/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** ** $Id: util.c,v 1.25 2001/09/16 00:13:27 drh Exp $ */ #include "sqliteInt.h" #include #include /* ** If malloc() ever fails, this global variable gets set to 1. ** This causes the library to abort and never again function. */ int sqlite_malloc_failed = 0; /* ** If MEMORY_DEBUG is defined, then use versions of malloc() and ** free() that track memory usage and check for buffer overruns. */ #ifdef MEMORY_DEBUG /* ** For keeping track of the number of mallocs and frees. This ** is used to check for memory leaks. */ int sqlite_nMalloc; /* Number of sqliteMalloc() calls */ int sqlite_nFree; /* Number of sqliteFree() calls */ int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */ /* ** Allocate new memory and set it to zero. Return NULL if ** no memory is available. */ void *sqliteMalloc_(int n, char *zFile, int line){ void *p; int *pi; int k; sqlite_nMalloc++; if( sqlite_iMallocFail>=0 ){ sqlite_iMallocFail--; if( sqlite_iMallocFail==0 ){ sqlite_malloc_failed++; return 0; } } if( n==0 ) return 0; k = (n+sizeof(int)-1)/sizeof(int); pi = malloc( (3+k)*sizeof(int)); if( pi==0 ){ sqlite_malloc_failed++; return 0; } pi[0] = 0xdead1122; pi[1] = n; pi[k+2] = 0xdead3344; p = &pi[2]; memset(p, 0, n); #if MEMORY_DEBUG>1 fprintf(stderr,"malloc %d bytes at 0x%x from %s:%d\n", n, (int)p, zFile,line); #endif return p; } /* ** Free memory previously obtained from sqliteMalloc() */ void sqliteFree_(void *p, char *zFile, int line){ if( p ){ int *pi, k, n; pi = p; pi -= 2; sqlite_nFree++; if( pi[0]!=0xdead1122 ){ fprintf(stderr,"Low-end memory corruption at 0x%x\n", (int)p); return; } n = pi[1]; k = (n+sizeof(int)-1)/sizeof(int); if( pi[k+2]!=0xdead3344 ){ fprintf(stderr,"High-end memory corruption at 0x%x\n", (int)p); return; } memset(pi, 0xff, (k+3)*sizeof(int)); #if MEMORY_DEBUG>1 fprintf(stderr,"free %d bytes at 0x%x from %s:%d\n", n, (int)p, zFile,line); #endif free(pi); } } /* ** Resize a prior allocation. If p==0, then this routine ** works just like sqliteMalloc(). If n==0, then this routine ** works just like sqliteFree(). */ void *sqliteRealloc_(void *oldP, int n, char *zFile, int line){ int *oldPi, *pi, k, oldN, oldK; void *p; if( oldP==0 ){ return sqliteMalloc_(n,zFile,line); } if( n==0 ){ sqliteFree_(oldP,zFile,line); return 0; } oldPi = oldP; oldPi -= 2; if( oldPi[0]!=0xdead1122 ){ fprintf(stderr,"Low-end memory corruption in realloc at 0x%x\n", (int)p); return 0; } oldN = oldPi[1]; oldK = (oldN+sizeof(int)-1)/sizeof(int); if( oldPi[oldK+2]!=0xdead3344 ){ fprintf(stderr,"High-end memory corruption in realloc at 0x%x\n", (int)p); return 0; } k = (n + sizeof(int) - 1)/sizeof(int); pi = malloc( (k+3)*sizeof(int) ); if( pi==0 ){ sqlite_malloc_failed++; return 0; } pi[0] = 0xdead1122; pi[1] = n; pi[k+2] = 0xdead3344; p = &pi[2]; memcpy(p, oldP, n>oldN ? oldN : n); if( n>oldN ){ memset(&((char*)p)[oldN], 0, n-oldN); } memset(oldPi, 0, (oldK+3)*sizeof(int)); free(oldPi); #if MEMORY_DEBUG>1 fprintf(stderr,"realloc %d to %d bytes at 0x%x to 0x%x at %s:%d\n", oldN, n, (int)oldP, (int)p, zFile, line); #endif return p; } /* ** Make a duplicate of a string into memory obtained from malloc() ** Free the original string using sqliteFree(). ** ** This routine is called on all strings that are passed outside of ** the SQLite library. That way clients can free the string using free() ** rather than having to call sqliteFree(). */ void sqliteStrRealloc(char **pz){ char *zNew; if( pz==0 || *pz==0 ) return; zNew = malloc( strlen(*pz) + 1 ); if( zNew==0 ){ sqlite_malloc_failed++; sqliteFree(*pz); *pz = 