/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the SQLite parser ** when syntax rules are reduced. The routines in this file handle the ** following kinds of SQL syntax: ** ** CREATE TABLE ** DROP TABLE ** CREATE INDEX ** DROP INDEX ** creating expressions and ID lists ** COPY ** VACUUM ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK ** PRAGMA ** ** $Id: build.c,v 1.44 2001/10/06 16:33:03 drh Exp $ */ #include "sqliteInt.h" #include /* ** This routine is called after a single SQL statement has been ** parsed and we want to execute the VDBE code to implement ** that statement. Prior action routines should have already ** constructed VDBE code to do the work of the SQL statement. ** This routine just has to execute the VDBE code. ** ** Note that if an error occurred, it might be the case that ** no VDBE code was generated. */ void sqliteExec(Parse *pParse){ int rc = SQLITE_OK; sqlite *db = pParse->db; if( sqlite_malloc_failed ) return; if( pParse->pVdbe && pParse->nErr==0 ){ if( pParse->explain ){ rc = sqliteVdbeList(pParse->pVdbe, pParse->xCallback, pParse->pArg, &pParse->zErrMsg); }else{ FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; sqliteVdbeTrace(pParse->pVdbe, trace); rc = sqliteVdbeExec(pParse->pVdbe, pParse->xCallback, pParse->pArg, &pParse->zErrMsg, db->pBusyArg, db->xBusyCallback); if( rc ) pParse->nErr++; } sqliteVdbeDelete(pParse->pVdbe); pParse->pVdbe = 0; pParse->colNamesSet = 0; pParse->rc = rc; pParse->schemaVerified = 0; } } /* ** Construct a new expression node and return a pointer to it. */ Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){ Expr *pNew; pNew = sqliteMalloc( sizeof(Expr) ); if( pNew==0 ) return 0; pNew->op = op; pNew->pLeft = pLeft; pNew->pRight = pRight; if( pToken ){ pNew->token = *pToken; }else{ pNew->token.z = ""; pNew->token.n = 0; } if( pLeft && pRight ){ sqliteExprSpan(pNew, &pLeft->span, &pRight->span); }else{ pNew->span = pNew->token; } return pNew; } /* ** Set the Expr.token field of the given expression to span all ** text between the two given tokens. */ void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ if( pExpr ){ pExpr->span.z = pLeft->z; pExpr->span.n = pRight->n + (int)pRight->z - (int)pLeft->z; } } /* ** Construct a new expression node for a function with multiple ** arguments. */ Expr *sqliteExprFunction(ExprList *pList, Token *pToken){ Expr *pNew; pNew = sqliteMalloc( sizeof(Expr) ); if( pNew==0 ) return 0; pNew->op = TK_FUNCTION; pNew->pList = pList; if( pToken ){ pNew->token = *pToken; }else{ pNew->token.z = ""; pNew->token.n = 0; } return pNew; } /* ** Recursively delete an expression tree. */ void sqliteExprDelete(Expr *p){ if( p==0 ) return; if( p->pLeft ) sqliteExprDelete(p->pLeft); if( p->pRight ) sqliteExprDelete(p->pRight); if( p->pList ) sqliteExprListDelete(p->pList); if( p->pSelect ) sqliteSelectDelete(p->pSelect); sqliteFree(p); } /* ** Locate the in-memory structure that describes the ** format of a particular database table given the name ** of that table. Return NULL if not found. */ Table *sqliteFindTable(sqlite *db, char *zName){ Table *p = sqliteHashFind(&db->tblHash, zName, strlen(zName)+1); return (p==0 || p->isDelete) ? 0 : p; } /* ** Locate the in-memory structure that describes the ** format of a particular index given the name ** of that index. Return NULL if not found. */ Index *sqliteFindIndex(sqlite *db, char *zName){ Index *p = sqliteHashFind(&db->idxHash, zName, strlen(zName)+1); return (p==0 || p->isDelete) ? 0 : p; } /* ** Remove the given index from the index hash table, and free ** its memory structures. ** ** The index is removed from the database hash table if db!=NULL. ** But it is not unlinked from the Table that is being indexed. ** Unlinking from the Table must be done by the calling function. */ static void sqliteDeleteIndex(sqlite *db, Index *pIndex){ if( pIndex->zName && db ){ sqliteHashInsert(&db->idxHash, pIndex->zName, strlen(pIndex->zName)+1, 0); } sqliteFree(pIndex); } /* ** Unlink the given index from its table, then remove ** the index from the index hash table, and free its memory ** structures. */ static void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){ if( pIndex->pTable->pIndex==pIndex ){ pIndex->pTable->pIndex = pIndex->pNext; }else{ Index *p; for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} if( p && p->pNext==pIndex ){ p->pNext = pIndex->pNext; } } sqliteDeleteIndex(db, pIndex); } /* ** Remove the memory data structures associated with the given ** Table. No changes are made to disk by this routine. ** ** This routine just deletes the data structure. It does not unlink ** the table data structure from the hash table. But it does destroy ** memory structures of the indices associated with the table. ** ** Indices associated with the table are unlinked from the "db" ** data structure if db!