/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements in SQLite. ** ** $Id: select.c,v 1.428 2008/04/17 19:14:02 drh Exp $ */ #include "sqliteInt.h" /* ** Delete all the content of a Select structure but do not deallocate ** the select structure itself. */ static void clearSelect(Select *p){ sqlite3ExprListDelete(p->pEList); sqlite3SrcListDelete(p->pSrc); sqlite3ExprDelete(p->pWhere); sqlite3ExprListDelete(p->pGroupBy); sqlite3ExprDelete(p->pHaving); sqlite3ExprListDelete(p->pOrderBy); sqlite3SelectDelete(p->pPrior); sqlite3ExprDelete(p->pLimit); sqlite3ExprDelete(p->pOffset); } /* ** Initialize a SelectDest structure. */ void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ pDest->eDest = eDest; pDest->iParm = iParm; pDest->affinity = 0; pDest->iMem = 0; pDest->nMem = 0; } /* ** Allocate a new Select structure and return a pointer to that ** structure. */ Select *sqlite3SelectNew( Parse *pParse, /* Parsing context */ ExprList *pEList, /* which columns to include in the result */ SrcList *pSrc, /* the FROM clause -- which tables to scan */ Expr *pWhere, /* the WHERE clause */ ExprList *pGroupBy, /* the GROUP BY clause */ Expr *pHaving, /* the HAVING clause */ ExprList *pOrderBy, /* the ORDER BY clause */ int isDistinct, /* true if the DISTINCT keyword is present */ Expr *pLimit, /* LIMIT value. NULL means not used */ Expr *pOffset /* OFFSET value. NULL means no offset */ ){ Select *pNew; Select standin; sqlite3 *db = pParse->db; pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ if( pNew==0 ){ pNew = &standin; memset(pNew, 0, sizeof(*pNew)); } if( pEList==0 ){ pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0); } pNew->pEList = pEList; pNew->pSrc = pSrc; pNew->pWhere = pWhere; pNew->pGroupBy = pGroupBy; pNew->pHaving = pHaving; pNew->pOrderBy = pOrderBy; pNew->isDistinct = isDistinct; pNew->op = TK_SELECT; assert( pOffset==0 || pLimit!=0 ); pNew->pLimit = pLimit; pNew->pOffset = pOffset; pNew->iLimit = -1; pNew->iOffset = -1; pNew->addrOpenEphm[0] = -1; pNew->addrOpenEphm[1] = -1; pNew->addrOpenEphm[2] = -1; if( pNew==&standin) { clearSelect(pNew); pNew = 0; } return pNew; } /* ** Delete the given Select structure and all of its substructures. */ void sqlite3SelectDelete(Select *p){ if( p ){ clearSelect(p); sqlite3_free(p); } } /* ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the ** type of join. Return an integer constant that expresses that type ** in terms of the following bit values: ** ** JT_INNER ** JT_CROSS ** JT_OUTER ** JT_NATURAL ** JT_LEFT ** JT_RIGHT ** ** A full outer join is the combination of JT_LEFT and JT_RIGHT. ** ** If an illegal or unsupported join type is seen, then still return ** a join type, but put an error in the pParse structure. */ int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ int jointype = 0; Token *apAll[3]; Token *p; static const struct { const char zKeyword[8]; u8 nChar; u8 code; } keywords[] = { { "natural", 7, JT_NATURAL }, { "left", 4, JT_LEFT|JT_OUTER }, { "right", 5, JT_RIGHT|JT_OUTER }, { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, { "outer", 5, JT_OUTER }, { "inner", 5, JT_INNER }, { "cross", 5, JT_INNER|JT_CROSS }, }; int i, j; apAll[0] = pA; apAll[1] = pB; apAll[2] = pC; for(i=0; i<3 && apAll[i]; i++){ p = apAll[i]; for(j=0; jn==keywords[j].nChar && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ jointype |= keywords[j].code; break; } } if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ jointype |= JT_ERROR; break; } } if( (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || (jointype & JT_ERROR)!=0 ){ const char *zSp1 = " "; const char *zSp2 = " "; if( pB==0 ){ zSp1++; } if( pC==0 ){ zSp2++; } sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); jointype = JT_INNER; }else if( jointype & JT_RIGHT ){ sqlite3ErrorMsg(pParse, "RIGHT and FULL OUTER JOINs are not currently supported"); jointype = JT_INNER; } return jointype; } /* ** Return the index of a column in a table. Return -1 if the column ** is not contained in the table. */ static int columnIndex(Table *pTab, const char *zCol){ int i; for(i=0; inCol; i++){ if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; } return -1; } /* ** Set the value of a token to a '\000'-terminated string. */ static void setToken(Token *p, const char *z){ p->z = (u8*)z; p->n = z ? strlen(z) : 0; p->dyn = 0; } /* ** Set the token to the double-quoted and escaped version of the string pointed ** to by z. For example; ** ** {a"bc} -> {"a""bc"} */ static void setQuotedToken(Parse *pParse, Token *p, const char *z){ /* Check if the string contains any " characters. If it does, then ** this function will malloc space to create a quoted version of ** the string in. Otherwise, save a call to sqlite3MPrintf() by ** just copying the pointer to the string. */ const char *z2 = z; while( *z2 ){ if( *z2=='"' ) break; z2++; } if( *z2 ){ /* String contains " characters - copy and quote the string. */ p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z); if( p->z ){ p->n = strlen((char *)p->z); p->dyn = 1; } }else{ /* String contains no " characters - copy the pointer. */ p->z = (u8*)z; p->n = (z2 - z); p->dyn = 0; } } /* ** Create an expression node for an identifier with the name of zName */ Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ Token dummy; setToken(&dummy, zName); return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy); } /* ** Add a term to the WHERE expression in *ppExpr that requires the ** zCol column to be equal in the two tables pTab1 and pTab2. */ static void addWhereTerm( Parse *pParse, /* Parsing context */ const char *zCol, /* Name of the column */ const Table *pTab1, /* First table */ const char *zAlias1, /* Alias for first table. May be NULL */ const Table *pTab2, /* Second table */ const char *zAlias2, /* Alias for second table. May be NULL */ int iRightJoinTable, /* VDBE cursor for the right table */ Expr **ppExpr, /* Add the equality term to this expression */ int isOuterJoin /* True if dealing with an OUTER join */ ){ Expr *pE1a, *pE1b, *pE1c; Expr *pE2a, *pE2b, *pE2c; Expr *pE; pE1a = sqlite3CreateIdExpr(pParse, zCol); pE2a = sqlite3CreateIdExpr(pParse, zCol); if( zAlias1==0 ){ zAlias1 = pTab1->zName; } pE1b = sqlite3CreateIdExpr(pParse, zAlias1); if( zAlias2==0 ){ zAlias2 = pTab2->zName; } pE2b = sqlite3CreateIdExpr(pParse, zAlias2); pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); if( pE && isOuterJoin ){ ExprSetProperty(pE, EP_FromJoin); pE->iRightJoinTable = iRightJoinTable; } *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); } /* ** Set the EP_FromJoin property on all terms of the given expression. ** And set the Expr.iRightJoinTable to iTable for every term in the ** expression. ** ** The EP_FromJoin property is used on terms of an expression to tell ** the LEFT OUTER JOIN processing logic that this term is part of the ** join restriction specified in the ON or USING clause and not a part ** of the more general WHERE clause. These terms are moved over to the ** WHERE clause during join processing but we need to remember that they ** originated in the ON or USING clause. ** ** The Expr.iRightJoinTable tells the WHERE clause processing that the ** expression depends on table iRightJoinTable even if that table is not ** explicitly mentioned in the expression. That information is needed ** for cases like this: ** ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 ** ** The where clause needs to defer the handling of the t1.x=5 ** term until after the t2 loop of the join. In that way, a ** NULL t2 row will be inserted whenever t1.x!=5. If we do not ** defer the handling of t1.x=5, it will be processed immediately ** after the t1 loop and rows with t1.x!=5 will never appear in ** the output, which is incorrect. */ static void setJoinExpr(Expr *p, int iTable){ while( p ){ ExprSetProperty(p, EP_FromJoin); p->iRightJoinTable = iTable; setJoinExpr(p->pLeft, iTable); p = p->pRight; } } /* ** This routine processes the join information for a SELECT statement. ** ON and USING clauses are converted into extra terms of the WHERE clause. ** NATURAL joins also create extra WHERE clause terms. ** ** The terms of a FROM clause are contained in the Select.pSrc structure. ** The left most table is the first entry in Select.pSrc. The right-most ** table is the last entry. The join operator is held in the entry to ** the left. Thus entry 0 contains the join operator for the join between ** entries 0 and 1. Any ON or USING clauses associated with the join are ** also attached to the left entry. ** ** This routine returns the number of errors encountered. */ static int sqliteProcessJoin(Parse *pParse, Select *p){ SrcList *pSrc; /* All tables in the FROM clause */ int i, j; /* Loop counters */ struct SrcList_item *pLeft; /* Left table being joined */ struct SrcList_item *pRight; /* Right table being joined */ pSrc = p->pSrc; pLeft = &pSrc->a[0]; pRight = &pLeft[1]; for(i=0; inSrc-1; i++, pRight++, pLeft++){ Table *pLeftTab = pLeft->pTab; Table *pRightTab = pRight->pTab; int isOuter; if( pLeftTab==0 || pRightTab==0 ) continue; isOuter = (pRight->jointype & JT_OUTER)!=0; /* When the NATURAL keyword is present, add WHERE clause terms for ** every column that the two tables have in common. */ if( pRight->jointype & JT_NATURAL ){ if( pRight->pOn || pRight->pUsing ){ sqlite3ErrorMsg(pParse, "a NATURAL join may not have " "an ON or USING clause", 0); return 1; } for(j=0; jnCol; j++){ char *zName = pLeftTab->aCol[j].zName; if( columnIndex(pRightTab, zName)>=0 ){ addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, pRightTab, pRight->zAlias, pRight->iCursor, &p->pWhere, isOuter); } } } /* Disallow both ON and USING clauses in the same join */ if( pRight->pOn && pRight->pUsing ){ sqlite3ErrorMsg(pParse, "cannot have both ON and USING " "clauses in the same join"); return 1; } /* Add the ON clause to the end of the WHERE clause, connected by ** an AND operator. */ if( pRight->pOn ){ if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); pRight->pOn = 0; } /* Create extra terms on the WHERE clause for each column named ** in the USING clause. Example: If the two tables to be joined are ** A and B and the USING clause names X, Y, and Z, then add this ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z ** Report an error if any column mentioned in the USING clause is ** not contained in both tables to be joined. */ if( pRight->pUsing ){ IdList *pList = pRight->pUsing; for(j=0; jnId; j++){ char *zName = pList->a[j].zName; if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ sqlite3ErrorMsg(pParse, "cannot join using column %s - column " "not present in both tables", zName); return 1; } addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, pRightTab, pRight->zAlias, pRight->iCursor, &p->pWhere, isOuter); } } } return 0; } /* ** Insert code into "v" that will push the record on the top of the ** stack into the sorter. */ static void pushOntoSorter( Parse *pParse, /* Parser context */ ExprList *pOrderBy, /* The ORDER BY clause */ Select *pSelect, /* The whole SELECT statement */ int regData /* Register holding data to be sorted */ ){ Vdbe *v = pParse->pVdbe; int nExpr = pOrderBy->nExpr; int regBase = sqlite3GetTempRange(pParse, nExpr+2); int regRecord = sqlite3GetTempReg(pParse); sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1); sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); if( pSelect->iLimit>=0 ){ int addr1, addr2; int iLimit; if( pSelect->pOffset ){ iLimit = pSelect->iOffset+1; }else{ iLimit = pSelect->iLimit; } addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); addr2 = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); sqlite3VdbeJumpHere(v, addr2); pSelect->iLimit = -1; } } /* ** Add code to implement the OFFSET */ static void codeOffset( Vdbe *v, /* Generate code into this VM */ Select *p, /* The SELECT statement being coded */ int iContinue /* Jump here to skip the current record */ ){ if( p->iOffset>=0 && iContinue!