtFlags);
    if( pTerm->iField ){
      sqlite3DebugPrintf(" iField=%d\n", pTerm->iField);
    }else{
      sqlite3DebugPrintf("\n");
    }
    sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
  }
}
#endif

#ifdef WHERETRACE_ENABLED
/*
2182
2183
2184
2185
2186
2187
2188


































































2189
2190
2191
2192
2193
2194
2195
          if( iReduce<k ) iReduce = k;
        }
      }
    }
  }
  if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
}



































































/*
** Adjust the cost C by the costMult facter T.  This only occurs if
** compiled with -DSQLITE_ENABLE_COSTMULT
*/
#ifdef SQLITE_ENABLE_COSTMULT
# define ApplyCostMultiplier(C,T)  C += T







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
          if( iReduce<k ) iReduce = k;
        }
      }
    }
  }
  if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
}

/* 
** Term pTerm is a vector range comparison operation. The first comparison
** in the vector can be optimized using column nEq of the index. This
** function returns the total number of vector elements that can be used
** as part of the range comparison.
**
** For example, if the query is:
**
**   WHERE a = ? AND (b, c, d) > (?, ?, ?)
**
** and the index:
**
**   CREATE INDEX ... ON (a, b, c, d, e)
**
** then this function would be invoked with nEq=1. The value returned in
** this case is 3.
*/
int whereRangeVectorLen(
  Parse *pParse,       /* Parsing context */
  int iCur,            /* Cursor open on pIdx */
  Index *pIdx,         /* The index to be used for a inequality constraint */
  int nEq,             /* Number of prior equality constraints on same index */
  WhereTerm *pTerm     /* The vector inequality constraint */
){
  int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
  int i;

  nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
  for(i=1; i<nCmp; i++){
    /* Test if comparison i of pTerm is compatible with column (i+nEq) 
    ** of the index. If not, exit the loop.  */
    char aff;                     /* Comparison affinity */
    char idxaff = 0;              /* Indexed columns affinity */
    CollSeq *pColl;               /* Comparison collation sequence */
    Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
    Expr *pRhs = pTerm->pExpr->pRight;
    if( pRhs->flags & EP_xIsSelect ){
      pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
    }else{
      pRhs = pRhs->x.pList->a[i].pExpr;
    }

    /* Check that the LHS of the comparison is a column reference to
    ** the right column of the right source table. And that the sort
    ** order of the index column is the same as the sort order of the
    ** leftmost index column.  */
    if( pLhs->op!=TK_COLUMN 
     || pLhs->iTable!=iCur 
     || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 
     || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
    ){
      break;
    }

    testcase( pLhs->iColumn==XN_ROWID );
    aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
    idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
    if( aff!=idxaff ) break;

    pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
    if( pColl==0 ) break;
    if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
  }
  return i;
}

/*
** Adjust the cost C by the costMult facter T.  This only occurs if
** compiled with -DSQLITE_ENABLE_COSTMULT
*/
#ifdef SQLITE_ENABLE_COSTMULT
# define ApplyCostMultiplier(C,T)  C += T
2221
2222
2223
2224
2225
2226
2227


2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243

2244
2245
2246
2247
2248
2249
2250


2251
2252
2253
2254
2255
2256
2257
  WhereLoop *pNew;                /* Template WhereLoop under construction */
  WhereTerm *pTerm;               /* A WhereTerm under consideration */
  int opMask;                     /* Valid operators for constraints */
  WhereScan scan;                 /* Iterator for WHERE terms */
  Bitmask saved_prereq;           /* Original value of pNew->prereq */
  u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
  u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */


  u16 saved_nSkip;                /* Original value of pNew->nSkip */
  u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
  LogEst saved_nOut;              /* Original value of pNew->nOut */
  int rc = SQLITE_OK;             /* Return code */
  LogEst rSize;                   /* Number of rows in the table */
  LogEst rLogSize;                /* Logarithm of table size */
  WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */

  pNew = pBuilder->pNew;
  if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;

  assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
  assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
  if( pNew->wsFlags & WHERE_BTM_LIMIT ){
    opMask = WO_LT|WO_LE;
  }else{

    opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
  }
  if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);

  assert( pNew->u.btree.nEq<pProbe->nColumn );

  saved_nEq = pNew->u.btree.nEq;


  saved_nSkip = pNew->nSkip;
  saved_nLTerm = pNew->nLTerm;
  saved_wsFlags = pNew->wsFlags;
  saved_prereq = pNew->prereq;
  saved_nOut = pNew->nOut;
  pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
                        opMask, pProbe);







>
>
















>







>
>







2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
  WhereLoop *pNew;                /* Template WhereLoop under construction */
  WhereTerm *pTerm;               /* A WhereTerm under consideration */
  int opMask;                     /* Valid operators for constraints */
  WhereScan scan;                 /* Iterator for WHERE terms */
  Bitmask saved_prereq;           /* Original value of pNew->prereq */
  u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
  u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
  u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
  u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
  u16 saved_nSkip;                /* Original value of pNew->nSkip */
  u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
  LogEst saved_nOut;              /* Original value of pNew->nOut */
  int rc = SQLITE_OK;             /* Return code */
  LogEst rSize;                   /* Number of rows in the table */
  LogEst rLogSize;                /* Logarithm of table size */
  WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */

  pNew = pBuilder->pNew;
  if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;

  assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
  assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
  if( pNew->wsFlags & WHERE_BTM_LIMIT ){
    opMask = WO_LT|WO_LE;
  }else{
    assert( pNew->u.btree.nBtm==0 );
    opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
  }
  if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);

  assert( pNew->u.btree.nEq<pProbe->nColumn );

  saved_nEq = pNew->u.btree.nEq;
  saved_nBtm = pNew->u.btree.nBtm;
  saved_nTop = pNew->u.btree.nTop;
  saved_nSkip = pNew->nSkip;
  saved_nLTerm = pNew->nLTerm;
  saved_wsFlags = pNew->wsFlags;
  saved_prereq = pNew->prereq;
  saved_nOut = pNew->nOut;
  pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
                        opMask, pProbe);
2287
2288
2289
2290
2291
2292
2293


2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309

2310









2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336



2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348

2349
2350
2351
2352
2353
2354



2355
2356
2357
2358
2359
2360
2361
      testcase( eOp & WO_IS );
      testcase( eOp & WO_ISNULL );
      continue;
    }

    pNew->wsFlags = saved_wsFlags;
    pNew->u.btree.nEq = saved_nEq;


    pNew->nLTerm = saved_nLTerm;
    if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
    pNew->aLTerm[pNew->nLTerm++] = pTerm;
    pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;

    assert( nInMul==0
        || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 
        || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 
        || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 
    );

    if( eOp & WO_IN ){
      Expr *pExpr = pTerm->pExpr;
      pNew->wsFlags |= WHERE_COLUMN_IN;
      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */

        nIn = 46;  assert( 46==sqlite3LogEst(25) );









      }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
        /* "x IN (value, value, ...)" */
        nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
      }
      assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
                        ** changes "x IN (?)" into "x=?". */

    }else if( eOp & (WO_EQ|WO_IS) ){
      int iCol = pProbe->aiColumn[saved_nEq];
      pNew->wsFlags |= WHERE_COLUMN_EQ;
      assert( saved_nEq==pNew->u.btree.nEq );
      if( iCol==XN_ROWID 
       || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
      ){
        if( iCol>=0 && pProbe->uniqNotNull==0 ){
          pNew->wsFlags |= WHERE_UNQ_WANTED;
        }else{
          pNew->wsFlags |= WHERE_ONEROW;
        }
      }
    }else if( eOp & WO_ISNULL ){
      pNew->wsFlags |= WHERE_COLUMN_NULL;
    }else if( eOp & (WO_GT|WO_GE) ){
      testcase( eOp & WO_GT );
      testcase( eOp & WO_GE );
      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;



      pBtm = pTerm;
      pTop = 0;
      if( pTerm->wtFlags & TERM_LIKEOPT ){
        /* Range contraints that come from the LIKE optimization are
        ** always used in pairs. */
        pTop = &pTerm[1];
        assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
        assert( pTop->wtFlags & TERM_LIKEOPT );
        assert( pTop->eOperator==WO_LT );
        if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
        pNew->aLTerm[pNew->nLTerm++] = pTop;
        pNew->wsFlags |= WHERE_TOP_LIMIT;

      }
    }else{
      assert( eOp & (WO_LT|WO_LE) );
      testcase( eOp & WO_LT );
      testcase( eOp & WO_LE );
      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;



      pTop = pTerm;
      pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
                     pNew->aLTerm[pNew->nLTerm-2] : 0;
    }

    /* At this point pNew->nOut is set to the number of rows expected to
    ** be visited by the index scan before considering term pTerm, or the







>
>
















>

>
>
>
>
>
>
>
>
>



<
|
|
|



















>
>
>












>






>
>
>







2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415

2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
      testcase( eOp & WO_IS );
      testcase( eOp & WO_ISNULL );
      continue;
    }

    pNew->wsFlags = saved_wsFlags;
    pNew->u.btree.nEq = saved_nEq;
    pNew->u.btree.nBtm = saved_nBtm;
    pNew->u.btree.nTop = saved_nTop;
    pNew->nLTerm = saved_nLTerm;
    if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
    pNew->aLTerm[pNew->nLTerm++] = pTerm;
    pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;

    assert( nInMul==0
        || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 
        || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 
        || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 
    );

    if( eOp & WO_IN ){
      Expr *pExpr = pTerm->pExpr;
      pNew->wsFlags |= WHERE_COLUMN_IN;
      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
        int i;
        nIn = 46;  assert( 46==sqlite3LogEst(25) );

        /* The expression may actually be of the form (x, y) IN (SELECT...).
        ** In this case there is a separate term for each of (x) and (y).
        ** However, the nIn multiplier should only be applied once, not once
        ** for each such term. The following loop checks that pTerm is the
        ** first such term in use, and sets nIn back to 0 if it is not. */
        for(i=0; i<pNew->nLTerm-1; i++){
          if( pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
        }
      }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
        /* "x IN (value, value, ...)" */
        nIn = sqlite3LogEst(pExpr->x.pList->nExpr);

        assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
                          ** changes "x IN (?)" into "x=?". */
      }
    }else if( eOp & (WO_EQ|WO_IS) ){
      int iCol = pProbe->aiColumn[saved_nEq];
      pNew->wsFlags |= WHERE_COLUMN_EQ;
      assert( saved_nEq==pNew->u.btree.nEq );
      if( iCol==XN_ROWID 
       || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
      ){
        if( iCol>=0 && pProbe->uniqNotNull==0 ){
          pNew->wsFlags |= WHERE_UNQ_WANTED;
        }else{
          pNew->wsFlags |= WHERE_ONEROW;
        }
      }
    }else if( eOp & WO_ISNULL ){
      pNew->wsFlags |= WHERE_COLUMN_NULL;
    }else if( eOp & (WO_GT|WO_GE) ){
      testcase( eOp & WO_GT );
      testcase( eOp & WO_GE );
      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
      pNew->u.btree.nBtm = whereRangeVectorLen(
          pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
      );
      pBtm = pTerm;
      pTop = 0;
      if( pTerm->wtFlags & TERM_LIKEOPT ){
        /* Range contraints that come from the LIKE optimization are
        ** always used in pairs. */
        pTop = &pTerm[1];
        assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
        assert( pTop->wtFlags & TERM_LIKEOPT );
        assert( pTop->eOperator==WO_LT );
        if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
        pNew->aLTerm[pNew->nLTerm++] = pTop;
        pNew->wsFlags |= WHERE_TOP_LIMIT;
        pNew->u.btree.nTop = 1;
      }
    }else{
      assert( eOp & (WO_LT|WO_LE) );
      testcase( eOp & WO_LT );
      testcase( eOp & WO_LE );
      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
      pNew->u.btree.nTop = whereRangeVectorLen(
          pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
      );
      pTop = pTerm;
      pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
                     pNew->aLTerm[pNew->nLTerm-2] : 0;
    }

    /* At this point pNew->nOut is set to the number of rows expected to
    ** be visited by the index scan before considering term pTerm, or the
2447
2448
2449
2450
2451
2452
2453


2454
2455
2456
2457
2458
2459
2460
    pNew->nOut = saved_nOut;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    pBuilder->nRecValid = nRecValid;
#endif
  }
  pNew->prereq = saved_prereq;
  pNew->u.btree.nEq = saved_nEq;


  pNew->nSkip = saved_nSkip;
  pNew->wsFlags = saved_wsFlags;
  pNew->nOut = saved_nOut;
  pNew->nLTerm = saved_nLTerm;

  /* Consider using a skip-scan if there are no WHERE clause constraints
  ** available for the left-most terms of the index, and if the average







>
>







2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
    pNew->nOut = saved_nOut;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    pBuilder->nRecValid = nRecValid;
#endif
  }
  pNew->prereq = saved_prereq;
  pNew->u.btree.nEq = saved_nEq;
  pNew->u.btree.nBtm = saved_nBtm;
  pNew->u.btree.nTop = saved_nTop;
  pNew->nSkip = saved_nSkip;
  pNew->wsFlags = saved_wsFlags;
  pNew->nOut = saved_nOut;
  pNew->nLTerm = saved_nLTerm;

  /* Consider using a skip-scan if there are no WHERE clause constraints
  ** available for the left-most terms of the index, and if the average
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
    }
  }
  return 0;
}

/*
** Add all WhereLoop objects for a single table of the join where the table
** is idenfied by pBuilder->pNew->iTab.  That table is guaranteed to be
** a b-tree table, not a virtual table.
**
** The costs (WhereLoop.rRun) of the b-tree loops added by this function
** are calculated as follows:
**
** For a full scan, assuming the table (or index) contains nRow rows:
**







|







2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
    }
  }
  return 0;
}

/*
** Add all WhereLoop objects for a single table of the join where the table
** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
** a b-tree table, not a virtual table.
**
** The costs (WhereLoop.rRun) of the b-tree loops added by this function
** are calculated as follows:
**
** For a full scan, assuming the table (or index) contains nRow rows:
**
2722
2723
2724
2725
2726
2727
2728


2729
2730
2731
2732
2733
2734
2735
    if( pProbe->pPartIdxWhere!=0
     && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
      testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
      continue;  /* Partial index inappropriate for this query */
    }
    rSize = pProbe->aiRowLogEst[0];
    pNew->u.btree.nEq = 0;


    pNew->nSkip = 0;
    pNew->nLTerm = 0;
    pNew->iSortIdx = 0;
    pNew->rSetup = 0;
    pNew->prereq = mPrereq;
    pNew->nOut = rSize;
    pNew->u.btree.pIndex = pProbe;







>
>







2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
    if( pProbe->pPartIdxWhere!=0
     && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
      testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
      continue;  /* Partial index inappropriate for this query */
    }
    rSize = pProbe->aiRowLogEst[0];
    pNew->u.btree.nEq = 0;
    pNew->u.btree.nBtm = 0;
    pNew->u.btree.nTop = 0;
    pNew->nSkip = 0;
    pNew->nLTerm = 0;
    pNew->iSortIdx = 0;
    pNew->rSetup = 0;
    pNew->prereq = mPrereq;
    pNew->nOut = rSize;
    pNew->u.btree.pIndex = pProbe;
2850
2851
2852
2853
2854
2855
2856

2857
2858
2859
2860
2861
2862
2863
*/
static int whereLoopAddVirtualOne(
  WhereLoopBuilder *pBuilder,
  Bitmask mPrereq,                /* Mask of tables that must be used. */
  Bitmask mUsable,                /* Mask of usable tables */
  u16 mExclude,                   /* Exclude terms using these operators */
  sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */

  int *pbIn                       /* OUT: True if plan uses an IN(...) op */
){
  WhereClause *pWC = pBuilder->pWC;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
  int i;
  int mxTerm;







>







2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
*/
static int whereLoopAddVirtualOne(
  WhereLoopBuilder *pBuilder,
  Bitmask mPrereq,                /* Mask of tables that must be used. */
  Bitmask mUsable,                /* Mask of usable tables */
  u16 mExclude,                   /* Exclude terms using these operators */
  sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
  u16 mNoOmit,                    /* Do not omit these constraints */
  int *pbIn                       /* OUT: True if plan uses an IN(...) op */
){
  WhereClause *pWC = pBuilder->pWC;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
  int i;
  int mxTerm;
2938
2939
2940
2941
2942
2943
2944

2945
2946
2947
2948
2949
2950
2951
        ** together.  */
        pIdxInfo->orderByConsumed = 0;
        pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
        *pbIn = 1; assert( (mExclude & WO_IN)==0 );
      }
    }
  }


  pNew->nLTerm = mxTerm+1;
  assert( pNew->nLTerm<=pNew->nLSlot );
  pNew->u.vtab.idxNum = pIdxInfo->idxNum;
  pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
  pIdxInfo->needToFreeIdxStr = 0;
  pNew->u.vtab.idxStr = pIdxInfo->idxStr;







>







3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
        ** together.  */
        pIdxInfo->orderByConsumed = 0;
        pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
        *pbIn = 1; assert( (mExclude & WO_IN)==0 );
      }
    }
  }
  pNew->u.vtab.omitMask &= ~mNoOmit;

  pNew->nLTerm = mxTerm+1;
  assert( pNew->nLTerm<=pNew->nLSlot );
  pNew->u.vtab.idxNum = pIdxInfo->idxNum;
  pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
  pIdxInfo->needToFreeIdxStr = 0;
  pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3011
3012
3013
3014
3015
3016
3017

3018
3019
3020
3021
3022
3023
3024
3025
3026

3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057

3058
3059
3060
3061
3062
3063
3064
  WhereClause *pWC;            /* The WHERE clause */
  struct SrcList_item *pSrc;   /* The FROM clause term to search */
  sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
  int nConstraint;             /* Number of constraints in p */
  int bIn;                     /* True if plan uses IN(...) operator */
  WhereLoop *pNew;
  Bitmask mBest;               /* Tables used by best possible plan */


  assert( (mPrereq & mUnusable)==0 );
  pWInfo = pBuilder->pWInfo;
  pParse = pWInfo->pParse;
  pWC = pBuilder->pWC;
  pNew = pBuilder->pNew;
  pSrc = &pWInfo->pTabList->a[pNew->iTab];
  assert( IsVirtual(pSrc->pTab) );
  p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy);

  if( p==0 ) return SQLITE_NOMEM_BKPT;
  pNew->rSetup = 0;
  pNew->wsFlags = WHERE_VIRTUALTABLE;
  pNew->nLTerm = 0;
  pNew->u.vtab.needFree = 0;
  nConstraint = p->nConstraint;
  if( whereLoopResize(pParse->db, pNew, nConstraint) ){
    sqlite3DbFree(pParse->db, p);
    return SQLITE_NOMEM_BKPT;
  }

  /* First call xBestIndex() with all constraints usable. */
  WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
  rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, &bIn);

  /* If the call to xBestIndex() with all terms enabled produced a plan
  ** that does not require any source tables (IOW: a plan with mBest==0),
  ** then there is no point in making any further calls to xBestIndex() 
  ** since they will all return the same result (if the xBestIndex()
  ** implementation is sane). */
  if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){
    int seenZero = 0;             /* True if a plan with no prereqs seen */
    int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
    Bitmask mPrev = 0;
    Bitmask mBestNoIn = 0;

    /* If the plan produced by the earlier call uses an IN(...) term, call
    ** xBestIndex again, this time with IN(...) terms disabled. */
    if( bIn ){
      WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
      rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, WO_IN, p, &bIn);

      assert( bIn==0 );
      mBestNoIn = pNew->prereq & ~mPrereq;
      if( mBestNoIn==0 ){
        seenZero = 1;
        seenZeroNoIN = 1;
      }
    }







>








|
>













|
















|
>







3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
  WhereClause *pWC;            /* The WHERE clause */
  struct SrcList_item *pSrc;   /* The FROM clause term to search */
  sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
  int nConstraint;             /* Number of constraints in p */
  int bIn;                     /* True if plan uses IN(...) operator */
  WhereLoop *pNew;
  Bitmask mBest;               /* Tables used by best possible plan */
  u16 mNoOmit;

  assert( (mPrereq & mUnusable)==0 );
  pWInfo = pBuilder->pWInfo;
  pParse = pWInfo->pParse;
  pWC = pBuilder->pWC;
  pNew = pBuilder->pNew;
  pSrc = &pWInfo->pTabList->a[pNew->iTab];
  assert( IsVirtual(pSrc->pTab) );
  p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, 
      &mNoOmit);
  if( p==0 ) return SQLITE_NOMEM_BKPT;
  pNew->rSetup = 0;
  pNew->wsFlags = WHERE_VIRTUALTABLE;
  pNew->nLTerm = 0;
  pNew->u.vtab.needFree = 0;
  nConstraint = p->nConstraint;
  if( whereLoopResize(pParse->db, pNew, nConstraint) ){
    sqlite3DbFree(pParse->db, p);
    return SQLITE_NOMEM_BKPT;
  }

