/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. */ #include "sqliteInt.h" /* ** Return the 'affinity' of the expression pExpr if any. ** ** If pExpr is a column, a reference to a column via an 'AS' alias, ** or a sub-select with a column as the return value, then the ** affinity of that column is returned. Otherwise, 0x00 is returned, ** indicating no affinity for the expression. ** ** i.e. the WHERE clause expresssions in the following statements all ** have an affinity: ** ** CREATE TABLE t1(a); ** SELECT * FROM t1 WHERE a; ** SELECT a AS b FROM t1 WHERE b; ** SELECT * FROM t1 WHERE (select a from t1); */ char sqlite3ExprAffinity(Expr *pExpr){ int op; pExpr = sqlite3ExprSkipCollate(pExpr); op = pExpr->op; if( op==TK_SELECT ){ assert( pExpr->flags&EP_xIsSelect ); return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); } #ifndef SQLITE_OMIT_CAST if( op==TK_CAST ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); return sqlite3AffinityType(pExpr->u.zToken); } #endif if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) && pExpr->pTab!=0 ){ /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally ** a TK_COLUMN but was previously evaluated and cached in a register */ int j = pExpr->iColumn; if( j<0 ) return SQLITE_AFF_INTEGER; assert( pExpr->pTab && jpTab->nCol ); return pExpr->pTab->aCol[j].affinity; } return pExpr->affinity; } /* ** Set the collating sequence for expression pExpr to be the collating ** sequence named by pToken. Return a pointer to a new Expr node that ** implements the COLLATE operator. ** ** If a memory allocation error occurs, that fact is recorded in pParse->db ** and the pExpr parameter is returned unchanged. */ Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){ if( pCollName->n>0 ){ Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1); if( pNew ){ pNew->pLeft = pExpr; pNew->flags |= EP_Collate; pExpr = pNew; } } return pExpr; } Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ Token s; assert( zC!=0 ); s.z = zC; s.n = sqlite3Strlen30(s.z); return sqlite3ExprAddCollateToken(pParse, pExpr, &s); } /* ** Skip over any TK_COLLATE and/or TK_AS operators at the root of ** an expression. */ Expr *sqlite3ExprSkipCollate(Expr *pExpr){ while( pExpr && (pExpr->op==TK_COLLATE || pExpr->op==TK_AS) ){ pExpr = pExpr->pLeft; } return pExpr; } /* ** Return the collation sequence for the expression pExpr. If ** there is no defined collating sequence, return NULL. ** ** The collating sequence might be determined by a COLLATE operator ** or by the presence of a column with a defined collating sequence. ** COLLATE operators take first precedence. Left operands take ** precedence over right operands. */ CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ sqlite3 *db = pParse->db; CollSeq *pColl = 0; Expr *p = pExpr; while( p ){ int op = p->op; if( op==TK_CAST || op==TK_UPLUS ){ p = p->pLeft; continue; } assert( op!=TK_REGISTER || p->op2!=TK_COLLATE ); if( op==TK_COLLATE ){ pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); break; } if( p->pTab!=0 && (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER) ){ /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally ** a TK_COLUMN but was previously evaluated and cached in a register */ int j = p->iColumn; if( j>=0 ){ const char *zColl = p->pTab->aCol[j].zColl; pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); } break; } if( p->flags & EP_Collate ){ if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){ p = p->pLeft; }else{ p = p->pRight; } }else{ break; } } if( sqlite3CheckCollSeq(pParse, pColl) ){ pColl = 0; } return pColl; } /* ** pExpr is an operand of a comparison operator. aff2 is the ** type affinity of the other operand. This routine returns the ** type affinity that should be used for the comparison operator. */ char sqlite3CompareAffinity(Expr *pExpr, char aff2){ char aff1 = sqlite3ExprAffinity(pExpr); if( aff1 && aff2 ){ /* Both sides of the comparison are columns. If one has numeric ** affinity, use that. Otherwise use no affinity. */ if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ return SQLITE_AFF_NUMERIC; }else{ return SQLITE_AFF_NONE; } }else if( !aff1 && !aff2 ){ /* Neither side of the comparison is a column. Compare the ** results directly. */ return SQLITE_AFF_NONE; }else{ /* One side is a column, the other is not. Use the columns affinity. */ assert( aff1==0 || aff2==0 ); return (aff1 + aff2); } } /* ** pExpr is a comparison operator. Return the type affinity that should ** be applied to both operands prior to doing the comparison. */ static char comparisonAffinity(Expr *pExpr){ char aff; assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); assert( pExpr->pLeft ); aff = sqlite3ExprAffinity(pExpr->pLeft); if( pExpr->pRight ){ aff = sqlite3CompareAffinity(pExpr->pRight, aff); }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); }else if( !aff ){ aff = SQLITE_AFF_NONE; } return aff; } /* ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. ** idx_affinity is the affinity of an indexed column. Return true ** if the index with affinity idx_affinity may be used to implement ** the comparison in pExpr. */ int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ char aff = comparisonAffinity(pExpr); switch( aff ){ case SQLITE_AFF_NONE: return 1; case SQLITE_AFF_TEXT: return idx_affinity==SQLITE_AFF_TEXT; default: return sqlite3IsNumericAffinity(idx_affinity); } } /* ** Return the P5 value that should be used for a binary comparison ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. */ static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ u8 aff = (char)sqlite3ExprAffinity(pExpr2); aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; return aff; } /* ** Return a pointer to the collation sequence that should be used by ** a binary comparison operator comparing pLeft and pRight. ** ** If the left hand expression has a collating sequence type, then it is ** used. Otherwise the collation sequence for the right hand expression ** is used, or the default (BINARY) if neither expression has a collating ** type. ** ** Argument pRight (but not pLeft) may be a null pointer. In this case, ** it is not considered. */ CollSeq *sqlite3BinaryCompareCollSeq( Parse *pParse, Expr *pLeft, Expr *pRight ){ CollSeq *pColl; assert( pLeft ); if( pLeft->flags & EP_Collate ){ pColl = sqlite3ExprCollSeq(pParse, pLeft); }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ pColl = sqlite3ExprCollSeq(pParse, pRight); }else{ pColl = sqlite3ExprCollSeq(pParse, pLeft); if( !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pRight); } } return pColl; } /* ** Generate code for a comparison operator. */ static int codeCompare( Parse *pParse, /* The parsing (and code generating) context */ Expr *pLeft, /* The left operand */ Expr *pRight, /* The right operand */ int opcode, /* The comparison opcode */ int in1, int in2, /* Register holding operands */ int dest, /* Jump here if true. */ int jumpIfNull /* If true, jump if either operand is NULL */ ){ int p5; int addr; CollSeq *p4; p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, (void*)p4, P4_COLLSEQ); sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); return addr; } #if SQLITE_MAX_EXPR_DEPTH>0 /* ** Check that argument nHeight is less than or equal to the maximum ** expression depth allowed. If it is not, leave an error message in ** pParse. */ int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ int rc = SQLITE_OK; int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; if( nHeight>mxHeight ){ sqlite3ErrorMsg(pParse, "Expression tree is too large (maximum depth %d)", mxHeight ); rc = SQLITE_ERROR; } return rc; } /* The following three functions, heightOfExpr(), heightOfExprList() ** and heightOfSelect(), are used to determine the maximum height ** of any expression tree referenced by the structure passed as the ** first argument. ** ** If this maximum height is greater than the current value pointed ** to by pnHeight, the second parameter, then set *pnHeight to that ** value. */ static void heightOfExpr(Expr *p, int *pnHeight){ if( p ){ if( p->nHeight>*pnHeight ){ *pnHeight = p->nHeight; } } } static void heightOfExprList(ExprList *p, int *pnHeight){ if( p ){ int i; for(i=0; inExpr; i++){ heightOfExpr(p->a[i].pExpr, pnHeight); } } } static void heightOfSelect(Select *p, int *pnHeight){ if( p ){ heightOfExpr(p->pWhere, pnHeight); heightOfExpr(p->pHaving, pnHeight); heightOfExpr(p->pLimit, pnHeight); heightOfExpr(p->pOffset, pnHeight); heightOfExprList(p->pEList, pnHeight); heightOfExprList(p->pGroupBy, pnHeight); heightOfExprList(p->pOrderBy, pnHeight); heightOfSelect(p->pPrior, pnHeight); } } /* ** Set the Expr.nHeight variable in the structure passed as an ** argument. An expression with no children, Expr.pList or ** Expr.pSelect member has a height of 1. Any other expression ** has a height equal to the maximum height of any other ** referenced Expr plus one. */ static void exprSetHeight(Expr *p){ int nHeight = 0; heightOfExpr(p->pLeft, &nHeight); heightOfExpr(p->pRight, &nHeight); if( ExprHasProperty(p, EP_xIsSelect) ){ heightOfSelect(p->x.pSelect, &nHeight); }else{ heightOfExprList(p->x.pList, &nHeight); } p->nHeight = nHeight + 1; } /* ** Set the Expr.nHeight variable using the exprSetHeight() function. If ** the height is greater than the maximum allowed expression depth, ** leave an error in pParse. */ void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ exprSetHeight(p); sqlite3ExprCheckHeight(pParse, p->nHeight); } /* ** Return the maximum height of any expression tree referenced ** by the select statement passed as an argument. */ int sqlite3SelectExprHeight(Select *p){ int nHeight = 0; heightOfSelect(p, &nHeight); return nHeight; } #else #define exprSetHeight(y) #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ /* ** This routine is the core allocator for Expr nodes. ** ** Construct a new expression node and return a pointer to it. Memory ** for this node and for the pToken argument is a single allocation ** obtained from sqlite3DbMalloc(). The calling function ** is responsible for making sure the node eventually gets freed. ** ** If dequote is true, then the token (if it exists) is dequoted. ** If dequote is false, no dequoting is performance. The deQuote ** parameter is ignored if pToken is NULL or if the token does not ** appear to be quoted. If the quotes were of the form "..." (double-quotes) ** then the EP_DblQuoted flag is set on the expression node. ** ** Special case: If op==TK_INTEGER and pToken points to a string that ** can be translated into a 32-bit integer, then the token is not ** stored in u.zToken. Instead, the integer values is written ** into u.iValue and the EP_IntValue flag is set. No extra storage ** is allocated to hold the integer text and the dequote flag is ignored. */ Expr *sqlite3ExprAlloc( sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ int op, /* Expression opcode */ const Token *pToken, /* Token argument. Might be NULL */ int dequote /* True to dequote */ ){ Expr *pNew; int nExtra = 0; int iValue = 0; if( pToken ){ if( op!=TK_INTEGER || pToken->z==0 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ nExtra = pToken->n+1; assert( iValue>=0 ); } } pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); if( pNew ){ pNew->op = (u8)op; pNew->iAgg = -1; if( pToken ){ if( nExtra==0 ){ pNew->flags |= EP_IntValue; pNew->u.iValue = iValue; }else{ int c; pNew->u.zToken = (char*)&pNew[1]; assert( pToken->z!=0 || pToken->n==0 ); if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); pNew->u.zToken[pToken->n] = 0; if( dequote && nExtra>=3 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ sqlite3Dequote(pNew->u.zToken); if( c=='"' ) pNew->flags |= EP_DblQuoted; } } } #if SQLITE_MAX_EXPR_DEPTH>0 pNew->nHeight = 1; #endif } return pNew; } /* ** Allocate a new expression node from a zero-terminated token that has ** already been dequoted. */ Expr *sqlite3Expr( sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ int op, /* Expression opcode */ const char *zToken /* Token argument. Might be NULL */ ){ Token x; x.z = zToken; x.n = zToken ? sqlite3Strlen30(zToken) : 0; return sqlite3ExprAlloc(db, op, &x, 0); } /* ** Attach subtrees pLeft and pRight to the Expr node pRoot. ** ** If pRoot==NULL that means that a memory allocation error has occurred. ** In that case, delete the subtrees pLeft and pRight. */ void sqlite3ExprAttachSubtrees( sqlite3 *db, Expr *pRoot, Expr *pLeft, Expr *pRight ){ if( pRoot==0 ){ assert( db->mallocFailed ); sqlite3ExprDelete(db, pLeft); sqlite3ExprDelete(db, pRight); }else{ if( pRight ){ pRoot->pRight = pRight; pRoot->flags |= EP_Collate & pRight->flags; } if( pLeft ){ pRoot->pLeft = pLeft; pRoot->flags |= EP_Collate & pLeft->flags; } exprSetHeight(pRoot); } } /* ** Allocate a Expr node which joins as many as two subtrees. ** ** One or both of the subtrees can be NULL. Return a pointer to the new ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, ** free the subtrees and return NULL. */ Expr *sqlite3PExpr( Parse *pParse, /* Parsing context */ int op, /* Expression opcode */ Expr *pLeft, /* Left operand */ Expr *pRight, /* Right operand */ const Token *pToken /* Argument token */ ){ Expr *p; if( op==TK_AND && pLeft && pRight ){ /* Take advantage of short-circuit false optimization for AND */ p = sqlite3ExprAnd(pParse->db, pLeft, pRight); }else{ p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); } if( p ) { sqlite3ExprCheckHeight(pParse, p->nHeight); } return p; } /* ** Return 1 if an expression must be FALSE in all cases and 0 if the ** expression might be true. This is an optimization. If is OK to ** return 0 here even if the expression really is always false (a ** false negative). But it is a bug to return 1 if the expression ** might be true in some rare circumstances (a false positive.) ** ** Note that if the expression is part of conditional for a ** LEFT JOIN, then we cannot determine at compile-time whether or not ** is it true or false, so always return 0. */ static int exprAlwaysFalse(Expr *p){ int v = 0; if( ExprHasProperty(p, EP_FromJoin) ) return 0; if( !sqlite3ExprIsInteger(p, &v) ) return 0; return v==0; } /* ** Join two expressions using an AND operator. If either expression is ** NULL, then just return the other expression. ** ** If one side or the other of the AND is known to be false, then instead ** of returning an AND expression, just return a constant expression with ** a value of false. */ Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ if( pLeft==0 ){ return pRight; }else if( pRight==0 ){ return pLeft; }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ sqlite3ExprDelete(db, pLeft); sqlite3ExprDelete(db, pRight); return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); }else{ Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); return pNew; } } /* ** Construct a new expression node for a function with multiple ** arguments. */ Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ Expr *pNew; sqlite3 *db = pParse->db; assert( pToken ); pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); if( pNew==0 ){ sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ return 0; } pNew->x.pList = pList; assert( !ExprHasProperty(pNew, EP_xIsSelect) ); sqlite3ExprSetHeight(pParse, pNew); return pNew; } /* ** Assign a variable number to an expression that encodes a wildcard ** in the original SQL statement. ** ** Wildcards consisting of a single "?" are assigned the next sequential ** variable number. ** ** Wildcards of the form "?nnn" are assigned the number "nnn". We make ** sure "nnn" is not too be to avoid a denial of service attack when ** the SQL statement comes from an external source. ** ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number ** as the previous instance of the same wildcard. Or if this is the first ** instance of the wildcard, the next sequenial variable number is ** assigned. */ void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ sqlite3 *db = pParse->db; const char *z; if( pExpr==0 ) return; assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); z = pExpr->u.zToken; assert( z!