/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** The code in this file implements the Virtual Database Engine (VDBE) ** ** The SQL parser generates a program which is then executed by ** the VDBE to do the work of the SQL statement. VDBE programs are ** similar in form to assembly language. The program consists of ** a linear sequence of operations. Each operation has an opcode ** and 3 operands. Operands P1 and P2 are integers. Operand P3 ** is a null-terminated string. The P2 operand must be non-negative. ** Opcodes will typically ignore one or more operands. Many opcodes ** ignore all three operands. ** ** Computation results are stored on a stack. Each entry on the ** stack is either an integer, a null-terminated string, a floating point ** number, or the SQL "NULL" value. An inplicit conversion from one ** type to the other occurs as necessary. ** ** Most of the code in this file is taken up by the sqliteVdbeExec() ** function which does the work of interpreting a VDBE program. ** But other routines are also provided to help in building up ** a program instruction by instruction. ** ** $Id: vdbe.c,v 1.105 2002/01/06 17:07:41 drh Exp $ */ #include "sqliteInt.h" #include /* ** The following global variable is incremented every time a cursor ** moves, either by the OP_MoveTo or the OP_Next opcode. The test ** procedures use this information to make sure that indices are ** working correctly. */ int sqlite_search_count = 0; /* ** SQL is translated into a sequence of instructions to be ** executed by a virtual machine. Each instruction is an instance ** of the following structure. */ typedef struct VdbeOp Op; /* ** Boolean values */ typedef unsigned char Bool; /* ** A cursor is a pointer into a single BTree within a database file. ** The cursor can seek to a BTree entry with a particular key, or ** loop over all entries of the Btree. You can also insert new BTree ** entries or retrieve the key or data from the entry that the cursor ** is currently pointing to. ** ** Every cursor that the virtual machine has open is represented by an ** instance of the following structure. */ struct Cursor { BtCursor *pCursor; /* The cursor structure of the backend */ int lastRecno; /* Last recno from a Next or NextIdx operation */ Bool recnoIsValid; /* True if lastRecno is valid */ Bool keyAsData; /* The OP_Column command works on key instead of data */ Bool atFirst; /* True if pointing to first entry */ Btree *pBt; /* Separate file holding temporary table */ }; typedef struct Cursor Cursor; /* ** A sorter builds a list of elements to be sorted. Each element of ** the list is an instance of the following structure. */ typedef struct Sorter Sorter; struct Sorter { int nKey; /* Number of bytes in the key */ char *zKey; /* The key by which we will sort */ int nData; /* Number of bytes in the data */ char *pData; /* The data associated with this key */ Sorter *pNext; /* Next in the list */ }; /* ** Number of buckets used for merge-sort. */ #define NSORT 30 /* ** Number of bytes of string storage space available to each stack ** layer without having to malloc. NBFS is short for Number of Bytes ** For Strings. */ #define NBFS 32 /* ** A single level of the stack is an instance of the following ** structure. Except, string values are stored on a separate ** list of of pointers to character. The reason for storing ** strings separately is so that they can be easily passed ** to the callback function. */ struct Stack { int i; /* Integer value */ int n; /* Number of characters in string value, including '\0' */ int flags; /* Some combination of STK_Null, STK_Str, STK_Dyn, etc. */ double r; /* Real value */ char z[NBFS]; /* Space for short strings */ }; typedef struct Stack Stack; /* ** Memory cells use the same structure as the stack except that space ** for an arbitrary string is added. */ struct Mem { Stack s; /* All values of the memory cell besides string */ char *z; /* String value for this memory cell */ }; typedef struct Mem Mem; /* ** Allowed values for Stack.flags */ #define STK_Null 0x0001 /* Value is NULL */ #define STK_Str 0x0002 /* Value is a string */ #define STK_Int 0x0004 /* Value is an integer */ #define STK_Real 0x0008 /* Value is a real number */ #define STK_Dyn 0x0010 /* Need to call sqliteFree() on zStack[*] */ #define STK_Static 0x0020 /* zStack[] points to a static string */ /* ** An Agg structure describes an Aggregator. Each Agg consists of ** zero or more Aggregator elements (AggElem). Each AggElem contains ** a key and one or more values. The values are used in processing ** aggregate functions in a SELECT. The key is used to implement ** the GROUP BY clause of a select. */ typedef struct Agg Agg; typedef struct AggElem AggElem; struct Agg { int nMem; /* Number of values stored in each AggElem */ AggElem *pCurrent; /* The AggElem currently in focus */ HashElem *pSearch; /* The hash element for pCurrent */ Hash hash; /* Hash table of all aggregate elements */ }; struct AggElem { char *zKey; /* The key to this AggElem */ int nKey; /* Number of bytes in the key, including '\0' at end */ Mem aMem[1]; /* The values for this AggElem */ }; /* ** A Set structure is used for quick testing to see if a value ** is part of a small set. Sets are used to implement code like ** this: ** x.y IN ('hi','hoo','hum') */ typedef struct Set Set; struct Set { Hash hash; /* A set is just a hash table */ }; /* ** A Keylist is a bunch of keys into a table. The keylist can ** grow without bound. The keylist stores the ROWIDs of database ** records that need to be deleted or updated. */ typedef struct Keylist Keylist; struct Keylist { int nKey; /* Number of slots in aKey[] */ int nUsed; /* Next unwritten slot in aKey[] */ int nRead; /* Next unread slot in aKey[] */ Keylist *pNext; /* Next block of keys */ int aKey[1]; /* One or more keys. Extra space allocated as needed */ }; /* ** An instance of the virtual machine */ struct Vdbe { sqlite *db; /* The whole database */ Btree *pBt; /* Opaque context structure used by DB backend */ FILE *trace; /* Write an execution trace here, if not NULL */ int nOp; /* Number of instructions in the program */ int nOpAlloc; /* Number of slots allocated for aOp[] */ Op *aOp; /* Space to hold the virtual machine's program */ int nLabel; /* Number of labels used */ int nLabelAlloc; /* Number of slots allocated in aLabel[] */ int *aLabel; /* Space to hold the labels */ int tos; /* Index of top of stack */ int nStackAlloc; /* Size of the stack */ Stack *aStack; /* The operand stack, except string values */ char **zStack; /* Text or binary values of the stack */ char **azColName; /* Becomes the 4th parameter to callbacks */ int nCursor; /* Number of slots in aCsr[] */ Cursor *aCsr; /* On element of this array for each open cursor */ Keylist *pList; /* A list of ROWIDs */ Sorter *pSort; /* A linked list of objects to be sorted */ FILE *pFile; /* At most one open file handler */ int nField; /* Number of file fields */ char **azField; /* Data for each file field */ char *zLine; /* A single line from the input file */ int nLineAlloc; /* Number of spaces allocated for zLine */ int nMem; /* Number of memory locations currently allocated */ Mem *aMem; /* The memory locations */ Agg agg; /* Aggregate information */ int nSet; /* Number of sets allocated */ Set *aSet; /* An array of sets */ int nCallback; /* Number of callbacks invoked so far */ int iLimit; /* Limit on the number of callbacks remaining */ int iOffset; /* Offset before beginning to do callbacks */ }; /* ** Create a new virtual database engine. */ Vdbe *sqliteVdbeCreate(sqlite *db){ Vdbe *p; p = sqliteMalloc( sizeof(Vdbe) ); if( p==0 ) return 0; p->pBt = db->pBe; p->db = db; return p; } /* ** Turn tracing on or off */ void sqliteVdbeTrace(Vdbe *p, FILE *trace){ p->trace = trace; } /* ** Add a new instruction to the list of instructions current in the ** VDBE. Return the address of the new instruction. ** ** Parameters: ** ** p Pointer to the VDBE ** ** op The opcode for this instruction ** ** p1, p2 First two of the three possible operands. ** ** Use the sqliteVdbeResolveLabel() function to fix an address and ** the sqliteVdbeChangeP3() function to change the value of the P3 ** operand. */ int sqliteVdbeAddOp(Vdbe *p, int op, int p1, int p2){ int i; i = p->nOp; p->nOp++; if( i>=p->nOpAlloc ){ int oldSize = p->nOpAlloc; Op *aNew; p->nOpAlloc = p->nOpAlloc*2 + 100; aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op)); if( aNew==0 ){ p->nOpAlloc = oldSize; return 0; } p->aOp = aNew; memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op)); } p->aOp[i].opcode = op; p->aOp[i].p1 = p1; if( p2<0 && (-1-p2)nLabel && p->aLabel[-1-p2]>=0 ){ p2 = p->aLabel[-1-p2]; } p->aOp[i].p2 = p2; p->aOp[i].p3 = 0; p->aOp[i].p3type = P3_NOTUSED; return i; } /* ** Create a new symbolic label for an instruction that has yet to be ** coded. The symbolic label is really just a negative number. The ** label can be used as the P2 value of an operation. Later, when ** the label is resolved to a specific address, the VDBE will scan ** through its operation list and change all values of P2 which match ** the label into the resolved address. ** ** The VDBE knows that a P2 value is a label because labels are ** always negative and P2 values are suppose to be non-negative. ** Hence, a negative P2 value is a label that has yet to be resolved. */ int sqliteVdbeMakeLabel(Vdbe *p){ int i; i = p->nLabel++; if( i>=p->nLabelAlloc ){ int *aNew; p->nLabelAlloc = p->nLabelAlloc*2 + 10; aNew = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0])); if( aNew==0 ){ sqliteFree(p->aLabel); } p->aLabel = aNew; } if( p->aLabel==0 ){ p->nLabel = 0; p->nLabelAlloc = 0; return 0; } p->aLabel[i] = -1; return -1-i; } /* ** Resolve label "x" to be the address of the next instruction to ** be inserted. */ void sqliteVdbeResolveLabel(Vdbe *p, int x){ int j; if( x<0 && (-x)<=p->nLabel && p->aOp ){ if( p->aLabel[-1-x]==p->nOp ) return; assert( p->aLabel[-1-x]<0 ); p->aLabel[-1-x] = p->nOp; for(j=0; jnOp; j++){ if( p->aOp[j].p2==x ) p->aOp[j].p2 = p->nOp; } } } /* ** Return the address of the next instruction to be inserted. */ int sqliteVdbeCurrentAddr(Vdbe *p){ return p->nOp; } /* ** Add a whole list of operations to the operation stack. Return the ** address of the first operation added. */ int sqliteVdbeAddOpList(Vdbe *p, int nOp, VdbeOp const *aOp){ int addr; if( p->nOp + nOp >= p->nOpAlloc ){ int oldSize = p->nOpAlloc; Op *aNew; p->nOpAlloc = p->nOpAlloc*2 + nOp + 10; aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op)); if( aNew==0 ){ p->nOpAlloc = oldSize; return 0; } p->aOp = aNew; memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op)); } addr = p->nOp; if( nOp>0 ){ int i; for(i=0; iaOp[i+addr] = aOp[i]; if( p2<0 ) p->aOp[i+addr].p2 = addr + ADDR(p2); p->aOp[i+addr].p3type = aOp[i].p3 ? P3_STATIC : P3_NOTUSED; } p->nOp += nOp; } return addr; } /* ** Change the value of the P1 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqliteVdbeAddOpList but we want to make a ** few minor changes to the program. */ void sqliteVdbeChangeP1(Vdbe *p, int addr, int val){ if( p && addr>=0 && p->nOp>addr && p->aOp ){ p->aOp[addr].p1 = val; } } /* ** Change the value of the P3 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqliteVdbeAddOpList but we want to make a ** few minor changes to the program. ** ** If n>=0 then the P3 operand is dynamic, meaning that a copy of ** the string is made into memory obtained from sqliteMalloc(). ** A value of n==0 means copy bytes of zP3 up to and including the ** first null byte. If n>0 then copy n+1 bytes of zP3. ** ** If n==P3_STATIC it means that zP3 is a pointer to a constant static ** string and we can just copy the pointer. n==P3_POINTER means zP3 is ** a pointer to some object other than a string. ** ** If addr<0 then change P3 on the most recently inserted instruction. */ void sqliteVdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){ Op *pOp; if( p==0 || p->aOp==0 ) return; if( addr<0 || addr>=p->nOp ){ addr = p->nOp - 1; if( addr<0 ) return; } pOp = &p->aOp[addr]; if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){ sqliteFree(pOp->p3); pOp->p3 = 0; } if( zP3==0 ){ pOp->p3 = 0; pOp->p3type = P3_NOTUSED; }else if( n<0 ){ pOp->p3 = (char*)zP3; pOp->p3type = n; }else{ sqliteSetNString(&pOp->p3, zP3, n, 0); pOp->p3type = P3_DYNAMIC; } } /* ** If the P3 operand to the specified instruction appears ** to be a quoted string token, then this procedure removes ** the quotes. ** ** The quoting operator can be either a grave ascent (ASCII 0x27) ** or a double quote character (ASCII 0x22). Two quotes in a row ** resolve to be a single actual quote character within the string. */ void sqliteVdbeDequoteP3(Vdbe *p, int addr){ Op *pOp; if( p->aOp==0 || addr<0 || addr>=p->nOp ) return; pOp = &p->aOp[addr]; if( pOp->p3==0 || pOp->p3[0]==0 ) return; if( pOp->p3type==P3_POINTER ) return; if( pOp->p3type!=P3_DYNAMIC ){ pOp->p3 = sqliteStrDup(pOp->p3); pOp->p3type = P3_DYNAMIC; } sqliteDequote(pOp->p3); } /* ** On the P3 argument of the given instruction, change all ** strings of whitespace characters into a single space and ** delete leading and trailing whitespace. */ void sqliteVdbeCompressSpace(Vdbe *p, int addr){ char *z; int i, j; Op *pOp; if( p->aOp==0 || addr<0 || addr>=p->nOp ) return; pOp = &p->aOp[addr]; if( pOp->p3type==P3_POINTER ){ return; } if( pOp->p3type!