0; } strcpy(zNew, *pz); sqliteFree(*pz); *pz = zNew; } /* ** Make a copy of a string in memory obtained from sqliteMalloc() */ char *sqliteStrDup_(const char *z, char *zFile, int line){ char *zNew = sqliteMalloc_(strlen(z)+1, zFile, line); if( zNew ) strcpy(zNew, z); return zNew; } char *sqliteStrNDup_(const char *z, int n, char *zFile, int line){ char *zNew = sqliteMalloc_(n+1, zFile, line); if( zNew ){ memcpy(zNew, z, n); zNew[n] = 0; } return zNew; } #endif /* MEMORY_DEBUG */ /* ** The following versions of malloc() and free() are for use in a ** normal build. */ #if !defined(MEMORY_DEBUG) /* ** Allocate new memory and set it to zero. Return NULL if ** no memory is available. */ void *sqliteMalloc(int n){ void *p = malloc(n); if( p==0 ){ sqlite_malloc_failed++; return 0; } memset(p, 0, n); return p; } /* ** Free memory previously obtained from sqliteMalloc() */ void sqliteFree(void *p){ if( p ){ free(p); } } /* ** Resize a prior allocation. If p==0, then this routine ** works just like sqliteMalloc(). If n==0, then this routine ** works just like sqliteFree(). */ void *sqliteRealloc(void *p, int n){ if( p==0 ){ return sqliteMalloc(n); } if( n==0 ){ sqliteFree(p); return 0; } p = realloc(p, n); if( p==0 ){ sqlite_malloc_failed++; } return p; } /* ** Make a copy of a string in memory obtained from sqliteMalloc() */ char *sqliteStrDup(const char *z){ char *zNew = sqliteMalloc(strlen(z)+1); if( zNew ) strcpy(zNew, z); return zNew; } char *sqliteStrNDup(const char *z, int n){ char *zNew = sqliteMalloc(n+1); if( zNew ){ memcpy(zNew, z, n); zNew[n] = 0; } return zNew; } #endif /* !defined(MEMORY_DEBUG) */ /* ** Create a string from the 2nd and subsequent arguments (up to the ** first NULL argument), store the string in memory obtained from ** sqliteMalloc() and make the pointer indicated by the 1st argument ** point to that string. */ void sqliteSetString(char **pz, const char *zFirst, ...){ va_list ap; int nByte; const char *z; char *zResult; if( pz==0 ) return; nByte = strlen(zFirst) + 1; va_start(ap, zFirst); while( (z = va_arg(ap, const char*))!=0 ){ nByte += strlen(z); } va_end(ap); sqliteFree(*pz); *pz = zResult = sqliteMalloc( nByte ); if( zResult==0 ) return; strcpy(zResult, zFirst); zResult += strlen(zResult); va_start(ap, zFirst); while( (z = va_arg(ap, const char*))!=0 ){ strcpy(zResult, z); zResult += strlen(zResult); } va_end(ap); #ifdef MEMORY_DEBUG #if MEMORY_DEBUG>1 fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz); #endif #endif } /* ** Works like sqliteSetString, but each string is now followed by ** a length integer which specifies how much of the source string ** to copy (in bytes). -1 means use the whole string. */ void sqliteSetNString(char **pz, ...){ va_list ap; int nByte; const char *z; char *zResult; int n; if( pz==0 ) return; nByte = 0; va_start(ap, pz); while( (z = va_arg(ap, const char*))!=0 ){ n = va_arg(ap, int); if( n<=0 ) n = strlen(z); nByte += n; } va_end(ap); sqliteFree(*pz); *pz = zResult = sqliteMalloc( nByte + 1 ); if( zResult==0 ) return; va_start(ap, pz); while( (z = va_arg(ap, const char*))!=0 ){ n = va_arg(ap, int); if( n<=0 ) n = strlen(z); strncpy(zResult, z, n); zResult += n; } *zResult = 0; #ifdef MEMORY_DEBUG #if MEMORY_DEBUG>1 fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz); #endif #endif va_end(ap); } /* ** Convert an SQL-style quoted string into a normal string by removing ** the quote characters. The conversion is done in-place. If the ** input does not begin with a quote character, then this routine ** is a no-op. */ void sqliteDequote(char *z){ int quote; int i, j; if( z==0 ) return; quote = z[0]; if( quote!