=0 ); assert( z[0]!=0 ); if( z[1]==0 ){ /* Wildcard of the form "?". Assign the next variable number */ assert( z[0]=='?' ); pExpr->iColumn = (ynVar)(++pParse->nVar); }else{ ynVar x = 0; u32 n = sqlite3Strlen30(z); if( z[0]=='?' ){ /* Wildcard of the form "?nnn". Convert "nnn" to an integer and ** use it as the variable number */ i64 i; int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); pExpr->iColumn = x = (ynVar)i; testcase( i==0 ); testcase( i==1 ); testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); x = 0; } if( i>pParse->nVar ){ pParse->nVar = (int)i; } }else{ /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable ** number as the prior appearance of the same name, or if the name ** has never appeared before, reuse the same variable number */ ynVar i; for(i=0; inzVar; i++){ if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ pExpr->iColumn = x = (ynVar)i+1; break; } } if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); } if( x>0 ){ if( x>pParse->nzVar ){ char **a; a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); if( a==0 ) return; /* Error reported through db->mallocFailed */ pParse->azVar = a; memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); pParse->nzVar = x; } if( z[0]!='?' || pParse->azVar[x-1]==0 ){ sqlite3DbFree(db, pParse->azVar[x-1]); pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); } } } if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ sqlite3ErrorMsg(pParse, "too many SQL variables"); } } /* ** Recursively delete an expression tree. */ void sqlite3ExprDelete(sqlite3 *db, Expr *p){ if( p==0 ) return; /* Sanity check: Assert that the IntValue is non-negative if it exists */ assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ sqlite3ExprDelete(db, p->pLeft); sqlite3ExprDelete(db, p->pRight); if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ sqlite3DbFree(db, p->u.zToken); } if( ExprHasProperty(p, EP_xIsSelect) ){ sqlite3SelectDelete(db, p->x.pSelect); }else{ sqlite3ExprListDelete(db, p->x.pList); } } if( !ExprHasProperty(p, EP_Static) ){ sqlite3DbFree(db, p); } } /* ** Return the number of bytes allocated for the expression structure ** passed as the first argument. This is always one of EXPR_FULLSIZE, ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. */ static int exprStructSize(Expr *p){ if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; return EXPR_FULLSIZE; } /* ** The dupedExpr*Size() routines each return the number of bytes required ** to store a copy of an expression or expression tree. They differ in ** how much of the tree is measured. ** ** dupedExprStructSize() Size of only the Expr structure ** dupedExprNodeSize() Size of Expr + space for token ** dupedExprSize() Expr + token + subtree components ** *************************************************************************** ** ** The dupedExprStructSize() function returns two values OR-ed together: ** (1) the space required for a copy of the Expr structure only and ** (2) the EP_xxx flags that indicate what the structure size should be. ** The return values is always one of: ** ** EXPR_FULLSIZE ** EXPR_REDUCEDSIZE | EP_Reduced ** EXPR_TOKENONLYSIZE | EP_TokenOnly ** ** The size of the structure can be found by masking the return value ** of this routine with 0xfff. The flags can be found by masking the ** return value with EP_Reduced|EP_TokenOnly. ** ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size ** (unreduced) Expr objects as they or originally constructed by the parser. ** During expression analysis, extra information is computed and moved into ** later parts of teh Expr object and that extra information might get chopped ** off if the expression is reduced. Note also that it does not work to ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal ** to reduce a pristine expression tree from the parser. The implementation ** of dupedExprStructSize() contain multiple assert() statements that attempt ** to enforce this constraint. */ static int dupedExprStructSize(Expr *p, int flags){ int nSize; assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ if( 0==(flags&EXPRDUP_REDUCE) ){ nSize = EXPR_FULLSIZE; }else{ assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); assert( !ExprHasProperty(p, EP_FromJoin) ); assert( (p->flags2 & EP2_MallocedToken)==0 ); assert( (p->flags2 & EP2_Irreducible)==0 ); if( p->pLeft || p->pRight || p->x.pList ){ nSize = EXPR_REDUCEDSIZE | EP_Reduced; }else{ nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; } } return nSize; } /* ** This function returns the space in bytes required to store the copy ** of the Expr structure and a copy of the Expr.u.zToken string (if that ** string is defined.) */ static int dupedExprNodeSize(Expr *p, int flags){ int nByte = dupedExprStructSize(p, flags) & 0xfff; if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ nByte += sqlite3Strlen30(p->u.zToken)+1; } return ROUND8(nByte); } /* ** Return the number of bytes required to create a duplicate of the ** expression passed as the first argument. The second argument is a ** mask containing EXPRDUP_XXX flags. ** ** The value returned includes space to create a copy of the Expr struct ** itself and the buffer referred to by Expr.u.zToken, if any. ** ** If the EXPRDUP_REDUCE flag is set, then the return value includes ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft ** and Expr.pRight variables (but not for any structures pointed to or ** descended from the Expr.x.pList or Expr.x.pSelect variables). */ static int dupedExprSize(Expr *p, int flags){ int nByte = 0; if( p ){ nByte = dupedExprNodeSize(p, flags); if( flags&EXPRDUP_REDUCE ){ nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); } } return nByte; } /* ** This function is similar to sqlite3ExprDup(), except that if pzBuffer ** is not NULL then *pzBuffer is assumed to point to a buffer large enough ** to store the copy of expression p, the copies of p->u.zToken ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, ** if any. Before returning, *pzBuffer is set to the first byte passed the ** portion of the buffer copied into by this function. */ static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ Expr *pNew = 0; /* Value to return */ if( p ){ const int isReduced = (flags&EXPRDUP_REDUCE); u8 *zAlloc; u32 staticFlag = 0; assert( pzBuffer==0 || isReduced ); /* Figure out where to write the new Expr structure. */ if( pzBuffer ){ zAlloc = *pzBuffer; staticFlag = EP_Static; }else{ zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); } pNew = (Expr *)zAlloc; if( pNew ){ /* Set nNewSize to the size allocated for the structure pointed to ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed ** by the copy of the p->u.zToken string (if any). */ const unsigned nStructSize = dupedExprStructSize(p, flags); const int nNewSize = nStructSize & 0xfff; int nToken; if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ nToken = sqlite3Strlen30(p->u.zToken) + 1; }else{ nToken = 0; } if( isReduced ){ assert( ExprHasProperty(p, EP_Reduced)==0 ); memcpy(zAlloc, p, nNewSize); }else{ int nSize = exprStructSize(p); memcpy(zAlloc, p, nSize); memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); } /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); pNew->flags |= staticFlag; /* Copy the p->u.zToken string, if any. */ if( nToken ){ char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; memcpy(zToken, p->u.zToken, nToken); } if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ if( ExprHasProperty(p, EP_xIsSelect) ){ pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); }else{ pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); } } /* Fill in pNew->pLeft and pNew->pRight. */ if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ zAlloc += dupedExprNodeSize(p, flags); if( ExprHasProperty(pNew, EP_Reduced) ){ pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); } if( pzBuffer ){ *pzBuffer = zAlloc; } }else{ pNew->flags2 = 0; if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); } } } } return pNew; } /* ** The following group of routines make deep copies of expressions, ** expression lists, ID lists, and select statements. The copies can ** be deleted (by being passed to their respective ...Delete() routines) ** without effecting the originals. ** ** The expression list, ID, and source lists return by sqlite3ExprListDup(), ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded ** by subsequent calls to sqlite*ListAppend() routines. ** ** Any tables that the SrcList might point to are not duplicated. ** ** The flags parameter contains a combination of the EXPRDUP_XXX flags. ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a ** truncated version of the usual Expr structure that will be stored as ** part of the in-memory representation of the database schema. */ Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ return exprDup(db, p, flags, 0); } ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ ExprList *pNew; struct ExprList_item *pItem, *pOldItem; int i; if( p==0 ) return 0; pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); if( pNew==0 ) return 0; pNew->iECursor = 0; pNew->nExpr = i = p->nExpr; if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; inExpr; i+=i){} pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); if( pItem==0 ){ sqlite3DbFree(db, pNew); return 0; } pOldItem = p->a; for(i=0; inExpr; i++, pItem++, pOldItem++){ Expr *pOldExpr = pOldItem->pExpr; pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); pItem->sortOrder = pOldItem->sortOrder; pItem->done = 0; pItem->iOrderByCol = pOldItem->iOrderByCol; pItem->iAlias = pOldItem->iAlias; } return pNew; } /* ** If cursors, triggers, views and subqueries are all omitted from ** the build, then none of the following routines, except for ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes ** called with a NULL argument. */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ || !defined(SQLITE_OMIT_SUBQUERY) SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ SrcList *pNew; int i; int nByte; if( p==0 ) return 0; nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); pNew = sqlite3DbMallocRaw(db, nByte ); if( pNew==0 ) return 0; pNew->nSrc = pNew->nAlloc = p->nSrc; for(i=0; inSrc; i++){ struct SrcList_item *pNewItem = &pNew->a[i]; struct SrcList_item *pOldItem = &p->a[i]; Table *pTab; pNewItem->pSchema = pOldItem->pSchema; pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); pNewItem->jointype = pOldItem->jointype; pNewItem->iCursor = pOldItem->iCursor; pNewItem->addrFillSub = pOldItem->addrFillSub; pNewItem->regReturn = pOldItem->regReturn; pNewItem->isCorrelated = pOldItem->isCorrelated; pNewItem->viaCoroutine = pOldItem->viaCoroutine; pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); pNewItem->notIndexed = pOldItem->notIndexed; pNewItem->pIndex = pOldItem->pIndex; pTab = pNewItem->pTab = pOldItem->pTab; if( pTab ){ pTab->nRef++; } pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); pNewItem->colUsed = pOldItem->colUsed; } return pNew; } IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ IdList *pNew; int i; if( p==0 ) return 0; pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); if( pNew==0 ) return 0; pNew->nId = p->nId; pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); if( pNew->a==0 ){ sqlite3DbFree(db, pNew); return 0; } /* Note that because the size of the allocation for p->a[] is not ** necessarily a power of two, sqlite3IdListAppend() may not be called ** on the duplicate created by this function. */ for(i=0; inId; i++){ struct IdList_item *pNewItem = &pNew->a[i]; struct IdList_item *pOldItem = &p->a[i]; pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pNewItem->idx = pOldItem->idx; } return pNew; } Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ Select *pNew, *pPrior; if( p==0 ) return 0; pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); if( pNew==0 ) return 0; pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); pNew->op = p->op; pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); if( pPrior ) pPrior->pNext = pNew; pNew->pNext = 0; pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); pNew->iLimit = 0; pNew->iOffset = 0; pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; pNew->pRightmost = 0; pNew->addrOpenEphm[0] = -1; pNew->addrOpenEphm[1] = -1; pNew->addrOpenEphm[2] = -1; return pNew; } #else Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ assert( p==0 ); return 0; } #endif /* ** Add a new element to the end of an expression list. If pList is ** initially NULL, then create a new expression list. ** ** If a memory allocation error occurs, the entire list is freed and ** NULL is returned. If non-NULL is returned, then it is guaranteed ** that the new entry was successfully appended. */ ExprList *sqlite3ExprListAppend( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to append. Might be NULL */ Expr *pExpr /* Expression to be appended. Might be NULL */ ){ sqlite3 *db = pParse->db; if( pList==0 ){ pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); if( pList==0 ){ goto no_mem; } pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); if( pList->a==0 ) goto no_mem; }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ struct ExprList_item *a; assert( pList->nExpr>0 ); a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); if( a==0 ){ goto no_mem; } pList->a = a; } assert( pList->a!