=NULL. If db==NULL, indices attached to ** the table are deleted, but it is assumed they have already been ** unlinked. */ void sqliteDeleteTable(sqlite *db, Table *pTable){ int i; Index *pIndex, *pNext; if( pTable==0 ) return; for(i=0; inCol; i++){ sqliteFree(pTable->aCol[i].zName); sqliteFree(pTable->aCol[i].zDflt); sqliteFree(pTable->aCol[i].zType); } for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ pNext = pIndex->pNext; sqliteDeleteIndex(db, pIndex); } sqliteFree(pTable->zName); sqliteFree(pTable->aCol); sqliteFree(pTable); } /* ** Unlink the given table from the hash tables and the delete the ** table structure and all its indices. */ static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *pTable){ if( pTable->zName && db ){ sqliteHashInsert(&db->tblHash, pTable->zName, strlen(pTable->zName)+1, 0); } sqliteDeleteTable(db, pTable); } /* ** Check all Tables and Indexes in the internal hash table and commit ** any additions or deletions to those hash tables. ** ** When executing CREATE TABLE and CREATE INDEX statements, the Table ** and Index structures are created and added to the hash tables, but ** the "isCommit" field is not set. This routine sets those fields. ** When executing DROP TABLE and DROP INDEX, the "isDelete" fields of ** Table and Index structures is set but the structures are not unlinked ** from the hash tables nor deallocated. This routine handles that ** deallocation. ** ** See also: sqliteRollbackInternalChanges() */ void sqliteCommitInternalChanges(sqlite *db){ Hash toDelete; HashElem *pElem; if( (db->flags & SQLITE_InternChanges)==0 ) return; sqliteHashInit(&toDelete, SQLITE_HASH_POINTER, 0); db->schema_cookie = db->next_cookie; for(pElem=sqliteHashFirst(&db->tblHash); pElem; pElem=sqliteHashNext(pElem)){ Table *pTable = sqliteHashData(pElem); if( pTable->isDelete ){ sqliteHashInsert(&toDelete, pTable, 0, pTable); }else{ pTable->isCommit = 1; } } for(pElem=sqliteHashFirst(&toDelete); pElem; pElem=sqliteHashNext(pElem)){ Table *pTable = sqliteHashData(pElem); sqliteUnlinkAndDeleteTable(db, pTable); } sqliteHashClear(&toDelete); for(pElem=sqliteHashFirst(&db->idxHash); pElem; pElem=sqliteHashNext(pElem)){ Table *pIndex = sqliteHashData(pElem); if( pIndex->isDelete ){ sqliteHashInsert(&toDelete, pIndex, 0, pIndex); }else{ pIndex->isCommit = 1; } } for(pElem=sqliteHashFirst(&toDelete); pElem; pElem=sqliteHashNext(pElem)){ Index *pIndex = sqliteHashData(pElem); sqliteUnlinkAndDeleteIndex(db, pIndex); } sqliteHashClear(&toDelete); db->flags &= ~SQLITE_InternChanges; } /* ** This routine runs when one or more CREATE TABLE, CREATE INDEX, ** DROP TABLE, or DROP INDEX statements get rolled back. The ** additions or deletions of Table and Index structures in the ** internal hash tables are undone. ** ** See also: sqliteCommitInternalChanges() */ void sqliteRollbackInternalChanges(sqlite *db){ Hash toDelete; HashElem *pElem; if( (db->flags & SQLITE_InternChanges)==0 ) return; sqliteHashInit(&toDelete, SQLITE_HASH_POINTER, 0); db->next_cookie = db->schema_cookie; for(pElem=sqliteHashFirst(&db->tblHash); pElem; pElem=sqliteHashNext(pElem)){ Table *pTable = sqliteHashData(pElem); if( !pTable->isCommit ){ sqliteHashInsert(&toDelete, pTable, 0, pTable); }else{ pTable->isDelete = 0; } } for(pElem=sqliteHashFirst(&toDelete); pElem; pElem=sqliteHashNext(pElem)){ Table *pTable = sqliteHashData(pElem); sqliteUnlinkAndDeleteTable(db, pTable); } sqliteHashClear(&toDelete); for(pElem=sqliteHashFirst(&db->idxHash); pElem; pElem=sqliteHashNext(pElem)){ Table *pIndex = sqliteHashData(pElem); if( !pIndex->isCommit ){ sqliteHashInsert(&toDelete, pIndex, 0, pIndex); }else{ pIndex->isDelete = 0; } } for(pElem=sqliteHashFirst(&toDelete); pElem; pElem=sqliteHashNext(pElem)){ Index *pIndex = sqliteHashData(pElem); sqliteUnlinkAndDeleteIndex(db, pIndex); } sqliteHashClear(&toDelete); db->flags &= ~SQLITE_InternChanges; } /* ** Construct the name of a user table or index from a token. ** ** Space to hold the name is obtained from sqliteMalloc() and must ** be freed by the calling function. */ char *sqliteTableNameFromToken(Token *pName){ char *zName = sqliteStrNDup(pName->z, pName->n); sqliteDequote(zName); return zName; } /* ** Begin constructing a new table representation in memory. This is ** the first of several action routines that get called in response ** to a CREATE TABLE statement. In particular, this routine is called ** after seeing tokens "CREATE" and "TABLE" and the table name. The ** pStart token is the CREATE and pName is the table name. ** ** The new table is constructed in fields of the pParse structure. As ** more of the CREATE TABLE statement is parsed, additional action ** routines are called to build up more of the table. */ void sqliteStartTable(Parse *pParse, Token *pStart, Token *pName){ Table *pTable; char *zName; sqlite *db = pParse->db; Vdbe *v; pParse->sFirstToken = *pStart; zName = sqliteTableNameFromToken(pName); if( zName==0 ) return; pTable = sqliteFindTable(db, zName); if( pTable!