=0 ){ int addr; sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); VdbeComment((v, "skip OFFSET records")); sqlite3VdbeJumpHere(v, addr); } } /* ** Add code that will check to make sure the N registers starting at iMem ** form a distinct entry. iTab is a sorting index that holds previously ** seen combinations of the N values. A new entry is made in iTab ** if the current N values are new. ** ** A jump to addrRepeat is made and the N+1 values are popped from the ** stack if the top N elements are not distinct. */ static void codeDistinct( Parse *pParse, /* Parsing and code generating context */ int iTab, /* A sorting index used to test for distinctness */ int addrRepeat, /* Jump to here if not distinct */ int N, /* Number of elements */ int iMem /* First element */ ){ Vdbe *v; int r1; v = pParse->pVdbe; r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1); sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); sqlite3ReleaseTempReg(pParse, r1); } /* ** Generate an error message when a SELECT is used within a subexpression ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result ** column. We do this in a subroutine because the error occurs in multiple ** places. */ static int checkForMultiColumnSelectError( Parse *pParse, /* Parse context. */ SelectDest *pDest, /* Destination of SELECT results */ int nExpr /* Number of result columns returned by SELECT */ ){ int eDest = pDest->eDest; if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ sqlite3ErrorMsg(pParse, "only a single result allowed for " "a SELECT that is part of an expression"); return 1; }else{ return 0; } } /* ** This routine generates the code for the inside of the inner loop ** of a SELECT. ** ** If srcTab and nColumn are both zero, then the pEList expressions ** are evaluated in order to get the data for this row. If nColumn>0 ** then data is pulled from srcTab and pEList is used only to get the ** datatypes for each column. */ static void selectInnerLoop( Parse *pParse, /* The parser context */ Select *p, /* The complete select statement being coded */ ExprList *pEList, /* List of values being extracted */ int srcTab, /* Pull data from this table */ int nColumn, /* Number of columns in the source table */ ExprList *pOrderBy, /* If not NULL, sort results using this key */ int distinct, /* If >=0, make sure results are distinct */ SelectDest *pDest, /* How to dispose of the results */ int iContinue, /* Jump here to continue with next row */ int iBreak, /* Jump here to break out of the inner loop */ char *aff /* affinity string if eDest is SRT_Union */ ){ Vdbe *v = pParse->pVdbe; int i; int hasDistinct; /* True if the DISTINCT keyword is present */ int regResult; /* Start of memory holding result set */ int eDest = pDest->eDest; /* How to dispose of results */ int iParm = pDest->iParm; /* First argument to disposal method */ int nResultCol; /* Number of result columns */ if( v==0 ) return; assert( pEList!=0 ); /* If there was a LIMIT clause on the SELECT statement, then do the check ** to see if this row should be output. */ hasDistinct = distinct>=0 && pEList->nExpr>0; if( pOrderBy==0 && !hasDistinct ){ codeOffset(v, p, iContinue); } /* Pull the requested columns. */ if( nColumn>0 ){ nResultCol = nColumn; }else{ nResultCol = pEList->nExpr; } if( pDest->iMem==0 ){ pDest->iMem = sqlite3GetTempRange(pParse, nResultCol); pDest->nMem = nResultCol; }else if( pDest->nMem!=nResultCol ){ /* This happens when two SELECTs of a compound SELECT have differing ** numbers of result columns. The error message will be generated by ** a higher-level routine. */ return; } regResult = pDest->iMem; if( nColumn>0 ){ for(i=0; inExpr==nColumn ); codeDistinct(pParse, distinct, iContinue, nColumn, regResult); if( pOrderBy==0 ){ codeOffset(v, p, iContinue); } } if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ return; } switch( eDest ){ /* In this mode, write each query result to the key of the temporary ** table iParm. */ #ifndef SQLITE_OMIT_COMPOUND_SELECT case SRT_Union: { int r1; r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); if( aff ){ sqlite3VdbeChangeP4(v, -1, aff, P4_STATIC); } sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); sqlite3ReleaseTempReg(pParse, r1); break; } /* Construct a record from the query result, but instead of ** saving that record, use it as a key to delete elements from ** the temporary table iParm. */ case SRT_Except: { sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); break; } #endif /* Store the result as data using a unique key. */ case SRT_Table: case SRT_EphemTab: { int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); if( pOrderBy ){ pushOntoSorter(pParse, pOrderBy, p, r1); }else{ int r2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3ReleaseTempReg(pParse, r2); } sqlite3ReleaseTempReg(pParse, r1); break; } #ifndef SQLITE_OMIT_SUBQUERY /* If we are creating a set for an "expr IN (SELECT ...)" construct, ** then there should be a single item on the stack. Write this ** item into the set table with bogus data. */ case SRT_Set: { int addr2; assert( nColumn==1 ); addr2 = sqlite3VdbeAddOp1(v, OP_IsNull, regResult); p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); if( pOrderBy ){ /* At first glance you would think we could optimize out the ** ORDER BY in this case since the order of entries in the set ** does not matter. But there might be a LIMIT clause, in which ** case the order does matter */ pushOntoSorter(pParse, pOrderBy, p, regResult); }else{ int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); sqlite3ExprCacheAffinityChange(pParse, regResult, 1); sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); sqlite3ReleaseTempReg(pParse, r1); } sqlite3VdbeJumpHere(v, addr2); break; } /* If any row exist in the result set, record that fact and abort. */ case SRT_Exists: { sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); /* The LIMIT clause will terminate the loop for us */ break; } /* If this is a scalar select that is part of an expression, then ** store the results in the appropriate memory cell and break out ** of the scan loop. */ case SRT_Mem: { assert( nColumn==1 ); if( pOrderBy ){ pushOntoSorter(pParse, pOrderBy, p, regResult); }else{ sqlite3ExprCodeMove(pParse, regResult, iParm); /* The LIMIT clause will jump out of the loop for us */ } break; } #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ /* Send the data to the callback function or to a subroutine. In the ** case of a subroutine, the subroutine itself is responsible for ** popping the data from the stack. */ case SRT_Subroutine: case SRT_Callback: { if( pOrderBy ){ int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); pushOntoSorter(pParse, pOrderBy, p, r1); sqlite3ReleaseTempReg(pParse, r1); }else if( eDest==SRT_Subroutine ){ sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm); }else{ sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); } break; } #if !defined(SQLITE_OMIT_TRIGGER) /* Discard the results. This is used for SELECT statements inside ** the body of a TRIGGER. The purpose of such selects is to call ** user-defined functions that have side effects. We do not care ** about the actual results of the select. */ default: { assert( eDest==SRT_Discard ); break; } #endif } /* Jump to the end of the loop if the LIMIT is reached. */ if( p->iLimit>=0 && pOrderBy==0 ){ sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); } } /* ** Given an expression list, generate a KeyInfo structure that records ** the collating sequence for each expression in that expression list. ** ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting ** KeyInfo structure is appropriate for initializing a virtual index to ** implement that clause. If the ExprList is the result set of a SELECT ** then the KeyInfo structure is appropriate for initializing a virtual ** index to implement a DISTINCT test. ** ** Space to hold the KeyInfo structure is obtain from malloc. The calling ** function is responsible for seeing that this structure is eventually ** freed. Add the KeyInfo structure to the P4 field of an opcode using ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. */ static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ sqlite3 *db = pParse->db; int nExpr; KeyInfo *pInfo; struct ExprList_item *pItem; int i; nExpr = pList->nExpr; pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); if( pInfo ){ pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; pInfo->nField = nExpr; pInfo->enc = ENC(db); for(i=0, pItem=pList->a; ipExpr); if( !pColl ){ pColl = db->pDfltColl; } pInfo->aColl[i] = pColl; pInfo->aSortOrder[i] = pItem->sortOrder; } } return pInfo; } /* ** If the inner loop was generated using a non-null pOrderBy argument, ** then the results were placed in a sorter. After the loop is terminated ** we need to run the sorter and output the results. The following ** routine generates the code needed to do that. */ static void generateSortTail( Parse *pParse, /* Parsing context */ Select *p, /* The SELECT statement */ Vdbe *v, /* Generate code into this VDBE */ int nColumn, /* Number of columns of data */ SelectDest *pDest /* Write the sorted results here */ ){ int brk = sqlite3VdbeMakeLabel(v); int cont = sqlite3VdbeMakeLabel(v); int addr; int iTab; int pseudoTab = 0; ExprList *pOrderBy = p->pOrderBy; int eDest = pDest->eDest; int iParm = pDest->iParm; int regRow; int regRowid; iTab = pOrderBy->iECursor; if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ pseudoTab = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn); sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Callback); } addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk); codeOffset(v, p, cont); regRow = sqlite3GetTempReg(pParse); regRowid = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); switch( eDest ){ case SRT_Table: case SRT_EphemTab: { sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); break; } #ifndef SQLITE_OMIT_SUBQUERY case SRT_Set: { int j1; assert( nColumn==1 ); j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regRow); sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); sqlite3ExprCacheAffinityChange(pParse, regRow, 1); sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); sqlite3VdbeJumpHere(v, j1); break; } case SRT_Mem: { assert( nColumn==1 ); sqlite3ExprCodeMove(pParse, regRow, iParm); /* The LIMIT clause will terminate the loop for us */ break; } #endif case SRT_Callback: case SRT_Subroutine: { int i; sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid); for(i=0; iiMem+i ); sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); } if( eDest==SRT_Callback ){ sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); }else{ sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm); } break; } default: { /* Do nothing */ break; } } sqlite3ReleaseTempReg(pParse, regRow); sqlite3ReleaseTempReg(pParse, regRowid); /* Jump to the end of the loop when the LIMIT is reached */ if( p->iLimit>=0 ){ sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, brk); } /* The bottom of the loop */ sqlite3VdbeResolveLabel(v, cont); sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); sqlite3VdbeResolveLabel(v, brk); if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); } } /* ** Return a pointer to a string containing the 'declaration type' of the ** expression pExpr. The string may be treated as static by the caller. ** ** The declaration type is the exact datatype definition extracted from the ** original CREATE TABLE statement if the expression is a column. The ** declaration type for a ROWID field is INTEGER. Exactly when an expression ** is considered a column can be complex in the presence of subqueries. The ** result-set expression in all of the following SELECT statements is ** considered a column by this function. ** ** SELECT col FROM tbl; ** SELECT (SELECT col FROM tbl; ** SELECT (SELECT col FROM tbl); ** SELECT abc FROM (SELECT col AS abc FROM tbl); ** ** The declaration type for any expression other than a column is NULL. */ static const char *columnType( NameContext *pNC, Expr *pExpr, const char **pzOriginDb, const char **pzOriginTab, const char **pzOriginCol ){ char const *zType = 0; char const *zOriginDb = 0; char const *zOriginTab = 0; char const *zOriginCol = 0; int j; if( pExpr==0 || pNC->pSrcList==0 ) return 0; switch( pExpr->op ){ case TK_AGG_COLUMN: case TK_COLUMN: { /* The expression is a column. Locate the table the column is being ** extracted from in NameContext.pSrcList. This table may be real ** database table or a subquery. */ Table *pTab = 0; /* Table structure column is extracted from */ Select *pS = 0; /* Select the column is extracted from */ int iCol = pExpr->iColumn; /* Index of column in pTab */ while( pNC && !pTab ){ SrcList *pTabList = pNC->pSrcList; for(j=0;jnSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); if( jnSrc ){ pTab = pTabList->a[j].pTab; pS = pTabList->a[j].pSelect; }else{ pNC = pNC->pNext; } } if( pTab==0 ){ /* FIX ME: ** This can occurs if you have something like "SELECT new.x;" inside ** a trigger. In other words, if you reference the special "new" ** table in the result set of a select. We do not have a good way ** to find the actual table type, so call it "TEXT". This is really ** something of a bug, but I do not know how to fix it. ** ** This code does not produce the correct answer - it just prevents ** a segfault. See ticket #1229. */ zType = "TEXT"; break; } assert( pTab ); if( pS ){ /* The "table" is actually a sub-select or a view in the FROM clause ** of the SELECT statement. Return the declaration type and origin ** data for the result-set column of the sub-select. */ if( iCol>=0 && iColpEList->nExpr ){ /* If iCol is less than zero, then the expression requests the ** rowid of the sub-select or view. This expression is legal (see ** test case misc2.2.2) - it always evaluates to NULL. */ NameContext sNC; Expr *p = pS->pEList->a[iCol].pExpr; sNC.pSrcList = pS->pSrc; sNC.pNext = 0; sNC.pParse = pNC->pParse; zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); } }else if( pTab->pSchema ){ /* A real table */ assert( !pS ); if( iCol<0 ) iCol = pTab->iPKey; assert( iCol==-1 || (iCol>=0 && iColnCol) ); if( iCol<0 ){ zType = "INTEGER"; zOriginCol = "rowid"; }else{ zType = pTab->aCol[iCol].zType; zOriginCol = pTab->aCol[iCol].zName; } zOriginTab = pTab->zName; if( pNC->pParse ){ int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); zOriginDb = pNC->pParse->db->aDb[iDb].zName; } } break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_SELECT: { /* The expression is a sub-select. Return the declaration type and ** origin info for the single column in the result set of the SELECT ** statement. */ NameContext sNC; Select *pS = pExpr->pSelect; Expr *p = pS->pEList->a[0].pExpr; sNC.pSrcList = pS->pSrc; sNC.pNext = pNC; sNC.pParse = pNC->pParse; zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); break; } #endif } if( pzOriginDb ){ assert( pzOriginTab && pzOriginCol ); *pzOriginDb = zOriginDb; *pzOriginTab = zOriginTab; *pzOriginCol = zOriginCol; } return zType; } /* ** Generate code that will tell the VDBE the declaration types of columns ** in the result set. */ static void generateColumnTypes( Parse *pParse, /* Parser context */ SrcList *pTabList, /* List of tables */ ExprList *pEList /* Expressions defining the result set */ ){ #ifndef SQLITE_OMIT_DECLTYPE Vdbe *v = pParse->pVdbe; int i; NameContext sNC; sNC.pSrcList = pTabList; sNC.pParse = pParse; for(i=0; inExpr; i++){ Expr *p = pEList->a[i].pExpr; const char *zType; #ifdef SQLITE_ENABLE_COLUMN_METADATA const char *zOrigDb = 0; const char *zOrigTab = 0; const char *zOrigCol = 0; zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); /* The vdbe must make its own copy of the column-type and other ** column specific strings, in case the schema is reset before this ** virtual machine is deleted. */ sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT); sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT); sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT); #else zType = columnType(&sNC, p, 0, 0, 0); #endif sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT); } #endif /* SQLITE_OMIT_DECLTYPE */ } /* ** Generate code that will tell the VDBE the names of columns ** in the result set. This information is used to provide the ** azCol[] values in the callback. */ static void generateColumnNames( Parse *pParse, /* Parser context */ SrcList *pTabList, /* List of tables */ ExprList *pEList /* Expressions defining the result set */ ){ Vdbe *v = pParse->pVdbe; int i, j; sqlite3 *db = pParse->db; int fullNames, shortNames; #ifndef SQLITE_OMIT_EXPLAIN /* If this is an EXPLAIN, skip this step */ if( pParse->explain ){ return; } #endif assert( v!=0 ); if( pParse->colNamesSet || v==0 || db->mallocFailed ) return; pParse->colNamesSet = 1; fullNames = (db->flags & SQLITE_FullColNames)!=0; shortNames = (db->flags & SQLITE_ShortColNames)!=0; sqlite3VdbeSetNumCols(v, pEList->nExpr); for(i=0; inExpr; i++){ Expr *p; p = pEList->a[i].pExpr; if( p==0 ) continue; if( pEList->a[i].zName ){ char *zName = pEList->a[i].zName; sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); continue; } if( p->op==TK_COLUMN && pTabList ){ Table *pTab; char *zCol; int iCol = p->iColumn; for(j=0; jnSrc && pTabList->a[j].iCursor!=p->iTable; j++){} assert( jnSrc ); pTab = pTabList->a[j].pTab; if( iCol<0 ) iCol = pTab->iPKey; assert( iCol==-1 || (iCol>=0 && iColnCol) ); if( iCol<0 ){ zCol = "rowid"; }else{ zCol = pTab->aCol[iCol].zName; } if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ char *zName = 0; char *zTab; zTab = pTabList->a[j].zAlias; if( fullNames || zTab==0 ) zTab = pTab->zName; sqlite3SetString(&zName, zTab, ".", zCol, (char*)0); sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC); }else{ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); } }else if( p->span.z && p->span.z[0] ){ sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); /* sqlite3VdbeCompressSpace(v, addr); */ }else{ char zName[30]; assert( p->op!=TK_COLUMN || pTabList==0 ); sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1); sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0); } } generateColumnTypes(pParse, pTabList, pEList); } #ifndef SQLITE_OMIT_COMPOUND_SELECT /* ** Name of the connection operator, used for error messages. */ static const char *selectOpName(int id){ char *z; switch( id ){ case TK_ALL: z = "UNION ALL"; break; case TK_INTERSECT: z = "INTERSECT"; break; case TK_EXCEPT: z = "EXCEPT"; break; default: z = "UNION"; break; } return z; } #endif /* SQLITE_OMIT_COMPOUND_SELECT */ /* ** Forward declaration */ static int prepSelectStmt(Parse*, Select*); /* ** Given a SELECT statement, generate a Table structure that describes ** the result set of that SELECT. */ Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ Table *pTab; int i, j; ExprList *pEList; Column *aCol, *pCol; sqlite3 *db = pParse->db; while( pSelect->pPrior ) pSelect = pSelect->pPrior; if( prepSelectStmt(pParse, pSelect) ){ return 0; } if( sqlite3SelectResolve(pParse, pSelect, 0) ){ return 0; } pTab = sqlite3DbMallocZero(db, sizeof(Table) ); if( pTab==0 ){ return 0; } pTab->nRef = 1; pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0; pEList = pSelect->pEList; pTab->nCol = pEList->nExpr; assert( pTab->nCol>0 ); pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol); for(i=0, pCol=aCol; inCol; i++, pCol++){ Expr *p, *pR; char *zType; char *zName; int nName; CollSeq *pColl; int cnt; NameContext sNC; /* Get an appropriate name for the column */ p = pEList->a[i].pExpr; assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); if( (zName = pEList->a[i].zName)!=0 ){ /* If the column contains an "AS " phrase, use as the name */ zName = sqlite3DbStrDup(db, zName); }else if( p->op==TK_DOT && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ /* For columns of the from A.B use B as the name */ zName = sqlite3MPrintf(db, "%T", &pR->token); }else if( p->span.z && p->span.z[0] ){ /* Use the original text of the column expression as its name */ zName = sqlite3MPrintf(db, "%T", &p->span); }else{ /* If all else fails, make up a name */ zName = sqlite3MPrintf(db, "column%d", i+1); } if( !zName || db->mallocFailed ){ db->mallocFailed = 1; sqlite3_free(zName); sqlite3DeleteTable(pTab); return 0; } sqlite3Dequote(zName); /* Make sure the column name is unique. If the name is not unique, ** append a integer to the name so that it becomes unique. */ nName = strlen(zName); for(j=cnt=0; jzName = zName; /* Get the typename, type affinity, and collating sequence for the ** column. */ memset(&sNC, 0, sizeof(sNC)); sNC.pSrcList = pSelect->pSrc; zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); pCol->zType = zType; pCol->affinity = sqlite3ExprAffinity(p); pColl = sqlite3ExprCollSeq(pParse, p); if( pColl ){ pCol->zColl = sqlite3DbStrDup(db, pColl->zName); } } pTab->iPKey = -1; return pTab; } /* ** Prepare a SELECT statement for processing by doing the following ** things: ** ** (1) Make sure VDBE cursor numbers have been assigned to every ** element of the FROM clause. ** ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that ** defines FROM clause. When views appear in the FROM clause, ** fill pTabList->a[].pSelect with a copy of the SELECT statement ** that implements the view. A copy is made of the view's SELECT ** statement so that we can freely modify or delete that statement ** without worrying about messing up the presistent representation ** of the view. ** ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword ** on joins and the ON and USING clause of joins. ** ** (4) Scan the list of columns in the result set (pEList) looking ** for instances of the "*" operator or the TABLE.* operator. ** If found, expand each "*" to be every column in every table ** and TABLE.* to be every column in TABLE. ** ** Return 0 on success. If there are problems, leave an error message ** in pParse and return non-zero. */ static int prepSelectStmt(Parse *pParse, Select *p){ int i, j, k, rc; SrcList *pTabList; ExprList *pEList; struct SrcList_item *pFrom; sqlite3 *db = pParse->db; if( p==0 || p->pSrc==0 || db->mallocFailed ){ return 1; } pTabList = p->pSrc; pEList = p->pEList; /* Make sure cursor numbers have been assigned to all entries in ** the FROM clause of the SELECT statement. */ sqlite3SrcListAssignCursors(pParse, p->pSrc); /* Look up every table named in the FROM clause of the select. If ** an entry of the FROM clause is a subquery instead of a table or view, ** then create a transient table structure to describe the subquery. */ for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ Table *pTab; if( pFrom->pTab!=0 ){ /* This statement has already been prepared. There is no need ** to go further. */ assert( i==0 ); return 0; } if( pFrom->zName==0 ){ #ifndef SQLITE_OMIT_SUBQUERY /* A sub-query in the FROM clause of a SELECT */ assert( pFrom->pSelect!=0 ); if( pFrom->zAlias==0 ){ pFrom->zAlias = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect); } assert( pFrom->pTab==0 ); pFrom->pTab = pTab = sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); if( pTab==0 ){ return 1; } /* The isEphem flag indicates that the Table structure has been ** dynamically allocated and may be freed at any time. In other words, ** pTab is not pointing to a persistent table structure that defines ** part of the schema. */ pTab->isEphem = 1; #endif }else{ /* An ordinary table or view name in the FROM clause */ assert( pFrom->pTab==0 ); pFrom->pTab = pTab = sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); if( pTab==0 ){ return 1; } pTab->nRef++; #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) if( pTab->pSelect || IsVirtual(pTab) ){ /* We reach here if the named table is a really a view */ if( sqlite3ViewGetColumnNames(pParse, pTab) ){ return 1; } /* If pFrom->pSelect!=0 it means we are dealing with a ** view within a view. The SELECT structure has already been ** copied by the outer view so we can skip the copy step here ** in the inner view. */ if( pFrom->pSelect==0 ){ pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect); } } #endif } } /* Process NATURAL keywords, and ON and USING clauses of joins. */ if( sqliteProcessJoin(pParse, p) ) return 1; /* For every "*" that occurs in the column list, insert the names of ** all columns in all tables. And for every TABLE.* insert the names ** of all columns in TABLE. The parser inserted a special expression ** with the TK_ALL operator for each "*" that it found in the column list. ** The following code just has to locate the TK_ALL expressions and expand ** each one to the list of all columns in all tables. ** ** The first loop just checks to see if there are any "*" operators ** that need expanding. */ for(k=0; knExpr; k++){ Expr *pE = pEList->a[k].pExpr; if( pE->op==TK_ALL ) break; if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL && pE->pLeft && pE->pLeft->op==TK_ID ) break; } rc = 0; if( knExpr ){ /* ** If we get here it means the result set contains one or more "*" ** operators that need to be expanded. Loop through each expression ** in the result set and expand them one by one. */ struct ExprList_item *a = pEList->a; ExprList *pNew = 0; int flags = pParse->db->flags; int longNames = (flags & SQLITE_FullColNames)!=0 && (flags & SQLITE_ShortColNames)==0; for(k=0; knExpr; k++){ Expr *pE = a[k].pExpr; if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ /* This particular expression does not need to be expanded. */ pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0); if( pNew ){ pNew->a[pNew->nExpr-1].zName = a[k].zName; }else{ rc = 1; } a[k].pExpr = 0; a[k].zName = 0; }else{ /* This expression is a "*" or a "TABLE.*" and needs to be ** expanded. */ int tableSeen = 0; /* Set to 1 when TABLE matches */ char *zTName; /* text of name of TABLE */ if( pE->op==TK_DOT && pE->pLeft ){ zTName = sqlite3NameFromToken(db, &pE->pLeft->token); }else{ zTName = 0; } for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ Table *pTab = pFrom->pTab; char *zTabName = pFrom->zAlias; if( zTabName==0 || zTabName[0]==0 ){ zTabName = pTab->zName; } if( zTName && (zTabName==0 || zTabName[0]==0 || sqlite3StrICmp(zTName, zTabName)!=0) ){ continue; } tableSeen = 1; for(j=0; jnCol; j++){ Expr *pExpr, *pRight; char *zName = pTab->aCol[j].zName; /* If a column is marked as 'hidden' (currently only possible ** for virtual tables), do not include it in the expanded ** result-set list. */ if( IsHiddenColumn(&pTab->aCol[j]) ){ assert(IsVirtual(pTab)); continue; } if( i>0 ){ struct SrcList_item *pLeft = &pTabList->a[i-1]; if( (pLeft[1].jointype & JT_NATURAL)!=0 && columnIndex(pLeft->pTab, zName)>=0 ){ /* In a NATURAL join, omit the join columns from the ** table on the right */ continue; } if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ /* In a join with a USING clause, omit columns in the ** using clause from the table on the right. */ continue; } } pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); if( pRight==0 ) break; setQuotedToken(pParse, &pRight->token, zName); if( zTabName && (longNames || pTabList->nSrc>1) ){ Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); if( pExpr==0 ) break; setQuotedToken(pParse, &pLeft->token, zTabName); setToken(&pExpr->span, sqlite3MPrintf(db, "%s.