='\'' && quote!='"' ) return; for(i=1, j=0; z[i]; i++){ if( z[i]==quote ){ if( z[i+1]==quote ){ z[j++] = quote; i++; }else{ z[j++] = 0; break; } }else{ z[j++] = z[i]; } } } /* An array to map all upper-case characters into their corresponding ** lower-case character. */ static unsigned char UpperToLower[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103, 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121, 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107, 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125, 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161, 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179, 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197, 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215, 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233, 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251, 252,253,254,255 }; /* ** This function computes a hash on the name of a keyword. ** Case is not significant. */ int sqliteHashNoCase(const char *z, int n){ int h = 0; int c; if( n<=0 ) n = strlen(z); while( n-- > 0 && (c = *z++)!=0 ){ h = (h<<3) ^ h ^ UpperToLower[c]; } if( h<0 ) h = -h; return h; } /* ** Some systems have stricmp(). Others have strcasecmp(). Because ** there is no consistency, we will define our own. */ int sqliteStrICmp(const char *zLeft, const char *zRight){ register unsigned char *a, *b; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return *a - *b; } int sqliteStrNICmp(const char *zLeft, const char *zRight, int N){ register unsigned char *a, *b; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return N<0 ? 0 : *a - *b; } /* Notes on string comparisions. ** ** We want the main string comparision function used for sorting to ** sort both numbers and alphanumeric words into the correct sequence. ** The same routine should do both without prior knowledge of which ** type of text the input represents. It should even work for strings ** which are a mixture of text and numbers. ** ** To accomplish this, we keep track of a state number while scanning ** the two strings. The states are as follows: ** ** 1 Beginning of word ** 2 Arbitrary text ** 3 Integer ** 4 Negative integer ** 5 Real number ** 6 Negative real ** ** The scan begins in state 1, beginning of word. Transitions to other ** states are determined by characters seen, as shown in the following ** chart: ** ** Current State Character Seen New State ** -------------------- -------------- ------------------- ** 0 Beginning of word "-" 3 Negative integer ** digit 2 Integer ** space 0 Beginning of word ** otherwise 1 Arbitrary text ** ** 1 Arbitrary text space 0 Beginning of word ** digit 2 Integer ** otherwise 1 Arbitrary text ** ** 2 Integer space 0 Beginning of word ** "." 4 Real number ** digit 2 Integer ** otherwise 1 Arbitrary text ** ** 3 Negative integer space 0 Beginning of word ** "." 5 Negative Real num ** digit 3 Negative integer ** otherwise 1 Arbitrary text ** ** 4 Real number space 0 Beginning of word ** digit 4 Real number ** otherwise 1 Arbitrary text ** ** 5 Negative real num space 0 Beginning of word ** digit 5 Negative real num ** otherwise 1 Arbitrary text ** ** To implement this state machine, we first classify each character ** into on of the following categories: ** ** 0 Text ** 1 Space ** 2 Digit ** 3 "-" ** 4 "." ** ** Given an arbitrary character, the array charClass[] maps that character ** into one of the atove categories. */ static const unsigned char charClass[] = { /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ /* 0x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, /* 