/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code for implementations of the r-tree and r*-tree ** algorithms packaged as an SQLite virtual table module. ** ** $Id: rtree.c,v 1.14 2009/08/06 18:36:47 danielk1977 Exp $ */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE) /* ** This file contains an implementation of a couple of different variants ** of the r-tree algorithm. See the README file for further details. The ** same data-structure is used for all, but the algorithms for insert and ** delete operations vary. The variants used are selected at compile time ** by defining the following symbols: */ /* Either, both or none of the following may be set to activate ** r*tree variant algorithms. */ #define VARIANT_RSTARTREE_CHOOSESUBTREE 0 #define VARIANT_RSTARTREE_REINSERT 1 /* ** Exactly one of the following must be set to 1. */ #define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0 #define VARIANT_GUTTMAN_LINEAR_SPLIT 0 #define VARIANT_RSTARTREE_SPLIT 1 #define VARIANT_GUTTMAN_SPLIT \ (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT) #if VARIANT_GUTTMAN_QUADRATIC_SPLIT #define PickNext QuadraticPickNext #define PickSeeds QuadraticPickSeeds #define AssignCells splitNodeGuttman #endif #if VARIANT_GUTTMAN_LINEAR_SPLIT #define PickNext LinearPickNext #define PickSeeds LinearPickSeeds #define AssignCells splitNodeGuttman #endif #if VARIANT_RSTARTREE_SPLIT #define AssignCells splitNodeStartree #endif #ifndef SQLITE_CORE #include "sqlite3ext.h" SQLITE_EXTENSION_INIT1 #else #include "sqlite3.h" #endif #include #include #ifndef SQLITE_AMALGAMATION typedef sqlite3_int64 i64; typedef unsigned char u8; typedef unsigned int u32; #endif typedef struct Rtree Rtree; typedef struct RtreeCursor RtreeCursor; typedef struct RtreeNode RtreeNode; typedef struct RtreeCell RtreeCell; typedef struct RtreeConstraint RtreeConstraint; typedef union RtreeCoord RtreeCoord; /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ #define RTREE_MAX_DIMENSIONS 5 /* Size of hash table Rtree.aHash. This hash table is not expected to ** ever contain very many entries, so a fixed number of buckets is ** used. */ #define HASHSIZE 128 /* ** An rtree virtual-table object. */ struct Rtree { sqlite3_vtab base; sqlite3 *db; /* Host database connection */ int iNodeSize; /* Size in bytes of each node in the node table */ int nDim; /* Number of dimensions */ int nBytesPerCell; /* Bytes consumed per cell */ int iDepth; /* Current depth of the r-tree structure */ char *zDb; /* Name of database containing r-tree table */ char *zName; /* Name of r-tree table */ RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ int nBusy; /* Current number of users of this structure */ /* List of nodes removed during a CondenseTree operation. List is ** linked together via the pointer normally used for hash chains - ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree ** headed by the node (leaf nodes have RtreeNode.iNode==0). */ RtreeNode *pDeleted; int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ /* Statements to read/write/delete a record from xxx_node */ sqlite3_stmt *pReadNode; sqlite3_stmt *pWriteNode; sqlite3_stmt *pDeleteNode; /* Statements to read/write/delete a record from xxx_rowid */ sqlite3_stmt *pReadRowid; sqlite3_stmt *pWriteRowid; sqlite3_stmt *pDeleteRowid; /* Statements to read/write/delete a record from xxx_parent */ sqlite3_stmt *pReadParent; sqlite3_stmt *pWriteParent; sqlite3_stmt *pDeleteParent; int eCoordType; }; /* Possible values for eCoordType: */ #define RTREE_COORD_REAL32 0 #define RTREE_COORD_INT32 1 /* ** The minimum number of cells allowed for a node is a third of the ** maximum. In Gutman's notation: ** ** m = M/3 ** ** If an R*-tree "Reinsert" operation is required, the same number of ** cells are removed from the overfull node and reinserted into the tree. */ #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) #define RTREE_REINSERT(p) RTREE_MINCELLS(p) #define RTREE_MAXCELLS 51 /* ** An rtree cursor object. */ struct RtreeCursor { sqlite3_vtab_cursor base; RtreeNode *pNode; /* Node cursor is currently pointing at */ int iCell; /* Index of current cell in pNode */ int iStrategy; /* Copy of idxNum search parameter */ int nConstraint; /* Number of entries in aConstraint */ RtreeConstraint *aConstraint; /* Search constraints. */ }; union RtreeCoord { float f; int i; }; /* ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord ** formatted as a double. This macro assumes that local variable pRtree points ** to the Rtree structure associated with the RtreeCoord. */ #define DCOORD(coord) ( \ (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ ((double)coord.f) : \ ((double)coord.i) \ ) /* ** A search constraint. */ struct RtreeConstraint { int iCoord; /* Index of constrained coordinate */ int op; /* Constraining operation */ double rValue; /* Constraint value. */ }; /* Possible values for RtreeConstraint.op */ #define RTREE_EQ 0x41 #define RTREE_LE 0x42 #define RTREE_LT 0x43 #define RTREE_GE 0x44 #define RTREE_GT 0x45 /* ** An rtree structure node. ** ** Data format (RtreeNode.zData): ** ** 1. If the node is the root node (node 1), then the first 2 bytes ** of the node contain the tree depth as a big-endian integer. ** For non-root nodes, the first 2 bytes are left unused. ** ** 2. The next 2 bytes contain the number of entries currently ** stored in the node. ** ** 3. The remainder of the node contains the node entries. Each entry ** consists of a single 8-byte integer followed by an even number ** of 4-byte coordinates. For leaf nodes the integer is the rowid ** of a record. For internal nodes it is the node number of a ** child page. */ struct RtreeNode { RtreeNode *pParent; /* Parent node */ i64 iNode; int nRef; int isDirty; u8 *zData; RtreeNode *pNext; /* Next node in this hash chain */ }; #define NCELL(pNode) readInt16(&(pNode)->zData[2]) /* ** Structure to store a deserialized rtree record. */ struct RtreeCell { i64 iRowid; RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; }; #ifndef MAX # define MAX(x,y) ((x) < (y) ? (y) : (x)) #endif #ifndef MIN # define MIN(x,y) ((x) > (y) ? (y) : (x)) #endif /* ** Functions to deserialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The deserialized value is returned. */ static int readInt16(u8 *p){ return (p[0]<<8) + p[1]; } static void readCoord(u8 *p, RtreeCoord *pCoord){ u32 i = ( (((u32)p[0]) << 24) + (((u32)p[1]) << 16) + (((u32)p[2]) << 8) + (((u32)p[3]) << 0) ); *(u32 *)pCoord = i; } static i64 readInt64(u8 *p){ return ( (((i64)p[0]) << 56) + (((i64)p[1]) << 48) + (((i64)p[2]) << 40) + (((i64)p[3]) << 32) + (((i64)p[4]) << 24) + (((i64)p[5]) << 16) + (((i64)p[6]) << 8) + (((i64)p[7]) << 0) ); } /* ** Functions to serialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The value returned is the number of bytes written ** to the argument buffer (always 2, 4 and 8 respectively). */ static int writeInt16(u8 *p, int i){ p[0] = (i>> 8)&0xFF; p[1] = (i>> 0)&0xFF; return 2; } static int writeCoord(u8 *p, RtreeCoord *pCoord){ u32 i; assert( sizeof(RtreeCoord)==4 ); assert( sizeof(u32)==4 ); i = *(u32 *)pCoord; p[0] = (i>>24)&0xFF; p[1] = (i>>16)&0xFF; p[2] = (i>> 8)&0xFF; p[3] = (i>> 0)&0xFF; return 4; } static int writeInt64(u8 *p, i64 i){ p[0] = (i>>56)&0xFF; p[1] = (i>>48)&0xFF; p[2] = (i>>40)&0xFF; p[3] = (i>>32)&0xFF; p[4] = (i>>24)&0xFF; p[5] = (i>>16)&0xFF; p[6] = (i>> 8)&0xFF; p[7] = (i>> 0)&0xFF; return 8; } /* ** Increment the reference count of node p. */ static void nodeReference(RtreeNode *p){ if( p ){ p->nRef++; } } /* ** Clear the content of node p (set all bytes to 0x00). */ static void nodeZero(Rtree *pRtree, RtreeNode *p){ if( p ){ memset(&p->zData[2], 0, pRtree->iNodeSize-2); p->isDirty = 1; } } /* ** Given a node number iNode, return the corresponding key to use ** in the Rtree.aHash table. */ static int nodeHash(i64 iNode){ return ( (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^ (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0) ) % HASHSIZE; } /* ** Search the node hash table for node iNode. If found, return a pointer ** to it. Otherwise, return 0. */ static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ RtreeNode *p; assert( iNode!=0 ); for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); return p; } /* ** Add node pNode to the node hash table. */ static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ if( pNode ){ int iHash; assert( pNode->pNext==0 ); iHash = nodeHash(pNode->iNode); pNode->pNext = pRtree->aHash[iHash]; pRtree->aHash[iHash] = pNode; } } /* ** Remove node pNode from the node hash table. */ static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ RtreeNode **pp; if( pNode->iNode!=0 ){ pp = &pRtree->aHash[nodeHash(pNode->iNode)]; for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } *pp = pNode->pNext; pNode->pNext = 0; } } /* ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), ** indicating that node has not yet been assigned a node number. It is ** assigned a node number when nodeWrite() is called to write the ** node contents out to the database. */ static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent, int zero){ RtreeNode *pNode; pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); if( pNode ){ memset(pNode, 0, sizeof(RtreeNode) + (zero?pRtree->iNodeSize:0)); pNode->zData = (u8 *)&pNode[1]; pNode->nRef = 1; pNode->pParent = pParent; pNode->isDirty = 1; nodeReference(pParent); } return pNode; } /* ** Obtain a reference to an r-tree node. */ static int nodeAcquire( Rtree *pRtree, /* R-tree structure */ i64 iNode, /* Node number to load */ RtreeNode *pParent, /* Either the parent node or NULL */ RtreeNode **ppNode /* OUT: Acquired node */ ){ int rc; RtreeNode *pNode; /* Check if the requested node is already in the hash table. If so, ** increase its reference count and return it. */ if( (pNode = nodeHashLookup(pRtree, iNode)) ){ assert( !pParent || !pNode->pParent || pNode->pParent==pParent ); if( pParent && !pNode->pParent ){ nodeReference(pParent); pNode->pParent = pParent; } pNode->nRef++; *ppNode = pNode; return SQLITE_OK; } pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); if( !pNode ){ *ppNode = 0; return SQLITE_NOMEM; } pNode->pParent = pParent; pNode->zData = (u8 *)&pNode[1]; pNode->nRef = 1; pNode->iNode = iNode; pNode->isDirty = 0; pNode->pNext = 0; sqlite3_bind_int64(pRtree->pReadNode, 1, iNode); rc = sqlite3_step(pRtree->pReadNode); if( rc==SQLITE_ROW ){ const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0); memcpy(pNode->zData, zBlob, pRtree->iNodeSize); nodeReference(pParent); }else{ sqlite3_free(pNode); pNode = 0; } *ppNode = pNode; rc = sqlite3_reset(pRtree->pReadNode); if( rc==SQLITE_OK && iNode==1 ){ pRtree->iDepth = readInt16(pNode->zData); } assert( (rc==SQLITE_OK && pNode) || (pNode==0 && rc!=SQLITE_OK) ); nodeHashInsert(pRtree, pNode); return rc; } /* ** Overwrite cell iCell of node pNode with the contents of pCell. */ static void nodeOverwriteCell( Rtree *pRtree, RtreeNode *pNode, RtreeCell *pCell, int iCell ){ int ii; u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; p += writeInt64(p, pCell->iRowid); for(ii=0; ii<(pRtree->nDim*2); ii++){ p += writeCoord(p, &pCell->aCoord[ii]); } pNode->isDirty = 1; } /* ** Remove cell the cell with index iCell from node pNode. */ static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; u8 *pSrc = &pDst[pRtree->nBytesPerCell]; int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; memmove(pDst, pSrc, nByte); writeInt16(&pNode->zData[2], NCELL(pNode)-1); pNode->isDirty = 1; } /* ** Insert the contents of cell pCell into node pNode. If the insert ** is successful, return SQLITE_OK. ** ** If there is not enough free space in pNode, return SQLITE_FULL. */ static int nodeInsertCell( Rtree *pRtree, RtreeNode *pNode, RtreeCell *pCell ){ int nCell; /* Current number of cells in pNode */ int nMaxCell; /* Maximum number of cells for pNode */ nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; nCell = NCELL(pNode); assert(nCell<=nMaxCell); if( nCellzData[2], nCell+1); pNode->isDirty = 1; } return (nCell==nMaxCell); } /* ** If the node is dirty, write it out to the database. */ static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){ int rc = SQLITE_OK; if( pNode->isDirty ){ sqlite3_stmt *p = pRtree->pWriteNode; if( pNode->iNode ){ sqlite3_bind_int64(p, 1, pNode->iNode); }else{ sqlite3_bind_null(p, 1); } sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); sqlite3_step(p); pNode->isDirty = 0; rc = sqlite3_reset(p); if( pNode->iNode==0 && rc==SQLITE_OK ){ pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); nodeHashInsert(pRtree, pNode); } } return rc; } /* ** Release a reference to a node. If the node is dirty and the reference ** count drops to zero, the node data is written to the database. */ static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ int rc = SQLITE_OK; if( pNode ){ assert( pNode->nRef>0 ); pNode->nRef--; if( pNode->nRef==0 ){ if( pNode->iNode==1 ){ pRtree->iDepth = -1; } if( pNode->pParent ){ rc = nodeRelease(pRtree, pNode->pParent); } if( rc==SQLITE_OK ){ rc = nodeWrite(pRtree, pNode); } nodeHashDelete(pRtree, pNode); sqlite3_free(pNode); } } return rc; } /* ** Return the 64-bit integer value associated with cell iCell of ** node pNode. If pNode is a leaf node, this is a rowid. If it is ** an internal node, then the 64-bit integer is a child page number. */ static i64 nodeGetRowid( Rtree *pRtree, RtreeNode *pNode, int iCell ){ assert( iCellzData[4 + pRtree->nBytesPerCell*iCell]); } /* ** Return coordinate iCoord from cell iCell in node pNode. */ static void nodeGetCoord( Rtree *pRtree, RtreeNode *pNode, int iCell, int iCoord, RtreeCoord *pCoord /* Space to write result to */ ){ readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); } /* ** Deserialize cell iCell of node pNode. Populate the structure pointed ** to by pCell with the results. */ static void nodeGetCell( Rtree *pRtree, RtreeNode *pNode, int iCell, RtreeCell *pCell ){ int ii; pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); for(ii=0; iinDim*2; ii++){ nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]); } } /* Forward declaration for the function that does the work of ** the virtual table module xCreate() and xConnect() methods. */ static int rtreeInit( sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int ); /* ** Rtree virtual table module xCreate method. */ static int rtreeCreate( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); } /* ** Rtree virtual table module xConnect method. */ static int rtreeConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); } /* ** Increment the r-tree reference count. */ static void rtreeReference(Rtree *pRtree){ pRtree->nBusy++; } /* ** Decrement the r-tree reference count. When the reference count reaches ** zero the structure is deleted. */ static void rtreeRelease(Rtree *pRtree){ pRtree->nBusy--; if( pRtree->nBusy==0 ){ sqlite3_finalize(pRtree->pReadNode); sqlite3_finalize(pRtree->pWriteNode); sqlite3_finalize(pRtree->pDeleteNode); sqlite3_finalize(pRtree->pReadRowid); sqlite3_finalize(pRtree->pWriteRowid); sqlite3_finalize(pRtree->pDeleteRowid); sqlite3_finalize(pRtree->pReadParent); sqlite3_finalize(pRtree->pWriteParent); sqlite3_finalize(pRtree->pDeleteParent); sqlite3_free(pRtree); } } /* ** Rtree virtual table module xDisconnect method. */ static int rtreeDisconnect(sqlite3_vtab *pVtab){ rtreeRelease((Rtree *)pVtab); return SQLITE_OK; } /* ** Rtree virtual table module xDestroy method. */ static int rtreeDestroy(sqlite3_vtab *pVtab){ Rtree *pRtree = (Rtree *)pVtab; int rc; char *zCreate = sqlite3_mprintf( "DROP TABLE '%q'.'%q_node';" "DROP TABLE '%q'.'%q_rowid';" "DROP TABLE '%q'.'%q_parent';", pRtree->zDb, pRtree->zName, pRtree->zDb, pRtree->zName, pRtree->zDb, pRtree->zName ); if( !zCreate ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); sqlite3_free(zCreate); } if( rc==SQLITE_OK ){ rtreeRelease(pRtree); } return rc; } /* ** Rtree virtual table module xOpen method. */ static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ int rc = SQLITE_NOMEM; RtreeCursor *pCsr; pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor)); if( pCsr ){ memset(pCsr, 0, sizeof(RtreeCursor)); pCsr->base.pVtab = pVTab; rc = SQLITE_OK; } *ppCursor = (sqlite3_vtab_cursor *)pCsr; return rc; } /* ** Rtree virtual table module xClose method. */ static int rtreeClose(sqlite3_vtab_cursor *cur){ Rtree *pRtree = (Rtree *)(cur->pVtab); int rc; RtreeCursor *pCsr = (RtreeCursor *)cur; sqlite3_free(pCsr->aConstraint); rc = nodeRelease(pRtree, pCsr->pNode); sqlite3_free(pCsr); return rc; } /* ** Rtree virtual table module xEof method. ** ** Return non-zero if the cursor does not currently point to a valid ** record (i.e if the scan has finished), or zero otherwise. */ static int rtreeEof(sqlite3_vtab_cursor *cur){ RtreeCursor *pCsr = (RtreeCursor *)cur; return (pCsr->pNode==0); } /* ** Cursor pCursor currently points to a cell in a non-leaf page. ** Return true if the sub-tree headed by the cell is filtered ** (excluded) by the constraints in the pCursor->aConstraint[] ** array, or false otherwise. */ static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor){ RtreeCell cell; int ii; int bRes = 0; nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); for(ii=0; bRes==0 && iinConstraint; ii++){ RtreeConstraint *p = &pCursor->aConstraint[ii]; double cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]); double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]); assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ ); switch( p->op ){ case RTREE_LE: case RTREE_LT: bRes = p->rValuerValue>cell_max; break; case RTREE_EQ: bRes = (p->rValue>cell_max || p->rValueaConstraint[] array, or false otherwise. ** ** This function assumes that the cell is part of a leaf node. */ static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor){ RtreeCell cell; int ii; nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); for(ii=0; iinConstraint; ii++){ RtreeConstraint *p = &pCursor->aConstraint[ii]; double coord = DCOORD(cell.aCoord[p->iCoord]); int res; assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ ); switch( p->op ){ case RTREE_LE: res = (coord<=p->rValue); break; case RTREE_LT: res = (coordrValue); break; case RTREE_GE: res = (coord>=p->rValue); break; case RTREE_GT: res = (coord>p->rValue); break; case RTREE_EQ: res = (coord==p->rValue); break; } if( !res ) return 1; } return 0; } /* ** Cursor pCursor currently points at a node that heads a sub-tree of ** height iHeight (if iHeight==0, then the node is a leaf). Descend ** to point to the left-most cell of the sub-tree that matches the ** configured constraints. */ static int descendToCell( Rtree *pRtree, RtreeCursor *pCursor, int iHeight, int *pEof /* OUT: Set to true if cannot descend */ ){ int isEof; int rc; int ii; RtreeNode *pChild; sqlite3_int64 iRowid; RtreeNode *pSavedNode = pCursor->pNode; int iSavedCell = pCursor->iCell; assert( iHeight>=0 ); if( iHeight==0 ){ isEof = testRtreeEntry(pRtree, pCursor); }else{ isEof = testRtreeCell(pRtree, pCursor); } if( isEof || iHeight==0 ){ *pEof = isEof; return SQLITE_OK; } iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell); rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild); if( rc!=SQLITE_OK ){ return rc; } nodeRelease(pRtree, pCursor->pNode); pCursor->pNode = pChild; isEof = 1; for(ii=0; isEof && iiiCell = ii; rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof); if( rc!=SQLITE_OK ){ return rc; } } if( isEof ){ assert( pCursor->pNode==pChild ); nodeReference(pSavedNode); nodeRelease(pRtree, pChild); pCursor->pNode = pSavedNode; pCursor->iCell = iSavedCell; } *pEof = isEof; return SQLITE_OK; } /* ** One of the cells in node pNode is guaranteed to have a 64-bit ** integer value equal to iRowid. Return the index of this cell. */ static int nodeRowidIndex(Rtree *pRtree, RtreeNode *pNode, i64 iRowid){ int ii; for(ii=0; nodeGetRowid(pRtree, pNode, ii)!