%s", zTabName, zName)); pExpr->span.dyn = 1; pExpr->token.z = 0; pExpr->token.n = 0; pExpr->token.dyn = 0; }else{ pExpr = pRight; pExpr->span = pExpr->token; pExpr->span.dyn = 0; } if( longNames ){ pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span); }else{ pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token); } } } if( !tableSeen ){ if( zTName ){ sqlite3ErrorMsg(pParse, "no such table: %s", zTName); }else{ sqlite3ErrorMsg(pParse, "no tables specified"); } rc = 1; } sqlite3_free(zTName); } } sqlite3ExprListDelete(pEList); p->pEList = pNew; } #if SQLITE_MAX_COLUMN if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many columns in result set"); rc = SQLITE_ERROR; } #endif if( db->mallocFailed ){ rc = SQLITE_NOMEM; } return rc; } /* ** pE is a pointer to an expression which is a single term in ** ORDER BY or GROUP BY clause. ** ** If pE evaluates to an integer constant i, then return i. ** This is an indication to the caller that it should sort ** by the i-th column of the result set. ** ** If pE is a well-formed expression and the SELECT statement ** is not compound, then return 0. This indicates to the ** caller that it should sort by the value of the ORDER BY ** expression. ** ** If the SELECT is compound, then attempt to match pE against ** result set columns in the left-most SELECT statement. Return ** the index i of the matching column, as an indication to the ** caller that it should sort by the i-th column. If there is ** no match, return -1 and leave an error message in pParse. */ static int matchOrderByTermToExprList( Parse *pParse, /* Parsing context for error messages */ Select *pSelect, /* The SELECT statement with the ORDER BY clause */ Expr *pE, /* The specific ORDER BY term */ int idx, /* When ORDER BY term is this */ int isCompound, /* True if this is a compound SELECT */ u8 *pHasAgg /* True if expression contains aggregate functions */ ){ int i; /* Loop counter */ ExprList *pEList; /* The columns of the result set */ NameContext nc; /* Name context for resolving pE */ /* If the term is an integer constant, return the value of that ** constant */ pEList = pSelect->pEList; if( sqlite3ExprIsInteger(pE, &i) ){ if( i<=0 ){ /* If i is too small, make it too big. That way the calling ** function still sees a value that is out of range, but does ** not confuse the column number with 0 or -1 result code. */ i = pEList->nExpr+1; } return i; } /* If the term is a simple identifier that try to match that identifier ** against a column name in the result set. */ if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){ sqlite3 *db = pParse->db; char *zCol = sqlite3NameFromToken(db, &pE->token); if( zCol==0 ){ return -1; } for(i=0; inExpr; i++){ char *zAs = pEList->a[i].zName; if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ sqlite3_free(zCol); return i+1; } } sqlite3_free(zCol); } /* Resolve all names in the ORDER BY term expression */ memset(&nc, 0, sizeof(nc)); nc.pParse = pParse; nc.pSrcList = pSelect->pSrc; nc.pEList = pEList; nc.allowAgg = 1; nc.nErr = 0; if( sqlite3ExprResolveNames(&nc, pE) ){ if( isCompound ){ sqlite3ErrorClear(pParse); return 0; }else{ return -1; } } if( nc.hasAgg && pHasAgg ){ *pHasAgg = 1; } /* For a compound SELECT, we need to try to match the ORDER BY ** expression against an expression in the result set */ if( isCompound ){ for(i=0; inExpr; i++){ if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){ return i+1; } } } return 0; } /* ** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement. ** Return the number of errors seen. ** ** Every term of the ORDER BY or GROUP BY clause needs to be an ** expression. If any expression is an integer constant, then ** that expression is replaced by the corresponding ** expression from the result set. */ static int processOrderGroupBy( Parse *pParse, /* Parsing context. Leave error messages here */ Select *pSelect, /* The SELECT statement containing the clause */ ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ int isOrder, /* 1 for ORDER BY. 0 for GROUP BY */ u8 *pHasAgg /* Set to TRUE if any term contains an aggregate */ ){ int i; sqlite3 *db = pParse->db; ExprList *pEList; if( pOrderBy==0 || pParse->db->mallocFailed ) return 0; #if SQLITE_MAX_COLUMN if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ const char *zType = isOrder ? "ORDER" : "GROUP"; sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); return 1; } #endif pEList = pSelect->pEList; if( pEList==0 ){ return 0; } for(i=0; inExpr; i++){ int iCol; Expr *pE = pOrderBy->a[i].pExpr; iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg); if( iCol<0 ){ return 1; } if( iCol>pEList->nExpr ){ const char *zType = isOrder ? "ORDER" : "GROUP"; sqlite3ErrorMsg(pParse, "%r %s BY term out of range - should be " "between 1 and %d", i+1, zType, pEList->nExpr); return 1; } if( iCol>0 ){ CollSeq *pColl = pE->pColl; int flags = pE->flags & EP_ExpCollate; sqlite3ExprDelete(pE); pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr); pOrderBy->a[i].pExpr = pE; if( pE && pColl && flags ){ pE->pColl = pColl; pE->flags |= flags; } } } return 0; } /* ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return ** the number of errors seen. ** ** The processing depends on whether the SELECT is simple or compound. ** For a simple SELECT statement, evry term of the ORDER BY or GROUP BY ** clause needs to be an expression. If any expression is an integer ** constant, then that expression is replaced by the corresponding ** expression from the result set. ** ** For compound SELECT statements, every expression needs to be of ** type TK_COLUMN with a iTable value as given in the 4th parameter. ** If any expression is an integer, that becomes the column number. ** Otherwise, match the expression against result set columns from ** the left-most SELECT. */ static int processCompoundOrderBy( Parse *pParse, /* Parsing context. Leave error messages here */ Select *pSelect, /* The SELECT statement containing the ORDER BY */ int iTable /* Output table for compound SELECT statements */ ){ int i; ExprList *pOrderBy; ExprList *pEList; sqlite3 *db; int moreToDo = 1; pOrderBy = pSelect->pOrderBy; if( pOrderBy==0 ) return 0; db = pParse->db; #if SQLITE_MAX_COLUMN if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause"); return 1; } #endif for(i=0; inExpr; i++){ pOrderBy->a[i].done = 0; } while( pSelect->pPrior ){ pSelect = pSelect->pPrior; } while( pSelect && moreToDo ){ moreToDo = 0; for(i=0; inExpr; i++){ int iCol = -1; Expr *pE, *pDup; if( pOrderBy->a[i].done ) continue; pE = pOrderBy->a[i].pExpr; pDup = sqlite3ExprDup(db, pE); if( !db->mallocFailed ){ assert(pDup); iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0); } sqlite3ExprDelete(pDup); if( iCol<0 ){ return 1; } pEList = pSelect->pEList; if( pEList==0 ){ return 1; } if( iCol>pEList->nExpr ){ sqlite3ErrorMsg(pParse, "%r ORDER BY term out of range - should be " "between 1 and %d", i+1, pEList->nExpr); return 1; } if( iCol>0 ){ pE->op = TK_COLUMN; pE->iTable = iTable; pE->iAgg = -1; pE->iColumn = iCol-1; pE->pTab = 0; pOrderBy->a[i].done = 1; }else{ moreToDo = 1; } } pSelect = pSelect->pNext; } for(i=0; inExpr; i++){ if( pOrderBy->a[i].done==0 ){ sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any " "column in the result set", i+1); return 1; } } return 0; } /* ** Get a VDBE for the given parser context. Create a new one if necessary. ** If an error occurs, return NULL and leave a message in pParse. */ Vdbe *sqlite3GetVdbe(Parse *pParse){ Vdbe *v = pParse->pVdbe; if( v==0 ){ v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); #ifndef SQLITE_OMIT_TRACE if( v ){ sqlite3VdbeAddOp0(v, OP_Trace); } #endif } return v; } /* ** Compute the iLimit and iOffset fields of the SELECT based on the ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions ** that appear in the original SQL statement after the LIMIT and OFFSET ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset ** are the integer memory register numbers for counters used to compute ** the limit and offset. If there is no limit and/or offset, then ** iLimit and iOffset are negative. ** ** This routine changes the values of iLimit and iOffset only if ** a limit or offset is defined by pLimit and pOffset. iLimit and ** iOffset should have been preset to appropriate default values ** (usually but not always -1) prior to calling this routine. ** Only if pLimit!=0 or pOffset!=0 do the limit registers get ** redefined. The UNION ALL operator uses this property to force ** the reuse of the same limit and offset registers across multiple ** SELECT statements. */ static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ Vdbe *v = 0; int iLimit = 0; int iOffset; int addr1; /* ** "LIMIT -1" always shows all rows. There is some ** contraversy about what the correct behavior should be. ** The current implementation interprets "LIMIT 0" to mean ** no rows. */ if( p->pLimit ){ p->iLimit = iLimit = ++pParse->nMem; v = sqlite3GetVdbe(pParse); if( v==0 ) return; sqlite3ExprCode(pParse, p->pLimit, iLimit); sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeComment((v, "LIMIT counter")); sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); } if( p->pOffset ){ p->iOffset = iOffset = ++pParse->nMem; if( p->pLimit ){ pParse->nMem++; /* Allocate an extra register for limit+offset */ } v = sqlite3GetVdbe(pParse); if( v==0 ) return; sqlite3ExprCode(pParse, p->pOffset, iOffset); sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeComment((v, "OFFSET counter")); addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); sqlite3VdbeJumpHere(v, addr1); if( p->pLimit ){ sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); VdbeComment((v, "LIMIT+OFFSET")); addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); sqlite3VdbeJumpHere(v, addr1); } } } /* ** Allocate a virtual index to use for sorting. */ static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){ if( pOrderBy ){ int addr; assert( pOrderBy->iECursor==0 ); pOrderBy->iECursor = pParse->nTab++; addr = sqlite3VdbeAddOp2(pParse->pVdbe, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+1); assert( p->addrOpenEphm[2] == -1 ); p->addrOpenEphm[2] = addr; } } #ifndef SQLITE_OMIT_COMPOUND_SELECT /* ** Return the appropriate collating sequence for the iCol-th column of ** the result set for the compound-select statement "p". Return NULL if ** the column has no default collating sequence. ** ** The collating sequence for the compound select is taken from the ** left-most term of the select that has a collating sequence. */ static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ CollSeq *pRet; if( p->pPrior ){ pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); }else{ pRet = 0; } if( pRet==0 ){ pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); } return pRet; } #endif /* SQLITE_OMIT_COMPOUND_SELECT */ #ifndef SQLITE_OMIT_COMPOUND_SELECT /* ** This routine is called to process a query that is really the union ** or intersection of two or more separate queries. ** ** "p" points to the right-most of the two queries. the query on the ** left is p->pPrior. The left query could also be a compound query ** in which case this routine will be called recursively. ** ** The results of the total query are to be written into a destination ** of type eDest with parameter iParm. ** ** Example 1: Consider a three-way compound SQL statement. ** ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 ** ** This statement is parsed up as follows: ** ** SELECT c FROM t3 ** | ** `-----> SELECT b FROM t2 ** | ** `------> SELECT a FROM t1 ** ** The arrows in the diagram above represent the Select.pPrior pointer. ** So if this routine is called with p equal to the t3 query, then ** pPrior will be the t2 query. p->op will be TK_UNION in this case. ** ** Notice that because of the way SQLite parses compound SELECTs, the ** individual selects always group from left to right. */ static int multiSelect( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest, /* What to do with query results */ char *aff /* If eDest is SRT_Union, the affinity string */ ){ int rc = SQLITE_OK; /* Success code from a subroutine */ Select *pPrior; /* Another SELECT immediately to our left */ Vdbe *v; /* Generate code to this VDBE */ int nCol; /* Number of columns in the result set */ ExprList *pOrderBy; /* The ORDER BY clause on p */ int aSetP2[2]; /* Set P2 value of these op to number of columns */ int nSetP2 = 0; /* Number of slots in aSetP2[] used */ SelectDest dest; /* Alternative data destination */ dest = *pDest; /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. */ if( p==0 || p->pPrior==0 ){ rc = 1; goto multi_select_end; } pPrior = p->pPrior; assert( pPrior->pRightmost!