=0 ){ sqliteSetNString(&pParse->zErrMsg, "table ", 0, pName->z, pName->n, " already exists", 0, 0); sqliteFree(zName); pParse->nErr++; return; } if( sqliteFindIndex(db, zName) ){ sqliteSetString(&pParse->zErrMsg, "there is already an index named ", zName, 0); sqliteFree(zName); pParse->nErr++; return; } pTable = sqliteMalloc( sizeof(Table) ); if( pTable==0 ) return; pTable->zName = zName; pTable->nCol = 0; pTable->aCol = 0; pTable->pIndex = 0; if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable); pParse->pNewTable = pTable; if( !pParse->initFlag && (v = sqliteGetVdbe(pParse))!=0 ){ if( (db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_VerifyCookie, db->schema_cookie, 0, 0, 0); pParse->schemaVerified = 1; } sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2, MASTER_NAME, 0); } } /* ** Add a new column to the table currently being constructed. ** ** The parser calls this routine once for each column declaration ** in a CREATE TABLE statement. sqliteStartTable() gets called ** first to get things going. Then this routine is called for each ** column. */ void sqliteAddColumn(Parse *pParse, Token *pName){ Table *p; char **pz; if( (p = pParse->pNewTable)==0 ) return; if( (p->nCol & 0x7)==0 ){ p->aCol = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0])); if( p->aCol==0 ){ p->nCol = 0; return; } } memset(&p->aCol[p->nCol], 0, sizeof(p->aCol[0])); pz = &p->aCol[p->nCol++].zName; sqliteSetNString(pz, pName->z, pName->n, 0); sqliteDequote(*pz); } /* ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has ** been seen on a column. This routine sets the notNull flag on ** the column currently under construction. */ void sqliteAddNotNull(Parse *pParse){ Table *p; int i; if( (p = pParse->pNewTable)==0 ) return; i = p->nCol-1; p->aCol[i].notNull = 1; } /* ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. The pFirst token is the first ** token in the sequence of tokens that describe the type of the ** column currently under construction. pLast is the last token ** in the sequence. Use this information to construct a string ** that contains the typename of the column and store that string ** in zType. */ void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){ Table *p; int i, j; int n; char *z, **pz; if( (p = pParse->pNewTable)==0 ) return; i = p->nCol-1; pz = &p->aCol[i].zType; n = pLast->n + ((int)pLast->z) - (int)pFirst->z; sqliteSetNString(pz, pFirst->z, n, 0); z = *pz; for(i=j=0; z[i]; i++){ int c = z[i]; if( isspace(c) ) continue; z[j++] = c; } z[j] = 0; } /* ** The given token is the default value for the last column added to ** the table currently under construction. If "minusFlag" is true, it ** means the value token was preceded by a minus sign. ** ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. */ void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){ Table *p; int i; char **pz; if( (p = pParse->pNewTable)==0 ) return; i = p->nCol-1; pz = &p->aCol[i].zDflt; if( minusFlag ){ sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0); }else{ sqliteSetNString(pz, pVal->z, pVal->n, 0); } sqliteDequote(*pz); } /* ** Come up with a new random value for the schema cookie. Make sure ** the new value is different from the old. ** ** The schema cookie is used to determine when the schema for the ** database changes. After each schema change, the cookie value ** changes. When a process first reads the schema it records the ** cookie. Thereafter, whenever it goes to access the database, ** it checks the cookie to make sure the schema has not changed ** since it was last read. ** ** This plan is not completely bullet-proof. It is possible for ** the schema to change multiple times and for the cookie to be ** set back to prior value. But schema changes are infrequent ** and the probability of hitting the same cookie value is only ** 1 chance in 2^32. So we're safe enough. */ static void changeCookie(sqlite *db){ if( db->next_cookie==db->schema_cookie ){ db->next_cookie = db->schema_cookie + sqliteRandomByte(db) + 1; db->flags |= SQLITE_InternChanges; } } /* ** This routine is called to report the final ")" that terminates ** a CREATE TABLE statement. ** ** The table structure is added to the internal hash tables. ** ** An entry for the table is made in the master table on disk, ** unless initFlag==1. When initFlag==1, it means we are reading ** the master table because we just connected to the database, so ** the entry for this table already exists in the master table. ** We do not want to create it again. */ void sqliteEndTable(Parse *pParse, Token *pEnd){ Table *p; sqlite *db = pParse->db; if( pEnd==0 || pParse->nErr || sqlite_malloc_failed ) return; p = pParse->pNewTable; if( p==0 ) return; /* Add the table to the in-memory representation of the database */ if( pParse->explain==0 ){ sqliteHashInsert(&db->tblHash, p->zName, strlen(p->zName)+1, p); pParse->pNewTable = 0; db->nTable++; db->flags |= SQLITE_InternChanges; } /* If the initFlag is 1 it means we are reading the SQL off the ** "sqlite_master" table on the disk. So do not write to the disk ** again. Extract the root page number for the table from the ** pParse->newTnum field. (The page number should have been put ** there by the sqliteOpenCb routine.) */ if( pParse->initFlag ){ p->tnum = pParse->newTnum; } /* If not initializing, then create a record for the new table ** in the SQLITE_MASTER table of the database. */ if( !pParse->initFlag ){ int n, addr; Vdbe *v; v = sqliteGetVdbe(pParse); if( v==0 ) return; n = (int)pEnd->z - (int)pParse->sFirstToken.z + 1; sqliteVdbeAddOp(v, OP_NewRecno, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_String, 0, 0, "table", 0); sqliteVdbeAddOp(v, OP_String, 0, 0, p->zName, 0); sqliteVdbeAddOp(v, OP_String, 0, 0, p->zName, 0); addr = sqliteVdbeAddOp(v, OP_CreateTable, 0, 0, 0, 0); sqliteVdbeChangeP3(v, addr, (char *)&p->tnum, -1); p->tnum = 0; addr = sqliteVdbeAddOp(v, OP_String, 0, 0, 0, 0); sqliteVdbeChangeP3(v, addr, pParse->sFirstToken.z, n); sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0, 0, 0); sqliteVdbeAddOp(v, OP_Put, 0, 0, 0, 0); changeCookie(db); sqliteVdbeAddOp(v, OP_SetCookie, db->next_cookie, 0, 0, 0); sqliteVdbeAddOp(v, OP_Close, 0, 0, 0, 0); if( (db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } } } /* ** Given a token, look up a table with that name. If not found, leave ** an error for the parser to find and return NULL. */ Table *sqliteTableFromToken(Parse *pParse, Token *pTok){ char *zName; Table *pTab; zName = sqliteTableNameFromToken(pTok); if( zName==0 ) return 0; pTab = sqliteFindTable(pParse->db, zName); sqliteFree(zName); if( pTab==0 ){ sqliteSetNString(&pParse->zErrMsg, "no such table: ", 0, pTok->z, pTok->n, 0); pParse->nErr++; } return pTab; } /* ** This routine is called to do the work of a DROP TABLE statement. ** pName is the name of the table to be dropped. */ void sqliteDropTable(Parse *pParse, Token *pName){ Table *pTable; Vdbe *v; int base; sqlite *db = pParse->db; if( pParse->nErr || sqlite_malloc_failed ) return; pTable = sqliteTableFromToken(pParse, pName); if( pTable==0 ) return; if( pTable->readOnly ){ sqliteSetString(&pParse->zErrMsg, "table ", pTable->zName, " may not be dropped", 0); pParse->nErr++; return; } /* Generate code to remove the table from the master table ** on disk. */ v = sqliteGetVdbe(pParse); if( v ){ static VdbeOp dropTable[] = { { OP_OpenWrite, 0, 2, MASTER_NAME}, { OP_Rewind, 0, 0, 0}, { OP_String, 0, 0, 0}, /* 2 */ { OP_Next, 0, ADDR(9), 0}, /* 3 */ { OP_Dup, 0, 0, 0}, { OP_Column, 0, 2, 0}, { OP_Ne, 0, ADDR(3), 0}, { OP_Delete, 0, 0, 0}, { OP_Goto, 0, ADDR(3), 0}, { OP_Destroy, 0, 0, 0}, /* 9 */ { OP_SetCookie, 0, 0, 0}, /* 10 */ { OP_Close, 0, 0, 0}, }; Index *pIdx; if( (db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_VerifyCookie, db->schema_cookie, 0, 0, 0); pParse->schemaVerified = 1; } base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable); sqliteVdbeChangeP3(v, base+2, pTable->zName, 0); sqliteVdbeChangeP1(v, base+9, pTable->tnum); changeCookie(db); sqliteVdbeChangeP1(v, base+10, db->next_cookie); for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){ sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, 0, 0, 0); } if( (db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } } /* Mark the in-memory Table structure as being deleted. The actually ** deletion occurs inside of sqliteCommitInternalChanges(). ** ** Exception: if the SQL statement began with the EXPLAIN keyword, ** then no changes should be made. */ if( !pParse->explain ){ pTable->isDelete = 1; db->flags |= SQLITE_InternChanges; } } /* ** Create a new index for an SQL table. pIndex is the name of the index ** and pTable is the name of the table that is to be indexed. Both will ** be NULL for a primary key or an