=P3_DYNAMIC ){ pOp->p3 = sqliteStrDup(pOp->p3); pOp->p3type = P3_DYNAMIC; } z = pOp->p3; if( z==0 ) return; i = j = 0; while( isspace(z[i]) ){ i++; } while( z[i] ){ if( isspace(z[i]) ){ z[j++] = ' '; while( isspace(z[++i]) ){} }else{ z[j++] = z[i++]; } } while( j>0 && isspace(z[j-1]) ){ j--; } z[j] = 0; } /* ** Reset an Agg structure. Delete all its contents. */ static void AggReset(Agg *pAgg){ int i; HashElem *p; for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){ AggElem *pElem = sqliteHashData(p); for(i=0; inMem; i++){ if( pElem->aMem[i].s.flags & STK_Dyn ){ sqliteFree(pElem->aMem[i].z); } } sqliteFree(pElem); } sqliteHashClear(&pAgg->hash); pAgg->pCurrent = 0; pAgg->pSearch = 0; pAgg->nMem = 0; } /* ** Insert a new element and make it the current element. ** ** Return 0 on success and 1 if memory is exhausted. */ static int AggInsert(Agg *p, char *zKey, int nKey){ AggElem *pElem, *pOld; int i; pElem = sqliteMalloc( sizeof(AggElem) + nKey + (p->nMem-1)*sizeof(pElem->aMem[0]) ); if( pElem==0 ) return 1; pElem->zKey = (char*)&pElem->aMem[p->nMem]; memcpy(pElem->zKey, zKey, nKey); pElem->nKey = nKey; pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem); if( pOld!=0 ){ assert( pOld==pElem ); /* Malloc failed on insert */ sqliteFree(pOld); return 0; } for(i=0; inMem; i++){ pElem->aMem[i].s.flags = STK_Null; } p->pCurrent = pElem; return 0; } /* ** Get the AggElem currently in focus */ #define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P))) static AggElem *_AggInFocus(Agg *p){ HashElem *pElem = sqliteHashFirst(&p->hash); if( pElem==0 ){ AggInsert(p,"",1); pElem = sqliteHashFirst(&p->hash); } return pElem ? sqliteHashData(pElem) : 0; } /* ** Convert the given stack entity into a string if it isn't one ** already. Return non-zero if we run out of memory. ** ** NULLs are converted into an empty string. */ #define Stringify(P,I) \ ((P->aStack[I].flags & STK_Str)==0 ? hardStringify(P,I) : 0) static int hardStringify(Vdbe *p, int i){ Stack *pStack = &p->aStack[i]; char **pzStack = &p->zStack[i]; int fg = pStack->flags; if( fg & STK_Real ){ sprintf(pStack->z,"%.15g",pStack->r); }else if( fg & STK_Int ){ sprintf(pStack->z,"%d",pStack->i); }else{ pStack->z[0] = 0; } *pzStack = pStack->z; pStack->n = strlen(*pzStack)+1; pStack->flags = STK_Str; return 0; } /* ** Release the memory associated with the given stack level */ #define Release(P,I) if((P)->aStack[I].flags&STK_Dyn){ hardRelease(P,I); } static void hardRelease(Vdbe *p, int i){ sqliteFree(p->zStack[i]); p->zStack[i] = 0; p->aStack[i].flags &= ~(STK_Str|STK_Dyn|STK_Static); } /* ** Convert the given stack entity into a integer if it isn't one ** already. ** ** Any prior string or real representation is invalidated. ** NULLs are converted into 0. */ #define Integerify(P,I) \ if(((P)->aStack[(I)].flags&STK_Int)==0){ hardIntegerify(P,I); } static void hardIntegerify(Vdbe *p, int i){ if( p->aStack[i].flags & STK_Real ){ p->aStack[i].i = p->aStack[i].r; Release(p, i); }else if( p->aStack[i].flags & STK_Str ){ p->aStack[i].i = atoi(p->zStack[i]); Release(p, i); }else{ p->aStack[i].i = 0; } p->aStack[i].flags = STK_Int; } /* ** Get a valid Real representation for the given stack element. ** ** Any prior string or integer representation is retained. ** NULLs are converted into 0.0. */ #define Realify(P,I) \ if(((P)->aStack[(I)].flags&STK_Real)==0){ hardRealify(P,I); } static void hardRealify(Vdbe *p, int i){ if( p->aStack[i].flags & STK_Str ){ p->aStack[i].r = atof(p->zStack[i]); }else if( p->aStack[i].flags & STK_Int ){ p->aStack[i].r = p->aStack[i].i; }else{ p->aStack[i].r = 0.0; } p->aStack[i].flags |= STK_Real; } /* ** Pop the stack N times. Free any memory associated with the ** popped stack elements. */ static void PopStack(Vdbe *p, int N){ char **pzStack; Stack *pStack; if( p->zStack==0 ) return; pStack = &p->aStack[p->tos]; pzStack = &p->zStack[p->tos]; p->tos -= N; while( N-- > 0 ){ if( pStack->flags & STK_Dyn ){ sqliteFree(*pzStack); } pStack->flags = 0; *pzStack = 0; pStack--; pzStack--; } } /* ** Here is a macro to handle the common case of popping the stack ** once. This macro only works from within the sqliteVdbeExec() ** function. */ #define POPSTACK \ if( aStack[p->tos].flags & STK_Dyn ) sqliteFree(zStack[p->tos]); \ p->tos--; /* ** Make sure space has been allocated to hold at least N ** stack elements. Allocate additional stack space if ** necessary. ** ** Return 0 on success and non-zero if there are memory ** allocation errors. */ #define NeedStack(P,N) (((P)->nStackAlloc<=(N)) ? hardNeedStack(P,N) : 0) static int hardNeedStack(Vdbe *p, int N){ int oldAlloc; int i; if( N>=p->nStackAlloc ){ Stack *aNew; char **zNew; oldAlloc = p->nStackAlloc; p->nStackAlloc = N + 20; aNew = sqliteRealloc(p->aStack, p->nStackAlloc*sizeof(p->aStack[0])); zNew = aNew ? sqliteRealloc(p->zStack, p->nStackAlloc*sizeof(char*)) : 0; if( zNew==0 ){ sqliteFree(aNew); sqliteFree(p->aStack); sqliteFree(p->zStack); p->aStack = 0; p->zStack = 0; p->nStackAlloc = 0; p->aStack = 0; p->zStack = 0; return 1; } p->aStack = aNew; p->zStack = zNew; for(i=oldAlloc; inStackAlloc; i++){ p->zStack[i] = 0; p->aStack[i].flags = 0; } } return 0; } /* ** Return TRUE if zNum is a floating-point or integer number. */ static int isNumber(const char *zNum){ if( *zNum=='-' || *zNum=='+' ) zNum++; if( !isdigit(*zNum) ) return 0; while( isdigit(*zNum) ) zNum++; if( *zNum==0 ) return 1; if( *zNum!='.' ) return 0; zNum++; if( !isdigit(*zNum) ) return 0; while( isdigit(*zNum) ) zNum++; if( *zNum==0 ) return 1; if( *zNum!='e' && *zNum!='E' ) return 0; zNum++; if( *zNum=='-' || *zNum=='+' ) zNum++; if( !isdigit(*zNum) ) return 0; while( isdigit(*zNum) ) zNum++; return *zNum==0; } /* ** Return TRUE if zNum is an integer. */ static int isInteger(const char *zNum){ if( *zNum=='-' || *zNum=='+' ) zNum++; while( isdigit(*zNum) ) zNum++; return *zNum==0; } /* ** Delete a keylist */ static void KeylistFree(Keylist *p){ while( p ){ Keylist *pNext = p->pNext; sqliteFree(p); p = pNext; } } /* ** Close a cursor and release all the resources that cursor happens ** to hold. */ static void cleanupCursor(Cursor *pCx){ if( pCx->pCursor ){ sqliteBtreeCloseCursor(pCx->pCursor); } if( pCx->pBt ){ sqliteBtreeClose(pCx->pBt); } memset(pCx, 0, sizeof(Cursor)); } /* ** Close all cursors */ static void closeAllCursors(Vdbe *p){ int i; for(i=0; inCursor; i++){ cleanupCursor(&p->aCsr[i]); } sqliteFree(p->aCsr); p->aCsr = 0; p->nCursor = 0; } /* ** Remove any elements that remain on the sorter for the VDBE given. */ static void SorterReset(Vdbe *p){ while( p->pSort ){ Sorter *pSorter = p->pSort; p->pSort = pSorter->pNext; sqliteFree(pSorter->zKey); sqliteFree(pSorter->pData); sqliteFree(pSorter); } } /* ** Clean up the VM after execution. ** ** This routine will automatically close any cursors, lists, and/or ** sorters that were left open. */ static void Cleanup(Vdbe *p){ int i; PopStack(p, p->tos+1); sqliteFree(p->azColName); p->azColName = 0; closeAllCursors(p); for(i=0; inMem; i++){ if( p->aMem[i].s.flags & STK_Dyn ){ sqliteFree(p->aMem[i].z); } } sqliteFree(p->aMem); p->aMem = 0; p->nMem = 0; if( p->pList ){ KeylistFree(p->pList); p->pList = 0; } SorterReset(p); if( p->pFile ){ if( p->pFile!=stdin ) fclose(p->pFile); p->pFile = 0; } if( p->azField ){ sqliteFree(p->azField); p->azField = 0; } p->nField = 0; if( p->zLine ){ sqliteFree(p->zLine); p->zLine = 0; } p->nLineAlloc = 0; AggReset(&p->agg); for(i=0; inSet; i++){ sqliteHashClear(&p->aSet[i].hash); } sqliteFree(p->aSet); p->aSet = 0; p->nSet = 0; } /* ** Delete an entire VDBE. */ void sqliteVdbeDelete(Vdbe *p){ int i; if( p==0 ) return; Cleanup(p); if( p->nOpAlloc==0 ){ p->aOp = 0; p->nOp = 0; } for(i=0; inOp; i++){ if( p->aOp[i].p3type==P3_DYNAMIC ){ sqliteFree(p->aOp[i].p3); } } sqliteFree(p->aOp); sqliteFree(p->aLabel); sqliteFree(p->aStack); sqliteFree(p->zStack); sqliteFree(p); } /* ** A translation from opcode numbers to opcode names. Used for testing ** and debugging only. ** ** If any of the numeric OP_ values for opcodes defined in sqliteVdbe.h ** change, be sure to change this array to match. You can use the ** "opNames.awk" awk script which is part of the source tree to regenerate ** this array, then copy and paste it into this file, if you want. */ static char *zOpName[] = { 0, "Transaction", "Commit", "Rollback", "ReadCookie", "SetCookie", "VerifyCookie", "Open", "OpenTemp", "OpenWrite", "OpenAux", "OpenWrAux", "Close", "MoveTo", "NewRecno", "Put", "Distinct", "Found", "NotFound", "Delete", "Column", "KeyAsData", "Recno", "FullKey", "Rewind", "Next", "Destroy", "Clear", "CreateIndex", "CreateTable", "Reorganize", "IdxPut", "IdxDelete", "IdxRecno", "IdxGT", "IdxGE", "MemLoad", "MemStore", "ListWrite", "ListRewind", "ListRead", "ListReset", "SortPut", "SortMakeRec", "SortMakeKey", "Sort", "SortNext", "SortCallback", "SortReset", "FileOpen", "FileRead", "FileColumn", "AggReset", "AggFocus", "AggIncr", "AggNext", "AggSet", "AggGet", "SetInsert", "SetFound", "SetNotFound", "MakeRecord", "MakeKey", "MakeIdxKey", "IncrKey", "Goto", "If", "Halt", "ColumnCount", "ColumnName", "Callback", "NullCallback", "Integer", "String", "Pop", "Dup", "Pull", "MustBeInt", "Add", "AddImm", "Subtract", "Multiply", "Divide", "Remainder", "BitAnd", "BitOr", "BitNot", "ShiftLeft", "ShiftRight", "AbsValue", "Precision", "Min", "Max", "Like", "Glob", "Eq", "Ne", "Lt", "Le", "Gt", "Ge", "IsNull", "NotNull", "Negative", "And", "Or", "Not", "Concat", "Noop", "Strlen", "Substr", "Limit", }; /* ** Given the name of an opcode, return its number. Return 0 if ** there is no match. ** ** This routine is used for testing and debugging. */ int sqliteVdbeOpcode(const char *zName){ int i; for(i=1; i<=OP_MAX; i++){ if( sqliteStrICmp(zName, zOpName[i])==0 ) return i; } return 0; } /* ** Give a listing of the program in the virtual machine. ** ** The interface is the same as sqliteVdbeExec(). But instead of ** running the code, it invokes the callback once for each instruction. ** This feature is used to implement "EXPLAIN". */ int sqliteVdbeList( Vdbe *p, /* The VDBE */ sqlite_callback xCallback, /* The callback */ void *pArg, /* 1st argument to callback */ char **pzErrMsg /* Error msg written here */ ){ int i, rc; char *azValue[6]; char zAddr[20]; char zP1[20]; char zP2[20]; static char *azColumnNames[] = { "addr", "opcode", "p1", "p2", "p3", 0 }; if( xCallback==0 ) return 0; azValue[0] = zAddr; azValue[2] = zP1; azValue[3] = zP2; azValue[5] = 0; rc = SQLITE_OK; for(i=0; rc==SQLITE_OK && inOp; i++){ if( p->db->flags & SQLITE_Interrupt ){ p->db->flags &= ~SQLITE_Interrupt; sqliteSetString(pzErrMsg, "interrupted", 0); rc = SQLITE_INTERRUPT; break; } sprintf(zAddr,"%d",i); sprintf(zP1,"%d", p->aOp[i].p1); sprintf(zP2,"%d", p->aOp[i].p2); azValue[4] = p->aOp[i].p3type!=P3_POINTER ? p->aOp[i].p3 : ""; azValue[1] = zOpName[p->aOp[i].opcode]; if( xCallback(pArg, 5, azValue, azColumnNames) ){ rc = SQLITE_ABORT; } } return rc; } /* ** The parameters are pointers to the head of two sorted lists ** of Sorter structures. Merge these two lists together and return ** a single sorted list. This routine forms the core of the merge-sort ** algorithm. ** ** In the case of a tie, left sorts in front of right. */ static Sorter *Merge(Sorter *pLeft, Sorter *pRight){ Sorter sHead; Sorter *pTail; pTail = &sHead; pTail->pNext = 0; while( pLeft && pRight ){ int c = sqliteSortCompare(pLeft->zKey, pRight->zKey); if( c<=0 ){ pTail->pNext = pLeft; pLeft = pLeft->pNext; }else{ pTail->pNext = pRight; pRight = pRight->pNext; } pTail = pTail->pNext; } if( pLeft ){ pTail->pNext = pLeft; }else if( pRight ){ pTail->pNext = pRight; } return sHead.pNext; } /* ** Convert an integer in between the native integer format and ** the bigEndian format used as the record number for tables. ** ** The bigEndian format (most significant byte first) is used for ** record numbers so that records will sort into the correct order ** even though memcmp() is used to compare the keys. On machines ** whose native integer format is little endian (ex: i486) the ** order of bytes is reversed. On native big-endian machines ** (ex: Alpha, Sparc, Motorola) the byte order is the same. ** ** This function is its own inverse. In other words ** ** X == byteSwap(byteSwap(X)) */ static int byteSwap(int x){ union { char zBuf[sizeof(int)]; int i; } ux; ux.zBuf[3] = x&0xff; ux.zBuf[2] = (x>>8)&0xff; ux.zBuf[1] = (x>>16)&0xff; ux.zBuf[0] = (x>>24)&0xff; return ux.i; } /* ** When converting from the native format to the key format and back ** again, in addition to changing the byte order we invert the high-order ** bit of the most significant byte. This causes negative numbers to ** sort before positive numbers in the memcmp() function. */ #define keyToInt(X) (byteSwap(X) ^ 0x80000000) #define intToKey(X) (byteSwap((X) ^ 0x80000000)) /* ** Code contained within the VERIFY() macro is not needed for correct ** execution. It is there only to catch errors. So when we compile ** with NDEBUG=1, the VERIFY() code is omitted. */ #ifdef NDEBUG # define VERIFY(X) #else # define VERIFY(X) X #endif /* ** Execute the program in the VDBE. ** ** If an error occurs, an error message is written to memory obtained ** from sqliteMalloc() and *pzErrMsg is made to point to that memory. ** The return parameter is the number of errors. ** ** If the callback ever returns non-zero, then the program exits ** immediately. There