/* ** Compile and run this standalone program in order to generate code that ** implements a function that will translate alphabetic identifiers into ** parser token codes. */ #include #include #include #include /* ** A header comment placed at the beginning of generated code. */ static const char zHdr[] = "/***** This file contains automatically generated code ******\n" "**\n" "** The code in this file has been automatically generated by\n" "**\n" "** sqlite/tool/mkkeywordhash.c\n" "**\n" "** The code in this file implements a function that determines whether\n" "** or not a given identifier is really an SQL keyword. The same thing\n" "** might be implemented more directly using a hand-written hash table.\n" "** But by using this automatically generated code, the size of the code\n" "** is substantially reduced. This is important for embedded applications\n" "** on platforms with limited memory.\n" "*/\n" ; /* ** All the keywords of the SQL language are stored in a hash ** table composed of instances of the following structure. */ typedef struct Keyword Keyword; struct Keyword { char *zName; /* The keyword name */ char *zTokenType; /* Token value for this keyword */ int mask; /* Code this keyword if non-zero */ int priority; /* Put higher priorities earlier in the hash chain */ int id; /* Unique ID for this record */ int hash; /* Hash on the keyword */ int offset; /* Offset to start of name string */ int len; /* Length of this keyword, not counting final \000 */ int prefix; /* Number of characters in prefix */ int longestSuffix; /* Longest suffix that is a prefix on another word */ int iNext; /* Index in aKeywordTable[] of next with same hash */ int substrId; /* Id to another keyword this keyword is embedded in */ int substrOffset; /* Offset into substrId for start of this keyword */ char zOrigName[20]; /* Original keyword name before processing */ }; /* ** Define masks used to determine which keywords are allowed */ #ifdef SQLITE_OMIT_ALTERTABLE # define ALTER 0 #else # define ALTER 0x00000001 #endif #define ALWAYS 0x00000002 #ifdef SQLITE_OMIT_ANALYZE # define ANALYZE 0 #else # define ANALYZE 0x00000004 #endif #ifdef SQLITE_OMIT_ATTACH # define ATTACH 0 #else # define ATTACH 0x00000008 #endif #ifdef SQLITE_OMIT_AUTOINCREMENT # define AUTOINCR 0 #else # define AUTOINCR 0x00000010 #endif #ifdef SQLITE_OMIT_CAST # define CAST 0 #else # define CAST 0x00000020 #endif #ifdef SQLITE_OMIT_COMPOUND_SELECT # define COMPOUND 0 #else # define COMPOUND 0x00000040 #endif #ifdef SQLITE_OMIT_CONFLICT_CLAUSE # define CONFLICT 0 #else # define CONFLICT 0x00000080 #endif #ifdef