=0 ); if( 1 ){ struct ExprList_item *pItem = &pList->a[pList->nExpr++]; memset(pItem, 0, sizeof(*pItem)); pItem->pExpr = pExpr; } return pList; no_mem: /* Avoid leaking memory if malloc has failed. */ sqlite3ExprDelete(db, pExpr); sqlite3ExprListDelete(db, pList); return 0; } /* ** Set the ExprList.a[].zName element of the most recently added item ** on the expression list. ** ** pList might be NULL following an OOM error. But pName should never be ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag ** is set. */ void sqlite3ExprListSetName( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to add the span. */ Token *pName, /* Name to be added */ int dequote /* True to cause the name to be dequoted */ ){ assert( pList!=0 || pParse->db->mallocFailed!=0 ); if( pList ){ struct ExprList_item *pItem; assert( pList->nExpr>0 ); pItem = &pList->a[pList->nExpr-1]; assert( pItem->zName==0 ); pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); } } /* ** Set the ExprList.a[].zSpan element of the most recently added item ** on the expression list. ** ** pList might be NULL following an OOM error. But pSpan should never be ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag ** is set. */ void sqlite3ExprListSetSpan( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to add the span. */ ExprSpan *pSpan /* The span to be added */ ){ sqlite3 *db = pParse->db; assert( pList!=0 || db->mallocFailed!=0 ); if( pList ){ struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; assert( pList->nExpr>0 ); assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); sqlite3DbFree(db, pItem->zSpan); pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, (int)(pSpan->zEnd - pSpan->zStart)); } } /* ** If the expression list pEList contains more than iLimit elements, ** leave an error message in pParse. */ void sqlite3ExprListCheckLength( Parse *pParse, ExprList *pEList, const char *zObject ){ int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; testcase( pEList && pEList->nExpr==mx ); testcase( pEList && pEList->nExpr==mx+1 ); if( pEList && pEList->nExpr>mx ){ sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); } } /* ** Delete an entire expression list. */ void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ int i; struct ExprList_item *pItem; if( pList==0 ) return; assert( pList->a!=0 || pList->nExpr==0 ); for(pItem=pList->a, i=0; inExpr; i++, pItem++){ sqlite3ExprDelete(db, pItem->pExpr); sqlite3DbFree(db, pItem->zName); sqlite3DbFree(db, pItem->zSpan); } sqlite3DbFree(db, pList->a); sqlite3DbFree(db, pList); } /* ** These routines are Walker callbacks. Walker.u.pi is a pointer ** to an integer. These routines are checking an expression to see ** if it is a constant. Set *Walker.u.pi to 0 if the expression is ** not constant. ** ** These callback routines are used to implement the following: ** ** sqlite3ExprIsConstant() ** sqlite3ExprIsConstantNotJoin() ** sqlite3ExprIsConstantOrFunction() ** */ static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ /* If pWalker->u.i is 3 then any term of the expression that comes from ** the ON or USING clauses of a join disqualifies the expression ** from being considered constant. */ if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ pWalker->u.i = 0; return WRC_Abort; } switch( pExpr->op ){ /* Consider functions to be constant if all their arguments are constant ** and pWalker->u.i==2 */ case TK_FUNCTION: if( pWalker->u.i==2 ) return 0; /* Fall through */ case TK_ID: case TK_COLUMN: case TK_AGG_FUNCTION: case TK_AGG_COLUMN: testcase( pExpr->op==TK_ID ); testcase( pExpr->op==TK_COLUMN ); testcase( pExpr->op==TK_AGG_FUNCTION ); testcase( pExpr->op==TK_AGG_COLUMN ); pWalker->u.i = 0; return WRC_Abort; default: testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ return WRC_Continue; } } static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ UNUSED_PARAMETER(NotUsed); pWalker->u.i = 0; return WRC_Abort; } static int exprIsConst(Expr *p, int initFlag){ Walker w; memset(&w, 0, sizeof(w)); w.u.i = initFlag; w.xExprCallback = exprNodeIsConstant; w.xSelectCallback = selectNodeIsConstant; sqlite3WalkExpr(&w, p); return w.u.i; } /* ** Walk an expression tree. Return 1 if the expression is constant ** and 0 if it involves variables or function calls. ** ** For the purposes of this function, a double-quoted string (ex: "abc") ** is considered a variable but a single-quoted string (ex: 'abc') is ** a constant. */ int sqlite3ExprIsConstant(Expr *p){ return exprIsConst(p, 1); } /* ** Walk an expression tree. Return 1 if the expression is constant ** that does no originate from the ON or USING clauses of a join. ** Return 0 if it involves variables or function calls or terms from ** an ON or USING clause. */ int sqlite3ExprIsConstantNotJoin(Expr *p){ return exprIsConst(p, 3); } /* ** Walk an expression tree. Return 1 if the expression is constant ** or a function call with constant arguments. Return and 0 if there ** are any variables. ** ** For the purposes of this function, a double-quoted string (ex: "abc") ** is considered a variable but a single-quoted string (ex: 'abc') is ** a constant. */ int sqlite3ExprIsConstantOrFunction(Expr *p){ return exprIsConst(p, 2); } /* ** If the expression p codes a constant integer that is small enough ** to fit in a 32-bit integer, return 1 and put the value of the integer ** in *pValue. If the expression is not an integer or if it is too big ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. */ int sqlite3ExprIsInteger(Expr *p, int *pValue){ int rc = 0; /* If an expression is an integer literal that fits in a signed 32-bit ** integer, then the EP_IntValue flag will have already been set */ assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); if( p->flags & EP_IntValue ){ *pValue = p->u.iValue; return 1; } switch( p->op ){ case TK_UPLUS: { rc = sqlite3ExprIsInteger(p->pLeft, pValue); break; } case TK_UMINUS: { int v; if( sqlite3ExprIsInteger(p->pLeft, &v) ){ *pValue = -v; rc = 1; } break; } default: break; } return rc; } /* ** Return FALSE if there is no chance that the expression can be NULL. ** ** If the expression might be NULL or if the expression is too complex ** to tell return TRUE. ** ** This routine is used as an optimization, to skip OP_IsNull opcodes ** when we know that a value cannot be NULL. Hence, a false positive ** (returning TRUE when in fact the expression can never be NULL) might ** be a small performance hit but is otherwise harmless. On the other ** hand, a false negative (returning FALSE when the result could be NULL) ** will likely result in an incorrect answer. So when in doubt, return ** TRUE. */ int sqlite3ExprCanBeNull(const Expr *p){ u8 op; while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } op = p->op; if( op==TK_REGISTER ) op = p->op2; switch( op ){ case TK_INTEGER: case TK_STRING: case TK_FLOAT: case TK_BLOB: return 0; default: return 1; } } /* ** Generate an OP_IsNull instruction that tests register iReg and jumps ** to location iDest if the value in iReg is NULL. The value in iReg ** was computed by pExpr. If we can look at pExpr at compile-time and ** determine that it can never generate a NULL, then the OP_IsNull operation ** can be omitted. */ void sqlite3ExprCodeIsNullJump( Vdbe *v, /* The VDBE under construction */ const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ int iReg, /* Test the value in this register for NULL */ int iDest /* Jump here if the value is null */ ){ if( sqlite3ExprCanBeNull(pExpr) ){ sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); } } /* ** Return TRUE if the given expression is a constant which would be ** unchanged by OP_Affinity with the affinity given in the second ** argument. ** ** This routine is used to determine if the OP_Affinity operation ** can be omitted. When in doubt return FALSE. A false negative ** is harmless. A false positive, however, can result in the wrong ** answer. */ int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ u8 op; if( aff==SQLITE_AFF_NONE ) return 1; while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } op = p->op; if( op==TK_REGISTER ) op = p->op2; switch( op ){ case TK_INTEGER: { return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; } case TK_FLOAT: { return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; } case TK_STRING: { return aff==SQLITE_AFF_TEXT; } case TK_BLOB: { return 1; } case TK_COLUMN: { assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ return p->iColumn<0 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); } default: { return 0; } } } /* ** Return TRUE if the given string is a row-id column name. */ int sqlite3IsRowid(const char *z){ if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; if( sqlite3StrICmp(z, "OID")==0 ) return 1; return 0; } /* ** Return true if we are able to the IN operator optimization on a ** query of the form ** ** x IN (SELECT ...) ** ** Where the SELECT... clause is as specified by the parameter to this ** routine. ** ** The Select object passed in has already been preprocessed and no ** errors have been found. */ #ifndef SQLITE_OMIT_SUBQUERY static int isCandidateForInOpt(Select *p){ SrcList *pSrc; ExprList *pEList; Table *pTab; if( p==0 ) return 0; /* right-hand side of IN is SELECT */ if( p->pPrior ) return 0; /* Not a compound SELECT */ if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); return 0; /* No DISTINCT keyword and no aggregate functions */ } assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ if( p->pLimit ) return 0; /* Has no LIMIT clause */ assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ if( p->pWhere ) return 0; /* Has no WHERE clause */ pSrc = p->pSrc; assert( pSrc!=0 ); if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ pTab = pSrc->a[0].pTab; if( NEVER(pTab==0) ) return 0; assert( pTab->pSelect==0 ); /* FROM clause is not a view */ if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ pEList = p->pEList; if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ return 1; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** Code an OP_Once instruction and allocate space for its flag. Return the ** address of the new instruction. */ int sqlite3CodeOnce(Parse *pParse){ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); } /* ** This function is used by the implementation of the IN (...) operator. ** The pX parameter is the expression on the RHS of the IN operator, which ** might be either a list of expressions or a subquery. ** ** The job of this routine is to find or create a b-tree object that can ** be used either to test for membership in the RHS set or to iterate through ** all members of the RHS set, skipping duplicates. ** ** A cursor is opened on the b-tree object that the RHS of the IN operator ** and pX->iTable is set to the index of that cursor. ** ** The returned value of this function indicates the b-tree type, as follows: ** ** IN_INDEX_ROWID - The cursor was opened on a database table. ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. ** IN_INDEX_EPH - The cursor was opened on a specially created and ** populated epheremal table. ** ** An existing b-tree might be used if the RHS expression pX is a simple ** subquery such as: ** ** SELECT FROM ** ** If the RHS of the IN operator is a list or a more complex subquery, then ** an ephemeral table might need to be generated from the RHS and then ** pX->iTable made to point to the ephermeral table instead of an ** existing table. ** ** If the prNotFound parameter is 0, then the b-tree will be used to iterate ** through the set members, skipping any duplicates. In this case an ** epheremal table must be used unless the selected is guaranteed ** to be unique - either because it is an INTEGER PRIMARY KEY or it ** has a UNIQUE constraint or UNIQUE index. ** ** If the prNotFound parameter is not 0, then the b-tree will be used ** for fast set membership tests. In this case an epheremal table must ** be used unless is an INTEGER PRIMARY KEY or an index can ** be found with as its left-most column. ** ** When the b-tree is being used for membership tests, the calling function ** needs to know whether or not the structure contains an SQL NULL ** value in order to correctly evaluate expressions like "X IN (Y, Z)". ** If there is any chance that the (...) might contain a NULL value at ** runtime, then a register is allocated and the register number written ** to *prNotFound. If there is no chance that the (...) contains a ** NULL value, then *prNotFound is left unchanged. ** ** If a register is allocated and its location stored in *prNotFound, then ** its initial value is NULL. If the (...) does not remain constant ** for the duration of the query (i.e. the SELECT within the (...) ** is a correlated subquery) then the value of the allocated register is ** reset to NULL each time the subquery is rerun. This allows the ** caller to use vdbe code equivalent to the following: ** ** if( register==NULL ){ ** has_null = ** register = 1 ** } ** ** in order to avoid running the ** test more often than is necessary. */ #ifndef SQLITE_OMIT_SUBQUERY int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ Select *p; /* SELECT to the right of IN operator */ int eType = 0; /* Type of RHS table. IN_INDEX_* */ int iTab = pParse->nTab++; /* Cursor of the RHS table */ int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ assert( pX->op==TK_IN ); /* Check to see if an existing table or index can be used to ** satisfy the query. This is preferable to generating a new ** ephemeral table. */ p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ sqlite3 *db = pParse->db; /* Database connection */ Table *pTab; /* Table