will be no error message but the function ** does return SQLITE_ABORT. ** ** A memory allocation error causes this routine to return SQLITE_NOMEM ** and abandon furture processing. ** ** Other fatal errors return SQLITE_ERROR. ** ** If a database file could not be opened because it is locked by ** another database instance, then the xBusy() callback is invoked ** with pBusyArg as its first argument, the name of the table as the ** second argument, and the number of times the open has been attempted ** as the third argument. The xBusy() callback will typically wait ** for the database file to be openable, then return. If xBusy() ** returns non-zero, another attempt is made to open the file. If ** xBusy() returns zero, or if xBusy is NULL, then execution halts ** and this routine returns SQLITE_BUSY. */ int sqliteVdbeExec( Vdbe *p, /* The VDBE */ sqlite_callback xCallback, /* The callback */ void *pArg, /* 1st argument to callback */ char **pzErrMsg, /* Error msg written here */ void *pBusyArg, /* 1st argument to the busy callback */ int (*xBusy)(void*,const char*,int) /* Called when a file is busy */ ){ int pc; /* The program counter */ Op *pOp; /* Current operation */ int rc; /* Value to return */ Btree *pBt = p->pBt; /* The backend driver */ sqlite *db = p->db; /* The database */ char **zStack; /* Text stack */ Stack *aStack; /* Additional stack information */ char zBuf[100]; /* Space to sprintf() an integer */ /* No instruction ever pushes more than a single element onto the ** stack. And the stack never grows on successive executions of the ** same loop. So the total number of instructions is an upper bound ** on the maximum stack depth required. ** ** Allocation all the stack space we will ever need. */ NeedStack(p, p->nOp); zStack = p->zStack; aStack = p->aStack; p->tos = -1; p->iLimit = 0; p->iOffset = 0; /* Initialize the aggregrate hash table. */ sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0); p->agg.pSearch = 0; rc = SQLITE_OK; #ifdef MEMORY_DEBUG if( access("vdbe_trace",0)==0 ){ p->trace = stdout; } #endif if( sqlite_malloc_failed ) goto no_mem; for(pc=0; !sqlite_malloc_failed && rc==SQLITE_OK && pcnOp VERIFY(&& pc>=0); pc++){ pOp = &p->aOp[pc]; /* Interrupt processing if requested. */ if( db->flags & SQLITE_Interrupt ){ db->flags &= ~SQLITE_Interrupt; rc = SQLITE_INTERRUPT; sqliteSetString(pzErrMsg, "interrupted", 0); break; } /* Only allow tracing if NDEBUG is not defined. */ #ifndef NDEBUG if( p->trace ){ fprintf(p->trace,"%4d %-12s %4d %4d %s\n", pc, zOpName[pOp->opcode], pOp->p1, pOp->p2, pOp->p3 ? pOp->p3 : ""); fflush(p->trace); } #endif switch( pOp->opcode ){ /***************************************************************************** ** What follows is a massive switch statement where each case implements a ** separate instruction in the virtual machine. If we follow the usual ** indentation conventions, each case should be indented by 6 spaces. But ** that is a lot of wasted space on the left margin. So the code within ** the switch statement will break with convention and be flush-left. Another ** big comment (similar to this one) will mark the point in the code where ** we transition back to normal indentation. *****************************************************************************/ /* Opcode: Goto * P2 * ** ** An unconditional jump to address P2. ** The next instruction executed will be ** the one at index P2 from the beginning of ** the program. */ case OP_Goto: { pc = pOp->p2 - 1; break; } /* Opcode: Halt * * * ** ** Exit immediately. All open cursors, Lists, Sorts, etc are closed ** automatically. ** ** There is an implied Halt instruction inserted at the very end of ** every program. So a jump past the last instruction of the program ** is the same as executing Halt. */ case OP_Halt: { pc = p->nOp-1; break; } /* Opcode: Integer P1 * * ** ** The integer value P1 is pushed onto the stack. */ case OP_Integer: { int i = ++p->tos; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) aStack[i].i = pOp->p1; aStack[i].flags = STK_Int; break; } /* Opcode: String * * P3 ** ** The string value P3 is pushed onto the stack. If P3==0 then a ** NULL is pushed onto the stack. */ case OP_String: { int i = ++p->tos; char *z; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) z = pOp->p3; if( z==0 ){ zStack[i] = 0; aStack[i].n = 0; aStack[i].flags = STK_Null; }else{ zStack[i] = z; aStack[i].n = strlen(z) + 1; aStack[i].flags = STK_Str | STK_Static; } break; } /* Opcode: Pop P1 * * ** ** P1 elements are popped off of the top of stack and discarded. */ case OP_Pop: { PopStack(p, pOp->p1); break; } /* Opcode: Dup P1 * * ** ** A copy of the P1-th element of the stack ** is made and pushed onto the top of the stack. ** The top of the stack is element 0. So the ** instruction "Dup 0 0 0" will make a copy of the ** top of the stack. ** ** Also see the Pull instruction. */ case OP_Dup: { int i = p->tos - pOp->p1; int j = ++p->tos; VERIFY( if( i<0 ) goto not_enough_stack; ) VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) memcpy(&aStack[j], &aStack[i], sizeof(aStack[i])-NBFS); if( aStack[j].flags & STK_Str ){ if( aStack[j].flags & STK_Static ){ zStack[j] = zStack[i]; aStack[j].flags = STK_Str | STK_Static; }else if( aStack[i].n<=NBFS ){ memcpy(aStack[j].z, zStack[i], aStack[j].n); zStack[j] = aStack[j].z; aStack[j].flags = STK_Str; }else{ zStack[j] = sqliteMalloc( aStack[j].n ); if( zStack[j]==0 ) goto no_mem; memcpy(zStack[j], zStack[i], aStack[j].n); aStack[j].flags = STK_Str | STK_Dyn; } } break; } /* Opcode: Pull P1 * * ** ** The P1-th element is removed from its current location on ** the stack and pushed back on top of the stack. The ** top of the stack is element 0, so "Pull 0 0 0" is ** a no-op. "Pull 1 0 0" swaps the top two elements of ** the stack. ** ** See also the Dup instruction. */ case OP_Pull: { int from = p->tos - pOp->p1; int to = p->tos; int i; Stack ts; char *tz; VERIFY( if( from<0 ) goto not_enough_stack; ) ts = aStack[from]; tz = zStack[from]; for(i=from; iazColName, (pOp->p1+1)*sizeof(char*)); if( az==0 ){ goto no_mem; } p->azColName = az; p->azColName[pOp->p1] = 0; p->nCallback = 0; break; } /* Opcode: ColumnName P1 * P3 ** ** P3 becomes the P1-th column name (first is 0). An array of pointers ** to all column names is passed as the 4th parameter to the callback. ** The ColumnCount opcode must be executed first to allocate space to ** hold the column names. Failure to do this will likely result in ** a coredump. */ case OP_ColumnName: { p->azColName[pOp->p1] = pOp->p3 ? pOp->p3 : ""; p->nCallback = 0; break; } /* Opcode: Callback P1 P2 * ** ** Pop P1 values off the stack and form them into an array. Then ** invoke the callback function using the newly formed array as the ** 3rd parameter. ** ** If the offset counter (set by the OP_Limit opcode) is positive, ** then decrement the counter and do not invoke the callback. ** ** If the callback is invoked, then after the callback returns ** decrement the limit counter. When the limit counter reaches ** zero, jump to address P2. */ case OP_Callback: { int i = p->tos - pOp->p1 + 1; int j; VERIFY( if( i<0 ) goto not_enough_stack; ) VERIFY( if( NeedStack(p, p->tos+2) ) goto no_mem; ) for(j=i; j<=p->tos; j++){ if( aStack[j].flags & STK_Null ){ zStack[j] = 0; }else{ if( Stringify(p, j) ) goto no_mem; } } zStack[p->tos+1] = 0; if( xCallback!=0 ){ if( p->iOffset>0 ){ p->iOffset--; }else{ if( xCallback(pArg, pOp->p1, &zStack[i], p->azColName)!=0 ){ rc = SQLITE_ABORT; } p->nCallback++; if( p->iLimit>0 ){ p->iLimit--; if( p->iLimit==0 ){ pc = pOp->p2 - 1; } } } } PopStack(p, pOp->p1); if( sqlite_malloc_failed ) goto no_mem; break; } /* Opcode: NullCallback P1 * * ** ** Invoke the callback function once with the 2nd argument (the ** number of columns) equal to P1 and with the 4th argument (the ** names of the columns) set according to prior OP_ColumnName and ** OP_ColumnCount instructions. This is all like the regular ** OP_Callback or OP_SortCallback opcodes. But the 3rd argument ** which normally contains a pointer to an array of pointers to ** data is NULL. ** ** The callback is only invoked if there have been no prior calls ** to OP_Callback or OP_SortCallback. ** ** This opcode is used to report the number and names of columns ** in cases where the result set is empty. */ case OP_NullCallback: { if( xCallback!=0 && p->nCallback==0 ){ if( xCallback(pArg, pOp->p1, 0, p->azColName)!=0 ){ rc = SQLITE_ABORT; } p->nCallback++; } if( sqlite_malloc_failed ) goto no_mem; break; } /* Opcode: Concat P1 P2 P3 ** ** Look at the first P1 elements of the stack. Append them all ** together with the lowest element first. Use P3 as a separator. ** Put the result on the top of the stack. The original P1 elements ** are popped from the stack if P2==0 and retained if P2==1. ** ** If P3 is NULL, then use no separator. When P1==1, this routine ** makes a copy of the top stack element into memory obtained ** from sqliteMalloc(). */ case OP_Concat: { char *zNew; int nByte; int nField; int i, j; char *zSep; int nSep; nField = pOp->p1; zSep = pOp->p3; if( zSep==0 ) zSep = ""; nSep = strlen(zSep); VERIFY( if( p->tos+1tos-nField+1; i<=p->tos; i++){ if( aStack[i].flags & STK_Null ){ nByte += nSep; }else{ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n - 1 + nSep; } } zNew = sqliteMalloc( nByte ); if( zNew==0 ) goto no_mem; j = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ memcpy(&zNew[j], zStack[i], aStack[i].n-1); j += aStack[i].n-1; } if( nSep>0 && itos ){ memcpy(&zNew[j], zSep, nSep); j += nSep; } } zNew[j] = 0; if( pOp->p2==0 ) PopStack(p, nField); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str|STK_Dyn; zStack[p->tos] = zNew; break; } /* Opcode: Add * * * ** ** Pop the top two elements from the stack, add them together, ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the addition. */ /* Opcode: Multiply * * * ** ** Pop the top two elements from the stack, multiply them together, ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the multiplication. */ /* Opcode: Subtract * * * ** ** Pop the top two elements from the stack, subtract the ** first (what was on top of the stack) from the second (the ** next on stack) ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the subtraction. */ /* Opcode: Divide * * * ** ** Pop the top two elements from the stack, divide the ** first (what was on top of the stack) from the second (the ** next on stack) ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the division. Division by zero returns NULL. */ /* Opcode: Remainder * * * ** ** Pop the top two elements from the stack, divide the ** first (what was on top of the stack) from the second (the ** next on stack) ** and push the remainder after division onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the division. Division by zero returns NULL. */ case OP_Add: case OP_Subtract: case OP_Multiply: case OP_Divide: case OP_Remainder: { int tos = p->tos; int nos = tos - 1; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( (aStack[tos].flags & aStack[nos].flags & STK_Int)==STK_Int ){ int a, b; a = aStack[tos].i; b = aStack[nos].i; switch( pOp->opcode ){ case OP_Add: b += a; break; case OP_Subtract: b -= a; break; case OP_Multiply: b *= a; break; case OP_Divide: { if( a==0 ) goto divide_by_zero; b /= a; break; } default: { if( a==0 ) goto divide_by_zero; b %= a; break; } } POPSTACK; Release(p, nos); aStack[nos].i = b; aStack[nos].flags = STK_Int; }else{ double a, b; Realify(p, tos); Realify(p, nos); a = aStack[tos].r; b = aStack[nos].r; switch( pOp->opcode ){ case OP_Add: b += a; break; case OP_Subtract: b -= a; break; case OP_Multiply: b *= a; break; case OP_Divide: { if( a==0.0 ) goto divide_by_zero; b /= a; break; } default: { int ia = a; int ib = b; if( ia==0.0 ) goto divide_by_zero; b = ib % ia; break; } } POPSTACK; Release(p, nos); aStack[nos].r = b; aStack[nos].flags = STK_Real; } break; divide_by_zero: PopStack(p, 2); p->tos = nos; aStack[nos].flags = STK_Null; break; } /* ** Opcode: Precision * * * ** ** The top of stack is a floating-point number and the next on stack is ** an integer. Truncate the floating-point number to a number of digits ** specified by the integer and push the floating-point number back onto ** the stack. */ case OP_Precision: { int tos = p->tos; int nos = tos - 1; int nDigit; int len; double v; char *zNew; VERIFY( if( nos<0 ) goto not_enough_stack; ) Realify(p, tos); Integerify(p, nos); nDigit = aStack[nos].i; if( nDigit<0 ) nDigit = 0; if( nDigit>30 ) nDigit = 30; v = aStack[tos].r; zNew = sqlite_mprintf("%.*f", nDigit, v); if( zNew==0 ) goto no_mem; POPSTACK; Release(p, nos); aStack[nos].n = len = strlen(zNew) + 1; if( len<=NBFS ){ strcpy(aStack[nos].z, zNew); zStack[nos] = aStack[nos].z; aStack[nos].flags = STK_Str; sqliteFree(zNew); }else{ zStack[nos] = zNew; aStack[nos].flags = STK_Str | STK_Dyn; } break; } /* Opcode: Max * * * ** ** Pop the top two elements from the stack then push back the ** largest of the two. */ /* Opcode: Min * * * ** ** Pop the top two elements from the stack then push back the ** smaller of the two. */ case OP_Min: case OP_Max: { int tos = p->tos; int nos = tos - 1; int a,b; int ft, fn; int copy = 0; VERIFY( if( nos<0 ) goto not_enough_stack; ) ft = aStack[tos].flags; fn = aStack[nos].flags; if( pOp->opcode==OP_Max ){ a = tos; b = nos; }else{ a = nos; b = tos; } if( fn & STK_Null ){ copy = 1; }else if( ft & STK_Null ){ copy = 0; }else if( (ft & fn & STK_Int)==STK_Int ){ copy = aStack[a].i>aStack[b].i; }else if( ( (ft|fn) & (STK_Int|STK_Real) ) !