  /* First call xBestIndex() with all constraints usable. */
  WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
  rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);

  /* If the call to xBestIndex() with all terms enabled produced a plan
  ** that does not require any source tables (IOW: a plan with mBest==0),
  ** then there is no point in making any further calls to xBestIndex() 
  ** since they will all return the same result (if the xBestIndex()
  ** implementation is sane). */
  if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){
    int seenZero = 0;             /* True if a plan with no prereqs seen */
    int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
    Bitmask mPrev = 0;
    Bitmask mBestNoIn = 0;

    /* If the plan produced by the earlier call uses an IN(...) term, call
    ** xBestIndex again, this time with IN(...) terms disabled. */
    if( bIn ){
      WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
      rc = whereLoopAddVirtualOne(
          pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
      assert( bIn==0 );
      mBestNoIn = pNew->prereq & ~mPrereq;
      if( mBestNoIn==0 ){
        seenZero = 1;
        seenZeroNoIN = 1;
      }
    }
3076
3077
3078
3079
3080
3081
3082
3083

3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095

3096
3097
3098
3099
3100
3101
3102
3103
3104

3105
3106
3107
3108
3109
3110
3111
        if( mThis>mPrev && mThis<mNext ) mNext = mThis;
      }
      mPrev = mNext;
      if( mNext==ALLBITS ) break;
      if( mNext==mBest || mNext==mBestNoIn ) continue;
      WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
                       (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
      rc = whereLoopAddVirtualOne(pBuilder, mPrereq, mNext|mPrereq, 0, p, &bIn);

      if( pNew->prereq==mPrereq ){
        seenZero = 1;
        if( bIn==0 ) seenZeroNoIN = 1;
      }
    }

    /* If the calls to xBestIndex() in the above loop did not find a plan
    ** that requires no source tables at all (i.e. one guaranteed to be
    ** usable), make a call here with all source tables disabled */
    if( rc==SQLITE_OK && seenZero==0 ){
      WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
      rc = whereLoopAddVirtualOne(pBuilder, mPrereq, mPrereq, 0, p, &bIn);

      if( bIn==0 ) seenZeroNoIN = 1;
    }

    /* If the calls to xBestIndex() have so far failed to find a plan
    ** that requires no source tables at all and does not use an IN(...)
    ** operator, make a final call to obtain one here.  */
    if( rc==SQLITE_OK && seenZeroNoIN==0 ){
      WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
      rc = whereLoopAddVirtualOne(pBuilder, mPrereq, mPrereq, WO_IN, p, &bIn);

    }
  }

  if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
  sqlite3DbFree(pParse->db, p);
  return rc;
}







|
>











|
>








|
>







3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
        if( mThis>mPrev && mThis<mNext ) mNext = mThis;
      }
      mPrev = mNext;
      if( mNext==ALLBITS ) break;
      if( mNext==mBest || mNext==mBestNoIn ) continue;
      WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
                       (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
      rc = whereLoopAddVirtualOne(
          pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
      if( pNew->prereq==mPrereq ){
        seenZero = 1;
        if( bIn==0 ) seenZeroNoIN = 1;
      }
    }

    /* If the calls to xBestIndex() in the above loop did not find a plan
    ** that requires no source tables at all (i.e. one guaranteed to be
    ** usable), make a call here with all source tables disabled */
    if( rc==SQLITE_OK && seenZero==0 ){
      WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
      rc = whereLoopAddVirtualOne(
          pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
      if( bIn==0 ) seenZeroNoIN = 1;
    }

    /* If the calls to xBestIndex() have so far failed to find a plan
    ** that requires no source tables at all and does not use an IN(...)
    ** operator, make a final call to obtain one here.  */
    if( rc==SQLITE_OK && seenZeroNoIN==0 ){
      WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
      rc = whereLoopAddVirtualOne(
          pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
    }
  }

  if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
  sqlite3DbFree(pParse->db, p);
  return rc;
}
3441
3442
3443
3444
3445
3446
3447
3448
3449






3450
3451
3452
3453
3454





3455
3456
3457
3458
3459
3460
3461














3462
3463
3464
3465
3466
3467
3468

      /* Loop through all columns of the index and deal with the ones
      ** that are not constrained by == or IN.
      */
      rev = revSet = 0;
      distinctColumns = 0;
      for(j=0; j<nColumn; j++){
        u8 bOnce;   /* True to run the ORDER BY search loop */







        /* Skip over == and IS and ISNULL terms.
        ** (Also skip IN terms when doing WHERE_ORDERBY_LIMIT processing)
        */
        if( j<pLoop->u.btree.nEq
         && pLoop->nSkip==0





         && ((i = pLoop->aLTerm[j]->eOperator) & eqOpMask)!=0
        ){
          if( i & WO_ISNULL ){
            testcase( isOrderDistinct );
            isOrderDistinct = 0;
          }
          continue;  














        }

        /* Get the column number in the table (iColumn) and sort order
        ** (revIdx) for the j-th column of the index.
        */
        if( pIndex ){
          iColumn = pIndex->aiColumn[j];







|

>
>
>
>
>
>
|
|
|
<
<
>
>
>
>
>
|
<
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578


3579
3580
3581
3582
3583
3584

3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610

      /* Loop through all columns of the index and deal with the ones
      ** that are not constrained by == or IN.
      */
      rev = revSet = 0;
      distinctColumns = 0;
      for(j=0; j<nColumn; j++){
        u8 bOnce = 1; /* True to run the ORDER BY search loop */

        assert( j>=pLoop->u.btree.nEq 
            || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
        );
        if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
          u16 eOp = pLoop->aLTerm[j]->eOperator;

          /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
          ** doing WHERE_ORDERBY_LIMIT processing). 
          **


          ** If the current term is a column of an ((?,?) IN (SELECT...)) 
          ** expression for which the SELECT returns more than one column,
          ** check that it is the only column used by this loop. Otherwise,
          ** if it is one of two or more, none of the columns can be
          ** considered to match an ORDER BY term.  */
          if( (eOp & eqOpMask)!=0 ){

            if( eOp & WO_ISNULL ){
              testcase( isOrderDistinct );
              isOrderDistinct = 0;
            }
            continue;  
          }else if( ALWAYS(eOp & WO_IN) ){
            /* ALWAYS() justification: eOp is an equality operator due to the
            ** j<pLoop->u.btree.nEq constraint above.  Any equality other
            ** than WO_IN is captured by the previous "if".  So this one
            ** always has to be WO_IN. */
            Expr *pX = pLoop->aLTerm[j]->pExpr;
            for(i=j+1; i<pLoop->u.btree.nEq; i++){
              if( pLoop->aLTerm[i]->pExpr==pX ){
                assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
                bOnce = 0;
                break;
              }
            }
          }
        }

        /* Get the column number in the table (iColumn) and sort order
        ** (revIdx) for the j-th column of the index.
        */
        if( pIndex ){
          iColumn = pIndex->aiColumn[j];
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
        ){
          isOrderDistinct = 0;
        }

        /* Find the ORDER BY term that corresponds to the j-th column
        ** of the index and mark that ORDER BY term off 
        */
        bOnce = 1;
        isMatch = 0;
        for(i=0; bOnce && i<nOrderBy; i++){
          if( MASKBIT(i) & obSat ) continue;
          pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
          testcase( wctrlFlags & WHERE_GROUPBY );
          testcase( wctrlFlags & WHERE_DISTINCTBY );
          if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;







<







3625
3626
3627
3628
3629
3630
3631

3632
3633
3634
3635
3636
3637
3638
        ){
          isOrderDistinct = 0;
        }

        /* Find the ORDER BY term that corresponds to the j-th column
        ** of the index and mark that ORDER BY term off 
        */

        isMatch = 0;
        for(i=0; bOnce && i<nOrderBy; i++){
          if( MASKBIT(i) & obSat ) continue;
          pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
          testcase( wctrlFlags & WHERE_GROUPBY );
          testcase( wctrlFlags & WHERE_DISTINCTBY );
          if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
4677
4678
4679
4680
4681
4682
4683

4684
4685
4686
4687

4688
4689
4690
4691
4692
4693
4694
    }
    if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);

        sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
        VdbeCoverage(v);
        VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
        VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);

        sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
      }
    }
    sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
    if( pLevel->addrSkip ){
      sqlite3VdbeGoto(v, pLevel->addrSkip);
      VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));







>
|
|
|
|
>







4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
    }
    if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
        if( pIn->eEndLoopOp!=OP_Noop ){
          sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
          VdbeCoverage(v);
          VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
          VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
        }
        sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
      }
    }
    sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
    if( pLevel->addrSkip ){
      sqlite3VdbeGoto(v, pLevel->addrSkip);
      VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));

Changes to src/whereInt.h.

118
119
120
121
122
123
124


125
126
127
128
129
130
131
  u8 iSortIdx;          /* Sorting index number.  0==None */
  LogEst rSetup;        /* One-time setup cost (ex: create transient index) */
  LogEst rRun;          /* Cost of running each loop */
  LogEst nOut;          /* Estimated number of output rows */
  union {
    struct {               /* Information for internal btree tables */
      u16 nEq;               /* Number of equality constraints */


      Index *pIndex;         /* Index used, or NULL */
    } btree;
    struct {               /* Information for virtual tables */
      int idxNum;            /* Index number */
      u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
      i8 isOrdered;          /* True if satisfies ORDER BY */
      u16 omitMask;          /* Terms that may be omitted */







>
>







118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
  u8 iSortIdx;          /* Sorting index number.  0==None */
  LogEst rSetup;        /* One-time setup cost (ex: create transient index) */
  LogEst rRun;          /* Cost of running each loop */
  LogEst nOut;          /* Estimated number of output rows */
  union {
    struct {               /* Information for internal btree tables */
      u16 nEq;               /* Number of equality constraints */
      u16 nBtm;              /* Size of BTM vector */
      u16 nTop;              /* Size of TOP vector */
      Index *pIndex;         /* Index used, or NULL */
    } btree;
    struct {               /* Information for virtual tables */
      int idxNum;            /* Index number */
      u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
      i8 isOrdered;          /* True if satisfies ORDER BY */
      u16 omitMask;          /* Terms that may be omitted */
242
243
244
245
246
247
248

249
250
251
252
253
254
255
** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite
** is only able to process joins with 64 or fewer tables.
*/
struct WhereTerm {
  Expr *pExpr;            /* Pointer to the subexpression that is this term */
  int iParent;            /* Disable pWC->a[iParent] when this term disabled */
  int leftCursor;         /* Cursor number of X in "X <op> <expr>" */

  union {
    int leftColumn;         /* Column number of X in "X <op> <expr>" */
    WhereOrInfo *pOrInfo;   /* Extra information if (eOperator & WO_OR)!=0 */
    WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */
  } u;
  LogEst truthProb;       /* Probability of truth for this expression */
  u16 eOperator;          /* A WO_xx value describing <op> */







>







244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite
** is only able to process joins with 64 or fewer tables.
*/
struct WhereTerm {
  Expr *pExpr;            /* Pointer to the subexpression that is this term */
  int iParent;            /* Disable pWC->a[iParent] when this term disabled */
  int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
  int iField;             /* Field in (?,?,?) IN (SELECT...) vector */
  union {
    int leftColumn;         /* Column number of X in "X <op> <expr>" */
    WhereOrInfo *pOrInfo;   /* Extra information if (eOperator & WO_OR)!=0 */
    WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */
  } u;
  LogEst truthProb;       /* Probability of truth for this expression */
  u16 eOperator;          /* A WO_xx value describing <op> */

Changes to src/wherecode.c.

17
18
19
20
21
22
23











24
25
26
27
28
29
30
31
32
33


34
35
36
37



38




39

40

41
42




43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
** that actually generate the bulk of the WHERE loop code.  The original where.c
** file retains the code that does query planning and analysis.
*/
#include "sqliteInt.h"
#include "whereInt.h"

#ifndef SQLITE_OMIT_EXPLAIN











/*
** This routine is a helper for explainIndexRange() below
**
** pStr holds the text of an expression that we are building up one term
** at a time.  This routine adds a new term to the end of the expression.
** Terms are separated by AND so add the "AND" text for second and subsequent
** terms only.
*/
static void explainAppendTerm(
  StrAccum *pStr,             /* The text expression being built */


  int iTerm,                  /* Index of this term.  First is zero */
  const char *zColumn,        /* Name of the column */
  const char *zOp             /* Name of the operator */
){



  if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);




  sqlite3StrAccumAppendAll(pStr, zColumn);

  sqlite3StrAccumAppend(pStr, zOp, 1);

  sqlite3StrAccumAppend(pStr, "?", 1);
}





/*
** Return the name of the i-th column of the pIdx index.
*/
static const char *explainIndexColumnName(Index *pIdx, int i){
  i = pIdx->aiColumn[i];
  if( i==XN_EXPR ) return "<expr>";
  if( i==XN_ROWID ) return "rowid";
  return pIdx->pTable->aCol[i].zName;
}

/*
** Argument pLevel describes a strategy for scanning table pTab. This 
** function appends text to pStr that describes the subset of table
** rows scanned by the strategy in the form of an SQL expression.
**







>
>
>
>
>
>
>
>
>
>
>










>
>
|
|


>
>
>
|
>
>
>
>
|
>
|
>
|
|
>
>
>
>
|
<
<
<
<
<
|
<
<







17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69





70


71
72
73
74
75
76
77
** that actually generate the bulk of the WHERE loop code.  The original where.c
** file retains the code that does query planning and analysis.
*/
#include "sqliteInt.h"
#include "whereInt.h"

#ifndef SQLITE_OMIT_EXPLAIN

/*
** Return the name of the i-th column of the pIdx index.
*/
static const char *explainIndexColumnName(Index *pIdx, int i){
  i = pIdx->aiColumn[i];
  if( i==XN_EXPR ) return "<expr>";
  if( i==XN_ROWID ) return "rowid";
  return pIdx->pTable->aCol[i].zName;
}

/*
** This routine is a helper for explainIndexRange() below
**
** pStr holds the text of an expression that we are building up one term
** at a time.  This routine adds a new term to the end of the expression.
** Terms are separated by AND so add the "AND" text for second and subsequent
** terms only.
*/
static void explainAppendTerm(
  StrAccum *pStr,             /* The text expression being built */
  Index *pIdx,                /* Index to read column names from */
  int nTerm,                  /* Number of terms */
  int iTerm,                  /* Zero-based index of first term. */
  int bAnd,                   /* Non-zero to append " AND " */
  const char *zOp             /* Name of the operator */
){
  int i;

  assert( nTerm>=1 );
  if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5);

  if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
  for(i=0; i<nTerm; i++){
    if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
    sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i));
  }
  if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);

  sqlite3StrAccumAppend(pStr, zOp, 1);

  if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
  for(i=0; i<nTerm; i++){
    if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
    sqlite3StrAccumAppend(pStr, "?", 1);
  }





  if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);


}

/*
** Argument pLevel describes a strategy for scanning table pTab. This 
** function appends text to pStr that describes the subset of table
** rows scanned by the strategy in the form of an SQL expression.
**
77
78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95
96
    const char *z = explainIndexColumnName(pIndex, i);
    if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
    sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
  }

  j = i;
  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
    const char *z = explainIndexColumnName(pIndex, i);
    explainAppendTerm(pStr, i++, z, ">");

  }
  if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
    const char *z = explainIndexColumnName(pIndex, j);
    explainAppendTerm(pStr, i, z, "<");
  }
  sqlite3StrAccumAppend(pStr, ")", 1);
}

/*
** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was







<
|
>


<
|







96
97
98
99
100
101
102

103
104
105
106

107
108
109
110
111
112
113
114
    const char *z = explainIndexColumnName(pIndex, i);
    if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
    sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
  }

  j = i;
  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){

    explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
    i = 1;
  }
  if( pLoop->wsFlags&WHERE_TOP_LIMIT ){

    explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
  }
  sqlite3StrAccumAppend(pStr, ")", 1);
}

/*
** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
** The TERM_LIKECOND marking indicates that the term should be coded inside
** a conditional such that is only evaluated on the second pass of a
** LIKE-optimization loop, when scanning BLOBs instead of strings.
*/
static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
  int nLoop = 0;
  while( pTerm
      && (pTerm->wtFlags & TERM_CODED)==0
      && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
      && (pLevel->notReady & pTerm->prereqAll)==0
  ){
    if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
      pTerm->wtFlags |= TERM_LIKECOND;
    }else{







|







290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
** The TERM_LIKECOND marking indicates that the term should be coded inside
** a conditional such that is only evaluated on the second pass of a
** LIKE-optimization loop, when scanning BLOBs instead of strings.
*/
static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
  int nLoop = 0;
  while( ALWAYS(pTerm!=0)
      && (pTerm->wtFlags & TERM_CODED)==0
      && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
      && (pLevel->notReady & pTerm->prereqAll)==0
  ){
    if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
      pTerm->wtFlags |= TERM_LIKECOND;
    }else{
328
329
330
331
332
333
334


























335
336
337
338
339
340
341




342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

359
360
361
362
363
364
365
366
367
368
369
370



371
372
373
374
375
376
377
378
379
380
381












382
























































383
384
385
386
387
388
389
390
391

392
393
394
395


396
397
398
399
400
401

402

403

404

405
406


407
408



409
410
411






412
413

414
415
416
417
418
419
420
  /* Code the OP_Affinity opcode if there is anything left to do. */
  if( n>0 ){
    sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
    sqlite3ExprCacheAffinityChange(pParse, base, n);
  }
}




























/*
** Generate code for a single equality term of the WHERE clause.  An equality
** term can be either X=expr or X IN (...).   pTerm is the term to be 
** coded.
**
** The current value for the constraint is left in register iReg.