=pPrior ); assert( pPrior->pRightmost==p->pRightmost ); if( pPrior->pOrderBy ){ sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", selectOpName(p->op)); rc = 1; goto multi_select_end; } if( pPrior->pLimit ){ sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", selectOpName(p->op)); rc = 1; goto multi_select_end; } /* Make sure we have a valid query engine. If not, create a new one. */ v = sqlite3GetVdbe(pParse); if( v==0 ){ rc = 1; goto multi_select_end; } /* Create the destination temporary table if necessary */ if( dest.eDest==SRT_EphemTab ){ assert( p->pEList ); assert( nSetP2pOrderBy; switch( p->op ){ case TK_ALL: { if( pOrderBy==0 ){ int addr = 0; assert( !pPrior->pLimit ); pPrior->pLimit = p->pLimit; pPrior->pOffset = p->pOffset; rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0, aff); p->pLimit = 0; p->pOffset = 0; if( rc ){ goto multi_select_end; } p->pPrior = 0; p->iLimit = pPrior->iLimit; p->iOffset = pPrior->iOffset; if( p->iLimit>=0 ){ addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeComment((v, "Jump ahead if LIMIT reached")); } rc = sqlite3Select(pParse, p, &dest, 0, 0, 0, aff); p->pPrior = pPrior; if( rc ){ goto multi_select_end; } if( addr ){ sqlite3VdbeJumpHere(v, addr); } break; } /* For UNION ALL ... ORDER BY fall through to the next case */ } case TK_EXCEPT: case TK_UNION: { int unionTab; /* Cursor number of the temporary table holding result */ int op = 0; /* One of the SRT_ operations to apply to self */ int priorOp; /* The SRT_ operation to apply to prior selects */ Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ int addr; SelectDest uniondest; priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; if( dest.eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){ /* We can reuse a temporary table generated by a SELECT to our ** right. */ unionTab = dest.iParm; }else{ /* We will need to create our own temporary table to hold the ** intermediate results. */ unionTab = pParse->nTab++; if( processCompoundOrderBy(pParse, p, unionTab) ){ rc = 1; goto multi_select_end; } addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); if( priorOp==SRT_Table ){ assert( nSetP2addrOpenEphm[0] == -1 ); p->addrOpenEphm[0] = addr; p->pRightmost->usesEphm = 1; } createSortingIndex(pParse, p, pOrderBy); assert( p->pEList ); } /* Code the SELECT statements to our left */ assert( !pPrior->pOrderBy ); sqlite3SelectDestInit(&uniondest, priorOp, unionTab); rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0, aff); if( rc ){ goto multi_select_end; } /* Code the current SELECT statement */ switch( p->op ){ case TK_EXCEPT: op = SRT_Except; break; case TK_UNION: op = SRT_Union; break; case TK_ALL: op = SRT_Table; break; } p->pPrior = 0; p->pOrderBy = 0; p->disallowOrderBy = pOrderBy!=0; pLimit = p->pLimit; p->pLimit = 0; pOffset = p->pOffset; p->pOffset = 0; uniondest.eDest = op; rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0, aff); /* Query flattening in sqlite3Select() might refill p->pOrderBy. ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ sqlite3ExprListDelete(p->pOrderBy); p->pPrior = pPrior; p->pOrderBy = pOrderBy; sqlite3ExprDelete(p->pLimit); p->pLimit = pLimit; p->pOffset = pOffset; p->iLimit = -1; p->iOffset = -1; if( rc ){ goto multi_select_end; } /* Convert the data in the temporary table into whatever form ** it is that we currently need. */ if( dest.eDest!=priorOp || unionTab!=dest.iParm ){ int iCont, iBreak, iStart; assert( p->pEList ); if( dest.eDest==SRT_Callback ){ Select *pFirst = p; while( pFirst->pPrior ) pFirst = pFirst->pPrior; generateColumnNames(pParse, 0, pFirst->pEList); } iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); iStart = sqlite3VdbeCurrentAddr(v); selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, pOrderBy, -1, &dest, iCont, iBreak, 0); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); sqlite3VdbeResolveLabel(v, iBreak); sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); } break; } case TK_INTERSECT: { int tab1, tab2; int iCont, iBreak, iStart; Expr *pLimit, *pOffset; int addr; SelectDest intersectdest; int r1; /* INTERSECT is different from the others since it requires ** two temporary tables. Hence it has its own case. Begin ** by allocating the tables we will need. */ tab1 = pParse->nTab++; tab2 = pParse->nTab++; if( processCompoundOrderBy(pParse, p, tab1) ){ rc = 1; goto multi_select_end; } createSortingIndex(pParse, p, pOrderBy); addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); assert( p->addrOpenEphm[0] == -1 ); p->addrOpenEphm[0] = addr; p->pRightmost->usesEphm = 1; assert( p->pEList ); /* Code the SELECTs to our left into temporary table "tab1". */ sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0, aff); if( rc ){ goto multi_select_end; } /* Code the current SELECT into temporary table "tab2" */ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); assert( p->addrOpenEphm[1] == -1 ); p->addrOpenEphm[1] = addr; p->pPrior = 0; pLimit = p->pLimit; p->pLimit = 0; pOffset = p->pOffset; p->pOffset = 0; intersectdest.iParm = tab2; rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0, aff); p->pPrior = pPrior; sqlite3ExprDelete(p->pLimit); p->pLimit = pLimit; p->pOffset = pOffset; if( rc ){ goto multi_select_end; } /* Generate code to take the intersection of the two temporary ** tables. */ assert( p->pEList ); if( dest.eDest==SRT_Callback ){ Select *pFirst = p; while( pFirst->pPrior ) pFirst = pFirst->pPrior; generateColumnNames(pParse, 0, pFirst->pEList); } iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); r1 = sqlite3GetTempReg(pParse); iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1); sqlite3ReleaseTempReg(pParse, r1); selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, pOrderBy, -1, &dest, iCont, iBreak, 0); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); sqlite3VdbeResolveLabel(v, iBreak); sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); break; } } /* Make sure all SELECTs in the statement have the same number of elements ** in their result sets. */ assert( p->pEList && pPrior->pEList ); if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" " do not have the same number of result columns", selectOpName(p->op)); rc = 1; goto multi_select_end; } /* Set the number of columns in temporary tables */ nCol = p->pEList->nExpr; while( nSetP2 ){ sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol); } /* Compute collating sequences used by either the ORDER BY clause or ** by any temporary tables needed to implement the compound select. ** Attach the KeyInfo structure to all temporary tables. Invoke the ** ORDER BY processing if there is an ORDER BY clause. ** ** This section is run by the right-most SELECT statement only. ** SELECT statements to the left always skip this part. The right-most ** SELECT might also skip this part if it has no ORDER BY clause and ** no temp tables are required. */ if( pOrderBy || p->usesEphm ){ int i; /* Loop counter */ KeyInfo *pKeyInfo; /* Collating sequence for the result set */ Select *pLoop; /* For looping through SELECT statements */ int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ CollSeq **aCopy; /* A copy of pKeyInfo->aColl[] */ assert( p->pRightmost==p ); nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0); pKeyInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1)); if( !pKeyInfo ){ rc = SQLITE_NOMEM; goto multi_select_end; } pKeyInfo->enc = ENC(pParse->db); pKeyInfo->nField = nCol; for(i=0, apColl=pKeyInfo->aColl; idb->pDfltColl; } } for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ for(i=0; i<2; i++){ int addr = pLoop->addrOpenEphm[i]; if( addr<0 ){ /* If [0] is unused then [1] is also unused. So we can ** always safely abort as soon as the first unused slot is found */ assert( pLoop->addrOpenEphm[1]<0 ); break; } sqlite3VdbeChangeP2(v, addr, nCol); sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); pLoop->addrOpenEphm[i] = -1; } } if( pOrderBy ){ struct ExprList_item *pOTerm = pOrderBy->a; int nOrderByExpr = pOrderBy->nExpr; int addr; u8 *pSortOrder; /* Reuse the same pKeyInfo for the ORDER BY as was used above for ** the compound select statements. Except we have to change out the ** pKeyInfo->aColl[] values. Some of the aColl[] values will be ** reused when constructing the pKeyInfo for the ORDER BY, so make ** a copy. Sufficient space to hold both the nCol entries for ** the compound select and the nOrderbyExpr entries for the ORDER BY ** was allocated above. But we need to move the compound select ** entries out of the way before constructing the ORDER BY entries. ** Move the compound select entries into aCopy[] where they can be ** accessed and reused when constructing the ORDER BY entries. ** Because nCol might be greater than or less than nOrderByExpr ** we have to use memmove() when doing the copy. */ aCopy = &pKeyInfo->aColl[nOrderByExpr]; pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol]; memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*)); apColl = pKeyInfo->aColl; for(i=0; ipExpr; if( (pExpr->flags & EP_ExpCollate) ){ assert( pExpr->pColl!=0 ); *apColl = pExpr->pColl; }else{ *apColl = aCopy[pExpr->iColumn]; } *pSortOrder = pOTerm->sortOrder; } assert( p->pRightmost==p ); assert( p->addrOpenEphm[2]>=0 ); addr = p->addrOpenEphm[2]; sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2); pKeyInfo->nField = nOrderByExpr; sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); pKeyInfo = 0; generateSortTail(pParse, p, v, p->pEList->nExpr, &dest); } sqlite3_free(pKeyInfo); } multi_select_end: pDest->iMem = dest.iMem; pDest->nMem = dest.nMem; return rc; } #endif /* SQLITE_OMIT_COMPOUND_SELECT */ #ifndef SQLITE_OMIT_VIEW /* Forward Declarations */ static void substExprList(sqlite3*, ExprList*, int, ExprList*); static void substSelect(sqlite3*, Select *, int, ExprList *); /* ** Scan through the expression pExpr. Replace every reference to ** a column in table number iTable with a copy of the iColumn-th ** entry in pEList. (But leave references to the ROWID column ** unchanged.) ** ** This routine is part of the flattening procedure. A subquery ** whose result set is defined by pEList appears as entry in the ** FROM clause of a SELECT such that the VDBE cursor assigned to that ** FORM clause entry is iTable. This routine make the necessary ** changes to pExpr so that it refers directly to the source table ** of the subquery rather the result set of the subquery. */ static void substExpr( sqlite3 *db, /* Report malloc errors to this connection */ Expr *pExpr, /* Expr in which substitution occurs */ int iTable, /* Table to be substituted */ ExprList *pEList /* Substitute expressions */ ){ if( pExpr==0 ) return; if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ if( pExpr->iColumn<0 ){ pExpr->op = TK_NULL; }else{ Expr *pNew; assert( pEList!=0 && pExpr->iColumnnExpr ); assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); pNew = pEList->a[pExpr->iColumn].pExpr; assert( pNew!=0 ); pExpr->op = pNew->op; assert( pExpr->pLeft==0 ); pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft); assert( pExpr->pRight==0 ); pExpr->pRight = sqlite3ExprDup(db, pNew->pRight); assert( pExpr->pList==0 ); pExpr->pList = sqlite3ExprListDup(db, pNew->pList); pExpr->iTable = pNew->iTable; pExpr->pTab = pNew->pTab; pExpr->iColumn = pNew->iColumn; pExpr->iAgg = pNew->iAgg; sqlite3TokenCopy(db, &pExpr->token, &pNew->token); sqlite3TokenCopy(db, &pExpr->span, &pNew->span); pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect); pExpr->flags = pNew->flags; } }else{ substExpr(db, pExpr->pLeft, iTable, pEList); substExpr(db, pExpr->pRight, iTable, pEList); substSelect(db, pExpr->pSelect, iTable, pEList); substExprList(db, pExpr->pList, iTable, pEList); } } static void substExprList( sqlite3 *db, /* Report malloc errors here */ ExprList *pList, /* List to scan and in which to make substitutes */ int iTable, /* Table to be substituted */ ExprList *pEList /* Substitute values */ ){ int i; if( pList==0 ) return; for(i=0; inExpr; i++){ substExpr(db, pList->a[i].pExpr, iTable, pEList); } } static void substSelect( sqlite3 *db, /* Report malloc errors here */ Select *p, /* SELECT statement in which to make substitutions */ int iTable, /* Table to be replaced */ ExprList *pEList /* Substitute values */ ){ if( !p ) return; substExprList(db, p->pEList, iTable, pEList); substExprList(db, p->pGroupBy, iTable, pEList); substExprList(db, p->pOrderBy, iTable, pEList); substExpr(db, p->pHaving, iTable, pEList); substExpr(db, p->pWhere, iTable, pEList); substSelect(db, p->pPrior, iTable, pEList); } #endif /* !defined(SQLITE_OMIT_VIEW) */ #ifndef SQLITE_OMIT_VIEW /* ** This routine attempts to flatten subqueries in order to speed ** execution. It returns 1 if it makes changes and 0 if no flattening ** occurs. ** ** To understand the concept of flattening, consider the following ** query: ** ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 ** ** The default way of implementing this query is to execute the ** subquery first and store the results in a temporary table, then ** run the outer query on that temporary table. This requires two ** passes over the data. Furthermore, because the temporary table ** has no indices, the WHERE clause on the outer query cannot be ** optimized. ** ** This routine attempts to rewrite queries such as the above into ** a single flat select, like this: ** ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 ** ** The code generated for this simpification gives the same result ** but only has to scan the data once. And because indices might ** exist on the table t1, a complete scan of the data might be ** avoided. ** ** Flattening is only attempted if all of the following are true: ** ** (1) The subquery and the outer query do not both use aggregates. ** ** (2) The subquery is not an aggregate or the outer query is not a join. ** ** (3) The subquery is not the right operand of a left outer join, or ** the subquery is not itself a join. (Ticket #306) ** ** (4) The subquery is not DISTINCT or the outer query is not a join. ** ** (5) The subquery is not DISTINCT or the outer query does not use ** aggregates. ** ** (6) The subquery does not use aggregates or the outer query is not ** DISTINCT. ** ** (7) The subquery has a FROM clause. ** ** (8) The subquery does not use LIMIT or the outer query is not a join. ** ** (9) The subquery does not use LIMIT or the outer query does not use ** aggregates. ** ** (10) The subquery does not use aggregates or the outer query does not ** use LIMIT. ** ** (11) The subquery and the outer query do not both have ORDER BY clauses. ** ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the ** subquery has no WHERE clause. (added by ticket #350) ** ** (13) The subquery and outer query do not both use LIMIT ** ** (14) The subquery does not use OFFSET ** ** (15) The outer query is not part of a compound select or the ** subquery does not have both an ORDER BY and a LIMIT clause. ** (See ticket #2339) ** ** (16) The outer query is not an aggregate or the subquery does ** not contain ORDER BY. (Ticket #2942) This used to not matter ** until we introduced the group_concat() function. ** ** In this routine, the "p" parameter is a pointer to the outer query. ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. ** ** If flattening is not attempted, this routine is a no-op and returns 0. ** If flattening is attempted this routine returns 1. ** ** All of the expression analysis must occur on both the outer query and ** the subquery before this routine runs. */ static int flattenSubquery( sqlite3 *db, /* Database connection */ Select *p, /* The parent or outer SELECT statement */ int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ int isAgg, /* True if outer SELECT uses aggregate functions */ int subqueryIsAgg /* True if the subquery uses aggregate functions */ ){ Select *pSub; /* The inner query or "subquery" */ SrcList *pSrc; /* The FROM clause of the outer query */ SrcList *pSubSrc; /* The FROM clause of the subquery */ ExprList *pList; /* The result set of the outer query */ int iParent; /* VDBE cursor number of the pSub result set temp table */ int i; /* Loop counter */ Expr *pWhere; /* The WHERE clause */ struct SrcList_item *pSubitem; /* The subquery */ /* Check to see if flattening is permitted. Return 0 if not. */ if( p==0 ) return 0; pSrc = p->pSrc; assert( pSrc && iFrom>=0 && iFromnSrc ); pSubitem = &pSrc->a[iFrom]; pSub = pSubitem->pSelect; assert( pSub!=0 ); if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ pSubSrc = pSub->pSrc; assert( pSubSrc ); /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET ** because they could be computed at compile-time. But when LIMIT and OFFSET ** became arbitrary expressions, we were forced to add restrictions (13) ** and (14). */ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ if( pSub->pOffset ) return 0; /* Restriction (14) */ if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ return 0; /* Restriction (15) */ } if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ if( (pSub->isDistinct || pSub->pLimit) && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ return 0; } if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ return 0; /* Restriction (11) */ } if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ /* Restriction 3: If the subquery is a join, make sure the subquery is ** not used as the right operand of an outer join. Examples of why this ** is not allowed: ** ** t1 LEFT OUTER JOIN (t2 JOIN t3) ** ** If we flatten the above, we would get ** ** (t1 LEFT OUTER JOIN t2) JOIN t3 ** ** which is not at all the same thing. */ if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){ return 0; } /* Restriction 12: If the subquery is the right operand of a left outer ** join, make sure the subquery has no WHERE clause. ** An examples of why this is not allowed: ** ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) ** ** If we flatten the above, we would get ** ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 ** ** But the t2.x>0 test will always fail on a NULL row of t2, which ** effectively converts the OUTER JOIN into an INNER JOIN. */ if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){ return 0; } /* If we reach this point, it means flattening is permitted for the ** iFrom-th entry of the FROM clause in the outer query. */ /* Move all of the FROM elements of the subquery into the ** the FROM clause of the outer query. Before doing this, remember ** the cursor number for the original outer query FROM element in ** iParent. The iParent cursor will never be used. Subsequent code ** will scan expressions looking for iParent references and replace ** those references with expressions that resolve to the subquery FROM ** elements we are now copying in. */ iParent = pSubitem->iCursor; { int nSubSrc = pSubSrc->nSrc; int jointype = pSubitem->jointype; sqlite3DeleteTable(pSubitem->pTab); sqlite3_free(pSubitem->zDatabase); sqlite3_free(pSubitem->zName); sqlite3_free(pSubitem->zAlias); pSubitem->pTab = 0; pSubitem->zDatabase = 0; pSubitem->zName = 0; pSubitem->zAlias = 0; if( nSubSrc>1 ){ int extra = nSubSrc - 1; for(i=1; ipSrc = 0; return 1; } } p->pSrc = pSrc; for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ pSrc->a[i] = pSrc->a[i-extra]; } } for(i=0; ia[i+iFrom] = pSubSrc->a[i]; memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); } pSrc->a[iFrom].jointype = jointype; } /* Now begin substituting subquery result set expressions for ** references to the iParent in the outer query. ** ** Example: ** ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; ** \ \_____________ subquery __________/ / ** \_____________________ outer query ______________________________/ ** ** We look at every expression in the outer query and every place we see ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". */ pList = p->pEList; for(i=0; inExpr; i++){ Expr *pExpr; if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ pList->a[i].zName = sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n); } } substExprList(db, p->pEList, iParent, pSub->pEList); if( isAgg ){ substExprList(db, p->pGroupBy, iParent, pSub->pEList); substExpr(db, p->pHaving, iParent, pSub->pEList); } if( pSub->pOrderBy ){ assert( p->pOrderBy==0 ); p->pOrderBy = pSub->pOrderBy; pSub->pOrderBy = 0; }else if( p->pOrderBy ){ substExprList(db, p->pOrderBy, iParent, pSub->pEList); } if( pSub->pWhere ){ pWhere = sqlite3ExprDup(db, pSub->pWhere); }else{ pWhere = 0; } if( subqueryIsAgg ){ assert( p->pHaving==0 ); p->pHaving = p->pWhere; p->pWhere = pWhere; substExpr(db, p->pHaving, iParent, pSub->pEList); p->pHaving = sqlite3ExprAnd(db, p->pHaving, sqlite3ExprDup(db, pSub->pHaving)); assert( p->pGroupBy==0 ); p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy); }else{ substExpr(db, p->pWhere, iParent, pSub->pEList); p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere); } /* The flattened query is distinct if either the inner or the ** outer query is distinct. */ p->isDistinct = p->isDistinct || pSub->isDistinct; /* ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; ** ** One is tempted to try to add a and b to combine the limits. But this ** does not work if either limit is negative. */ if( pSub->pLimit ){ p->pLimit = pSub->pLimit; pSub->pLimit = 0; } /* Finially, delete what is left of the subquery and return ** success. */ sqlite3SelectDelete(pSub); return 1; } #endif /* SQLITE_OMIT_VIEW */ /* ** Analyze the SELECT statement passed as an argument to see if it ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if ** it is, or 0 otherwise. At present, a query is considered to be ** a min()/max() query if: ** ** 1. There is a single object in the FROM clause. ** ** 2. There is a single expression in the result set, and it is ** either min(x) or max(x), where x is a column reference. */ static int minMaxQuery(Parse *pParse, Select *p){ Expr *pExpr; ExprList *pEList = p->pEList; if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; pExpr = pEList->a[0].pExpr; pEList = pExpr->pList; if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0; if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL; if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ return WHERE_ORDERBY_MIN; }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ return WHERE_ORDERBY_MAX; } return WHERE_ORDERBY_NORMAL; } /* ** This routine resolves any names used in the result set of the ** supplied SELECT statement. If the SELECT statement being resolved ** is a sub-select, then pOuterNC is a pointer to the NameContext ** of the parent SELECT. */ int sqlite3SelectResolve( Parse *pParse, /* The parser context */ Select *p, /* The SELECT statement being coded. */ NameContext *pOuterNC /* The outer name context. May be NULL. */ ){ ExprList *pEList; /* Result set. */ int i; /* For-loop variable used in multiple places */ NameContext sNC; /* Local name-context */ ExprList *pGroupBy; /* The group by clause */ /* If this routine has run before, return immediately. */ if( p->isResolved ){ assert( !pOuterNC ); return SQLITE_OK; } p->isResolved = 1; /* If there have already been errors, do nothing. */ if( pParse->nErr>0 ){ return SQLITE_ERROR; } /* Prepare the select statement. This call will allocate all cursors ** required to handle the tables and subqueries in the FROM clause. */ if( prepSelectStmt(pParse, p) ){ return SQLITE_ERROR; } /* Resolve the expressions in the LIMIT and OFFSET clauses. These ** are not allowed to refer to any names, so pass an empty NameContext. */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; if( sqlite3ExprResolveNames(&sNC, p->pLimit) || sqlite3ExprResolveNames(&sNC, p->pOffset) ){ return SQLITE_ERROR; } /* Set up the local name-context to pass to ExprResolveNames() to ** resolve the expression-list. */ sNC.allowAgg = 1; sNC.pSrcList = p->pSrc; sNC.pNext = pOuterNC; /* Resolve names in the result set. */ pEList = p->pEList; if( !pEList ) return SQLITE_ERROR; for(i=0; inExpr; i++){ Expr *pX = pEList->a[i].pExpr; if( sqlite3ExprResolveNames(&sNC, pX) ){ return SQLITE_ERROR; } } /* If there are no aggregate functions in the result-set, and no GROUP BY ** expression, do not allow aggregates in any of the other expressions. */ assert( !p->isAgg ); pGroupBy = p->pGroupBy; if( pGroupBy || sNC.hasAgg ){ p->isAgg = 1; }else{ sNC.allowAgg = 0; } /* If a HAVING clause is present, then there must be a GROUP BY clause. */ if( p->pHaving && !pGroupBy ){ sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); return SQLITE_ERROR; } /* Add the expression list to the name-context before parsing the ** other expressions in the SELECT statement. This is so that ** expressions in the WHERE clause (etc.) can refer to expressions by ** aliases in the result set. ** ** Minor point: If this is the case, then the expression will be ** re-evaluated for each reference to it. */ sNC.pEList = p->pEList; if( sqlite3ExprResolveNames(&sNC, p->pWhere) || sqlite3ExprResolveNames(&sNC, p->pHaving) ){ return SQLITE_ERROR; } if( p->pPrior==0 ){ if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){ return SQLITE_ERROR; } } if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){ return SQLITE_ERROR; } if( pParse->db->mallocFailed ){ return SQLITE_NOMEM; } /* Make sure the GROUP BY clause does not contain aggregate functions. */ if( pGroupBy ){ struct ExprList_item *pItem; for(i=0, pItem=pGroupBy->a; inExpr; i++, pItem++){ if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " "the GROUP BY clause"); return SQLITE_ERROR; } } } /* If this is one SELECT of a compound, be sure to resolve names ** in the other SELECTs. */ if( p->pPrior ){ return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC); }else{ return SQLITE_OK; } } /* ** Reset the aggregate accumulator. ** ** The aggregate accumulator is a set of memory cells that hold ** intermediate results while calculating an aggregate. This ** routine simply stores NULLs in all of those memory cells. */ static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ Vdbe *v = pParse->pVdbe; int i; struct AggInfo_func *pFunc; if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ return; } for(i=0; inColumn; i++){ sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); } for(pFunc=pAggInfo->aFunc, i=0; inFunc; i++, pFunc++){ sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); if( pFunc->iDistinct>=0 ){ Expr *pE = pFunc->pExpr; if( pE->pList==0 || pE->pList->nExpr!