/* ** 2004 May 26 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code use to manipulate "Mem" structure. A "Mem" ** stores a single value in the VDBE. Mem is an opaque structure visible ** only within the VDBE. Interface routines refer to a Mem using the ** name sqlite_value */ #include "sqliteInt.h" #include #include #include "vdbeInt.h" /* ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) ** P if required. */ #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) /* ** If pMem is an object with a valid string representation, this routine ** ensures the internal encoding for the string representation is ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. ** ** If pMem is not a string object, or the encoding of the string ** representation is already stored using the requested encoding, then this ** routine is a no-op. ** ** SQLITE_OK is returned if the conversion is successful (or not required). ** SQLITE_NOMEM may be returned if a malloc() fails during conversion ** between formats. */ int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ int rc; if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ return SQLITE_OK; } assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); #ifdef SQLITE_OMIT_UTF16 return SQLITE_ERROR; #else /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, ** then the encoding of the value may not have changed. */ rc = sqlite3VdbeMemTranslate(pMem, desiredEnc); assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); return rc; #endif } /* ** Make the given Mem object MEM_Dyn. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ int sqlite3VdbeMemDynamicify(Mem *pMem){ int n; u8 *z; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); expandBlob(pMem); if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){ return SQLITE_OK; } assert( (pMem->flags & MEM_Dyn)==0 ); n = pMem->n; assert( pMem->flags & (MEM_Str|MEM_Blob) ); z = sqlite3DbMallocRaw(pMem->db, n+2 ); if( z==0 ){ return SQLITE_NOMEM; } pMem->flags |= MEM_Dyn|MEM_Term; pMem->xDel = 0; memcpy(z, pMem->z, n ); z[n] = 0; z[n+1] = 0; pMem->z = (char*)z; pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short); return SQLITE_OK; } /* ** If the given Mem* has a zero-filled tail, turn it into an ordinary ** blob stored in dynamically allocated space. */ #ifndef SQLITE_OMIT_INCRBLOB int sqlite3VdbeMemExpandBlob(Mem *pMem){ if( pMem->flags & MEM_Zero ){ char *pNew; int nByte; assert( (pMem->flags & MEM_Blob)!=0 ); nByte = pMem->n + pMem->u.i; if( nByte<=0 ) nByte = 1; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); pNew = sqlite3DbMallocRaw(pMem->db, nByte); if( pNew==0 ){ return SQLITE_NOMEM; } memcpy(pNew, pMem->z, pMem->n); memset(&pNew[pMem->n], 0, pMem->u.i); sqlite3VdbeMemRelease(pMem); pMem->z = pNew; pMem->n += pMem->u.i; pMem->u.i = 0; pMem->flags &= ~(MEM_Zero|MEM_Static|MEM_Ephem|MEM_Short|MEM_Term); pMem->flags |= MEM_Dyn; } return SQLITE_OK; } #endif /* ** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes ** of the Mem.z[] array can be modified. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ int sqlite3VdbeMemMakeWriteable(Mem *pMem){ int n; u8 *z; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); expandBlob(pMem); if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){ return SQLITE_OK; } assert( (pMem->flags & MEM_Dyn)==0 ); assert( pMem->flags & (MEM_Str|MEM_Blob) ); if( (n = pMem->n)+2zShort) ){ z = (u8*)pMem->zShort; pMem->flags |= MEM_Short|MEM_Term; }else{ z = sqlite3DbMallocRaw(pMem->db, n+2 ); if( z==0 ){ return SQLITE_NOMEM; } pMem->flags |= MEM_Dyn|MEM_Term; pMem->xDel = 0; } memcpy(z, pMem->z, n ); z[n] = 0; z[n+1] = 0; pMem->z = (char*)z; pMem->flags &= ~(MEM_Ephem|MEM_Static); assert(0==(1&(int)pMem->z)); return SQLITE_OK; } /* ** Make sure the given Mem is \u0000 terminated. */ int sqlite3VdbeMemNulTerminate(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ return SQLITE_OK; /* Nothing to do */ } if( pMem->flags & (MEM_Static|MEM_Ephem) ){ return sqlite3VdbeMemMakeWriteable(pMem); }else{ char *z; sqlite3VdbeMemExpandBlob(pMem); z = sqlite3DbMallocRaw(pMem->db, pMem->n+2); if( !z ){ return SQLITE_NOMEM; } memcpy(z, pMem->z, pMem->n); z[pMem->n] = 0; z[pMem->n+1] = 0; if( pMem->xDel ){ pMem->xDel(pMem->z); }else{ sqlite3_free(pMem->z); } pMem->xDel = 0; pMem->z = z; pMem->flags |= MEM_Term; } return SQLITE_OK; } /* ** Add MEM_Str to the set of representations for the given Mem. Numbers ** are converted using sqlite3_snprintf(). Converting a BLOB to a string ** is a no-op. ** ** Existing representations MEM_Int and MEM_Real are *not* invalidated. ** ** A MEM_Null value will never be passed to this function. This function is ** used for converting values to text for returning to the user (i.e. via ** sqlite3_value_text()), or for ensuring that values to be used as btree ** keys are strings. In the former case a NULL pointer is returned the ** user and the later is an internal programming error. */ int sqlite3VdbeMemStringify(Mem *pMem, int enc){ int rc = SQLITE_OK; int fg = pMem->flags; char *z = pMem->zShort; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !(fg&MEM_Zero) ); assert( !(fg&(MEM_Str|MEM_Blob)) ); assert( fg&(MEM_Int|MEM_Real) ); /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 ** string representation of the value. Then, if the required encoding ** is UTF-16le or UTF-16be do a translation. ** ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. */ if( fg & MEM_Int ){ sqlite3_snprintf(NBFS, z, "%lld", pMem->u.i); }else{ assert( fg & MEM_Real ); sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r); } pMem->n = strlen(z); pMem->z = z; pMem->enc = SQLITE_UTF8; pMem->flags |= MEM_Str | MEM_Short | MEM_Term; sqlite3VdbeChangeEncoding(pMem, enc); return rc; } /* ** Memory cell pMem contains the context of an aggregate function. ** This routine calls the finalize method for that function. The ** result of the aggregate is stored back into pMem. ** ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK ** otherwise. */ int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ int rc = SQLITE_OK; if( pFunc && pFunc->xFinalize ){ sqlite3_context ctx; assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); ctx.s.flags = MEM_Null; ctx.s.z = pMem->zShort; ctx.s.db = pMem->db; ctx.pMem = pMem; ctx.pFunc = pFunc; ctx.isError = 0; pFunc->xFinalize(&ctx); if( pMem->z && pMem->z!=pMem->zShort ){ sqlite3_free( pMem->z ); } *pMem = ctx.s; if( pMem->flags & MEM_Short ){ pMem->z = pMem->zShort; } rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK); } return rc; } /* ** Release any memory held by the Mem. This may leave the Mem in an ** inconsistent state, for example with (Mem.z==0) and ** (Mem.type==SQLITE_TEXT). */ void sqlite3VdbeMemRelease(Mem *p){ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); if( p->flags & (MEM_Dyn|MEM_Agg) ){ if( p->xDel ){ if( p->flags & MEM_Agg ){ sqlite3VdbeMemFinalize(p, p->u.pDef); assert( (p->flags & MEM_Agg)==0 ); sqlite3VdbeMemRelease(p); }else{ p->xDel((void *)p->z); } }else{ sqlite3_free(p->z); } p->z = 0; p->xDel = 0; } } /* ** Return some kind of integer value which is the best we can do ** at representing the value that *pMem describes as an integer. ** If pMem is an integer, then the value is exact. If pMem is ** a floating-point then the value returned is the integer part. ** If pMem is a string or blob, then we make an attempt to convert ** it into a integer and return that. If pMem is NULL, return 0. ** ** If pMem is a string, its encoding might be changed. */ i64 sqlite3VdbeIntValue(Mem *pMem){ int flags; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); flags = pMem->flags; if( flags & MEM_Int ){ return pMem->u.i; }else if( flags & MEM_Real ){ return (i64)pMem->r; }else if( flags & (MEM_Str|MEM_Blob) ){ i64 value; pMem->flags |= MEM_Str; if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) || sqlite3VdbeMemNulTerminate(pMem) ){ return 0; } assert( pMem->z ); sqlite3Atoi64(pMem->z, &value); return value; }else{ return 0; } } /* ** Return the best representation of pMem that we can get into a ** double. If pMem is already a double or an integer, return its ** value. If it is a string or blob, try to convert it to a double. ** If it is a NULL, return 0.0. */ double sqlite3VdbeRealValue(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); if( pMem->flags & MEM_Real ){ return pMem->r; }else if( pMem->flags & MEM_Int ){ return (double)pMem->u.i; }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ double val = 0.0; pMem->flags |= MEM_Str; if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) || sqlite3VdbeMemNulTerminate(pMem) ){ return 0.0; } assert( pMem->z ); sqlite3AtoF(pMem->z, &val); return val; }else{ return 0.0; } } /* ** The MEM structure is already a MEM_Real. Try to also make it a ** MEM_Int if we can. */ void sqlite3VdbeIntegerAffinity(Mem *pMem){ assert( pMem->flags & MEM_Real ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); pMem->u.i = pMem->r; if( ((double)pMem->u.i)==pMem->r ){ pMem->flags |= MEM_Int; } } /* ** Convert pMem to type integer. Invalidate any prior representations. */ int sqlite3VdbeMemIntegerify(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); pMem->u.i = sqlite3VdbeIntValue(pMem); sqlite3VdbeMemRelease(pMem); pMem->flags = MEM_Int; return SQLITE_OK; } /* ** Convert pMem so that it is of type MEM_Real. ** Invalidate any prior representations. */ int sqlite3VdbeMemRealify(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); pMem->r = sqlite3VdbeRealValue(pMem); sqlite3VdbeMemRelease(pMem); pMem->flags = MEM_Real; return SQLITE_OK; } /* ** Convert pMem so that it has types MEM_Real or MEM_Int or both. ** Invalidate any prior representations. */ int sqlite3VdbeMemNumerify(Mem *pMem){ double r1, r2; i64 i; assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ); assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); r1 = sqlite3VdbeRealValue(pMem); i = (i64)r1; r2 = (double)i; if( r1==r2 ){ sqlite3VdbeMemIntegerify(pMem); }else{ pMem->r = r1; pMem->flags = MEM_Real; sqlite3VdbeMemRelease(pMem); } return SQLITE_OK; } /* ** Delete any previous value and set the value stored in *pMem to NULL. */ void sqlite3VdbeMemSetNull(Mem *pMem){ sqlite3VdbeMemRelease(pMem); pMem->flags = MEM_Null; pMem->type = SQLITE_NULL; pMem->n = 0; } /* ** Delete any previous value and set the value to be a BLOB of length ** n containing all zeros. */ void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ sqlite3VdbeMemRelease(pMem); pMem->flags = MEM_Blob|MEM_Zero|MEM_Short; pMem->type = SQLITE_BLOB; pMem->n = 0; if( n<0 ) n = 0; pMem->u.i = n; pMem->z = pMem->zShort; pMem->enc = SQLITE_UTF8; } /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type INTEGER. */ void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ sqlite3VdbeMemRelease(pMem); pMem->u.i = val; pMem->flags = MEM_Int; pMem->type = SQLITE_INTEGER; } /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type REAL. */ void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ if( sqlite3_isnan(val) ){ sqlite3VdbeMemSetNull(pMem); }else{ sqlite3VdbeMemRelease(pMem); pMem->r = val; pMem->flags = MEM_Real; pMem->type = SQLITE_FLOAT; } } /* ** Return true if the Mem object contains a TEXT or BLOB that is ** too large - whose size exceeds SQLITE_MAX_LENGTH. */ int sqlite3VdbeMemTooBig(Mem *p){ if( p->flags & (MEM_Str|MEM_Blob) ){ int n = p->n; if( p->flags & MEM_Zero ){ n += p->u.i; } return n>SQLITE_MAX_LENGTH; } return 0; } /* ** Make an shallow copy of pFrom into pTo. Prior contents of ** pTo are overwritten. The pFrom->z field is not duplicated. If ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z ** and flags gets srcType (either MEM_Ephem or MEM_Static). */ void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ memcpy(pTo, pFrom, sizeof(*pFrom)-sizeof(pFrom->zShort)); pTo->xDel = 0; if( pTo->flags & (MEM_Str|MEM_Blob) ){ pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short|MEM_Ephem); assert( srcType==MEM_Ephem || srcType==MEM_Static ); pTo->flags |= srcType; } } /* ** Make a full copy of pFrom into pTo. Prior contents of pTo are ** freed before the copy is made. */ int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ int rc; if( pTo->flags & MEM_Dyn ){ sqlite3VdbeMemRelease(pTo); } sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem); if( pTo->flags & MEM_Ephem ){ rc = sqlite3VdbeMemMakeWriteable(pTo); }else{ rc = SQLITE_OK; } return rc; } /* ** Transfer the contents of pFrom to pTo. Any existing value in pTo is ** freed. If pFrom contains ephemeral data, a copy is made. ** ** pFrom contains an SQL NULL when this routine returns. SQLITE_NOMEM ** might be returned if pFrom held ephemeral data and we were unable ** to allocate enough space to make a copy. */ int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ int rc; assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); if( pTo->flags & MEM_Dyn ){ sqlite3VdbeMemRelease(pTo); } memcpy(pTo, pFrom, sizeof(Mem)); if( pFrom->flags & MEM_Short ){ pTo->z = pTo->zShort; } pFrom->flags = MEM_Null; pFrom->xDel = 0; if( pTo->flags & MEM_Ephem ){ rc = sqlite3VdbeMemMakeWriteable(pTo); }else{ rc = SQLITE_OK; } return rc; } /* ** Change the value of a Mem to be a string or a BLOB. */ int sqlite3VdbeMemSetStr( Mem *pMem, /* Memory cell to set to string value */ const char *z, /* String pointer */ int n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ void (*xDel)(void*) /* Destructor function */ ){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); sqlite3VdbeMemRelease(pMem); if( !z ){ pMem->flags = MEM_Null; pMem->type = SQLITE_NULL; return SQLITE_OK; } pMem->z = (char *)z; if( xDel==SQLITE_STATIC ){ pMem->flags = MEM_Static; }else if( xDel==SQLITE_TRANSIENT ){ pMem->flags = MEM_Ephem; }else{ pMem->flags = MEM_Dyn; pMem->xDel = xDel; } pMem->enc = enc; pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT; pMem->n = n; assert( enc==0 || enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); switch( enc ){ case 0: pMem->flags |= MEM_Blob; pMem->enc = SQLITE_UTF8; break; case SQLITE_UTF8: pMem->flags |= MEM_Str; if( n<0 ){ pMem->n = strlen(z); pMem->flags |= MEM_Term; } break; #ifndef SQLITE_OMIT_UTF16 case SQLITE_UTF16LE: case SQLITE_UTF16BE: pMem->flags |= MEM_Str; if( pMem->n<0 ){ pMem->n = sqlite3Utf16ByteLen(pMem->z,-1); pMem->flags |= MEM_Term; } if( sqlite3VdbeMemHandleBom(pMem) ){ return SQLITE_NOMEM; } #endif /* SQLITE_OMIT_UTF16 */ } if( pMem->flags&MEM_Ephem ){ return sqlite3VdbeMemMakeWriteable(pMem); } return SQLITE_OK; } /* ** Compare the values contained by the two memory cells, returning ** negative, zero or positive if pMem1 is less than, equal to, or greater ** than pMem2. Sorting order is NULL's first, followed by numbers (integers ** and reals) sorted numerically, followed by text ordered by the collating ** sequence pColl and finally blob's ordered by memcmp(). ** ** Two NULL values are considered equal by this function. */ int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ int rc; int f1, f2; int combined_flags; /* Interchange pMem1 and pMem2 if the collating sequence specifies ** DESC order. */ f1 = pMem1->flags; f2 = pMem2->flags; combined_flags = f1|f2; /* If one value is NULL, it is less than the other. If both values ** are NULL, return 0. */ if( combined_flags&MEM_Null ){ return (f2&MEM_Null) - (f1&MEM_Null); } /* If one value is a number and the other is not, the number is less. ** If both are numbers, compare as reals if one is a real, or as integers ** if both values are integers. */ if( combined_flags&(MEM_Int|MEM_Real) ){ if( !(f1&(MEM_Int|MEM_Real)) ){ return 1; } if( !(f2&(MEM_Int|MEM_Real)) ){ return -1; } if( (f1 & f2 & MEM_Int)==0 ){ double r1, r2; if( (f1&MEM_Real)==0 ){ r1 = pMem1->u.i; }else{ r1 = pMem1->r; } if( (f2&MEM_Real)==0 ){ r2 = pMem2->u.i; }else{ r2 = pMem2->r; } if( r1r2 ) return 1; return 0; }else{ assert( f1&MEM_Int ); assert( f2&MEM_Int ); if( pMem1->u.i < pMem2->u.i ) return -1; if( pMem1->u.i > pMem2->u.i ) return 1; return 0; } } /* If one value is a string and the other is a blob, the string is less. ** If both are strings, compare using the collating functions. */ if( combined_flags&MEM_Str ){ if( (f1 & MEM_Str)==0 ){ return 1; } if( (f2 & MEM_Str)==0 ){ return -1; } assert( pMem1->enc==pMem2->enc ); assert( pMem1->enc==SQLITE_UTF8 || pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); /* The collation sequence must be defined at this point, even if ** the user deletes the collation sequence after the vdbe program is ** compiled (this was not always the case). */ assert( !pColl || pColl->xCmp ); if( pColl ){ if( pMem1->enc==pColl->enc ){ /* The strings are already in the correct encoding. Call the ** comparison function directly */ return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); }else{ u8 origEnc = pMem1->enc; const void *v1, *v2; int n1, n2; /* Convert the strings into the encoding that the comparison ** function expects */ v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc); n1 = v1==0 ? 0 : pMem1->n; assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) ); v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc); n2 = v2==0 ? 