**
** For a constraint of the form X=expr, the expression is evaluated and its
** result is left on the stack.  For constraints of the form X IN (...)
** this routine sets up a loop that will iterate over all values of X.
*/
static int codeEqualityTerm(
  Parse *pParse,      /* The parsing context */
  WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
  WhereLevel *pLevel, /* The level of the FROM clause we are working on */
  int iEq,            /* Index of the equality term within this level */
  int bRev,           /* True for reverse-order IN operations */
  int iTarget         /* Attempt to leave results in this register */
){
  Expr *pX = pTerm->pExpr;
  Vdbe *v = pParse->pVdbe;
  int iReg;                  /* Register holding results */


  assert( iTarget>0 );
  if( pX->op==TK_EQ || pX->op==TK_IS ){
    iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
  }else if( pX->op==TK_ISNULL ){
    iReg = iTarget;
    sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
#ifndef SQLITE_OMIT_SUBQUERY
  }else{
    int eType;
    int iTab;
    struct InLoop *pIn;
    WhereLoop *pLoop = pLevel->pWLoop;




    if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
      && pLoop->u.btree.pIndex!=0
      && pLoop->u.btree.pIndex->aSortOrder[iEq]
    ){
      testcase( iEq==0 );
      testcase( bRev );
      bRev = !bRev;
    }
    assert( pX->op==TK_IN );
    iReg = iTarget;












    eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0);
























































    if( eType==IN_INDEX_INDEX_DESC ){
      testcase( bRev );
      bRev = !bRev;
    }
    iTab = pX->iTable;
    sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
    VdbeCoverageIf(v, bRev);
    VdbeCoverageIf(v, !bRev);
    assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );

    pLoop->wsFlags |= WHERE_IN_ABLE;
    if( pLevel->u.in.nIn==0 ){
      pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
    }


    pLevel->u.in.nIn++;
    pLevel->u.in.aInLoop =
       sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
                              sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
    pIn = pLevel->u.in.aInLoop;
    if( pIn ){

      pIn += pLevel->u.in.nIn - 1;

      pIn->iCur = iTab;

      if( eType==IN_INDEX_ROWID ){

        pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
      }else{


        pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
      }



      pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
      sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v);
    }else{






      pLevel->u.in.nIn = 0;
    }

#endif
  }
  disableTerm(pLevel, pTerm);
  return iReg;
}

/*







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






|
>
>
>
>

|
|














>








|



>
>
>











>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









>




>
>
|





>
|
>
|
>
|
>
|
|
>
>
|
|
>
>
>
|
<
|
>
>
>
>
>
>


>







346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
  /* Code the OP_Affinity opcode if there is anything left to do. */
  if( n>0 ){
    sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
    sqlite3ExprCacheAffinityChange(pParse, base, n);
  }
}

/*
** Expression pRight, which is the RHS of a comparison operation, is 
** either a vector of n elements or, if n==1, a scalar expression.
** Before the comparison operation, affinity zAff is to be applied
** to the pRight values. This function modifies characters within the
** affinity string to SQLITE_AFF_BLOB if either:
**
**   * the comparison will be performed with no affinity, or
**   * the affinity change in zAff is guaranteed not to change the value.
*/
static void updateRangeAffinityStr(
  Parse *pParse,                  /* Parse context */
  Expr *pRight,                   /* RHS of comparison */
  int n,                          /* Number of vector elements in comparison */
  char *zAff                      /* Affinity string to modify */
){
  int i;
  for(i=0; i<n; i++){
    Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
    if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
     || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
    ){
      zAff[i] = SQLITE_AFF_BLOB;
    }
  }
}

/*
** Generate code for a single equality term of the WHERE clause.  An equality
** term can be either X=expr or X IN (...).   pTerm is the term to be 
** coded.
**
** The current value for the constraint is left in a register, the index
** of which is returned.  An attempt is made store the result in iTarget but
** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
** constraint is a TK_EQ or TK_IS, then the current value might be left in
** some other register and it is the caller's responsibility to compensate.
**
** For a constraint of the form X=expr, the expression is evaluated in
** straight-line code.  For constraints of the form X IN (...)
** this routine sets up a loop that will iterate over all values of X.
*/
static int codeEqualityTerm(
  Parse *pParse,      /* The parsing context */
  WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
  WhereLevel *pLevel, /* The level of the FROM clause we are working on */
  int iEq,            /* Index of the equality term within this level */
  int bRev,           /* True for reverse-order IN operations */
  int iTarget         /* Attempt to leave results in this register */
){
  Expr *pX = pTerm->pExpr;
  Vdbe *v = pParse->pVdbe;
  int iReg;                  /* Register holding results */

  assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
  assert( iTarget>0 );
  if( pX->op==TK_EQ || pX->op==TK_IS ){
    iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
  }else if( pX->op==TK_ISNULL ){
    iReg = iTarget;
    sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
#ifndef SQLITE_OMIT_SUBQUERY
  }else{
    int eType = IN_INDEX_NOOP;
    int iTab;
    struct InLoop *pIn;
    WhereLoop *pLoop = pLevel->pWLoop;
    int i;
    int nEq = 0;
    int *aiMap = 0;

    if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
      && pLoop->u.btree.pIndex!=0
      && pLoop->u.btree.pIndex->aSortOrder[iEq]
    ){
      testcase( iEq==0 );
      testcase( bRev );
      bRev = !bRev;
    }
    assert( pX->op==TK_IN );
    iReg = iTarget;

    for(i=0; i<iEq; i++){
      if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
        disableTerm(pLevel, pTerm);
        return iTarget;
      }
    }
    for(i=iEq;i<pLoop->nLTerm; i++){
      if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++;
    }

    if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
      eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0);
    }else{
      Select *pSelect = pX->x.pSelect;
      sqlite3 *db = pParse->db;
      ExprList *pOrigRhs = pSelect->pEList;
      ExprList *pOrigLhs = pX->pLeft->x.pList;
      ExprList *pRhs = 0;         /* New Select.pEList for RHS */
      ExprList *pLhs = 0;         /* New pX->pLeft vector */

      for(i=iEq;i<pLoop->nLTerm; i++){
        if( pLoop->aLTerm[i]->pExpr==pX ){
          int iField = pLoop->aLTerm[i]->iField - 1;
          Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0);
          Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0);

          pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs);
          pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs);
        }
      }
      if( !db->mallocFailed ){
        Expr *pLeft = pX->pLeft;

        if( pSelect->pOrderBy ){
          /* If the SELECT statement has an ORDER BY clause, zero the 
          ** iOrderByCol variables. These are set to non-zero when an 
          ** ORDER BY term exactly matches one of the terms of the 
          ** result-set. Since the result-set of the SELECT statement may
          ** have been modified or reordered, these variables are no longer 
          ** set correctly.  Since setting them is just an optimization, 
          ** it's easiest just to zero them here.  */
          ExprList *pOrderBy = pSelect->pOrderBy;
          for(i=0; i<pOrderBy->nExpr; i++){
            pOrderBy->a[i].u.x.iOrderByCol = 0;
          }
        }

        /* Take care here not to generate a TK_VECTOR containing only a
        ** single value. Since the parser never creates such a vector, some
        ** of the subroutines do not handle this case.  */
        if( pLhs->nExpr==1 ){
          pX->pLeft = pLhs->a[0].pExpr;
        }else{
          pLeft->x.pList = pLhs;
          aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq);
          testcase( aiMap==0 );
        }
        pSelect->pEList = pRhs;
        eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap);
        testcase( aiMap!=0 && aiMap[0]!=0 );
        pSelect->pEList = pOrigRhs;
        pLeft->x.pList = pOrigLhs;
        pX->pLeft = pLeft;
      }
      sqlite3ExprListDelete(pParse->db, pLhs);
      sqlite3ExprListDelete(pParse->db, pRhs);
    }

    if( eType==IN_INDEX_INDEX_DESC ){
      testcase( bRev );
      bRev = !bRev;
    }
    iTab = pX->iTable;
    sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
    VdbeCoverageIf(v, bRev);
    VdbeCoverageIf(v, !bRev);
    assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );

    pLoop->wsFlags |= WHERE_IN_ABLE;
    if( pLevel->u.in.nIn==0 ){
      pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
    }

    i = pLevel->u.in.nIn;
    pLevel->u.in.nIn += nEq;
    pLevel->u.in.aInLoop =
       sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
                              sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
    pIn = pLevel->u.in.aInLoop;
    if( pIn ){
      int iMap = 0;               /* Index in aiMap[] */
      pIn += i;
      for(i=iEq;i<pLoop->nLTerm; i++){
        int iOut = iReg;
        if( pLoop->aLTerm[i]->pExpr==pX ){
          if( eType==IN_INDEX_ROWID ){
            assert( nEq==1 && i==iEq );
            pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
          }else{
            int iCol = aiMap ? aiMap[iMap++] : 0;
            iOut = iReg + i - iEq;
            pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
          }
          sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
          if( i==iEq ){
            pIn->iCur = iTab;
            pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;

          }else{
            pIn->eEndLoopOp = OP_Noop;
          }
          pIn++;
        }
      }
    }else{
      pLevel->u.in.nIn = 0;
    }
    sqlite3DbFree(pParse->db, aiMap);
#endif
  }
  disableTerm(pLevel, pTerm);
  return iReg;
}

/*
532
533
534
535
536
537
538
539
540






541
542
543
544
545
546
547
548
      if( nReg==1 ){
        sqlite3ReleaseTempReg(pParse, regBase);
        regBase = r1;
      }else{
        sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
      }
    }
    testcase( pTerm->eOperator & WO_ISNULL );
    testcase( pTerm->eOperator & WO_IN );






    if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
      Expr *pRight = pTerm->pExpr->pRight;
      if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
        sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
        VdbeCoverage(v);
      }
      if( zAff ){
        if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){







|
|
>
>
>
>
>
>
|







670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
      if( nReg==1 ){
        sqlite3ReleaseTempReg(pParse, regBase);
        regBase = r1;
      }else{
        sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
      }
    }
    if( pTerm->eOperator & WO_IN ){
      if( pTerm->pExpr->flags & EP_xIsSelect ){
        /* No affinity ever needs to be (or should be) applied to a value
        ** from the RHS of an "? IN (SELECT ...)" expression. The 
        ** sqlite3FindInIndex() routine has already ensured that the 
        ** affinity of the comparison has been applied to the value.  */
        if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
      }
    }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
      Expr *pRight = pTerm->pExpr->pRight;
      if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
        sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
        VdbeCoverage(v);
      }
      if( zAff ){
        if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
856
857
858
859
860
861
862

































863
864
865
866
867
868
869
        assert( pIdx->aiColumn[i]<pTab->nCol );
        if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
      }
      sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
    }
  }
}


































/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
Bitmask sqlite3WhereCodeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
        assert( pIdx->aiColumn[i]<pTab->nCol );
        if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
      }
      sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
    }
  }
}

/*
** If the expression passed as the second argument is a vector, generate
** code to write the first nReg elements of the vector into an array
** of registers starting with iReg.
**
** If the expression is not a vector, then nReg must be passed 1. In
** this case, generate code to evaluate the expression and leave the
** result in register iReg.
*/
static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
  assert( nReg>0 );
  if( sqlite3ExprIsVector(p) ){
#ifndef SQLITE_OMIT_SUBQUERY
    if( (p->flags & EP_xIsSelect) ){
      Vdbe *v = pParse->pVdbe;
      int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0);
      sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
    }else
#endif
    {
      int i;
      ExprList *pList = p->x.pList;
      assert( nReg<=pList->nExpr );
      for(i=0; i<nReg; i++){
        sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
      }
    }
  }else{
    assert( nReg==1 );
    sqlite3ExprCode(pParse, p, iReg);
  }
}

/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
Bitmask sqlite3WhereCodeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
952
953
954
955
956
957
958
959

960
961
962
963
964
965
966
      int iTarget = iReg+j+2;
      pTerm = pLoop->aLTerm[j];
      if( NEVER(pTerm==0) ) continue;
      if( pTerm->eOperator & WO_IN ){
        codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
        addrNotFound = pLevel->addrNxt;
      }else{
        sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);

      }
    }
    sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
    sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
    sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
                      pLoop->u.vtab.idxStr,
                      pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);







|
>







1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
      int iTarget = iReg+j+2;
      pTerm = pLoop->aLTerm[j];
      if( NEVER(pTerm==0) ) continue;
      if( pTerm->eOperator & WO_IN ){
        codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
        addrNotFound = pLevel->addrNxt;
      }else{
        Expr *pRight = pTerm->pExpr->pRight;
        codeExprOrVector(pParse, pRight, iTarget, 1);
      }
    }
    sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
    sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
    sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
                      pLoop->u.vtab.idxStr,
                      pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
1066
1067
1068
1069
1070
1071
1072

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091





1092



1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

1116

1117
1118
1119
1120

1121

1122
1123
1124
1125
1126
1127
1128
      pStart = pEnd;
      pEnd = pTerm;
    }
    codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
    if( pStart ){
      Expr *pX;             /* The expression that defines the start bound */
      int r1, rTemp;        /* Registers for holding the start boundary */


      /* The following constant maps TK_xx codes into corresponding 
      ** seek opcodes.  It depends on a particular ordering of TK_xx
      */
      const u8 aMoveOp[] = {
           /* TK_GT */  OP_SeekGT,
           /* TK_LE */  OP_SeekLE,
           /* TK_LT */  OP_SeekLT,
           /* TK_GE */  OP_SeekGE
      };
      assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
      assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
      assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */

      assert( (pStart->wtFlags & TERM_VNULL)==0 );
      testcase( pStart->wtFlags & TERM_VIRTUAL );
      pX = pStart->pExpr;
      assert( pX!=0 );
      testcase( pStart->leftCursor!=iCur ); /* transitive constraints */





      r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);



      sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
      VdbeComment((v, "pk"));
      VdbeCoverageIf(v, pX->op==TK_GT);
      VdbeCoverageIf(v, pX->op==TK_LE);
      VdbeCoverageIf(v, pX->op==TK_LT);
      VdbeCoverageIf(v, pX->op==TK_GE);
      sqlite3ExprCacheAffinityChange(pParse, r1, 1);
      sqlite3ReleaseTempReg(pParse, rTemp);
      disableTerm(pLevel, pStart);
    }else{
      sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
      VdbeCoverageIf(v, bRev==0);
      VdbeCoverageIf(v, bRev!=0);
    }
    if( pEnd ){
      Expr *pX;
      pX = pEnd->pExpr;
      assert( pX!=0 );
      assert( (pEnd->wtFlags & TERM_VNULL)==0 );
      testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
      testcase( pEnd->wtFlags & TERM_VIRTUAL );
      memEndValue = ++pParse->nMem;
      sqlite3ExprCode(pParse, pX->pRight, memEndValue);

      if( pX->op==TK_LT || pX->op==TK_GT ){

        testOp = bRev ? OP_Le : OP_Ge;
      }else{
        testOp = bRev ? OP_Lt : OP_Gt;
      }

      disableTerm(pLevel, pEnd);

    }
    start = sqlite3VdbeCurrentAddr(v);
    pLevel->op = bRev ? OP_Prev : OP_Next;
    pLevel->p1 = iCur;
    pLevel->p2 = start;
    assert( pLevel->p5==0 );
    if( testOp!=OP_Noop ){







>



















>
>
>
>
>
|
>
>
>
|







<













|
>
|
>




>
|
>







1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287

1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
      pStart = pEnd;
      pEnd = pTerm;
    }
    codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
    if( pStart ){
      Expr *pX;             /* The expression that defines the start bound */
      int r1, rTemp;        /* Registers for holding the start boundary */
      int op;               /* Cursor seek operation */

      /* The following constant maps TK_xx codes into corresponding 
      ** seek opcodes.  It depends on a particular ordering of TK_xx
      */
      const u8 aMoveOp[] = {
           /* TK_GT */  OP_SeekGT,
           /* TK_LE */  OP_SeekLE,
           /* TK_LT */  OP_SeekLT,
           /* TK_GE */  OP_SeekGE
      };
      assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
      assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
      assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */

      assert( (pStart->wtFlags & TERM_VNULL)==0 );
      testcase( pStart->wtFlags & TERM_VIRTUAL );
      pX = pStart->pExpr;
      assert( pX!=0 );
      testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
      if( sqlite3ExprIsVector(pX->pRight) ){
        r1 = rTemp = sqlite3GetTempReg(pParse);
        codeExprOrVector(pParse, pX->pRight, r1, 1);
        op = aMoveOp[(pX->op - TK_GT) | 0x0001];
      }else{
        r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
        disableTerm(pLevel, pStart);
        op = aMoveOp[(pX->op - TK_GT)];
      }
      sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
      VdbeComment((v, "pk"));
      VdbeCoverageIf(v, pX->op==TK_GT);
      VdbeCoverageIf(v, pX->op==TK_LE);
      VdbeCoverageIf(v, pX->op==TK_LT);
      VdbeCoverageIf(v, pX->op==TK_GE);
      sqlite3ExprCacheAffinityChange(pParse, r1, 1);
      sqlite3ReleaseTempReg(pParse, rTemp);

    }else{
      sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
      VdbeCoverageIf(v, bRev==0);
      VdbeCoverageIf(v, bRev!=0);
    }
    if( pEnd ){
      Expr *pX;
      pX = pEnd->pExpr;
      assert( pX!=0 );
      assert( (pEnd->wtFlags & TERM_VNULL)==0 );
      testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
      testcase( pEnd->wtFlags & TERM_VIRTUAL );
      memEndValue = ++pParse->nMem;
      codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
      if( 0==sqlite3ExprIsVector(pX->pRight) 
       && (pX->op==TK_LT || pX->op==TK_GT) 
      ){
        testOp = bRev ? OP_Le : OP_Ge;
      }else{
        testOp = bRev ? OP_Lt : OP_Gt;
      }
      if( 0==sqlite3ExprIsVector(pX->pRight) ){
        disableTerm(pLevel, pEnd);
      }
    }
    start = sqlite3VdbeCurrentAddr(v);
    pLevel->op = bRev ? OP_Prev : OP_Next;
    pLevel->p1 = iCur;
    pLevel->p2 = start;
    assert( pLevel->p5==0 );
    if( testOp!=OP_Noop ){
1181
1182
1183
1184
1185
1186
1187


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
    static const u8 aEndOp[] = {
      OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
      OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
      OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
      OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
    };
    u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */


    int regBase;                 /* Base register holding constraint values */
    WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
    WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
    int startEq;                 /* True if range start uses ==, >= or <= */
    int endEq;                   /* True if range end uses ==, >= or <= */
    int start_constraints;       /* Start of range is constrained */
    int nConstraint;             /* Number of constraint terms */
    Index *pIdx;                 /* The index we will be using */
    int iIdxCur;                 /* The VDBE cursor for the index */
    int nExtraReg = 0;           /* Number of extra registers needed */
    int op;                      /* Instruction opcode */
    char *zStartAff;             /* Affinity for start of range constraint */
    char cEndAff = 0;            /* Affinity for end of range constraint */
    u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
    u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */

    pIdx = pLoop->u.btree.pIndex;
    iIdxCur = pLevel->iIdxCur;
    assert( nEq>=pLoop->nSkip );








>
>












|







1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
    static const u8 aEndOp[] = {
      OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
      OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
      OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
      OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
    };
    u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
    u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
    u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
    int regBase;                 /* Base register holding constraint values */
    WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
    WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
    int startEq;                 /* True if range start uses ==, >= or <= */
    int endEq;                   /* True if range end uses ==, >= or <= */
    int start_constraints;       /* Start of range is constrained */
    int nConstraint;             /* Number of constraint terms */
    Index *pIdx;                 /* The index we will be using */
    int iIdxCur;                 /* The VDBE cursor for the index */
    int nExtraReg = 0;           /* Number of extra registers needed */
    int op;                      /* Instruction opcode */
    char *zStartAff;             /* Affinity for start of range constraint */
    char *zEndAff = 0;           /* Affinity for end of range constraint */
    u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
    u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */

    pIdx = pLoop->u.btree.pIndex;
    iIdxCur = pLevel->iIdxCur;
    assert( nEq>=pLoop->nSkip );

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248

    /* Find any inequality constraint terms for the start and end 
    ** of the range. 
    */
    j = nEq;
    if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
      pRangeStart = pLoop->aLTerm[j++];
      nExtraReg = 1;
      /* Like optimization range constraints always occur in pairs */
      assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 
              (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
    }
    if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
      pRangeEnd = pLoop->aLTerm[j++];
      nExtraReg = 1;
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
      if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
        assert( pRangeStart!=0 );                     /* LIKE opt constraints */
        assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
        pLevel->iLikeRepCntr = (u32)++pParse->nMem;
        sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
        VdbeComment((v, "LIKE loop counter"));







|






|







1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440

    /* Find any inequality constraint terms for the start and end 
    ** of the range. 
    */
    j = nEq;
    if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
      pRangeStart = pLoop->aLTerm[j++];
      nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
      /* Like optimization range constraints always occur in pairs */
      assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 
              (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
    }
    if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
      pRangeEnd = pLoop->aLTerm[j++];
      nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
      if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
        assert( pRangeStart!=0 );                     /* LIKE opt constraints */
        assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
        pLevel->iLikeRepCntr = (u32)++pParse->nMem;
        sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
        VdbeComment((v, "LIKE loop counter"));
1270
1271
1272
1273
1274
1275
1276

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286


1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321





1322
1323
1324
1325
1326
1327
1328
    ** start and end terms (pRangeStart and pRangeEnd).
    */
    if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
     || (bRev && pIdx->nKeyCol==nEq)
    ){
      SWAP(WhereTerm *, pRangeEnd, pRangeStart);
      SWAP(u8, bSeekPastNull, bStopAtNull);

    }

    /* Generate code to evaluate all constraint terms using == or IN
    ** and store the values of those terms in an array of registers
    ** starting at regBase.
    */
    codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
    regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
    assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
    if( zStartAff ) cEndAff = zStartAff[nEq];


    addrNxt = pLevel->addrNxt;

    testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
    testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
    testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
    testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
    startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
    endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
    start_constraints = pRangeStart || nEq>0;

    /* Seek the index cursor to the start of the range. */
    nConstraint = nEq;
    if( pRangeStart ){
      Expr *pRight = pRangeStart->pExpr->pRight;
      sqlite3ExprCode(pParse, pRight, regBase+nEq);
      whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
      if( (pRangeStart->wtFlags & TERM_VNULL)==0
       && sqlite3ExprCanBeNull(pRight)
      ){
        sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
        VdbeCoverage(v);
      }
      if( zStartAff ){
        if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){
          /* Since the comparison is to be performed with no conversions
          ** applied to the operands, set the affinity to apply to pRight to 
          ** SQLITE_AFF_BLOB.  */
          zStartAff[nEq] = SQLITE_AFF_BLOB;
        }
        if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
          zStartAff[nEq] = SQLITE_AFF_BLOB;
        }
      }  
      nConstraint++;
      testcase( pRangeStart->wtFlags & TERM_VIRTUAL );





      bSeekPastNull = 0;
    }else if( bSeekPastNull ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
      nConstraint++;
      startEq = 0;
      start_constraints = 1;
    }