. */ Expr *pExpr; /* Expression */ int iCol; /* Index of column */ int iDb; /* Database idx for pTab */ assert( p ); /* Because of isCandidateForInOpt(p) */ assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ pTab = p->pSrc->a[0].pTab; pExpr = p->pEList->a[0].pExpr; iCol = pExpr->iColumn; /* Code an OP_VerifyCookie and OP_TableLock for
. */ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sqlite3CodeVerifySchema(pParse, iDb); sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); /* This function is only called from two places. In both cases the vdbe ** has already been allocated. So assume sqlite3GetVdbe() is always ** successful here. */ assert(v); if( iCol<0 ){ int iAddr; iAddr = sqlite3CodeOnce(pParse); sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); eType = IN_INDEX_ROWID; sqlite3VdbeJumpHere(v, iAddr); }else{ Index *pIdx; /* Iterator variable */ /* The collation sequence used by the comparison. If an index is to ** be used in place of a temp-table, it must be ordered according ** to this collation sequence. */ CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); /* Check that the affinity that will be used to perform the ** comparison is the same as the affinity of the column. If ** it is not, it is not possible to use any index. */ int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ if( (pIdx->aiColumn[0]==iCol) && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) ){ int iAddr; char *pKey; pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); iAddr = sqlite3CodeOnce(pParse); sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, pKey,P4_KEYINFO_HANDOFF); VdbeComment((v, "%s", pIdx->zName)); assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; sqlite3VdbeJumpHere(v, iAddr); if( prNotFound && !pTab->aCol[iCol].notNull ){ *prNotFound = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); } } } } } if( eType==0 ){ /* Could not found an existing table or index to use as the RHS b-tree. ** We will have to generate an ephemeral table to do the job. */ u32 savedNQueryLoop = pParse->nQueryLoop; int rMayHaveNull = 0; eType = IN_INDEX_EPH; if( prNotFound ){ *prNotFound = rMayHaveNull = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); }else{ testcase( pParse->nQueryLoop>1 ); pParse->nQueryLoop = 1; if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ eType = IN_INDEX_ROWID; } } sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); pParse->nQueryLoop = savedNQueryLoop; }else{ pX->iTable = iTab; } return eType; } #endif /* ** Generate code for scalar subqueries used as a subquery expression, EXISTS, ** or IN operators. Examples: ** ** (SELECT a FROM b) -- subquery ** EXISTS (SELECT a FROM b) -- EXISTS subquery ** x IN (4,5,11) -- IN operator with list on right-hand side ** x IN (SELECT a FROM b) -- IN operator with subquery on the right ** ** The pExpr parameter describes the expression that contains the IN ** operator or subquery. ** ** If parameter isRowid is non-zero, then expression pExpr is guaranteed ** to be of the form " IN (?, ?, ?)", where is a reference ** to some integer key column of a table B-Tree. In this case, use an ** intkey B-Tree to store the set of IN(...) values instead of the usual ** (slower) variable length keys B-Tree. ** ** If rMayHaveNull is non-zero, that means that the operation is an IN ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. ** Furthermore, the IN is in a WHERE clause and that we really want ** to iterate over the RHS of the IN operator in order to quickly locate ** all corresponding LHS elements. All this routine does is initialize ** the register given by rMayHaveNull to NULL. Calling routines will take ** care of changing this register value to non-NULL if the RHS is NULL-free. ** ** If rMayHaveNull is zero, that means that the subquery is being used ** for membership testing only. There is no need to initialize any ** registers to indicate the presence or absence of NULLs on the RHS. ** ** For a SELECT or EXISTS operator, return the register that holds the ** result. For IN operators or if an error occurs, the return value is 0. */ #ifndef SQLITE_OMIT_SUBQUERY int sqlite3CodeSubselect( Parse *pParse, /* Parsing context */ Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ int isRowid /* If true, LHS of IN operator is a rowid */ ){ int testAddr = -1; /* One-time test address */ int rReg = 0; /* Register storing resulting */ Vdbe *v = sqlite3GetVdbe(pParse); if( NEVER(v==0) ) return 0; sqlite3ExprCachePush(pParse); /* This code must be run in its entirety every time it is encountered ** if any of the following is true: ** ** * The right-hand side is a correlated subquery ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){ testAddr = sqlite3CodeOnce(pParse); } #ifndef SQLITE_OMIT_EXPLAIN if( pParse->explain==2 ){ char *zMsg = sqlite3MPrintf( pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId ); sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); } #endif switch( pExpr->op ){ case TK_IN: { char affinity; /* Affinity of the LHS of the IN */ KeyInfo keyInfo; /* Keyinfo for the generated table */ static u8 sortOrder = 0; /* Fake aSortOrder for keyInfo */ int addr; /* Address of OP_OpenEphemeral instruction */ Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ if( rMayHaveNull ){ sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); } affinity = sqlite3ExprAffinity(pLeft); /* Whether this is an 'x IN(SELECT...)' or an 'x IN()' ** expression it is handled the same way. An ephemeral table is ** filled with single-field index keys representing the results ** from the SELECT or the . ** ** If the 'x' expression is a column value, or the SELECT... ** statement returns a column value, then the affinity of that ** column is used to build the index keys. If both 'x' and the ** SELECT... statement are columns, then numeric affinity is used ** if either column has NUMERIC or INTEGER affinity. If neither ** 'x' nor the SELECT... statement are columns, then numeric affinity ** is used. */ pExpr->iTable = pParse->nTab++; addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); memset(&keyInfo, 0, sizeof(keyInfo)); keyInfo.nField = 1; keyInfo.aSortOrder = &sortOrder; if( ExprHasProperty(pExpr, EP_xIsSelect) ){ /* Case 1: expr IN (SELECT ...) ** ** Generate code to write the results of the select into the temporary ** table allocated and opened above. */ SelectDest dest; ExprList *pEList; assert( !isRowid ); sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); dest.affSdst = (u8)affinity; assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); pExpr->x.pSelect->iLimit = 0; if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ return 0; } pEList = pExpr->x.pSelect->pEList; if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pEList->a[0].pExpr); } }else if( ALWAYS(pExpr->x.pList!=0) ){ /* Case 2: expr IN (exprlist) ** ** For each expression, build an index key from the evaluation and ** store it in the temporary table. If is a column, then use ** that columns affinity when building index keys. If is not ** a column, use numeric affinity. */ int i; ExprList *pList = pExpr->x.pList; struct ExprList_item *pItem; int r1, r2, r3; if( !affinity ){ affinity = SQLITE_AFF_NONE; } keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); keyInfo.aSortOrder = &sortOrder; /* Loop through each expression in . */ r1 = sqlite3GetTempReg(pParse); r2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Null, 0, r2); for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ Expr *pE2 = pItem->pExpr; int iValToIns; /* If the expression is not constant then we will need to ** disable the test that was generated above that makes sure ** this code only executes once. Because for a non-constant ** expression we need to rerun this code each time. */ if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){ sqlite3VdbeChangeToNoop(v, testAddr); testAddr = -1; } /* Evaluate the expression and insert it into the temp table */ if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); }else{ r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); if( isRowid ){ sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2); sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); }else{ sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); sqlite3ExprCacheAffinityChange(pParse, r3, 1); sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); } } } sqlite3ReleaseTempReg(pParse, r1); sqlite3ReleaseTempReg(pParse, r2); } if( !isRowid ){ sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); } break; } case TK_EXISTS: case TK_SELECT: default: { /* If this has to be a scalar SELECT. Generate code to put the ** value of this select in a memory cell and record the number ** of the memory cell in iColumn. If this is an EXISTS, write ** an integer 0 (not exists) or 1 (exists) into a memory cell ** and record that memory cell in iColumn. */ Select *pSel; /* SELECT statement to encode */ SelectDest dest; /* How to deal with SELECt result */ testcase( pExpr->op==TK_EXISTS ); testcase( pExpr->op==TK_SELECT ); assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); assert( ExprHasProperty(pExpr, EP_xIsSelect) ); pSel = pExpr->x.pSelect; sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); if( pExpr->op==TK_SELECT ){ dest.eDest = SRT_Mem; sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); VdbeComment((v, "Init subquery result")); }else{ dest.eDest = SRT_Exists; sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); VdbeComment((v, "Init EXISTS result")); } sqlite3ExprDelete(pParse->db, pSel->pLimit); pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[1]); pSel->iLimit = 0; if( sqlite3Select(pParse, pSel, &dest) ){ return 0; } rReg = dest.iSDParm; ExprSetIrreducible(pExpr); break; } } if( testAddr>=0 ){ sqlite3VdbeJumpHere(v, testAddr); } sqlite3ExprCachePop(pParse, 1); return rReg; } #endif /* SQLITE_OMIT_SUBQUERY */ #ifndef SQLITE_OMIT_SUBQUERY /* ** Generate code for an IN expression. ** ** x IN (SELECT ...) ** x IN (value, value, ...) ** ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) ** is an array of zero or more values. The expression is true if the LHS is ** contained within the RHS. The value of the expression is unknown (NULL) ** if the LHS is NULL or if the LHS is not contained within the RHS and the ** RHS contains one or more NULL values. ** ** This routine generates code will jump to destIfFalse if the LHS is not ** contained within the RHS. If due to NULLs we cannot determine if the LHS ** is contained in the RHS then jump to destIfNull. If the LHS is contained ** within the RHS then fall through. */ static void sqlite3ExprCodeIN( Parse *pParse, /* Parsing and code generating context */ Expr *pExpr, /* The IN expression */ int destIfFalse, /* Jump here if LHS is not contained in the RHS */ int destIfNull /* Jump here if the results are unknown due to NULLs */ ){ int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ char affinity; /* Comparison affinity to use */ int eType; /* Type of the RHS */ int r1; /* Temporary use register */ Vdbe *v; /* Statement under construction */ /* Compute the RHS. After this step, the table with cursor ** pExpr->iTable will contains the values that make up the RHS. */ v = pParse->pVdbe; assert( v!=0 ); /* OOM detected prior to this routine */ VdbeNoopComment((v, "begin IN expr")); eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); /* Figure out the affinity to use to create a key from the results ** of the expression. affinityStr stores a static string suitable for ** P4 of OP_MakeRecord. */ affinity = comparisonAffinity(pExpr); /* Code the LHS, the from " IN (...)". */ sqlite3ExprCachePush(pParse); r1 = sqlite3GetTempReg(pParse); sqlite3ExprCode(pParse, pExpr->pLeft, r1); /* If the LHS is NULL, then the result is either false or NULL depending ** on whether the RHS is empty or not, respectively. */ if( destIfNull==destIfFalse ){ /* Shortcut for the common case where the false and NULL outcomes are ** the same. */ sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); }else{ int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); sqlite3VdbeJumpHere(v, addr1); } if( eType==IN_INDEX_ROWID ){ /* In this case, the RHS is the ROWID of table b-tree */ sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); }else{ /* In this case, the RHS is an index b-tree. */ sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); /* If the set membership test fails, then the result of the ** "x IN (...)" expression must be either 0 or NULL. If the set ** contains no NULL values, then the result is 0. If the set ** contains one or more NULL values, then the result of the ** expression is also NULL. */ if( rRhsHasNull==0 || destIfFalse==destIfNull ){ /* This branch runs if it is known at compile time that the RHS ** cannot contain NULL values. This happens as the result ** of a "NOT NULL" constraint in the database schema. ** ** Also run this branch if NULL is equivalent to FALSE ** for this particular IN operator. */ sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); }else{ /* In this branch, the RHS of the IN might contain a NULL and ** the presence of a NULL on the RHS makes a difference in the ** outcome. */ int j1, j2, j3; /* First check to see if the LHS is contained in the RHS. If so, ** then the presence of NULLs in the RHS does not matter, so jump ** over all of the code that follows. */ j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); /* Here we begin generating code that runs if the LHS is not ** contained within the RHS. Generate additional code that ** tests the RHS for NULLs. If the RHS contains a NULL then ** jump to destIfNull. If there are no NULLs in the RHS then ** jump to destIfFalse. */ j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); sqlite3VdbeJumpHere(v, j3); sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); sqlite3VdbeJumpHere(v, j2); /* Jump to the appropriate target depending on whether or not ** the RHS contains a NULL */ sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); /* The OP_Found at the top of this branch jumps here when true, ** causing the overall IN expression evaluation to fall through. */ sqlite3VdbeJumpHere(v, j1); } } sqlite3ReleaseTempReg(pParse, r1); sqlite3ExprCachePop(pParse, 1); VdbeComment((v, "end IN expr")); } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** Duplicate an 8-byte value */ static char *dup8bytes(Vdbe *v, const char *in){ char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); if( out ){ memcpy(out, in, 8); } return out; } #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Generate an instruction that will put the floating point ** value described by z[0..n-1] into register iMem. ** ** The z[] string will probably not be zero-terminated. But the ** z[n] character is guaranteed to be something that does not look ** like the continuation of the number. */ static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ if( ALWAYS(z!