=0 ){ Realify(p, tos); Realify(p, nos); copy = aStack[a].r>aStack[b].r; }else{ if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem; copy = sqliteCompare(zStack[a],zStack[b])>0; } if( copy ){ Release(p, nos); aStack[nos] = aStack[tos]; if( aStack[nos].flags & (STK_Dyn|STK_Static) ){ zStack[nos] = zStack[tos]; }else{ zStack[nos] = aStack[nos].z; } zStack[tos] = 0; aStack[tos].flags = 0; }else{ Release(p, tos); } p->tos = nos; break; } /* Opcode: BitAnd * * * ** ** Pop the top two elements from the stack. Convert both elements ** to integers. Push back onto the stack the bit-wise AND of the ** two elements. */ /* Opcode: BitOr * * * ** ** Pop the top two elements from the stack. Convert both elements ** to integers. Push back onto the stack the bit-wise OR of the ** two elements. */ /* Opcode: ShiftLeft * * * ** ** Pop the top two elements from the stack. Convert both elements ** to integers. Push back onto the stack the top element shifted ** left by N bits where N is the second element on the stack. */ /* Opcode: ShiftRight * * * ** ** Pop the top two elements from the stack. Convert both elements ** to integers. Push back onto the stack the top element shifted ** right by N bits where N is the second element on the stack. */ case OP_BitAnd: case OP_BitOr: case OP_ShiftLeft: case OP_ShiftRight: { int tos = p->tos; int nos = tos - 1; int a, b; VERIFY( if( nos<0 ) goto not_enough_stack; ) Integerify(p, tos); Integerify(p, nos); a = aStack[tos].i; b = aStack[nos].i; switch( pOp->opcode ){ case OP_BitAnd: a &= b; break; case OP_BitOr: a |= b; break; case OP_ShiftLeft: a <<= b; break; case OP_ShiftRight: a >>= b; break; default: /* CANT HAPPEN */ break; } POPSTACK; Release(p, nos); aStack[nos].i = a; aStack[nos].flags = STK_Int; break; } /* Opcode: AddImm P1 * * ** ** Add the value P1 to whatever is on top of the stack. The result ** is always an integer. ** ** To force the top of the stack to be an integer, just add 0. */ case OP_AddImm: { int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) Integerify(p, tos); aStack[tos].i += pOp->p1; break; } /* Opcode: MustBeInt * P2 * ** ** Force the top of the stack to be an integer. If the top of the ** stack is not an integer and cannot be comverted into an integer ** with out data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. */ case OP_MustBeInt: { int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( aStack[tos].flags & STK_Int ){ /* Do nothing */ }else if( aStack[tos].flags & STK_Real ){ int i = aStack[tos].r; double r = i; if( r!=aStack[tos].r ){ goto mismatch; } aStack[tos].i = i; }else if( aStack[tos].flags & STK_Str ){ if( !isInteger(zStack[tos]) ){ goto mismatch; } p->aStack[tos].i = atoi(p->zStack[tos]); }else{ goto mismatch; } Release(p, tos); p->aStack[tos].flags = STK_Int; break; mismatch: if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ pc = pOp->p2 - 1; } break; } /* Opcode: Eq * P2 * ** ** Pop the top two elements from the stack. If they are equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. */ /* Opcode: Ne * P2 * ** ** Pop the top two elements from the stack. If they are not equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. */ /* Opcode: Lt * P2 * ** ** Pop the top two elements from the stack. If second element (the ** next on stack) is less than the first (the top of stack), then ** jump to instruction P2. Otherwise, continue to the next instruction. ** In other words, jump if NOSTOS. */ /* Opcode: Ge * P2 * ** ** Pop the top two elements from the stack. If second element (the next ** on stack) is greater than or equal to the first (the top of stack), ** then jump to instruction P2. In other words, jump if NOS>=TOS. */ case OP_Eq: case OP_Ne: case OP_Lt: case OP_Le: case OP_Gt: case OP_Ge: { int tos = p->tos; int nos = tos - 1; int c; int ft, fn; VERIFY( if( nos<0 ) goto not_enough_stack; ) ft = aStack[tos].flags; fn = aStack[nos].flags; if( (ft & fn)==STK_Int ){ c = aStack[nos].i - aStack[tos].i; }else{ if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem; c = sqliteCompare(zStack[nos], zStack[tos]); } switch( pOp->opcode ){ case OP_Eq: c = c==0; break; case OP_Ne: c = c!=0; break; case OP_Lt: c = c<0; break; case OP_Le: c = c<=0; break; case OP_Gt: c = c>0; break; default: c = c>=0; break; } POPSTACK; POPSTACK; if( c ) pc = pOp->p2-1; break; } /* Opcode: Like P1 P2 * ** ** Pop the top two elements from the stack. The top-most is a ** "like" pattern -- the right operand of the SQL "LIKE" operator. ** The lower element is the string to compare against the like ** pattern. Jump to P2 if the two compare, and fall through without ** jumping if they do not. The '%' in the top-most element matches ** any sequence of zero or more characters in the lower element. The ** '_' character in the topmost matches any single character of the ** lower element. Case is ignored for this comparison. ** ** If P1 is not zero, the sense of the test is inverted and we ** have a "NOT LIKE" operator. The jump is made if the two values ** are different. */ case OP_Like: { int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem; c = sqliteLikeCompare((unsigned char*)zStack[tos], (unsigned char*)zStack[nos]); POPSTACK; POPSTACK; if( pOp->p1 ) c = !c; if( c ) pc = pOp->p2-1; break; } /* Opcode: Glob P1 P2 * ** ** Pop the top two elements from the stack. The top-most is a ** "glob" pattern. The lower element is the string to compare ** against the glob pattern. ** ** Jump to P2 if the two compare, and fall through without ** jumping if they do not. The '*' in the top-most element matches ** any sequence of zero or more characters in the lower element. The ** '?' character in the topmost matches any single character of the ** lower element. [...] matches a range of characters. [^...] ** matches any character not in the range. Case is significant ** for globs. ** ** If P1 is not zero, the sense of the test is inverted and we ** have a "NOT GLOB" operator. The jump is made if the two values ** are different. */ case OP_Glob: { int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem; c = sqliteGlobCompare((unsigned char*)zStack[tos], (unsigned char*)zStack[nos]); POPSTACK; POPSTACK; if( pOp->p1 ) c = !c; if( c ) pc = pOp->p2-1; break; } /* Opcode: And * * * ** ** Pop two values off the stack. Take the logical AND of the ** two values and push the resulting boolean value back onto the ** stack. */ /* Opcode: Or * * * ** ** Pop two values off the stack. Take the logical OR of the ** two values and push the resulting boolean value back onto the ** stack. */ case OP_And: case OP_Or: { int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) Integerify(p, tos); Integerify(p, nos); if( pOp->opcode==OP_And ){ c = aStack[tos].i && aStack[nos].i; }else{ c = aStack[tos].i || aStack[nos].i; } POPSTACK; Release(p, nos); aStack[nos].i = c; aStack[nos].flags = STK_Int; break; } /* Opcode: Negative * * * ** ** Treat the top of the stack as a numeric quantity. Replace it ** with its additive inverse. */ /* Opcode: AbsValue * * * ** ** Treat the top of the stack as a numeric quantity. Replace it ** with its absolute value. */ case OP_Negative: case OP_AbsValue: { int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( aStack[tos].flags & STK_Real ){ Release(p, tos); if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){ aStack[tos].r = -aStack[tos].r; } aStack[tos].flags = STK_Real; }else if( aStack[tos].flags & STK_Int ){ Release(p, tos); if( pOp->opcode==OP_Negative || aStack[tos].i<0 ){ aStack[tos].i = -aStack[tos].i; } aStack[tos].flags = STK_Int; }else{ Realify(p, tos); Release(p, tos); if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){ aStack[tos].r = -aStack[tos].r; } aStack[tos].flags = STK_Real; } break; } /* Opcode: Not * * * ** ** Interpret the top of the stack as a boolean value. Replace it ** with its complement. */ case OP_Not: { int tos = p->tos; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, tos); Release(p, tos); aStack[tos].i = !aStack[tos].i; aStack[tos].flags = STK_Int; break; } /* Opcode: BitNot * * * ** ** Interpret the top of the stack as an value. Replace it ** with its ones-complement. */ case OP_BitNot: { int tos = p->tos; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, tos); Release(p, tos); aStack[tos].i = ~aStack[tos].i; aStack[tos].flags = STK_Int; break; } /* Opcode: Noop * * * ** ** Do nothing. This instruction is often useful as a jump ** destination. */ case OP_Noop: { break; } /* Opcode: If * P2 * ** ** Pop a single boolean from the stack. If the boolean popped is ** true, then jump to p2. Otherwise continue to the next instruction. ** An integer is false if zero and true otherwise. A string is ** false if it has zero length and true otherwise. */ case OP_If: { int c; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, p->tos); c = aStack[p->tos].i; POPSTACK; if( c ) pc = pOp->p2-1; break; } /* Opcode: IsNull * P2 * ** ** Pop a single value from the stack. If the value popped is NULL ** then jump to p2. Otherwise continue to the next ** instruction. */ case OP_IsNull: { int c; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) c = (aStack[p->tos].flags & STK_Null)!=0; POPSTACK; if( c ) pc = pOp->p2-1; break; } /* Opcode: NotNull * P2 * ** ** Pop a single value from the stack. If the value popped is not an ** empty string, then jump to p2. Otherwise continue to the next ** instruction. */ case OP_NotNull: { int c; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) c = (aStack[p->tos].flags & STK_Null)==0; POPSTACK; if( c ) pc = pOp->p2-1; break; } /* Opcode: MakeRecord P1 * * ** ** Convert the top P1 entries of the stack into a single entry ** suitable for use as a data record in a database table. The ** details of the format are irrelavant as long as the OP_Column ** opcode can decode the record later. Refer to source code ** comments for the details of the record format. */ case OP_MakeRecord: { char *zNewRecord; int nByte; int nField; int i, j; int idxWidth; u32 addr; /* Assuming the record contains N fields, the record format looks ** like this: ** ** ------------------------------------------------------------------- ** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) | ** ------------------------------------------------------------------- ** ** All data fields are converted to strings before being stored and ** are stored with their null terminators. NULL entries omit the ** null terminator. Thus an empty string uses 1 byte and a NULL uses ** zero bytes. Data(0) is taken from the lowest element of the stack ** and data(N-1) is the top of the stack. ** ** Each of the idx() entries is either 1, 2, or 3 bytes depending on ** how big the total record is. Idx(0) contains the offset to the start ** of data(0). Idx(k) contains the offset to the start of data(k). ** Idx(N) contains the total number of bytes in the record. */ nField = pOp->p1; VERIFY( if( p->tos+1tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n; } } if( nByte + nField + 1 < 256 ){ idxWidth = 1; }else if( nByte + 2*nField + 2 < 65536 ){ idxWidth = 2; }else{ idxWidth = 3; } nByte += idxWidth*(nField + 1); if( nByte>MAX_BYTES_PER_ROW ){ rc = SQLITE_TOOBIG; goto abort_due_to_error; } zNewRecord = sqliteMalloc( nByte ); if( zNewRecord==0 ) goto no_mem; j = 0; addr = idxWidth*(nField+1); for(i=p->tos-nField+1; i<=p->tos; i++){ zNewRecord[j++] = addr & 0xff; if( idxWidth>1 ){ zNewRecord[j++] = (addr>>8)&0xff; if( idxWidth>2 ){ zNewRecord[j++] = (addr>>16)&0xff; } } if( (aStack[i].flags & STK_Null)==0 ){ addr += aStack[i].n; } } zNewRecord[j++] = addr & 0xff; if( idxWidth>1 ){ zNewRecord[j++] = (addr>>8)&0xff; if( idxWidth>2 ){ zNewRecord[j++] = (addr>>16)&0xff; } } for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ memcpy(&zNewRecord[j], zStack[i], aStack[i].n); j += aStack[i].n; } } PopStack(p, nField); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str | STK_Dyn; zStack[p->tos] = zNewRecord; break; } /* Opcode: MakeKey P1 P2 * ** ** Convert the top P1 entries of the stack into a single entry suitable ** for use as the key in an index. The top P1 records are ** converted to strings and merged. The null-terminators ** are retained and used as separators. ** The lowest entry in the stack is the first field and the top of the ** stack becomes the last. ** ** If P2 is not zero, then the original entries remain on the stack ** and the new key is pushed on top. If P2 is zero, the original ** data is popped off the stack first then the new key is pushed ** back in its place. ** ** See also: MakeIdxKey, SortMakeKey */ /* Opcode: MakeIdxKey P1 * * ** ** Convert the top P1 entries of the stack into a single entry suitable ** for use as the key in an index. In addition, take one additional integer ** off of the stack, treat that integer as a four-byte record number, and ** append the four bytes to the key. Thus a total of P1+1 entries are ** popped from the stack for this instruction and a single entry is pushed ** back. The first P1 entries that are popped are strings and the last ** entry (the lowest on the stack) is an integer record number. ** ** The converstion of the first P1 string entries occurs just like in ** MakeKey. Each entry is separated from the others