>









|
>
>














|








<
<
<
<
|
|
<
<
<
<
|

>
>
>
>
>







1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504




1505
1506




1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
    ** start and end terms (pRangeStart and pRangeEnd).
    */
    if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
     || (bRev && pIdx->nKeyCol==nEq)
    ){
      SWAP(WhereTerm *, pRangeEnd, pRangeStart);
      SWAP(u8, bSeekPastNull, bStopAtNull);
      SWAP(u8, nBtm, nTop);
    }

    /* Generate code to evaluate all constraint terms using == or IN
    ** and store the values of those terms in an array of registers
    ** starting at regBase.
    */
    codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
    regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
    assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
    if( zStartAff && nTop ){
      zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
    }
    addrNxt = pLevel->addrNxt;

    testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
    testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
    testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
    testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
    startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
    endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
    start_constraints = pRangeStart || nEq>0;

    /* Seek the index cursor to the start of the range. */
    nConstraint = nEq;
    if( pRangeStart ){
      Expr *pRight = pRangeStart->pExpr->pRight;
      codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
      whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
      if( (pRangeStart->wtFlags & TERM_VNULL)==0
       && sqlite3ExprCanBeNull(pRight)
      ){
        sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
        VdbeCoverage(v);
      }
      if( zStartAff ){




        updateRangeAffinityStr(pParse, pRight, nBtm, &zStartAff[nEq]);
      }  




      nConstraint += nBtm;
      testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
      if( sqlite3ExprIsVector(pRight)==0 ){
        disableTerm(pLevel, pRangeStart);
      }else{
        startEq = 1;
      }
      bSeekPastNull = 0;
    }else if( bSeekPastNull ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
      nConstraint++;
      startEq = 0;
      start_constraints = 1;
    }
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365


1366
1367
1368






1369
1370
1371
1372
1373
1374

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
    /* Load the value for the inequality constraint at the end of the
    ** range (if any).
    */
    nConstraint = nEq;
    if( pRangeEnd ){
      Expr *pRight = pRangeEnd->pExpr->pRight;
      sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
      sqlite3ExprCode(pParse, pRight, regBase+nEq);
      whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
      if( (pRangeEnd->wtFlags & TERM_VNULL)==0
       && sqlite3ExprCanBeNull(pRight)
      ){
        sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
        VdbeCoverage(v);
      }
      if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB
       && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff)
      ){
        codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff);


      }
      nConstraint++;
      testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );






    }else if( bStopAtNull ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
      endEq = 0;
      nConstraint++;
    }
    sqlite3DbFree(db, zStartAff);


    /* Top of the loop body */
    pLevel->p2 = sqlite3VdbeCurrentAddr(v);

    /* Check if the index cursor is past the end of the range. */
    if( nConstraint ){
      op = aEndOp[bRev*2 + endEq];
      sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
      testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
      testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
      testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
      testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
    }

    /* Seek the table cursor, if required */
    disableTerm(pLevel, pRangeStart);
    disableTerm(pLevel, pRangeEnd);
    if( omitTable ){
      /* pIdx is a covering index.  No need to access the main table. */
    }else if( HasRowid(pIdx->pTable) ){
      if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE)!=0 ){
        iRowidReg = ++pParse->nMem;
        sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
        sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);







|







|
|
<
|
>
>

|

>
>
>
>
>
>






>















<
<







1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555

1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589


1590
1591
1592
1593
1594
1595
1596
    /* Load the value for the inequality constraint at the end of the
    ** range (if any).
    */
    nConstraint = nEq;
    if( pRangeEnd ){
      Expr *pRight = pRangeEnd->pExpr->pRight;
      sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
      codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
      whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
      if( (pRangeEnd->wtFlags & TERM_VNULL)==0
       && sqlite3ExprCanBeNull(pRight)
      ){
        sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
        VdbeCoverage(v);
      }
      if( zEndAff ){
        updateRangeAffinityStr(pParse, pRight, nTop, zEndAff);

        codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
      }else{
        assert( pParse->db->mallocFailed );
      }
      nConstraint += nTop;
      testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );

      if( sqlite3ExprIsVector(pRight)==0 ){
        disableTerm(pLevel, pRangeEnd);
      }else{
        endEq = 1;
      }
    }else if( bStopAtNull ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
      endEq = 0;
      nConstraint++;
    }
    sqlite3DbFree(db, zStartAff);
    sqlite3DbFree(db, zEndAff);

    /* Top of the loop body */
    pLevel->p2 = sqlite3VdbeCurrentAddr(v);

    /* Check if the index cursor is past the end of the range. */
    if( nConstraint ){
      op = aEndOp[bRev*2 + endEq];
      sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
      testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
      testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
      testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
      testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
    }

    /* Seek the table cursor, if required */


    if( omitTable ){
      /* pIdx is a covering index.  No need to access the main table. */
    }else if( HasRowid(pIdx->pTable) ){
      if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE)!=0 ){
        iRowidReg = ++pParse->nMem;
        sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
        sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
        k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
      }
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
                           iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
    }

    /* Record the instruction used to terminate the loop. Disable 
    ** WHERE clause terms made redundant by the index range scan.
    */
    if( pLoop->wsFlags & WHERE_ONEROW ){
      pLevel->op = OP_Noop;
    }else if( bRev ){
      pLevel->op = OP_Prev;
    }else{
      pLevel->op = OP_Next;
    }







|
<
<







1606
1607
1608
1609
1610
1611
1612
1613


1614
1615
1616
1617
1618
1619
1620
        k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
      }
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
                           iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
    }

    /* Record the instruction used to terminate the loop. */


    if( pLoop->wsFlags & WHERE_ONEROW ){
      pLevel->op = OP_Noop;
    }else if( bRev ){
      pLevel->op = OP_Prev;
    }else{
      pLevel->op = OP_Next;
    }
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
    int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;                            /* Loop counter */
    u16 wctrlFlags;                    /* Flags for sub-WHERE clause */
    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
    Table *pTab = pTabItem->pTab;
   
    pTerm = pLoop->aLTerm[0];
    assert( pTerm!=0 );
    assert( pTerm->eOperator & WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
    pOrWc = &pTerm->u.pOrInfo->wc;
    pLevel->op = OP_Return;
    pLevel->p1 = regReturn;







|







1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
    int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;                            /* Loop counter */
    u16 wctrlFlags;                    /* Flags for sub-WHERE clause */
    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
    Table *pTab = pTabItem->pTab;

    pTerm = pLoop->aLTerm[0];
    assert( pTerm!=0 );
    assert( pTerm->eOperator & WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
    pOrWc = &pTerm->u.pOrInfo->wc;
    pLevel->op = OP_Return;
    pLevel->p1 = regReturn;

Changes to src/whereexpr.c.

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
  pTerm->iParent = -1;
  return idx;
}

/*
** Return TRUE if the given operator is one of the operators that is
** allowed for an indexable WHERE clause term.  The allowed operators are
** "=", "<", ">", "<=", ">=", "IN", and "IS NULL"
*/
static int allowedOp(int op){
  assert( TK_GT>TK_EQ && TK_GT<TK_GE );
  assert( TK_LT>TK_EQ && TK_LT<TK_GE );
  assert( TK_LE>TK_EQ && TK_LE<TK_GE );
  assert( TK_GE==TK_EQ+4 );
  return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS;







|







91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
  pTerm->iParent = -1;
  return idx;
}

/*
** Return TRUE if the given operator is one of the operators that is
** allowed for an indexable WHERE clause term.  The allowed operators are
** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL"
*/
static int allowedOp(int op){
  assert( TK_GT>TK_EQ && TK_GT<TK_GE );
  assert( TK_LT>TK_EQ && TK_LT<TK_GE );
  assert( TK_LE>TK_EQ && TK_LE<TK_GE );
  assert( TK_GE==TK_EQ+4 );
  return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS;
819
820
821
822
823
824
825
826

827
828
829
830
831
832
833

834
835
836
837
838
839
840
841











842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

/*
** Expression pExpr is one operand of a comparison operator that might
** be useful for indexing.  This routine checks to see if pExpr appears
** in any index.  Return TRUE (1) if pExpr is an indexed term and return
** FALSE (0) if not.  If TRUE is returned, also set *piCur to the cursor
** number of the table that is indexed and *piColumn to the column number
** of the column that is indexed, or -2 if an expression is being indexed.

**
** If pExpr is a TK_COLUMN column reference, then this routine always returns
** true even if that particular column is not indexed, because the column
** might be added to an automatic index later.
*/
static int exprMightBeIndexed(
  SrcList *pFrom,        /* The FROM clause */

  Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */
  Expr *pExpr,           /* An operand of a comparison operator */
  int *piCur,            /* Write the referenced table cursor number here */
  int *piColumn          /* Write the referenced table column number here */
){
  Index *pIdx;
  int i;
  int iCur;











  if( pExpr->op==TK_COLUMN ){
    *piCur = pExpr->iTable;
    *piColumn = pExpr->iColumn;
    return 1;
  }
  if( mPrereq==0 ) return 0;                 /* No table references */
  if( (mPrereq&(mPrereq-1))!=0 ) return 0;   /* Refs more than one table */
  for(i=0; mPrereq>1; i++, mPrereq>>=1){}
  iCur = pFrom->a[i].iCursor;
  for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    if( pIdx->aColExpr==0 ) continue;
    for(i=0; i<pIdx->nKeyCol; i++){
      if( pIdx->aiColumn[i]!=(-2) ) continue;
      if( sqlite3ExprCompare(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
        *piCur = iCur;
        *piColumn = -2;
        return 1;
      }
    }
  }
  return 0;
}








|
>







>








>
>
>
>
>
>
>
>
>
>
>












|


|







819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877

/*
** Expression pExpr is one operand of a comparison operator that might
** be useful for indexing.  This routine checks to see if pExpr appears
** in any index.  Return TRUE (1) if pExpr is an indexed term and return
** FALSE (0) if not.  If TRUE is returned, also set *piCur to the cursor
** number of the table that is indexed and *piColumn to the column number
** of the column that is indexed, or XN_EXPR (-2) if an expression is being
** indexed.
**
** If pExpr is a TK_COLUMN column reference, then this routine always returns
** true even if that particular column is not indexed, because the column
** might be added to an automatic index later.
*/
static int exprMightBeIndexed(
  SrcList *pFrom,        /* The FROM clause */
  int op,                /* The specific comparison operator */
  Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */
  Expr *pExpr,           /* An operand of a comparison operator */
  int *piCur,            /* Write the referenced table cursor number here */
  int *piColumn          /* Write the referenced table column number here */
){
  Index *pIdx;
  int i;
  int iCur;

  /* If this expression is a vector to the left or right of a 
  ** inequality constraint (>, <, >= or <=), perform the processing 
  ** on the first element of the vector.  */
  assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
  assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
  assert( op<=TK_GE );
  if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
    pExpr = pExpr->x.pList->a[0].pExpr;
  }

  if( pExpr->op==TK_COLUMN ){
    *piCur = pExpr->iTable;
    *piColumn = pExpr->iColumn;
    return 1;
  }
  if( mPrereq==0 ) return 0;                 /* No table references */
  if( (mPrereq&(mPrereq-1))!=0 ) return 0;   /* Refs more than one table */
  for(i=0; mPrereq>1; i++, mPrereq>>=1){}
  iCur = pFrom->a[i].iCursor;
  for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    if( pIdx->aColExpr==0 ) continue;
    for(i=0; i<pIdx->nKeyCol; i++){
      if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
      if( sqlite3ExprCompare(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
        *piCur = iCur;
        *piColumn = XN_EXPR;
        return 1;
      }
    }
  }
  return 0;
}

907
908
909
910
911
912
913

914
915
916
917
918
919
920
  pMaskSet = &pWInfo->sMaskSet;
  pExpr = pTerm->pExpr;
  assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
  prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
  op = pExpr->op;
  if( op==TK_IN ){
    assert( pExpr->pRight==0 );

    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
    }else{
      pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
    }
  }else if( op==TK_ISNULL ){
    pTerm->prereqRight = 0;







>







920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
  pMaskSet = &pWInfo->sMaskSet;
  pExpr = pTerm->pExpr;
  assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
  prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
  op = pExpr->op;
  if( op==TK_IN ){
    assert( pExpr->pRight==0 );
    if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
    }else{
      pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
    }
  }else if( op==TK_ISNULL ){
    pTerm->prereqRight = 0;
933
934
935
936
937
938
939







940
941
942
943
944
945
946
947
948
949
950
951

952
953
954
955
956
957
958
  pTerm->iParent = -1;
  pTerm->eOperator = 0;
  if( allowedOp(op) ){
    int iCur, iColumn;
    Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
    Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
    u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;







    if( exprMightBeIndexed(pSrc, prereqLeft, pLeft, &iCur, &iColumn) ){
      pTerm->leftCursor = iCur;
      pTerm->u.leftColumn = iColumn;
      pTerm->eOperator = operatorMask(op) & opMask;
    }
    if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
    if( pRight 
     && exprMightBeIndexed(pSrc, pTerm->prereqRight, pRight, &iCur, &iColumn)
    ){
      WhereTerm *pNew;
      Expr *pDup;
      u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */

      if( pTerm->leftCursor>=0 ){
        int idxNew;
        pDup = sqlite3ExprDup(db, pExpr, 0);
        if( db->mallocFailed ){
          sqlite3ExprDelete(db, pDup);
          return;
        }







>
>
>
>
>
>
>
|






|




>







947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
  pTerm->iParent = -1;
  pTerm->eOperator = 0;
  if( allowedOp(op) ){
    int iCur, iColumn;
    Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
    Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
    u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;

    if( pTerm->iField>0 ){
      assert( op==TK_IN );
      assert( pLeft->op==TK_VECTOR );
      pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr;
    }

    if( exprMightBeIndexed(pSrc, op, prereqLeft, pLeft, &iCur, &iColumn) ){
      pTerm->leftCursor = iCur;
      pTerm->u.leftColumn = iColumn;
      pTerm->eOperator = operatorMask(op) & opMask;
    }
    if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
    if( pRight 
     && exprMightBeIndexed(pSrc, op, pTerm->prereqRight, pRight, &iCur,&iColumn)
    ){
      WhereTerm *pNew;
      Expr *pDup;
      u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
      assert( pTerm->iField==0 );
      if( pTerm->leftCursor>=0 ){
        int idxNew;
        pDup = sqlite3ExprDup(db, pExpr, 0);
        if( db->mallocFailed ){
          sqlite3ExprDelete(db, pDup);
          return;
        }
1147
1148
1149
1150
1151
1152
1153





















































1154
1155
1156
1157
1158
1159
1160
      markTermAsChild(pWC, idxNew, idxTerm);
      pTerm = &pWC->a[idxTerm];
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */






















































#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  /* When sqlite_stat3 histogram data is available an operator of the
  ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
  ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
  ** virtual term of that form.
  **







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
      markTermAsChild(pWC, idxNew, idxTerm);
      pTerm = &pWC->a[idxTerm];
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */

  /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create
  ** new terms for each component comparison - "a = ?" and "b = ?".  The
  ** new terms completely replace the original vector comparison, which is
  ** no longer used.
  **
  ** This is only required if at least one side of the comparison operation
  ** is not a sub-select.  */
  if( pWC->op==TK_AND 
  && (pExpr->op==TK_EQ || pExpr->op==TK_IS)
  && sqlite3ExprIsVector(pExpr->pLeft)
  && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 
    || (pExpr->pRight->flags & EP_xIsSelect)==0
  )){
    int nLeft = sqlite3ExprVectorSize(pExpr->pLeft);
    int i;
    assert( nLeft==sqlite3ExprVectorSize(pExpr->pRight) );
    for(i=0; i<nLeft; i++){
      int idxNew;
      Expr *pNew;
      Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i);
      Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i);

      pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight, 0);
      idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC);
      exprAnalyze(pSrc, pWC, idxNew);
    }
    pTerm = &pWC->a[idxTerm];
    pTerm->wtFlags = TERM_CODED|TERM_VIRTUAL;  /* Disable the original */
    pTerm->eOperator = 0;
  }

  /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create
  ** a virtual term for each vector component. The expression object
  ** used by each such virtual term is pExpr (the full vector IN(...) 
  ** expression). The WhereTerm.iField variable identifies the index within
  ** the vector on the LHS that the virtual term represents.
  **
  ** This only works if the RHS is a simple SELECT, not a compound
  */
  if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0
   && pExpr->pLeft->op==TK_VECTOR
   && pExpr->x.pSelect->pPrior==0
  ){
    int i;
    for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){
      int idxNew;
      idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL);
      pWC->a[idxNew].iField = i+1;
      exprAnalyze(pSrc, pWC, idxNew);
      markTermAsChild(pWC, idxNew, idxTerm);
    }
  }

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  /* When sqlite_stat3 histogram data is available an operator of the
  ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
  ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
  ** virtual term of that form.
  **

Changes to test/e_expr.test.

843
844
845
846
847
848
849



850
851
852
853
854
855
856
proc x {} { incr ::xcount ; return [expr $::x] }
foreach {tn x expr res nEval} {
  1  10  "x() >= 5 AND x() <= 15"  1  2
  2  10  "x() BETWEEN 5 AND 15"    1  1

  3   5  "x() >= 5 AND x() <= 5"   1  2
  4   5  "x() BETWEEN 5 AND 5"     1  1



} {
  do_test e_expr-13.1.$tn {
    set ::xcount 0
    set a [execsql "SELECT $expr"]
    list $::xcount $a
  } [list $nEval $res]
}







>
>
>







843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
proc x {} { incr ::xcount ; return [expr $::x] }
foreach {tn x expr res nEval} {
  1  10  "x() >= 5 AND x() <= 15"  1  2
  2  10  "x() BETWEEN 5 AND 15"    1  1

  3   5  "x() >= 5 AND x() <= 5"   1  2
  4   5  "x() BETWEEN 5 AND 5"     1  1

  5   9  "(x(),8) >= (9,7) AND (x(),8)<=(9,10)"  1 2
  6   9  "(x(),8) BETWEEN (9,7) AND (9,10)"      1 1
} {
  do_test e_expr-13.1.$tn {
    set ::xcount 0
    set a [execsql "SELECT $expr"]
    list $::xcount $a
  } [list $nEval $res]
}
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828

# EVIDENCE-OF: R-46899-53765 A SELECT used as a scalar quantity must
# return a result set with a single column.
#
# The following block tests that errors are returned in a bunch of cases
# where a subquery returns more than one column.
#
set M {only a single result allowed for a SELECT that is part of an expression}
foreach {tn sql} {
  1     { SELECT (SELECT * FROM t2 UNION SELECT a+1, b+1 FROM t2) }
  2     { SELECT (SELECT * FROM t2 UNION SELECT a+1, b+1 FROM t2 ORDER BY 1) }
  3     { SELECT (SELECT 1, 2) }
  4     { SELECT (SELECT NULL, NULL, NULL) }
  5     { SELECT (SELECT * FROM t2) }
  6     { SELECT (SELECT * FROM (SELECT 1, 2, 3)) }
} {
  do_catchsql_test e_expr-35.2.$tn $sql [list 1 $M]
}

# EVIDENCE-OF: R-35764-28041 The result of the expression is the value
# of the only column in the first row returned by the SELECT statement.
#
# EVIDENCE-OF: R-41898-06686 If the SELECT yields more than one result
# row, all rows after the first are ignored.







|








|







1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831

# EVIDENCE-OF: R-46899-53765 A SELECT used as a scalar quantity must
# return a result set with a single column.
#
# The following block tests that errors are returned in a bunch of cases
# where a subquery returns more than one column.
#
set M {/1 {sub-select returns [23] columns - expected 1}/}
foreach {tn sql} {
  1     { SELECT (SELECT * FROM t2 UNION SELECT a+1, b+1 FROM t2) }
  2     { SELECT (SELECT * FROM t2 UNION SELECT a+1, b+1 FROM t2 ORDER BY 1) }
  3     { SELECT (SELECT 1, 2) }
  4     { SELECT (SELECT NULL, NULL, NULL) }
  5     { SELECT (SELECT * FROM t2) }
  6     { SELECT (SELECT * FROM (SELECT 1, 2, 3)) }
} {
  do_catchsql_test e_expr-35.2.$tn $sql $M
}

# EVIDENCE-OF: R-35764-28041 The result of the expression is the value
# of the only column in the first row returned by the SELECT statement.
#
# EVIDENCE-OF: R-41898-06686 If the SELECT yields more than one result
# row, all rows after the first are ignored.

Changes to test/in.test.

