/* ** Copyright (c) 1999, 2000 D. Richard Hipp ** ** This program is free software; you can redistribute it and/or ** modify it under the terms of the GNU General Public ** License as published by the Free Software Foundation; either ** version 2 of the License, or (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ** General Public License for more details. ** ** You should have received a copy of the GNU General Public ** License along with this library; if not, write to the ** Free Software Foundation, Inc., 59 Temple Place - Suite 330, ** Boston, MA 02111-1307, USA. ** ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. Also found here are subroutines ** to generate VDBE code to evaluate expressions. ** ** $Id: where.c,v 1.8 2000/06/21 13:59:13 drh Exp $ */ #include "sqliteInt.h" /* ** The query generator uses an array of instances of this structure to ** help it analyze the subexpressions of the WHERE clause. Each WHERE ** clause subexpression is separated from the others by an AND operator. */ typedef struct ExprInfo ExprInfo; struct ExprInfo { Expr *p; /* Pointer to the subexpression */ int indexable; /* True if this subexprssion is usable by an index */ int idxLeft; /* p->pLeft is a column in this table number. -1 if ** p->pLeft is not the column of any table */ int idxRight; /* p->pRight is a column in this table number. -1 if ** p->pRight is not the column of any table */ unsigned prereqLeft; /* Tables referenced by p->pLeft */ unsigned prereqRight; /* Tables referenced by p->pRight */ }; /* ** Determine the number of elements in an array. */ #define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0])) /* ** This routine is used to divide the WHERE expression into subexpressions ** separated by the AND operator. ** ** aSlot[] is an array of subexpressions structures. ** There are nSlot spaces left in this array. This routine attempts to ** split pExpr into subexpressions and fills aSlot[] with those subexpressions. ** The return value is the number of slots filled. */ static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){ int cnt = 0; if( pExpr==0 || nSlot<1 ) return 0; if( nSlot==1 || pExpr->op!=TK_AND ){ aSlot[0].p = pExpr; return 1; } if( pExpr->pLeft->op!=TK_AND ){ aSlot[0].p = pExpr->pLeft; cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight); }else{ cnt = exprSplit(nSlot, aSlot, pExpr->pRight); cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pLeft); } return cnt; } /* ** This routine walks (recursively) an expression tree and generates ** a bitmask indicating which tables are used in that expression ** tree. Bit 0 of the mask is set if table 0 is used. But 1 is set ** if table 1 is used. And so forth. ** ** In order for this routine to work, the calling function must have ** previously invoked sqliteExprResolveIds() on the expression. See ** the header comment on that routine for additional information. ** ** "base" is the cursor number (the value of the iTable field) that ** corresponds to the first entry in the table list. This is the ** same as pParse->nTab. */ static int exprTableUsage(int base, Expr *p){ unsigned int mask = 0; if( p==0 ) return 0; if( p->op==TK_COLUMN ){ return 1<< (p->iTable - base); } if( p->pRight ){ mask = exprTableUsage(base, p->pRight); } if( p->pLeft ){ mask |= exprTableUsage(base, p->pLeft); } return mask; } /* ** The input to this routine is an ExprInfo structure with only the ** "p" field filled in. The job of this routine is to analyze the ** subexpression and populate all the other fields of the ExprInfo ** structure. ** ** "base" is the cursor number (the value of the iTable field) that ** corresponds to the first entyr in the table list. This is the ** same as pParse->nTab. */ static void exprAnalyze(int base, ExprInfo *pInfo){ Expr *pExpr = pInfo->p; pInfo->prereqLeft = exprTableUsage(base, pExpr->pLeft); pInfo->prereqRight = exprTableUsage(base, pExpr->pRight); pInfo->indexable = 0; pInfo->idxLeft = -1; pInfo->idxRight = -1; if( pExpr->op==TK_EQ && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){ if( pExpr->pRight->op==TK_COLUMN ){ pInfo->idxRight = pExpr->pRight->iTable - base; pInfo->indexable = 1; } if( pExpr->pLeft->op==TK_COLUMN ){ pInfo->idxLeft = pExpr->pLeft->iTable - base; pInfo->indexable = 1; } } } /* ** Generating the beginning of the loop used for WHERE clause processing. ** The return value is a pointer to an (opaque) structure that contains ** information needed to terminate the loop. Later, the calling routine ** should invoke sqliteWhereEnd() with the return value of this function ** in order to complete the WHERE clause processing. ** ** If an error occurs, this routine returns NULL. */ WhereInfo *sqliteWhereBegin( Parse *pParse, /* The parser context */ IdList *pTabList, /* A list of all tables */ Expr *pWhere, /* The