index that is created to satisfy a ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable ** as the table to be indexed. pParse->pNewTable is a table that is ** currently being constructed by a CREATE TABLE statement. ** ** pList is a list of columns to be indexed. pList will be NULL if this ** is a primary key or unique-constraint on the most recent column added ** to the table currently under construction. */ void sqliteCreateIndex( Parse *pParse, /* All information about this parse */ Token *pName, /* Name of the index. May be NULL */ Token *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */ IdList *pList, /* A list of columns to be indexed */ int isUnique, /* True if all entries in this index must be unique */ Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */ Token *pEnd /* The ")" that closes the CREATE INDEX statement */ ){ Table *pTab; /* Table to be indexed */ Index *pIndex; /* The index to be created */ char *zName = 0; int i, j; Token nullId; /* Fake token for an empty ID list */ sqlite *db = pParse->db; if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index; /* ** Find the table that is to be indexed. Return early if not found. */ if( pTable!=0 ){ assert( pName!=0 ); pTab = sqliteTableFromToken(pParse, pTable); }else{ assert( pName==0 ); pTab = pParse->pNewTable; } if( pTab==0 || pParse->nErr ) goto exit_create_index; if( pTab->readOnly ){ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName, " may not have new indices added", 0); pParse->nErr++; goto exit_create_index; } /* ** Find the name of the index. Make sure there is not already another ** index or table with the same name. If pName==0 it means that we are ** dealing with a primary key or UNIQUE constraint. We have to invent our ** own name. */ if( pName ){ zName = sqliteTableNameFromToken(pName); if( zName==0 ) goto exit_create_index; if( sqliteFindIndex(db, zName) ){ sqliteSetString(&pParse->zErrMsg, "index ", zName, " already exists", 0); pParse->nErr++; goto exit_create_index; } if( sqliteFindTable(db, zName) ){ sqliteSetString(&pParse->zErrMsg, "there is already a table named ", zName, 0); pParse->nErr++; goto exit_create_index; } }else{ char zBuf[30]; int n; Index *pLoop; for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} sprintf(zBuf,"%d)",n); zName = 0; sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, 0); if( zName==0 ) goto exit_create_index; } /* If pList==0, it means this routine was called to make a primary ** key out of the last column added to the table under construction. ** So create a fake list to simulate this. */ if( pList==0 ){ nullId.z = pTab->aCol[pTab->nCol-1].zName; nullId.n = strlen(nullId.z); pList = sqliteIdListAppend(0, &nullId); if( pList==0 ) goto exit_create_index; } /* ** Allocate the index structure. */ pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 + sizeof(int)*pList->nId ); if( pIndex==0 ) goto exit_create_index; pIndex->aiColumn = (int*)&pIndex[1]; pIndex->zName = (char*)&pIndex->aiColumn[pList->nId]; strcpy(pIndex->zName, zName); pIndex->pTable = pTab; pIndex->nColumn = pList->nId; pIndex->isUnique = isUnique; /* Scan the names of the columns of the table to be indexed and ** load the column indices into the Index structure. Report an error ** if any column is not found. */ for(i=0; inId; i++){ for(j=0; jnCol; j++){ if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break; } if( j>=pTab->nCol ){ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName, " has no column named ", pList->a[i].zName, 0); pParse->nErr++; sqliteFree(pIndex); goto exit_create_index; } pIndex->aiColumn[i] = j; } /* Link the new Index structure to its table and to the other ** in-memory database structures. */ pIndex->pNext = pTab->pIndex; pTab->pIndex = pIndex; if( !pParse->explain ){ sqliteHashInsert(&db->idxHash, pIndex->zName, strlen(zName)+1, pIndex); db->flags |= SQLITE_InternChanges; } /* If the initFlag is 1 it means we are reading the SQL off the ** "sqlite_master" table on the disk. So do not write to the disk ** again. Extract the table number from the pParse->newTnum field. */ if( pParse->initFlag && pTable!=0 ){ pIndex->tnum = pParse->newTnum; } /* If the initFlag is 0 then create the index on disk. This ** involves writing the index into the master table and filling in the ** index with the current table contents. ** ** The initFlag is 0 when the user first enters a CREATE INDEX ** command. The initFlag is 1 when a database is opened and ** CREATE INDEX statements are read out of the master table. In ** the latter case the index already exists on disk, which is why ** we don't want to recreate it. ** ** If pTable==0 it means this index is generated as a primary key ** or UNIQUE constraint of a CREATE TABLE statement. Since the table ** has just been created, it contains no data and the index initialization ** step can be skipped. */ else if( pParse->initFlag==0 ){ int n; Vdbe *v; int lbl1, lbl2; int i; int addr; v = sqliteGetVdbe(pParse); if( v==0 ) goto exit_create_index; if( pTable!