/* ** The "printf" code that follows dates from the 1980's. It is in ** the public domain. The original comments are included here for ** completeness. They are slightly out-of-date. ** ** The following modules is an enhanced replacement for the "printf" programs ** found in the standard library. The following enhancements are ** supported: ** ** + Additional functions. The standard set of "printf" functions ** includes printf, fprintf, sprintf, vprintf, vfprintf, and ** vsprintf. This module adds the following: ** ** * snprintf -- Works like sprintf, but has an extra argument ** which is the size of the buffer written to. ** ** * mprintf -- Similar to sprintf. Writes output to memory ** obtained from malloc. ** ** * xprintf -- Calls a function to dispose of output. ** ** * nprintf -- No output, but returns the number of characters ** that would have been output by printf. ** ** * A v- version (ex: vsnprintf) of every function is also ** supplied. ** ** + A few extensions to the formatting notation are supported: ** ** * The "=" flag (similar to "-") causes the output to be ** be centered in the appropriately sized field. ** ** * The %b field outputs an integer in binary notation. ** ** * The %c field now accepts a precision. The character output ** is repeated by the number of times the precision specifies. ** ** * The %' field works like %c, but takes as its character the ** next character of the format string, instead of the next ** argument. For example, printf("%.78'-") prints 78 minus ** signs, the same as printf("%.78c",'-'). ** ** + When compiled using GCC on a SPARC, this version of printf is ** faster than the library printf for SUN OS 4.1. ** ** + All functions are fully reentrant. ** */ #include "sqliteInt.h" /* ** Undefine COMPATIBILITY to make some slight changes in the way things ** work. I think the changes are an improvement, but they are not ** backwards compatible. */ /* #define COMPATIBILITY / * Compatible with SUN OS 4.1 */ /* ** Conversion types fall into various categories as defined by the ** following enumeration. */ enum et_type { /* The type of the format field */ etRADIX, /* Integer types. %d, %x, %o, and so forth */ etFLOAT, /* Floating point. %f */ etEXP, /* Exponentional notation. %e and %E */ etGENERIC, /* Floating or exponential, depending on exponent. %g */ etSIZE, /* Return number of characters processed so far. %n */ etSTRING, /* Strings. %s */ etPERCENT, /* Percent symbol. %% */ etCHARX, /* Characters. %c */ etERROR, /* Used to indicate no such conversion type */ /* The rest are extensions, not normally found in printf() */ etCHARLIT, /* Literal characters. %' */ etSQLESCAPE, /* Strings with '\'' doubled. %q */ etSQLESCAPE2, /* Strings with '\'' doubled and enclosed in '', NULL pointers replaced by SQL NULL. %Q */ etORDINAL /* 1st, 2nd, 3rd and so forth */ }; /* ** Each builtin conversion character (ex: the 'd' in "%d") is described ** by an instance of the following structure */ typedef struct et_info { /* Information about each format field */ int fmttype; /* The format field code letter */ int base; /* The base for radix conversion */ char *charset; /* The character set for conversion */ int flag_signed; /* Is the quantity signed? */ char *prefix; /* Prefix on non-zero values in alt format */ enum et_type type; /* Conversion paradigm */ } et_info; /* ** The following table is searched linearly, so it is good to put the ** most frequently used conversion types first. */ static et_info fmtinfo[] = { { 'd', 10, "0123456789", 1, 0, etRADIX, }, { 's', 0, 0, 0, 0, etSTRING, }, { 'q', 