=1 ){ sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " "by an expression"); pFunc->iDistinct = -1; }else{ KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); } } } } /* ** Invoke the OP_AggFinalize opcode for every aggregate function ** in the AggInfo structure. */ static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ Vdbe *v = pParse->pVdbe; int i; struct AggInfo_func *pF; for(i=0, pF=pAggInfo->aFunc; inFunc; i++, pF++){ ExprList *pList = pF->pExpr->pList; sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, (void*)pF->pFunc, P4_FUNCDEF); } } /* ** Update the accumulator memory cells for an aggregate based on ** the current cursor position. */ static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ Vdbe *v = pParse->pVdbe; int i; struct AggInfo_func *pF; struct AggInfo_col *pC; pAggInfo->directMode = 1; for(i=0, pF=pAggInfo->aFunc; inFunc; i++, pF++){ int nArg; int addrNext = 0; int regAgg; ExprList *pList = pF->pExpr->pList; if( pList ){ nArg = pList->nExpr; regAgg = sqlite3GetTempRange(pParse, nArg); sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); }else{ nArg = 0; regAgg = 0; } if( pF->iDistinct>=0 ){ addrNext = sqlite3VdbeMakeLabel(v); assert( nArg==1 ); codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); } if( pF->pFunc->needCollSeq ){ CollSeq *pColl = 0; struct ExprList_item *pItem; int j; assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ for(j=0, pItem=pList->a; !pColl && jpExpr); } if( !pColl ){ pColl = pParse->db->pDfltColl; } sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, (void*)pF->pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, nArg); sqlite3ReleaseTempRange(pParse, regAgg, nArg); sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); if( addrNext ){ sqlite3VdbeResolveLabel(v, addrNext); } } for(i=0, pC=pAggInfo->aCol; inAccumulator; i++, pC++){ sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); } pAggInfo->directMode = 0; } #ifndef SQLITE_OMIT_TRIGGER /* ** This function is used when a SELECT statement is used to create a ** temporary table for iterating through when running an INSTEAD OF ** UPDATE or INSTEAD OF DELETE trigger. ** ** If possible, the SELECT statement is modified so that NULL values ** are stored in the temporary table for all columns for which the ** corresponding bit in argument mask is not set. If mask takes the ** special value 0xffffffff, then all columns are populated. */ void sqlite3SelectMask(Parse *pParse, Select *p, u32 mask){ if( p && !p->pPrior && !p->isDistinct && mask!=0xffffffff ){ ExprList *pEList; int i; sqlite3SelectResolve(pParse, p, 0); pEList = p->pEList; for(i=0; pEList && inExpr && i<32; i++){ if( !(mask&((u32)1<a[i].pExpr); pEList->a[i].pExpr = sqlite3Expr(pParse->db, TK_NULL, 0, 0, 0); } } } } #endif /* ** Generate code for the given SELECT statement. ** ** The results are distributed in various ways depending on the ** contents of the SelectDest structure pointed to by argument pDest ** as follows: ** ** pDest->eDest Result ** ------------ ------------------------------------------- ** SRT_Callback Invoke the callback for each row of the result. ** ** SRT_Mem Store first result in memory cell pDest->iParm ** ** SRT_Set Store non-null results as keys of table pDest->iParm. ** Apply the affinity pDest->affinity before storing them. ** ** SRT_Union Store results as a key in a temporary table pDest->iParm. ** ** SRT_Except Remove results from the temporary table pDest->iParm. ** ** SRT_Table Store results in temporary table pDest->iParm ** ** SRT_EphemTab Create an temporary table pDest->iParm and store ** the result there. The cursor is left open after ** returning. ** ** SRT_Subroutine For each row returned, push the results onto the ** vdbe stack and call the subroutine (via OP_Gosub) ** at address pDest->iParm. ** ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result ** set is not empty. ** ** SRT_Discard Throw the results away. ** ** See the selectInnerLoop() function for a canonical listing of the ** allowed values of eDest and their meanings. ** ** This routine returns the number of errors. If any errors are ** encountered, then an appropriate error message is left in ** pParse->zErrMsg. ** ** This routine does NOT free the Select structure passed in. The ** calling function needs to do that. ** ** The pParent, parentTab, and *pParentAgg fields are filled in if this ** SELECT is a subquery. This routine may try to combine this SELECT ** with its parent to form a single flat query. In so doing, it might ** change the parent query from a non-aggregate to an aggregate query. ** For that reason, the pParentAgg flag is passed as a pointer, so it ** can be changed. ** ** Example 1: The meaning of the pParent parameter. ** ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; ** \ \_______ subquery _______/ / ** \ / ** \____________________ outer query ___________________/ ** ** This routine is called for the outer query first. For that call, ** pParent will be NULL. During the processing of the outer query, this ** routine is called recursively to handle the subquery. For the recursive ** call, pParent will point to the outer query. Because the subquery is ** the second element in a three-way join, the parentTab parameter will ** be 1 (the 2nd value of a 0-indexed array.) */ int sqlite3Select( Parse *pParse, /* The parser context */ Select *p, /* The SELECT statement being coded. */ SelectDest *pDest, /* What to do with the query results */ Select *pParent, /* Another SELECT for which this is a sub-query */ int parentTab, /* Index in pParent->pSrc of this query */ int *pParentAgg, /* True if pParent uses aggregate functions */ char *aff /* If eDest is SRT_Union, the affinity string */ ){ int i, j; /* Loop counters */ WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ Vdbe *v; /* The virtual machine under construction */ int isAgg; /* True for select lists like "count(*)" */ ExprList *pEList; /* List of columns to extract. */ SrcList *pTabList; /* List of tables to select from */ Expr *pWhere; /* The WHERE clause. May be NULL */ ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ Expr *pHaving; /* The HAVING clause. May be NULL */ int isDistinct; /* True if the DISTINCT keyword is present */ int distinct; /* Table to use for the distinct set */ int rc = 1; /* Value to return from this function */ int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ AggInfo sAggInfo; /* Information used by aggregate queries */ int iEnd; /* Address of the end of the query */ sqlite3 *db; /* The database connection */ db = pParse->db; if( p==0 || db->mallocFailed || pParse->nErr ){ return 1; } if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; memset(&sAggInfo, 0, sizeof(sAggInfo)); pOrderBy = p->pOrderBy; if( IgnorableOrderby(pDest) ){ p->pOrderBy = 0; /* In these cases the DISTINCT operator makes no difference to the ** results, so remove it if it were specified. */ assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); p->isDistinct = 0; } if( sqlite3SelectResolve(pParse, p, 0) ){ goto select_end; } p->pOrderBy = pOrderBy; #ifndef SQLITE_OMIT_COMPOUND_SELECT /* If there is are a sequence of queries, do the earlier ones first. */ if( p->pPrior ){ if( p->pRightmost==0 ){ Select *pLoop, *pRight = 0; int cnt = 0; int mxSelect; for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ pLoop->pRightmost = p; pLoop->pNext = pRight; pRight = pLoop; } mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; if( mxSelect && cnt>mxSelect ){ sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); return 1; } } return multiSelect(pParse, p, pDest, aff); } #endif /* Make local copies of the parameters for this query. */ pTabList = p->pSrc; pWhere = p->pWhere; pGroupBy = p->pGroupBy; pHaving = p->pHaving; isAgg = p->isAgg; isDistinct = p->isDistinct; pEList = p->pEList; if( pEList==0 ) goto select_end; /* ** Do not even attempt to generate any code if we have already seen ** errors before this routine starts. */ if( pParse->nErr>0 ) goto select_end; /* If writing to memory or generating a set ** only a single column may be output. */ #ifndef SQLITE_OMIT_SUBQUERY if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ goto select_end; } #endif /* ORDER BY is ignored for some destinations. */ if( IgnorableOrderby(pDest) ){ pOrderBy = 0; } /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto select_end; /* Generate code for all sub-queries in the FROM clause */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) for(i=0; inSrc; i++){ const char *zSavedAuthContext = 0; int needRestoreContext; struct SrcList_item *pItem = &pTabList->a[i]; SelectDest dest; if( pItem->pSelect==0 || pItem->isPopulated ) continue; if( pItem->zName!=0 ){ zSavedAuthContext = pParse->zAuthContext; pParse->zAuthContext = pItem->zName; needRestoreContext = 1; }else{ needRestoreContext = 0; } /* Increment Parse.nHeight by the height of the largest expression ** tree refered to by this, the parent select. The child select ** may contain expression trees of at most ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit ** more conservative than necessary, but much easier than enforcing ** an exact limit. */ pParse->nHeight += sqlite3SelectExprHeight(p); sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); sqlite3Select(pParse, pItem->pSelect, &dest, p, i, &isAgg, 0); if( db->mallocFailed ){ goto select_end; } pParse->nHeight -= sqlite3SelectExprHeight(p); if( needRestoreContext ){ pParse->zAuthContext = zSavedAuthContext; } pTabList = p->pSrc; pWhere = p->pWhere; if( !IgnorableOrderby(pDest) ){ pOrderBy = p->pOrderBy; } pGroupBy = p->pGroupBy; pHaving = p->pHaving; isDistinct = p->isDistinct; } #endif /* Check to see if this is a subquery that can be "flattened" into its parent. ** If flattening is a possiblity, do so and return immediately. */ #ifndef SQLITE_OMIT_VIEW if( pParent && pParentAgg && flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){ if( isAgg ) *pParentAgg = 1; goto select_end; } #endif /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. ** GROUP BY may use an index, DISTINCT never does. */ if( p->isDistinct && !p->isAgg && !p->pGroupBy ){ p->pGroupBy = sqlite3ExprListDup(db, p->pEList); pGroupBy = p->pGroupBy; p->isDistinct = 0; isDistinct = 0; } /* If there is an ORDER BY clause, then this sorting ** index might end up being unused if the data can be ** extracted in pre-sorted order. If that is the case, then the ** OP_OpenEphemeral instruction will be changed to an OP_Noop once ** we figure out that the sorting index is not needed. The addrSortIndex ** variable is used to facilitate that change. */ if( pOrderBy ){ KeyInfo *pKeyInfo; pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); pOrderBy->iECursor = pParse->nTab++; p->addrOpenEphm[2] = addrSortIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2, 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); }else{ addrSortIndex = -1; } /* If the output is destined for a temporary table, open that table. */ if( pDest->eDest==SRT_EphemTab ){ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); } /* Set the limiter. */ iEnd = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iEnd); /* Open a virtual index to use for the distinct set. */ if( isDistinct ){ KeyInfo *pKeyInfo; assert( isAgg || pGroupBy ); distinct = pParse->nTab++; pKeyInfo = keyInfoFromExprList(pParse, p->pEList); sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); }else{ distinct = -1; } /* Aggregate and non-aggregate queries are handled differently */ if( !isAgg && pGroupBy==0 ){ /* This case is for non-aggregate queries ** Begin the database scan */ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); if( pWInfo==0 ) goto select_end; /* If sorting index that was created by a prior OP_OpenEphemeral ** instruction ended up not being needed, then change the OP_OpenEphemeral ** into an OP_Noop. */ if( addrSortIndex>=0 && pOrderBy==0 ){ sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); p->addrOpenEphm[2] = -1; } /* Use the standard inner loop */ assert(!isDistinct); selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, pWInfo->iContinue, pWInfo->iBreak, aff); /* End the database scan loop. */ sqlite3WhereEnd(pWInfo); }else{ /* This is the processing for aggregate queries */ NameContext sNC; /* Name context for processing aggregate information */ int iAMem; /* First Mem address for storing current GROUP BY */ int iBMem; /* First Mem address for previous GROUP BY */ int iUseFlag; /* Mem address holding flag indicating that at least ** one row of the input to the aggregator has been ** processed */ int iAbortFlag; /* Mem address which causes query abort if positive */ int groupBySort; /* Rows come from source in GROUP BY order */ /* The following variables hold addresses or labels for parts of the ** virtual machine program we are putting together */ int addrOutputRow; /* Start of subroutine that outputs a result row */ int addrSetAbort; /* Set the abort flag and return */ int addrInitializeLoop; /* Start of code that initializes the input loop */ int addrTopOfLoop; /* Top of the input loop */ int addrGroupByChange; /* Code that runs when any