/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** */ #include "sqliteInt.h" #include #ifdef SQLITE_HAVE_ISNAN # include #endif /* ** Routine needed to support the testcase() macro. */ #ifdef SQLITE_COVERAGE_TEST void sqlite3Coverage(int x){ static unsigned dummy = 0; dummy += (unsigned)x; } #endif #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Return true if the floating point value is Not a Number (NaN). ** ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. ** Otherwise, we have our own implementation that works on most systems. */ int sqlite3IsNaN(double x){ int rc; /* The value return */ #if !defined(SQLITE_HAVE_ISNAN) /* ** Systems that support the isnan() library function should probably ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have ** found that many systems do not have a working isnan() function so ** this implementation is provided as an alternative. ** ** This NaN test sometimes fails if compiled on GCC with -ffast-math. ** On the other hand, the use of -ffast-math comes with the following ** warning: ** ** This option [-ffast-math] should never be turned on by any ** -O option since it can result in incorrect output for programs ** which depend on an exact implementation of IEEE or ISO ** rules/specifications for math functions. ** ** Under MSVC, this NaN test may fail if compiled with a floating- ** point precision mode other than /fp:precise. From the MSDN ** documentation: ** ** The compiler [with /fp:precise] will properly handle comparisons ** involving NaN. For example, x != x evaluates to true if x is NaN ** ... */ #ifdef __FAST_MATH__ # error SQLite will not work correctly with the -ffast-math option of GCC. #endif volatile double y = x; volatile double z = y; rc = (y!=z); #else /* if defined(SQLITE_HAVE_ISNAN) */ rc = isnan(x); #endif /* SQLITE_HAVE_ISNAN */ testcase( rc ); return rc; } #endif /* SQLITE_OMIT_FLOATING_POINT */ /* ** Compute a string length that is limited to what can be stored in ** lower 30 bits of a 32-bit signed integer. ** ** The value returned will never be negative. Nor will it ever be greater ** than the actual length of the string. For very long strings (greater ** than 1GiB) the value returned might be less than the true string length. */ int sqlite3Strlen30(const char *z){ const char *z2 = z; if( z==0 ) return 0; while( *z2 ){ z2++; } return 0x3fffffff & (int)(z2 - z); } /* ** Set the most recent error code and error string for the sqlite ** handle "db". The error code is set to "err_code". ** ** If it is not NULL, string zFormat specifies the format of the ** error string in the style of the printf functions: The following ** format characters are allowed: ** ** %s Insert a string ** %z A string that should be freed after use ** %d Insert an integer ** %T Insert a token ** %S Insert the first element of a SrcList ** ** zFormat and any string tokens that follow it are assumed to be ** encoded in UTF-8. ** ** To clear the most recent error for sqlite handle "db", sqlite3Error ** should be called with err_code set to SQLITE_OK and zFormat set ** to NULL. */ void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ db->errCode = err_code; if( zFormat ){ char *z; va_list ap; va_start(ap, zFormat); z = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); }else{ sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); } } } /* ** Add an error message to pParse->zErrMsg and increment pParse->nErr. ** The following formatting characters are allowed: ** ** %s Insert a string ** %z A string that should be freed after use ** %d Insert an integer ** %T Insert a token ** %S Insert the first element of a SrcList ** ** This function should be used to report any error that occurs whilst ** compiling an SQL statement (i.e. within sqlite3_prepare()). The ** last thing the sqlite3_prepare() function does is copy the error ** stored by this function into the database handle using sqlite3Error(). ** Function sqlite3Error() should be used during statement execution ** (sqlite3_step() etc.). */ void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ char *zMsg; va_list ap; sqlite3 *db = pParse->db; va_start(ap, zFormat); zMsg = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); if( db->suppressErr ){ sqlite3DbFree(db, zMsg); }else{ pParse->nErr++; sqlite3DbFree(db, pParse->zErrMsg); pParse->zErrMsg = zMsg; pParse->rc = SQLITE_ERROR; } } /* ** Convert an SQL-style quoted string into a normal string by removing ** the quote characters. The conversion is done in-place. If the ** input does not begin with a quote character, then this routine ** is a no-op. ** ** The input string must be zero-terminated. A new zero-terminator ** is added to the dequoted string. ** ** The return value is -1 if no dequoting occurs or the length of the ** dequoted string, exclusive of the zero terminator, if dequoting does ** occur. ** ** 2002-Feb-14: This routine is extended to remove MS-Access style ** brackets from around identifers. For example: "[a-b-c]" becomes ** "a-b-c". */ int sqlite3Dequote(char *z){ char quote; int i, j; if( z==0 ) return -1; quote = z[0]; switch( quote ){ case '\'': break; case '"': break; case '`': break; /* For MySQL compatibility */ case '[': quote = ']'; break; /* For MS SqlServer compatibility */ default: return -1; } for(i=1, j=0; ALWAYS(z[i]); i++){ if( z[i]==quote ){ if( z[i+1]==quote ){ z[j++] = quote; i++; }else{ break; } }else{ z[j++] = z[i]; } } z[j] = 0; return j; } /* Convenient short-hand */ #define UpperToLower sqlite3UpperToLower /* ** Some systems have stricmp(). Others have strcasecmp(). Because ** there is no consistency, we will define our own. ** ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and ** sqlite3_strnicmp() APIs allow applications and extensions to compare ** the contents of two buffers containing UTF-8 strings in a ** case-independent fashion, using the same definition of "case ** independence" that SQLite uses internally when comparing identifiers. */ int sqlite3_stricmp(const char *zLeft, const char *zRight){ register unsigned char *a, *b; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return UpperToLower[*a] - UpperToLower[*b]; } int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ register unsigned char *a, *b; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; } /* ** The string z[] is an text representation of a real number. ** Convert this string to a double and write it into *pResult. ** ** The string z[] is length bytes in length (bytes, not characters) and ** uses the encoding enc. The string is not necessarily zero-terminated. ** ** Return TRUE if the result is a valid real number (or integer) and FALSE ** if the string is empty or contains extraneous text. Valid numbers ** are in one of these formats: ** ** [+-]digits[E[+-]digits] ** [+-]digits.[digits][E[+-]digits] ** [+-].digits[E[+-]digits] ** ** Leading and trailing whitespace is ignored for the purpose of determining ** validity. ** ** If some prefix of the input string is a valid number, this routine ** returns FALSE but it still converts the prefix and writes the result ** into *pResult. */ int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ #ifndef SQLITE_OMIT_FLOATING_POINT int incr = (enc==SQLITE_UTF8?1:2); const char *zEnd = z + length; /* sign * significand * (10 ^ (esign * exponent)) */ int sign = 1; /* sign of significand */ i64 s = 0; /* significand */ int d = 0; /* adjust exponent for shifting decimal point */ int esign = 1; /* sign of exponent */ int e = 0; /* exponent */ int eValid = 1; /* True exponent is either not used or is well-formed */ double result; int nDigits = 0; *pResult = 0.0; /* Default return value, in case of an error */ if( enc==SQLITE_UTF16BE ) z++; /* skip leading spaces */ while( z=zEnd ) return 0; /* get sign of significand */ if( *z=='-' ){ sign = -1; z+=incr; }else if( *z=='+' ){ z+=incr; } /* skip leading zeroes */ while( z=zEnd ) goto do_atof_calc; /* if decimal point is present */ if( *z=='.' ){ z+=incr; /* copy digits from after decimal to significand ** (decrease exponent by d to shift decimal right) */ while( z=zEnd ) goto do_atof_calc; /* if exponent is present */ if( *z=='e' || *z=='E' ){ z+=incr; eValid = 0; if( z>=zEnd ) goto do_atof_calc; /* get sign of exponent */ if( *z=='-' ){ esign = -1; z+=incr; }else if( *z=='+' ){ z+=incr; } /* copy digits to exponent */ while( z0 ){ while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; }else{ while( !