by a null. ** The entire concatenation is null-terminated. The lowest entry ** in the stack is the first field and the top of the stack becomes the ** last. ** ** See also: MakeKey, SortMakeKey */ case OP_MakeIdxKey: case OP_MakeKey: { char *zNewKey; int nByte; int nField; int addRowid; int i, j; addRowid = pOp->opcode==OP_MakeIdxKey; nField = pOp->p1; VERIFY( if( p->tos+1+addRowidtos-nField+1; i<=p->tos; i++){ int flags = aStack[i].flags; int len; char *z; if( flags & STK_Null ){ nByte += 2; }else if( flags & STK_Real ){ z = aStack[i].z; sqliteRealToSortable(aStack[i].r, &z[1]); z[0] = 0; Release(p, i); len = strlen(&z[1]); zStack[i] = 0; aStack[i].flags = STK_Real; aStack[i].n = len+2; nByte += aStack[i].n; }else if( flags & STK_Int ){ z = aStack[i].z; aStack[i].r = aStack[i].i; sqliteRealToSortable(aStack[i].r, &z[1]); z[0] = 0; Release(p, i); len = strlen(&z[1]); zStack[i] = 0; aStack[i].flags = STK_Int; aStack[i].n = len+2; nByte += aStack[i].n; }else{ assert( flags & STK_Str ); if( isNumber(zStack[i]) ){ aStack[i].r = atof(zStack[i]); Release(p, i); z = aStack[i].z; sqliteRealToSortable(aStack[i].r, &z[1]); z[0] = 0; len = strlen(&z[1]); zStack[i] = 0; aStack[i].flags = STK_Real; aStack[i].n = len+2; } nByte += aStack[i].n; } } if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){ rc = SQLITE_TOOBIG; goto abort_due_to_error; } if( addRowid ) nByte += sizeof(u32); zNewKey = sqliteMalloc( nByte ); if( zNewKey==0 ) goto no_mem; j = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( aStack[i].flags & STK_Null ){ zNewKey[j++] = 0; zNewKey[j++] = 0; }else{ memcpy(&zNewKey[j], zStack[i] ? zStack[i] : aStack[i].z, aStack[i].n); j += aStack[i].n; } } if( addRowid ){ u32 iKey; Integerify(p, p->tos-nField); iKey = intToKey(aStack[p->tos-nField].i); memcpy(&zNewKey[j], &iKey, sizeof(u32)); } if( pOp->p2==0 ) PopStack(p, nField+addRowid); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str|STK_Dyn; zStack[p->tos] = zNewKey; break; } /* Opcode: IncrKey * * * ** ** The top of the stack should contain an index key generated by ** The MakeKey opcode. This routine increases the least significant ** byte of that key by one. This is used so that the MoveTo opcode ** will move to the first entry greater than the key rather than to ** the key itself. */ case OP_IncrKey: { int tos = p->tos; VERIFY( if( tos<0 ) goto bad_instruction ); if( Stringify(p, tos) ) goto no_mem; if( aStack[tos].flags & STK_Static ){ char *zNew = sqliteMalloc( aStack[tos].n ); memcpy(zNew, zStack[tos], aStack[tos].n); zStack[tos] = zNew; aStack[tos].flags = STK_Str | STK_Dyn; } zStack[tos][aStack[tos].n-1]++; break; } /* Opcode: Transaction * * * ** ** Begin a transaction. The transaction ends when a Commit or Rollback ** opcode is encountered or whenever there is an execution error that causes ** a script to abort. A transaction is not ended by a Halt. ** ** A write lock is obtained on the database file when a transaction is ** started. No other process can read or write the file while the ** transaction is underway. Starting a transaction also creates a ** rollback journal. ** A transaction must be started before any changes can be made to the ** database. */ case OP_Transaction: { int busy = 0; if( db->pBeTemp ){ rc = sqliteBtreeBeginTrans(db->pBeTemp); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } } do{ rc = sqliteBtreeBeginTrans(pBt); switch( rc ){ case SQLITE_BUSY: { if( xBusy==0 || (*xBusy)(pBusyArg, "", ++busy)==0 ){ sqliteSetString(pzErrMsg, sqlite_error_string(rc), 0); busy = 0; } break; } case SQLITE_OK: { busy = 0; break; } default: { goto abort_due_to_error; } } }while( busy ); break; } /* Opcode: Commit * * * ** ** Cause all modifications to the database that have been made since the ** last Transaction to actually take effect. No additional modifications ** are allowed until another transaction is started. The Commit instruction ** deletes the journal file and releases the write lock on the database. ** A read lock continues to be held if there are still cursors open. */ case OP_Commit: { if( db->pBeTemp==0 || (rc = sqliteBtreeCommit(db->pBeTemp))==SQLITE_OK ){ rc = sqliteBtreeCommit(pBt); } if( rc==SQLITE_OK ){ sqliteCommitInternalChanges(db); }else{ sqliteRollbackInternalChanges(db); } break; } /* Opcode: Rollback * * * ** ** Cause all modifications to the database that have been made since the ** last Transaction to be undone. The database is restored to its state ** before the Transaction opcode was executed. No additional modifications ** are allowed until another transaction is started. ** ** This instruction automatically closes all cursors and releases both ** the read and write locks on the database. */ case OP_Rollback: { if( db->pBeTemp ){ sqliteBtreeRollback(db->pBeTemp); } rc = sqliteBtreeRollback(pBt); sqliteRollbackInternalChanges(db); break; } /* Opcode: ReadCookie * P2 * ** ** When P2==0, ** read the schema cookie from the database file and push it onto the ** stack. The schema cookie is an integer that is used like a version ** number for the database schema. Everytime the schema changes, the ** cookie changes to a new random value. This opcode is used during ** initialization to read the initial cookie value so that subsequent ** database accesses can verify that the cookie has not changed. ** ** If P2>0, then read global database parameter number P2. There is ** a small fixed number of global database parameters. P2==1 is the ** database version number. Other parameters are currently unused. ** ** There must be a read-lock on the database (either a transaction ** must be started or there must be an open cursor) before ** executing this instruction. */ case OP_ReadCookie: { int i = ++p->tos; int aMeta[SQLITE_N_BTREE_META]; assert( pOp->p2tos) ) goto no_mem; ) rc = sqliteBtreeGetMeta(pBt, aMeta); aStack[i].i = aMeta[1+pOp->p2]; aStack[i].flags = STK_Int; break; } /* Opcode: SetCookie P1 P2 * ** ** When P2==0, ** this operation changes the value of the schema cookie on the database. ** The new value is P1. When P2>0, the value of global database parameter ** number P2 is changed. See ReadCookie for more information about ** global database parametes. ** ** The schema cookie changes its value whenever the database schema changes. ** That way, other processes can recognize when the schema has changed ** and reread it. ** ** A transaction must be started before executing this opcode. */ case OP_SetCookie: { int aMeta[SQLITE_N_BTREE_META]; assert( pOp->p2p2] = pOp->p1; rc = sqliteBtreeUpdateMeta(pBt, aMeta); } break; } /* Opcode: VerifyCookie P1 P2 * ** ** Check the value of global database parameter number P2 and make ** sure it is equal to P1. P2==0 is the schema cookie. P1==1 is ** the database version. If the values do not match, abort with ** an SQLITE_SCHEMA error. ** ** The cookie changes its value whenever the database schema changes. ** This operation is used to detect when that the cookie has changed ** and that the current process needs to reread the schema. ** ** Either a transaction needs to have been started or an OP_Open needs ** to be executed (to establish a read lock) before this opcode is ** invoked. */ case OP_VerifyCookie: { int aMeta[SQLITE_N_BTREE_META]; assert( pOp->p2p2]!=pOp->p1 ){ sqliteSetString(pzErrMsg, "database schema has changed", 0); rc = SQLITE_SCHEMA; } break; } /* Opcode: Open P1 P2 P3 ** ** Open a read-only cursor for the database table whose root page is ** P2 in the main database file. Give the new cursor an identifier ** of P1. The P1 values need not be contiguous but all P1 values ** should be small integers. It is an error for P1 to be negative. ** ** If P2==0 then take the root page number from the top of the stack. ** ** There will be a read lock on the database whenever there is an ** open cursor. If the database was unlocked prior to this instruction ** then a read lock is acquired as part of this instruction. A read ** lock allows other processes to read the database but prohibits ** any other process from modifying the database. The read lock is ** released when all cursors are closed. If this instruction attempts ** to get a read lock but fails, the script terminates with an ** SQLITE_BUSY error code. ** ** The P3 value is the name of the table or index being opened. ** The P3 value is not actually used by this opcode and may be ** omitted. But the code generator usually inserts the index or ** table name into P3 to make the code easier to read. ** ** See also OpenAux and OpenWrite. */ /* Opcode: OpenAux P1 P2 P3 ** ** Open a read-only cursor in the auxiliary table set. This opcode ** works exactly like OP_Open except that it opens the cursor on the ** auxiliary table set (the file used to store tables created using ** CREATE TEMPORARY TABLE) instead of in the main database file. ** See OP_Open for additional information. */ /* Opcode: OpenWrite P1 P2 P3 ** ** Open a read/write cursor named P1 on the table or index whose root ** page is P2. If P2==0 then take the root page number from the stack. ** ** This instruction works just like Open except that it opens the cursor ** in read/write mode. For a given table, there can be one or more read-only ** cursors or a single read/write cursor but not both. ** ** See also OpWrAux. */ /* Opcode: OpenWrAux P1 P2 P3 ** ** Open a read/write cursor in the auxiliary table set. This opcode works ** just like OpenWrite except that the auxiliary table set (the file used ** to store tables created using CREATE TEMPORARY TABLE) is used in place ** of the main database file. */ case OP_OpenAux: case OP_OpenWrAux: case OP_OpenWrite: case OP_Open: { int busy = 0; int i = pOp->p1; int tos = p->tos; int p2 = pOp->p2; int wrFlag; Btree *pX; switch( pOp->opcode ){ case OP_Open: wrFlag = 0; pX = pBt; break; case OP_OpenWrite: wrFlag = 1; pX = pBt; break; case OP_OpenAux: wrFlag = 0; pX = db->pBeTemp; break; case OP_OpenWrAux: wrFlag = 1; pX = db->pBeTemp; break; } assert( pX!=0 ); if( p2<=0 ){ if( tos<0 ) goto not_enough_stack; Integerify(p, tos); p2 = p->aStack[tos].i; POPSTACK; if( p2<2 ){ sqliteSetString(pzErrMsg, "root page number less than 2", 0); rc = SQLITE_INTERNAL; goto cleanup; } } VERIFY( if( i<0 ) goto bad_instruction; ) if( i>=p->nCursor ){ int j; Cursor *aCsr = sqliteRealloc( p->aCsr, (i+1)*sizeof(Cursor) ); if( aCsr==0 ) goto no_mem; p->aCsr = aCsr; for(j=p->nCursor; j<=i; j++){ memset(&p->aCsr[j], 0, sizeof(Cursor)); } p->nCursor = i+1; } cleanupCursor(&p->aCsr[i]); memset(&p->aCsr[i], 0, sizeof(Cursor)); do{ rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor); switch( rc ){ case SQLITE_BUSY: { if( xBusy==0 || (*xBusy)(pBusyArg, pOp->p3, ++busy)==0 ){ sqliteSetString(pzErrMsg, sqlite_error_string(rc), 0); busy = 0; } break; } case SQLITE_OK: { busy = 0; break; } default: { goto abort_due_to_error; } } }while( busy ); break; } /* Opcode: OpenTemp P1 P2 * ** ** Open a new cursor that points to a table or index in a temporary ** database file. The temporary file is opened read/write even if ** the main database is read-only. The temporary file is deleted ** when the cursor is closed. ** ** The cursor points to a BTree table if P2==0 and to a BTree index ** if P2==1. A BTree table must have an integer key and can have arbitrary ** data. A BTree index has no data but can have an arbitrary key. ** ** This opcode is used for tables that exist for the duration of a single ** SQL statement only. Tables created using CREATE TEMPORARY TABLE ** are opened using OP_OpenAux or OP_OpenWrAux. "Temporary" in the ** context of this opcode means for the duration of a single SQL statement ** whereas "Temporary" in the context of CREATE TABLE means for the duration ** of the connection to the database. Same word; different meanings. */ case OP_OpenTemp: { int i = pOp->p1; Cursor *pCx; VERIFY( if( i<0 ) goto bad_instruction; ) if( i>=p->nCursor ){ int j; Cursor *aCsr = sqliteRealloc( p->aCsr, (i+1)*sizeof(Cursor) ); if( aCsr==0 ){ goto no_mem; } p->aCsr = aCsr; for(j=p->nCursor; j<=i; j++){ memset(&p->aCsr[j], 0, sizeof(Cursor)); } p->nCursor = i+1; } pCx = &p->aCsr[i]; cleanupCursor(pCx); memset(pCx, 0, sizeof(*pCx)); rc = sqliteBtreeOpen(0, 0, TEMP_PAGES, &pCx->pBt); if( rc==SQLITE_OK ){ rc = sqliteBtreeBeginTrans(pCx->pBt); } if( rc==SQLITE_OK ){ if( pOp->p2 ){ int pgno; rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno); if( rc==SQLITE_OK ){ rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor); } }else{ rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor); } } break; } /* Opcode: Close P1 * * ** ** Close a cursor previously opened as P1. If P1 is not ** currently open, this instruction is a no-op. */ case OP_Close: { int i = pOp->p1; if( i>=0 && inCursor && p->aCsr[i].pCursor ){ cleanupCursor(&p->aCsr[i]); } break; } /* Opcode: MoveTo P1 P2 * ** ** Pop the top of the stack and use its value as a key. Reposition ** cursor P1 so that it points to an entry with a matching key. If ** the table contains no record with a matching key, then the cursor ** is left pointing at the first record that is greater than the key. ** If there are no records greater than the key and P2 is not zero, ** then an immediate jump to P2 is made. ** ** See also: Found, NotFound, Distinct */ case OP_MoveTo: { int i = pOp->p1; int tos = p->tos; Cursor *pC; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( i>=0 && inCursor && (pC = &p->aCsr[i])->pCursor!