SQLITE_OMIT_EXPLAIN # define EXPLAIN 0 #else # define EXPLAIN 0x00000100 #endif #ifdef SQLITE_OMIT_FOREIGN_KEY # define FKEY 0 #else # define FKEY 0x00000200 #endif #ifdef SQLITE_OMIT_PRAGMA # define PRAGMA 0 #else # define PRAGMA 0x00000400 #endif #ifdef SQLITE_OMIT_REINDEX # define REINDEX 0 #else # define REINDEX 0x00000800 #endif #ifdef SQLITE_OMIT_SUBQUERY # define SUBQUERY 0 #else # define SUBQUERY 0x00001000 #endif #ifdef SQLITE_OMIT_TRIGGER # define TRIGGER 0 #else # define TRIGGER 0x00002000 #endif #if defined(SQLITE_OMIT_AUTOVACUUM) && \ (defined(SQLITE_OMIT_VACUUM) || defined(SQLITE_OMIT_ATTACH)) # define VACUUM 0 #else # define VACUUM 0x00004000 #endif #ifdef SQLITE_OMIT_VIEW # define VIEW 0 #else # define VIEW 0x00008000 #endif #ifdef SQLITE_OMIT_VIRTUALTABLE # define VTAB 0 #else # define VTAB 0x00010000 #endif #ifdef SQLITE_OMIT_AUTOVACUUM # define AUTOVACUUM 0 #else # define AUTOVACUUM 0x00020000 #endif #ifdef SQLITE_OMIT_CTE # define CTE 0 #else # define CTE 0x00040000 #endif #ifdef SQLITE_OMIT_UPSERT # define UPSERT 0 #else # define UPSERT 0x00080000 #endif #ifdef SQLITE_OMIT_WINDOWFUNC # define WINDOWFUNC 0 #else # define WINDOWFUNC 0x00100000 #endif #ifdef SQLITE_OMIT_GENERATED_COLUMNS # define GENCOL 0 #else # define GENCOL 0x00200000 #endif /* ** These are the keywords */ static Keyword aKeywordTable[] = { { "ABORT", "TK_ABORT", CONFLICT|TRIGGER, 0 }, { "ACTION", "TK_ACTION", FKEY, 0 }, { "ADD", "TK_ADD", ALTER, 1 }, { "AFTER", "TK_AFTER", TRIGGER, 0 }, { "ALL", "TK_ALL", ALWAYS, 0 }, { "ALTER", "TK_ALTER", ALTER, 0 }, { "ALWAYS", "TK_ALWAYS", GENCOL, 0 }, { "ANALYZE", "TK_ANALYZE", ANALYZE, 0 }, { "AND", "TK_AND", ALWAYS, 10 }, { "AS", "TK_AS", ALWAYS, 10 }, { "ASC", "TK_ASC", ALWAYS, 0 }, { "ATTACH", "TK_ATTACH", ATTACH, 1 }, { "AUTOINCREMENT", "TK_AUTOINCR", AUTOINCR, 0 }, { "BEFORE", "TK_BEFORE", TRIGGER, 0 }, { "BEGIN", "TK_BEGIN", ALWAYS, 1 }, { "BETWEEN", "TK_BETWEEN", ALWAYS, 5 }, { "BY", "TK_BY", ALWAYS, 10 }, { "CASCADE", "TK_CASCADE", FKEY, 1 }, { "CASE", "TK_CASE", ALWAYS, 5 }, { "CAST", "TK_CAST", CAST, 5 }, { "CHECK", "TK_CHECK", ALWAYS, 1 }, { "COLLATE", "TK_COLLATE", ALWAYS, 1 }, { "COLUMN", "TK_COLUMNKW", ALTER, 1 }, { "COMMIT", "TK_COMMIT", ALWAYS, 1 }, { "CONFLICT", "TK_CONFLICT", CONFLICT, 0 }, { "CONSTRAINT", "TK_CONSTRAINT", ALWAYS, 1 }, { "CREATE", "TK_CREATE", ALWAYS, 2 }, { "CROSS", "TK_JOIN_KW", ALWAYS, 3 }, { "CURRENT", "TK_CURRENT", WINDOWFUNC, 1 }, { "CURRENT_DATE", "TK_CTIME_KW", ALWAYS, 1 }, { "CURRENT_TIME", "TK_CTIME_KW", ALWAYS, 1 }, { "CURRENT_TIMESTAMP","TK_CTIME_KW", ALWAYS, 1 }, { "DATABASE", "TK_DATABASE", ATTACH, 