=0) ){ double value; char *zV; sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ if( negateFlag ) value = -value; zV = dup8bytes(v, (char*)&value); sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); } } #endif /* ** Generate an instruction that will put the integer describe by ** text z[0..n-1] into register iMem. ** ** Expr.u.zToken is always UTF8 and zero-terminated. */ static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ Vdbe *v = pParse->pVdbe; if( pExpr->flags & EP_IntValue ){ int i = pExpr->u.iValue; assert( i>=0 ); if( negFlag ) i = -i; sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); }else{ int c; i64 value; const char *z = pExpr->u.zToken; assert( z!=0 ); c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); if( c==0 || (c==2 && negFlag) ){ char *zV; if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } zV = dup8bytes(v, (char*)&value); sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); }else{ #ifdef SQLITE_OMIT_FLOATING_POINT sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); #else codeReal(v, z, negFlag, iMem); #endif } } } /* ** Clear a cache entry. */ static void cacheEntryClear(Parse *pParse, struct yColCache *p){ if( p->tempReg ){ if( pParse->nTempRegaTempReg) ){ pParse->aTempReg[pParse->nTempReg++] = p->iReg; } p->tempReg = 0; } } /* ** Record in the column cache that a particular column from a ** particular table is stored in a particular register. */ void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ int i; int minLru; int idxLru; struct yColCache *p; assert( iReg>0 ); /* Register numbers are always positive */ assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ /* The SQLITE_ColumnCache flag disables the column cache. This is used ** for testing only - to verify that SQLite always gets the same answer ** with and without the column cache. */ if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; /* First replace any existing entry. ** ** Actually, the way the column cache is currently used, we are guaranteed ** that the object will never already be in cache. Verify this guarantee. */ #ifndef NDEBUG for(i=0, p=pParse->aColCache; iiReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); } #endif /* Find an empty slot and replace it */ for(i=0, p=pParse->aColCache; iiReg==0 ){ p->iLevel = pParse->iCacheLevel; p->iTable = iTab; p->iColumn = iCol; p->iReg = iReg; p->tempReg = 0; p->lru = pParse->iCacheCnt++; return; } } /* Replace the last recently used */ minLru = 0x7fffffff; idxLru = -1; for(i=0, p=pParse->aColCache; ilrulru; } } if( ALWAYS(idxLru>=0) ){ p = &pParse->aColCache[idxLru]; p->iLevel = pParse->iCacheLevel; p->iTable = iTab; p->iColumn = iCol; p->iReg = iReg; p->tempReg = 0; p->lru = pParse->iCacheCnt++; return; } } /* ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. ** Purge the range of registers from the column cache. */ void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ int i; int iLast = iReg + nReg - 1; struct yColCache *p; for(i=0, p=pParse->aColCache; iiReg; if( r>=iReg && r<=iLast ){ cacheEntryClear(pParse, p); p->iReg = 0; } } } /* ** Remember the current column cache context. Any new entries added ** added to the column cache after this call are removed when the ** corresponding pop occurs. */ void sqlite3ExprCachePush(Parse *pParse){ pParse->iCacheLevel++; } /* ** Remove from the column cache any entries that were added since the ** the previous N Push operations. In other words, restore the cache ** to the state it was in N Pushes ago. */ void sqlite3ExprCachePop(Parse *pParse, int N){ int i; struct yColCache *p; assert( N>0 ); assert( pParse->iCacheLevel>=N ); pParse->iCacheLevel -= N; for(i=0, p=pParse->aColCache; iiReg && p->iLevel>pParse->iCacheLevel ){ cacheEntryClear(pParse, p); p->iReg = 0; } } } /* ** When a cached column is reused, make sure that its register is ** no longer available as a temp register. ticket #3879: that same ** register might be in the cache in multiple places, so be sure to ** get them all. */ static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ int i; struct yColCache *p; for(i=0, p=pParse->aColCache; iiReg==iReg ){ p->tempReg = 0; } } } /* ** Generate code to extract the value of the iCol-th column of a table. */ void sqlite3ExprCodeGetColumnOfTable( Vdbe *v, /* The VDBE under construction */ Table *pTab, /* The table containing the value */ int iTabCur, /* The cursor for this table */ int iCol, /* Index of the column to extract */ int regOut /* Extract the valud into this register */ ){ if( iCol<0 || iCol==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); }else{ int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); } if( iCol>=0 ){ sqlite3ColumnDefault(v, pTab, iCol, regOut); } } /* ** Generate code that will extract the iColumn-th column from ** table pTab and store the column value in a register. An effort ** is made to store the column value in register iReg, but this is ** not guaranteed. The location of the column value is returned. ** ** There must be an open cursor to pTab in iTable when this routine ** is called. If iColumn<0 then code is generated that extracts the rowid. */ int sqlite3ExprCodeGetColumn( Parse *pParse, /* Parsing and code generating context */ Table *pTab, /* Description of the table we are reading from */ int iColumn, /* Index of the table column */ int iTable, /* The cursor pointing to the table */ int iReg, /* Store results here */ u8 p5 /* P5 value for OP_Column */ ){ Vdbe *v = pParse->pVdbe; int i; struct yColCache *p; for(i=0, p=pParse->aColCache; iiReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ p->lru = pParse->iCacheCnt++; sqlite3ExprCachePinRegister(pParse, p->iReg); return p->iReg; } } assert( v!=0 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); if( p5 ){ sqlite3VdbeChangeP5(v, p5); }else{ sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); } return iReg; } /* ** Clear all column cache entries. */ void sqlite3ExprCacheClear(Parse *pParse){ int i; struct yColCache *p; for(i=0, p=pParse->aColCache; iiReg ){ cacheEntryClear(pParse, p); p->iReg = 0; } } } /* ** Record the fact that an affinity change has occurred on iCount ** registers starting with iStart. */ void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ sqlite3ExprCacheRemove(pParse, iStart, iCount); } /* ** Generate code to move content from registers iFrom...iFrom+nReg-1 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. */ void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ int i; struct yColCache *p; assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1); for(i=0, p=pParse->aColCache; iiReg; if( x>=iFrom && xiReg += iTo-iFrom; } } } #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) /* ** Return true if any register in the range iFrom..iTo (inclusive) ** is used as part of the column cache. ** ** This routine is used within assert() and testcase() macros only ** and does not appear in a normal build. */ static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ int i; struct yColCache *p; for(i=0, p=pParse->aColCache; iiReg; if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ } return 0; } #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ /* ** Generate code into the current Vdbe to evaluate the given ** expression. Attempt to store the results in register "target". ** Return the register where results are stored. ** ** With this routine, there is no guarantee that results will ** be stored in target. The result might be stored in some other ** register if it is convenient to do so. The calling function ** must check the return code and move the results to the desired ** register. */ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ Vdbe *v = pParse->pVdbe; /* The VM under construction */ int op; /* The opcode being coded */ int inReg = target; /* Results stored in register inReg */ int regFree1 = 0; /* If non-zero free this temporary register */ int regFree2 = 0; /* If non-zero free this temporary register */ int r1, r2, r3, r4; /* Various register numbers */ sqlite3 *db = pParse->db; /* The database connection */ assert( target>0 && target<=pParse->nMem ); if( v==0 ){ assert( pParse->db->mallocFailed ); return 0; } if( pExpr==0 ){ op = TK_NULL; }else{ op = pExpr->op; } switch( op ){ case TK_AGG_COLUMN: { AggInfo *pAggInfo = pExpr->pAggInfo; struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; if( !pAggInfo->directMode ){ assert( pCol->iMem>0 ); inReg = pCol->iMem; break; }else if( pAggInfo->useSortingIdx ){ sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, pCol->iSorterColumn, target); break; } /* Otherwise, fall thru into the TK_COLUMN case */ } case TK_COLUMN: { if( pExpr->iTable<0 ){ /* This only happens when coding check constraints */ assert( pParse->ckBase>0 ); inReg = pExpr->iColumn + pParse->ckBase; }else{ inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, pExpr->iColumn, pExpr->iTable, target, pExpr->op2); } break; } case TK_INTEGER: { codeInteger(pParse, pExpr, 0, target); break; } #ifndef SQLITE_OMIT_FLOATING_POINT case TK_FLOAT: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); codeReal(v, pExpr->u.zToken, 0, target); break; } #endif case TK_STRING: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); break; } case TK_NULL: { sqlite3VdbeAddOp2(v, OP_Null, 0, target); break; } #ifndef SQLITE_OMIT_BLOB_LITERAL case TK_BLOB: { int n; const char *z; char *zBlob; assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); assert( pExpr->u.zToken[1]=='\'' ); z = &pExpr->u.zToken[2]; n = sqlite3Strlen30(z) - 1; assert( z[n]=='\'' ); zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); break; } #endif case TK_VARIABLE: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken!=0 ); assert( pExpr->u.zToken[0]!=0 ); sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); if( pExpr->u.zToken[1]!=0 ){ assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); } break; } case TK_REGISTER: { inReg = pExpr->iTable; break; } case TK_AS: { inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); break; } #ifndef SQLITE_OMIT_CAST case TK_CAST: { /* Expressions of the form: CAST(pLeft AS token) */ int aff, to_op; inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); assert( !ExprHasProperty(pExpr, EP_IntValue) ); aff = sqlite3AffinityType(pExpr->u.zToken); to_op = aff - SQLITE_AFF_TEXT + OP_ToText; assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); testcase( to_op==OP_ToText ); testcase( to_op==OP_ToBlob ); testcase( to_op==OP_ToNumeric ); testcase( to_op==OP_ToInt ); testcase( to_op==OP_ToReal ); if( inReg!=target ){ sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); inReg = target; } sqlite3VdbeAddOp1(v, to_op, inReg); testcase( usedAsColumnCache(pParse, inReg, inReg) ); sqlite3ExprCacheAffinityChange(pParse, inReg, 1); break; } #endif /* SQLITE_OMIT_CAST */ case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { assert( TK_LT==OP_Lt ); assert( TK_LE==OP_Le ); assert( TK_GT==OP_Gt ); assert( TK_GE==OP_Ge ); assert( TK_EQ==OP_Eq ); assert( TK_NE==OP_Ne ); testcase( op==TK_LT ); testcase( op==TK_LE ); testcase( op==TK_GT ); testcase( op==TK_GE ); testcase( op==TK_EQ ); testcase( op==TK_NE ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, inReg, SQLITE_STOREP2); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_IS: case TK_ISNOT: { testcase( op==TK_IS ); testcase( op==TK_ISNOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); op = (op==TK_IS) ? TK_EQ : TK_NE; codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_AND: case TK_OR: case TK_PLUS: case TK_STAR: case TK_MINUS: case TK_REM: case TK_BITAND: case TK_BITOR: case TK_SLASH: case TK_LSHIFT: case TK_RSHIFT: case TK_CONCAT: { assert( TK_AND==OP_And ); assert( TK_OR==OP_Or ); assert( TK_PLUS==OP_Add ); assert( TK_MINUS==OP_Subtract ); assert( TK_REM==OP_Remainder ); assert( TK_BITAND==OP_BitAnd ); assert( TK_BITOR==OP_BitOr ); assert( TK_SLASH==OP_Divide ); assert( TK_LSHIFT==OP_ShiftLeft ); assert( TK_RSHIFT==OP_ShiftRight ); assert( TK_CONCAT==OP_Concat ); testcase( op==TK_AND ); testcase( op==TK_OR ); testcase( op==TK_PLUS ); testcase( op==TK_MINUS ); testcase( op==TK_REM ); testcase( op==TK_BITAND ); testcase( op==TK_BITOR ); testcase( op==TK_SLASH ); testcase( op==TK_LSHIFT ); testcase( op==TK_RSHIFT ); testcase( op==TK_CONCAT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); sqlite3VdbeAddOp3(v, op, r2, r1, target); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_UMINUS: { Expr *pLeft = pExpr->pLeft; assert( pLeft ); if( pLeft->op==TK_INTEGER ){ codeInteger(pParse, pLeft, 1, target); #ifndef SQLITE_OMIT_FLOATING_POINT }else if( pLeft->op==TK_FLOAT ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); codeReal(v, pLeft->u.zToken, 1, target); #endif }else{ regFree1 = r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); testcase( regFree2==0 ); } inReg = target; break; } case TK_BITNOT: case TK_NOT: { assert( TK_BITNOT==OP_BitNot ); assert( TK_NOT==OP_Not ); testcase( op==TK_BITNOT ); testcase( op==TK_NOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); inReg = target; sqlite3VdbeAddOp2(v, op, r1, inReg); break; } case TK_ISNULL: case TK_NOTNULL: { int addr; assert( TK_ISNULL==OP_IsNull ); assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_ISNULL ); testcase( op==TK_NOTNULL ); sqlite3VdbeAddOp2(v, OP_Integer, 1, target); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); addr = sqlite3VdbeAddOp1(v, op, r1); sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); sqlite3VdbeJumpHere(v, addr); break; } case TK_AGG_FUNCTION: { AggInfo *pInfo = pExpr->pAggInfo; if( pInfo==0 ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); }else{ inReg = pInfo->aFunc[pExpr->iAgg].iMem; } break; } case TK_CONST_FUNC: case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ int nFarg; /* Number of function arguments */ FuncDef *pDef; /* The function definition object */ int nId; /* Length of the function name in bytes */ const char *zId; /* The function name */ int constMask = 0; /* Mask of function arguments that are constant */ int i; /* Loop counter */ u8 enc = ENC(db); /* The text encoding used by this database */ CollSeq *pColl = 0; /* A collating sequence */ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); testcase( op==TK_CONST_FUNC ); testcase( op==TK_FUNCTION ); if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ pFarg = 0; }else{ pFarg = pExpr->x.pList; } nFarg = pFarg ? pFarg->nExpr : 0; assert( !ExprHasProperty(pExpr, EP_IntValue) ); zId = pExpr->u.zToken; nId = sqlite3Strlen30(zId); pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); if( pDef==0 ){ sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); break; } /* Attempt a direct implementation of the built-in COALESCE() and ** IFNULL() functions. This avoids unnecessary evalation of ** arguments past the first non-NULL argument. */ if( pDef->flags & SQLITE_FUNC_COALESCE ){ int endCoalesce = sqlite3VdbeMakeLabel(v); assert( nFarg>=2 ); sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); for(i=1; ia[i].pExpr, target); sqlite3ExprCachePop(pParse, 1); } sqlite3VdbeResolveLabel(v, endCoalesce); break; } if( pFarg ){ r1 = sqlite3GetTempRange(pParse, nFarg); /* For length() and typeof() functions with a column argument, ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data ** loading. */ if( (pDef->flags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ u8 exprOp; assert( nFarg==1 ); assert( pFarg->a[0].pExpr!=0 ); exprOp = pFarg->a[0].pExpr->op; if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); testcase( pDef->flags==SQLITE_FUNC_LENGTH ); pFarg->a[0].pExpr->op2 = pDef->flags; } } sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ }else{ r1 = 0; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Possibly overload the function if the first argument is ** a virtual table column. ** ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the ** second argument, not the first, as the argument to test to ** see if it is a column in a virtual table. This is done because ** the left operand of infix functions (the operand we want to ** control overloading) ends up as the second argument to the ** function. The expression "A glob B" is equivalent to ** "glob(B,A). We want to use the A in "A glob B" to test ** for function overloading. But we use the B term in "glob(B,A)". */ if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); }else if( nFarg>0 ){ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); } #endif for(i=0; ia[i].pExpr) ){ constMask |= (1<flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); } } if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ if( !pColl ) pColl = db->pDfltColl; sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, (char*)pDef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nFarg); if( nFarg ){ sqlite3ReleaseTempRange(pParse, r1, nFarg); } break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_EXISTS: case TK_SELECT: { testcase( op==TK_EXISTS ); testcase( op==TK_SELECT ); inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); break; } case TK_IN: { int destIfFalse = sqlite3VdbeMakeLabel(v); int destIfNull = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp2(v, OP_Null, 0, target); sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); sqlite3VdbeAddOp2(v, OP_Integer, 1, target); sqlite3VdbeResolveLabel(v, destIfFalse); sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); sqlite3VdbeResolveLabel(v, destIfNull); break; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** x BETWEEN y AND z ** ** This is equivalent to ** ** x>=y AND x<=z ** ** X is stored in pExpr->pLeft. ** Y is stored in pExpr->pList->a[0].pExpr. ** Z is stored in pExpr->pList->a[1].pExpr. */ case TK_BETWEEN: { Expr *pLeft = pExpr->pLeft; struct ExprList_item *pLItem = pExpr->x.pList->a; Expr *pRight = pLItem->pExpr; r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); testcase( regFree1==0 ); testcase( regFree2==0 ); r3 = sqlite3GetTempReg(pParse); r4 = sqlite3GetTempReg(pParse); codeCompare(pParse, pLeft, pRight, OP_Ge, r1, r2, r3, SQLITE_STOREP2); pLItem++; pRight = pLItem->pExpr; sqlite3ReleaseTempReg(pParse, regFree2); r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); testcase( regFree2==0 ); codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); sqlite3ReleaseTempReg(pParse, r3); sqlite3ReleaseTempReg(pParse, r4); break; } case TK_COLLATE: case TK_UPLUS: { inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); break; } case TK_TRIGGER: { /* If the opcode is TK_TRIGGER, then the expression is a reference ** to a column in the new.* or old.* pseudo-tables available to ** trigger programs. In this case Expr.iTable is set to 1 for the ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn ** is set to the column of the pseudo-table to read, or to -1 to ** read the rowid field. ** ** The expression is implemented using an OP_Param opcode. The p1 ** parameter is set to 0 for an old.rowid reference, or to (i+1) ** to reference another column of the old.* pseudo-table, where ** i is the index of the column. For a new.rowid reference, p1 is ** set to (n+1), where n is the number of columns in each pseudo-table. ** For a reference to any other column in the new.* pseudo-table, p1 ** is set to (n+2+i), where n and i are as defined previously. For ** example, if the table on which triggers are being fired is ** declared as: ** ** CREATE TABLE t1(a, b); ** ** Then p1 is interpreted as follows: ** ** p1==0 -> old.rowid p1==3 -> new.rowid ** p1==1 -> old.a p1==4 -> new.a ** p1==2 -> old.b p1==5 -> new.b */ Table *pTab = pExpr->pTab; int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; assert( pExpr->iTable==0 || pExpr->iTable==1 ); assert( pExpr->iColumn>=-1 && pExpr->iColumnnCol ); assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); assert( p1>=0 && p1<(pTab->nCol*2+2) ); sqlite3VdbeAddOp2(v, OP_Param, p1, target); VdbeComment((v, "%s.%s -> $%d", (pExpr->iTable ? "new" : "old"), (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), target )); #ifndef SQLITE_OMIT_FLOATING_POINT /* If the column has REAL affinity, it may currently be stored as an ** integer. Use OP_RealAffinity to make sure it is really real. */ if( pExpr->iColumn>=0 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, target); } #endif break; } /* ** Form A: ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END ** ** Form B: ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END ** ** Form A is can be transformed into the equivalent form B as follows: ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... ** WHEN x=eN THEN rN ELSE y END ** ** X (if it exists) is in pExpr->pLeft. ** Y is in pExpr->pRight. The Y is also optional. If there is no ** ELSE clause and no other term matches, then the result of the ** exprssion is NULL. ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. ** ** The result of the expression is the Ri for the first matching Ei, ** or if there is no matching Ei, the ELSE term Y, or if there is ** no ELSE term, NULL. */ default: assert( op==TK_CASE ); { int endLabel; /* GOTO label for end of CASE stmt */ int nextCase; /* GOTO label for next WHEN clause */ int nExpr; /* 2x number of WHEN terms */ int i; /* Loop counter */ ExprList *pEList; /* List of WHEN terms */ struct ExprList_item *aListelem; /* Array of WHEN terms */ Expr opCompare; /* The X==Ei expression */ Expr cacheX; /* Cached expression X */ Expr *pX; /* The X expression */ Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); assert((pExpr->x.pList->nExpr % 2) == 0); assert(pExpr->x.pList->nExpr > 0); pEList = pExpr->x.pList; aListelem = pEList->a; nExpr = pEList->nExpr; endLabel = sqlite3VdbeMakeLabel(v); if( (pX = pExpr->pLeft)!=0 ){ cacheX = *pX; testcase( pX->op==TK_COLUMN ); testcase( pX->op==TK_REGISTER ); cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); testcase( regFree1==0 ); cacheX.op = TK_REGISTER; opCompare.op = TK_EQ; opCompare.pLeft = &cacheX; pTest = &opCompare; /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: ** The value in regFree1 might get SCopy-ed into the file result. ** So make sure that the regFree1 register is not reused for other ** purposes and possibly overwritten. */ regFree1 = 0; } for(i=0; iop==TK_COLUMN ); sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); sqlite3ExprCachePop(pParse, 1); sqlite3VdbeResolveLabel(v, nextCase); } if( pExpr->pRight ){ sqlite3ExprCachePush(pParse); sqlite3ExprCode(pParse, pExpr->pRight, target); sqlite3ExprCachePop(pParse, 1); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, target); } assert( db->mallocFailed || pParse->nErr>0 || pParse->iCacheLevel==iCacheLevel ); sqlite3VdbeResolveLabel(v, endLabel); break; } #ifndef SQLITE_OMIT_TRIGGER case TK_RAISE: { assert( pExpr->affinity==OE_Rollback || pExpr->affinity==OE_Abort || pExpr->affinity==OE_Fail || pExpr->affinity==OE_Ignore ); if( !pParse->pTriggerTab ){ sqlite3ErrorMsg(pParse, "RAISE() may only be used within a trigger-program"); return 0; } if( pExpr->affinity==OE_Abort ){ sqlite3MayAbort(pParse); } assert( !ExprHasProperty(pExpr, EP_IntValue) ); if( pExpr->affinity==OE_Ignore ){ sqlite3VdbeAddOp4( v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); }else{ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, pExpr->affinity, pExpr->u.zToken, 0); } break; } #endif } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); return inReg; } /* ** Generate code to evaluate an expression and store the results ** into a register. Return the register number where the results ** are stored. ** ** If the register is a temporary register that can be deallocated, ** then write its number into *pReg. If the result register is not ** a temporary, then set *pReg to zero. */ int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ int r1 = sqlite3GetTempReg(pParse); int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); if( r2==r1 ){ *pReg = r1; }else{ sqlite3ReleaseTempReg(pParse, r1); *pReg = 0; } return r2; } /* ** Generate code that will evaluate expression pExpr and store the ** results in register target. The results are guaranteed to appear ** in register target. */ int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ int inReg; assert( target>0 && target<=pParse->nMem ); if( pExpr && pExpr->op==TK_REGISTER ){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); }else{ inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); assert( pParse->pVdbe || pParse->db->mallocFailed ); if( inReg!=target && pParse->pVdbe ){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); } } return target; } /* ** Generate code that evalutes the given expression and puts the result ** in register target. ** ** Also make a copy of the expression results into another "cache" register ** and modify the expression so that the next time it is evaluated, ** the result is a copy of the cache register. ** ** This routine is used for expressions that are used multiple ** times. They are evaluated once and the results of the expression ** are reused. */ int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ Vdbe *v = pParse->pVdbe; int inReg; inReg = sqlite3ExprCode(pParse, pExpr, target); assert( target>0 ); /* This routine is called for terms to INSERT or UPDATE. And the only ** other place where expressions can be converted into TK_REGISTER is ** in WHERE clause processing. So as currently implemented, there is ** no way for a TK_REGISTER to exist here. But it seems prudent to ** keep the ALWAYS() in case the conditions above change with future ** modifications or enhancements. */ if( ALWAYS(pExpr->op!