1x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, /* 3x */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, /* 4x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 6x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 8x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 9x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Ax */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Cx */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Dx */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Ex */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; #define N_CHAR_CLASS 5 /* ** Given the current state number (0 thru 5), this array figures ** the new state number given the character class. */ static const unsigned char stateMachine[] = { /* Text, Space, Digit, "-", "." */ 1, 0, 2, 3, 1, /* State 0: Beginning of word */ 1, 0, 2, 1, 1, /* State 1: Arbitrary text */ 1, 0, 2, 1, 4, /* State 2: Integer */ 1, 0, 3, 1, 5, /* State 3: Negative integer */ 1, 0, 4, 1, 1, /* State 4: Real number */ 1, 0, 5, 1, 1, /* State 5: Negative real num */ }; /* This routine does a comparison of two strings. Case is used only ** if useCase!=0. Numbers compare in numerical order. */ static int privateStrCmp(const char *atext, const char *btext, int useCase){ register unsigned char *a, *b, *map, ca, cb; int result; register int cclass = 0; a = (unsigned char *)atext; b = (unsigned char *)btext; if( useCase ){ do{ if( (ca= *a++)!=(cb= *b++) ) break; cclass = stateMachine[cclass*N_CHAR_CLASS + charClass[ca]]; }while( ca!=0 ); }else{ map = UpperToLower; do{ if( (ca=map[*a++])!=(cb=map[*b++]) ) break; cclass = stateMachine[cclass*N_CHAR_CLASS + charClass[ca]]; }while( ca!=0 ); } switch( cclass ){ case 0: case 1: { if( isdigit(ca) && isdigit(cb) ){ cclass = 2; } break; } default: { break; } } switch( cclass ){ case 2: case 3: { if( isdigit(ca) ){ if( isdigit(cb) ){ int acnt, bcnt; acnt = bcnt = 0; while( isdigit(*a++) ) acnt++; while( isdigit(*b++) ) bcnt++; result = acnt - bcnt; if( result==0 ) result = ca-cb; }else{ result = 1; } }else if( isdigit(cb) ){ result = -1; }else if( ca=='.' ){ result = 1; }else if( cb=='.' ){ result = -1; }else{ result = ca - cb; cclass = 2; } if( cclass==3 ) result = -result; break; } case 0: case 1: case 4: { result = ca - cb; break; } case 5: { result = cb - ca; }; } return result; } /* ** Do a comparison of pure numerics. If either string is not a pure ** numeric, then return 0. Otherwise return 1 and set *pResult to be ** negative, zero or positive if the first string are numerially less than ** equal to, or greater than the second. */ static int privateCompareNum(const char *a, const char *b, int *pResult){ char *endPtr; double rA, rB; int isNumA, isNumB; if( isdigit(*a) || ((*a=='-' || *a=='+') && isdigit(a[1])) ){ rA = strtod(a, &endPtr); isNumA = *endPtr==0; }else{ isNumA = 0; } if( isdigit(*b) || ((*b=='-' || *b=='+') && isdigit(b[1])) ){ rB = strtod(b, &endPtr); isNumB = *endPtr==0; }else{ isNumB = 0; } if( isNumB==0 && isNumA==0 ) return 0; if( isNumA!=isNumB ){ *pResult = isNumA - isNumB; }else if( rArB ){ *pResult = 1; }else{ *pResult = 0; } return 1; } /* This comparison routine is what we use for comparison operations ** in an SQL expression. (Ex: name<'Hello' or value<5). Compare two ** strings. Use case only as a tie-breaker. Numbers compare in ** numerical order. */ int sqliteCompare(const char *atext, const char *btext){ int result; if( !privateCompareNum(atext, btext, &result) || result==0 ){ result = privateStrCmp(atext, btext, 0); if( result==0 ) result = privateStrCmp(atext, btext, 1); } return result; } /* ** If you compile just this one file with the -DTEST_COMPARE=1 option, ** it generates a program to test the comparisons routines. */ #ifdef TEST_COMPARE #include #include int sortCmp(const char **a, const char **b){ return sqliteCompare(*a, *b); } int main(int argc, char **argv){ int i, j, k, n, cnt; static char *azStr[] = { "abc", "aBc", "abcd", "aBcd", "123", "124", "1234", "-123", "-124", "-1234", "+124", "123.45", "123.456", "123.46", "-123.45", "-123.46", "-123.456", "x9", "x10", "x-9", "x-10", "X9", "X10", "1.234e+02", "+123", "1.23E2", "1.2345e+2", "-1.2345e2", "+w" }; n = sizeof(azStr)/sizeof(azStr[0]); qsort(azStr, n, sizeof(azStr[0]), sortCmp); for(i=0; i0; }else{ success = (x2>=0 && x3>=0) || x2<0; } if( !success ){ printf("Failed! \"%s\" vs \"%s\" vs \"%s\"\n", a, b, c); i = j = k = n+1; } cnt++; } } } if( i0 ){ zPattern++; c2 = sqliteCharVal(zPattern); if( c>=prior_c && c<=c2 ) seen = 1; prior_c = 0; }else if( c==c2 ){ seen = 1; prior_c = c2; }else{ prior_c = c2; } sqliteNextChar(zPattern); } if( c2==0 || (seen ^ invert)==0 ) return 0; sqliteNextChar(zString); zPattern++; break; } default: { if( c != *zString ) return 0; zPattern++; zString++; break; } } } return *zString==0; } /* ** Compare two UTF-8 strings for equality using the "LIKE" operator of ** SQL. The '%' character matches any sequence of 0 or more ** characters and '_' matches any single character. Case is ** not significant. ** ** This routine is just an adaptation of the sqliteGlobCompare() ** routine above. */ int sqliteLikeCompare(const unsigned char *zPattern, const unsigned char *zString){ register int c; int c2; while( (c = UpperToLower[*zPattern])!=0 ){ switch( c ){ case '%': { while( (c=zPattern[1]) == '%' || c == '_' ){ if( c=='_' ){ if( *zString==0 ) return 0; sqliteNextChar(zString); } zPattern++; } if( c==0 ) return 1; c = UpperToLower[c]; while( (c2=UpperToLower[*zString])!=0 ){ while( c2 != 0 && c2 != c ){ c2 = UpperToLower[*++zString]; } if( c2==0 ) return 0; if( sqliteLikeCompare(&zPattern[1],zString) ) return 1; sqliteNextChar(zString); } return 0; } case '_': { if( *zString==0 ) return 0; sqliteNextChar(zString); zPattern++; break; } default: { if( c != UpperToLower[*zString] ) return 0; zPattern++; zString++; break; } } } return *zString==0; } /* ** Return a static string that describes the kind of error specified in the ** argument. */ const char *sqliteErrStr(int rc){ const char *z; switch( rc ){ case SQLITE_OK: z = "not an error"; break; case SQLITE_ERROR: z = "SQL logic error or missing database"; break; case SQLITE_INTERNAL: z = "internal SQLite implementation flaw"; break; case SQLITE_PERM: z = "access permission denied"; break; case SQLITE_ABORT: z = "callback requested query abort"; break; case SQLITE_BUSY: z = "database in use by another process"; break; case SQLITE_NOMEM: z = "out of memory"; break; case SQLITE_READONLY: z = "attempt to write a readonly database"; break; case SQLITE_INTERRUPT: z = "interrupted"; break; case SQLITE_IOERR: z = "disk I/O error"; break; case SQLITE_CORRUPT: z = "database disk image is malformed"; break; case SQLITE_NOTFOUND: z = "table or record not found"; break; case SQLITE_FULL: z = "database is full"; break; case SQLITE_CANTOPEN: z = "unable to open database file"; break; case SQLITE_PROTOCOL: z = "database locking protocol failure"; break; case SQLITE_EMPTY: z = "table contains no data"; break; case SQLITE_SCHEMA: z = "database schema has changed"; break; case SQLITE_TOOBIG: z = "too much data for one table row"; break; default: z = "unknown error"; break; } return z; }