/* ** 2013 Jan 11 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the virtual table interfaces. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** The FS virtual table is created as follows: ** ** CREATE VIRTUAL TABLE tbl USING fs(idx); ** ** where idx is the name of a table in the db with 2 columns. The virtual ** table also has two columns - file path and file contents. ** ** The first column of table idx must be an IPK, and the second contains file ** paths. For example: ** ** CREATE TABLE idx(id INTEGER PRIMARY KEY, path TEXT); ** INSERT INTO idx VALUES(4, '/etc/passwd'); ** ** Adding the row to the idx table automatically creates a row in the ** virtual table with rowid=4, path=/etc/passwd and a text field that ** contains data read from file /etc/passwd on disk. */ #include "sqliteInt.h" #include "tcl.h" #include #include #include #include #include #if SQLITE_OS_UNIX # include #endif #if SQLITE_OS_WIN # include #endif #ifndef SQLITE_OMIT_VIRTUALTABLE typedef struct fs_vtab fs_vtab; typedef struct fs_cursor fs_cursor; /* ** A fs virtual-table object */ struct fs_vtab { sqlite3_vtab base; sqlite3 *db; char *zDb; /* Name of db containing zTbl */ char *zTbl; /* Name of docid->file map table */ }; /* A fs cursor object */ struct fs_cursor { sqlite3_vtab_cursor base; sqlite3_stmt *pStmt; char *zBuf; int nBuf; int nAlloc; }; /* ** This function is the implementation of both the xConnect and xCreate ** methods of the fs virtual table. ** ** The argv[] array contains the following: ** ** argv[0] -> module name ("fs") ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> other module argument fields. */ static int fsConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ fs_vtab *pVtab; int nByte; const char *zTbl; const char *zDb = argv[1]; if( argc!=4 ){ *pzErr = sqlite3_mprintf("wrong number of arguments"); return SQLITE_ERROR; } zTbl = argv[3]; nByte = sizeof(fs_vtab) + (int)strlen(zTbl) + 1 + (int)strlen(zDb) + 1; pVtab = (fs_vtab *)sqlite3MallocZero( nByte ); if( !pVtab ) return SQLITE_NOMEM; pVtab->zTbl = (char *)&pVtab[1]; pVtab->zDb = &pVtab->zTbl[strlen(zTbl)+1]; pVtab->db = db; memcpy(pVtab->zTbl, zTbl, strlen(zTbl)); memcpy(pVtab->zDb, zDb, strlen(zDb)); *ppVtab = &pVtab->base; sqlite3_declare_vtab(db, "CREATE TABLE xyz(path TEXT, data TEXT)"); return SQLITE_OK; } /* Note that for this virtual table, the xCreate and xConnect ** methods are identical. */ static int fsDisconnect(sqlite3_vtab *pVtab){ sqlite3_free(pVtab); return SQLITE_OK; } /* The xDisconnect and xDestroy methods are also the same */ /* ** Open a new fs cursor. */ static int fsOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ fs_cursor *pCur; pCur = sqlite3MallocZero(sizeof(fs_cursor)); *ppCursor = &pCur->base; return SQLITE_OK; } /* ** Close a fs cursor. */ static int fsClose(sqlite3_vtab_cursor *cur){ fs_cursor *pCur = (fs_cursor *)cur; sqlite3_finalize(pCur->pStmt); sqlite3_free(pCur->zBuf); sqlite3_free(pCur); return SQLITE_OK; } static int fsNext(sqlite3_vtab_cursor *cur){ fs_cursor *pCur = (fs_cursor *)cur; int rc; rc = sqlite3_step(pCur->pStmt); if( rc==SQLITE_ROW || rc==SQLITE_DONE ) rc = SQLITE_OK; return rc; } static int fsFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ int rc; fs_cursor *pCur = (fs_cursor *)pVtabCursor; fs_vtab *p = (fs_vtab *)(pVtabCursor->pVtab); assert( (idxNum==0 && argc==0) || (idxNum==1 && argc==1) ); if( idxNum==1 ){ char *zStmt = sqlite3_mprintf( "SELECT * FROM %Q.