=TK_REGISTER) ){ int iMem; iMem = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); pExpr->iTable = iMem; pExpr->op2 = pExpr->op; pExpr->op = TK_REGISTER; } return inReg; } #if defined(SQLITE_ENABLE_TREE_EXPLAIN) /* ** Generate a human-readable explanation of an expression tree. */ void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ int op; /* The opcode being coded */ const char *zBinOp = 0; /* Binary operator */ const char *zUniOp = 0; /* Unary operator */ if( pExpr==0 ){ op = TK_NULL; }else{ op = pExpr->op; } switch( op ){ case TK_AGG_COLUMN: { sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", pExpr->iTable, pExpr->iColumn); break; } case TK_COLUMN: { if( pExpr->iTable<0 ){ /* This only happens when coding check constraints */ sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); }else{ sqlite3ExplainPrintf(pOut, "{%d:%d}", pExpr->iTable, pExpr->iColumn); } break; } case TK_INTEGER: { if( pExpr->flags & EP_IntValue ){ sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); }else{ sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); } break; } #ifndef SQLITE_OMIT_FLOATING_POINT case TK_FLOAT: { sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); break; } #endif case TK_STRING: { sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); break; } case TK_NULL: { sqlite3ExplainPrintf(pOut,"NULL"); break; } #ifndef SQLITE_OMIT_BLOB_LITERAL case TK_BLOB: { sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); break; } #endif case TK_VARIABLE: { sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", pExpr->u.zToken, pExpr->iColumn); break; } case TK_REGISTER: { sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); break; } case TK_AS: { sqlite3ExplainExpr(pOut, pExpr->pLeft); break; } #ifndef SQLITE_OMIT_CAST case TK_CAST: { /* Expressions of the form: CAST(pLeft AS token) */ const char *zAff = "unk"; switch( sqlite3AffinityType(pExpr->u.zToken) ){ case SQLITE_AFF_TEXT: zAff = "TEXT"; break; case SQLITE_AFF_NONE: zAff = "NONE"; break; case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; case SQLITE_AFF_REAL: zAff = "REAL"; break; } sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); sqlite3ExplainExpr(pOut, pExpr->pLeft); sqlite3ExplainPrintf(pOut, ")"); break; } #endif /* SQLITE_OMIT_CAST */ case TK_LT: zBinOp = "LT"; break; case TK_LE: zBinOp = "LE"; break; case TK_GT: zBinOp = "GT"; break; case TK_GE: zBinOp = "GE"; break; case TK_NE: zBinOp = "NE"; break; case TK_EQ: zBinOp = "EQ"; break; case TK_IS: zBinOp = "IS"; break; case TK_ISNOT: zBinOp = "ISNOT"; break; case TK_AND: zBinOp = "AND"; break; case TK_OR: zBinOp = "OR"; break; case TK_PLUS: zBinOp = "ADD"; break; case TK_STAR: zBinOp = "MUL"; break; case TK_MINUS: zBinOp = "SUB"; break; case TK_REM: zBinOp = "REM"; break; case TK_BITAND: zBinOp = "BITAND"; break; case TK_BITOR: zBinOp = "BITOR"; break; case TK_SLASH: zBinOp = "DIV"; break; case TK_LSHIFT: zBinOp = "LSHIFT"; break; case TK_RSHIFT: zBinOp = "RSHIFT"; break; case TK_CONCAT: zBinOp = "CONCAT"; break; case TK_UMINUS: zUniOp = "UMINUS"; break; case TK_UPLUS: zUniOp = "UPLUS"; break; case TK_BITNOT: zUniOp = "BITNOT"; break; case TK_NOT: zUniOp = "NOT"; break; case TK_ISNULL: zUniOp = "ISNULL"; break; case TK_NOTNULL: zUniOp = "NOTNULL"; break; case TK_COLLATE: { sqlite3ExplainExpr(pOut, pExpr->pLeft); sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken); break; } case TK_AGG_FUNCTION: case TK_CONST_FUNC: case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ pFarg = 0; }else{ pFarg = pExpr->x.pList; } if( op==TK_AGG_FUNCTION ){ sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(", pExpr->op2, pExpr->u.zToken); }else{ sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken); } if( pFarg ){ sqlite3ExplainExprList(pOut, pFarg); } sqlite3ExplainPrintf(pOut, ")"); break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_EXISTS: { sqlite3ExplainPrintf(pOut, "EXISTS("); sqlite3ExplainSelect(pOut, pExpr->x.pSelect); sqlite3ExplainPrintf(pOut,")"); break; } case TK_SELECT: { sqlite3ExplainPrintf(pOut, "("); sqlite3ExplainSelect(pOut, pExpr->x.pSelect); sqlite3ExplainPrintf(pOut, ")"); break; } case TK_IN: { sqlite3ExplainPrintf(pOut, "IN("); sqlite3ExplainExpr(pOut, pExpr->pLeft); sqlite3ExplainPrintf(pOut, ","); if( ExprHasProperty(pExpr, EP_xIsSelect) ){ sqlite3ExplainSelect(pOut, pExpr->x.pSelect); }else{ sqlite3ExplainExprList(pOut, pExpr->x.pList); } sqlite3ExplainPrintf(pOut, ")"); break; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** x BETWEEN y AND z ** ** This is equivalent to ** ** x>=y AND x<=z ** ** X is stored in pExpr->pLeft. ** Y is stored in pExpr->pList->a[0].pExpr. ** Z is stored in pExpr->pList->a[1].pExpr. */ case TK_BETWEEN: { Expr *pX = pExpr->pLeft; Expr *pY = pExpr->x.pList->a[0].pExpr; Expr *pZ = pExpr->x.pList->a[1].pExpr; sqlite3ExplainPrintf(pOut, "BETWEEN("); sqlite3ExplainExpr(pOut, pX); sqlite3ExplainPrintf(pOut, ","); sqlite3ExplainExpr(pOut, pY); sqlite3ExplainPrintf(pOut, ","); sqlite3ExplainExpr(pOut, pZ); sqlite3ExplainPrintf(pOut, ")"); break; } case TK_TRIGGER: { /* If the opcode is TK_TRIGGER, then the expression is a reference ** to a column in the new.* or old.* pseudo-tables available to ** trigger programs. In this case Expr.iTable is set to 1 for the ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn ** is set to the column of the pseudo-table to read, or to -1 to ** read the rowid field. */ sqlite3ExplainPrintf(pOut, "%s(%d)", pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); break; } case TK_CASE: { sqlite3ExplainPrintf(pOut, "CASE("); sqlite3ExplainExpr(pOut, pExpr->pLeft); sqlite3ExplainPrintf(pOut, ","); sqlite3ExplainExprList(pOut, pExpr->x.pList); break; } #ifndef SQLITE_OMIT_TRIGGER case TK_RAISE: { const char *zType = "unk"; switch( pExpr->affinity ){ case OE_Rollback: zType = "rollback"; break; case OE_Abort: zType = "abort"; break; case OE_Fail: zType = "fail"; break; case OE_Ignore: zType = "ignore"; break; } sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); break; } #endif } if( zBinOp ){ sqlite3ExplainPrintf(pOut,"%s(", zBinOp); sqlite3ExplainExpr(pOut, pExpr->pLeft); sqlite3ExplainPrintf(pOut,","); sqlite3ExplainExpr(pOut, pExpr->pRight); sqlite3ExplainPrintf(pOut,")"); }else if( zUniOp ){ sqlite3ExplainPrintf(pOut,"%s(", zUniOp); sqlite3ExplainExpr(pOut, pExpr->pLeft); sqlite3ExplainPrintf(pOut,")"); } } #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ #if defined(SQLITE_ENABLE_TREE_EXPLAIN) /* ** Generate a human-readable explanation of an expression list. */ void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ int i; if( pList==0 || pList->nExpr==0 ){ sqlite3ExplainPrintf(pOut, "(empty-list)"); return; }else if( pList->nExpr==1 ){ sqlite3ExplainExpr(pOut, pList->a[0].pExpr); }else{ sqlite3ExplainPush(pOut); for(i=0; inExpr; i++){ sqlite3ExplainPrintf(pOut, "item[%d] = ", i); sqlite3ExplainPush(pOut); sqlite3ExplainExpr(pOut, pList->a[i].pExpr); sqlite3ExplainPop(pOut); if( pList->a[i].zName ){ sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); } if( pList->a[i].bSpanIsTab ){ sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); } if( inExpr-1 ){ sqlite3ExplainNL(pOut); } } sqlite3ExplainPop(pOut); } } #endif /* SQLITE_DEBUG */ /* ** Return TRUE if pExpr is an constant expression that is appropriate ** for factoring out of a loop. Appropriate expressions are: ** ** * Any expression that evaluates to two or more opcodes. ** ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, ** or OP_Variable that does not need to be placed in a ** specific register. ** ** There is no point in factoring out single-instruction constant ** expressions that need to be placed in a particular register. ** We could factor them out, but then we would end up adding an ** OP_SCopy instruction to move the value into the correct register ** later. We might as well just use the original instruction and ** avoid the OP_SCopy. */ static int isAppropriateForFactoring(Expr *p){ if( !sqlite3ExprIsConstantNotJoin(p) ){ return 0; /* Only constant expressions are appropriate for factoring */ } if( (p->flags & EP_FixedDest)==0 ){ return 1; /* Any constant without a fixed destination is appropriate */ } while( p->op==TK_UPLUS ) p = p->pLeft; switch( p->op ){ #ifndef SQLITE_OMIT_BLOB_LITERAL case TK_BLOB: #endif case TK_VARIABLE: case TK_INTEGER: case TK_FLOAT: case TK_NULL: case TK_STRING: { testcase( p->op==TK_BLOB ); testcase( p->op==TK_VARIABLE ); testcase( p->op==TK_INTEGER ); testcase( p->op==TK_FLOAT ); testcase( p->op==TK_NULL ); testcase( p->op==TK_STRING ); /* Single-instruction constants with a fixed destination are ** better done in-line. If we factor them, they will just end ** up generating an OP_SCopy to move the value to the destination ** register. */ return 0; } case TK_UMINUS: { if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ return 0; } break; } default: { break; } } return 1; } /* ** If pExpr is a constant expression that is appropriate for ** factoring out of a loop, then evaluate the expression ** into a register and convert the expression into a TK_REGISTER ** expression. */ static int evalConstExpr(Walker *pWalker, Expr *pExpr){ Parse *pParse = pWalker->pParse; switch( pExpr->op ){ case TK_IN: case TK_REGISTER: { return WRC_Prune; } case TK_COLLATE: { return WRC_Continue; } case TK_FUNCTION: case TK_AGG_FUNCTION: case TK_CONST_FUNC: { /* The arguments to a function have a fixed destination. ** Mark them this way to avoid generated unneeded OP_SCopy ** instructions. */ ExprList *pList = pExpr->x.pList; assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); if( pList ){ int i = pList->nExpr; struct ExprList_item *pItem = pList->a; for(; i>0; i--, pItem++){ if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; } } break; } } if( isAppropriateForFactoring(pExpr) ){ int r1 = ++pParse->nMem; int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); /* If r2!=r1, it means that register r1 is never used. That is harmless ** but suboptimal, so we want to know about the situation to fix it. ** Hence the following assert: */ assert( r2==r1 ); pExpr->op2 = pExpr->op; pExpr->op = TK_REGISTER; pExpr->iTable = r2; return WRC_Prune; } return WRC_Continue; } /* ** Preevaluate constant subexpressions within pExpr and store the ** results in registers. Modify pExpr so that the constant subexpresions ** are TK_REGISTER opcodes that refer to the precomputed values. ** ** This routine is a no-op if the jump to the cookie-check code has ** already occur. Since the cookie-check jump is generated prior to ** any other serious processing, this check ensures that there is no ** way to accidently bypass the constant initializations. ** ** This routine is also a no-op if the SQLITE_FactorOutConst optimization ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS) ** interface. This allows test logic to verify that the same answer is ** obtained for queries regardless of whether or not constants are ** precomputed into registers or if they are inserted in-line. */ void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ Walker w; if( pParse->cookieGoto ) return; if( OptimizationDisabled(pParse->db, SQLITE_FactorOutConst) ) return; memset(&w, 0, sizeof(w)); w.xExprCallback = evalConstExpr; w.pParse = pParse; sqlite3WalkExpr(&w, pExpr); } /* ** Generate code that pushes the value of every element of the given ** expression list into a sequence of registers beginning at target. ** ** Return the number of elements evaluated. */ int sqlite3ExprCodeExprList( Parse *pParse, /* Parsing context */ ExprList *pList, /* The expression list to be coded */ int target, /* Where to write results */ int doHardCopy /* Make a hard copy of every element */ ){ struct ExprList_item *pItem; int i, n; assert( pList!=0 ); assert( target>0 ); assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ n = pList->nExpr; for(pItem=pList->a, i=0; ipExpr; int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); if( inReg!=target+i ){ sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy, inReg, target+i); } } return n; } /* ** Generate code for a BETWEEN operator. ** ** x BETWEEN y AND z ** ** The above is equivalent to ** ** x>=y AND x<=z ** ** Code it as such, taking care to do the common subexpression ** elementation of x. */ static void exprCodeBetween( Parse *pParse, /* Parsing and code generating context */ Expr *pExpr, /* The BETWEEN expression */ int dest, /* Jump here if the jump is taken */ int jumpIfTrue, /* Take the jump if the BETWEEN is true */ int jumpIfNull /* Take the jump if the BETWEEN is NULL */ ){ Expr exprAnd; /* The AND operator in x>=y AND x<=z */ Expr compLeft; /* The x>=y term */ Expr compRight; /* The x<=z term */ Expr exprX; /* The x subexpression */ int regFree1 = 0; /* Temporary use register */ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); exprX = *pExpr->pLeft; exprAnd.op = TK_AND; exprAnd.pLeft = &compLeft; exprAnd.pRight = &compRight; compLeft.op = TK_GE; compLeft.pLeft = &exprX; compLeft.pRight = pExpr->x.pList->a[0].pExpr; compRight.op = TK_LE; compRight.pLeft = &exprX; compRight.pRight = pExpr->x.pList->a[1].pExpr; exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); exprX.op = TK_REGISTER; if( jumpIfTrue ){ sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); }else{ sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); } sqlite3ReleaseTempReg(pParse, regFree1); /* Ensure adequate test coverage */ testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); } /* ** Generate code for a boolean expression such that a jump is made ** to the label "dest" if the expression is true but execution ** continues straight thru if the expression is false. ** ** If the expression evaluates to NULL (neither true nor false), then ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. ** ** This code depends on the fact that certain token values (ex: TK_EQ) ** are the same as opcode values (ex: OP_Eq) that implement the corresponding ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in ** the make process cause these values to align. Assert()s in the code ** below verify that the numbers are aligned correctly. */ void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ Vdbe *v = pParse->pVdbe; int op = 0; int regFree1 = 0; int regFree2 = 0; int r1, r2; assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ if( NEVER(pExpr==0) ) return; /* No way this can happen */ op = pExpr->op; switch( op ){ case TK_AND: { int d2 = sqlite3VdbeMakeLabel(v); testcase( jumpIfNull==0 ); sqlite3ExprCachePush(pParse); sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); sqlite3VdbeResolveLabel(v, d2); sqlite3ExprCachePop(pParse, 1); break; } case TK_OR: { testcase( jumpIfNull==0 ); sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); break; } case TK_NOT: { testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); break; } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { assert( TK_LT==OP_Lt ); assert( TK_LE==OP_Le ); assert( TK_GT==OP_Gt ); assert( TK_GE==OP_Ge ); assert( TK_EQ==OP_Eq ); assert( TK_NE==OP_Ne ); testcase( op==TK_LT ); testcase( op==TK_LE ); testcase( op==TK_GT ); testcase( op==TK_GE ); testcase( op==TK_EQ ); testcase( op==TK_NE ); testcase( jumpIfNull==0 ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, jumpIfNull); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_IS: case TK_ISNOT: { testcase( op==TK_IS ); testcase( op==TK_ISNOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); op = (op==TK_IS) ? TK_EQ : TK_NE; codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, SQLITE_NULLEQ); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_ISNULL: case TK_NOTNULL: { assert( TK_ISNULL==OP_IsNull ); assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_ISNULL ); testcase( op==TK_NOTNULL ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sqlite3VdbeAddOp2(v, op, r1, dest); testcase( regFree1==0 ); break; } case TK_BETWEEN: { testcase( jumpIfNull==0 ); exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_IN: { int destIfFalse = sqlite3VdbeMakeLabel(v); int destIfNull = jumpIfNull ? dest : destIfFalse; sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); sqlite3VdbeResolveLabel(v, destIfFalse); break; } #endif default: { r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); break; } } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); } /* ** Generate code for a boolean expression such that a jump is made ** to the label "dest" if the expression is false but execution ** continues straight thru if the expression is true. ** ** If the expression evaluates to NULL (neither true nor false) then ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull ** is 0. */ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ Vdbe *v = pParse->pVdbe; int op = 0; int regFree1 = 0; int regFree2 = 0; int r1, r2; assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ if( pExpr==0 ) return; /* The value of pExpr->op and op are related as follows: ** ** pExpr->op op ** --------- ---------- ** TK_ISNULL OP_NotNull ** TK_NOTNULL OP_IsNull ** TK_NE OP_Eq ** TK_EQ OP_Ne ** TK_GT OP_Le ** TK_LE OP_Gt ** TK_GE OP_Lt ** TK_LT OP_Ge ** ** For other values of pExpr->op, op is undefined and unused. ** The value of TK_ and OP_ constants are arranged such that we ** can compute the mapping above using the following expression. ** Assert()s verify that the computation is correct. */ op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); /* Verify correct alignment of TK_ and OP_ constants */ assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); assert( pExpr->op!