GROUP BY term changes */ int addrProcessRow; /* Code to process a single input row */ int addrEnd; /* End of all processing */ int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ int addrReset; /* Subroutine for resetting the accumulator */ addrEnd = sqlite3VdbeMakeLabel(v); /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the ** SELECT statement. */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; sNC.pAggInfo = &sAggInfo; sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; sAggInfo.pGroupBy = pGroupBy; sqlite3ExprAnalyzeAggList(&sNC, pEList); sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); if( pHaving ){ sqlite3ExprAnalyzeAggregates(&sNC, pHaving); } sAggInfo.nAccumulator = sAggInfo.nColumn; for(i=0; ipList); } if( db->mallocFailed ) goto select_end; /* Processing for aggregates with GROUP BY is very different and ** much more complex than aggregates without a GROUP BY. */ if( pGroupBy ){ KeyInfo *pKeyInfo; /* Keying information for the group by clause */ /* Create labels that we will be needing */ addrInitializeLoop = sqlite3VdbeMakeLabel(v); addrGroupByChange = sqlite3VdbeMakeLabel(v); addrProcessRow = sqlite3VdbeMakeLabel(v); /* If there is a GROUP BY clause we might need a sorting index to ** implement it. Allocate that sorting index now. If it turns out ** that we do not need it after all, the OpenEphemeral instruction ** will be converted into a Noop. */ sAggInfo.sortingIdx = pParse->nTab++; pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); /* Initialize memory locations used by GROUP BY aggregate processing */ iUseFlag = ++pParse->nMem; iAbortFlag = ++pParse->nMem; iAMem = pParse->nMem + 1; pParse->nMem += pGroupBy->nExpr; iBMem = pParse->nMem + 1; pParse->nMem += pGroupBy->nExpr; sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); VdbeComment((v, "clear abort flag")); sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); VdbeComment((v, "indicate accumulator empty")); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop); /* Generate a subroutine that outputs a single row of the result ** set. This subroutine first looks at the iUseFlag. If iUseFlag ** is less than or equal to zero, the subroutine is a no-op. If ** the processing calls for the query to abort, this subroutine ** increments the iAbortFlag memory location before returning in ** order to signal the caller to abort. */ addrSetAbort = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); VdbeComment((v, "set abort flag")); sqlite3VdbeAddOp2(v, OP_Return, 0, 0); addrOutputRow = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeComment((v, "Groupby result generator entry point")); sqlite3VdbeAddOp2(v, OP_Return, 0, 0); finalizeAggFunctions(pParse, &sAggInfo); if( pHaving ){ sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); } selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, distinct, pDest, addrOutputRow+1, addrSetAbort, aff); sqlite3VdbeAddOp2(v, OP_Return, 0, 0); VdbeComment((v, "end groupby result generator")); /* Generate a subroutine that will reset the group-by accumulator */ addrReset = sqlite3VdbeCurrentAddr(v); resetAccumulator(pParse, &sAggInfo); sqlite3VdbeAddOp2(v, OP_Return, 0, 0); /* Begin a loop that will extract all source rows in GROUP BY order. ** This might involve two separate loops with an OP_Sort in between, or ** it might be a single loop that uses an index to extract information ** in the right order to begin with. */ sqlite3VdbeResolveLabel(v, addrInitializeLoop); sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); if( pWInfo==0 ) goto select_end; if( pGroupBy==0 ){ /* The optimizer is able to deliver rows in group by order so ** we do not have to sort. The OP_OpenEphemeral table will be ** cancelled later because we still need to use the pKeyInfo */ pGroupBy = p->pGroupBy; groupBySort = 0; }else{ /* Rows are coming out in undetermined order. We have to push ** each row into a sorting index, terminate the first loop, ** then loop over the sorting index in order to get the output ** in sorted order */ int regBase; int regRecord; int nCol; int nGroupBy; groupBySort = 1; nGroupBy = pGroupBy->nExpr; nCol = nGroupBy + 1; j = nGroupBy+1; for(i=0; i=j ){ nCol++; j++; } } regBase = sqlite3GetTempRange(pParse, nCol); sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); j = nGroupBy+1; for(i=0; iiSorterColumn>=j ){ int r1 = j + regBase; int r2 = sqlite3ExprCodeGetColumn(pParse, pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); if( r1!=r2 ){ sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); } j++; } } regRecord = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3ReleaseTempRange(pParse, regBase, nCol); sqlite3WhereEnd(pWInfo); sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); VdbeComment((v, "GROUP BY sort")); sAggInfo.useSortingIdx = 1; } /* Evaluate the current GROUP BY terms and store in b0, b1, b2... ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) ** Then compare the current GROUP BY terms against the GROUP BY terms ** from the previous row currently stored in a0, a1, a2... */ addrTopOfLoop = sqlite3VdbeCurrentAddr(v); for(j=0; jnExpr; j++){ if( groupBySort ){ sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); }else{ sAggInfo.directMode = 1; sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); } } for(j=pGroupBy->nExpr-1; j>=0; j--){ if( j==0 ){ sqlite3VdbeAddOp3(v, OP_Eq, iAMem+j, addrProcessRow, iBMem+j); }else{ sqlite3VdbeAddOp3(v, OP_Ne, iAMem+j, addrGroupByChange, iBMem+j); } sqlite3VdbeChangeP4(v, -1, (void*)pKeyInfo->aColl[j], P4_COLLSEQ); sqlite3VdbeChangeP5(v, SQLITE_NULLEQUAL); } /* Generate code that runs whenever the GROUP BY changes. ** Change in the GROUP BY are detected by the previous code ** block. If there were no changes, this block is skipped. ** ** This code copies current group by terms in b0,b1,b2,... ** over to a0,a1,a2. It then calls the output subroutine ** and resets the aggregate accumulator registers in preparation ** for the next GROUP BY batch. */ sqlite3VdbeResolveLabel(v, addrGroupByChange); for(j=0; jnExpr; j++){ sqlite3ExprCodeMove(pParse, iBMem+j, iAMem+j); } sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow); VdbeComment((v, "output one row")); sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeComment((v, "check abort flag")); sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset); VdbeComment((v, "reset accumulator")); /* Update the aggregate accumulators based on the content of ** the current row */ sqlite3VdbeResolveLabel(v, addrProcessRow); updateAccumulator(pParse, &sAggInfo); sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); VdbeComment((v, "indicate data in accumulator")); /* End of the loop */ if( groupBySort ){ sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); }else{ sqlite3WhereEnd(pWInfo); sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); } /* Output the final row of result */ sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow); VdbeComment((v, "output final row")); } /* endif pGroupBy */ else { ExprList *pMinMax = 0; ExprList *pDel = 0; u8 flag; /* Check if the query is of one of the following forms: ** ** SELECT min(x) FROM ... ** SELECT max(x) FROM ... ** ** If it is, then ask the code in where.c to attempt to sort results ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. ** If where.c is able to produce results sorted in this order, then ** add vdbe code to break out of the processing loop after the ** first iteration (since the first iteration of the loop is ** guaranteed to operate on the row with the minimum or maximum ** value of x, the only row required). ** ** A special flag must be passed to sqlite3WhereBegin() to slightly ** modify behaviour as follows: ** ** + If the query is a "SELECT min(x)", then the loop coded by ** where.c should not iterate over any values with a NULL value ** for x. ** ** + The optimizer code in where.c (the thing that decides which ** index or indices to use) should place a different priority on ** satisfying the 'ORDER BY' clause than it does in other cases. ** Refer to code and comments in where.c for details. */ flag = minMaxQuery(pParse, p); if( flag ){ pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList); if( pMinMax && !db->mallocFailed ){ pMinMax->a[0].sortOrder = ((flag==WHERE_ORDERBY_MIN)?0:1); pMinMax->a[0].pExpr->op = TK_COLUMN; } } /* This case runs if the aggregate has no GROUP BY clause. The ** processing is much simpler since there is only a single row ** of output. */ resetAccumulator(pParse, &sAggInfo); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); if( pWInfo==0 ){ sqlite3ExprListDelete(pDel); goto select_end; } updateAccumulator(pParse, &sAggInfo); if( !pMinMax && flag ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); VdbeComment((v, "%s() by index", (flag==WHERE_ORDERBY_MIN?"min":"max"))); } sqlite3WhereEnd(pWInfo); finalizeAggFunctions(pParse, &sAggInfo); pOrderBy = 0; if( pHaving ){ sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); } selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, pDest, addrEnd, addrEnd, aff); sqlite3ExprListDelete(pDel); } sqlite3VdbeResolveLabel(v, addrEnd); } /* endif aggregate query */ /* If there is an ORDER BY clause, then we need to sort the results ** and send them to the callback one by one. */ if( pOrderBy ){ generateSortTail(pParse, p, v, pEList->nExpr, pDest); } #ifndef SQLITE_OMIT_SUBQUERY /* If this was a subquery, we have now converted the subquery into a ** temporary table. So set the SrcList_item.isPopulated flag to prevent ** this subquery from being evaluated again and to force the use of ** the temporary table. */ if( pParent ){ assert( pParent->pSrc->nSrc>parentTab ); assert( pParent->pSrc->a[parentTab].pSelect==p ); pParent->pSrc->a[parentTab].isPopulated = 1; } #endif /* Jump here to skip this query */ sqlite3VdbeResolveLabel(v, iEnd); /* The SELECT was successfully coded. Set the return code to 0 ** to indicate no errors. */ rc = 0; /* Control jumps to here if an error is encountered above, or upon ** successful coding of the SELECT. */ select_end: /* Identify column names if we will be using them in a callback. This ** step is skipped if the output is going to some other destination. */ if( rc==SQLITE_OK && pDest->eDest==SRT_Callback ){ generateColumnNames(pParse, pTabList, pEList); } sqlite3_free(sAggInfo.aCol); sqlite3_free(sAggInfo.aFunc); return rc; } #if defined(SQLITE_DEBUG) /* ******************************************************************************* ** The following code is used for testing and debugging only. The code ** that follows does not appear in normal builds. ** ** These routines are used to print out the content of all or part of a ** parse structures such as Select or Expr. Such printouts are useful ** for helping to understand what is happening inside the code generator ** during the execution of complex SELECT statements. ** ** These routine are not called anywhere from within the normal ** code base. Then are intended to be called from within the debugger ** or from temporary "printf" statements inserted for debugging. */ void sqlite3PrintExpr(Expr *p){ if( p->token.z && p->token.n>0 ){ sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); }else{ sqlite3DebugPrintf("(%d", p->op); } if( p->pLeft ){ sqlite3DebugPrintf(" "); sqlite3PrintExpr(p->pLeft); } if( p->pRight ){ sqlite3DebugPrintf(" "); sqlite3PrintExpr(p->pRight); } sqlite3DebugPrintf(")"); } void sqlite3PrintExprList(ExprList *pList){ int i; for(i=0; inExpr; i++){ sqlite3PrintExpr(pList->a[i].pExpr); if( inExpr-1 ){ sqlite3DebugPrintf(", "); } } } void sqlite3PrintSelect(Select *p, int indent){ sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); sqlite3PrintExprList(p->pEList); sqlite3DebugPrintf("\n"); if( p->pSrc ){ char *zPrefix; int i; zPrefix = "FROM"; for(i=0; ipSrc->nSrc; i++){ struct SrcList_item *pItem = &p->pSrc->a[i]; sqlite3DebugPrintf("%*s ", indent+6, zPrefix); zPrefix = ""; if( pItem->pSelect ){ sqlite3DebugPrintf("(\n"); sqlite3PrintSelect(pItem->pSelect, indent+10); sqlite3DebugPrintf("%*s)", indent+8, ""); }else if( pItem->zName ){ sqlite3DebugPrintf("%s", pItem->zName); } if( pItem->pTab ){ sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); } if( pItem->zAlias ){ sqlite3DebugPrintf(" AS %s", pItem->zAlias); } if( ipSrc->nSrc-1 ){ sqlite3DebugPrintf(","); } sqlite3DebugPrintf("\n"); } } if( p->pWhere ){ sqlite3DebugPrintf("%*s WHERE ", indent, ""); sqlite3PrintExpr(p->pWhere); sqlite3DebugPrintf("\n"); } if( p->pGroupBy ){ sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); sqlite3PrintExprList(p->pGroupBy); sqlite3DebugPrintf("\n"); } if( p->pHaving ){ sqlite3DebugPrintf("%*s HAVING ", indent, ""); sqlite3PrintExpr(p->pHaving); sqlite3DebugPrintf("\n"); } if( p->pOrderBy ){ sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); sqlite3PrintExprList(p->pOrderBy); sqlite3DebugPrintf("\n"); } } /* End of the structure debug printing code *****************************************************************************/ #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */