/* ** 2005 July 8 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code associated with the ANALYZE command. */ #ifndef SQLITE_OMIT_ANALYZE #include "sqliteInt.h" /* ** This routine generates code that opens the sqlite_stat1 table for ** writing with cursor iStatCur. If the library was built with the ** SQLITE_ENABLE_STAT2 macro defined, then the sqlite_stat2 table is ** opened for writing using cursor (iStatCur+1) ** ** If the sqlite_stat1 tables does not previously exist, it is created. ** Similarly, if the sqlite_stat2 table does not exist and the library ** is compiled with SQLITE_ENABLE_STAT2 defined, it is created. ** ** Argument zWhere may be a pointer to a buffer containing a table name, ** or it may be a NULL pointer. If it is not NULL, then all entries in ** the sqlite_stat1 and (if applicable) sqlite_stat2 tables associated ** with the named table are deleted. If zWhere==0, then code is generated ** to delete all stat table entries. */ static void openStatTable( Parse *pParse, /* Parsing context */ int iDb, /* The database we are looking in */ int iStatCur, /* Open the sqlite_stat1 table on this cursor */ const char *zWhere, /* Delete entries for this table or index */ const char *zWhereType /* Either "tbl" or "idx" */ ){ static const struct { const char *zName; const char *zCols; } aTable[] = { { "sqlite_stat1", "tbl,idx,stat" }, #ifdef SQLITE_ENABLE_STAT2 { "sqlite_stat2", "tbl,idx,sampleno,sample,cnt" }, #endif }; int aRoot[] = {0, 0}; u8 aCreateTbl[] = {0, 0}; int i; sqlite3 *db = pParse->db; Db *pDb; Vdbe *v = sqlite3GetVdbe(pParse); if( v==0 ) return; assert( sqlite3BtreeHoldsAllMutexes(db) ); assert( sqlite3VdbeDb(v)==db ); pDb = &db->aDb[iDb]; for(i=0; izName))==0 ){ /* The sqlite_stat[12] table does not exist. Create it. Note that a ** side-effect of the CREATE TABLE statement is to leave the rootpage ** of the new table in register pParse->regRoot. This is important ** because the OpenWrite opcode below will be needing it. */ sqlite3NestedParse(pParse, "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols ); aRoot[i] = pParse->regRoot; aCreateTbl[i] = 1; }else{ /* The table already exists. If zWhere is not NULL, delete all entries ** associated with the table zWhere. If zWhere is NULL, delete the ** entire contents of the table. */ aRoot[i] = pStat->tnum; sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); if( zWhere ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere ); }else{ /* The sqlite_stat[12] table already exists. Delete all rows. */ sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); } } } /* Open the sqlite_stat[12] tables for writing. */ for(i=0; idb; /* Database handle */ Index *pIdx; /* An index to being analyzed */ int iIdxCur; /* Cursor open on index being analyzed */ Vdbe *v; /* The virtual machine being built up */ int i; /* Loop counter */ int topOfLoop; /* The top of the loop */ int endOfLoop; /* The end of the loop */ int jZeroRows = -1; /* Jump from here if number of rows is zero */ int iDb; /* Index of database containing pTab */ int regTabname = iMem++; /* Register containing table name */ int regIdxname = iMem++; /* Register containing index name */ int regSampleno = iMem++; /* Sampleno (stat2) or stat (stat1) */ #ifdef SQLITE_ENABLE_STAT2 int regSample = iMem++; /* The next sample value */ int regSampleCnt = iMem++; /* Number of occurrances of regSample value */ int shortJump = 0; /* Instruction address */ int addrStoreStat2 = 0; /* Address of subroutine to wrote to stat2 */ int regNext = iMem++; /* Index of next sample to record */ int regSampleIdx = iMem++; /* Index of next sample */ int regReady = iMem++; /* True if ready to store a stat2 entry */ int regGosub = iMem++; /* Register holding subroutine return addr */ int regSample2 = iMem++; /* Number of samples to acquire times 2 */ int regCount = iMem++; /* Number of rows in the table */ int regCount2 = iMem++; /* regCount*2 */ #endif int regCol = iMem++; /* Content of a column in analyzed table */ int regRec = iMem++; /* Register holding completed record */ int regTemp = iMem++; /* Temporary use register */ int regRowid = iMem++; /* Rowid for the inserted record */ int once = 1; /* One-time initialization */ v = sqlite3GetVdbe(pParse); if( v==0 || NEVER(pTab==0) ){ return; } if( pTab->tnum==0 ){ /* Do not gather statistics on views or virtual tables */ return; } if( memcmp(pTab->zName, "sqlite_", 7)==0 ){ /* Do not gather statistics on system tables */ return; } assert( sqlite3BtreeHoldsAllMutexes(db) ); iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 ); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, db->aDb[iDb].zName ) ){ return; } #endif /* Establish a read-lock on the table at the shared-cache level. */ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); iIdxCur = pParse->nTab++; sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int nCol; KeyInfo *pKey; int addrIfNot; /* address of OP_IfNot */ int *aChngAddr; /* Array of jump instruction addresses */ if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName)); nCol = pIdx->nColumn; pKey = sqlite3IndexKeyinfo(pParse, pIdx); if( iMem+1+(nCol*2)>pParse->nMem ){ pParse->nMem = iMem+1+(nCol*2); } aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*pIdx->nColumn); if( aChngAddr==0 ) continue; /* Open a cursor to the index to be analyzed. */ assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb, (char *)pKey, P4_KEYINFO_HANDOFF); VdbeComment((v, "%s", pIdx->zName)); /* Populate the register containing the index name. */ sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0); #ifdef SQLITE_ENABLE_STAT2 /* If this iteration of the loop is generating code to analyze the ** first index in the pTab->pIndex list, then register regLast has ** not been populated. In this case populate it now. */ if( once ){ once = 0; sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2, regSample2); sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount); sqlite3VdbeAddOp3(v, OP_Add, regCount, regCount, regCount2); /* Generate code for a subroutine that store the most recent sample ** in the sqlite_stat2 table */ shortJump = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 5, regRec, "aaaba", 0); VdbeComment((v, "begin stat2 write subroutine")); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regRowid); sqlite3VdbeAddOp2(v, OP_AddImm, regSampleno, 1); sqlite3VdbeAddOp2(v, OP_AddImm, regReady, -1); addrStoreStat2 = sqlite3VdbeAddOp2(v, OP_IfPos, regReady, shortJump+1); sqlite3VdbeAddOp1(v, OP_Return, regGosub); VdbeComment((v, "end stat2 write subroutine")); sqlite3VdbeJumpHere(v, shortJump); } /* Reset state registers */ sqlite3VdbeAddOp2(v, OP_Copy, regCount2, regNext); shortJump = sqlite3VdbeAddOp3(v, OP_Lt, regSample2, 0, regCount); sqlite3VdbeAddOp3(v, OP_Divide, regSample2, regCount, regNext); sqlite3VdbeJumpHere(v, shortJump); sqlite3VdbeAddOp2(v, OP_Integer, 0, regSampleno); sqlite3VdbeAddOp2(v, OP_Integer, 0, regSampleIdx); sqlite3VdbeAddOp2(v, OP_Integer, 0, regReady); #endif /* SQLITE_ENABLE_STAT2 */ /* The block of memory cells initialized here is used as follows. ** ** iMem: ** The total number of rows in the table. ** ** iMem+1 .. iMem+nCol: ** Number of distinct entries in index considering the ** left-most N columns only, where N is between 1 and nCol, ** inclusive. ** ** iMem+nCol+1 .. Mem+2*nCol: ** Previous value of indexed columns, from left to right. ** ** Cells iMem through iMem+nCol are initialized to 0. The others are ** initialized to contain an SQL NULL. */ for(i=0; i<=nCol; i++){ sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i); } for(i=0; iazColl!=0 ); assert( pIdx->azColl[i]!=0 ); pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); aChngAddr[i] = sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1, (char*)pColl, P4_COLLSEQ); sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); VdbeComment((v, "jump if column %d changed", i)); #ifdef SQLITE_ENABLE_STAT2 if( i==0 && addrStoreStat2 ){ sqlite3VdbeAddOp2(v, OP_AddImm, regSampleCnt, 1); VdbeComment((v, "incr repeat count")); } #endif } sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop); for(i=0; i0 then it is always the case the D>0 so division by zero ** is never possible. */ sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno); if( jZeroRows<0 ){ jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem); } for(i=0; ipIndex==0 ){ sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb); VdbeComment((v, "%s", pTab->zName)); sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regSampleno); sqlite3VdbeAddOp1(v, OP_Close, iIdxCur); jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regSampleno); }else{ sqlite3VdbeJumpHere(v, jZeroRows); jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto); } sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); if( pParse->nMemnMem = regRec; sqlite3VdbeJumpHere(v, jZeroRows); } /* ** Generate code that will cause the most recent index analysis to ** be loaded into internal hash tables where is can be used. */ static void loadAnalysis(Parse *pParse, int iDb){ Vdbe *v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); } } /* ** Generate code that will do an analysis of an entire database */ static void analyzeDatabase(Parse *pParse, int iDb){ sqlite3 *db = pParse->db; Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ HashElem *k; int iStatCur; int iMem; sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; pParse->nTab += 2; openStatTable(pParse, iDb, iStatCur, 0, 0); iMem = pParse->nMem+1; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ Table *pTab = (Table*)sqliteHashData(k); analyzeOneTable(pParse, pTab, 0, iStatCur, iMem); } loadAnalysis(pParse, iDb); } /* ** Generate code that will do an analysis of a single table in ** a database. If pOnlyIdx is not NULL then it is a single index ** in pTab that should be analyzed. */ static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ int iDb; int iStatCur; assert( pTab!=0 ); assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; pParse->nTab += 2; if( pOnlyIdx ){ openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); }else{ openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); } analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1); loadAnalysis(pParse, iDb); } /* ** Generate code for the ANALYZE command. The parser calls this routine ** when it recognizes an ANALYZE command. ** ** ANALYZE -- 1 ** ANALYZE -- 2 ** ANALYZE ?.? -- 3 ** ** Form 1 causes all indices in all attached databases to be analyzed. ** Form 2 analyzes all indices the single database named. ** Form 3 analyzes all indices associated with the named table. */ void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ sqlite3 *db = pParse->db; int iDb; int i; char *z, *zDb; Table *pTab; Index *pIdx; Token *pTableName; /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ return; } assert( pName2!=0 || pName1==0 ); if( pName1==0 ){ /* Form 1: Analyze everything */ for(i=0; inDb; i++){ if( i==1 ) continue; /* Do not analyze the TEMP database */ analyzeDatabase(pParse, i); } }else if( pName2->n==0 ){ /* Form 2: Analyze the database or table named */ iDb = sqlite3FindDb(db, pName1); if( iDb>=0 ){ analyzeDatabase(pParse, iDb); }else{ z = sqlite3NameFromToken(db, pName1); if( z ){ if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){ analyzeTable(pParse, pIdx->pTable, pIdx); }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){ analyzeTable(pParse, pTab, 0); } sqlite3DbFree(db, z); } } }else{ /* Form 3: Analyze the fully qualified table name */ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); if( iDb>=0 ){ zDb = db->aDb[iDb].zName; z = sqlite3NameFromToken(db, pTableName); if( z ){ if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ analyzeTable(pParse, pIdx->pTable, pIdx); }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ analyzeTable(pParse, pTab, 0); } sqlite3DbFree(db, z); } } } } /* ** Used to pass information from the analyzer reader through to the ** callback routine. */ typedef struct analysisInfo analysisInfo; struct analysisInfo { sqlite3 *db; const char *zDatabase; }; /* ** This callback is invoked once for each index when reading the ** sqlite_stat1 table. ** ** argv[0] = name of the table ** argv[1] = name of the index (might be NULL) ** argv[2] = results of analysis - on integer for each column ** ** Entries for which argv[1]==NULL simply record the number of rows in ** the table. */ static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ analysisInfo *pInfo = (analysisInfo*)pData; Index *pIndex; Table *pTable; int i, c, n; unsigned int v; const char *z; assert( argc==3 ); UNUSED_PARAMETER2(NotUsed, argc); if( argv==0 || argv[0]==0 || argv[2]==0 ){ return 0; } pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); if( pTable==0 ){ return 0; } if( argv[1] ){ pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); }else{ pIndex = 0; } n = pIndex ? pIndex->nColumn : 0; z = argv[2]; for(i=0; *z && i<=n; i++){ v = 0; while( (c=z[0])>='0' && c<='9' ){ v = v*10 + c - '0'; z++; } if( i==0 ) pTable->nRowEst = v; if( pIndex==0 ) break; pIndex->aiRowEst[i] = v; if( *z==' ' ) z++; if( memcmp(z, "unordered", 10)==0 ){ pIndex->bUnordered = 1; break; } } return 0; } /* ** If the Index.aSample variable is not NULL, delete the aSample[] array ** and its contents. */ void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ #ifdef SQLITE_ENABLE_STAT2 if( pIdx->aSample ){ int j; for(j=0; jaSample[j]; if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){ sqlite3DbFree(db, p->u.z); } } sqlite3DbFree(db, pIdx->aSample); } #else UNUSED_PARAMETER(db); UNUSED_PARAMETER(pIdx); #endif } /* ** Load the content of the sqlite_stat1 and sqlite_stat2 tables. The ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] ** arrays. The contents of sqlite_stat2 are used to populate the ** Index.aSample[] arrays. ** ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR ** is returned. In this case, even if SQLITE_ENABLE_STAT2 was defined ** during compilation and the sqlite_stat2 table is present, no data is ** read from it. ** ** If SQLITE_ENABLE_STAT2 was defined during compilation and the ** sqlite_stat2 table is not present in the database, SQLITE_ERROR is ** returned. However, in this case, data is read from the sqlite_stat1 ** table (if it is present) before returning. ** ** If an OOM error occurs, this function always sets db->mallocFailed. ** This means if the caller does not care about other errors, the return ** code may be ignored. */ int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ analysisInfo sInfo; HashElem *i; char *zSql; int rc; assert( iDb>=0 && iDbnDb ); assert( db->aDb[iDb].pBt!=0 ); /* Clear any prior statistics */ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); sqlite3DefaultRowEst(pIdx); sqlite3DeleteIndexSamples(db, pIdx); pIdx->aSample = 0; } /* Check to make sure the sqlite_stat1 table exists */ sInfo.db = db; sInfo.zDatabase = db->aDb[iDb].zName; if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ return SQLITE_ERROR; } /* Load new statistics out of the sqlite_stat1 table */ zSql = sqlite3MPrintf(db, "SELECT tbl, idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); sqlite3DbFree(db, zSql); } /* Load the statistics from the sqlite_stat2 table. */ #ifdef SQLITE_ENABLE_STAT2 if( rc==SQLITE_OK && !sqlite3FindTable(db, "sqlite_stat2", sInfo.zDatabase) ){ rc = SQLITE_ERROR; } if( rc==SQLITE_OK ){ sqlite3_stmt *pStmt = 0; zSql = sqlite3MPrintf(db, "SELECT idx,sampleno,sample FROM %Q.sqlite_stat2", sInfo.zDatabase); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); sqlite3DbFree(db, zSql); } if( rc==SQLITE_OK ){ while( sqlite3_step(pStmt)==SQLITE_ROW ){ char *zIndex; /* Index name */ Index *pIdx; /* Pointer to the index object */ zIndex = (char *)sqlite3_column_text(pStmt, 0); pIdx = zIndex ? sqlite3FindIndex(db, zIndex, sInfo.zDatabase) : 0; if( pIdx ){ int iSample = sqlite3_column_int(pStmt, 1); if( iSample=0 ){ int eType = sqlite3_column_type(pStmt, 2); if( pIdx->aSample==0 ){ static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES; pIdx->aSample = (IndexSample *)sqlite3DbMallocRaw(0, sz); if( pIdx->aSample==0 ){ db->mallocFailed = 1; break; } memset(pIdx->aSample, 0, sz); } assert( pIdx->aSample ); { IndexSample *pSample = &pIdx->aSample[iSample]; pSample->eType = (u8)eType; if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ pSample->u.r = sqlite3_column_double(pStmt, 2); }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ const char *z = (const char *)( (eType==SQLITE_BLOB) ? sqlite3_column_blob(pStmt, 2): sqlite3_column_text(pStmt, 2) ); int n = sqlite3_column_bytes(pStmt, 2); if( n>24 ){ n = 24; } pSample->nByte = (u8)n; if( n < 1){ pSample->u.z = 0; }else{ pSample->u.z = sqlite3DbStrNDup(0, z, n); if( pSample->u.z==0 ){ db->mallocFailed = 1; break; } } } } } } } rc = sqlite3_finalize(pStmt); } } #endif if( rc==SQLITE_NOMEM ){ db->mallocFailed = 1; } return rc; } #endif /* SQLITE_OMIT_ANALYZE */