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    SELECT b FROM t1 WHERE a NOT IN t4;
  }
} {64 256 world}
do_test in-9.4 {
  catchsql {
    SELECT b FROM t1 WHERE a NOT IN tb;
  }
} {1 {only a single result allowed for a SELECT that is part of an expression}}

# IN clauses in CHECK constraints.  Ticket #1645
#
do_test in-10.1 {
  execsql {
    CREATE TABLE t5(
      a INTEGER,







|







310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    SELECT b FROM t1 WHERE a NOT IN t4;
  }
} {64 256 world}
do_test in-9.4 {
  catchsql {
    SELECT b FROM t1 WHERE a NOT IN tb;
  }
} {1 {sub-select returns 2 columns - expected 1}}

# IN clauses in CHECK constraints.  Ticket #1645
#
do_test in-10.1 {
  execsql {
    CREATE TABLE t5(
      a INTEGER,
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
} {}
do_test in-12.2 {
  catchsql {
    SELECT * FROM t2 WHERE a IN (
      SELECT a, b FROM t3 UNION ALL SELECT a, b FROM t2
    );
  }
} {1 {only a single result allowed for a SELECT that is part of an expression}}
do_test in-12.3 {
  catchsql {
    SELECT * FROM t2 WHERE a IN (
      SELECT a, b FROM t3 UNION SELECT a, b FROM t2
    );
  }
} {1 {only a single result allowed for a SELECT that is part of an expression}}
do_test in-12.4 {
  catchsql {
    SELECT * FROM t2 WHERE a IN (
      SELECT a, b FROM t3 EXCEPT SELECT a, b FROM t2
    );
  }
} {1 {only a single result allowed for a SELECT that is part of an expression}}
do_test in-12.5 {
  catchsql {
    SELECT * FROM t2 WHERE a IN (
      SELECT a, b FROM t3 INTERSECT SELECT a, b FROM t2
    );
  }
} {1 {only a single result allowed for a SELECT that is part of an expression}}
do_test in-12.6 {
  catchsql {
    SELECT * FROM t2 WHERE a IN (
      SELECT a, b FROM t3 UNION ALL SELECT a FROM t2
    );
  }
} {1 {SELECTs to the left and right of UNION ALL do not have the same number of result columns}}







|






|






|






|







387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
} {}
do_test in-12.2 {
  catchsql {
    SELECT * FROM t2 WHERE a IN (
      SELECT a, b FROM t3 UNION ALL SELECT a, b FROM t2
    );
  }
} {1 {sub-select returns 2 columns - expected 1}}
do_test in-12.3 {
  catchsql {
    SELECT * FROM t2 WHERE a IN (
      SELECT a, b FROM t3 UNION SELECT a, b FROM t2
    );
  }
} {1 {sub-select returns 2 columns - expected 1}}
do_test in-12.4 {
  catchsql {
    SELECT * FROM t2 WHERE a IN (
      SELECT a, b FROM t3 EXCEPT SELECT a, b FROM t2
    );
  }
} {1 {sub-select returns 2 columns - expected 1}}
do_test in-12.5 {
  catchsql {
    SELECT * FROM t2 WHERE a IN (
      SELECT a, b FROM t3 INTERSECT SELECT a, b FROM t2
    );
  }
} {1 {sub-select returns 2 columns - expected 1}}
do_test in-12.6 {
  catchsql {
    SELECT * FROM t2 WHERE a IN (
      SELECT a, b FROM t3 UNION ALL SELECT a FROM t2
    );
  }
} {1 {SELECTs to the left and right of UNION ALL do not have the same number of result columns}}
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
} {1 {SELECTs to the left and right of INTERSECT do not have the same number of result columns}}
do_test in-12.14 {
  catchsql {
    SELECT * FROM t2 WHERE a IN (
      SELECT a, b FROM t3 UNION ALL SELECT a, b FROM t2
    );
  }
} {1 {only a single result allowed for a SELECT that is part of an expression}}
do_test in-12.15 {
  catchsql {
    SELECT * FROM t2 WHERE a IN (
      SELECT a, b FROM t3 UNION ALL SELECT a FROM t2
    );
  }
} {1 {SELECTs to the left and right of UNION ALL do not have the same number of result columns}}







|







474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
} {1 {SELECTs to the left and right of INTERSECT do not have the same number of result columns}}
do_test in-12.14 {
  catchsql {
    SELECT * FROM t2 WHERE a IN (
      SELECT a, b FROM t3 UNION ALL SELECT a, b FROM t2
    );
  }
} {1 {sub-select returns 2 columns - expected 1}}
do_test in-12.15 {
  catchsql {
    SELECT * FROM t2 WHERE a IN (
      SELECT a, b FROM t3 UNION ALL SELECT a FROM t2
    );
  }
} {1 {SELECTs to the left and right of UNION ALL do not have the same number of result columns}}
625
626
627
628
629
630
631

632
633
634
635
636
637
638
639
640
641
642
643
do_test in-13.14 {
  execsql {
    CREATE INDEX i5 ON b(id);
    SELECT * FROM a WHERE id NOT IN (SELECT id FROM b);
  }
} {}


do_test in-13.15 {
  catchsql {
    SELECT 0 WHERE (SELECT 0,0) OR (0 IN (1,2));
  }
} {1 {only a single result allowed for a SELECT that is part of an expression}}


do_test in-13.X {
  db nullvalue ""
} {}

# At one point the following was causing valgrind to report a "jump







>




|







625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
do_test in-13.14 {
  execsql {
    CREATE INDEX i5 ON b(id);
    SELECT * FROM a WHERE id NOT IN (SELECT id FROM b);
  }
} {}

breakpoint
do_test in-13.15 {
  catchsql {
    SELECT 0 WHERE (SELECT 0,0) OR (0 IN (1,2));
  }
} {1 {sub-select returns 2 columns - expected 1}}


do_test in-13.X {
  db nullvalue ""
} {}

# At one point the following was causing valgrind to report a "jump

Added test/rowvalue.test.







































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# 2016 June 17
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the SELECT statement.
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix rowvalue

do_execsql_test 0.0 {
  CREATE TABLE one(o);
  INSERT INTO one VALUES(1);
}

foreach {tn v1 v2 eq ne is isnot} {
  1 "1, 2, 3"    "1, 2, 3"                   1  0     1 0
  2 "1, 0, 3"    "1, 2, 3"                   0  1     0 1
  3 "1, 2, NULL" "1, 2, 3"                   {} {}    0 1
  4 "1, 2, NULL" "1, 2, NULL"                {} {}    1 0
  5 "NULL, NULL, NULL" "NULL, NULL, NULL"    {} {}    1 0

  6 "1, NULL, 1" "1, 1, 1"                   {} {}    0 1
  7 "1, NULL, 1" "1, 1, 2"                   0  1     0 1
} {
  do_execsql_test 1.$tn.eq "SELECT ($v1) == ($v2)" [list $eq]
  do_execsql_test 1.$tn.ne "SELECT ($v1) != ($v2)" [list $ne]

  do_execsql_test 1.$tn.is    "SELECT ($v1) IS ($v2)"     [list $is]
  do_execsql_test 1.$tn.isnot "SELECT ($v1) IS NOT ($v2)" [list $isnot]

  do_execsql_test 1.$tn.2.eq "SELECT (SELECT $v1) == (SELECT $v2)" [list $eq]
  do_execsql_test 1.$tn.2.ne "SELECT (SELECT $v1) != (SELECT $v2)" [list $ne]
}

foreach {tn v1 v2 lt gt le ge} {
  1 "(1, 1, 3)"    "(1, 2, 3)"                   1 0      1 0
  2 "(1, 2, 3)"    "(1, 2, 3)"                   0 0      1 1
  3 "(1, 3, 3)"    "(1, 2, 3)"                   0 1      0 1

  4 "(1, NULL, 3)"    "(1, 2, 3)"                {} {}      {} {}
  5 "(1, 3, 3)"    "(1, NULL, 3)"                {} {}      {} {}
  6 "(1, NULL, 3)"    "(1, NULL, 3)"             {} {}      {} {}
} {
  foreach {tn2 expr res} [list \
    2.$tn.lt "$v1 < $v2" $lt   \
    2.$tn.gt "$v1 > $v2" $gt   \
    2.$tn.le "$v1 <= $v2" $le   \
    2.$tn.ge "$v1 >= $v2" $ge   \
  ] {
    do_execsql_test $tn2 "SELECT $expr" [list $res]

    set map(0) [list]
    set map() [list]
    set map(1) [list 1]
    do_execsql_test $tn2.where1 "SELECT * FROM one WHERE $expr" $map($res)

    set map(0) [list 1]
    set map() [list]
    set map(1) [list]
    do_execsql_test $tn2.where2 "SELECT * FROM one WHERE NOT $expr" $map($res)
  }
}

do_execsql_test 3.0 {
  CREATE TABLE t1(x, y);
  INSERT INTO t1 VALUES(1, 1);
  INSERT INTO t1 VALUES(1, 2);
  INSERT INTO t1 VALUES(2, 3);
  INSERT INTO t1 VALUES(2, 4);
  INSERT INTO t1 VALUES(3, 5);
  INSERT INTO t1 VALUES(3, 6);
}

foreach {tn r order} {
  1 "(1, 1)"           "ORDER BY y"
  2 "(1, 1)"           "ORDER BY x, y"
  3 "(1, 2)"           "ORDER BY x, y DESC"
  4 "(3, 6)"           "ORDER BY x DESC, y DESC"
  5 "((3, 5))"         "ORDER BY x DESC, y"
  6 "(SELECT 3, 5)"    "ORDER BY x DESC, y"
} {
  do_execsql_test 3.$tn.1 "SELECT $r == (SELECT x,y FROM t1 $order)" 1
  do_execsql_test 3.$tn.2 "SELECT $r == (SELECT * FROM t1 $order)" 1

  do_execsql_test 3.$tn.3 "
    SELECT (SELECT * FROM t1 $order) == (SELECT * FROM t1 $order)
  " 1
  do_execsql_test 3.$tn.4 "
    SELECT (SELECT 0, 0) == (SELECT * FROM t1 $order)
  " 0
}

foreach {tn expr res} {
  1 {(2, 2) BETWEEN (2, 2) AND (3, 3)} 1
  2 {(2, 2) BETWEEN (2, NULL) AND (3, 3)} {}
  3 {(2, 2) BETWEEN (3, NULL) AND (3, 3)} 0
} {
  do_execsql_test 4.$tn "SELECT $expr" [list $res]
}

foreach {tn expr res} {
  1 {(2, 4) IN (SELECT * FROM t1)} 1
  2 {(3, 4) IN (SELECT * FROM t1)} 0

  3 {(NULL, 4) IN (SELECT * FROM t1)} {}
  4 {(NULL, 0) IN (SELECT * FROM t1)} 0

  5 {(NULL, 4) NOT IN (SELECT * FROM t1)} {}
  6 {(NULL, 0) NOT IN (SELECT * FROM t1)} 1
} {
  do_execsql_test 5.$tn "SELECT $expr" [list $res]
}

do_execsql_test 6.0 {
  CREATE TABLE hh(a, b, c);
  INSERT INTO hh VALUES('abc', 1, 'i');
  INSERT INTO hh VALUES('ABC', 1, 'ii');
  INSERT INTO hh VALUES('def', 2, 'iii');
  INSERT INTO hh VALUES('DEF', 2, 'iv');
  INSERT INTO hh VALUES('GHI', 3, 'v');
  INSERT INTO hh VALUES('ghi', 3, 'vi');

  CREATE INDEX hh_ab ON hh(a, b); 
}

do_execsql_test 6.1 {
  SELECT c FROM hh WHERE (a, b) = (SELECT 'abc', 1);
} {i}
do_execsql_test 6.2 {
  SELECT c FROM hh WHERE (a, b) = (SELECT 'abc' COLLATE nocase, 1);
} {i}
do_execsql_test 6.3 {
  SELECT c FROM hh WHERE a = (SELECT 'abc' COLLATE nocase) AND b = (SELECT 1);
} {i}
do_execsql_test 6.4 {
  SELECT c FROM hh WHERE +a = (SELECT 'abc' COLLATE nocase) AND b = (SELECT 1);
} {i}
do_execsql_test 6.5 {
  SELECT c FROM hh WHERE a = (SELECT 'abc') COLLATE nocase AND b = (SELECT 1);
} {i ii}
do_catchsql_test 6.6 {
  SELECT c FROM hh WHERE (a, b) = (SELECT 'abc', 1) COLLATE nocase;
} {1 {row value misused}}
do_catchsql_test 6.7 {
  SELECT c FROM hh WHERE (a, b) = 1;
} {1 {row value misused}}
do_execsql_test 6.8 {
  SELECT c FROM hh WHERE (a COLLATE nocase, b) = (SELECT 'def', 2);
} {iii iv}
do_execsql_test 6.9 {
  SELECT c FROM hh WHERE (a COLLATE nocase, b) IS NOT (SELECT 'def', 2);
} {i ii v vi}
do_execsql_test 6.10 {
  SELECT c FROM hh WHERE (b, a) = (SELECT 2, 'def');
} {iii}

do_execsql_test 7.0 {
  CREATE TABLE xy(i INTEGER PRIMARY KEY, j, k);
  INSERT INTO xy VALUES(1, 1, 1);
  INSERT INTO xy VALUES(2, 2, 2);
  INSERT INTO xy VALUES(3, 3, 3);
  INSERT INTO xy VALUES(4, 4, 4);
}


foreach {tn sql res eqp} {
  1 "SELECT * FROM xy WHERE (i, j) IS (2, 2)" {2 2 2} 
    "0 0 0 {SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid=?)}"

  2 "SELECT * FROM xy WHERE (k, j) < (2, 3)" {1 1 1 2 2 2}
    "0 0 0 {SCAN TABLE xy}"

  3 "SELECT * FROM xy WHERE (i, j) < (2, 3)" {1 1 1 2 2 2}
    "0 0 0 {SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid<?)}"

  4 "SELECT * FROM xy WHERE (i, j) > (2, 1)" {2 2 2 3 3 3 4 4 4}
    "0 0 0 {SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid>?)}"

  5 "SELECT * FROM xy WHERE (i, j) > ('2', 1)" {2 2 2 3 3 3 4 4 4}
    "0 0 0 {SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid>?)}"

} {
  do_eqp_test 7.$tn.1 $sql $eqp
  do_execsql_test 7.$tn.2 $sql $res
}

do_execsql_test 8.0 {
  CREATE TABLE j1(a);
}
do_execsql_test 8.1 {
  SELECT * FROM j1 WHERE (select min(a) FROM j1) IN (?, ?, ?)
}

do_execsql_test 9.0 {
  CREATE TABLE t2(a INTEGER PRIMARY KEY, b, c);
  INSERT INTO t2 VALUES(1, 1, 1);
  INSERT INTO t2 VALUES(2, 2, 2);
  INSERT INTO t2 VALUES(3, 3, 3);
  INSERT INTO t2 VALUES(4, 4, 4);
  INSERT INTO t2 VALUES(5, 5, 5);
}

foreach {tn q res} {
  1 "(a, b) > (2, 1)" {2 3 4 5}
  2 "(a, b) > (2, 2)" {3 4 5}
  3 "(a, b) < (4, 5)" {1 2 3 4}
  4 "(a, b) < (4, 3)" {1 2 3}
} {
  do_execsql_test 9.$tn "SELECT c FROM t2 WHERE $q" $res
} 

do_execsql_test 10.0 {
  CREATE TABLE dual(dummy); INSERT INTO dual(dummy) VALUES('X');
  CREATE TABLE t3(a TEXT,b TEXT,c TEXT,d TEXT,e TEXT,f TEXT);
  CREATE INDEX t3x ON t3(b,c,d,e,f);

  SELECT a FROM t3
    WHERE (c,d) IN (SELECT 'c','d' FROM dual)
    AND (a,b,e) IN (SELECT 'a','b','d' FROM dual);
}

do_catchsql_test 11.1 {
  CREATE TABLE t11(a);
  SELECT * FROM t11 WHERE (a,a)<=1;
} {1 {row value misused}}
do_catchsql_test 11.2 {
  SELECT * FROM t11 WHERE (a,a)<1;
} {1 {row value misused}}
do_catchsql_test 11.3 {
  SELECT * FROM t11 WHERE (a,a)>=1;
} {1 {row value misused}}
do_catchsql_test 11.4 {
  SELECT * FROM t11 WHERE (a,a)>1;
} {1 {row value misused}}
do_catchsql_test 11.5 {
  SELECT * FROM t11 WHERE (a,a)==1;
} {1 {row value misused}}
do_catchsql_test 11.6 {
  SELECT * FROM t11 WHERE (a,a)<>1;
} {1 {row value misused}}
do_catchsql_test 11.7 {
  SELECT * FROM t11 WHERE (a,a) IS 1;
} {1 {row value misused}}
do_catchsql_test 11.8 {
  SELECT * FROM t11 WHERE (a,a) IS NOT 1;
} {1 {row value misused}}


finish_test

Added test/rowvalue2.test.















































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# 2016 June 17
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the SELECT statement.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix rowvalue2

do_execsql_test 1.0 {
  CREATE TABLE t1(a, b, c);
  INSERT INTO t1 VALUES(0, 0, 0);
  INSERT INTO t1 VALUES(0, 1, 1);
  INSERT INTO t1 VALUES(1, 0, 2);
  INSERT INTO t1 VALUES(1, 1, 3);

  CREATE INDEX i1 ON t1(a, b);
}

do_execsql_test 1.1.1 { SELECT c FROM t1 WHERE (a, b) >= (1, 0) } {2 3} 
do_execsql_test 1.1.2 { SELECT c FROM t1 WHERE (a, b) > (1, 0)  } {3}

#-------------------------------------------------------------------------

do_execsql_test 2.0.1 {
  CREATE TABLE t2(a INTEGER, b INTEGER, c INTEGER, d INTEGER);
  CREATE INDEX i2 ON t2(a, b, c);
}
do_test 2.0.2 {
  foreach a {0 1 2 3} {
  foreach b {0 1 2 3} {
  foreach c {0 1 2 3} {
    execsql { INSERT INTO t2 VALUES($a, $b, $c, $c + $b*4 + $a*16); }
  }}}
} {}

do_execsql_test 2.1 {
  SELECT d FROM t2 WHERE (a, b) > (2, 2);
} [db eval { SELECT d FROM t2 WHERE a>2 OR (a=2 AND b>2) }]

do_execsql_test 2.2 {
  SELECT d FROM t2 WHERE (a, b) >= (2, 2);
} [db eval { SELECT d FROM t2 WHERE a>2 OR (a=2 AND b>=2) }]

do_execsql_test 2.3 {
  SELECT d FROM t2 WHERE a=1 AND (b, c) >= (1, 2);
} [db eval { SELECT d FROM t2 WHERE +a=1 AND (b>1 OR (b==1 AND c>=2)) }]

do_execsql_test 2.4 {
  SELECT d FROM t2 WHERE a=1 AND (b, c) > (1, 2);
} [db eval { SELECT d FROM t2 WHERE +a=1 AND (b>1 OR (b==1 AND c>2)) }]

#-------------------------------------------------------------------------

set words {
airfare airfield airfields airflow airfoil
airfoils airframe airframes airily airing
airings airless airlift airlifts airline
airliner airlines airlock airlocks airmail
airmails airman airmen airplane airplanes

arraignment arraignments arraigns arrange arranged
arrangement arrangements arranger arrangers arranges
arranging arrant array arrayed arrays
arrears arrest arrested arrester arresters
arresting arrestingly arrestor arrestors arrests

edifices edit edited editing edition
editions editor editorial editorially editorials
editors edits educable educate educated
educates educating education educational educationally
educations educator educators eel eelgrass
}

do_test 3.0 {
  execsql { CREATE TABLE t3(a, b, c, w); }
  foreach w $words {
    set a [string range $w 0 2]
    set b [string range $w 3 5]
    set c [string range $w 6 end]
    execsql { INSERT INTO t3 VALUES($a, $b, $c, $w) }
  }
} {}


foreach {tn idx} {
  IDX1 {}
  IDX2 { CREATE INDEX i3 ON t3(a, b, c); }
  IDX3 { CREATE INDEX i3 ON t3(a, b); }
  IDX4 { CREATE INDEX i3 ON t3(a); }
} {
  execsql { DROP INDEX IF EXISTS i3 }
  execsql $idx

  foreach w $words {
    set a [string range $w 0 2]
    set b [string range $w 3 5]
    set c [string range $w 6 end]

    foreach op [list > >= < <= == IS] {
      do_execsql_test 3.1.$tn.$w.$op [subst -novar {
        SELECT rowid FROM t3 WHERE (a, b, c) [set op] ($a, $b, $c) 
        ORDER BY +rowid
      }] [db eval [subst -novar {
        SELECT rowid FROM t3 WHERE w [set op] $w ORDER BY +rowid
      }]]

      do_execsql_test 3.1.$tn.$w.$op.subselect [subst -novar {
        SELECT rowid FROM t3 WHERE (a, b, c) [set op] (
          SELECT a, b, c FROM t3 WHERE w = $w
        )
        ORDER BY +rowid
      }] [db eval [subst -novar {
        SELECT rowid FROM t3 WHERE w [set op] $w ORDER BY +rowid
      }]]
    }