0 }, { "DEFAULT", "TK_DEFAULT", ALWAYS, 1 }, { "DEFERRED", "TK_DEFERRED", ALWAYS, 1 }, { "DEFERRABLE", "TK_DEFERRABLE", FKEY, 1 }, { "DELETE", "TK_DELETE", ALWAYS, 10 }, { "DESC", "TK_DESC", ALWAYS, 3 }, { "DETACH", "TK_DETACH", ATTACH, 0 }, { "DISTINCT", "TK_DISTINCT", ALWAYS, 5 }, { "DO", "TK_DO", UPSERT, 2 }, { "DROP", "TK_DROP", ALWAYS, 1 }, { "END", "TK_END", ALWAYS, 1 }, { "EACH", "TK_EACH", TRIGGER, 1 }, { "ELSE", "TK_ELSE", ALWAYS, 2 }, { "ESCAPE", "TK_ESCAPE", ALWAYS, 4 }, { "EXCEPT", "TK_EXCEPT", COMPOUND, 4 }, { "EXCLUSIVE", "TK_EXCLUSIVE", ALWAYS, 1 }, { "EXCLUDE", "TK_EXCLUDE", WINDOWFUNC, 1 }, { "EXISTS", "TK_EXISTS", ALWAYS, 4 }, { "EXPLAIN", "TK_EXPLAIN", EXPLAIN, 1 }, { "FAIL", "TK_FAIL", CONFLICT|TRIGGER, 1 }, { "FILTER", "TK_FILTER", WINDOWFUNC, 4 }, { "FIRST", "TK_FIRST", ALWAYS, 4 }, { "FOLLOWING", "TK_FOLLOWING", WINDOWFUNC, 4 }, { "FOR", "TK_FOR", TRIGGER, 2 }, { "FOREIGN", "TK_FOREIGN", FKEY, 1 }, { "FROM", "TK_FROM", ALWAYS, 10 }, { "FULL", "TK_JOIN_KW", ALWAYS, 3 }, { "GENERATED", "TK_GENERATED", GENCOL, 1 }, { "GLOB", "TK_LIKE_KW", ALWAYS, 3 }, { "GROUP", "TK_GROUP", ALWAYS, 5 }, { "GROUPS", "TK_GROUPS", WINDOWFUNC, 2 }, { "HAVING", "TK_HAVING", ALWAYS, 5 }, { "IF", "TK_IF", ALWAYS, 2 }, { "IGNORE", "TK_IGNORE", CONFLICT|TRIGGER, 1 }, { "IMMEDIATE", "TK_IMMEDIATE", ALWAYS, 1 }, { "IN", "TK_IN", ALWAYS, 10 }, { "INDEX", "TK_INDEX", ALWAYS, 1 }, { "INDEXED", "TK_INDEXED", ALWAYS, 0 }, { "INITIALLY", "TK_INITIALLY", FKEY, 1 }, { "INNER", "TK_JOIN_KW", ALWAYS, 1 }, { "INSERT", "TK_INSERT", ALWAYS, 10 }, { "INSTEAD", "TK_INSTEAD", TRIGGER, 1 }, { "INTERSECT", "TK_INTERSECT", COMPOUND, 5 }, { "INTO", "TK_INTO", ALWAYS, 10 }, { "IS", "TK_IS", ALWAYS, 5 }, { "ISNULL", "TK_ISNULL", ALWAYS, 5 }, { "JOIN", "TK_JOIN", ALWAYS, 5 }, { "KEY", "TK_KEY", ALWAYS, 1 }, { "LAST", "TK_LAST", ALWAYS, 4 }, { "LEFT", "TK_JOIN_KW", ALWAYS, 5 }, { "LIKE", "TK_LIKE_KW", ALWAYS, 5 }, { "LIMIT", "TK_LIMIT", ALWAYS, 3 }, { "MATCH", "TK_MATCH", ALWAYS, 2 }, { "NATURAL", "TK_JOIN_KW", ALWAYS, 3 }, { "NO", "TK_NO", FKEY|WINDOWFUNC, 2 }, { "NOT", "TK_NOT", ALWAYS, 10 }, { "NOTHING", "TK_NOTHING", UPSERT, 1 }, { "NOTNULL", "TK_NOTNULL", ALWAYS, 3 }, { "NULL", "TK_NULL", ALWAYS, 10 }, { "NULLS", "TK_NULLS", ALWAYS, 3 }, { "OF", "TK_OF", ALWAYS, 3 }, { "OFFSET", "TK_OFFSET", ALWAYS, 1 }, { "ON", "TK_ON", ALWAYS, 1 }, { "OR", "TK_OR", ALWAYS, 9 }, { "ORDER", "TK_ORDER", ALWAYS, 10 }, { "OTHERS", "TK_OTHERS", WINDOWFUNC, 3 }, { "OUTER", "TK_JOIN_KW", ALWAYS, 5 }, { "OVER", "TK_OVER", WINDOWFUNC, 3 }, { "PARTITION", "TK_PARTITION", WINDOWFUNC, 3 }, { "PLAN", "TK_PLAN", EXPLAIN, 0 }, { "PRAGMA", "TK_PRAGMA", PRAGMA, 0 }, { "PRECEDING", "TK_PRECEDING", WINDOWFUNC, 3 }, { "PRIMARY", "TK_PRIMARY", ALWAYS, 1 }, { "QUERY", "TK_QUERY", EXPLAIN, 0 }, { "RAISE", "TK_RAISE", TRIGGER, 1 }, { "RANGE", "TK_RANGE", WINDOWFUNC, 3 }, { "RECURSIVE", "TK_RECURSIVE", CTE, 3 }, { "REFERENCES", "TK_REFERENCES", FKEY, 1 }, { "REGEXP", "TK_LIKE_KW", ALWAYS, 3 }, { "REINDEX", "TK_REINDEX", REINDEX, 1 }, { "RELEASE", "TK_RELEASE", ALWAYS, 1 }, { "RENAME", "TK_RENAME", ALTER, 1 }, { "REPLACE", "TK_REPLACE", CONFLICT, 10 }, { "RESTRICT", "TK_RESTRICT", FKEY, 1 }, { "RIGHT", "TK_JOIN_KW", ALWAYS, 0 }, { "ROLLBACK", "TK_ROLLBACK", ALWAYS, 1 }, { "ROW", "TK_ROW", TRIGGER, 1 }, { "ROWS", "TK_ROWS", ALWAYS, 1 }, { "SAVEPOINT", "TK_SAVEPOINT", ALWAYS, 1 }, { "SELECT", "TK_SELECT", ALWAYS, 10 }, { "SET", "TK_SET", ALWAYS, 10 }, { "TABLE", "TK_TABLE", ALWAYS, 1 }, { "TEMP", "TK_TEMP", ALWAYS, 1 }, { "TEMPORARY", "TK_TEMP", ALWAYS, 1 }, { "THEN", "TK_THEN", ALWAYS, 3 }, { "TIES", "TK_TIES", WINDOWFUNC, 3 }, { "TO", "TK_TO", ALWAYS, 3 }, { "TRANSACTION", "TK_TRANSACTION", ALWAYS, 1 }, { "TRIGGER", "TK_TRIGGER", TRIGGER, 1 }, { "UNBOUNDED", "TK_UNBOUNDED", WINDOWFUNC, 3 }, { "UNION", "TK_UNION", COMPOUND, 3 }, { "UNIQUE", "TK_UNIQUE", ALWAYS, 1 }, { "UPDATE", "TK_UPDATE", ALWAYS, 10 }, { "USING", "TK_USING", ALWAYS, 8 }, { "VACUUM", "TK_VACUUM", VACUUM, 1 }, { "VALUES", "TK_VALUES", ALWAYS, 10 }, { "VIEW", "TK_VIEW", VIEW, 1 }, { "VIRTUAL", "TK_VIRTUAL", VTAB, 1 }, { "WHEN", "TK_WHEN", ALWAYS, 1 }, { "WHERE", "TK_WHERE", ALWAYS, 10 }, { "WINDOW", "TK_WINDOW", WINDOWFUNC, 3 }, { "WITH", "TK_WITH", CTE, 4 }, { "WITHOUT", "TK_WITHOUT", ALWAYS, 1 }, }; /* Number of keywords */ static int nKeyword = (sizeof(aKeywordTable)/sizeof(aKeywordTable[0])); /* Map all alphabetic characters into lower-case for hashing. This is ** only valid for alphabetics. In particular it does not work for '_' ** and so the hash cannot be on a keyword position that might be an '_'. */ #define charMap(X) (0x20|(X)) /* ** Comparision function for two Keyword records */ static int keywordCompare1(const void *a, const void *b){ const Keyword *pA = (Keyword*)a; const Keyword *pB = (Keyword*)b; int n = pA->len - pB->len; if( n==0 ){ n = strcmp(pA->zName, pB->zName); } assert( n!=0 ); return n; } static int keywordCompare2(const void *a, const void *b){ const Keyword *pA = (Keyword*)a; const Keyword *pB = (Keyword*)b; int n = pB->longestSuffix - pA->longestSuffix; if( n==0 ){ n = strcmp(pA->zName, pB->zName); } assert( n!