=0 ){ int res; if( aStack[tos].flags & STK_Int ){ int iKey = intToKey(aStack[tos].i); sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res); pC->lastRecno = aStack[tos].i; pC->recnoIsValid = res==0; }else{ if( Stringify(p, tos) ) goto no_mem; sqliteBtreeMoveto(pC->pCursor, zStack[tos], aStack[tos].n, &res); pC->recnoIsValid = 0; } sqlite_search_count++; if( res<0 ){ sqliteBtreeNext(pC->pCursor, &res); pC->recnoIsValid = 0; if( res && pOp->p2>0 ){ pc = pOp->p2 - 1; } } } POPSTACK; break; } /* Opcode: Distinct P1 P2 * ** ** Use the top of the stack as a key. If a record with that key does ** not exist in the table of cursor P1, then jump to P2. If the record ** does already exist, then fall thru. The cursor is left pointing ** at the record if it exists. The key is not popped from the stack. ** ** This operation is similar to NotFound except that this operation ** does not pop the key from the stack. ** ** See also: Found, NotFound, MoveTo */ /* Opcode: Found P1 P2 * ** ** Use the top of the stack as a key. If a record with that key ** does exist in table of P1, then jump to P2. If the record ** does not exist, then fall thru. The cursor is left pointing ** to the record if it exists. The key is popped from the stack. ** ** See also: Distinct, NotFound, MoveTo */ /* Opcode: NotFound P1 P2 * ** ** Use the top of the stack as a key. If a record with that key ** does not exist in table of P1, then jump to P2. If the record ** does exist, then fall thru. The cursor is left pointing to the ** record if it exists. The key is popped from the stack. ** ** The difference between this operation and Distinct is that ** Distinct does not pop the key from the stack. ** ** See also: Distinct, Found, MoveTo */ case OP_Distinct: case OP_NotFound: case OP_Found: { int i = pOp->p1; int tos = p->tos; int alreadyExists = 0; Cursor *pC; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && inCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){ int res, rx; if( aStack[tos].flags & STK_Int ){ int iKey = intToKey(aStack[tos].i); rx = sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res); }else{ if( Stringify(p, tos) ) goto no_mem; rx = sqliteBtreeMoveto(pC->pCursor, zStack[tos], aStack[tos].n, &res); } alreadyExists = rx==SQLITE_OK && res==0; } if( pOp->opcode==OP_Found ){ if( alreadyExists ) pc = pOp->p2 - 1; }else{ if( !alreadyExists ) pc = pOp->p2 - 1; } if( pOp->opcode!=OP_Distinct ){ POPSTACK; } break; } /* Opcode: NewRecno P1 * * ** ** Get a new integer record number used as the key to a table. ** The record number is not previously used as a key in the database ** table that cursor P1 points to. The new record number is pushed ** onto the stack. */ case OP_NewRecno: { int i = pOp->p1; int v = 0; Cursor *pC; if( VERIFY( i<0 || i>=p->nCursor || ) (pC = &p->aCsr[i])->pCursor==0 ){ v = 0; }else{ /* A probablistic algorithm is used to locate an unused rowid. ** We select a rowid at random and see if it exists in the table. ** If it does not exist, we have succeeded. If the random rowid ** does exist, we select a new one and try again, up to 1000 times. ** ** For a table with less than 2 billion entries, the probability ** of not finding a unused rowid is about 1.0e-300. This is a ** non-zero probability, but it is still vanishingly small and should ** never cause a problem. You are much, much more likely to have a ** hardware failure than for this algorithm to fail. ** ** To promote locality of reference for repetitive inserts, the ** first few attempts at chosing a rowid pick values just a little ** larger than the previous rowid. This has been shown experimentally ** to double the speed of the COPY operation. */ int res, rx, cnt, x; cnt = 0; v = db->nextRowid; do{ if( cnt>5 ){ v = sqliteRandomInteger(); }else{ v += sqliteRandomByte() + 1; } if( v==0 ) continue; x = intToKey(v); rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res); cnt++; }while( cnt<1000 && rx==SQLITE_OK && res==0 ); db->nextRowid = v; if( rx==SQLITE_OK && res==0 ){ rc = SQLITE_FULL; goto abort_due_to_error; } } VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].i = v; aStack[p->tos].flags = STK_Int; break; } /* Opcode: Put P1 P2 * ** ** Write an entry into the database file P1. A new entry is ** created if it doesn't already exist or the data for an existing ** entry is overwritten. The data is the value on the top of the ** stack. The key is the next value down on the stack. The stack ** is popped twice by this instruction. ** ** If P2==1 then overwriting is prohibited. If a prior entry with ** the same key exists, an SQLITE_CONSTRAINT exception is raised. */ case OP_Put: { int tos = p->tos; int nos = p->tos-1; int i = pOp->p1; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && inCursor && ) p->aCsr[i].pCursor!=0 ){ char *zKey; int nKey, iKey; if( (aStack[nos].flags & STK_Int)==0 ){ if( Stringify(p, nos) ) goto no_mem; nKey = aStack[nos].n; zKey = zStack[nos]; }else{ nKey = sizeof(int); iKey = intToKey(aStack[nos].i); zKey = (char*)&iKey; } if( pOp->p2 ){ int res; rc = sqliteBtreeMoveto(p->aCsr[i].pCursor, zKey, nKey, &res); if( res==0 && rc==SQLITE_OK ){ rc = SQLITE_CONSTRAINT; } if( rc!=SQLITE_OK ){ goto abort_due_to_error; } } rc = sqliteBtreeInsert(p->aCsr[i].pCursor, zKey, nKey, zStack[tos], aStack[tos].n); } POPSTACK; POPSTACK; break; } /* Opcode: Delete P1 * * ** ** Delete the record at which the P1 cursor is currently pointing. ** ** The cursor will be left pointing at either the next or the previous ** record in the table. If it is left pointing at the next record, then ** the next Next instruction will be a no-op. Hence it is OK to delete ** a record from within an Next loop. */ case OP_Delete: { int i = pOp->p1; if( VERIFY( i>=0 && inCursor && ) p->aCsr[i].pCursor!=0 ){ rc = sqliteBtreeDelete(p->aCsr[i].pCursor); } break; } /* Opcode: KeyAsData P1 P2 * ** ** Turn the key-as-data mode for cursor P1 either on (if P2==1) or ** off (if P2==0). In key-as-data mode, the Field opcode pulls ** data off of the key rather than the data. This is useful for ** processing compound selects. */ case OP_KeyAsData: { int i = pOp->p1; if( VERIFY( i>=0 && inCursor && ) p->aCsr[i].pCursor!=0 ){ p->aCsr[i].keyAsData = pOp->p2; } break; } /* Opcode: Column P1 P2 * ** ** Interpret the data that cursor P1 points to as ** a structure built using the MakeRecord instruction. ** (See the MakeRecord opcode for additional information about ** the format of the data.) ** Push onto the stack the value of the P2-th column contained ** in the data. ** ** If the KeyAsData opcode has previously executed on this cursor, ** then the field might be extracted from the key rather than the ** data. */ case OP_Column: { int amt, offset, end, payloadSize; int i = pOp->p1; int p2 = pOp->p2; int tos = p->tos+1; Cursor *pC; BtCursor *pCrsr; int idxWidth; unsigned char aHdr[10]; int (*xRead)(BtCursor*, int, int, char*); VERIFY( if( NeedStack(p, tos+1) ) goto no_mem; ) if( VERIFY( i>=0 && inCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){ /* Use different access functions depending on whether the information ** is coming from the key or the data of the record. */ pCrsr = pC->pCursor; if( pC->keyAsData ){ sqliteBtreeKeySize(pCrsr, &payloadSize); xRead = sqliteBtreeKey; }else{ sqliteBtreeDataSize(pCrsr, &payloadSize); xRead = sqliteBtreeData; } /* Figure out how many bytes in the column data and where the column ** data begins. */ if( payloadSize<256 ){ idxWidth = 1; }else if( payloadSize<65536 ){ idxWidth = 2; }else{ idxWidth = 3; } /* Figure out where the requested column is stored and how big it is. */ if( payloadSize < idxWidth*(p2+1) ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } (*xRead)(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr); offset = aHdr[0]; end = aHdr[idxWidth]; if( idxWidth>1 ){ offset |= aHdr[1]<<8; end |= aHdr[idxWidth+1]<<8; if( idxWidth>2 ){ offset |= aHdr[2]<<16; end |= aHdr[idxWidth+2]<<16; } } amt = end - offset; if( amt<0 || offset<0 || end>payloadSize ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } /* amt and offset now hold the offset to the start of data and the ** amount of data. Go get the data and put it on the stack. */ if( amt==0 ){ aStack[tos].flags = STK_Null; }else if( amt<=NBFS ){ (*xRead)(pCrsr, offset, amt, aStack[tos].z); aStack[tos].flags = STK_Str; zStack[tos] = aStack[tos].z; aStack[tos].n = amt; }else{ char *z = sqliteMalloc( amt ); if( z==0 ) goto no_mem; (*xRead)(pCrsr, offset, amt, z); aStack[tos].flags = STK_Str | STK_Dyn; zStack[tos] = z; aStack[tos].n = amt; } p->tos = tos; } break; } /* Opcode: Recno P1 * * ** ** Push onto the stack an integer which is the first 4 bytes of the ** the key to the current entry in a sequential scan of the database ** file P1. The sequential scan should have been started using the ** Next opcode. */ case OP_Recno: { int i = pOp->p1; int tos = ++p->tos; BtCursor *pCrsr; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int v; if( p->aCsr[i].recnoIsValid ){ v = p->aCsr[i].lastRecno; }else{ sqliteBtreeKey(pCrsr, 0, sizeof(u32), (char*)&v); v = keyToInt(v); } aStack[tos].i = v; aStack[tos].flags = STK_Int; } break; } /* Opcode: FullKey P1 * * ** ** Extract the complete key from the record that cursor P1 is currently ** pointing to and push the key onto the stack as a string. ** ** Compare this opcode to Recno. The Recno opcode extracts the first ** 4 bytes of the key and pushes those bytes onto the stack as an ** integer. This instruction pushes the entire key as a string. */ case OP_FullKey: { int i = pOp->p1; int tos = ++p->tos; BtCursor *pCrsr; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) VERIFY( if( !p->aCsr[i].keyAsData ) goto bad_instruction; ) if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int amt; char *z; sqliteBtreeKeySize(pCrsr, &amt); if( amt<=0 ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } if( amt>NBFS ){ z = sqliteMalloc( amt ); aStack[tos].flags = STK_Str | STK_Dyn; }else{ z = aStack[tos].z; aStack[tos].flags = STK_Str; } sqliteBtreeKey(pCrsr, 0, amt, z); zStack[tos] = z; aStack[tos].n = amt; } break; } /* Opcode: Rewind P1 P2 * ** ** The next use of the Recno or Column or Next instruction for P1 ** will refer to the first entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. */ case OP_Rewind: { int i = pOp->p1; BtCursor *pCrsr; if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res; sqliteBtreeFirst(pCrsr, &res); p->aCsr[i].atFirst = res==0; if( res && pOp->p2>0 ){ pc = pOp->p2 - 1; } } break; } /* Opcode: Next P1 P2 * ** ** Advance cursor P1 so that it points to the next key/data pair in its ** table or index. If there are no more key/value pairs then fall through ** to the following instruction. But if the cursor advance was successful, ** jump immediately to P2. */ case OP_Next: { int i = pOp->p1; BtCursor *pCrsr; if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res; rc = sqliteBtreeNext(pCrsr, &res); if( res==0 ){ pc = pOp->p2 - 1; sqlite_search_count++; } p->aCsr[i].recnoIsValid = 0; } break; } /* Opcode: IdxPut P1 P2 P3 ** ** The top of the stack hold an SQL index key made using the ** MakeIdxKey instruction. This opcode writes that key into the ** index P1. Data for the entry is nil. ** ** If P2==1, then the key must be unique. If the key is not unique, ** the program aborts with a SQLITE_CONSTRAINT error and the database ** is rolled back. If P3 is not null, then it because part of the ** error message returned with the SQLITE_CONSTRAINT. */ case OP_IdxPut: { int i = pOp->p1; int tos = p->tos; BtCursor *pCrsr; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int nKey = aStack[tos].n; const char *zKey = zStack[tos]; if( pOp->p2 ){ int res, n; assert( aStack[tos].n >= 4 ); rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; while( res!=0 ){ int c; sqliteBtreeKeySize(pCrsr, &n); if( n==nKey && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK && c==0 ){ rc = SQLITE_CONSTRAINT; if( pOp->p3 && pOp->p3[0] ){ sqliteSetString(pzErrMsg, "duplicate index entry: ", pOp->p3,0); } goto abort_due_to_error; } if( res<0 ){ sqliteBtreeNext(pCrsr, &res); res = +1; }else{ break; } } } rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0); } POPSTACK; break; } /* Opcode: IdxDelete P1 * * ** ** The top of the stack is an index key built using the MakeIdxKey opcode. ** This opcode removes that entry from the index. */ case OP_IdxDelete: { int i = pOp->p1; int tos = p->tos; BtCursor *pCrsr; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int rx, res; rx = sqliteBtreeMoveto(pCrsr, zStack[tos], aStack[tos].n, &res); if( rx==SQLITE_OK && res==0 ){ rc = sqliteBtreeDelete(pCrsr); } } POPSTACK; break; } /* Opcode: IdxRecno P1 * * ** ** Push onto the stack an integer which is the last 4 bytes of the ** the key to the current entry in index P1. These 4 bytes should ** be the record number of the table entry to which this index entry ** points. ** ** See also: Recno, MakeIdxKey. */ case OP_IdxRecno: { int i = pOp->p1; int tos = ++p->tos; BtCursor *pCrsr; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int v; int sz; sqliteBtreeKeySize(pCrsr, &sz); sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v); v = keyToInt(v); aStack[tos].i = v; aStack[tos].flags = STK_Int; } break; } /* Opcode: IdxGT P1 P2 * ** ** Compare the top of the stack against the key on the index entry that ** cursor P1 is currently pointing to. Ignore the last 4 bytes of the ** index entry. If the index entry is greater than the top of the stack ** then jump to P2. Otherwise fall through to the next instruction. ** In either case, the stack is popped once. */ /* Opcode: IdxGE P1 P2 * ** ** Compare the top of the stack against the key on the index entry that ** cursor P1 is currently pointing to. Ignore the last 4 bytes of the ** index entry. If the index entry is greater than or equal to ** the top of the stack ** then jump to P2. Otherwise fall through to the next instruction. ** In either case, the stack is popped once. */ case OP_IdxGT: case OP_IdxGE: { int i= pOp->p1; int tos = p->tos; BtCursor *pCrsr; if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res, rc; if( Stringify(p, tos) ) goto no_mem; rc = sqliteBtreeKeyCompare(pCrsr, zStack[tos], aStack[tos].n, 4, &res); if( rc!