=iRowid; ii++){ assert( ii<(NCELL(pNode)-1) ); } return ii; } /* ** Return the index of the cell containing a pointer to node pNode ** in its parent. If pNode is the root node, return -1. */ static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode){ RtreeNode *pParent = pNode->pParent; if( pParent ){ return nodeRowidIndex(pRtree, pParent, pNode->iNode); } return -1; } /* ** Rtree virtual table module xNext method. */ static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab); RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; int rc = SQLITE_OK; if( pCsr->iStrategy==1 ){ /* This "scan" is a direct lookup by rowid. There is no next entry. */ nodeRelease(pRtree, pCsr->pNode); pCsr->pNode = 0; } else if( pCsr->pNode ){ /* Move to the next entry that matches the configured constraints. */ int iHeight = 0; while( pCsr->pNode ){ RtreeNode *pNode = pCsr->pNode; int nCell = NCELL(pNode); for(pCsr->iCell++; pCsr->iCelliCell++){ int isEof; rc = descendToCell(pRtree, pCsr, iHeight, &isEof); if( rc!=SQLITE_OK || !isEof ){ return rc; } } pCsr->pNode = pNode->pParent; pCsr->iCell = nodeParentIndex(pRtree, pNode); nodeReference(pCsr->pNode); nodeRelease(pRtree, pNode); iHeight++; } } return rc; } /* ** Rtree virtual table module xRowid method. */ static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; assert(pCsr->pNode); *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); return SQLITE_OK; } /* ** Rtree virtual table module xColumn method. */ static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ Rtree *pRtree = (Rtree *)cur->pVtab; RtreeCursor *pCsr = (RtreeCursor *)cur; if( i==0 ){ i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); sqlite3_result_int64(ctx, iRowid); }else{ RtreeCoord c; nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c); if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ sqlite3_result_double(ctx, c.f); }else{ assert( pRtree->eCoordType==RTREE_COORD_INT32 ); sqlite3_result_int(ctx, c.i); } } return SQLITE_OK; } /* ** Use nodeAcquire() to obtain the leaf node containing the record with ** rowid iRowid. If successful, set *ppLeaf to point to the node and ** return SQLITE_OK. If there is no such record in the table, set ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf ** to zero and return an SQLite error code. */ static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){ int rc; *ppLeaf = 0; sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); sqlite3_reset(pRtree->pReadRowid); }else{ rc = sqlite3_reset(pRtree->pReadRowid); } return rc; } /* ** Rtree virtual table module xFilter method. */ static int rtreeFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; RtreeNode *pRoot = 0; int ii; int rc = SQLITE_OK; rtreeReference(pRtree); sqlite3_free(pCsr->aConstraint); pCsr->aConstraint = 0; pCsr->iStrategy = idxNum; if( idxNum==1 ){ /* Special case - lookup by rowid. */ RtreeNode *pLeaf; /* Leaf on which the required cell resides */ i64 iRowid = sqlite3_value_int64(argv[0]); rc = findLeafNode(pRtree, iRowid, &pLeaf); pCsr->pNode = pLeaf; if( pLeaf && rc==SQLITE_OK ){ pCsr->iCell = nodeRowidIndex(pRtree, pLeaf, iRowid); } }else{ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array ** with the configured constraints. */ if( argc>0 ){ pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); pCsr->nConstraint = argc; if( !pCsr->aConstraint ){ rc = SQLITE_NOMEM; }else{ assert( (idxStr==0 && argc==0) || strlen(idxStr)==argc*2 ); for(ii=0; iiaConstraint[ii]; p->op = idxStr[ii*2]; p->iCoord = idxStr[ii*2+1]-'a'; p->rValue = sqlite3_value_double(argv[ii]); } } } if( rc==SQLITE_OK ){ pCsr->pNode = 0; rc = nodeAcquire(pRtree, 1, 0, &pRoot); } if( rc==SQLITE_OK ){ int isEof = 1; int nCell = NCELL(pRoot); pCsr->pNode = pRoot; for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCelliCell++){ assert( pCsr->pNode==pRoot ); rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof); if( !isEof ){ break; } } if( rc==SQLITE_OK && isEof ){ assert( pCsr->pNode==pRoot ); nodeRelease(pRtree, pRoot); pCsr->pNode = 0; } assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCellpNode) ); } } rtreeRelease(pRtree); return rc; } /* ** Rtree virtual table module xBestIndex method. There are three ** table scan strategies to choose from (in order from most to ** least desirable): ** ** idxNum idxStr Strategy ** ------------------------------------------------ ** 1 Unused Direct lookup by rowid. ** 2 See below R-tree query. ** 3 Unused Full table scan. ** ------------------------------------------------ ** ** If strategy 1 or 3 is used, then idxStr is not meaningful. If strategy ** 2 is used, idxStr is formatted to contain 2 bytes for each ** constraint used. The first two bytes of idxStr correspond to ** the constraint in sqlite3_index_info.aConstraintUsage[] with ** (argvIndex==1) etc. ** ** The first of each pair of bytes in idxStr identifies the constraint ** operator as follows: ** ** Operator Byte Value ** ---------------------- ** = 0x41 ('A') ** <= 0x42 ('B') ** < 0x43 ('C') ** >= 0x44 ('D') ** > 0x45 ('E') ** ---------------------- ** ** The second of each pair of bytes identifies the coordinate column ** to which the constraint applies. The leftmost coordinate column ** is 'a', the second from the left 'b' etc. */ static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ int rc = SQLITE_OK; int ii, cCol; int iIdx = 0; char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; memset(zIdxStr, 0, sizeof(zIdxStr)); assert( pIdxInfo->idxStr==0 ); for(ii=0; iinConstraint; ii++){ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ /* We have an equality constraint on the rowid. Use strategy 1. */ int jj; for(jj=0; jjaConstraintUsage[jj].argvIndex = 0; pIdxInfo->aConstraintUsage[jj].omit = 0; } pIdxInfo->idxNum = 1; pIdxInfo->aConstraintUsage[ii].argvIndex = 1; pIdxInfo->aConstraintUsage[jj].omit = 1; /* This strategy involves a two rowid lookups on an B-Tree structures ** and then a linear search of an R-Tree node. This should be ** considered almost as quick as a direct rowid lookup (for which ** sqlite uses an internal cost of 0.0). */ pIdxInfo->estimatedCost = 10.0; return SQLITE_OK; } if( p->usable && p->iColumn>0 ){ u8 op = 0; switch( p->op ){ case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; } if( op ){ /* Make sure this particular constraint has not been used before. ** If it has been used before, ignore it. ** ** A <= or < can be used if there is a prior >= or >. ** A >= or > can be used if there is a prior < or <=. ** A <= or < is disqualified if there is a prior <=, <, or ==. ** A >= or > is disqualified if there is a prior >=, >, or ==. ** A == is disqualifed if there is any prior constraint. */ int j, opmsk; static const unsigned char compatible[] = { 0, 0, 1, 1, 2, 2 }; assert( compatible[RTREE_EQ & 7]==0 ); assert( compatible[RTREE_LT & 7]==1 ); assert( compatible[RTREE_LE & 7]==1 ); assert( compatible[RTREE_GT & 7]==2 ); assert( compatible[RTREE_GE & 7]==2 ); cCol = p->iColumn - 1 + 'a'; opmsk = compatible[op & 7]; for(j=0; jaConstraintUsage[ii].argvIndex = (iIdx/2); pIdxInfo->aConstraintUsage[ii].omit = 1; } } } pIdxInfo->idxNum = 2; pIdxInfo->needToFreeIdxStr = 1; if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ return SQLITE_NOMEM; } assert( iIdx>=0 ); pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1)); return rc; } /* ** Return the N-dimensional volumn of the cell stored in *p. */ static float cellArea(Rtree *pRtree, RtreeCell *p){ float area = 1.0; int ii; for(ii=0; ii<(pRtree->nDim*2); ii+=2){ area = area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); } return area; } /* ** Return the margin length of cell p. The margin length is the sum ** of the objects size in each dimension. */ static float cellMargin(Rtree *pRtree, RtreeCell *p){ float margin = 0.0; int ii; for(ii=0; ii<(pRtree->nDim*2); ii+=2){ margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); } return margin; } /* ** Store the union of cells p1 and p2 in p1. */ static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ int ii; if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ for(ii=0; ii<(pRtree->nDim*2); ii+=2){ p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f); p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f); } }else{ for(ii=0; ii<(pRtree->nDim*2); ii+=2){ p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i); p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i); } } } /* ** Return true if the area covered by p2 is a subset of the area covered ** by p1. False otherwise. */ static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ int ii; int isInt = (pRtree->eCoordType==RTREE_COORD_INT32); for(ii=0; ii<(pRtree->nDim*2); ii+=2){ RtreeCoord *a1 = &p1->aCoord[ii]; RtreeCoord *a2 = &p2->aCoord[ii]; if( (!isInt && (a2[0].fa1[1].f)) || ( isInt && (a2[0].ia1[1].i)) ){ return 0; } } return 1; } /* ** Return the amount cell p would grow by if it were unioned with pCell. */ static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ float area; RtreeCell cell; memcpy(&cell, p, sizeof(RtreeCell)); area = cellArea(pRtree, &cell); cellUnion(pRtree, &cell, pCell); return (cellArea(pRtree, &cell)-area); } #if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT static float cellOverlap( Rtree *pRtree, RtreeCell *p, RtreeCell *aCell, int nCell, int iExclude ){ int ii; float overlap = 0.0; for(ii=0; iinDim*2); jj+=2){ double x1; double x2; x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); if( x2iDepth-iHeight); ii++){ int iCell; sqlite3_int64 iBest; float fMinGrowth; float fMinArea; float fMinOverlap; int nCell = NCELL(pNode); RtreeCell cell; RtreeNode *pChild; RtreeCell *aCell = 0; #if VARIANT_RSTARTREE_CHOOSESUBTREE if( ii==(pRtree->iDepth-1) ){ int jj; aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell); if( !aCell ){ rc = SQLITE_NOMEM; nodeRelease(pRtree, pNode); pNode = 0; continue; } for(jj=0; jjiDepth-1) ){ overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell); } #endif if( (iCell==0) || (overlappParent ){ RtreeCell cell; RtreeNode *pParent = p->pParent; int iCell = nodeParentIndex(pRtree, p); nodeGetCell(pRtree, pParent, iCell, &cell); if( !cellContains(pRtree, &cell, pCell) ){ cellUnion(pRtree, &cell, pCell); nodeOverwriteCell(pRtree, pParent, &cell, iCell); } p = pParent; } } /* ** Write mapping (iRowid->iNode) to the _rowid table. */ static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); sqlite3_step(pRtree->pWriteRowid); return sqlite3_reset(pRtree->pWriteRowid); } /* ** Write mapping (iNode->iPar) to the _parent table. */ static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); sqlite3_step(pRtree->pWriteParent); return sqlite3_reset(pRtree->pWriteParent); } static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); #if VARIANT_GUTTMAN_LINEAR_SPLIT /* ** Implementation of the linear variant of the PickNext() function from ** Guttman[84]. */ static RtreeCell *LinearPickNext( Rtree *pRtree, RtreeCell *aCell, int nCell, RtreeCell *pLeftBox, RtreeCell *pRightBox, int *aiUsed ){ int ii; for(ii=0; aiUsed[ii]; ii++); aiUsed[ii] = 1; return &aCell[ii]; } /* ** Implementation of the linear variant of the PickSeeds() function from ** Guttman[84]. */ static void LinearPickSeeds( Rtree *pRtree, RtreeCell *aCell, int nCell, int *piLeftSeed, int *piRightSeed ){ int i; int iLeftSeed = 0; int iRightSeed = 1; float maxNormalInnerWidth = 0.0; /* Pick two "seed" cells from the array of cells. The algorithm used ** here is the LinearPickSeeds algorithm from Gutman[1984]. The ** indices of the two seed cells in the array are stored in local ** variables iLeftSeek and iRightSeed. */ for(i=0; inDim; i++){ float x1 = aCell[0].aCoord[i*2]; float x2 = aCell[0].aCoord[i*2+1]; float x3 = x1; float x4 = x2; int jj; int iCellLeft = 0; int iCellRight = 0; for(jj=1; jjx4 ) x4 = right; if( left>x3 ){ x3 = left; iCellRight = jj; } if( rightmaxNormalInnerWidth ){ iLeftSeed = iCellLeft; iRightSeed = iCellRight; } } } *piLeftSeed = iLeftSeed; *piRightSeed = iRightSeed; } #endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */ #if VARIANT_GUTTMAN_QUADRATIC_SPLIT /* ** Implementation of the quadratic variant of the PickNext() function from ** Guttman[84]. */ static RtreeCell *QuadraticPickNext( Rtree *pRtree, RtreeCell *aCell, int nCell, RtreeCell *pLeftBox, RtreeCell *pRightBox, int *aiUsed ){ #define FABS(a) ((a)<0.0?-1.0*(a):(a)) int iSelect = -1; float fDiff; int ii; for(ii=0; iifDiff ){ fDiff = diff; iSelect = ii; } } } aiUsed[iSelect] = 1; return &aCell[iSelect]; } /* ** Implementation of the quadratic variant of the PickSeeds() function from ** Guttman[84]. */ static void QuadraticPickSeeds( Rtree *pRtree, RtreeCell *aCell, int nCell, int *piLeftSeed, int *piRightSeed ){ int ii; int jj; int iLeftSeed = 0; int iRightSeed = 1; float fWaste = 0.0; for(ii=0; iifWaste ){ iLeftSeed = ii; iRightSeed = jj; fWaste = waste; } } } *piLeftSeed = iLeftSeed; *piRightSeed = iRightSeed; } #endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */ /* ** Arguments aIdx, aDistance and aSpare all point to arrays of size ** nIdx. The aIdx array contains the set of integers from 0 to ** (nIdx-1) in no particular order. This function sorts the values ** in aIdx according to the indexed values in aDistance. For ** example, assuming the inputs: ** ** aIdx = { 0, 1, 2, 3 } ** aDistance = { 5.0, 2.0, 7.0, 6.0 } ** ** this function sets the aIdx array to contain: ** ** aIdx = { 0, 1, 2, 3 } ** ** The aSpare array is used as temporary working space by the ** sorting algorithm. */ static void SortByDistance( int *aIdx, int nIdx, float *aDistance, int *aSpare ){ if( nIdx>1 ){ int iLeft = 0; int iRight = 0; int nLeft = nIdx/2; int nRight = nIdx-nLeft; int *aLeft = aIdx; int *aRight = &aIdx[nLeft]; SortByDistance(aLeft, nLeft, aDistance, aSpare); SortByDistance(aRight, nRight, aDistance, aSpare); memcpy(aSpare, aLeft, sizeof(int)*nLeft); aLeft = aSpare; while( iLeft1 ){ int iLeft = 0; int iRight = 0; int nLeft = nIdx/2; int nRight = nIdx-nLeft; int *aLeft = aIdx; int *aRight = &aIdx[nLeft]; SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); memcpy(aSpare, aLeft, sizeof(int)*nLeft); aLeft = aSpare; while( iLeftnDim+1)*(sizeof(int*)+nCell*sizeof(int)); aaSorted = (int **)sqlite3_malloc(nByte); if( !aaSorted ){ return SQLITE_NOMEM; } aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; memset(aaSorted, 0, nByte); for(ii=0; iinDim; ii++){ int jj; aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; for(jj=0; jjnDim; ii++){ float margin = 0.0; float fBestOverlap; float fBestArea; int iBestLeft; int nLeft; for( nLeft=RTREE_MINCELLS(pRtree); nLeft<=(nCell-RTREE_MINCELLS(pRtree)); nLeft++ ){ RtreeCell left; RtreeCell right; int kk; float overlap; float area; memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); for(kk=1; kk<(nCell-1); kk++){ if( kk0; i--){ RtreeCell *pNext; pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed); float diff = cellGrowth(pRtree, pBboxLeft, pNext) - cellGrowth(pRtree, pBboxRight, pNext) ; if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i) || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i)) ){ nodeInsertCell(pRtree, pRight, pNext); cellUnion(pRtree, pBboxRight, pNext); }else{ nodeInsertCell(pRtree, pLeft, pNext); cellUnion(pRtree, pBboxLeft, pNext); } } sqlite3_free(aiUsed); return SQLITE_OK; } #endif static int updateMapping( Rtree *pRtree, i64 iRowid, RtreeNode *pNode, int iHeight ){ int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); if( iHeight>0 ){ RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); if( pChild ){ nodeRelease(pRtree, pChild->pParent); nodeReference(pNode); pChild->pParent = pNode; } } return xSetMapping(pRtree, iRowid, pNode->iNode); } static int SplitNode( Rtree *pRtree, RtreeNode *pNode, RtreeCell *pCell, int iHeight ){ int i; int newCellIsRight = 0; int rc = SQLITE_OK; int nCell = NCELL(pNode); RtreeCell *aCell; int *aiUsed; RtreeNode *pLeft = 0; RtreeNode *pRight = 0; RtreeCell leftbbox; RtreeCell rightbbox; /* Allocate an array and populate it with a copy of pCell and ** all cells from node pLeft. Then zero the original node. */ aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); if( !aCell ){ rc = SQLITE_NOMEM; goto splitnode_out; } aiUsed = (int *)&aCell[nCell+1]; memset(aiUsed, 0, sizeof(int)*(nCell+1)); for(i=0; iiNode==1 ){ pRight = nodeNew(pRtree, pNode, 1); pLeft = nodeNew(pRtree, pNode, 1); pRtree->iDepth++; pNode->isDirty = 1; writeInt16(pNode->zData, pRtree->iDepth); }else{ pLeft = pNode; pRight = nodeNew(pRtree, pLeft->pParent, 1); nodeReference(pLeft); } if( !pLeft || !pRight ){ rc = SQLITE_NOMEM; goto splitnode_out; } memset(pLeft->zData, 0, pRtree->iNodeSize); memset(pRight->zData, 0, pRtree->iNodeSize); rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox); if( rc!=SQLITE_OK ){ goto splitnode_out; } /* Ensure both child nodes have node numbers assigned to them. */ if( (0==pRight->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))) || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) ){ goto splitnode_out; } rightbbox.iRowid = pRight->iNode; leftbbox.iRowid = pLeft->iNode; if( pNode->iNode==1 ){ rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); if( rc!=SQLITE_OK ){ goto splitnode_out; } }else{ RtreeNode *pParent = pLeft->pParent; int iCell = nodeParentIndex(pRtree, pLeft); nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); AdjustTree(pRtree, pParent, &leftbbox); } if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ goto splitnode_out; } for(i=0; iiRowid ){ newCellIsRight = 1; } if( rc!=SQLITE_OK ){ goto splitnode_out; } } if( pNode->iNode==1 ){ for(i=0; iiRowid, pLeft, iHeight); } if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pRight); pRight = 0; } if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pLeft); pLeft = 0; } splitnode_out: nodeRelease(pRtree, pRight); nodeRelease(pRtree, pLeft); sqlite3_free(aCell); return rc; } static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ int rc = SQLITE_OK; if( pLeaf->iNode!=1 && pLeaf->pParent==0 ){ sqlite3_bind_int64(pRtree->pReadParent, 1, pLeaf->iNode); if( sqlite3_step(pRtree->pReadParent)==SQLITE_ROW ){ i64 iNode = sqlite3_column_int64(pRtree->pReadParent, 0); rc = nodeAcquire(pRtree, iNode, 0, &pLeaf->pParent); }else{ rc = SQLITE_ERROR; } sqlite3_reset(pRtree->pReadParent); if( rc==SQLITE_OK ){ rc = fixLeafParent(pRtree, pLeaf->pParent); } } return rc; } static int deleteCell(Rtree *, RtreeNode *, int, int); static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ int rc; RtreeNode *pParent; int iCell; assert( pNode->nRef==1 ); /* Remove the entry in the parent cell. */ iCell = nodeParentIndex(pRtree, pNode); pParent = pNode->pParent; pNode->pParent = 0; if( SQLITE_OK!=(rc = deleteCell(pRtree, pParent, iCell, iHeight+1)) || SQLITE_OK!=(rc = nodeRelease(pRtree, pParent)) ){ return rc; } /* Remove the xxx_node entry. */ sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); sqlite3_step(pRtree->pDeleteNode); if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ return rc; } /* Remove the xxx_parent entry. */ sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); sqlite3_step(pRtree->pDeleteParent); if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ return rc; } /* Remove the node from the in-memory hash table and link it into ** the Rtree.pDeleted list. Its contents will be re-inserted later on. */ nodeHashDelete(pRtree, pNode); pNode->iNode = iHeight; pNode->pNext = pRtree->pDeleted; pNode->nRef++; pRtree->pDeleted = pNode; return SQLITE_OK; } static void fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ RtreeNode *pParent = pNode->pParent; if( pParent ){ int ii; int nCell = NCELL(pNode); RtreeCell box; /* Bounding box for pNode */ nodeGetCell(pRtree, pNode, 0, &box); for(ii=1; iiiNode; ii = nodeParentIndex(pRtree, pNode); nodeOverwriteCell(pRtree, pParent, &box, ii); fixBoundingBox(pRtree, pParent); } } /* ** Delete the cell at index iCell of node pNode. After removing the ** cell, adjust the r-tree data structure if required. */ static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ int rc; if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ return rc; } /* Remove the cell from the node. This call just moves bytes around ** the in-memory node image, so it cannot fail. */ nodeDeleteCell(pRtree, pNode, iCell); /* If the node is not the tree root and now has less than the minimum ** number of cells, remove it from the tree. Otherwise, update the ** cell in the parent node so that it tightly contains the updated ** node. */ if( pNode->iNode!