=0 ){ if( (db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_VerifyCookie, db->schema_cookie, 0, 0, 0); pParse->schemaVerified = 1; } sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2, MASTER_NAME, 0); } sqliteVdbeAddOp(v, OP_NewRecno, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_String, 0, 0, "index", 0); sqliteVdbeAddOp(v, OP_String, 0, 0, pIndex->zName, 0); sqliteVdbeAddOp(v, OP_String, 0, 0, pTab->zName, 0); addr = sqliteVdbeAddOp(v, OP_CreateIndex, 0, 0, 0, 0); sqliteVdbeChangeP3(v, addr, (char*)&pIndex->tnum, -1); pIndex->tnum = 0; if( pTable ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0, 0, 0); } addr = sqliteVdbeAddOp(v, OP_String, 0, 0, 0, 0); if( pStart && pEnd ){ n = (int)pEnd->z - (int)pStart->z + 1; sqliteVdbeChangeP3(v, addr, pStart->z, n); } sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0, 0, 0); sqliteVdbeAddOp(v, OP_Put, 0, 0, 0, 0); if( pTable ){ sqliteVdbeAddOp(v, OP_Open, 2, pTab->tnum, pTab->zName, 0); lbl1 = sqliteVdbeMakeLabel(v); lbl2 = sqliteVdbeMakeLabel(v); sqliteVdbeAddOp(v, OP_Rewind, 2, 0, 0, 0); sqliteVdbeAddOp(v, OP_Next, 2, lbl2, 0, lbl1); sqliteVdbeAddOp(v, OP_Recno, 2, 0, 0, 0); for(i=0; inColumn; i++){ sqliteVdbeAddOp(v, OP_Column, 2, pIndex->aiColumn[i], 0, 0); } sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_PutIdx, 1, pIndex->isUnique, 0, 0); sqliteVdbeAddOp(v, OP_Goto, 0, lbl1, 0, 0); sqliteVdbeAddOp(v, OP_Noop, 0, 0, 0, lbl2); sqliteVdbeAddOp(v, OP_Close, 2, 0, 0, 0); } sqliteVdbeAddOp(v, OP_Close, 1, 0, 0, 0); if( pTable!=0 ){ changeCookie(db); sqliteVdbeAddOp(v, OP_SetCookie, db->next_cookie, 0, 0, 0); sqliteVdbeAddOp(v, OP_Close, 0, 0, 0, 0); if( (db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } } } /* Clean up before exiting */ exit_create_index: sqliteIdListDelete(pList); sqliteFree(zName); return; } /* ** This routine will drop an existing named index. */ void sqliteDropIndex(Parse *pParse, Token *pName){ Index *pIndex; char *zName; Vdbe *v; sqlite *db = pParse->db; if( pParse->nErr || sqlite_malloc_failed ) return; zName = sqliteTableNameFromToken(pName); if( zName==0 ) return; pIndex = sqliteFindIndex(db, zName); sqliteFree(zName); if( pIndex==0 ){ sqliteSetNString(&pParse->zErrMsg, "no such index: ", 0, pName->z, pName->n, 0); pParse->nErr++; return; } /* Generate code to remove the index and from the master table */ v = sqliteGetVdbe(pParse); if( v ){ static VdbeOp dropIndex[] = { { OP_OpenWrite, 0, 2, MASTER_NAME}, { OP_Rewind, 0, 0, 0}, { OP_String, 0, 0, 0}, /* 2 */ { OP_Next, 0, ADDR(8), 0}, /* 3 */ { OP_Dup, 0, 0, 0}, { OP_Column, 0, 1, 0}, { OP_Ne, 0, ADDR(3), 0}, { OP_Delete, 0, 0, 0}, { OP_Destroy, 0, 0, 0}, /* 8 */ { OP_SetCookie, 0, 0, 0}, /* 9 */ { OP_Close, 0, 0, 0}, }; int base; if( (db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_VerifyCookie, db->schema_cookie, 0, 0, 0); pParse->schemaVerified = 1; } base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex); sqliteVdbeChangeP3(v, base+2, pIndex->zName, 0); sqliteVdbeChangeP1(v, base+8, pIndex->tnum); changeCookie(db); sqliteVdbeChangeP1(v, base+9, db->next_cookie); if( (db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } } /* Mark the internal Index structure for deletion by the ** sqliteCommitInternalChanges routine. */ if( !pParse->explain ){ pIndex->isDelete = 1; db->flags |= SQLITE_InternChanges; } } /* ** Add a new element to the end of an expression list. If pList is ** initially NULL, then create a new expression list. */ ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){ int i; if( pList==0 ){ pList = sqliteMalloc( sizeof(ExprList) ); if( pList==0 ) return 0; } if( (pList->nExpr & 7)==0 ){ int n = pList->nExpr + 8; pList->a = sqliteRealloc(pList->a, n*sizeof(pList->a[0])); if( pList->a==0 ){ pList->nExpr = 0; return pList; } } i = pList->nExpr++; pList->a[i].pExpr = pExpr; pList->a[i].zName = 0; if( pName ){ sqliteSetNString(&pList->a[i].zName, pName->z, pName->n, 0); sqliteDequote(pList->a[i].zName); } return pList; } /* ** Delete an entire expression list. */ void sqliteExprListDelete(ExprList *pList){ int i; if( pList==0 ) return; for(i=0; inExpr; i++){ sqliteExprDelete(pList->a[i].pExpr); sqliteFree(pList->a[i].zName); } sqliteFree(pList->a); sqliteFree(pList); } /* ** Append a new element to the given IdList. Create