=SQLITE_OK ){ break; } if( pOp->opcode==OP_IdxGE ){ res++; } if( res>0 ){ pc = pOp->p2 - 1 ; } } POPSTACK; break; } /* Opcode: Destroy P1 P2 * ** ** Delete an entire database table or index whose root page in the database ** file is given by P1. ** ** The table being destroyed is in the main database file if P2==0. If ** P2==1 then the table to be clear is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** See also: Clear */ case OP_Destroy: { sqliteBtreeDropTable(pOp->p2 ? db->pBeTemp : pBt, pOp->p1); break; } /* Opcode: Clear P1 P2 * ** ** Delete all contents of the database table or index whose root page ** in the database file is given by P1. But, unlike Destroy, do not ** remove the table or index from the database file. ** ** The table being clear is in the main database file if P2==0. If ** P2==1 then the table to be clear is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** See also: Destroy */ case OP_Clear: { sqliteBtreeClearTable(pOp->p2 ? db->pBeTemp : pBt, pOp->p1); break; } /* Opcode: CreateTable * P2 P3 ** ** Allocate a new table in the main database file if P2==0 or in the ** auxiliary database file if P2==1. Push the page number ** for the root page of the new table onto the stack. ** ** The root page number is also written to a memory location that P3 ** points to. This is the mechanism is used to write the root page ** number into the parser's internal data structures that describe the ** new table. ** ** The difference between a table and an index is this: A table must ** have a 4-byte integer key and can have arbitrary data. An index ** has an arbitrary key but no data. ** ** See also: CreateIndex */ /* Opcode: CreateIndex * P2 P3 ** ** Allocate a new index in the main database file if P2==0 or in the ** auxiliary database file if P2==1. Push the page number of the ** root page of the new index onto the stack. ** ** See documentation on OP_CreateTable for additional information. */ case OP_CreateIndex: case OP_CreateTable: { int i = ++p->tos; int pgno; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) assert( pOp->p3!=0 && pOp->p3type==P3_POINTER ); if( pOp->opcode==OP_CreateTable ){ rc = sqliteBtreeCreateTable(pOp->p2 ? db->pBeTemp : pBt, &pgno); }else{ rc = sqliteBtreeCreateIndex(pOp->p2 ? db->pBeTemp : pBt, &pgno); } if( rc==SQLITE_OK ){ aStack[i].i = pgno; aStack[i].flags = STK_Int; *(u32*)pOp->p3 = pgno; pOp->p3 = 0; } break; } /* Opcode: Reorganize P1 * * ** ** Compress, optimize, and tidy up table or index whose root page in the ** database file is P1. ** ** In the current implementation, this is a no-op. */ case OP_Reorganize: { /* This is currently a no-op */ break; } /* Opcode: Limit P1 P2 * ** ** Set a limit and offset on callbacks. P1 is the limit and P2 is ** the offset. If the offset counter is positive, no callbacks are ** invoked but instead the counter is decremented. Once the offset ** counter reaches zero, callbacks are invoked and the limit ** counter is decremented. When the limit counter reaches zero, ** the OP_Callback or OP_SortCallback instruction executes a jump ** that should end the query. ** ** This opcode is used to implement the "LIMIT x OFFSET y" clause ** of a SELECT statement. */ case OP_Limit: { p->iLimit = pOp->p1; p->iOffset = pOp->p2; break; } /* Opcode: ListWrite * * * ** ** Write the integer on the top of the stack ** into the temporary storage list. */ case OP_ListWrite: { Keylist *pKeylist; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) pKeylist = p->pList; if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){ pKeylist = sqliteMalloc( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) ); if( pKeylist==0 ) goto no_mem; pKeylist->nKey = 1000; pKeylist->nRead = 0; pKeylist->nUsed = 0; pKeylist->pNext = p->pList; p->pList = pKeylist; } Integerify(p, p->tos); pKeylist->aKey[pKeylist->nUsed++] = aStack[p->tos].i; POPSTACK; break; } /* Opcode: ListRewind * * * ** ** Rewind the temporary buffer back to the beginning. */ case OP_ListRewind: { /* This is now a no-op */ break; } /* Opcode: ListRead * P2 * ** ** Attempt to read an integer from the temporary storage buffer ** and push it onto the stack. If the storage buffer is empty, ** push nothing but instead jump to P2. */ case OP_ListRead: { Keylist *pKeylist; pKeylist = p->pList; if( pKeylist!=0 ){ VERIFY( if( pKeylist->nRead<0 || pKeylist->nRead>=pKeylist->nUsed || pKeylist->nRead>=pKeylist->nKey ) goto bad_instruction; ) p->tos++; if( NeedStack(p, p->tos) ) goto no_mem; aStack[p->tos].i = pKeylist->aKey[pKeylist->nRead++]; aStack[p->tos].flags = STK_Int; zStack[p->tos] = 0; if( pKeylist->nRead>=pKeylist->nUsed ){ p->pList = pKeylist->pNext; sqliteFree(pKeylist); } }else{ pc = pOp->p2 - 1; } break; } /* Opcode: ListReset * * * ** ** Reset the temporary storage buffer so that it holds nothing. */ case OP_ListReset: { if( p->pList ){ KeylistFree(p->pList); p->pList = 0; } break; } /* Opcode: SortPut * * * ** ** The TOS is the key and the NOS is the data. Pop both from the stack ** and put them on the sorter. The key and data should have been ** made using SortMakeKey and SortMakeRec, respectively. */ case OP_SortPut: { int tos = p->tos; int nos = tos - 1; Sorter *pSorter; VERIFY( if( tos<1 ) goto not_enough_stack; ) if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem; pSorter = sqliteMalloc( sizeof(Sorter) ); if( pSorter==0 ) goto no_mem; pSorter->pNext = p->pSort; p->pSort = pSorter; assert( aStack[tos].flags & STK_Dyn ); assert( aStack[nos].flags & STK_Dyn ); pSorter->nKey = aStack[tos].n; pSorter->zKey = zStack[tos]; pSorter->nData = aStack[nos].n; pSorter->pData = zStack[nos]; aStack[tos].flags = 0; aStack[nos].flags = 0; zStack[tos] = 0; zStack[nos] = 0; p->tos -= 2; break; } /* Opcode: SortMakeRec P1 * * ** ** The top P1 elements are the arguments to a callback. Form these ** elements into a single data entry that can be stored on a sorter ** using SortPut and later fed to a callback using SortCallback. */ case OP_SortMakeRec: { char *z; char **azArg; int nByte; int nField; int i, j; nField = pOp->p1; VERIFY( if( p->tos+1tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n; } } nByte += sizeof(char*)*(nField+1); azArg = sqliteMalloc( nByte ); if( azArg==0 ) goto no_mem; z = (char*)&azArg[nField+1]; for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){ if( aStack[i].flags & STK_Null ){ azArg[j] = 0; }else{ azArg[j] = z; strcpy(z, zStack[i]); z += aStack[i].n; } } PopStack(p, nField); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; zStack[p->tos] = (char*)azArg; aStack[p->tos].flags = STK_Str|STK_Dyn; break; } /* Opcode: SortMakeKey * * P3 ** ** Convert the top few entries of the stack into a sort key. The ** number of stack entries consumed is the number of characters in ** the string P3. One character from P3 is prepended to each entry. ** The first character of P3 is prepended to the element lowest in ** the stack and the last character of P3 is appended to the top of ** the stack. All stack entries are separated by a \000 character ** in the result. The whole key is terminated by two \000 characters ** in a row. ** ** See also the MakeKey and MakeIdxKey opcodes. */ case OP_SortMakeKey: { char *zNewKey; int nByte; int nField; int i, j, k; nField = strlen(pOp->p3); VERIFY( if( p->tos+1tos-nField+1; i<=p->tos; i++){ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n+2; } zNewKey = sqliteMalloc( nByte ); if( zNewKey==0 ) goto no_mem; j = 0; k = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ zNewKey[j++] = pOp->p3[k++]; memcpy(&zNewKey[j], zStack[i], aStack[i].n-1); j += aStack[i].n-1; zNewKey[j++] = 0; } zNewKey[j] = 0; assert( jtos+1); ) p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str|STK_Dyn; zStack[p->tos] = zNewKey; break; } /* Opcode: Sort * * * ** ** Sort all elements on the sorter. The algorithm is a ** mergesort. */ case OP_Sort: { int i; Sorter *pElem; Sorter *apSorter[NSORT]; for(i=0; ipSort ){ pElem = p->pSort; p->pSort = pElem->pNext; pElem->pNext = 0; for(i=0; i=NSORT-1 ){ apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem); } } pElem = 0; for(i=0; ipSort = pElem; break; } /* Opcode: SortNext * P2 * ** ** Push the data for the topmost element in the sorter onto the ** stack, then remove the element from the sorter. If the sorter ** is empty, push nothing on the stack and instead jump immediately ** to instruction P2. */ case OP_SortNext: { Sorter *pSorter = p->pSort; if( pSorter!=0 ){ p->pSort = pSorter->pNext; p->tos++; VERIFY( NeedStack(p, p->tos); ) zStack[p->tos] = pSorter->pData; aStack[p->tos].n = pSorter->nData; aStack[p->tos].flags = STK_Str|STK_Dyn; sqliteFree(pSorter->zKey); sqliteFree(pSorter); }else{ pc = pOp->p2 - 1; } break; } /* Opcode: SortCallback P1 P2 * ** ** The top of the stack contains a callback record built using ** the SortMakeRec operation with the same P1 value as this ** instruction. Pop this record from the stack and invoke the ** callback on it. ** ** If the offset counter (set by the OP_Limit opcode) is positive, ** then decrement the counter and do not invoke the callback. ** ** If the callback is invoked, then after the callback returns ** decrement the limit counter. When the limit counter reaches ** zero, jump to address P2. */ case OP_SortCallback: { int i = p->tos; VERIFY( if( i<0 ) goto not_enough_stack; ) if( xCallback!=0 ){ if( p->iOffset>0 ){ p->iOffset--; }else{ if( xCallback(pArg, pOp->p1, (char**)zStack[i], p->azColName)!=0 ){ rc = SQLITE_ABORT; } p->nCallback++; if( p->iLimit>0 ){ p->iLimit--; if( p->iLimit==0 ){ pc = pOp->p2 - 1; } } } p->nCallback++; } POPSTACK; if( sqlite_malloc_failed ) goto no_mem; break; } /* Opcode: SortReset * * * ** ** Remove any elements that remain on the sorter. */ case OP_SortReset: { SorterReset(p); break; } /* Opcode: FileOpen * * P3 ** ** Open the file named by P3 for reading using the FileRead opcode. ** If P3 is "stdin" then open standard input for reading. */ case OP_FileOpen: { VERIFY( if( pOp->p3==0 ) goto bad_instruction; ) if( p->pFile ){ if( p->pFile!=stdin ) fclose(p->pFile); p->pFile = 0; } if( sqliteStrICmp(pOp->p3,"stdin")==0 ){ p->pFile = stdin; }else{ p->pFile = fopen(pOp->p3, "r"); } if( p->pFile==0 ){ sqliteSetString(pzErrMsg,"unable to open file: ", pOp->p3, 0); rc = SQLITE_ERROR; goto cleanup; } break; } /* Opcode: FileRead P1 P2 P3 ** ** Read a single line of input from the open file (the file opened using ** FileOpen). If we reach end-of-file, jump immediately to P2. If ** we are able to get another line, split the line apart using P3 as ** a delimiter. There should be P1 fields. If the input line contains ** more than P1 fields, ignore the excess. If the input line contains ** fewer than P1 fields, assume the remaining fields contain an ** empty strings. */ case OP_FileRead: { int n, eol, nField, i, c, nDelim; char *zDelim, *z; if( p->pFile==0 ) goto fileread_jump; nField = pOp->p1; if( nField<=0 ) goto fileread_jump; if( nField!=p->nField || p->azField==0 ){ char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1); if( azField==0 ){ goto no_mem; } p->azField = azField; p->nField = nField; } n = 0; eol = 0; while( eol==0 ){ if( p->zLine==0 || n+200>p->nLineAlloc ){ char *zLine; p->nLineAlloc = p->nLineAlloc*2 + 300; zLine = sqliteRealloc(p->zLine, p->nLineAlloc); if( zLine==0 ){ p->nLineAlloc = 0; sqliteFree(p->zLine); p->zLine = 0; goto no_mem; } p->zLine = zLine; } if( fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){ eol = 1; p->zLine[n] = 0; }else{ while( p->zLine[n] ){ n++; } if( n>0 && p->zLine[n-1]=='\n' ){ n--; p->zLine[n] = 0; eol = 1; } } } if( n==0 ) goto fileread_jump; z = p->zLine; if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){ goto fileread_jump; } zDelim = pOp->p3; if( zDelim==0 ) zDelim = "\t"; c = zDelim[0]; nDelim = strlen(zDelim); p->azField[0] = z; for(i=1; *z!=0 && i<=nField; i++){ int from, to; from = to = 0; while( z[from] ){ if( z[from]=='\\' && z[from+1]!