=1 ){ RtreeNode *pParent = pNode->pParent; if( (pParent->iNode!=1 || NCELL(pParent)!=1) && (NCELL(pNode)nDim; iDim++){ aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]); aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]); } } for(iDim=0; iDimnDim; iDim++){ aCenterCoord[iDim] = aCenterCoord[iDim]/((float)nCell*2.0); } for(ii=0; iinDim; iDim++){ float coord = DCOORD(aCell[ii].aCoord[iDim*2+1]) - DCOORD(aCell[ii].aCoord[iDim*2]); aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); } } SortByDistance(aOrder, nCell, aDistance, aSpare); nodeZero(pRtree, pNode); for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ RtreeCell *p = &aCell[aOrder[ii]]; nodeInsertCell(pRtree, pNode, p); if( p->iRowid==pCell->iRowid ){ if( iHeight==0 ){ rc = rowidWrite(pRtree, p->iRowid, pNode->iNode); }else{ rc = parentWrite(pRtree, p->iRowid, pNode->iNode); } } } if( rc==SQLITE_OK ){ fixBoundingBox(pRtree, pNode); } for(; rc==SQLITE_OK && iiiNode currently contains ** the height of the sub-tree headed by the cell. */ RtreeNode *pInsert; RtreeCell *p = &aCell[aOrder[ii]]; rc = ChooseLeaf(pRtree, p, iHeight, &pInsert); if( rc==SQLITE_OK ){ int rc2; rc = rtreeInsertCell(pRtree, pInsert, p, iHeight); rc2 = nodeRelease(pRtree, pInsert); if( rc==SQLITE_OK ){ rc = rc2; } } } sqlite3_free(aCell); return rc; } /* ** Insert cell pCell into node pNode. Node pNode is the head of a ** subtree iHeight high (leaf nodes have iHeight==0). */ static int rtreeInsertCell( Rtree *pRtree, RtreeNode *pNode, RtreeCell *pCell, int iHeight ){ int rc = SQLITE_OK; if( iHeight>0 ){ RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); if( pChild ){ nodeRelease(pRtree, pChild->pParent); nodeReference(pNode); pChild->pParent = pNode; } } if( nodeInsertCell(pRtree, pNode, pCell) ){ #if VARIANT_RSTARTREE_REINSERT if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ rc = SplitNode(pRtree, pNode, pCell, iHeight); }else{ pRtree->iReinsertHeight = iHeight; rc = Reinsert(pRtree, pNode, pCell, iHeight); } #else rc = SplitNode(pRtree, pNode, pCell, iHeight); #endif }else{ AdjustTree(pRtree, pNode, pCell); if( iHeight==0 ){ rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); }else{ rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); } } return rc; } static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ int ii; int rc = SQLITE_OK; int nCell = NCELL(pNode); for(ii=0; rc==SQLITE_OK && iiiNode currently contains ** the height of the sub-tree headed by the cell. */ rc = ChooseLeaf(pRtree, &cell, pNode->iNode, &pInsert); if( rc==SQLITE_OK ){ int rc2; rc = rtreeInsertCell(pRtree, pInsert, &cell, pNode->iNode); rc2 = nodeRelease(pRtree, pInsert); if( rc==SQLITE_OK ){ rc = rc2; } } } return rc; } /* ** Select a currently unused rowid for a new r-tree record. */ static int newRowid(Rtree *pRtree, i64 *piRowid){ int rc; sqlite3_bind_null(pRtree->pWriteRowid, 1); sqlite3_bind_null(pRtree->pWriteRowid, 2); sqlite3_step(pRtree->pWriteRowid); rc = sqlite3_reset(pRtree->pWriteRowid); *piRowid = sqlite3_last_insert_rowid(pRtree->db); return rc; } #ifndef NDEBUG static int hashIsEmpty(Rtree *pRtree){ int ii; for(ii=0; iiaHash[ii] ); } return 1; } #endif /* ** The xUpdate method for rtree module virtual tables. */ static int rtreeUpdate( sqlite3_vtab *pVtab, int nData, sqlite3_value **azData, sqlite_int64 *pRowid ){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_OK; rtreeReference(pRtree); assert(nData>=1); assert(hashIsEmpty(pRtree)); /* If azData[0] is not an SQL NULL value, it is the rowid of a ** record to delete from the r-tree table. The following block does ** just that. */ if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){ i64 iDelete; /* The rowid to delete */ RtreeNode *pLeaf; /* Leaf node containing record iDelete */ int iCell; /* Index of iDelete cell in pLeaf */ RtreeNode *pRoot; /* Obtain a reference to the root node to initialise Rtree.iDepth */ rc = nodeAcquire(pRtree, 1, 0, &pRoot); /* Obtain a reference to the leaf node that contains the entry ** about to be deleted. */ if( rc==SQLITE_OK ){ iDelete = sqlite3_value_int64(azData[0]); rc = findLeafNode(pRtree, iDelete, &pLeaf); } /* Delete the cell in question from the leaf node. */ if( rc==SQLITE_OK ){ int rc2; iCell = nodeRowidIndex(pRtree, pLeaf, iDelete); rc = deleteCell(pRtree, pLeaf, iCell, 0); rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } /* Delete the corresponding entry in the _rowid table. */ if( rc==SQLITE_OK ){ sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); sqlite3_step(pRtree->pDeleteRowid); rc = sqlite3_reset(pRtree->pDeleteRowid); } /* Check if the root node now has exactly one child. If so, remove ** it, schedule the contents of the child for reinsertion and ** reduce the tree height by one. ** ** This is equivalent to copying the contents of the child into ** the root node (the operation that Gutman's paper says to perform ** in this scenario). */ if( rc==SQLITE_OK && pRtree->iDepth>0 ){ if( rc==SQLITE_OK && NCELL(pRoot)==1 ){ RtreeNode *pChild; i64 iChild = nodeGetRowid(pRtree, pRoot, 0); rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); if( rc==SQLITE_OK ){ rc = removeNode(pRtree, pChild, pRtree->iDepth-1); } if( rc==SQLITE_OK ){ pRtree->iDepth--; writeInt16(pRoot->zData, pRtree->iDepth); pRoot->isDirty = 1; } } } /* Re-insert the contents of any underfull nodes removed from the tree. */ for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ if( rc==SQLITE_OK ){ rc = reinsertNodeContent(pRtree, pLeaf); } pRtree->pDeleted = pLeaf->pNext; sqlite3_free(pLeaf); } /* Release the reference to the root node. */ if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pRoot); }else{ nodeRelease(pRtree, pRoot); } } /* If the azData[] array contains more than one element, elements ** (azData[2]..azData[argc-1]) contain a new record to insert into ** the r-tree structure. */ if( rc==SQLITE_OK && nData>1 ){ /* Insert a new record into the r-tree */ RtreeCell cell; int ii; RtreeNode *pLeaf; /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */ assert( nData==(pRtree->nDim*2 + 3) ); if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ for(ii=0; ii<(pRtree->nDim*2); ii+=2){ cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]); cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]); if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){ rc = SQLITE_CONSTRAINT; goto constraint; } } }else{ for(ii=0; ii<(pRtree->nDim*2); ii+=2){ cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]); cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]); if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ rc = SQLITE_CONSTRAINT; goto constraint; } } } /* Figure out the rowid of the new row. */ if( sqlite3_value_type(azData[2])==SQLITE_NULL ){ rc = newRowid(pRtree, &cell.iRowid); }else{ cell.iRowid = sqlite3_value_int64(azData[2]); sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); if( SQLITE_ROW==sqlite3_step(pRtree->pReadRowid) ){ sqlite3_reset(pRtree->pReadRowid); rc = SQLITE_CONSTRAINT; goto constraint; } rc = sqlite3_reset(pRtree->pReadRowid); } if( rc==SQLITE_OK ){ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); } if( rc==SQLITE_OK ){ int rc2; pRtree->iReinsertHeight = -1; rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } } constraint: rtreeRelease(pRtree); return rc; } /* ** The xRename method for rtree module virtual tables. */ static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_NOMEM; char *zSql = sqlite3_mprintf( "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";" "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";" "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";" , pRtree->zDb, pRtree->zName, zNewName , pRtree->zDb, pRtree->zName, zNewName , pRtree->zDb, pRtree->zName, zNewName ); if( zSql ){ rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); sqlite3_free(zSql); } return rc; } static sqlite3_module rtreeModule = { 0, /* iVersion */ rtreeCreate, /* xCreate - create a table */ rtreeConnect, /* xConnect - connect to an existing table */ rtreeBestIndex, /* xBestIndex - Determine search strategy */ rtreeDisconnect, /* xDisconnect - Disconnect from a table */ rtreeDestroy, /* xDestroy - Drop a table */ rtreeOpen, /* xOpen - open a cursor */ rtreeClose, /* xClose - close a cursor */ rtreeFilter, /* xFilter - configure scan constraints */ rtreeNext, /* xNext - advance a cursor */ rtreeEof, /* xEof */ rtreeColumn, /* xColumn - read data */ rtreeRowid, /* xRowid - read data */ rtreeUpdate, /* xUpdate - write data */ 0, /* xBegin - begin transaction */ 0, /* xSync - sync transaction */ 0, /* xCommit - commit transaction */ 0, /* xRollback - rollback transaction */ 0, /* xFindFunction - function overloading */ rtreeRename /* xRename - rename the table */ }; static int rtreeSqlInit( Rtree *pRtree, sqlite3 *db, const char *zDb, const char *zPrefix, int isCreate ){ int rc = SQLITE_OK; #define N_STATEMENT 9 static const char *azSql[N_STATEMENT] = { /* Read and write the xxx_node table */ "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1", "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)", "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1", /* Read and write the xxx_rowid table */ "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1", "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)", "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1", /* Read and write the xxx_parent table */ "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1", "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)", "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1" }; sqlite3_stmt **appStmt[N_STATEMENT]; int i; pRtree->db = db; if( isCreate ){ char *zCreate = sqlite3_mprintf( "CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);" "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);" "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY, parentnode INTEGER);" "INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))", zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize ); if( !zCreate ){ return SQLITE_NOMEM; } rc = sqlite3_exec(db, zCreate, 0, 0, 0); sqlite3_free(zCreate); if( rc!=SQLITE_OK ){ return rc; } } appStmt[0] = &pRtree->pReadNode; appStmt[1] = &pRtree->pWriteNode; appStmt[2] = &pRtree->pDeleteNode; appStmt[3] = &pRtree->pReadRowid; appStmt[4] = &pRtree->pWriteRowid; appStmt[5] = &pRtree->pDeleteRowid; appStmt[6] = &pRtree->pReadParent; appStmt[7] = &pRtree->pWriteParent; appStmt[8] = &pRtree->pDeleteParent; for(i=0; i module name ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> column names... */ static int rtreeInit( sqlite3 *db, /* Database connection */ void *pAux, /* One of the RTREE_COORD_* constants */ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ sqlite3_vtab **ppVtab, /* OUT: New virtual table */ char **pzErr, /* OUT: Error message, if any */ int isCreate /* True for xCreate, false for xConnect */ ){ int rc = SQLITE_OK; int iPageSize = 0; Rtree *pRtree; int nDb; /* Length of string argv[1] */ int nName; /* Length of string argv[2] */ int eCoordType = (int)pAux; const char *aErrMsg[] = { 0, /* 0 */ "Wrong number of columns for an rtree table", /* 1 */ "Too few columns for an rtree table", /* 2 */ "Too many columns for an rtree table" /* 3 */ }; int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2; if( aErrMsg[iErr] ){ *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); return SQLITE_ERROR; } rc = getPageSize(db, argv[1], &iPageSize); if( rc!=SQLITE_OK ){ return rc; } /* Allocate the sqlite3_vtab structure */ nDb = strlen(argv[1]); nName = strlen(argv[2]); pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); if( !pRtree ){ return SQLITE_NOMEM; } memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); pRtree->nBusy = 1; pRtree->base.pModule = &rtreeModule; pRtree->zDb = (char *)&pRtree[1]; pRtree->zName = &pRtree->zDb[nDb+1]; pRtree->nDim = (argc-4)/2; pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2; pRtree->eCoordType = eCoordType; memcpy(pRtree->zDb, argv[1], nDb); memcpy(pRtree->zName, argv[2], nName); /* Figure out the node size to use. By default, use 64 bytes less than ** the database page-size. This ensures that each node is stored on ** a single database page. ** ** If the databasd page-size is so large that more than RTREE_MAXCELLS ** entries would fit in a single node, use a smaller node-size. */ pRtree->iNodeSize = iPageSize-64; if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)iNodeSize ){ pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; } /* Create/Connect to the underlying relational database schema. If ** that is successful, call sqlite3_declare_vtab() to configure ** the r-tree table schema. */ if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); }else{ char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]); char *zTmp; int ii; for(ii=4; zSql && ii*2 coordinates. */ static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ char *zText = 0; RtreeNode node; Rtree tree; int ii; memset(&node, 0, sizeof(RtreeNode)); memset(&tree, 0, sizeof(Rtree)); tree.nDim = sqlite3_value_int(apArg[0]); tree.nBytesPerCell = 8 + 8 * tree.nDim; node.zData = (u8 *)sqlite3_value_blob(apArg[1]); for(ii=0; ii