  }
}

#-------------------------------------------------------------------------
#

do_execsql_test 4.0 {
  CREATE TABLE t4(a, b, c);
  INSERT INTO t4 VALUES(NULL, NULL, NULL);
  INSERT INTO t4 VALUES(NULL, NULL, 0);
  INSERT INTO t4 VALUES(NULL, NULL, 1);
  INSERT INTO t4 VALUES(NULL,    0, NULL);
  INSERT INTO t4 VALUES(NULL,    0, 0);
  INSERT INTO t4 VALUES(NULL,    0, 1);
  INSERT INTO t4 VALUES(NULL,    1, NULL);
  INSERT INTO t4 VALUES(NULL,    1, 0);
  INSERT INTO t4 VALUES(NULL,    1, 1);

  INSERT INTO t4 VALUES(   0, NULL, NULL);
  INSERT INTO t4 VALUES(   0, NULL, 0);
  INSERT INTO t4 VALUES(   0, NULL, 1);
  INSERT INTO t4 VALUES(   0,    0, NULL);
  INSERT INTO t4 VALUES(   0,    0, 0);
  INSERT INTO t4 VALUES(   0,    0, 1);
  INSERT INTO t4 VALUES(   0,    1, NULL);
  INSERT INTO t4 VALUES(   0,    1, 0);
  INSERT INTO t4 VALUES(   0,    1, 1);

  INSERT INTO t4 VALUES(   1, NULL, NULL);
  INSERT INTO t4 VALUES(   1, NULL, 0);
  INSERT INTO t4 VALUES(   1, NULL, 1);
  INSERT INTO t4 VALUES(   1,    0, NULL);
  INSERT INTO t4 VALUES(   1,    0, 0);
  INSERT INTO t4 VALUES(   1,    0, 1);
  INSERT INTO t4 VALUES(   1,    1, NULL);
  INSERT INTO t4 VALUES(   1,    1, 0);
  INSERT INTO t4 VALUES(   1,    1, 1);
}

proc make_expr1 {cList vList op} {
  return "([join $cList ,]) $op ([join $vList ,])"
}

proc make_expr3 {cList vList op} {
  set n [llength $cList]

  set aList [list]
  foreach c [lrange $cList 0 end-1] v [lrange $vList 0 end-1] {
    lappend aList "$c == $v"
  }
  lappend aList "[lindex $cList end] $op [lindex $vList end]"

  return "([join $aList { AND }])"
}

proc make_expr2 {cList vList op} {
  set ret ""

  switch -- $op {
    == - IS {
      set aList [list]
      foreach c $cList v $vList { lappend aList "($c $op $v)" }
      set ret [join $aList " AND "]
    }

    < - > {
      set oList [list]
      for {set i 0} {$i < [llength $cList]} {incr i} {
        lappend oList [make_expr3 [lrange $cList 0 $i] [lrange $vList 0 $i] $op]
      }
      set ret [join $oList " OR "]
    }

    <= - >= {
      set o2 [string range $op 0 0]
      set oList [list]
      for {set i 0} {$i < [llength $cList]-1} {incr i} {
        lappend oList [make_expr3 [lrange $cList 0 $i] [lrange $vList 0 $i] $o2]
      }
      lappend oList [make_expr3 $cList $vList $op]
      set ret [join $oList " OR "]
    }


    default {
      error "Unknown op: $op"
    }
  }

  set ret
}

foreach {tn idx} {
  IDX1 {}
  IDX2 { CREATE INDEX i4 ON t4(a, b, c); }
  IDX3 { CREATE INDEX i4 ON t4(a, b); }
  IDX4 { CREATE INDEX i4 ON t4(a); }
} {
  execsql { DROP INDEX IF EXISTS i4 }
  execsql $idx

  foreach {tn2 vector} {
    1 {0 0 0}
    2 {1 1 1}
    3 {0 0 NULL}
    4 {0 NULL 0}
    5 {NULL 0 0}
    6 {1 1 NULL}
    7 {1 NULL 1}
    8 {NULL 1 1}
  } {
    foreach op { IS == < <= > >= } {
      set e1 [make_expr1 {a b c} $vector $op]
      set e2 [make_expr2 {a b c} $vector $op]

      do_execsql_test 4.$tn.$tn2.$op \
          "SELECT rowid FROM t4 WHERE $e2 ORDER BY +rowid" [
          db eval "SELECT rowid FROM t4 WHERE $e1 ORDER BY +rowid"
      ]
    }
  }
}

do_execsql_test 5.0 {
  CREATE TABLE r1(a TEXT, iB TEXT);
  CREATE TABLE r2(x TEXT, zY INTEGER);
  CREATE INDEX r1ab ON r1(a, iB);

  INSERT INTO r1 VALUES(35, 35);
  INSERT INTO r2 VALUES(35, 36);
  INSERT INTO r2 VALUES(35, 4);
  INSERT INTO r2 VALUES(35, 35);
} {}

foreach {tn lhs rhs} {
  1 {x +zY} {a iB}
  2 {x  zY} {a iB}
  3 {x  zY} {a +iB}
  4 {+x  zY} {a iB}
  5 {x  zY} {+a iB}
} {
  foreach op { IS == < <= > >= } {
    set e1 [make_expr1 $lhs $rhs $op]
    set e2 [make_expr2 $lhs $rhs $op]
    do_execsql_test 5.$tn.$op \
      "SELECT * FROM r1, r2 WHERE $e2 ORDER BY iB" [db eval \
      "SELECT * FROM r1, r2 WHERE $e1 ORDER BY iB"
    ]
  }
}


finish_test

Added test/rowvalue3.test.





























































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# 2016 June 17
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing "(...) IN (SELECT ...)" expressions
# where the SELECT statement returns more than one column.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix rowvalue3

do_execsql_test 1.0 {
  CREATE TABLE t1(a, b, c);
  CREATE INDEX i1 ON t1(a, b);
  INSERT INTO t1 VALUES(1, 2, 3);
  INSERT INTO t1 VALUES(4, 5, 6);
  INSERT INTO t1 VALUES(7, 8, 9);
}

foreach {tn sql res} {
  1  "SELECT 1 WHERE (4, 5) IN (SELECT a, b FROM t1)"  1
  2  "SELECT 1 WHERE (5, 5) IN (SELECT a, b FROM t1)"  {}
  3  "SELECT 1 WHERE (5, 4) IN (SELECT a, b FROM t1)"  {}
  4  "SELECT 1 WHERE (5, 4) IN (SELECT b, a FROM t1)"  1
  5  "SELECT 1 WHERE (SELECT a, b FROM t1 WHERE c=6) IN (SELECT a, b FROM t1)" 1
  6  "SELECT (5, 4) IN (SELECT a, b FROM t1)" 0
  7  "SELECT 1 WHERE (5, 4) IN (SELECT +b, +a FROM t1)"  1
  8  "SELECT (5, 4) IN (SELECT +b, +a FROM t1)"  1
  9  "SELECT (1, 2) IN (SELECT rowid, b FROM t1)"  1
  10 "SELECT 1 WHERE (1, 2) IN (SELECT rowid, b FROM t1)"  1
  11 "SELECT 1 WHERE (1, NULL) IN (SELECT rowid, b FROM t1)"  {}
  12 "SELECT 1 FROM t1 WHERE (a, b) = (SELECT +a, +b FROM t1)" {1}
} {
  do_execsql_test 1.$tn $sql $res
}

#-------------------------------------------------------------------------

do_execsql_test 2.0 {
  CREATE TABLE z1(x, y, z);
  CREATE TABLE kk(a, b);

  INSERT INTO z1 VALUES('a', 'b', 'c');
  INSERT INTO z1 VALUES('d', 'e', 'f');
  INSERT INTO z1 VALUES('g', 'h', 'i');

  -- INSERT INTO kk VALUES('y', 'y');
  INSERT INTO kk VALUES('d', 'e');
  -- INSERT INTO kk VALUES('x', 'x');

}

foreach {tn idx} {
  1 { }
  2 { CREATE INDEX z1idx ON z1(x, y) }
  3 { CREATE UNIQUE INDEX z1idx ON z1(x, y) }
  4 { CREATE INDEX z1idx ON kk(a, b) }
} {
  execsql "DROP INDEX IF EXISTS z1idx"
  execsql $idx

  do_execsql_test 2.$tn.1 {
    SELECT * FROM z1 WHERE x IN (SELECT a FROM kk)
  } {d e f}

  do_execsql_test 2.$tn.2 {
    SELECT * FROM z1 WHERE (x,y) IN (SELECT a, b FROM kk)
  } {d e f}

  do_execsql_test 2.$tn.3 {
    SELECT * FROM z1 WHERE (x, +y) IN (SELECT a, b FROM kk)
  } {d e f}
  
  do_execsql_test 2.$tn.4 {
    SELECT * FROM z1 WHERE (x, +y) IN (SELECT a, b||'x' FROM kk)
  } {}

  do_execsql_test 2.$tn.5 {
    SELECT * FROM z1 WHERE (+x, y) IN (SELECT a, b FROM kk)
  } {d e f}
}

#-------------------------------------------------------------------------
#

do_execsql_test 3.0 {
  CREATE TABLE c1(a, b, c, d);
  INSERT INTO c1(rowid, a, b) VALUES(1,   NULL, 1);
  INSERT INTO c1(rowid, a, b) VALUES(2,   2, NULL);
  INSERT INTO c1(rowid, a, b) VALUES(3,   2, 2);
  INSERT INTO c1(rowid, a, b) VALUES(4,   3, 3);

  INSERT INTO c1(rowid, a, b, c, d) VALUES(101, 'a', 'b', 1, 1);
  INSERT INTO c1(rowid, a, b, c, d) VALUES(102, 'a', 'b', 1, 2);
  INSERT INTO c1(rowid, a, b, c, d) VALUES(103, 'a', 'b', 1, 3);
  INSERT INTO c1(rowid, a, b, c, d) VALUES(104, 'a', 'b', 2, 1);
  INSERT INTO c1(rowid, a, b, c, d) VALUES(105, 'a', 'b', 2, 2);
  INSERT INTO c1(rowid, a, b, c, d) VALUES(106, 'a', 'b', 2, 3);
  INSERT INTO c1(rowid, a, b, c, d) VALUES(107, 'a', 'b', 3, 1);
  INSERT INTO c1(rowid, a, b, c, d) VALUES(108, 'a', 'b', 3, 2);
  INSERT INTO c1(rowid, a, b, c, d) VALUES(109, 'a', 'b', 3, 3);
}


foreach {tn idx} {
  1 { }
  2 { CREATE INDEX c1ab ON c1(a, b); }
  3 { CREATE INDEX c1ba ON c1(b, a); }

  4 { CREATE INDEX c1cd ON c1(c, d); }
  5 { CREATE INDEX c1dc ON c1(d, c); }
} {
  drop_all_indexes

  foreach {tn2 sql res} {
    1 "SELECT (1, 2) IN (SELECT a, b FROM c1)" {0}
    2 "SELECT (1, 1) IN (SELECT a, b FROM c1)" {{}}
    3 "SELECT (2, 1) IN (SELECT a, b FROM c1)" {{}}
    4 "SELECT (2, 2) IN (SELECT a, b FROM c1)" {1}
    5 "SELECT c, d FROM c1 WHERE (c, d) IN (SELECT d, c FROM c1)"
      { 1 1 1 2 1 3   2 1 2 2 2 3   3 1 3 2 3 3 }

    6 "SELECT c, d FROM c1 WHERE (c,d) IN (SELECT d, c FROM c1) ORDER BY c DESC"
      { 3 1 3 2 3 3   2 1 2 2 2 3   1 1 1 2 1 3 }

    7 {
        SELECT c, d FROM c1 WHERE (c,d) IN (SELECT d, c FROM c1) 
        ORDER BY c DESC, d ASC
      } { 3 1 3 2 3 3   2 1 2 2 2 3   1 1 1 2 1 3 }

    8 {
        SELECT c, d FROM c1 WHERE (c,d) IN (SELECT d, c FROM c1) 
        ORDER BY c ASC, d DESC
      } { 1 3 1 2 1 1   2 3 2 2 2 1   3 3 3 2 3 1 }

    9 {
        SELECT c, d FROM c1 WHERE (c,d) IN (SELECT d, c FROM c1) 
        ORDER BY c ASC, d ASC
      } { 1 1 1 2 1 3   2 1 2 2 2 3   3 1 3 2 3 3 }
    10 {
        SELECT c, d FROM c1 WHERE (c,d) IN (SELECT d, c FROM c1) 
        ORDER BY c DESC, d DESC
      } { 3 3 3 2 3 1   2 3 2 2 2 1   1 3 1 2 1 1 }

  } {
    do_execsql_test 3.$tn.$tn2 $sql $res
  }
}

#-------------------------------------------------------------------------

do_execsql_test 4.0 {
  CREATE TABLE hh(a, b, c);

  INSERT INTO hh VALUES('a', 'a', 1);
  INSERT INTO hh VALUES('a', 'b', 2);
  INSERT INTO hh VALUES('b', 'a', 3);
  INSERT INTO hh VALUES('b', 'b', 4);

  CREATE TABLE k1(x, y);
  INSERT INTO k1 VALUES('a', 'a');
  INSERT INTO k1 VALUES('b', 'b');
  INSERT INTO k1 VALUES('a', 'b');
  INSERT INTO k1 VALUES('b', 'a');
}

foreach {tn idx} {
  1 { }
  2 { CREATE INDEX h1 ON hh(a, b); }
  3 { CREATE UNIQUE INDEX k1idx ON k1(x, y) }
  4 { CREATE UNIQUE INDEX k1idx ON k1(x, y DESC) }
  5 { 
    CREATE INDEX h1 ON hh(a, b);
    CREATE UNIQUE INDEX k1idx ON k1(x, y); 
  }
  6 { 
    CREATE INDEX h1 ON hh(a, b);
    CREATE UNIQUE INDEX k1idx ON k1(x, y DESC); 
  }
} {
  drop_all_indexes
  execsql $idx
  foreach {tn2 orderby res} {
    1 "a ASC, b ASC"  {1 2 3 4}
    2 "a ASC, b DESC" {2 1 4 3}
    3 "a DESC, b ASC" {3 4 1 2}
    4 "a DESC, b DESC" {4 3 2 1}
  } {
    do_execsql_test 4.$tn.$tn2 "
      SELECT c FROM hh WHERE (a, b) in (SELECT x, y FROM k1) ORDER BY $orderby
    " $res
  }
}

#-------------------------------------------------------------------------


finish_test

Added test/rowvalue4.test.



















































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# 2016 July 29
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is syntax errors involving row-value constructors
# and sub-selects that return multiple arguments.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix rowvalue4

#-------------------------------------------------------------------------
# Test some error conditions:
# 
#   * row values used where they are not supported,
#   * row values or sub-selects that contain/return the wrong number
#     of elements.
#
do_execsql_test 1.0 {
  CREATE TABLE t1(a, b, c);
  CREATE INDEX t1bac ON t1(b, a, c);
}

foreach {tn e} {
  1 "(1, 2, 3)"
  2 "1 + (1, 2)"
  3 "(1,2,3) == (1, 2)"
} {
  do_catchsql_test 1.$tn "SELECT $e" {1 {row value misused}}
}

foreach {tn s error} {
  1 "SELECT * FROM t1 WHERE a = (1, 2)"       {row value misused}
  2 "SELECT * FROM t1 WHERE b = (1, 2)"       {row value misused}
  3 "SELECT * FROM t1 WHERE NOT (b = (1, 2))" {row value misused}
  4 "SELECT * FROM t1 LIMIT (1, 2)"           {row value misused}
  5 "SELECT (a, b) IN (SELECT * FROM t1) FROM t1" 
                             {sub-select returns 3 columns - expected 2}

  6 "SELECT * FROM t1 WHERE (a, b) IN (SELECT * FROM t1)" 
                             {sub-select returns 3 columns - expected 2}
  7 "SELECT * FROM t1 WHERE (c, c) <= 1" {row value misused}
  8 "SELECT * FROM t1 WHERE (b, b) <= 1" {row value misused}
} {
  do_catchsql_test 2.$tn "$s" [list 1 $error]
}

#-------------------------------------------------------------------------
do_execsql_test 2.0 {
  CREATE TABLE t2(a, b, c, d);
  INSERT INTO t2 VALUES(1, 1, 1,   1);
  INSERT INTO t2 VALUES(1, 1, 2,   2);
  INSERT INTO t2 VALUES(1, 1, 3,   3);
  INSERT INTO t2 VALUES(1, 2, 1,   4);
  INSERT INTO t2 VALUES(1, 2, 2,   5);
  INSERT INTO t2 VALUES(1, 2, 3,   6);
  INSERT INTO t2 VALUES(1, 3, 1,   7);
  INSERT INTO t2 VALUES(1, 3, 2,   8);
  INSERT INTO t2 VALUES(1, 3, 3,   9);

  INSERT INTO t2 VALUES(2, 1, 1,   10);
  INSERT INTO t2 VALUES(2, 1, 2,   11);
  INSERT INTO t2 VALUES(2, 1, 3,   12);
  INSERT INTO t2 VALUES(2, 2, 1,   13);
  INSERT INTO t2 VALUES(2, 2, 2,   14);
  INSERT INTO t2 VALUES(2, 2, 3,   15);
  INSERT INTO t2 VALUES(2, 3, 1,   16);
  INSERT INTO t2 VALUES(2, 3, 2,   17);
  INSERT INTO t2 VALUES(2, 3, 3,   18);

  INSERT INTO t2 VALUES(3, 1, 1,   19);
  INSERT INTO t2 VALUES(3, 1, 2,   20);
  INSERT INTO t2 VALUES(3, 1, 3,   21);
  INSERT INTO t2 VALUES(3, 2, 1,   22);
  INSERT INTO t2 VALUES(3, 2, 2,   23);
  INSERT INTO t2 VALUES(3, 2, 3,   24);
  INSERT INTO t2 VALUES(3, 3, 1,   25);
  INSERT INTO t2 VALUES(3, 3, 2,   26);
  INSERT INTO t2 VALUES(3, 3, 3,   27);
}

foreach {nm idx} {
  idx1 {}
  idx2 { CREATE INDEX t2abc ON t2(a, b, c); }
  idx3 { CREATE INDEX t2abc ON t2(a, b DESC, c); }
  idx4 { CREATE INDEX t2abc ON t2(a DESC, b DESC, c DESC); }
  idx5 { CREATE INDEX t2abc ON t2(a ASC, b ASC, c ASC); }
  idx6 { CREATE INDEX t2abc ON t2(a DESC, b, c); }
  idx7 { CREATE INDEX t2abc ON t2(a DESC, b DESC) }
  idx8 { CREATE INDEX t2abc ON t2(c, b, a); }
  idx9 { CREATE INDEX t2d ON t2(d); }
  idx10 { CREATE INDEX t2abc ON t2(a DESC, b, c DESC); }
} {
  drop_all_indexes
  execsql $idx

  foreach {tn where res} {
    1 "(a, b, c) < (2, 2, 2)"  {1 2 3 4 5 6 7 8 9 10 11 12 13}
    2 "(a, b, c) <= (2, 2, 2)" {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
    3 "(a, b, c) > (2, 2, 2)"  {15 16 17 18 19 20 21 22 23 24 25 26 27}
    4 "(a, b, c) >= (2, 2, 2)" {14 15 16 17 18 19 20 21 22 23 24 25 26 27}
    5 "(a, b, c) >= (2, 2, NULL)" {16 17 18 19 20 21 22 23 24 25 26 27}
    6 "(a, b, c) <= (2, 2, NULL)" {1 2 3 4 5 6 7 8 9 10 11 12}
    7 "(a, b, c) >= (2, NULL, NULL)" {19 20 21 22 23 24 25 26 27}
    8 "(a, b, c) <= (2, NULL, NULL)" {1 2 3 4 5 6 7 8 9}

    9 "(a, b, c) < (SELECT a, b, c FROM t2 WHERE d=14)"  
      {1 2 3 4 5 6 7 8 9 10 11 12 13}

    10 "(a, b, c) = (SELECT a, b, c FROM t2 WHERE d=14)" 14

    11 "a = 2 AND (b, c) > (2, 2)" {15 16 17 18}
    12 "a = 2 AND (b, c) < (3, 3) AND (b, c) > (1, 1)" {11 12 13 14 15 16 17}
  } {
    set result [db eval "SELECT d FROM t2 WHERE $where"]
    do_test 2.1.$nm.$tn { lsort -integer $result } $res
  }

  foreach {tn e res} {
    1 "(2, 1) IN (SELECT a, b FROM t2)" 1
    2 "(2, 1) IN (SELECT a, b FROM t2 ORDER BY d)" 1
    3 "(2, 1) IN (SELECT a, b FROM t2 ORDER BY d LIMIT 9)" 0
    4 "(2, 1) IN (SELECT a, b FROM t2 ORDER BY d LIMIT 10)" 1