0, 0, 0, 0, etSQLESCAPE, }, { 'Q', 0, 0, 0, 0, etSQLESCAPE2, }, { 'c', 0, 0, 0, 0, etCHARX, }, { 'o', 8, "01234567", 0, "0", etRADIX, }, { 'u', 10, "0123456789", 0, 0, etRADIX, }, { 'x', 16, "0123456789abcdef", 0, "x0", etRADIX, }, { 'X', 16, "0123456789ABCDEF", 0, "X0", etRADIX, }, { 'r', 10, "0123456789", 0, 0, etORDINAL, }, { 'f', 0, 0, 1, 0, etFLOAT, }, { 'e', 0, "e", 1, 0, etEXP, }, { 'E', 0, "E", 1, 0, etEXP, }, { 'g', 0, "e", 1, 0, etGENERIC, }, { 'G', 0, "E", 1, 0, etGENERIC, }, { 'i', 10, "0123456789", 1, 0, etRADIX, }, { 'n', 0, 0, 0, 0, etSIZE, }, { '%', 0, 0, 0, 0, etPERCENT, }, { 'b', 2, "01", 0, "b0", etRADIX, }, /* Binary */ { 'p', 10, "0123456789", 0, 0, etRADIX, }, /* Pointers */ { '\'', 0, 0, 0, 0, etCHARLIT, }, /* Literal char */ }; #define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0])) /* ** If NOFLOATINGPOINT is defined, then none of the floating point ** conversions will work. */ #ifndef etNOFLOATINGPOINT /* ** "*val" is a double such that 0.1 <= *val < 10.0 ** Return the ascii code for the leading digit of *val, then ** multiply "*val" by 10.0 to renormalize. ** ** Example: ** input: *val = 3.14159 ** output: *val = 1.4159 function return = '3' ** ** The counter *cnt is incremented each time. After counter exceeds ** 16 (the number of significant digits in a 64-bit float) '0' is ** always returned. */ static int et_getdigit(double *val, int *cnt){ int digit; double d; if( (*cnt)++ >= 16 ) return '0'; digit = (int)*val; d = digit; digit += '0'; *val = (*val - d)*10.0; return digit; } #endif #define etBUFSIZE 1000 /* Size of the output buffer */ /* ** The root program. All variations call this core. ** ** INPUTS: ** func This is a pointer to a function taking three arguments ** 1. A pointer to anything. Same as the "arg" parameter. ** 2. A pointer to the list of characters to be output ** (Note, this list is NOT null terminated.) ** 3. An integer number of characters to be output. ** (Note: This number might be zero.) ** ** arg This is the pointer to anything which will be passed as the ** first argument to "func". Use it for whatever you like. ** ** fmt This is the format string, as in the usual print. ** ** ap This is a pointer to a list of arguments. Same as in ** vfprint. ** ** OUTPUTS: ** The return value is the total number of characters sent to ** the function "func". Returns -1 on a error. ** ** Note that the order in which automatic variables are declared below ** seems to make a big difference in determining how fast this beast ** will run. */ static int vxprintf( void (*func)(void*,char*,int), void *arg, const char *format, va_list ap ){ register const char *fmt; /* The format string. */ register int c; /* Next character in the format string */ register char *bufpt; /* Pointer to the conversion buffer */ register int precision; /* Precision of the current field */ register int length; /* Length of the field */ register int idx; /* A general purpose loop counter */ int count; /* Total number of characters output */ int width; /* Width of the current field */ int flag_leftjustify; /* True if "-" flag is present */ int flag_plussign; /* True if "+" flag is present */ int flag_blanksign; /* True if " " flag is present */ int flag_alternateform; /* True if "#" flag is present */ int flag_zeropad; /* True if field width constant starts with zero */ int flag_long; /* True if "l" flag is present */ int flag_center; /* True if "=" flag is present */ unsigned long longvalue; /* Value for integer types */ double realvalue; /* Value for real types */ et_info *infop; /* Pointer to the appropriate