=0 ); return n; } static int keywordCompare3(const void *a, const void *b){ const Keyword *pA = (Keyword*)a; const Keyword *pB = (Keyword*)b; int n = pA->offset - pB->offset; if( n==0 ) n = pB->id - pA->id; assert( n!=0 ); return n; } /* ** Return a KeywordTable entry with the given id */ static Keyword *findById(int id){ int i; for(i=0; i= aKeywordTable[j].priority ) return; aKeywordTable[i].iNext = aKeywordTable[j].iNext; aKeywordTable[j].iNext = i+1; *pFrom = j+1; reorder(&aKeywordTable[i].iNext); } /* ** This routine does the work. The generated code is printed on standard ** output. */ int main(int argc, char **argv){ int i, j, k, h; int bestSize, bestCount; int count; int nChar; int totalLen = 0; int aKWHash[1000]; /* 1000 is much bigger than nKeyword */ char zKWText[2000]; /* Remove entries from the list of keywords that have mask==0 */ for(i=j=0; ilen = (int)strlen(p->zName); assert( p->lenzOrigName) ); memcpy(p->zOrigName, p->zName, p->len+1); totalLen += p->len; p->hash = (charMap(p->zName[0])*4) ^ (charMap(p->zName[p->len-1])*3) ^ (p->len*1); p->id = i+1; } /* Sort the table from shortest to longest keyword */ qsort(aKeywordTable, nKeyword, sizeof(aKeywordTable[0]), keywordCompare1); /* Look for short keywords embedded in longer keywords */ for(i=nKeyword-2; i>=0; i--){ Keyword *p = &aKeywordTable[i]; for(j=nKeyword-1; j>i && p->substrId==0; j--){ Keyword *pOther = &aKeywordTable[j]; if( pOther->substrId ) continue; if( pOther->len<=p->len ) continue; for(k=0; k<=pOther->len-p->len; k++){ if( memcmp(p->zName, &pOther->zName[k], p->len)==0 ){ p->substrId = pOther->id; p->substrOffset = k; break; } } } } /* Compute the longestSuffix value for every word */ for(i=0; isubstrId ) continue; for(j=0; jsubstrId ) continue; for(k=p->longestSuffix+1; klen && klen; k++){ if( memcmp(&p->zName[p->len-k], pOther->zName, k)==0 ){ p->longestSuffix = k; } } } } /* Sort the table into reverse order by length */ qsort(aKeywordTable, nKeyword, sizeof(aKeywordTable[0]), keywordCompare2); /* Fill in the offset for all entries */ nChar = 0; for(i=0; ioffset>0 || p->substrId ) continue; p->offset = nChar; nChar += p->len; for(k=p->len-1; k>=1; k--){ for(j=i+1; joffset>0 || pOther->substrId ) continue; if( pOther->len<=k ) continue; if( memcmp(&p->zName[p->len-k], pOther->zName, k)==0 ){ p = pOther; p->offset = nChar - k; nChar = p->offset + p->len; p->zName += k; p->len -= k; p->prefix = k; j = i; k = p->len; } } } } for(i=0; isubstrId ){ p->offset = findById(p->substrId)->offset + p->substrOffset; } } /* Sort the table by offset */ qsort(aKeywordTable, nKeyword, sizeof(aKeywordTable[0]), keywordCompare3); /* Figure out how big to make the hash table in order to minimize the ** number of collisions */ bestSize = nKeyword; bestCount = nKeyword*nKeyword; for(i=nKeyword/2; i<=2*nKeyword; i++){ for(j=0; jsubstrId ) continue; memcpy(&zKWText[k], p->zName, p->len); k += p->len; if( j+p->len>70 ){ printf("%*s */\n", 74-j, ""); j = 0; } if( j==0 ){ printf("/* "); j = 8; } printf("%s", p->zName); j += p->len; } if( j>0 ){ printf("%*s */\n", 74-j, ""); } printf("static const char zKWText[%d] = {\n", nChar); zKWText[nChar] = 0; for(i=j=0; i68 ){ printf("\n"); j = 0; } } if( j>0 ) printf("\n"); printf("};\n"); printf("/* aKWHash[i] is the hash value for the i-th keyword */\n"); printf("static const unsigned char aKWHash[%d] = {\n", bestSize); for(i=j=0; i12 ){ printf("\n"); j = 0; } } printf("%s};\n", j==0 ? "" : "\n"); printf("/* aKWNext[] forms the hash collision chain. If aKWHash[i]==0\n"); printf("** then the i-th keyword has no more hash collisions. Otherwise,\n"); printf("** the next keyword with the same hash is aKWHash[i]-1. */\n"); printf("static const unsigned char aKWNext[%d] = {\n", nKeyword); for(i=j=0; i12 ){ printf("\n"); j = 0; } } printf("%s};\n", j==0 ? "" : "\n"); printf("/* aKWLen[i] is the length (in bytes) of the i-th keyword */\n"); printf("static const unsigned char aKWLen[%d] = {\n", nKeyword); for(i=j=0; i12 ){ printf("\n"); j = 0; } } printf("%s};\n", j==0 ? "" : "\n"); printf("/* aKWOffset[i] is the index into zKWText[] of the start of\n"); printf("** the text for the i-th keyword. */\n"); printf("static const unsigned short int aKWOffset[%d] = {\n", nKeyword); for(i=j=0; i12 ){ printf("\n"); j = 0; } } printf("%s};\n", j==0 ? "" : "\n"); printf("/* aKWCode[i] is the parser symbol code for the i-th keyword */\n"); printf("static const unsigned char aKWCode[%d] = {\n", nKeyword); for(i=j=0; i=5 ){ printf("\n"); j = 0; } } printf("%s};\n", j==0 ? "" : "\n"); printf("/* Hash table decoded:\n"); for(i=0; i=2 ){\n"); printf(" i = ((charMap(z[0])*4) ^ (charMap(z[n-1])*3) ^ n) %% %d;\n", bestSize); printf(" for(i=((int)aKWHash[i])-1; i>=0; i=((int)aKWNext[i])-1){\n"); printf(" if( aKWLen[i]!=n ) continue;\n"); printf(" j = 0;\n"); printf(" zKW = &zKWText[aKWOffset[i]];\n"); printf("#ifdef SQLITE_ASCII\n"); printf(" while( j=SQLITE_N_KEYWORD ) return SQLITE_ERROR;\n"); printf(" *pzName = zKWText + aKWOffset[i];\n"); printf(" *pnName = aKWLen[i];\n"); printf(" return SQLITE_OK;\n"); printf("}\n"); printf("int sqlite3_keyword_count(void){ return SQLITE_N_KEYWORD; }\n"); printf("int sqlite3_keyword_check(const char *zName, int nName){\n"); printf(" return TK_ID!=sqlite3KeywordCode((const u8*)zName, nName);\n"); printf("}\n"); return 0; }