    5 "(3, 3) = (SELECT a, b FROM t2 ORDER BY d DESC LIMIT 1)" 1
    6 "(3, 3) = (SELECT a, b FROM t2 ORDER BY d ASC LIMIT 1)" 0
    7 "(1, NULL) = (SELECT a, b FROM t2 ORDER BY d ASC LIMIT 1)" {{}}

    8 "(3, 1) = (SELECT b, c FROM t2 ORDER BY d DESC LIMIT 1 OFFSET 2)" 1
    9 "(3, 1) = (SELECT b, c FROM t2 ORDER BY d ASC LIMIT 1 OFFSET 2)" 0
    10 "(1, NULL) = (SELECT b, c FROM t2 ORDER BY d ASC LIMIT 1 OFFSET 2)" {{}}

    11 "(3, 3) = (SELECT max(a), max(b) FROM t2)" 1
    12 "(3, 1) = (SELECT max(a), min(b) FROM t2)" 1
    13 "(NULL, NULL) = (SELECT max(a), min(b) FROM t2)" {{}}

    14 "(2, 1) IN (SELECT a, b FROM t2 ORDER BY d LIMIT 5 OFFSET 11)" 1
    15 "(2, 1) IN (SELECT a, b FROM t2 ORDER BY d LIMIT 5 OFFSET 12)" 0
  } {
    do_execsql_test 2.2.$nm.$tn "SELECT $e" $res
  }
}

ifcapable stat4 {
  do_execsql_test 3.0 {
    CREATE TABLE c1(a, b, c, d);
    INSERT INTO c1(a, b) VALUES(1, 'a');
    INSERT INTO c1(a, b) VALUES(1, 'b');
    INSERT INTO c1(a, b) VALUES(1, 'c');
    INSERT INTO c1(a, b) VALUES(1, 'd');
    INSERT INTO c1(a, b) VALUES(1, 'e');
    INSERT INTO c1(a, b) VALUES(1, 'f');
    INSERT INTO c1(a, b) VALUES(1, 'g');
    INSERT INTO c1(a, b) VALUES(1, 'h');
    INSERT INTO c1(a, b) VALUES(1, 'i');
    INSERT INTO c1(a, b) VALUES(1, 'j');
    INSERT INTO c1(a, b) VALUES(1, 'k');
    INSERT INTO c1(a, b) VALUES(1, 'l');
    INSERT INTO c1(a, b) VALUES(1, 'm');
    INSERT INTO c1(a, b) VALUES(1, 'n');
    INSERT INTO c1(a, b) VALUES(1, 'o');
    INSERT INTO c1(a, b) VALUES(1, 'p');
    INSERT INTO c1(a, b) VALUES(2, 'a');
    INSERT INTO c1(a, b) VALUES(2, 'b');
    INSERT INTO c1(a, b) VALUES(2, 'c');
    INSERT INTO c1(a, b) VALUES(2, 'd');
    INSERT INTO c1(a, b) VALUES(2, 'e');
    INSERT INTO c1(a, b) VALUES(2, 'f');
    INSERT INTO c1(a, b) VALUES(2, 'g');
    INSERT INTO c1(a, b) VALUES(2, 'h');

    INSERT INTO c1(c, d) SELECT a, b FROM c1;

    CREATE INDEX c1ab ON c1(a, b);
    CREATE INDEX c1cd ON c1(c, d);
    ANALYZE;
  }

  do_eqp_test 3.1.1 { SELECT * FROM c1 WHERE a=1 AND c=2 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1cd (c=?)}
  }
  do_eqp_test 3.1.2 { SELECT * FROM c1 WHERE a=1 AND b>'d' AND c=2 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1cd (c=?)}
  }
  do_eqp_test 3.1.3 { SELECT * FROM c1 WHERE a=1 AND b>'l' AND c=2 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=? AND b>?)}
  }

  do_eqp_test 3.2.1 { SELECT * FROM c1 WHERE a=1 AND c>1 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1cd (c>?)}
  }
  do_eqp_test 3.2.2 { SELECT * FROM c1 WHERE a=1 AND c>0 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=?)}
  }
  do_eqp_test 3.2.3 { SELECT * FROM c1 WHERE a=1 AND c>=1 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=?)}
  }
  do_eqp_test 3.2.4 { SELECT * FROM c1 WHERE a=1 AND (c, d)>(1, 'c') } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=?)}
  }
  do_eqp_test 3.2.5 { SELECT * FROM c1 WHERE a=1 AND (c, d)>(1, 'o') } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1cd ((c,d)>(?,?))}
  }
  do_eqp_test 3.2.6 { SELECT * FROM c1 WHERE a=1 AND (c, +b)>(1, 'c') } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=?)}
  }
}

#------------------------------------------------------------------------

do_execsql_test 5.0 {
  CREATE TABLE d1(x, y);
  CREATE TABLE d2(a, b, c);
  CREATE INDEX d2ab ON d2(a, b);
  CREATE INDEX d2c ON d2(c);

  WITH i(i) AS (
    VALUES(1) UNION ALL SELECT i+1 FROM i WHERE i<1000
  )
  INSERT INTO d2 SELECT i/3, i%3, i/3 FROM i;
  ANALYZE;
}

do_eqp_test 5.1 {
  SELECT * FROM d2 WHERE 
    (a, b) IN (SELECT x, y FROM d1) AND
    (c) IN (SELECT y FROM d1)
} {
  0 0 0 {SEARCH TABLE d2 USING INDEX d2ab (a=? AND b=?)}
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE d1}
  0 0 0 {EXECUTE LIST SUBQUERY 2} 
  2 0 0 {SCAN TABLE d1}
}

do_execsql_test 6.0 {
  CREATE TABLE e1(a, b, c, d, e);
  CREATE INDEX e1ab ON e1(a, b);
  CREATE INDEX e1cde ON e1(c, d, e);
}

do_eqp_test 6.1 {
  SELECT * FROM e1 WHERE (a, b) > (?, ?)
} {
  0 0 0 {SEARCH TABLE e1 USING INDEX e1ab ((a,b)>(?,?))}
}
do_eqp_test 6.2 {
  SELECT * FROM e1 WHERE (a, b) < (?, ?)
} {
  0 0 0 {SEARCH TABLE e1 USING INDEX e1ab ((a,b)<(?,?))}
}
do_eqp_test 6.3 {
  SELECT * FROM e1 WHERE c = ? AND (d, e) > (?, ?)
} {
  0 0 0 {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)>(?,?))}
}
do_eqp_test 6.4 {
  SELECT * FROM e1 WHERE c = ? AND (d, e) < (?, ?)
} {
  0 0 0 {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)<(?,?))}
}

do_eqp_test 6.5 {
  SELECT * FROM e1 WHERE (d, e) BETWEEN (?, ?) AND (?, ?) AND c = ?
} {
  0 0 0 
  {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)>(?,?) AND (d,e)<(?,?))}
}

#-------------------------------------------------------------------------

do_execsql_test 7.1 {
  CREATE TABLE f1(a, b, c);
  CREATE INDEX f1ab ON f1(a, b);
}

do_catchsql_test 7.2 {
  SELECT (a COLLATE nocase, b) IN (SELECT a, b FROM f1) FROM f1;
} {0 {}}

do_catchsql_test 7.3 {
  SELECT (a COLLATE nose, b) IN (SELECT a, b FROM f1) FROM f1;
} {1 {no such collation sequence: nose}}

do_catchsql_test 7.4 {
  SELECT * FROM f1 WHERE (?, ? COLLATE nose) > (a, b);
} {1 {no such collation sequence: nose}}

#-------------------------------------------------------------------------
drop_all_tables
do_execsql_test 8.1 {
  CREATE TABLE c1(x, y);
  CREATE TABLE c2(a, b, c);
  CREATE INDEX c2ab ON c2(a, b);
  CREATE INDEX c2c ON c2(c);

  CREATE TABLE c3(d);
}
do_catchsql_test 8.2 {
  SELECT * FROM c2 CROSS JOIN c3 WHERE 
    ( (a, b) == (SELECT x, y FROM c1) AND c3.d = c ) OR
    ( c == (SELECT x, y FROM c1) AND c3.d = c )
} {1 {row value misused}}

finish_test

Added test/rowvalue5.test.





























































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# 2016 July 29
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is syntax errors involving row-values and
# virtual tables.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix rowvalue5

proc vtab_command {method args} {
  switch -- $method {
    xConnect {
      return "CREATE TABLE t1(a, b, c, d, expr)"
    }

    xBestIndex {
      set COL(0) a
      set COL(1) b
      set COL(2) c
      set COL(3) d
      set COL(4) expr

      set OP(eq) =
      set OP(ne) !=
      set OP(gt) >
      set OP(le) <=
      set OP(lt) <
      set OP(ge) >=
      set OP(match) MATCH
      set OP(like) LIKE
      set OP(glob) GLOB
      set OP(regexp) REGEXP

      set clist [lindex $args 0]
      set ret [list]
      set elist [list]
      set i 0
      foreach c $clist {
        array set C $c
        if {$C(usable)} {
          lappend ret omit $i
          lappend elist "$COL($C(column)) $OP($C(op)) %$i%"
        }
        incr i
      }

      lappend ret idxstr [join $elist " AND "]
      #puts "xBestIndex: $ret"
      return $ret
    }

    xFilter {
      foreach {idxnum idxstr arglist} $args {}
      set i 0
      set ee $idxstr
      foreach a $arglist {
        if {[string is double $a]==0} {
          set a "'[string map {' ''} $a]'"
        }
        set ee [string map [list "%$i%" $a] $ee]
        incr i
      }
      set ee [string map [list "'" "''"] $ee]

      set ret [list sql "SELECT 1, 'a', 'b', 'c', 'd', '$ee'"]
      #puts "xFilter: $ret"
      return $ret
    }
  }

  return {}
}

register_tcl_module db
do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE x1 USING tcl(vtab_command);
} {}


foreach {tn where res} {
  1 "1"                              {{}}
  2 "a=1"                            {{a = 1}}
  3 "a=1 AND 4 = b"                  {{a = 1 AND b = 4}}
  4 "c>'hello'"                      {{c > 'hello'}}
  5 "c<='hel''lo'"                   {{c <= 'hel''lo'}}
  6 "(a, b) = (SELECT 9, 10)"        {{a = 9 AND b = 10}}
  7 "(+a, b) = (SELECT 'a', 'b')"    {{b = 'b'}}
  8 "(a, +b) = (SELECT 'a', 'b')"    {{a = 'a'}}
  11 "(+a, b) IN (SELECT 'a', 'b')"  {{b = 'b'}}
  12 "(a, +b) IN (SELECT 'a', 'b')"  {{a = 'a'}}

  13 "(a, b) < ('d', 'e')"           {{a <= 'd'}}
  14 "(a, b) < ('a', 'c')"           {{a <= 'a'}}
  15 "(a, b) <= ('a', 'b')"          {{a <= 'a'}}
  16 "(a, b) < ('a', 'b')"           {}
} {
  do_execsql_test 1.$tn "SELECT expr FROM x1 WHERE $where" $res
}

finish_test

Added test/rowvalue6.test.









































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# 2016-08-18
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# The focus of this file is handling of NULL values in row-value IN
# expressions.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix rowvalue6

do_execsql_test 1.1 {
  CREATE TABLE t1(a,b,c);
  CREATE INDEX t1x1 ON t1(a,b);
  INSERT INTO t1 VALUES(1,NULL,200);

  CREATE TABLE t2(x,y,z);
  INSERT INTO t2 VALUES(1,NULL,55);

  SELECT c FROM t1 WHERE (a,b) IN (SELECT x,y FROM t2 WHERE z==55);
} {}
do_execsql_test 1.2 {
  INSERT INTO t1 VALUES(2,3,400);
  INSERT INTO t2 VALUES(2,3,55);  

  SELECT c FROM t1 WHERE (a,b) IN (SELECT x,y FROM t2 WHERE z==55);
} {400}

finish_test

Added test/rowvalue7.test.





















































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# 2016-08-18
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# The focus of this file is vector assignments in the SET clause of
# an UPDATE statement.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix rowvalue7

do_execsql_test 1.1 {
  CREATE TABLE t1(a,b,c,d);
  CREATE INDEX t1x ON t1(a,b);
  INSERT INTO t1(a,b,c,d) VALUES(1,2,0,0),(3,4,0,0),(5,6,0,0);
  CREATE TABLE t2(w,x,y,z);
  CREATE INDEX t2x ON t2(w,x);
  INSERT INTO t2(w,x,y,z) VALUES(1,2,11,22),(8,9,88,99),(3,5,33,55),(5,6,55,66);

  SELECT *,'|' FROM t1 ORDER BY a;
} {1 2 0 0 | 3 4 0 0 | 5 6 0 0 |}

do_execsql_test 1.2 {
  UPDATE t1 SET (c,d) = (SELECT y,z FROM t2 WHERE (w,x)=(a,b));
  SELECT *,'|' FROM t1 ORDER BY a;
} {1 2 11 22 | 3 4 {} {} | 5 6 55 66 |}

do_execsql_test 1.3 {
  UPDATE t1 SET (c,d) = (SELECT y,z FROM t2 WHERE w=a);
  SELECT *,'|' FROM t1 ORDER BY a;
} {1 2 11 22 | 3 4 33 55 | 5 6 55 66 |}

do_execsql_test 1.4 {
  UPDATE t1 SET (c) = 99 WHERE a=3;
  SELECT *,'|' FROM t1 ORDER BY a;
} {1 2 11 22 | 3 4 99 55 | 5 6 55 66 |}

do_execsql_test 1.5 {
  UPDATE t1 SET b = 8, (c,d) = (SELECT 123,456) WHERE a=3;
  SELECT *,'|' FROM t1 ORDER BY a;
} {1 2 11 22 | 3 8 123 456 | 5 6 55 66 |}

do_catchsql_test 2.1 {
  UPDATE t1 SET (c,d) = (SELECT x,y,z FROM t2 WHERE w=a);
} {1 {2 columns assigned 3 values}}

do_catchsql_test 2.2 {
  UPDATE t1 SET (b,c,d) = (SELECT x,y FROM t2 WHERE w=a);
} {1 {3 columns assigned 2 values}}

finish_test

Added test/rowvalue8.test.























































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# 2016-08-22
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# Use of row values in CASE statements.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix rowvalue8

do_execsql_test 1.1 {
  CREATE TABLE t1(a INTEGER PRIMARY KEY,b,c,d);
  INSERT INTO t1(a,b,c,d) VALUES
     (1,1,2,3),
     (2,2,3,4),
     (3,1,2,4),
     (4,2,3,5),
     (5,3,4,6),
     (6,4,5,9);
  SELECT a, CASE (b,c) WHEN (1,2) THEN 'aleph'
                       WHEN (2,3) THEN 'bet'
                       WHEN (3,4) THEN 'gimel'
                       ELSE '-' END,
         '|'
    FROM t1
   ORDER BY a;
} {1 aleph | 2 bet | 3 aleph | 4 bet | 5 gimel | 6 - |}
do_execsql_test 1.2 {
  SELECT a, CASE (b,c,d) WHEN (1,2,3) THEN 'aleph'
                         WHEN (2,3,4) THEN 'bet'
                         WHEN (3,4,6) THEN 'gimel'
                         ELSE '-' END,
         '|'
    FROM t1
   ORDER BY a;
} {1 aleph | 2 bet | 3 - | 4 - | 5 gimel | 6 - |}

do_execsql_test 2.1 {
  CREATE TABLE t2(x INTEGER PRIMARY KEY, y);
  INSERT INTO t2(x,y) VALUES(1,6),(2,5),(3,4),(4,3),(5,2),(6,1);
  SELECT x, CASE (SELECT b,c FROM t1 WHERE a=y)
            WHEN (1,2) THEN 'aleph'
            WHEN (2,3) THEN 'bet'
            WHEN (3,4) THEN 'gimel'
            ELSE '-' END,
         '|'
    FROM t2
   ORDER BY +x;
} {1 - | 2 gimel | 3 bet | 4 aleph | 5 bet | 6 aleph |}


finish_test

Added test/rowvalue9.test.





























































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# 2016 September 3
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing SQL statements that use row value
# constructors.
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix rowvalue9

# Tests:
#
#  1.*: Test that affinities are handled correctly by various row-value
#       operations without indexes.
#
#  2.*: Test an affinity bug that came up during testing.
#
#  3.*: Test a row-value version of the bug tested by 2.*.
#
#  4.*: Test that affinities are handled correctly by various row-value
#       operations with assorted indexes.
#

do_execsql_test 1.0.1 {
  CREATE TABLE a1(c, b INTEGER, a TEXT, PRIMARY KEY(a, b));
 
  INSERT INTO a1 (rowid, c, b, a) VALUES(3,  '0x03', 1, 1);
  INSERT INTO a1 (rowid, c, b, a) VALUES(14, '0x0E', 2, 2);
  INSERT INTO a1 (rowid, c, b, a) VALUES(15, '0x0F', 3, 3);
  INSERT INTO a1 (rowid, c, b, a) VALUES(92, '0x5C', 4, 4);

  CREATE TABLE a2(x BLOB, y BLOB);
  INSERT INTO a2(x, y) VALUES(1, 1);
  INSERT INTO a2(x, y) VALUES(2, '2');
  INSERT INTO a2(x, y) VALUES('3', 3);
  INSERT INTO a2(x, y) VALUES('4', '4');
}

do_execsql_test 1.0.2 { 
  SELECT x, typeof(x), y, typeof(y) FROM a2 ORDER BY rowid
} {
  1 integer 1 integer 
  2 integer 2 text 
  3 text    3 integer 
  4 text    4 text
}

do_execsql_test 1.1.1 {
  SELECT (SELECT rowid FROM a1 WHERE a=x AND b=y) FROM a2
} {{} {} 15 92}
do_execsql_test 1.1.2 {
  SELECT (SELECT rowid FROM a1 WHERE (a, b) = (x, y)) FROM a2
} {{} {} 15 92}

do_execsql_test 1.2.3 {
  SELECT a1.rowid FROM a1, a2 WHERE a=x AND b=y;
} {15 92}
do_execsql_test 1.2.4 {
  SELECT a1.rowid FROM a1, a2 WHERE (a, b) = (x, y)
} {15 92}


do_execsql_test 1.3.1 {
  SELECT a1.rowid FROM a1, a2 WHERE coalesce(NULL,x)=a AND coalesce(NULL,y)=b
} {3 14 15 92}
do_execsql_test 1.3.2 {
  SELECT a1.rowid FROM a1, a2 
  WHERE (coalesce(NULL,x), coalesce(NULL,y)) = (a, b)
} {3 14 15 92}

do_execsql_test 1.4.1 {
  SELECT a1.rowid FROM a1, a2 WHERE +x=a AND +y=b
} {3 14 15 92}
do_execsql_test 1.4.2 {
  SELECT a1.rowid FROM a1, a2 WHERE (+x, +y) = (a, b)
} {3 14 15 92}

do_execsql_test 1.5.1 {
  SELECT (SELECT rowid FROM a1 WHERE a=+x AND b=+y) FROM a2
} {3 14 15 92}
do_execsql_test 1.5.2 {
  SELECT (SELECT rowid FROM a1 WHERE (a, b) = (+x, +y)) FROM a2
} {3 14 15 92}
do_execsql_test 1.5.3 {
  SELECT (SELECT rowid FROM a1 WHERE (+x, +y) = (a, b)) FROM a2
} {3 14 15 92}

do_execsql_test 1.6.1 {
  SELECT a1.rowid FROM a1 WHERE (a, b) IN (SELECT x, y FROM a2)
} {15 92}
do_execsql_test 1.6.2 {
  SELECT a1.rowid FROM a1, a2 WHERE EXISTS (
    SELECT 1 FROM a1 WHERE a=x AND b=y
  )
} {3 14 15 92 3 14 15 92}

# Test that [199df416] is fixed.
#
do_execsql_test 2.1 {
  CREATE TABLE b1(a TEXT);
  CREATE TABLE b2(x BLOB);
  INSERT INTO b1 VALUES(1);
  INSERT INTO b2 VALUES(1);
}
do_execsql_test 2.2 { SELECT * FROM b1, b2 WHERE a=x; } {}
do_execsql_test 2.3 { SELECT * FROM b1 WHERE a IN (SELECT x FROM b2) } {}
do_execsql_test 2.4 { CREATE UNIQUE INDEX b1a ON b1(a); }
do_execsql_test 2.5 { SELECT * FROM b1 WHERE a IN (SELECT x FROM b2) } {}