(s%10) && e>0 ) e--,s/=10; } /* adjust the sign of significand */ s = sign<0 ? -s : s; /* if exponent, scale significand as appropriate ** and store in result. */ if( e ){ double scale = 1.0; /* attempt to handle extremely small/large numbers better */ if( e>307 && e<342 ){ while( e%308 ) { scale *= 1.0e+1; e -= 1; } if( esign<0 ){ result = s / scale; result /= 1.0e+308; }else{ result = s * scale; result *= 1.0e+308; } }else if( e>=342 ){ if( esign<0 ){ result = 0.0*s; }else{ result = 1e308*1e308*s; /* Infinity */ } }else{ /* 1.0e+22 is the largest power of 10 than can be ** represented exactly. */ while( e%22 ) { scale *= 1.0e+1; e -= 1; } while( e>0 ) { scale *= 1.0e+22; e -= 22; } if( esign<0 ){ result = s / scale; }else{ result = s * scale; } } } else { result = (double)s; } } /* store the result */ *pResult = result; /* return true if number and no extra non-whitespace chracters after */ return z>=zEnd && nDigits>0 && eValid; #else return !sqlite3Atoi64(z, pResult, length, enc); #endif /* SQLITE_OMIT_FLOATING_POINT */ } /* ** Compare the 19-character string zNum against the text representation ** value 2^63: 9223372036854775808. Return negative, zero, or positive ** if zNum is less than, equal to, or greater than the string. ** Note that zNum must contain exactly 19 characters. ** ** Unlike memcmp() this routine is guaranteed to return the difference ** in the values of the last digit if the only difference is in the ** last digit. So, for example, ** ** compare2pow63("9223372036854775800", 1) ** ** will return -8. */ static int compare2pow63(const char *zNum, int incr){ int c = 0; int i; /* 012345678901234567 */ const char *pow63 = "922337203685477580"; for(i=0; c==0 && i<18; i++){ c = (zNum[i*incr]-pow63[i])*10; } if( c==0 ){ c = zNum[18*incr] - '8'; testcase( c==(-1) ); testcase( c==0 ); testcase( c==(+1) ); } return c; } /* ** Convert zNum to a 64-bit signed integer. ** ** If the zNum value is representable as a 64-bit twos-complement ** integer, then write that value into *pNum and return 0. ** ** If zNum is exactly 9223372036854665808, return 2. This special ** case is broken out because while 9223372036854665808 cannot be a ** signed 64-bit integer, its negative -9223372036854665808 can be. ** ** If zNum is too big for a 64-bit integer and is not ** 9223372036854665808 then return 1. ** ** length is the number of bytes in the string (bytes, not characters). ** The string is not necessarily zero-terminated. The encoding is ** given by enc. */ int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ int incr = (enc==SQLITE_UTF8?1:2); u64 u = 0; int neg = 0; /* assume positive */ int i; int c = 0; const char *zStart; const char *zEnd = zNum + length; if( enc==SQLITE_UTF16BE ) zNum++; while( zNum='0' && c<='9'; i+=incr){ u = u*10 + c - '0'; } if( u>LARGEST_INT64 ){ *pNum = SMALLEST_INT64; }else if( neg ){ *pNum = -(i64)u; }else{ *pNum = (i64)u; } testcase( i==18 ); testcase( i==19 ); testcase( i==20 ); if( (c!=0 && &zNum[i]19*incr ){ /* zNum is empty or contains non-numeric text or is longer ** than 19 digits (thus guaranteeing that it is too large) */ return 1; }else if( i<19*incr ){ /* Less than 19 digits, so we know that it fits in 64 bits */ assert( u<=LARGEST_INT64 ); return 0; }else{ /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ c = compare2pow63(zNum, incr); if( c<0 ){ /* zNum is less than 9223372036854775808 so it fits */ assert( u<=LARGEST_INT64 ); return 0; }else if( c>0 ){ /* zNum is greater than 9223372036854775808 so it overflows */ return 1; }else{ /* zNum is exactly 9223372036854775808. Fits if negative. The ** special case 2 overflow if positive */ assert( u-1==LARGEST_INT64 ); assert( (*pNum)==SMALLEST_INT64 ); return neg ? 