info structure */ char buf[etBUFSIZE]; /* Conversion buffer */ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ int errorflag = 0; /* True if an error is encountered */ enum et_type xtype; /* Conversion paradigm */ char *zMem; /* String to be freed */ char *zExtra; /* Extra memory used for etTCLESCAPE conversions */ static char spaces[] = " " " "; #define etSPACESIZE (sizeof(spaces)-1) #ifndef etNOFLOATINGPOINT int exp; /* exponent of real numbers */ double rounder; /* Used for rounding floating point values */ int flag_dp; /* True if decimal point should be shown */ int flag_rtz; /* True if trailing zeros should be removed */ int flag_exp; /* True to force display of the exponent */ int nsd; /* Number of significant digits returned */ #endif fmt = format; /* Put in a register for speed */ count = length = 0; bufpt = 0; for(; (c=(*fmt))!=0; ++fmt){ if( c!='%' ){ register int amt; bufpt = (char *)fmt; amt = 1; while( (c=(*++fmt))!='%' && c!=0 ) amt++; (*func)(arg,bufpt,amt); count += amt; if( c==0 ) break; } if( (c=(*++fmt))==0 ){ errorflag = 1; (*func)(arg,"%",1); count++; break; } /* Find out what flags are present */ flag_leftjustify = flag_plussign = flag_blanksign = flag_alternateform = flag_zeropad = flag_center = 0; do{ switch( c ){ case '-': flag_leftjustify = 1; c = 0; break; case '+': flag_plussign = 1; c = 0; break; case ' ': flag_blanksign = 1; c = 0; break; case '#': flag_alternateform = 1; c = 0; break; case '0': flag_zeropad = 1; c = 0; break; case '=': flag_center = 1; c = 0; break; default: break; } }while( c==0 && (c=(*++fmt))!=0 ); if( flag_center ) flag_leftjustify = 0; /* Get the field width */ width = 0; if( c=='*' ){ width = va_arg(ap,int); if( width<0 ){ flag_leftjustify = 1; width = -width; } c = *++fmt; }else{ while( c>='0' && c<='9' ){ width = width*10 + c - '0'; c = *++fmt; } } if( width > etBUFSIZE-10 ){ width = etBUFSIZE-10; } /* Get the precision */ if( c=='.' ){ precision = 0; c = *++fmt; if( c=='*' ){ precision = va_arg(ap,int); #ifndef etCOMPATIBILITY /* This is sensible, but SUN OS 4.1 doesn't do it. */ if( precision<0 ) precision = -precision; #endif c = *++fmt; }else{ while( c>='0' && c<='9' ){ precision = precision*10 + c - '0'; c = *++fmt; } } /* Limit the precision to prevent overflowing buf[] during conversion */ if( precision>etBUFSIZE-40 ) precision = etBUFSIZE-40; }else{ precision = -1; } /* Get the conversion type modifier */ if( c=='l' ){ flag_long = 1; c = *++fmt; }else{ flag_long = 0; } /* Fetch the info entry for the field */ infop = 0; for(idx=0; idxtype; } zExtra = 0; /* ** At this point, variables are initialized as follows: ** ** flag_alternateform TRUE if a '#' is present. ** flag_plussign TRUE if a '+' is present. ** flag_leftjustify TRUE if a '-' is present or if the ** field width was negative. ** flag_zeropad TRUE if the width began with 0. ** flag_long TRUE if the letter 'l' (ell) prefixed ** the conversion character. ** flag_blanksign TRUE if a ' ' is present. ** width The specified field width. This is ** always non-negative. Zero is the default. ** precision The specified precision. The default ** is -1. ** xtype The class of the conversion. ** infop Pointer to the appropriate info struct. */ switch( xtype ){ case etORDINAL: case etRADIX: if( flag_long ) longvalue = va_arg(ap,long); else longvalue = va_arg(ap,int); #ifdef etCOMPATIBILITY /* For the format %#x, the value zero is printed "0" not "0x0". ** I think this is stupid. */ if( longvalue==0 ) flag_alternateform = 0; #else /* More sensible: turn off the prefix for octal (to prevent "00"), ** but