# Test that a multi-column version of the query that revealed problem 
# [199df416] also works.
#
do_execsql_test 3.1 {
  CREATE TABLE c1(a INTEGER, b TEXT);
  INSERT INTO c1 VALUES(1, 1);
  CREATE TABLE c2(x BLOB, y BLOB);
  INSERT INTO c2 VALUES(1, 1);
}
do_execsql_test 3.2 {
  SELECT * FROM c1 WHERE (a, b) IN (SELECT x, y FROM c2)
} {}
do_execsql_test 3.3 {
  CREATE UNIQUE INDEX c1ab ON c1(a, b);
  SELECT * FROM c1 WHERE (a, b) IN (SELECT x, y FROM c2)
} {}
do_execsql_test 3.4 {
  SELECT * FROM c1 WHERE (a, +b) IN (SELECT x, y FROM c2)
} {}

do_execsql_test 3.5 {
  SELECT c1.rowid FROM c1 WHERE b = (SELECT y FROM c2);
} {}
do_execsql_test 3.6 {
  SELECT c1.rowid FROM c1 WHERE (a, b) = (SELECT x, y FROM c2);
} {}


#-------------------------------------------------------------------------
#
do_execsql_test 4.0 {
  CREATE TABLE d1(a TEXT, b INTEGER, c NUMERIC);
  CREATE TABLE d2(x BLOB, y BLOB);

  INSERT INTO d1 VALUES(1, 1, 1);
  INSERT INTO d1 VALUES(2, 2, 2);
  INSERT INTO d1 VALUES(3, 3, 3);
  INSERT INTO d1 VALUES(4, 4, 4);

  INSERT INTO d2 VALUES (1, 1);
  INSERT INTO d2 VALUES (2, '2');
  INSERT INTO d2 VALUES ('3', 3);
  INSERT INTO d2 VALUES ('4', '4');
}

foreach {tn idx} {
  1 {}
  2 { CREATE INDEX idx ON d1(a) }
  3 { CREATE INDEX idx ON d1(a, c) }
  4 { CREATE INDEX idx ON d1(c) }
  5 { CREATE INDEX idx ON d1(c, a) }

  6 { 
    CREATE INDEX idx ON d1(c, a) ;
    CREATE INDEX idx1 ON d2(x, y);
  }

  7 { 
    CREATE INDEX idx ON d1(c, a) ;
    CREATE UNIQUE INDEX idx2 ON d2(x, y) ;
  }

  8 { 
    CREATE INDEX idx ON d1(c) ;
    CREATE UNIQUE INDEX idx2 ON d2(x);
  }

} {
  execsql { DROP INDEX IF EXISTS idx } 
  execsql { DROP INDEX IF EXISTS idx2 } 
  execsql { DROP INDEX IF EXISTS idx3 } 
  execsql $idx

  do_execsql_test 4.$tn.1 {
    SELECT rowid FROM d1 WHERE (a, c) IN (SELECT x, y FROM d2);
  } {3 4}

  do_execsql_test 4.$tn.2 {
    SELECT rowid FROM d1 WHERE (c, a) IN (SELECT x, y FROM d2);
  } {2 4}

  do_execsql_test 4.$tn.3 {
    SELECT rowid FROM d1 WHERE (+c, a) IN (SELECT x, y FROM d2);
  } {2}

  do_execsql_test 4.$tn.4 {
    SELECT rowid FROM d1 WHERE (c, a) = (
      SELECT x, y FROM d2 WHERE d2.rowid=d1.rowid
    );
  } {2 4}

  do_execsql_test 4.$tn.5 {
    SELECT d1.rowid FROM d1, d2 WHERE a = y;
  } {2 4}

  do_execsql_test 4.$tn.6 {
    SELECT d1.rowid FROM d1 WHERE a = (
      SELECT y FROM d2 where d2.rowid=d1.rowid
    );
  } {2 4}
}

do_execsql_test 5.0 {
  CREATE TABLE e1(a TEXT, c NUMERIC);
  CREATE TABLE e2(x BLOB, y BLOB);

  INSERT INTO e1 VALUES(2, 2);

  INSERT INTO e2 VALUES ('2', 2);
  INSERT INTO e2 VALUES ('2', '2');
  INSERT INTO e2 VALUES ('2', '2.0');

  CREATE INDEX e1c ON e1(c);
}

do_execsql_test 5.1 {
  SELECT rowid FROM e1 WHERE (a, c) IN (SELECT x, y FROM e2);
} {1}
do_execsql_test 5.2 {
  SELECT rowid FROM e2 WHERE rowid IN (SELECT +c FROM e1);
} {2}
do_execsql_test 5.3 {
  SELECT rowid FROM e2 WHERE rowid IN (SELECT 0+c FROM e1);
} {2}

#-------------------------------------------------------------------------
#
do_execsql_test 6.0 {
  CREATE TABLE f1(a, b);
  CREATE TABLE f2(c, d);
  CREATE TABLE f3(e, f);
}

do_execsql_test 6.1 {
  SELECT * FROM f3 WHERE (e, f) IN (
    SELECT a, b FROM f1 UNION ALL SELECT c, d FROM f2
  );
}
do_execsql_test 6.2 {
  CREATE INDEX f3e ON f3(e);
  SELECT * FROM f3 WHERE (e, f) IN (
    SELECT a, b FROM f1 UNION ALL SELECT c, d FROM f2
  );
}


#-------------------------------------------------------------------------
#
do_execsql_test 7.0 {
  CREATE TABLE g1(a, b); 
  INSERT INTO g1 VALUES
      (1, 1), (1, 2), (1, 3), (1, 'i'), (1, 'j'),
      (1, 6), (1, 7), (1, 8), (1, 9), (1, 10),
      (1, 4), (1, 5);

  CREATE TABLE g2(x, y);
  CREATE INDEX g2x ON g2(x);

  INSERT INTO g2 VALUES(1, 4);
  INSERT INTO g2 VALUES(1, 5);
}

do_execsql_test 7.1 {
  SELECT * FROM g2 WHERE (x, y) IN (
    SELECT a, b FROM g1 ORDER BY +a, +b LIMIT 10
  );
} { 1 4 1 5 }

do_execsql_test 7.2 {
  SELECT * FROM g2 WHERE (x, y) IN (
    SELECT a, b FROM g1 ORDER BY a, b LIMIT 10
  );
} { 1 4 1 5 }

do_execsql_test 7.3 {
  SELECT * FROM g2 WHERE (x, y) IN (
    SELECT a, b FROM g1 ORDER BY 1, 2 LIMIT 10
  );
} { 1 4 1 5 }


finish_test

Added test/rowvaluefault.test.

















































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# 2016 June 17
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/malloc_common.tcl
set ::testprefix rowvaluefault

do_execsql_test 1.0 {
  CREATE TABLE xyz(one, two, thr, fou);
  INSERT INTO xyz VALUES('A', 'A', 'A',  1);
  INSERT INTO xyz VALUES('B', 'B', 'B',  2);
  INSERT INTO xyz VALUES('C', 'C', 'C',  3);
  INSERT INTO xyz VALUES('D', 'D', 'D',  4);

  CREATE UNIQUE INDEX xyz_one_two ON xyz(one, two);
}

do_faultsim_test 1 -faults oom* -body {
  execsql { SELECT fou FROM xyz WHERE (one, two, thr) = ('B', 'B', 'B') }
} -test {
  faultsim_test_result {0 2} 
}

do_faultsim_test 2 -faults oom* -body {
  execsql { SELECT fou FROM xyz WHERE (two, thr) IS ('C', 'C') }
} -test {
  faultsim_test_result {0 3} 
}

do_faultsim_test 3 -faults oom* -body {
  execsql { SELECT fou FROM xyz WHERE (one, two, thr) > ('B', 'B', 'B') }
} -test {
  faultsim_test_result {0 {3 4}} 
}

do_faultsim_test 4 -faults oom* -body {
  execsql { SELECT fou FROM xyz WHERE (one, two) IN (SELECT one, two FROM xyz) }
} -test {
  faultsim_test_result {0 {1 2 3 4}} 
}

do_faultsim_test 5 -faults oom* -body {
  execsql { 
    SELECT fou FROM xyz 
    WHERE (one, two, thr) IN (SELECT one, two, thr FROM xyz) 
  }
} -test {
  faultsim_test_result {0 {1 2 3 4}} 
}

do_faultsim_test 6 -faults oom* -body {
  execsql { 
    SELECT fou FROM xyz 
    WHERE (one, two, thr) BETWEEN ('B', 'B', 'B') AND ('C', 'C', 'C') }
} -test {
  faultsim_test_result {0 {2 3}} 
}

finish_test

Changes to test/select7.test.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#
ifcapable {subquery && compound} {
  do_test select7-5.1 {
    catchsql {
      CREATE TABLE t2(a,b);
      SELECT 5 IN (SELECT a,b FROM t2);
    }
  } [list 1 \
     {only a single result allowed for a SELECT that is part of an expression}]
  do_test select7-5.2 {
    catchsql {
      SELECT 5 IN (SELECT * FROM t2);
    }
  } [list 1 \
     {only a single result allowed for a SELECT that is part of an expression}]
  do_test select7-5.3 {
    catchsql {
      SELECT 5 IN (SELECT a,b FROM t2 UNION SELECT b,a FROM t2);
    }
  } [list 1 \
     {only a single result allowed for a SELECT that is part of an expression}]
  do_test select7-5.4 {
    catchsql {
      SELECT 5 IN (SELECT * FROM t2 UNION SELECT * FROM t2);
    }
  } [list 1 \
     {only a single result allowed for a SELECT that is part of an expression}]
}

# Verify that an error occurs if you have too many terms on a
# compound select statement.
#
if {[clang_sanitize_address]==0} {
  ifcapable compound {







|
<




|
<




|
<




|
<







110
111
112
113
114
115
116
117

118
119
120
121
122

123
124
125
126
127

128
129
130
131
132

133
134
135
136
137
138
139
#
ifcapable {subquery && compound} {
  do_test select7-5.1 {
    catchsql {
      CREATE TABLE t2(a,b);
      SELECT 5 IN (SELECT a,b FROM t2);
    }
  } {1 {sub-select returns 2 columns - expected 1}}

  do_test select7-5.2 {
    catchsql {
      SELECT 5 IN (SELECT * FROM t2);
    }
  } {1 {sub-select returns 2 columns - expected 1}}

  do_test select7-5.3 {
    catchsql {
      SELECT 5 IN (SELECT a,b FROM t2 UNION SELECT b,a FROM t2);
    }
  } {1 {sub-select returns 2 columns - expected 1}}

  do_test select7-5.4 {
    catchsql {
      SELECT 5 IN (SELECT * FROM t2 UNION SELECT * FROM t2);
    }
  } {1 {sub-select returns 2 columns - expected 1}}

}

# Verify that an error occurs if you have too many terms on a
# compound select statement.
#
if {[clang_sanitize_address]==0} {
  ifcapable compound {

Changes to test/subselect.test.

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
} {3 4}

# Try a select with more than one result column.
#
do_test subselect-1.2 {
  set v [catch {execsql {SELECT * FROM t1 WHERE a = (SELECT * FROM t1)}} msg]
  lappend v $msg
} {1 {only a single result allowed for a SELECT that is part of an expression}}

# A subselect without an aggregate.
#
do_test subselect-1.3a {
  execsql {SELECT b from t1 where a = (SELECT a FROM t1 WHERE b=2)}
} {2}
do_test subselect-1.3b {







|







36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
} {3 4}

# Try a select with more than one result column.
#
do_test subselect-1.2 {
  set v [catch {execsql {SELECT * FROM t1 WHERE a = (SELECT * FROM t1)}} msg]
  lappend v $msg
} {1 {row value misused}}

# A subselect without an aggregate.
#
do_test subselect-1.3a {
  execsql {SELECT b from t1 where a = (SELECT a FROM t1 WHERE b=2)}
} {2}
do_test subselect-1.3b {

Changes to test/tester.tcl.

21
22
23
24
25
26
27

28
29
30
31
32
33
34
#
#      is_relative_file
#      test_pwd
#      get_pwd
#      copy_file              FROM TO
#      delete_file            FILENAME
#      drop_all_tables        ?DB?

#      forcecopy              FROM TO
#      forcedelete            FILENAME
#
# Test the capability of the SQLite version built into the interpreter to
# determine if a specific test can be run:
#
#      capable                EXPR







>







21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#
#      is_relative_file
#      test_pwd
#      get_pwd
#      copy_file              FROM TO
#      delete_file            FILENAME
#      drop_all_tables        ?DB?
#      drop_all_indexes       ?DB?
#      forcecopy              FROM TO
#      forcedelete            FILENAME
#
# Test the capability of the SQLite version built into the interpreter to
# determine if a specific test can be run:
#
#      capable                EXPR
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313






1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
  } else {
    set R ""
    set G ""
    set B ""
    set D ""
  }
  foreach opcode {
      Seek SeekGe SeekGt SeekLe SeekLt NotFound Last Rewind
      NoConflict Next Prev VNext VPrev VFilter
      SorterSort SorterNext
  } {
    set color($opcode) $B
  }
  foreach opcode {ResultRow} {
    set color($opcode) $G
  }
  foreach opcode {IdxInsert Insert Delete IdxDelete} {
    set color($opcode) $R
  }

  set bSeenGoto 0
  $db eval "explain $sql" {} {
    set x($addr) 0
    set op($addr) $opcode

    if {$opcode == "Goto" && ($bSeenGoto==0 || ($p2 > $addr+10))} {
      set linebreak($p2) 1
      set bSeenGoto 1
    }







    if {$opcode=="Next"  || $opcode=="Prev" 
     || $opcode=="VNext" || $opcode=="VPrev"
     || $opcode=="SorterNext"
    } {
      for {set i $p2} {$i<$addr} {incr i} {
        incr x($i) 2
      }
    }

    if {$opcode == "Goto" && $p2<$addr && $op($p2)=="Yield"} {







|

|



















>
>
>
>
>
>



|







1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
  } else {
    set R ""
    set G ""
    set B ""
    set D ""
  }
  foreach opcode {
      Seek SeekGE SeekGT SeekLE SeekLT NotFound Last Rewind
      NoConflict Next Prev VNext VPrev VFilter
      SorterSort SorterNext NextIfOpen
  } {
    set color($opcode) $B
  }
  foreach opcode {ResultRow} {
    set color($opcode) $G
  }
  foreach opcode {IdxInsert Insert Delete IdxDelete} {
    set color($opcode) $R
  }

  set bSeenGoto 0
  $db eval "explain $sql" {} {
    set x($addr) 0
    set op($addr) $opcode

    if {$opcode == "Goto" && ($bSeenGoto==0 || ($p2 > $addr+10))} {
      set linebreak($p2) 1
      set bSeenGoto 1
    }

    if {$opcode=="Once"} {
      for {set i $addr} {$i<$p2} {incr i} {
        set star($i) $addr
      }
    }

    if {$opcode=="Next"  || $opcode=="Prev" 
     || $opcode=="VNext" || $opcode=="VPrev"
     || $opcode=="SorterNext" || $opcode=="NextIfOpen"
    } {
      for {set i $p2} {$i<$addr} {incr i} {
        incr x($i) 2
      }
    }

    if {$opcode == "Goto" && $p2<$addr && $op($p2)=="Yield"} {
1333
1334
1335
1336
1337
1338
1339






1340
1341
1342
1343
1344
1345
1346
  }

  $db eval "explain $sql" {} {
    if {[info exists linebreak($addr)]} {
      output2 ""
    }
    set I [string repeat " " $x($addr)]







    set col ""
    catch { set col $color($opcode) }

    output2 [format {%-4d  %s%s%-12.12s%s  %-6d  %-6d  %-6d  % -17s %s  %s} \
      $addr $I $col $opcode $D $p1 $p2 $p3 $p4 $p5 $comment
    ]







>
>
>
>
>
>







1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
  }

  $db eval "explain $sql" {} {
    if {[info exists linebreak($addr)]} {
      output2 ""
    }
    set I [string repeat " " $x($addr)]

    if {[info exists star($addr)]} {
      set ii [expr $x($star($addr))]
      append I "  "
      set I [string replace $I $ii $ii *]
    }

    set col ""
    catch { set col $color($opcode) }

    output2 [format {%-4d  %s%s%-12.12s%s  %-6d  %-6d  %-6d  % -17s %s  %s} \
      $addr $I $col $opcode $D $p1 $p2 $p3 $p4 $p5 $comment
    ]
1934
1935
1936
1937
1938
1939
1940










1941
1942
1943
1944
1945
1946
1947
      $db eval "DROP $type \"$t\""
    }
  }
  ifcapable trigger&&foreignkey {
    $db eval "PRAGMA foreign_keys = $pk"
  }
}











#-------------------------------------------------------------------------
# If a test script is executed with global variable $::G(perm:name) set to
# "wal", then the tests are run in WAL mode. Otherwise, they should be run
# in rollback mode. The following Tcl procs are used to make this less
# intrusive:
#







>
>
>
>
>
>
>
>
>
>







1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
      $db eval "DROP $type \"$t\""
    }
  }
  ifcapable trigger&&foreignkey {
    $db eval "PRAGMA foreign_keys = $pk"
  }
}

# Drop all auxiliary indexes from the main database opened by handle [db].
#
proc drop_all_indexes {{db db}} {
  set L [$db eval {
    SELECT name FROM sqlite_master WHERE type='index' AND sql LIKE 'create%'
  }]
  foreach idx $L { $db eval "DROP INDEX $idx" }
}


#-------------------------------------------------------------------------
# If a test script is executed with global variable $::G(perm:name) set to
# "wal", then the tests are run in WAL mode. Otherwise, they should be run
# in rollback mode. The following Tcl procs are used to make this less
# intrusive:
#

Changes to test/types2.test.

329
330
331
332
333
334
335
336
337
338
339
340
  test_boolset types2-8.4 {o IN (SELECT i FROM t4)} {1 2 3 4}
  test_boolset types2-8.5 {i IN (SELECT t FROM t4)} {5 6 7 8}
  test_boolset types2-8.6 {n IN (SELECT t FROM t4)} {5 6 7 8}
  test_boolset types2-8.7 {t IN (SELECT t FROM t4)} {5 7}
  test_boolset types2-8.8 {o IN (SELECT t FROM t4)} {7}
  test_boolset types2-8.9 {i IN (SELECT o FROM t4)} {9 10 11 12}
  test_boolset types2-8.6 {n IN (SELECT o FROM t4)} {9 10 11 12}
  test_boolset types2-8.7 {t IN (SELECT o FROM t4)} {9 11}
  test_boolset types2-8.8 {o IN (SELECT o FROM t4)} {9 10}
}

finish_test







|




329
330
331
332
333
334
335
336
337
338
339
340
  test_boolset types2-8.4 {o IN (SELECT i FROM t4)} {1 2 3 4}
  test_boolset types2-8.5 {i IN (SELECT t FROM t4)} {5 6 7 8}
  test_boolset types2-8.6 {n IN (SELECT t FROM t4)} {5 6 7 8}
  test_boolset types2-8.7 {t IN (SELECT t FROM t4)} {5 7}
  test_boolset types2-8.8 {o IN (SELECT t FROM t4)} {7}
  test_boolset types2-8.9 {i IN (SELECT o FROM t4)} {9 10 11 12}
  test_boolset types2-8.6 {n IN (SELECT o FROM t4)} {9 10 11 12}
  test_boolset types2-8.7 {t IN (SELECT o FROM t4)} {}
  test_boolset types2-8.8 {o IN (SELECT o FROM t4)} {9 10}
}

finish_test

Changes to tool/addopcodes.tcl.

33
34
35
36
37
38
39


40
41
42
43
44
45
46
  FUNCTION
  COLUMN
  AGG_FUNCTION
  AGG_COLUMN
  UMINUS
  UPLUS
  REGISTER


  ASTERISK
  SPAN
  SPACE
  ILLEGAL
}
if {[lrange $extras end-1 end]!="SPACE ILLEGAL"} {
  error "SPACE and ILLEGAL must be the last two token codes and they\







>
>







33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
  FUNCTION
  COLUMN
  AGG_FUNCTION
  AGG_COLUMN
  UMINUS
  UPLUS
  REGISTER
  VECTOR
  SELECT_COLUMN
  ASTERISK
  SPAN
  SPACE
  ILLEGAL
}
if {[lrange $extras end-1 end]!="SPACE ILLEGAL"} {
  error "SPACE and ILLEGAL must be the last two token codes and they\