WHERE clause */ int pushKey /* If TRUE, leave the table key on the stack */ ){ int i; /* Loop counter */ WhereInfo *pWInfo; /* Will become the return value of this function */ Vdbe *v = pParse->pVdbe; /* The virtual database engine */ int brk, cont; /* Addresses used during code generation */ int *aOrder; /* Order in which pTabList entries are searched */ int nExpr; /* Number of subexpressions in the WHERE clause */ int loopMask; /* One bit set for each outer loop */ int haveKey; /* True if KEY is on the stack */ int base; /* First available index for OP_Open opcodes */ Index *aIdx[32]; /* Index to use on each nested loop. */ ExprInfo aExpr[50]; /* The WHERE clause is divided into these expressions */ /* Allocate space for aOrder[]. */ aOrder = sqliteMalloc( sizeof(int) * pTabList->nId ); /* Allocate and initialize the WhereInfo structure that will become the ** return value. */ pWInfo = sqliteMalloc( sizeof(WhereInfo) ); if( pWInfo==0 ){ sqliteFree(aOrder); return 0; } pWInfo->pParse = pParse; pWInfo->pTabList = pTabList; base = pWInfo->base = pParse->nTab; /* Split the WHERE clause into as many as 32 separate subexpressions ** where each subexpression is separated by an AND operator. Any additional ** subexpressions are attached in the aExpr[32] and will not enter ** into the query optimizer computations. 32 is chosen as the cutoff ** since that is the number of bits in an integer that we use for an ** expression-used mask. */ memset(aExpr, 0, sizeof(aExpr)); nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere); /* Analyze all of the subexpressions. */ for(i=0; inTab, &aExpr[i]); } /* Figure out a good nesting order for the tables. aOrder[0] will ** be the index in pTabList of the outermost table. aOrder[1] will ** be the first nested loop and so on. aOrder[pTabList->nId-1] will ** be the innermost loop. ** ** Someday will put in a good algorithm here to reorder the loops ** for an effiecient query. But for now, just use whatever order the ** tables appear in in the pTabList. */ for(i=0; inId; i++){ aOrder[i] = i; } /* Figure out what index to use (if any) for each nested loop. ** Make aIdx[i] point to the index to use for the i-th nested loop ** where i==0 is the outer loop and i==pTabList->nId-1 is the inner ** loop. ** ** Actually, if there are more than 32 tables in the join, only the ** first 32 tables are candidates for indices. */ loopMask = 0; for(i=0; inId && ia[idx].pTab; Index *pIdx; Index *pBestIdx = 0; /* Do a search for usable indices. Leave pBestIdx pointing to ** the most specific usable index. ** ** "Most specific" means that pBestIdx is the usable index that ** has the largest value for nColumn. A usable index is one for ** which there are subexpressions to compute every column of the ** index. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int j; int columnMask = 0; if( pIdx->nColumn>32 ) continue; for(j=0; jpLeft->iColumn; int k; for(k=0; knColumn; k++){ if( pIdx->aiColumn[k]==iColumn ){ columnMask |= 1<pRight->iColumn; int k; for(k=0; knColumn; k++){ if( pIdx->aiColumn[k]==iColumn ){ columnMask |= 1<nColumn) ){ if( pBestIdx==0 || pBestIdx->nColumnnColumn ){ pBestIdx = pIdx; } } } aIdx[i] = pBestIdx; loopMask |= 1<nId; i++){ sqliteVdbeAddOp(v, OP_Open, base+i, 0, pTabList->a[i].pTab->zName, 0); if( inId+i, 0, aIdx[i]->zName, 0); } } memcpy(pWInfo->aIdx, aIdx, sizeof(aIdx)); /* Generate the code to do the search */ pWInfo->iBreak = brk = sqliteVdbeMakeLabel(v); loopMask = 0; for(i=0; inId; i++){ int j, k; int idx = aOrder[i]; Index *pIdx = inColumn; j++){ for(k=0; kpLeft->iColumn==pIdx->aiColumn[j] ){ sqliteExprCode(pParse, aExpr[k].p->pRight); aExpr[k].p = 0; break; } if( aExpr[k].idxRight==idx && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j] ){ sqliteExprCode(pParse, aExpr[k].p->pLeft); aExpr[k].p = 0; break; } } } sqliteVdbeAddOp(v, OP_MakeKey, pIdx->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_Fetch, base+pTabList->nId+i, 0, 0, 0); sqliteVdbeAddOp(v, OP_NextIdx, base+pTabList->nId+i, brk, 0, cont); if( i==pTabList->nId-1 && pushKey ){ haveKey = 1; }else{ sqliteVdbeAddOp(v, OP_Fetch, idx, 0, 0, 0); haveKey = 0; } } loopMask |= 1<iContinue = cont; if( pushKey && !haveKey ){ sqliteVdbeAddOp(v, OP_Key, base, 0, 0, 0); } sqliteFree(aOrder); return pWInfo; } /* ** Generate the end of the WHERE loop. */ void sqliteWhereEnd(WhereInfo *pWInfo){ Vdbe *v = pWInfo->pParse->pVdbe; int i; int brk = pWInfo->iBreak; int base = pWInfo->base; sqliteVdbeAddOp(v, OP_Goto, 0, pWInfo->iContinue, 0, 0); for(i=0; ipTabList->nId; i++){ sqliteVdbeAddOp(v, OP_Close, base+i, 0, 0, brk); brk = 0; if( iaIdx) && pWInfo->aIdx[i]!=0 ){ sqliteVdbeAddOp(v, OP_Close, base+pWInfo->pTabList->nId+i, 0, 0, 0); } } if( brk!=0 ){ sqliteVdbeAddOp(v, OP_Noop, 0, 0, 0, brk); } sqliteFree(pWInfo); return; }