0 : 2; } } } /* ** If zNum represents an integer that will fit in 32-bits, then set ** *pValue to that integer and return true. Otherwise return false. ** ** Any non-numeric characters that following zNum are ignored. ** This is different from sqlite3Atoi64() which requires the ** input number to be zero-terminated. */ int sqlite3GetInt32(const char *zNum, int *pValue){ sqlite_int64 v = 0; int i, c; int neg = 0; if( zNum[0]=='-' ){ neg = 1; zNum++; }else if( zNum[0]=='+' ){ zNum++; } while( zNum[0]=='0' ) zNum++; for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ v = v*10 + c; } /* The longest decimal representation of a 32 bit integer is 10 digits: ** ** 1234567890 ** 2^31 -> 2147483648 */ testcase( i==10 ); if( i>10 ){ return 0; } testcase( v-neg==2147483647 ); if( v-neg>2147483647 ){ return 0; } if( neg ){ v = -v; } *pValue = (int)v; return 1; } /* ** Return a 32-bit integer value extracted from a string. If the ** string is not an integer, just return 0. */ int sqlite3Atoi(const char *z){ int x = 0; if( z ) sqlite3GetInt32(z, &x); return x; } /* ** The variable-length integer encoding is as follows: ** ** KEY: ** A = 0xxxxxxx 7 bits of data and one flag bit ** B = 1xxxxxxx 7 bits of data and one flag bit ** C = xxxxxxxx 8 bits of data ** ** 7 bits - A ** 14 bits - BA ** 21 bits - BBA ** 28 bits - BBBA ** 35 bits - BBBBA ** 42 bits - BBBBBA ** 49 bits - BBBBBBA ** 56 bits - BBBBBBBA ** 64 bits - BBBBBBBBC */ /* ** Write a 64-bit variable-length integer to memory starting at p[0]. ** The length of data write will be between 1 and 9 bytes. The number ** of bytes written is returned. ** ** A variable-length integer consists of the lower 7 bits of each byte ** for all bytes that have the 8th bit set and one byte with the 8th ** bit clear. Except, if we get to the 9th byte, it stores the full ** 8 bits and is the last byte. */ int sqlite3PutVarint(unsigned char *p, u64 v){ int i, j, n; u8 buf[10]; if( v & (((u64)0xff000000)<<32) ){ p[8] = (u8)v; v >>= 8; for(i=7; i>=0; i--){ p[i] = (u8)((v & 0x7f) | 0x80); v >>= 7; } return 9; } n = 0; do{ buf[n++] = (u8)((v & 0x7f) | 0x80); v >>= 7; }while( v!=0 ); buf[0] &= 0x7f; assert( n<=9 ); for(i=0, j=n-1; j>=0; j--, i++){ p[i] = buf[j]; } return n; } /* ** This routine is a faster version of sqlite3PutVarint() that only ** works for 32-bit positive integers and which is optimized for ** the common case of small integers. A MACRO version, putVarint32, ** is provided which inlines the single-byte case. All code should use ** the MACRO version as this function assumes the single-byte case has ** already been handled. */ int sqlite3PutVarint32(unsigned char *p, u32 v){ #ifndef putVarint32 if( (v & ~0x7f)==0 ){ p[0] = v; return 1; } #endif if( (v & ~0x3fff)==0 ){ p[0] = (u8)((v>>7) | 0x80); p[1] = (u8)(v & 0x7f); return 2; } return sqlite3PutVarint(p, v); } /* ** Bitmasks used by sqlite3GetVarint(). These precomputed constants ** are defined here rather than simply putting the constant expressions ** inline in order to work around bugs in the RVT compiler. ** ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f ** ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 */ #define SLOT_2_0 0x001fc07f #define SLOT_4_2_0 0xf01fc07f /* ** Read a 64-bit variable-length integer from memory starting at p[0]. ** Return the number of bytes read. The value is stored in *v. */ u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ u32 a,b,s; a = *p; /* a: p0 (unmasked) */ if (!(a&0x80)) { *v = a; return 1; } p++; b = *p; /* b: p1 (unmasked) */ if (!(b&0x80)) { a &= 0x7f; a = a<<7; a |= b; *v = a; return 2; } /* Verify that constants are precomputed correctly */ assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); p++; a = a<<14; a |= *p; /* a: p0<<14 | p2 (unmasked) */ if (!(a&0x80)) { a &= SLOT_2_0; b &= 0x7f; b = b<<7; a |= b; *v = a; return 3; } /* CSE1 from below */ a &= SLOT_2_0; p++; b = b<<14; b |= *p; /* b: p1<<14 | p3 (unmasked) */ if (!(b&0x80)) { b &= SLOT_2_0; /* moved CSE1 up */ /* a &= (0x7f<<14)|(0x7f); */ a = a<<7; a |= b; *v = a; return 4; } /* a: p0<<14 | p2 (masked) */ /* b: p1<<14 | p3 (unmasked) */ /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ /* moved CSE1 up */ /* a &= (0x7f<<14)|(0x7f); */ b &= SLOT_2_0; s = a; /* s: p0<<14 | p2 (masked) */ p++; a = a<<14; a |= *p; /* a: p0<<28 | p2<<14 | p4 (unmasked) */ if (!