/* ** 2005 December 14 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains an example implementation of an asynchronous IO ** backend for SQLite. It is used to test that the concept of asynchronous ** IO in SQLite is valid. */ #include "sqliteInt.h" #include "os.h" #define MIN(x,y) ((x)<(y)?(x):(y)) #define MAX(x,y) ((x)>(y)?(x):(y)) typedef struct AsyncWrite AsyncWrite; typedef struct AsyncFile AsyncFile; /* ** TODO: ** * File locks... */ /* ** THREAD SAFETY NOTES ** ** Basic rules: ** ** * Both read and write access to the global write-op queue must be ** protected by the sqlite3Os mutex functions. ** * The file handles from the underlying system are assumed not to ** be thread safe. ** * See the last paragraph under "sqlite3_async_flush() Threads" for ** an assumption to do with file-handle synchronization by the Os. ** ** File system operations (invoked by SQLite thread): ** ** xOpenXXX (three versions) ** xDelete ** xFileExists ** ** Todo: ** xSyncDirectory ** ** File handle operations (invoked by SQLite thread): ** ** The following operations add an entry to the global write-op list. They ** prepare the entry, aquire the mutex momentarily while list pointers are ** manipulated to insert the new entry, and release the mutex. ** ** asyncWrite, asyncClose, asyncTruncate, asyncSync, ** asyncSetFullSync, asyncOpenDirectory. ** ** Read operations. Both of these read from both the underlying file and ** the write-op list. So we grab the mutex for the whole call (even ** while performing a blocking read on the file). ** ** asyncRead, asyncFileSize. ** ** These locking primitives become no-ops. Files are always opened for ** exclusive access when using this IO backend: ** ** asyncLock, asyncUnlock, asyncLockState, asyncCheckReservedLock ** ** The sqlite3OsFileHandle() function is currently only used when ** debugging the pager module. Unless sqlite3OsClose() is called on the ** file (shouldn't be possible for other reasons), the underlying ** implementations are safe to call without grabbing any mutex. So we just ** go ahead and call it no matter what any other thread is doing. ** ** asyncFileHandle. ** ** Calling this method just manipulates the AsyncFile.iOffset variable. ** Since this variable is never accessed by an sqlite3_async_flush() thread, ** this function does not require the mutex. Actual calls to OsSeek() take ** place just before OsWrite() or OsRead(), which are always protected by ** the mutex. ** ** asyncSeek. ** ** sqlite3_async_flush() (any thread): ** ** A pseudo-mutex (a global boolean variable) is used to make sure only ** one thread is inside the sqlite3_async_flush() thread at any one time. ** If the variable is set when a thread enters _flush(), then it ** immediately returns SQLITE_BUSY. Otherwise, it sets the variable, ** executes the body of the function, and clears the variable just before ** returning. Both read and write access to said global variable ** (sqlite3_asyncIoBusy) is protected by sqlite3Os mutex, of course. ** ** Inside sqlite3_async_flush() is a loop that works like this: ** ** WHILE (write-op list is not empty) ** Do IO operation at head of write-op list ** Remove entry from head of write-op list ** END WHILE ** ** The mutex is always obtained during the ** test, and when the entry is removed from the head of the write-op ** list. Sometimes it is held for the interim period (while the IO is ** performed), and sometimes it is relinquished. It is relinquished if ** (a) the IO op