a new IdList if ** need be. ** ** A new IdList is returned, or NULL if malloc() fails. */ IdList *sqliteIdListAppend(IdList *pList, Token *pToken){ if( pList==0 ){ pList = sqliteMalloc( sizeof(IdList) ); if( pList==0 ) return 0; } if( (pList->nId & 7)==0 ){ pList->a = sqliteRealloc(pList->a, (pList->nId+8)*sizeof(pList->a[0]) ); if( pList->a==0 ){ pList->nId = 0; sqliteIdListDelete(pList); return 0; } } memset(&pList->a[pList->nId], 0, sizeof(pList->a[0])); if( pToken ){ char **pz = &pList->a[pList->nId].zName; sqliteSetNString(pz, pToken->z, pToken->n, 0); if( *pz==0 ){ sqliteIdListDelete(pList); return 0; }else{ sqliteDequote(*pz); } } pList->nId++; return pList; } /* ** Add an alias to the last identifier on the given identifier list. */ void sqliteIdListAddAlias(IdList *pList, Token *pToken){ if( pList && pList->nId>0 ){ int i = pList->nId - 1; sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0); sqliteDequote(pList->a[i].zAlias); } } /* ** Delete an entire IdList */ void sqliteIdListDelete(IdList *pList){ int i; if( pList==0 ) return; for(i=0; inId; i++){ sqliteFree(pList->a[i].zName); sqliteFree(pList->a[i].zAlias); if( pList->a[i].pSelect ){ sqliteFree(pList->a[i].zName); sqliteSelectDelete(pList->a[i].pSelect); sqliteDeleteTable(0, pList->a[i].pTab); } } sqliteFree(pList->a); sqliteFree(pList); } /* ** The COPY command is for compatibility with PostgreSQL and specificially ** for the ability to read the output of pg_dump. The format is as ** follows: ** ** COPY table FROM file [USING DELIMITERS string] ** ** "table" is an existing table name. We will read lines of code from ** file to fill this table with data. File might be "stdin". The optional ** delimiter string identifies the field separators. The default is a tab. */ void sqliteCopy( Parse *pParse, /* The parser context */ Token *pTableName, /* The name of the table into which we will insert */ Token *pFilename, /* The file from which to obtain information */ Token *pDelimiter /* Use this as the field delimiter */ ){ Table *pTab; char *zTab; int i, j; Vdbe *v; int addr, end; Index *pIdx; sqlite *db = pParse->db; zTab = sqliteTableNameFromToken(pTableName); if( sqlite_malloc_failed || zTab==0 ) goto copy_cleanup; pTab = sqliteFindTable(db, zTab); sqliteFree(zTab); if( pTab==0 ){ sqliteSetNString(&pParse->zErrMsg, "no such table: ", 0, pTableName->z, pTableName->n, 0); pParse->nErr++; goto copy_cleanup; } if( pTab->readOnly ){ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName, " may not be modified", 0); pParse->nErr++; goto copy_cleanup; } v = sqliteGetVdbe(pParse); if( v ){ if( (db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_VerifyCookie, db->schema_cookie, 0, 0, 0); pParse->schemaVerified = 1; } addr = sqliteVdbeAddOp(v, OP_FileOpen, 0, 0, 0, 0); sqliteVdbeChangeP3(v, addr, pFilename->z, pFilename->n); sqliteVdbeDequoteP3(v, addr); sqliteVdbeAddOp(v, OP_OpenWrite, 0, pTab->tnum, pTab->zName, 0); for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ sqliteVdbeAddOp(v, OP_OpenWrite, i, pIdx->tnum, pIdx->zName, 0); } end = sqliteVdbeMakeLabel(v); addr = sqliteVdbeAddOp(v, OP_FileRead, pTab->nCol, end, 0, 0); if( pDelimiter ){ sqliteVdbeChangeP3(v, addr, pDelimiter->z, pDelimiter->n); sqliteVdbeDequoteP3(v, addr); }else{ sqliteVdbeChangeP3(v, addr, "\t", 1); } sqliteVdbeAddOp(v, OP_NewRecno, 0, 0, 0, 0); if( pTab->pIndex ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); } for(i=0; inCol; i++){ sqliteVdbeAddOp(v, OP_FileColumn, i, 0, 0, 0); } sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0, 0, 0); sqliteVdbeAddOp(v, OP_Put, 0, 0, 0, 0); for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ if( pIdx->pNext ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); } for(j=0; jnColumn; j++){ sqliteVdbeAddOp(v, OP_FileColumn, pIdx->aiColumn[j], 0, 0, 0); } sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_PutIdx, i, pIdx->isUnique, 0, 0); } sqliteVdbeAddOp(v, OP_Goto, 0, addr, 0, 0); sqliteVdbeAddOp(v, OP_Noop, 0, 0, 0, end); if( (db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } } copy_cleanup: return; } /* ** The non-standard VACUUM command is used to clean up the database, ** collapse free space, etc. It is modelled after the VACUUM command ** in PostgreSQL. */ void sqliteVacuum(Parse *pParse, Token *pTableName){ char *zName; Vdbe *v; sqlite *db = pParse->db; if( pParse->nErr || sqlite_malloc_failed ) return; if( pTableName ){ zName = sqliteTableNameFromToken(pTableName); }else{ zName = 0; } if( zName && sqliteFindIndex(db, zName)==0 && sqliteFindTable(db, zName)==0 ){ sqliteSetString(&pParse->zErrMsg, "no such table or index: ", zName, 0); pParse->nErr++; goto