%Q WHERE rowid=?", p->zDb, p->zTbl); if( !zStmt ) return SQLITE_NOMEM; rc = sqlite3_prepare_v2(p->db, zStmt, -1, &pCur->pStmt, 0); sqlite3_free(zStmt); if( rc==SQLITE_OK ){ sqlite3_bind_value(pCur->pStmt, 1, argv[0]); } }else{ char *zStmt = sqlite3_mprintf("SELECT * FROM %Q.%Q", p->zDb, p->zTbl); if( !zStmt ) return SQLITE_NOMEM; rc = sqlite3_prepare_v2(p->db, zStmt, -1, &pCur->pStmt, 0); sqlite3_free(zStmt); } if( rc==SQLITE_OK ){ rc = fsNext(pVtabCursor); } return rc; } static int fsColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ fs_cursor *pCur = (fs_cursor*)cur; assert( i==0 || i==1 ); if( i==0 ){ sqlite3_result_value(ctx, sqlite3_column_value(pCur->pStmt, 0)); }else{ const char *zFile = (const char *)sqlite3_column_text(pCur->pStmt, 1); struct stat sbuf; int fd; int n; fd = open(zFile, O_RDONLY); if( fd<0 ) return SQLITE_IOERR; fstat(fd, &sbuf); if( sbuf.st_size>=pCur->nAlloc ){ int nNew = sbuf.st_size*2; char *zNew; if( nNew<1024 ) nNew = 1024; zNew = sqlite3Realloc(pCur->zBuf, nNew); if( zNew==0 ){ close(fd); return SQLITE_NOMEM; } pCur->zBuf = zNew; pCur->nAlloc = nNew; } n = (int)read(fd, pCur->zBuf, sbuf.st_size); close(fd); if( n!=sbuf.st_size ) return SQLITE_ERROR; pCur->nBuf = sbuf.st_size; pCur->zBuf[pCur->nBuf] = '\0'; sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT); } return SQLITE_OK; } static int fsRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ fs_cursor *pCur = (fs_cursor*)cur; *pRowid = sqlite3_column_int64(pCur->pStmt, 0); return SQLITE_OK; } static int fsEof(sqlite3_vtab_cursor *cur){ fs_cursor *pCur = (fs_cursor*)cur; return (sqlite3_data_count(pCur->pStmt)==0); } static int fsBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ int ii; for(ii=0; iinConstraint; ii++){ struct sqlite3_index_constraint const *pCons = &pIdxInfo->aConstraint[ii]; if( pCons->iColumn<0 && pCons->usable && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ ){ struct sqlite3_index_constraint_usage *pUsage; pUsage = &pIdxInfo->aConstraintUsage[ii]; pUsage->omit = 0; pUsage->argvIndex = 1; pIdxInfo->idxNum = 1; pIdxInfo->estimatedCost = 1.0; break; } } return SQLITE_OK; } /* ** A virtual table module that provides read-only access to a ** Tcl global variable namespace. */ static sqlite3_module fsModule = { 0, /* iVersion */ fsConnect, fsConnect, fsBestIndex, fsDisconnect, fsDisconnect, fsOpen, /* xOpen - open a cursor */ fsClose, /* xClose - close a cursor */ fsFilter, /* xFilter - configure scan constraints */ fsNext, /* xNext - advance a cursor */ fsEof, /* xEof - check for end of scan */ fsColumn, /* xColumn - read data */ fsRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ }; /* ** Decode a pointer to an sqlite3 object. */ extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb); /* ** Register the echo virtual table module. */ static int register_fs_module( ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ sqlite3 *db; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3_create_module(db, "fs", &fsModule, (void *)interp); #endif return TCL_OK; } #endif /* ** Register commands with the TCL interpreter. */ int Sqlitetestfs_Init(Tcl_Interp *interp){ #ifndef SQLITE_OMIT_VIRTUALTABLE static struct { char *zName; Tcl_ObjCmdProc *xProc; void *clientData; } aObjCmd[] = { { "register_fs_module", register_fs_module, 0 }, }; int i; for(i=0; i