is an ASYNC_CLOSE or (b) when the file handle was ** opened, two of the underlying systems handles were opened on the ** same file-system entry. ** ** If condition (b) above is true, then one file-handle ** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the ** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush() ** threads to perform write() operations. This means that read ** operations are not blocked by asynchronous writes (although ** asynchronous writes may still be blocked by reads). ** ** This assumes that the OS keeps two handles open on the same file ** properly in sync. That is, any read operation that starts after a ** write operation on the same file system entry has completed returns ** data consistent with the write. We also assume that if one thread ** reads a file while another is writing it all bytes other than the ** ones actually being written contain valid data. ** ** If the above assumptions are not true, set the preprocessor symbol ** SQLITE_ASYNC_TWO_FILEHANDLES to 0. */ #ifndef SQLITE_ASYNC_TWO_FILEHANDLES /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */ #define SQLITE_ASYNC_TWO_FILEHANDLES 1 #endif /* ** First and last elements of the global write-op list. ** ** Whenever an OsWrite(), OsSync(), OsTrunc() or OsClose() operation is ** requested, instead of performing the file IO immediately, a new AsyncWrite ** structure is allocated and added to the global linked list that starts at ** sqlite3_asyncListFirst. The next time to sqlite3_async_flush() is called, ** all operations are realised and the list elements deleted. */ static AsyncWrite *sqlite3_asyncListFirst = 0; static AsyncWrite *sqlite3_asyncListLast = 0; /* True after an IO error has occured */ /* static int *sqlite3_asyncIoError = 0; */ /* True if some thread is currently inside sqlite3_async_flush() */ static int sqlite3_asyncIoBusy = 0; /* Possible values of AsyncWrite.op */ #define ASYNC_WRITE 1 #define ASYNC_SYNC 2 #define ASYNC_TRUNCATE 3 #define ASYNC_CLOSE 4 #define ASYNC_OPENDIRECTORY 5 #define ASYNC_SETFULLSYNC 6 #define ASYNC_DELETE 7 #define ASYNC_OPENEXCLUSIVE 8 #define ASYNC_SYNCDIRECTORY 9 /* ** The interpretation of the iOffset and nByte variables varies depending ** on the value of AsyncWrite.op: ** ** ASYNC_WRITE: ** iOffset -> Offset in file to write to. ** nByte -> Number of bytes of data to write (pointed to by zBuf). ** ** ASYNC_SYNC: ** iOffset -> Unused. ** nByte -> Value of "fullsync" flag to pass to sqlite3OsSync(). ** ** ASYNC_TRUNCATE: ** iOffset -> Size to truncate file to. ** nByte -> Unused. ** ** ASYNC_CLOSE: ** iOffset -> Unused. ** nByte -> Unused. ** ** ASYNC_OPENDIRECTORY: ** iOffset -> Unused. ** nByte -> Number of bytes of zBuf points to (directory name). ** ** ASYNC_SETFULLSYNC: ** iOffset -> Unused. ** nByte -> New value for the full-sync flag. ** ** ** ASYNC_DELETE: ** iOffset -> Unused. ** nByte -> Number of bytes of zBuf points to (file name). ** ** ASYNC_OPENEXCLUSIVE: ** iOffset -> Value of "delflag". ** nByte -> Number of bytes of zBuf points to (file name). ** ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file. ** This space is sqliteMalloc()d along with the AsyncWrite structure in a ** single blob, so is deleted when sqliteFree() is called on the parent ** structure. */ struct AsyncWrite { AsyncFile *pFile; /* File to write data to or sync */ int op; /* One of ASYNC_xxx etc. */ i64 iOffset; /* See above */ int nByte; /* See above */ char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */ AsyncWrite *pNext; /* Next write operation (to any file) */ }; /* ** The AsyncFile structure is a subclass of OsFile used for asynchronous IO. */ struct AsyncFile { IoMethod *pMethod; /* Must be first */ i64 iOffset; /* Current seek() offset in file */ OsFile *pBaseRead; /* Read handle to the underlying Os file */ OsFile *pBaseWrite; /* Write handle to the underlying Os file */ }; /* ** Add an entry to the end of the global write-op list. pWrite should point ** to an AsyncWrite structure allocated using sqliteMalloc(). A future call ** to sqlite3_async_flush() is responsible for calling sqliteFree(). ** ** Once an AsyncWrite structure has been added to the list, it must not be ** read or modified by the caller (in case another thread calls ** sqlite3_async_flush() ). */ static void addAsyncWrite(AsyncWrite *pWrite){ sqlite3Os.xEnterMutex(); assert( !pWrite->pNext ); if( sqlite3_asyncListLast ){ assert( sqlite3_asyncListFirst ); sqlite3_asyncListLast->pNext = pWrite; }else{ sqlite3_asyncListFirst = pWrite; } sqlite3_asyncListLast = pWrite; sqlite3Os.xLeaveMutex(); } /* ** The caller should already hold the mutex when this is called. */ static void removeAsyncWrite(AsyncWrite *p){ assert( p==sqlite3_asyncListFirst ); assert( sqlite3_asyncListLast ); if( sqlite3_asyncListFirst==sqlite3_asyncListLast ){ assert( !sqlite3_asyncListFirst->pNext ); sqlite3_asyncListLast = 0; } sqlite3_asyncListFirst = sqlite3_asyncListFirst->pNext; } /* ** This is a utility function to allocate and populate a new AsyncWrite ** structure and insert it (via addAsyncWrite() ) into the global list. */ static int addNewAsyncWrite( AsyncFile *pFile, int op, i64 iOffset, int nByte, const char *zByte ){ AsyncWrite *p = sqlite3Os.xMalloc(sizeof(AsyncWrite) + (zByte?nByte:0)); if( !p ){ return SQLITE_NOMEM; } p->op = op; p->iOffset = iOffset; p->nByte = nByte; p->pFile = pFile; p->pNext = 0; if( zByte ){ p->zBuf = (char *)&p[1]; memcpy(p->zBuf, zByte, nByte); }else{ p->zBuf = 0; } addAsyncWrite(p); return SQLITE_OK; } /* ** Close the file. This just adds an entry to the write-op list, the file is ** not actually closed. */ static int asyncClose(OsFile **pId){ return addNewAsyncWrite((AsyncFile *)*pId, ASYNC_CLOSE, 0, 0, 0); } /* ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of ** writing to the underlying file, this function adds an entry to the end of ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be ** returned. */ static int asyncWrite(OsFile *id, const void *pBuf, int amt){ AsyncFile *pFile = (AsyncFile *)id; int rc = addNewAsyncWrite(pFile, ASYNC_WRITE, pFile->iOffset, amt, pBuf); pFile->iOffset += (i64)amt; return rc; } /* ** Truncate the file to nByte bytes in length. This just adds an entry to ** the write-op list, no IO actually takes place. */ static int asyncTruncate(OsFile *id, i64 nByte){ return addNewAsyncWrite((AsyncFile *)id, ASYNC_TRUNCATE, nByte, 0, 0); } /* ** Open the directory identified by zName and associate it with the ** specified file. This just adds an entry to the write-op list, the ** directory is opened later by sqlite3_async_flush(). */ static int asyncOpenDirectory(OsFile *id, const char *zName){ AsyncFile *pFile = (AsyncFile *)id; return addNewAsyncWrite(pFile, ASYNC_OPENDIRECTORY, 0, strlen(zName)+1,zName); } /* ** Sync the file. This just adds an entry to the write-op list, the ** sync() is done later by sqlite3_async_flush(). */ static int asyncSync(OsFile *id, int fullsync){ return