=TK_NE || op==OP_Eq ); assert( pExpr->op!=TK_EQ || op==OP_Ne ); assert( pExpr->op!=TK_LT || op==OP_Ge ); assert( pExpr->op!=TK_LE || op==OP_Gt ); assert( pExpr->op!=TK_GT || op==OP_Le ); assert( pExpr->op!=TK_GE || op==OP_Lt ); switch( pExpr->op ){ case TK_AND: { testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); break; } case TK_OR: { int d2 = sqlite3VdbeMakeLabel(v); testcase( jumpIfNull==0 ); sqlite3ExprCachePush(pParse); sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); sqlite3VdbeResolveLabel(v, d2); sqlite3ExprCachePop(pParse, 1); break; } case TK_NOT: { testcase( jumpIfNull==0 ); sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); break; } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { testcase( op==TK_LT ); testcase( op==TK_LE ); testcase( op==TK_GT ); testcase( op==TK_GE ); testcase( op==TK_EQ ); testcase( op==TK_NE ); testcase( jumpIfNull==0 ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, jumpIfNull); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_IS: case TK_ISNOT: { testcase( pExpr->op==TK_IS ); testcase( pExpr->op==TK_ISNOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, SQLITE_NULLEQ); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_ISNULL: case TK_NOTNULL: { testcase( op==TK_ISNULL ); testcase( op==TK_NOTNULL ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sqlite3VdbeAddOp2(v, op, r1, dest); testcase( regFree1==0 ); break; } case TK_BETWEEN: { testcase( jumpIfNull==0 ); exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_IN: { if( jumpIfNull ){ sqlite3ExprCodeIN(pParse, pExpr, dest, dest); }else{ int destIfNull = sqlite3VdbeMakeLabel(v); sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); sqlite3VdbeResolveLabel(v, destIfNull); } break; } #endif default: { r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); break; } } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); } /* ** Do a deep comparison of two expression trees. Return 0 if the two ** expressions are completely identical. Return 1 if they differ only ** by a COLLATE operator at the top level. Return 2 if there are differences ** other than the top-level COLLATE operator. ** ** Sometimes this routine will return 2 even if the two expressions ** really are equivalent. If we cannot prove that the expressions are ** identical, we return 2 just to be safe. So if this routine ** returns 2, then you do not really know for certain if the two ** expressions are the same. But if you get a 0 or 1 return, then you ** can be sure the expressions are the same. In the places where ** this routine is used, it does not hurt to get an extra 2 - that ** just might result in some slightly slower code. But returning ** an incorrect 0 or 1 could lead to a malfunction. */ int sqlite3ExprCompare(Expr *pA, Expr *pB){ if( pA==0||pB==0 ){ return pB==pA ? 0 : 2; } assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ return 2; } if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; if( pA->op!=pB->op ){ if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB)<2 ){ return 1; } if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft)<2 ){ return 1; } return 2; } if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; if( ExprHasProperty(pA, EP_IntValue) ){ if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ return 2; } }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){ if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ return pA->op==TK_COLLATE ? 1 : 2; } } return 0; } /* ** Compare two ExprList objects. Return 0 if they are identical and ** non-zero if they differ in any way. ** ** This routine might return non-zero for equivalent ExprLists. The ** only consequence will be disabled optimizations. But this routine ** must never return 0 if the two ExprList objects are different, or ** a malfunction will result. ** ** Two NULL pointers are considered to be the same. But a NULL pointer ** always differs from a non-NULL pointer. */ int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ int i; if( pA==0 && pB==0 ) return 0; if( pA==0 || pB==0 ) return 1; if( pA->nExpr!=pB->nExpr ) return 1; for(i=0; inExpr; i++){ Expr *pExprA = pA->a[i].pExpr; Expr *pExprB = pB->a[i].pExpr; if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; } return 0; } /* ** An instance of the following structure is used by the tree walker ** to count references to table columns in the arguments of an ** aggregate function, in order to implement the ** sqlite3FunctionThisSrc() routine. */ struct SrcCount { SrcList *pSrc; /* One particular FROM clause in a nested query */ int nThis; /* Number of references to columns in pSrcList */ int nOther; /* Number of references to columns in other FROM clauses */ }; /* ** Count the number of references to columns. */ static int exprSrcCount(Walker *pWalker, Expr *pExpr){ /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() ** is always called before sqlite3ExprAnalyzeAggregates() and so the ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If ** sqlite3FunctionUsesThisSrc() is used differently in the future, the ** NEVER() will need to be removed. */ if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ int i; struct SrcCount *p = pWalker->u.pSrcCount; SrcList *pSrc = p->pSrc; for(i=0; inSrc; i++){ if( pExpr->iTable==pSrc->a[i].iCursor ) break; } if( inSrc ){ p->nThis++; }else{ p->nOther++; } } return WRC_Continue; } /* ** Determine if any of the arguments to the pExpr Function reference ** pSrcList. Return true if they do. Also return true if the function ** has no arguments or has only constant arguments. Return false if pExpr ** references columns but not columns of tables found in pSrcList. */ int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ Walker w; struct SrcCount cnt; assert( pExpr->op==TK_AGG_FUNCTION ); memset(&w, 0, sizeof(w)); w.xExprCallback = exprSrcCount; w.u.pSrcCount = &cnt; cnt.pSrc = pSrcList; cnt.nThis = 0; cnt.nOther = 0; sqlite3WalkExprList(&w, pExpr->x.pList); return cnt.nThis>0 || cnt.nOther==0; } /* ** Add a new element to the pAggInfo->aCol[] array. Return the index of ** the new element. Return a negative number if malloc fails. */ static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ int i; pInfo->aCol = sqlite3ArrayAllocate( db, pInfo->aCol, sizeof(pInfo->aCol[0]), &pInfo->nColumn, &i ); return i; } /* ** Add a new element to the pAggInfo->aFunc[] array. Return the index of ** the new element. Return a negative number if malloc fails. */ static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ int i; pInfo->aFunc = sqlite3ArrayAllocate( db, pInfo->aFunc, sizeof(pInfo->aFunc[0]), &pInfo->nFunc, &i ); return i; } /* ** This is the xExprCallback for a tree walker. It is used to ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates ** for additional information. */ static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ int i; NameContext *pNC = pWalker->u.pNC; Parse *pParse = pNC->pParse; SrcList *pSrcList = pNC->pSrcList; AggInfo *pAggInfo = pNC->pAggInfo; switch( pExpr->op ){ case TK_AGG_COLUMN: case TK_COLUMN: { testcase( pExpr->op==TK_AGG_COLUMN ); testcase( pExpr->op==TK_COLUMN ); /* Check to see if the column is in one of the tables in the FROM ** clause of the aggregate query */ if( ALWAYS(pSrcList!=0) ){ struct SrcList_item *pItem = pSrcList->a; for(i=0; inSrc; i++, pItem++){ struct AggInfo_col *pCol; assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); if( pExpr->iTable==pItem->iCursor ){ /* If we reach this point, it means that pExpr refers to a table ** that is in the FROM clause of the aggregate query. ** ** Make an entry for the column in pAggInfo->aCol[] if there ** is not an entry there already. */ int k; pCol = pAggInfo->aCol; for(k=0; knColumn; k++, pCol++){ if( pCol->iTable==pExpr->iTable && pCol->iColumn==pExpr->iColumn ){ break; } } if( (k>=pAggInfo->nColumn) && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 ){ pCol = &pAggInfo->aCol[k]; pCol->pTab = pExpr->pTab; pCol->iTable = pExpr->iTable; pCol->iColumn = pExpr->iColumn; pCol->iMem = ++pParse->nMem; pCol->iSorterColumn = -1; pCol->pExpr = pExpr; if( pAggInfo->pGroupBy ){ int j, n; ExprList *pGB = pAggInfo->pGroupBy; struct ExprList_item *pTerm = pGB->a; n = pGB->nExpr; for(j=0; jpExpr; if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && pE->iColumn==pExpr->iColumn ){ pCol->iSorterColumn = j; break; } } } if( pCol->iSorterColumn<0 ){ pCol->iSorterColumn = pAggInfo->nSortingColumn++; } } /* There is now an entry for pExpr in pAggInfo->aCol[] (either ** because it was there before or because we just created it). ** Convert the pExpr to be a TK_AGG_COLUMN referring to that ** pAggInfo->aCol[] entry. */ ExprSetIrreducible(pExpr); pExpr->pAggInfo = pAggInfo; pExpr->op = TK_AGG_COLUMN; pExpr->iAgg = (i16)k; break; } /* endif pExpr->iTable==pItem->iCursor */ } /* end loop over pSrcList */ } return WRC_Prune; } case TK_AGG_FUNCTION: { if( (pNC->ncFlags & NC_InAggFunc)==0 && pWalker->walkerDepth==pExpr->op2 ){ /* Check to see if pExpr is a duplicate of another aggregate ** function that is already in the pAggInfo structure */ struct AggInfo_func *pItem = pAggInfo->aFunc; for(i=0; inFunc; i++, pItem++){ if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ break; } } if( i>=pAggInfo->nFunc ){ /* pExpr is original. Make a new entry in pAggInfo->aFunc[] */ u8 enc = ENC(pParse->db); i = addAggInfoFunc(pParse->db, pAggInfo); if( i>=0 ){ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); pItem = &pAggInfo->aFunc[i]; pItem->pExpr = pExpr; pItem->iMem = ++pParse->nMem; assert( !ExprHasProperty(pExpr, EP_IntValue) ); pItem->pFunc = sqlite3FindFunction(pParse->db, pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); if( pExpr->flags & EP_Distinct ){ pItem->iDistinct = pParse->nTab++; }else{ pItem->iDistinct = -1; } } } /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry */ assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); ExprSetIrreducible(pExpr); pExpr->iAgg = (i16)i; pExpr->pAggInfo = pAggInfo; return WRC_Prune; }else{ return WRC_Continue; } } } return WRC_Continue; } static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ UNUSED_PARAMETER(pWalker); UNUSED_PARAMETER(pSelect); return WRC_Continue; } /* ** Analyze the pExpr expression looking for aggregate functions and ** for variables that need to be added to AggInfo object that pNC->pAggInfo ** points to. Additional entries are made on the AggInfo object as ** necessary. ** ** This routine should only be called after the expression has been ** analyzed by sqlite3ResolveExprNames(). */ void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ Walker w; memset(&w, 0, sizeof(w)); w.xExprCallback = analyzeAggregate; w.xSelectCallback = analyzeAggregatesInSelect; w.u.pNC = pNC; assert( pNC->pSrcList!=0 ); sqlite3WalkExpr(&w, pExpr); } /* ** Call sqlite3ExprAnalyzeAggregates() for every expression in an ** expression list. Return the number of errors. ** ** If an error is found, the analysis is cut short. */ void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ struct ExprList_item *pItem; int i; if( pList ){ for(pItem=pList->a, i=0; inExpr; i++, pItem++){ sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); } } } /* ** Allocate a single new register for use to hold some intermediate result. */ int sqlite3GetTempReg(Parse *pParse){ if( pParse->nTempReg==0 ){ return ++pParse->nMem; } return pParse->aTempReg[--pParse->nTempReg]; } /* ** Deallocate a register, making available for reuse for some other ** purpose. ** ** If a register is currently being used by the column cache, then ** the dallocation is deferred until the column cache line that uses ** the register becomes stale. */ void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ if( iReg && pParse->nTempRegaTempReg) ){ int i; struct yColCache *p; for(i=0, p=pParse->aColCache; iiReg==iReg ){ p->tempReg = 1; return; } } pParse->aTempReg[pParse->nTempReg++] = iReg; } } /* ** Allocate or deallocate a block of nReg consecutive registers */ int sqlite3GetTempRange(Parse *pParse, int nReg){ int i, n; i = pParse->iRangeReg; n = pParse->nRangeReg; if( nReg<=n ){ assert( !usedAsColumnCache(pParse, i, i+n-1) ); pParse->iRangeReg += nReg; pParse->nRangeReg -= nReg; }else{ i = pParse->nMem+1; pParse->nMem += nReg; } return i; } void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ sqlite3ExprCacheRemove(pParse, iReg, nReg); if( nReg>pParse->nRangeReg ){ pParse->nRangeReg = nReg; pParse->iRangeReg = iReg; } } /* ** Mark all temporary registers as being unavailable for reuse. */ void sqlite3ClearTempRegCache(Parse *pParse){ pParse->nTempReg = 0; pParse->nRangeReg = 0; }