leave the prefix for hex. */ if( longvalue==0 && infop->base==8 ) flag_alternateform = 0; #endif if( infop->flag_signed ){ if( *(long*)&longvalue<0 ){ longvalue = -*(long*)&longvalue; prefix = '-'; }else if( flag_plussign ) prefix = '+'; else if( flag_blanksign ) prefix = ' '; else prefix = 0; }else prefix = 0; if( flag_zeropad && precision3 || (b>10 && b<14) ){ bufpt[0] = 't'; bufpt[1] = 'h'; }else if( a==1 ){ bufpt[0] = 's'; bufpt[1] = 't'; }else if( a==2 ){ bufpt[0] = 'n'; bufpt[1] = 'd'; }else if( a==3 ){ bufpt[0] = 'r'; bufpt[1] = 'd'; } } { register char *cset; /* Use registers for speed */ register int base; cset = infop->charset; base = infop->base; do{ /* Convert to ascii */ *(--bufpt) = cset[longvalue%base]; longvalue = longvalue/base; }while( longvalue>0 ); } length = (long)&buf[etBUFSIZE]-(long)bufpt; for(idx=precision-length; idx>0; idx--){ *(--bufpt) = '0'; /* Zero pad */ } if( prefix ) *(--bufpt) = prefix; /* Add sign */ if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ char *pre, x; pre = infop->prefix; if( *bufpt!=pre[0] ){ for(pre=infop->prefix; (x=(*pre))!=0; pre++) *(--bufpt) = x; } } length = (long)&buf[etBUFSIZE]-(long)bufpt; break; case etFLOAT: case etEXP: case etGENERIC: realvalue = va_arg(ap,double); #ifndef etNOFLOATINGPOINT if( precision<0 ) precision = 6; /* Set default precision */ if( precision>etBUFSIZE-10 ) precision = etBUFSIZE-10; if( realvalue<0.0 ){ realvalue = -realvalue; prefix = '-'; }else{ if( flag_plussign ) prefix = '+'; else if( flag_blanksign ) prefix = ' '; else prefix = 0; } if( infop->type==etGENERIC && precision>0 ) precision--; rounder = 0.0; #ifdef COMPATIBILITY /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); #else /* It makes more sense to use 0.5 */ for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1); #endif if( infop->type==etFLOAT ) realvalue += rounder; /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ exp = 0; if( realvalue>0.0 ){ int k = 0; while( realvalue>=1e8 && k++<100 ){ realvalue *= 1e-8; exp+=8; } while( realvalue>=10.0 && k++<100 ){ realvalue *= 0.1; exp++; } while( realvalue<1e-8 && k++<100 ){ realvalue *= 1e8; exp-=8; } while( realvalue<1.0 && k++<100 ){ realvalue *= 10.0; exp--; } if( k>=100 ){ bufpt = "NaN"; length = 3; break; } } bufpt = buf; /* ** If the field type is etGENERIC, then convert to either etEXP ** or etFLOAT, as appropriate. */ flag_exp = xtype==etEXP; if( xtype!=etFLOAT ){ realvalue += rounder; if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } } if( xtype==etGENERIC ){ flag_rtz = !flag_alternateform; if( exp<-4 || exp>precision ){ xtype = etEXP; }else{ precision = precision - exp; xtype = etFLOAT; } }else{ flag_rtz = 0; } /* ** The "exp+precision" test causes output to be of type etEXP if ** the precision is too large to fit in buf[]. */ nsd = 0; if( xtype==etFLOAT && exp+precision0 || flag_alternateform); if( prefix ) *(bufpt++) = prefix; /* Sign */ if( exp<0 ) *(bufpt++) = '0'; /* Digits before "." */ else for(; exp>=0; exp--) *(bufpt++) = et_getdigit(&realvalue,&nsd); if( flag_dp ) *(bufpt++) = '.'; /* The decimal point */ for(exp++; exp<0 && precision>0; precision--, exp++){ *(bufpt++) = '0'; } while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd); *(bufpt--) = 0; /* Null terminate */ if( flag_rtz && flag_dp ){ /* Remove trailing zeros and "." */ while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0; if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0; } bufpt++; /* point to next free slot */ }else{ /* etEXP or etGENERIC */ flag_dp = (precision>0 || flag_alternateform); if( prefix ) *(bufpt++) = prefix; /* Sign */ *(bufpt++) = et_getdigit(&realvalue,&nsd); /* First digit */ if( flag_dp ) *(bufpt++) = '.'; /* Decimal point */ while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd); bufpt--; /* point to last digit */ if( flag_rtz && flag_dp ){ /* Remove tail zeros */ while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0; if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0; } bufpt++; /* point to next free slot */ if( exp || flag_exp ){ *(bufpt++) = infop->charset[0]; if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; } /* sign of exp */ else { *(bufpt++) = '+'; } if( exp>=100 ){ *(bufpt++) = (exp/100)+'0'; /* 100's digit */ exp %= 100; } *(bufpt++) = exp/10+'0'; /* 10's digit */ *(bufpt++) = exp%10+'0'; /* 1's digit */ } } /* The converted number is in buf[] and zero terminated. Output it. ** Note that the number is in the usual order, not reversed as with ** integer conversions. */ length = (long)bufpt-(long)buf; bufpt = buf; /* Special case: Add leading zeros if the flag_zeropad flag is ** set and we are not left justified */ if( flag_zeropad && !flag_leftjustify && length < width){ int i; int nPad = width - length; for(i=width; i>=nPad; i--){ bufpt[i] = bufpt[i-nPad]; } i = prefix!=0; while( nPad-- ) bufpt[i++] = '0'; length = width; } #endif break; case etSIZE: *(va_arg(ap,int*)) = count; length = width = 0; break; case etPERCENT: buf[0] = '%'; bufpt = buf; length = 1; break; case etCHARLIT: case etCHARX: c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt); if( precision>=0 ){ for(idx=1; idx=0 && precisionetBUFSIZE ){ bufpt = zExtra = sqliteMalloc( n ); if( bufpt==0 ) return -1; }else{ bufpt = buf; } j = 0; if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\''; for(i=0; (c=arg[i])!=0; i++){ bufpt[j++] = c; if( c=='\'' ) bufpt[j++] = c; } if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\''; bufpt[j] = 0; length = j; if( precision>=0 && precision0 ){ if( flag_center ){ nspace = nspace/2; width -= nspace; flag_leftjustify = 1; } count += nspace; while( nspace>=etSPACESIZE ){ (*func)(arg,spaces,etSPACESIZE); nspace -= etSPACESIZE; } if( nspace>0 ) (*func)(arg,spaces,nspace); } } if( length>0 ){ (*func)(arg,bufpt,length); count += length; } if( flag_leftjustify ){ register int nspace; nspace = width-length; if( nspace>0 ){ count += nspace; while( nspace>=etSPACESIZE ){ (*func)(arg,spaces,etSPACESIZE); nspace -= etSPACESIZE; } if( nspace>0 ) (*func)(arg,spaces,nspace); } } if( zExtra ){ sqliteFree(zExtra); } }/* End for loop over the format string */ return errorflag ? -1 : count; } /* End of function */ /* This structure is used to store state information about the ** write to memory that is currently in progress. */ struct sgMprintf { char *zBase; /* A base allocation */ char *zText; /* The string collected so far */ int nChar; /* Length of the string so far */ int nAlloc; /* Amount of space allocated in zText */ }; /* ** This function implements the callback from vxprintf. ** ** This routine add nNewChar characters of text in zNewText to ** the sgMprintf structure pointed to by "arg". */ static void mout(void *arg, char *zNewText, int nNewChar){ struct sgMprintf *pM = (struct sgMprintf*)arg; if( pM->nChar + nNewChar + 1 > pM->nAlloc ){ pM->nAlloc = pM->nChar + nNewChar*2 + 1; if( pM->zText==pM->zBase ){ pM->zText = sqliteMalloc(pM->nAlloc); if( pM->zText && pM->nChar ) memcpy(pM->zText,pM->zBase,pM->nChar); }else{ char *z = sqliteRealloc(pM->zText, pM->nAlloc); if( z==0 ){ sqliteFree(pM->zText); pM->nChar = 0; pM->nAlloc = 0; } pM->zText = z; } } if( pM->zText ){ memcpy(&pM->zText[pM->nChar], zNewText, nNewChar); pM->nChar += nNewChar; pM->zText[pM->nChar] = 0; } } /* ** sqlite_mprintf() works like printf(), but allocations memory to hold the ** resulting string and returns a pointer to the allocated memory. Use ** sqliteFree() to release the memory allocated. */ char *sqlite_mprintf(const char *zFormat, ...){ va_list ap; struct sgMprintf sMprintf; char *zNew; char zBuf[200]; sMprintf.nChar = 0; sMprintf.nAlloc = sizeof(zBuf); sMprintf.zText = zBuf; sMprintf.zBase = zBuf; va_start(ap,zFormat); vxprintf(mout,&sMprintf,zFormat,ap); va_end(ap); sMprintf.zText[sMprintf.nChar] = 0; zNew = malloc( sMprintf.nChar+1 ); if( zNew ) strcpy(zNew,sMprintf.zText); if( sMprintf.zText!=sMprintf.zBase ){ sqliteFree(sMprintf.zText); } return zNew; } /* This is the varargs version of sqlite_mprintf. */ char *sqlite_vmprintf(const char *zFormat, va_list ap){ struct sgMprintf sMprintf; char *zNew; char zBuf[200]; sMprintf.nChar = 0; sMprintf.zText = zBuf; sMprintf.nAlloc = sizeof(zBuf); sMprintf.zBase = zBuf; vxprintf(mout,&sMprintf,zFormat,ap); sMprintf.zText[sMprintf.nChar] = 0; zNew = malloc( sMprintf.nChar+1 ); if( zNew ) strcpy(zNew,sMprintf.zText); if( sMprintf.zText!=sMprintf.zBase ){ sqliteFree(sMprintf.zText); } return zNew; } /* ** The following four routines implement the varargs versions of the ** sqlite_exec() and sqlite_get_table() interfaces. See the sqlite.h ** header files for a more detailed description of how these interfaces ** work. ** ** These routines are all just simple wrappers. */ int sqlite_exec_printf( sqlite *db, /* An open database */ const char *sqlFormat, /* printf-style format string for the SQL */ sqlite_callback xCallback, /* Callback function */ void *pArg, /* 1st argument to callback function */ char **errmsg, /* Error msg written here */ ... /* Arguments to the format string. */ ){ va_list ap; int rc; va_start(ap, errmsg); rc = sqlite_exec_vprintf(db, sqlFormat, xCallback, pArg, errmsg, ap); va_end(ap); return rc; } int sqlite_exec_vprintf( sqlite *db, /* An open database */ const char *sqlFormat, /* printf-style format string for the SQL */ sqlite_callback xCallback, /* Callback function */ void *pArg, /* 1st argument to callback function */ char **errmsg, /* Error msg written here */ va_list ap /* Arguments to the format string. */ ){ char *zSql; int rc; zSql = sqlite_vmprintf(sqlFormat, ap); rc = sqlite_exec(db, zSql, xCallback, pArg, errmsg); free(zSql); return rc; } int sqlite_get_table_printf( sqlite *db, /* An open database */ const char *sqlFormat, /* printf-style format string for the SQL */ char ***resultp, /* Result written to a char *[] that this points to */ int *nrow, /* Number of result rows written here */ int *ncol, /* Number of result columns written here */ char **errmsg, /* Error msg written here */ ... /* Arguments to the format string */ ){ va_list ap; int rc; va_start(ap, errmsg); rc = sqlite_get_table_vprintf(db, sqlFormat, resultp, nrow, ncol, errmsg, ap); va_end(ap); return rc; } int sqlite_get_table_vprintf( sqlite *db, /* An open database */ const char *sqlFormat, /* printf-style format string for the SQL */ char ***resultp, /* Result written to a char *[] that this points to */ int *nrow, /* Number of result rows written here */ int *ncolumn, /* Number of result columns written here */ char **errmsg, /* Error msg written here */ va_list ap /* Arguments to the format string */ ){ char *zSql; int rc; zSql = sqlite_vmprintf(sqlFormat, ap); rc = sqlite_get_table(db, zSql, resultp, nrow, ncolumn, errmsg); free(zSql); return rc; }