0 : pMem2->n; assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) ); /* Do the comparison */ rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); /* Convert the strings back into the database encoding */ sqlite3ValueText((sqlite3_value*)pMem1, origEnc); sqlite3ValueText((sqlite3_value*)pMem2, origEnc); return rc; } } /* If a NULL pointer was passed as the collate function, fall through ** to the blob case and use memcmp(). */ } /* Both values must be blobs. Compare using memcmp(). */ rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); if( rc==0 ){ rc = pMem1->n - pMem2->n; } return rc; } /* ** Move data out of a btree key or data field and into a Mem structure. ** The data or key is taken from the entry that pCur is currently pointing ** to. offset and amt determine what portion of the data or key to retrieve. ** key is true to get the key or false to get data. The result is written ** into the pMem element. ** ** The pMem structure is assumed to be uninitialized. Any prior content ** is overwritten without being freed. ** ** If this routine fails for any reason (malloc returns NULL or unable ** to read from the disk) then the pMem is left in an inconsistent state. */ int sqlite3VdbeMemFromBtree( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ int offset, /* Offset from the start of data to return bytes from. */ int amt, /* Number of bytes to return. */ int key, /* If true, retrieve from the btree key, not data. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ char *zData; /* Data from the btree layer */ int available = 0; /* Number of bytes available on the local btree page */ sqlite3 *db; /* Database connection */ db = sqlite3BtreeCursorDb(pCur); assert( sqlite3_mutex_held(db->mutex) ); if( key ){ zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); }else{ zData = (char *)sqlite3BtreeDataFetch(pCur, &available); } assert( zData!=0 ); pMem->db = db; pMem->n = amt; if( offset+amt<=available ){ pMem->z = &zData[offset]; pMem->flags = MEM_Blob|MEM_Ephem; }else{ int rc; if( amt>NBFS-2 ){ zData = (char *)sqlite3DbMallocRaw(db, amt+2); if( !zData ){ return SQLITE_NOMEM; } pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; pMem->xDel = 0; }else{ zData = &(pMem->zShort[0]); pMem->flags = MEM_Blob|MEM_Short|MEM_Term; } pMem->z = zData; pMem->enc = 0; pMem->type = SQLITE_BLOB; if( key ){ rc = sqlite3BtreeKey(pCur, offset, amt, zData); }else{ rc = sqlite3BtreeData(pCur, offset, amt, zData); } zData[amt] = 0; zData[amt+1] = 0; if( rc!=SQLITE_OK ){ if( amt>NBFS-2 ){ assert( zData!=pMem->zShort ); assert( pMem->flags & MEM_Dyn ); sqlite3_free(zData); } else { assert( zData==pMem->zShort ); assert( pMem->flags & MEM_Short ); } return rc; } } return SQLITE_OK; } #ifndef NDEBUG /* ** Perform various checks on the memory cell pMem. An assert() will ** fail if pMem is internally inconsistent. */ void sqlite3VdbeMemSanity(Mem *pMem){ int flags = pMem->flags; assert( flags!=0 ); /* Must define some type */ if( flags & (MEM_Str|MEM_Blob) ){ int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); assert( x!=0 ); /* Strings must define a string subtype */ assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ assert( pMem->z!=0 ); /* Strings must have a value */ /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort ); assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort ); /* No destructor unless there is MEM_Dyn */ assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 ); if( (flags & MEM_Str) ){ assert( pMem->enc==SQLITE_UTF8 || pMem->enc==SQLITE_UTF16BE || pMem->enc==SQLITE_UTF16LE ); /* If the string is UTF-8 encoded and nul terminated, then pMem->n ** must be the length of the string. (Later:) If the database file ** has been corrupted, '\000' characters might have been inserted ** into the middle of the string. In that case, the strlen() might ** be less. */ if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){ assert( strlen(pMem->z)<=pMem->n ); assert( pMem->z[pMem->n]==0 ); } } }else{ /* Cannot define a string subtype for non-string objects */ assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); assert( pMem->xDel==0 ); } /* MEM_Null excludes all other types */ assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0 || (pMem->flags&MEM_Null)==0 ); /* If the MEM is both real and integer, the values are equal */ assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) || pMem->r==pMem->u.i ); } #endif /* This function is only available internally, it is not part of the ** external API. It works in a similar way to sqlite3_value_text(), ** except the data returned is in the encoding specified by the second ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or ** SQLITE_UTF8. ** ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. ** If that is the case, then the result must be aligned on an even byte ** boundary. */ const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ if( !pVal ) return 0; assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); if( pVal->flags&MEM_Null ){ return 0; } assert( (MEM_Blob>>3) == MEM_Str ); pVal->flags |= (pVal->flags & MEM_Blob)>>3; expandBlob(pVal); if( pVal->flags&MEM_Str ){ sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){ assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ return 0; } } sqlite3VdbeMemNulTerminate(pVal); }else{ assert( (pVal->flags&MEM_Blob)==0 ); sqlite3VdbeMemStringify(pVal, enc); assert( 0==(1&(int)pVal->z) ); } assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 || pVal->db->mallocFailed ); if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ return pVal->z; }else{ return 0; } } /* ** Create a new sqlite3_value object. */ sqlite3_value *sqlite3ValueNew(sqlite3 *db){ Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); if( p ){ p->flags = MEM_Null; p->type = SQLITE_NULL; p->db = db; } return p; } /* ** Create a new sqlite3_value object, containing the value of pExpr. ** ** This only works for very simple expressions that consist of one constant ** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can ** be converted directly into a value, then the value is allocated and ** a pointer written to *ppVal. The caller is responsible for deallocating ** the value by passing it to sqlite3ValueFree() later on. If the expression ** cannot be converted to a value, then *ppVal is set to NULL. */ int sqlite3ValueFromExpr( sqlite3 *db, /* The database connection */ Expr *pExpr, /* The expression to evaluate */ u8 enc, /* Encoding to use */ u8 affinity, /* Affinity to use */ sqlite3_value **ppVal /* Write the new value here */ ){ int op; char *zVal = 0; sqlite3_value *pVal = 0; if( !pExpr ){ *ppVal = 0; return SQLITE_OK; } op = pExpr->op; if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n); pVal = sqlite3ValueNew(db); if( !zVal || !pVal ) goto no_mem; sqlite3Dequote(zVal); sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free); if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc); }else{ sqlite3ValueApplyAffinity(pVal, affinity, enc); } }else if( op==TK_UMINUS ) { if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ pVal->u.i = -1 * pVal->u.i; pVal->r = -1.0 * pVal->r; } } #ifndef SQLITE_OMIT_BLOB_LITERAL else if( op==TK_BLOB ){ int nVal; pVal = sqlite3ValueNew(db); zVal = sqlite3StrNDup((char*)pExpr->token.z+1, pExpr->token.n-1); if( !zVal || !pVal ) goto no_mem; sqlite3Dequote(zVal); nVal = strlen(zVal)/2; sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal), nVal,0,sqlite3_free); sqlite3_free(zVal); } #endif *ppVal = pVal; return SQLITE_OK; no_mem: db->mallocFailed = 1; sqlite3_free(zVal); sqlite3ValueFree(pVal); *ppVal = 0; return SQLITE_NOMEM; } /* ** Change the string value of an sqlite3_value object */ void sqlite3ValueSetStr( sqlite3_value *v, /* Value to be set */ int n, /* Length of string z */ const void *z, /* Text of the new string */ u8 enc, /* Encoding to use */ void (*xDel)(void*) /* Destructor for the string */ ){ if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); } /* ** Free an sqlite3_value object */ void sqlite3ValueFree(sqlite3_value *v){ if( !v ) return; sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC); sqlite3_free(v); } /* ** Return the number of bytes in the sqlite3_value object assuming ** that it uses the encoding "enc" */ int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ Mem *p = (Mem*)pVal; if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ if( p->flags & MEM_Zero ){ return p->n+p->u.i; }else{ return p->n; } } return 0; }