(a&0x80)) { /* we can skip these cause they were (effectively) done above in calc'ing s */ /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ /* b &= (0x7f<<14)|(0x7f); */ b = b<<7; a |= b; s = s>>18; *v = ((u64)s)<<32 | a; return 5; } /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ s = s<<7; s |= b; /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ p++; b = b<<14; b |= *p; /* b: p1<<28 | p3<<14 | p5 (unmasked) */ if (!(b&0x80)) { /* we can skip this cause it was (effectively) done above in calc'ing s */ /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ a &= SLOT_2_0; a = a<<7; a |= b; s = s>>18; *v = ((u64)s)<<32 | a; return 6; } p++; a = a<<14; a |= *p; /* a: p2<<28 | p4<<14 | p6 (unmasked) */ if (!(a&0x80)) { a &= SLOT_4_2_0; b &= SLOT_2_0; b = b<<7; a |= b; s = s>>11; *v = ((u64)s)<<32 | a; return 7; } /* CSE2 from below */ a &= SLOT_2_0; p++; b = b<<14; b |= *p; /* b: p3<<28 | p5<<14 | p7 (unmasked) */ if (!(b&0x80)) { b &= SLOT_4_2_0; /* moved CSE2 up */ /* a &= (0x7f<<14)|(0x7f); */ a = a<<7; a |= b; s = s>>4; *v = ((u64)s)<<32 | a; return 8; } p++; a = a<<15; a |= *p; /* a: p4<<29 | p6<<15 | p8 (unmasked) */ /* moved CSE2 up */ /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ b &= SLOT_2_0; b = b<<8; a |= b; s = s<<4; b = p[-4]; b &= 0x7f; b = b>>3; s |= b; *v = ((u64)s)<<32 | a; return 9; } /* ** Read a 32-bit variable-length integer from memory starting at p[0]. ** Return the number of bytes read. The value is stored in *v. ** ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned ** integer, then set *v to 0xffffffff. ** ** A MACRO version, getVarint32, is provided which inlines the ** single-byte case. All code should use the MACRO version as ** this function assumes the single-byte case has already been handled. */ u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ u32 a,b; /* The 1-byte case. Overwhelmingly the most common. Handled inline ** by the getVarin32() macro */ a = *p; /* a: p0 (unmasked) */ #ifndef getVarint32 if (!(a&0x80)) { /* Values between 0 and 127 */ *v = a; return 1; } #endif /* The 2-byte case */ p++; b = *p; /* b: p1 (unmasked) */ if (!(b&0x80)) { /* Values between 128 and 16383 */ a &= 0x7f; a = a<<7; *v = a | b; return 2; } /* The 3-byte case */ p++; a = a<<14; a |= *p; /* a: p0<<14 | p2 (unmasked) */ if (!(a&0x80)) { /* Values between 16384 and 2097151 */ a &= (0x7f<<14)|(0x7f); b &= 0x7f; b = b<<7; *v = a | b; return 3; } /* A 32-bit varint is used to store size information in btrees. ** Objects are rarely larger than 2MiB limit of a 3-byte varint. ** A 3-byte varint is sufficient, for example, to record the size ** of a 1048569-byte BLOB or string. ** ** We only unroll the first 1-, 2-, and 3- byte cases. The very ** rare larger cases can be handled by the slower 64-bit varint ** routine. */ #if 1 { u64 v64; u8 n; p -= 2; n = sqlite3GetVarint(p, &v64); assert( n>3 && n<=9 ); if( (v64 & SQLITE_MAX_U32)!=v64 ){ *v = 0xffffffff; }else{ *v = (u32)v64; } return n; } #else /* For following code (kept for historical record only) shows an ** unrolling for the 3- and 4-byte varint cases. This code is ** slightly faster, but it is also larger and much harder to test. */ p++; b = b<<14; b |= *p; /* b: p1<<14 | p3 (unmasked) */ if (!(b&0x80)) { /* Values between 2097152 and 268435455 */ b &= (0x7f<<14)|(0x7f); a &= (0x7f<<14)|(0x7f); a = a<<7; *v = a | b; return 4; } p++; a = a<<14; a |= *p; /* a: p0<<28 | p2<<14 | p4 (unmasked) */ if (!(a&0x80)) { /* Values between 268435456 and 34359738367 */ a &= SLOT_4_2_0; b &= SLOT_4_2_0; b = b<<7; *v = a | b; return 5; } /* We can only reach this point when reading a corrupt database ** file. In that case we are not in any hurry. Use the (relatively ** slow) general-purpose sqlite3GetVarint() routine to extract the ** value. */ { u64 v64; u8 n; p -= 4; n = sqlite3GetVarint(p, &v64); assert( n>5 && n<=9 ); *v = (u32)v64; return n; } #endif } /* ** Return the number of bytes that will be needed to store the given ** 64-bit integer. */ int sqlite3VarintLen(u64 v){ int i = 0; do{ i++; v >>= 7; }while( v!