vacuum_cleanup; } v = sqliteGetVdbe(pParse); if( v==0 ) goto vacuum_cleanup; if( (db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_VerifyCookie, db->schema_cookie, 0, 0, 0); pParse->schemaVerified = 1; } if( zName ){ sqliteVdbeAddOp(v, OP_Reorganize, 0, 0, zName, 0); }else{ Table *pTab; Index *pIdx; HashElem *pE; for(pE=sqliteHashFirst(&db->tblHash); pE; pE=sqliteHashNext(pE)){ pTab = sqliteHashData(pE); sqliteVdbeAddOp(v, OP_Reorganize, 0, 0, pTab->zName, 0); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ sqliteVdbeAddOp(v, OP_Reorganize, 0, 0, pIdx->zName, 0); } } } if( (db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } vacuum_cleanup: sqliteFree(zName); return; } /* ** Begin a transaction */ void sqliteBeginTransaction(Parse *pParse){ sqlite *db; Vdbe *v; if( pParse==0 || (db=pParse->db)==0 || db->pBe==0 ) return; if( pParse->nErr || sqlite_malloc_failed ) return; if( db->flags & SQLITE_InTrans ) return; v = sqliteGetVdbe(pParse); if( v ){ sqliteVdbeAddOp(v, OP_Transaction, 1, 0, 0, 0); sqliteVdbeAddOp(v, OP_VerifyCookie, db->schema_cookie, 0, 0, 0); pParse->schemaVerified = 1; } db->flags |= SQLITE_InTrans; } /* ** Commit a transaction */ void sqliteCommitTransaction(Parse *pParse){ sqlite *db; Vdbe *v; if( pParse==0 || (db=pParse->db)==0 || db->pBe==0 ) return; if( pParse->nErr || sqlite_malloc_failed ) return; if( (db->flags & SQLITE_InTrans)==0 ) return; v = sqliteGetVdbe(pParse); if( v ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } db->flags &= ~SQLITE_InTrans; } /* ** Rollback a transaction */ void sqliteRollbackTransaction(Parse *pParse){ sqlite *db; Vdbe *v; if( pParse==0 || (db=pParse->db)==0 || db->pBe==0 ) return; if( pParse->nErr || sqlite_malloc_failed ) return; if( (db->flags & SQLITE_InTrans)==0 ) return; v = sqliteGetVdbe(pParse); if( v ){ sqliteVdbeAddOp(v, OP_Rollback, 0, 0, 0, 0); } db->flags &= ~SQLITE_InTrans; } /* ** Interpret the given string as a boolean value. */ static int getBoolean(char *z){ static char *azTrue[] = { "yes", "on", "true" }; int i; if( z[0]==0 ) return 0; if( isdigit(z[0]) || (z[0]=='-' && isdigit(z[1])) ){ return atoi(z); } for(i=0; idb; zLeft = sqliteStrNDup(pLeft->z, pLeft->n); sqliteDequote(zLeft); if( minusFlag ){ zRight = 0; sqliteSetNString(&zRight, "-", 1, pRight->z, pRight->n, 0); }else{ zRight = sqliteStrNDup(pRight->z, pRight->n); sqliteDequote(zRight); } if( sqliteStrICmp(zLeft,"cache_size")==0 ){ int size = atoi(zRight); sqliteBtreeSetCacheSize(db->pBe, size); }else if( sqliteStrICmp(zLeft, "vdbe_trace")==0 ){ if( getBoolean(zRight) ){ db->flags |= SQLITE_VdbeTrace; }else{ db->flags &= ~SQLITE_VdbeTrace; } }else if( sqliteStrICmp(zLeft, "full_column_names")==0 ){ if( getBoolean(zRight) ){ db->flags |= SQLITE_FullColNames; }else{ db->flags &= ~SQLITE_FullColNames; } }else if( sqliteStrICmp(zLeft, "table_info")==0 ){ Table *pTab; Vdbe *v; pTab = sqliteFindTable(db, zRight); if( pTab ) v = sqliteGetVdbe(pParse); if( pTab && v ){ static VdbeOp tableInfoPreface[] = { { OP_ColumnCount, 5, 0, 0}, { OP_ColumnName, 0, 0, "cid"}, { OP_ColumnName, 1, 0, "name"}, { OP_ColumnName, 2, 0, "type"}, { OP_ColumnName, 3, 0, "notnull"}, { OP_ColumnName, 4, 0, "dflt_value"}, }; int i; sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface); for(i=0; inCol; i++){ sqliteVdbeAddOp(v, OP_Integer, i, 0, 0, 0); sqliteVdbeAddOp(v, OP_String, 0, 0, pTab->aCol[i].zName, 0); sqliteVdbeAddOp(v, OP_String, 0, 0, pTab->aCol[i].zType ? pTab->aCol[i].zType : "text", 0); sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].notNull, 0, 0, 0); sqliteVdbeAddOp(v, OP_String, 0, 0, pTab->aCol[i].zDflt, 0); sqliteVdbeAddOp(v, OP_Callback, 5, 0, 0, 0); } } }else if( sqliteStrICmp(zLeft, "index_info")==0 ){ Index *pIdx; Table *pTab; Vdbe *v; pIdx = sqliteFindIndex(db, zRight); if( pIdx ) v = sqliteGetVdbe(pParse); if( pIdx && v ){ static VdbeOp tableInfoPreface[] = { { OP_ColumnCount, 3, 0, 0}, { OP_ColumnName, 0, 0, "seqno"}, { OP_ColumnName, 1, 0, "cid"}, { OP_ColumnName, 2, 0, "name"}, }; int i; pTab = pIdx->pTable; sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface); for(i=0; inColumn; i++){ sqliteVdbeAddOp(v, OP_Integer, i, 0, 0, 0); sqliteVdbeAddOp(v, OP_Integer, pIdx->aiColumn[i], 0, 0, 0); sqliteVdbeAddOp(v, OP_String, 0, 0, pTab->aCol[pIdx->aiColumn[i]].zName, 0); sqliteVdbeAddOp(v, OP_Callback, 3, 0, 0, 0); } } }else #ifndef NDEBUG if( sqliteStrICmp(zLeft, "parser_trace")==0 ){ extern void sqliteParserTrace(FILE*, char *); if( getBoolean(zRight) ){ sqliteParserTrace(stdout, "parser: "); }else{ sqliteParserTrace(0, 0); } }else #endif if( zLeft ) sqliteFree(zLeft); if( zRight ) sqliteFree(zRight); }