addNewAsyncWrite((AsyncFile *)id, ASYNC_SYNC, 0, fullsync, 0); } /* ** Set (or clear) the full-sync flag on the underlying file. This operation ** is queued and performed later by sqlite3_async_flush(). */ static void asyncSetFullSync(OsFile *id, int value){ addNewAsyncWrite((AsyncFile *)id, ASYNC_SETFULLSYNC, 0, value, 0); } /* ** Read data from the file. First we read from the filesystem, then adjust ** the contents of the buffer based on ASYNC_WRITE operations in the ** write-op queue. Todo: Do we need to think about ASYNC_TRUNCATE in ** this method as well? ** ** This method holds the mutex from start to finish. */ static int asyncRead(OsFile *id, void *obuf, int amt){ int rc = SQLITE_OK; i64 filesize; int nRead; AsyncFile *pFile = (AsyncFile *)id; /* Grab the mutex for the duration of the call */ sqlite3Os.xEnterMutex(); if( pFile->pBaseRead ){ rc = sqlite3OsFileSize(pFile->pBaseRead, &filesize); if( rc!=SQLITE_OK ){ goto asyncread_out; } rc = sqlite3OsSeek(pFile->pBaseRead, pFile->iOffset); if( rc!=SQLITE_OK ){ goto asyncread_out; } nRead = MIN(filesize - pFile->iOffset, amt); if( nRead>0 ){ rc = sqlite3OsRead(((AsyncFile *)id)->pBaseRead, obuf, nRead); } } if( rc==SQLITE_OK ){ AsyncWrite *p; i64 iOffset = pFile->iOffset; /* Current seek offset */ for(p=sqlite3_asyncListFirst; p; p = p->pNext){ if( p->pFile==pFile && p->op==ASYNC_WRITE ){ int iBeginIn = (p->iOffset - iOffset); int iBeginOut = (iOffset - p->iOffset); int nCopy; if( iBeginIn<0 ) iBeginIn = 0; if( iBeginOut<0 ) iBeginOut = 0; nCopy = MIN(p->nByte-iBeginIn, amt-iBeginOut); if( nCopy>0 ){ memcpy(&((char *)obuf)[iBeginOut], &p->zBuf[iBeginIn], nCopy); } } } pFile->iOffset += (i64)amt; } asyncread_out: sqlite3Os.xLeaveMutex(); return rc; } /* ** Seek to the specified offset. This just adjusts the AsyncFile.iOffset ** variable - calling seek() on the underlying file is defered until the ** next read() or write() operation. */ static int asyncSeek(OsFile *id, i64 offset){ AsyncFile *pFile = (AsyncFile *)id; pFile->iOffset = offset; return SQLITE_OK; } /* ** Read the size of the file. First we read the size of the file system ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations ** currently in the write-op list. ** ** This method holds the mutex from start to finish. */ int asyncFileSize(OsFile *id, i64 *pSize){ int rc = SQLITE_OK; i64 s = 0; OsFile *pBase; sqlite3Os.xEnterMutex(); /* Read the filesystem size from the base file. If pBaseRead is NULL, this ** means the file hasn't been opened yet. In this case all relevant data ** must be in the write-op queue anyway, so we can omit reading from the ** file-system. */ pBase = ((AsyncFile *)id)->pBaseRead; if( pBase ){ rc = sqlite3OsFileSize(pBase, &s); } if( rc==SQLITE_OK ){ AsyncWrite *p; for(p=sqlite3_asyncListFirst; p; p = p->pNext){ if( p->pFile==(AsyncFile *)id ){ switch( p->op ){ case ASYNC_WRITE: s = MAX(p->iOffset + (i64)(p->nByte), s); break; case ASYNC_TRUNCATE: s = MIN(s, p->nByte); break; } } } *pSize = s; } sqlite3Os.xLeaveMutex(); return rc; } /* ** Return the operating system file handle. This is only used for debugging ** at the moment anyway. */ static int asyncFileHandle(OsFile *id){ return sqlite3OsFileHandle(((AsyncFile *)id)->pBaseRead); } static int asyncLock(OsFile *id, int lockType){ return SQLITE_OK; } static int asyncUnlock(OsFile *id, int lockType){ return SQLITE_OK; } /* ** This function is called when the pager layer first opens a database file ** and is checking for a hot-journal. */ static int asyncCheckReservedLock(OsFile *id){ return SQLITE_OK; } /* ** This is broken. But sqlite3OsLockState() is only used for testing anyway. */ static int asyncLockState(OsFile *id){ return SQLITE_OK; } /* ** The three file-open functions for the underlying file system layer. */ static int (*xOrigOpenReadWrite)(const char*, OsFile**, int*) = 0; static int (*xOrigOpenExclusive)(const char*, OsFile**, int) = 0; static int (*xOrigOpenReadOnly)(const char*, OsFile**) = 0; /* ** Pointers to the original versions of other overridden file-system ** operations. */ static int (*xOrigDelete)(const char*) = 0; static int (*xOrigFileExists)(const char*) = 0; static int (*xOrigSyncDirectory)(const char*) = 0; static int asyncOpenFile( const char *zName, OsFile **pFile, OsFile *pBaseRead, int openSecondFile ){ int rc; AsyncFile *p; OsFile *pBaseWrite = 0; static IoMethod iomethod = { asyncClose, asyncOpenDirectory, asyncRead, asyncWrite, asyncSeek, asyncTruncate, asyncSync, asyncSetFullSync, asyncFileHandle, asyncFileSize, asyncLock, asyncUnlock, asyncLockState, asyncCheckReservedLock }; if( openSecondFile && SQLITE_ASYNC_TWO_FILEHANDLES ){ int dummy; rc = xOrigOpenReadWrite(zName, &pBaseWrite, &dummy); if( rc!=SQLITE_OK ){ goto error_out; } } p = (AsyncFile *)sqlite3Os.xMalloc(sizeof(AsyncFile)); if( !p ){ rc = SQLITE_NOMEM; goto error_out; } memset(p, 0, sizeof(AsyncFile)); p->pMethod = &iomethod; p->pBaseRead = pBaseRead; p->pBaseWrite = pBaseWrite; *pFile = (OsFile *)p; return SQLITE_OK; error_out: assert(!p); sqlite3OsClose(&pBaseRead); sqlite3OsClose(&pBaseWrite); *pFile = 0; return rc; } /* ** The async-IO backends implementation of the three functions used to open ** a file (xOpenExclusive, xOpenReadWrite and xOpenReadOnly). Most of the ** work is done in function asyncOpenFile() - see above. */ static int asyncOpenExclusive(const char *z, OsFile **ppFile, int delFlag){ int rc = asyncOpenFile(z, ppFile, 0, 0); if( rc==SQLITE_OK ){ AsyncFile *pFile = (AsyncFile *)(*ppFile); int nByte = strlen(z)+1; i64 i = (i64)(delFlag); rc = addNewAsyncWrite(pFile, ASYNC_OPENEXCLUSIVE, i, nByte, z); if( rc!=SQLITE_OK ){ sqlite3Os.xFree(pFile); *ppFile = 0; } } return rc; } static int asyncOpenReadOnly(const char *z, OsFile **ppFile){ OsFile *pBase = 0; int rc = xOrigOpenReadOnly(z, &pBase); if( rc==SQLITE_OK ){ rc = asyncOpenFile(z, ppFile, pBase, 0); } return rc; } static int asyncOpenReadWrite(const char *z, OsFile **ppFile, int *pReadOnly){ OsFile *pBase = 0; int rc = xOrigOpenReadWrite(z, &pBase, pReadOnly); if( rc==SQLITE_OK ){ rc = asyncOpenFile(z, ppFile, pBase, (*pReadOnly ? 0 : 1)); } return rc; } /* ** Implementation of sqlite3Os.xDelete. Add an entry to the end of the ** write-op queue to perform the delete. */ static int asyncDelete(const char *z){ return addNewAsyncWrite(0, ASYNC_DELETE, 0, strlen(z)+1, z); } /* ** Implementation of sqlite3Os.xDelete. Add an entry to the end of the ** write-op queue to perform the delete. */ static int asyncSyncDirectory(const char *z){ return addNewAsyncWrite(0, ASYNC_SYNCDIRECTORY, 0, strlen(z)+1, z); } /* ** Implementation of sqlite3Os.xFileExists. Return true if file 'z' exists ** in the file system. ** ** This method holds the mutex from start to finish. */ static int asyncFileExists(const char *z){ int ret; AsyncWrite *p; sqlite3Os.xEnterMutex(); /* See if the real file system contains the specified file. */ ret = xOrigFileExists(z); for(p=sqlite3_asyncListFirst; p; p = p->pNext){ if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, z) ){ ret = 0; }else if( p->op==ASYNC_OPENEXCLUSIVE && 0==strcmp(p->zBuf, z) ){ ret = 1; } } sqlite3Os.xLeaveMutex(); return ret; } /* ** The following routine is one of two exported symbols in this module (along ** with sqlite3_async_flush(), see below). This routine should be called ** once to enable the asynchronous IO features implemented in this file. If ** the features are successfully enabled (or if they have already been ** enabled) then SQLITE_OK is returned. Otherwise, SQLITE_MISUSE. */ int sqlite3_async_enable(void){ if( xOrigOpenReadWrite==0 ){ xOrigOpenReadWrite = sqlite3Os.xOpenReadWrite; xOrigOpenReadOnly = sqlite3Os.xOpenReadOnly; xOrigOpenExclusive = sqlite3Os.xOpenExclusive; xOrigDelete = sqlite3Os.xDelete; xOrigFileExists = sqlite3Os.xFileExists; xOrigSyncDirectory = sqlite3Os.xSyncDirectory; sqlite3Os.xOpenReadWrite = asyncOpenReadWrite; sqlite3Os.xOpenReadOnly = asyncOpenReadOnly; sqlite3Os.xOpenExclusive = asyncOpenExclusive; sqlite3Os.xDelete = asyncDelete; sqlite3Os.xFileExists = asyncFileExists; sqlite3Os.xSyncDirectory = asyncSyncDirectory; } return SQLITE_OK; } /* ** This function is called externally to perform queued write and sync ** operations. It returns when an IO error occurs or there are no more queued ** operations to perform. */ int sqlite3_async_flush(void){ AsyncWrite *p = 0; int rc = SQLITE_OK; /* Grab the mutex and set the sqlite3_asyncIoBusy flag to make sure this ** is the only thread performing an sqlite3_async_flush() at this time. ** Or, if some other thread is already inside this function, return ** SQLITE_BUSY to the caller. */ sqlite3Os.xEnterMutex(); if( sqlite3_asyncIoBusy ){ sqlite3Os.xLeaveMutex(); return SQLITE_BUSY; } sqlite3_asyncIoBusy = 1; while( (p = sqlite3_asyncListFirst) && rc==SQLITE_OK ){ int isInsideMutex = 1; /* Right now this thread is holding the global mutex. Variable 'p' points ** to the first entry in the write-op queue. In the general case, we ** hold on to the mutex for the entire body of the loop. ** ** However in the cases enumerated below, we relinquish the mutex, ** perform the IO, and then re-request the mutex before removing 'p' from ** the head of the write-op queue. The idea is to increase concurrency with ** sqlite threads. ** ** * An ASYNC_CLOSE operation. ** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish ** the mutex, call the underlying xOpenExclusive() function, then ** re-aquire the mutex before seting the AsyncFile.pBaseRead ** variable. ** * ASYNC_SYNC and ASYNC_WRITE operations, if ** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two ** file-handles are open for the particular file being "synced". */ OsFile *pBase = 0; if( p->pFile ){ pBase = p->pFile->pBaseWrite; if( p->op==ASYNC_CLOSE || p->op==ASYNC_OPENEXCLUSIVE || (pBase && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) ) ){ sqlite3Os.xLeaveMutex(); isInsideMutex = 0; } if( !pBase ){ pBase = p->pFile->pBaseRead; } } switch( p->op ){ case ASYNC_WRITE: assert( pBase ); rc = sqlite3OsSeek(pBase, p->iOffset); if( rc==SQLITE_OK ){ rc = sqlite3OsWrite(pBase, (const void *)(p->zBuf), p->nByte); } break; case ASYNC_SYNC: assert( pBase ); rc = sqlite3OsSync(pBase, p->nByte); break; case ASYNC_TRUNCATE: assert( pBase ); rc = sqlite3OsTruncate(pBase, p->nByte); break; case ASYNC_CLOSE: sqlite3OsClose(&p->pFile->pBaseRead); sqlite3OsClose(&p->pFile->pBaseWrite); sqlite3Os.xFree(p->pFile); break; case ASYNC_OPENDIRECTORY: assert( pBase ); sqlite3OsOpenDirectory(pBase, p->zBuf); break; case ASYNC_SETFULLSYNC: assert( pBase ); sqlite3OsSetFullSync(pBase, p->nByte); break; case ASYNC_DELETE: rc = xOrigDelete(p->zBuf); break; case ASYNC_SYNCDIRECTORY: rc = xOrigSyncDirectory(p->zBuf); break; case ASYNC_OPENEXCLUSIVE: { AsyncFile *pFile = p->pFile; int delFlag = ((p->iOffset)?1:0); OsFile *pBase = 0; rc = xOrigOpenExclusive(p->zBuf, &pBase, delFlag); sqlite3Os.xEnterMutex(); isInsideMutex = 1; if( rc==SQLITE_OK ){ pFile->pBaseRead = pBase; } break; } default: assert(!"Illegal value for AsyncWrite.op"); } /* If we didn't hang on to the mutex during the IO op, obtain it now ** so that the AsyncWrite structure can be safely removed from the ** global write-op queue. */ if( !isInsideMutex ){ sqlite3Os.xEnterMutex(); } if( rc==SQLITE_OK ){ removeAsyncWrite(p); sqlite3Os.xFree(p); } } /* Clear the io-busy flag and exit the mutex */ assert( sqlite3_asyncIoBusy ); sqlite3_asyncIoBusy = 0; sqlite3Os.xLeaveMutex(); return rc; } /* ** The following code defines a Tcl interface for testing the asynchronous ** IO implementation in this file. */ #if defined(SQLITE_TEST) && defined(TCLSH) #include /* ** sqlite3_async_enable */ static int testAsyncEnable( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ if( sqlite3_async_enable() ){ Tcl_SetResult(interp, "sqlite3_async_enable() failed", TCL_STATIC); return TCL_ERROR; } return TCL_OK; } /* ** This is the main proc for a thread spawned by the Tcl command ** [sqlite3_async_flush -start]. The client data is a pointer to an integer ** variable that will be set to non-zero when this thread should exit. */ static void testAsyncFlushThread(ClientData clientData){ int *pStop = (int *)clientData; int rc = 0; /* Run in a loop until an IO error occurs or we are told to stop via ** the *pStop variable. Each iteration of the loop, call ** sqlite3_async_flush() and then sleep for a tenth of a second. */ while( !(*pStop) && !rc ){ rc = sqlite3_async_flush(); assert( rc==SQLITE_OK ); Tcl_Sleep(100); } if( rc==0 ){ rc = sqlite3_async_flush(); } Tcl_ExitThread(rc); } /* ** sqlite3_async_flush ** sqlite3_async_flush -start ** sqlite3_async_flush -stop */ static int testAsyncFlush( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ static Tcl_ThreadId thread_id = 0; static int stop = 0; assert(stop==0); if( objc!=1 && objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "?-start | -stop?"); return TCL_ERROR; } if( objc==2 ){ char *zOpt = Tcl_GetString(objv[1]); if( 0==strcmp(zOpt, "-start") ){ /* Unless it is already running, kick off the _flush() thread */ if( thread_id ){ Tcl_AppendResult(interp, "Thread has already started", 0); return TCL_ERROR; }else{ int rc = Tcl_CreateThread( &thread_id, testAsyncFlushThread, &stop, TCL_THREAD_STACK_DEFAULT, TCL_THREAD_JOINABLE ); if( rc!=TCL_OK ){ Tcl_AppendResult(interp, "Tcl_CreateThread() failed", 0); return TCL_ERROR; } } }else if( 0==strcmp(zOpt, "-stop") ){ int dummy; stop = 1; Tcl_JoinThread(thread_id, &dummy); stop = 0; thread_id = 0; }else{ Tcl_AppendResult(interp, "Invalid option: \"", zOpt, "\"", 0); return TCL_ERROR; } }else if( sqlite3_async_flush() ){ Tcl_SetResult(interp, "sqlite3_async_flush() failed", TCL_STATIC); return TCL_ERROR; } return TCL_OK; } int Sqlitetestasync_Init(Tcl_Interp *interp){ Tcl_CreateObjCommand(interp,"sqlite3_async_enable",testAsyncEnable,0,0); Tcl_CreateObjCommand(interp,"sqlite3_async_flush",testAsyncFlush,0,0); return TCL_OK; } #endif