=0 && ALWAYS(i<9) ); return i; } /* ** Read or write a four-byte big-endian integer value. */ u32 sqlite3Get4byte(const u8 *p){ return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; } void sqlite3Put4byte(unsigned char *p, u32 v){ p[0] = (u8)(v>>24); p[1] = (u8)(v>>16); p[2] = (u8)(v>>8); p[3] = (u8)v; } /* ** Translate a single byte of Hex into an integer. ** This routine only works if h really is a valid hexadecimal ** character: 0..9a..fA..F */ u8 sqlite3HexToInt(int h){ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); #ifdef SQLITE_ASCII h += 9*(1&(h>>6)); #endif #ifdef SQLITE_EBCDIC h += 9*(1&~(h>>4)); #endif return (u8)(h & 0xf); } #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) /* ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary ** value. Return a pointer to its binary value. Space to hold the ** binary value has been obtained from malloc and must be freed by ** the calling routine. */ void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ char *zBlob; int i; zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); n--; if( zBlob ){ for(i=0; imagic; if( magic!=SQLITE_MAGIC_OPEN ){ if( sqlite3SafetyCheckSickOrOk(db) ){ testcase( sqlite3GlobalConfig.xLog!=0 ); logBadConnection("unopened"); } return 0; }else{ return 1; } } int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ u32 magic; magic = db->magic; if( magic!=SQLITE_MAGIC_SICK && magic!=SQLITE_MAGIC_OPEN && magic!=SQLITE_MAGIC_BUSY ){ testcase( sqlite3GlobalConfig.xLog!=0 ); logBadConnection("invalid"); return 0; }else{ return 1; } } /* ** Attempt to add, substract, or multiply the 64-bit signed value iB against ** the other 64-bit signed integer at *pA and store the result in *pA. ** Return 0 on success. Or if the operation would have resulted in an ** overflow, leave *pA unchanged and return 1. */ int sqlite3AddInt64(i64 *pA, i64 iB){ i64 iA = *pA; testcase( iA==0 ); testcase( iA==1 ); testcase( iB==-1 ); testcase( iB==0 ); if( iB>=0 ){ testcase( iA>0 && LARGEST_INT64 - iA == iB ); testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; *pA += iB; }else{ testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; *pA += iB; } return 0; } int sqlite3SubInt64(i64 *pA, i64 iB){ testcase( iB==SMALLEST_INT64+1 ); if( iB==SMALLEST_INT64 ){ testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); if( (*pA)>=0 ) return 1; *pA -= iB; return 0; }else{ return sqlite3AddInt64(pA, -iB); } } #define TWOPOWER32 (((i64)1)<<32) #define TWOPOWER31 (((i64)1)<<31) int sqlite3MulInt64(i64 *pA, i64 iB){ i64 iA = *pA; i64 iA1, iA0, iB1, iB0, r; iA1 = iA/TWOPOWER32; iA0 = iA % TWOPOWER32; iB1 = iB/TWOPOWER32; iB0 = iB % TWOPOWER32; if( iA1*iB1 != 0 ) return 1; assert( iA1*iB0==0 || iA0*iB1==0 ); r = iA1*iB0 + iA0*iB1; testcase( r==(-TWOPOWER31)-1 ); testcase( r==(-TWOPOWER31) ); testcase( r==TWOPOWER31 ); testcase( r==TWOPOWER31-1 ); if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; r *= TWOPOWER32; if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; *pA = r; return 0; } /* ** Compute the absolute value of a 32-bit signed integer, of possible. Or ** if the integer has a value of -2147483648, return +2147483647 */ int sqlite3AbsInt32(int x){ if( x>=0 ) return x; if( x==(int)0x80000000 ) return 0x7fffffff; return -x; } #ifdef SQLITE_ENABLE_8_3_NAMES /* ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than ** three characters, then shorten the suffix on z[] to be the last three ** characters of the original suffix. ** ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always ** do the suffix shortening regardless of URI parameter. ** ** Examples: ** ** test.db-journal => test.nal ** test.db-wal => test.wal ** test.db-shm => test.shm ** test.db-mj7f3319fa => test.9fa */ void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ #if SQLITE_ENABLE_8_3_NAMES<2 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) #endif { int i, sz; sz = sqlite3Strlen30(z); for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); } } #endif