=0 ){ z[to++] = z[from+1]; from += 2; continue; } if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break; z[to++] = z[from++]; } if( z[from] ){ z[to] = 0; z += from + nDelim; if( iazField[i] = z; }else{ z[to] = 0; z = ""; } } while( iazField[i++] = ""; } break; /* If we reach end-of-file, or if anything goes wrong, jump here. ** This code will cause a jump to P2 */ fileread_jump: pc = pOp->p2 - 1; break; } /* Opcode: FileColumn P1 * * ** ** Push onto the stack the P1-th column of the most recently read line ** from the input file. */ case OP_FileColumn: { int i = pOp->p1; char *z; VERIFY( if( NeedStack(p, p->tos+1) ) goto no_mem; ) if( VERIFY( i>=0 && inField && ) p->azField ){ z = p->azField[i]; }else{ z = 0; } if( z==0 ) z = ""; p->tos++; aStack[p->tos].n = strlen(z) + 1; zStack[p->tos] = z; aStack[p->tos].flags = STK_Str; break; } /* Opcode: MemStore P1 P2 * ** ** Write the top of the stack into memory location P1. ** P1 should be a small integer since space is allocated ** for all memory locations between 0 and P1 inclusive. ** ** After the data is stored in the memory location, the ** stack is popped once if P2 is 1. If P2 is zero, then ** the original data remains on the stack. */ case OP_MemStore: { int i = pOp->p1; int tos = p->tos; char *zOld; Mem *pMem; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( i>=p->nMem ){ int nOld = p->nMem; Mem *aMem; p->nMem = i + 5; aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0])); if( aMem==0 ) goto no_mem; p->aMem = aMem; if( nOldnMem ){ memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld)); } } pMem = &p->aMem[i]; if( pMem->s.flags & STK_Dyn ){ zOld = pMem->z; }else{ zOld = 0; } pMem->s = aStack[tos]; if( pMem->s.flags & (STK_Static|STK_Dyn) ){ if( pOp->p2==0 && (pMem->s.flags & STK_Dyn)!=0 ){ pMem->z = sqliteMalloc( pMem->s.n ); if( pMem->z==0 ) goto no_mem; memcpy(pMem->z, zStack[tos], pMem->s.n); }else{ pMem->z = zStack[tos]; } }else{ pMem->z = pMem->s.z; } if( zOld ) sqliteFree(zOld); if( pOp->p2 ){ zStack[tos] = 0; aStack[tos].flags = 0; POPSTACK; } break; } /* Opcode: MemLoad P1 * * ** ** Push a copy of the value in memory location P1 onto the stack. ** ** If the value is a string, then the value pushed is a pointer to ** the string that is stored in the memory location. If the memory ** location is subsequently changed (using OP_MemStore) then the ** value pushed onto the stack will change too. */ case OP_MemLoad: { int tos = ++p->tos; int i = pOp->p1; VERIFY( if( NeedStack(p, tos) ) goto no_mem; ) VERIFY( if( i<0 || i>=p->nMem ) goto bad_instruction; ) memcpy(&aStack[tos], &p->aMem[i].s, sizeof(aStack[tos])-NBFS);; if( aStack[tos].flags & STK_Str ){ zStack[tos] = p->aMem[i].z; aStack[tos].flags = STK_Str | STK_Static; } break; } /* Opcode: AggReset * P2 * ** ** Reset the aggregator so that it no longer contains any data. ** Future aggregator elements will contain P2 values each. */ case OP_AggReset: { AggReset(&p->agg); p->agg.nMem = pOp->p2; break; } /* Opcode: AggFocus * P2 * ** ** Pop the top of the stack and use that as an aggregator key. If ** an aggregator with that same key already exists, then make the ** aggregator the current aggregator and jump to P2. If no aggregator ** with the given key exists, create one and make it current but ** do not jump. ** ** The order of aggregator opcodes is important. The order is: ** AggReset AggFocus AggNext. In other words, you must execute ** AggReset first, then zero or more AggFocus operations, then ** zero or more AggNext operations. You must not execute an AggFocus ** in between an AggNext and an AggReset. */ case OP_AggFocus: { int tos = p->tos; AggElem *pElem; char *zKey; int nKey; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( Stringify(p, tos) ) goto no_mem; zKey = zStack[tos]; nKey = aStack[tos].n; pElem = sqliteHashFind(&p->agg.hash, zKey, nKey); if( pElem ){ p->agg.pCurrent = pElem; pc = pOp->p2 - 1; }else{ AggInsert(&p->agg, zKey, nKey); if( sqlite_malloc_failed ) goto no_mem; } POPSTACK; break; } /* Opcode: AggIncr P1 P2 * ** ** Increase the integer value in the P2-th field of the aggregate ** element current in focus by an amount P1. */ case OP_AggIncr: { AggElem *pFocus = AggInFocus(p->agg); int i = pOp->p2; if( pFocus==0 ) goto no_mem; if( i>=0 && iagg.nMem ){ Mem *pMem = &pFocus->aMem[i]; if( pMem->s.flags!=STK_Int ){ if( pMem->s.flags & STK_Int ){ /* Do nothing */ }else if( pMem->s.flags & STK_Real ){ pMem->s.i = pMem->s.r; }else if( pMem->s.flags & STK_Str ){ pMem->s.i = atoi(pMem->z); }else{ pMem->s.i = 0; } if( pMem->s.flags & STK_Dyn ) sqliteFree(pMem->z); pMem->z = 0; pMem->s.flags = STK_Int; } pMem->s.i += pOp->p1; } break; } /* Opcode: AggSet * P2 * ** ** Move the top of the stack into the P2-th field of the current ** aggregate. String values are duplicated into new memory. */ case OP_AggSet: { AggElem *pFocus = AggInFocus(p->agg); int i = pOp->p2; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( pFocus==0 ) goto no_mem; if( VERIFY( i>=0 && ) iagg.nMem ){ Mem *pMem = &pFocus->aMem[i]; char *zOld; if( pMem->s.flags & STK_Dyn ){ zOld = pMem->z; }else{ zOld = 0; } pMem->s = aStack[tos]; if( pMem->s.flags & STK_Dyn ){ pMem->z = zStack[tos]; zStack[tos] = 0; aStack[tos].flags = 0; }else if( pMem->s.flags & STK_Static ){ pMem->z = zStack[tos]; }else if( pMem->s.flags & STK_Str ){ pMem->z = pMem->s.z; } if( zOld ) sqliteFree(zOld); } POPSTACK; break; } /* Opcode: AggGet * P2 * ** ** Push a new entry onto the stack which is a copy of the P2-th field ** of the current aggregate. Strings are not duplicated so ** string values will be ephemeral. */ case OP_AggGet: { AggElem *pFocus = AggInFocus(p->agg); int i = pOp->p2; int tos = ++p->tos; VERIFY( if( NeedStack(p, tos) ) goto no_mem; ) if( pFocus==0 ) goto no_mem; if( VERIFY( i>=0 && ) iagg.nMem ){ Mem *pMem = &pFocus->aMem[i]; aStack[tos] = pMem->s; zStack[tos] = pMem->z; aStack[tos].flags &= ~STK_Dyn; } break; } /* Opcode: AggNext * P2 * ** ** Make the next aggregate value the current aggregate. The prior ** aggregate is deleted. If all aggregate values have been consumed, ** jump to P2. ** ** The order of aggregator opcodes is important. The order is: ** AggReset AggFocus AggNext. In other words, you must execute ** AggReset first, then zero or more AggFocus operations, then ** zero or more AggNext operations. You must not execute an AggFocus ** in between an AggNext and an AggReset. */ case OP_AggNext: { if( p->agg.pSearch==0 ){ p->agg.pSearch = sqliteHashFirst(&p->agg.hash); }else{ p->agg.pSearch = sqliteHashNext(p->agg.pSearch); } if( p->agg.pSearch==0 ){ pc = pOp->p2 - 1; } else { p->agg.pCurrent = sqliteHashData(p->agg.pSearch); } break; } /* Opcode: SetInsert P1 * P3 ** ** If Set P1 does not exist then create it. Then insert value ** P3 into that set. If P3 is NULL, then insert the top of the ** stack into the set. */ case OP_SetInsert: { int i = pOp->p1; if( p->nSet<=i ){ int k; Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) ); if( aSet==0 ) goto no_mem; p->aSet = aSet; for(k=p->nSet; k<=i; k++){ sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1); } p->nSet = i+1; } if( pOp->p3 ){ sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p); }else{ int tos = p->tos; if( tos<0 ) goto not_enough_stack; if( Stringify(p, tos) ) goto no_mem; sqliteHashInsert(&p->aSet[i].hash, zStack[tos], aStack[tos].n, p); POPSTACK; } if( sqlite_malloc_failed ) goto no_mem; break; } /* Opcode: SetFound P1 P2 * ** ** Pop the stack once and compare the value popped off with the ** contents of set P1. If the element popped exists in set P1, ** then jump to P2. Otherwise fall through. */ case OP_SetFound: { int i = pOp->p1; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( Stringify(p, tos) ) goto no_mem; if( VERIFY( i>=0 && inSet &&) sqliteHashFind(&p->aSet[i].hash, zStack[tos], aStack[tos].n)){ pc = pOp->p2 - 1; } POPSTACK; break; } /* Opcode: SetNotFound P1 P2 * ** ** Pop the stack once and compare the value popped off with the ** contents of set P1. If the element popped does not exists in ** set P1, then jump to P2. Otherwise fall through. */ case OP_SetNotFound: { int i = pOp->p1; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( Stringify(p, tos) ) goto no_mem; if(VERIFY( i>=0 && inSet &&) sqliteHashFind(&p->aSet[i].hash, zStack[tos], aStack[tos].n)==0 ){ pc = pOp->p2 - 1; } POPSTACK; break; } /* Opcode: Strlen * * * ** ** Interpret the top of the stack as a string. Replace the top of ** stack with an integer which is the length of the string. */ case OP_Strlen: { int tos = p->tos; int len; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( Stringify(p, tos) ) goto no_mem; #ifdef SQLITE_UTF8 { char *z = zStack[tos]; for(len=0; *z; z++){ if( (0xc0&*z)!=0x80 ) len++; } } #else len = aStack[tos].n-1; #endif POPSTACK; p->tos++; aStack[tos].i = len; aStack[tos].flags = STK_Int; break; } /* Opcode: Substr P1 P2 * ** ** This operation pops between 1 and 3 elements from the stack and ** pushes back a single element. The bottom-most element popped from ** the stack is a string and the element pushed back is also a string. ** The other two elements popped are integers. The integers are taken ** from the stack only if P1 and/or P2 are 0. When P1 or P2 are ** not zero, the value of the operand is used rather than the integer ** from the stack. In the sequel, we will use P1 and P2 to describe ** the two integers, even if those integers are really taken from the ** stack. ** ** The string pushed back onto the stack is a substring of the string ** that was popped. There are P2 characters in the substring. The ** first character of the substring is the P1-th character of the ** original string where the left-most character is 1 (not 0). If P1 ** is negative, then counting begins at the right instead of at the ** left. */ case OP_Substr: { int cnt; int start; int n; char *z; if( pOp->p2==0 ){ VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, p->tos); cnt = aStack[p->tos].i; POPSTACK; }else{ cnt = pOp->p2; } if( pOp->p1==0 ){ VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, p->tos); start = aStack[p->tos].i; POPSTACK; }else{ start = pOp->p1; } if( start ) start--; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) if( Stringify(p, p->tos) ) goto no_mem; /* "n" will be the number of characters in the input string. ** For iso8859, the number of characters is the number of bytes. ** Buf for UTF-8, some characters can use multiple bytes and the ** situation is more complex. */ #ifdef SQLITE_UTF8 z = zStack[p->tos]; for(n=0; *z; z++){ if( (0xc0&*z)!=0x80 ) n++; } #else n = aStack[p->tos].n - 1; #endif if( start<0 ){ start += n + 1; if( start<0 ){ cnt += start; start = 0; } } if( start>n ){ start = n; } if( cnt<0 ) cnt = 0; if( cnt > n ){ cnt = n; } /* At this point, "start" is the index of the first character to ** extract and "cnt" is the number of characters to extract. We ** need to convert units on these variable from characters into ** bytes. For iso8859, the conversion is a no-op, but for UTF-8 ** we have to do a little work. */ #ifdef SQLITE_UTF8 { int c_start = start; int c_cnt = cnt; int i; z = zStack[p->tos]; for(start=i=0; itos][start], cnt); z[cnt] = 0; POPSTACK; p->tos++; zStack[p->tos] = z; aStack[p->tos].n = cnt + 1; aStack[p->tos].flags = STK_Str|STK_Dyn; break; } /* An other opcode is illegal... */ default: { sprintf(zBuf,"%d",pOp->opcode); sqliteSetString(pzErrMsg, "unknown opcode ", zBuf, 0); rc = SQLITE_INTERNAL; break; } /***************************************************************************** ** The cases of the switch statement above this line should all be indented ** by 6 spaces. But the left-most 6 spaces have been removed to improve the ** readability. From this point on down, the normal indentation rules are ** restored. *****************************************************************************/ } /* The following code adds nothing to the actual functionality ** of the program. It is only here for testing and debugging. ** On the other hand, it does burn CPU cycles every time through ** the evaluator loop. So we can leave it out when NDEBUG is defined. */ #ifndef NDEBUG if( pc<-1 || pc>=p->nOp ){ sqliteSetString(pzErrMsg, "jump destination out of range", 0); rc = SQLITE_INTERNAL; } if( p->trace && p->tos>=0 ){ int i; fprintf(p->trace, "Stack:"); for(i=p->tos; i>=0 && i>p->tos-5; i--){ if( aStack[i].flags & STK_Null ){ fprintf(p->trace, " NULL"); }else if( aStack[i].flags & STK_Int ){ fprintf(p->trace, " i:%d", aStack[i].i); }else if( aStack[i].flags & STK_Real ){ fprintf(p->trace, " r:%g", aStack[i].r); }else if( aStack[i].flags & STK_Str ){ int j, k; char zBuf[100]; zBuf[0] = ' '; if( aStack[i].flags & STK_Dyn ){ zBuf[1] = 'z'; }else if( aStack[i].flags & STK_Static ){ zBuf[1] = 't'; }else{ zBuf[1] = 's'; } zBuf[2] = '['; k = 3; for(j=0; j<20 && jtrace, "%s", zBuf); }else{ fprintf(p->trace, " ???"); } } fprintf(p->trace,"\n"); } #endif } cleanup: Cleanup(p); if( rc!=SQLITE_OK ){ closeAllCursors(p); sqliteBtreeRollback(pBt); if( db->pBeTemp ) sqliteBtreeRollback(db->pBeTemp); sqliteRollbackInternalChanges(db); db->flags &= ~SQLITE_InTrans; } return rc; /* Jump to here if a malloc() fails. It's hard to get a malloc() ** to fail on a modern VM computer, so this code is untested. */ no_mem: sqliteSetString(pzErrMsg, "out of memory", 0); rc = SQLITE_NOMEM; goto cleanup; /* Jump to here for any other kind of fatal error. The "rc" variable ** should hold the error number. */ abort_due_to_error: sqliteSetString(pzErrMsg, sqlite_error_string(rc), 0); goto cleanup; /* Jump to here if a operator is encountered that requires more stack ** operands than are currently available on the stack. */ not_enough_stack: sprintf(zBuf,"%d",pc); sqliteSetString(pzErrMsg, "too few operands on stack at ", zBuf, 0); rc = SQLITE_INTERNAL; goto cleanup; /* Jump here if an illegal or illformed instruction is executed. */ bad_instruction: sprintf(zBuf,"%d",pc); sqliteSetString(pzErrMsg, "illegal operation at ", zBuf, 0); rc = SQLITE_INTERNAL; goto cleanup; }