/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** ** $Id: main.c,v 1.174 2004/05/11 09:50:02 danielk1977 Exp $ */ #include "sqliteInt.h" #include "os.h" #include /* ** A pointer to this structure is used to communicate information ** from sqlite3Init into the sqlite3InitCallback. */ typedef struct { sqlite *db; /* The database being initialized */ char **pzErrMsg; /* Error message stored here */ } InitData; /* ** Fill the InitData structure with an error message that indicates ** that the database is corrupt. */ static void corruptSchema(InitData *pData, const char *zExtra){ sqlite3SetString(pData->pzErrMsg, "malformed database schema", zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0); } /* ** This is the callback routine for the code that initializes the ** database. See sqlite3Init() below for additional information. ** ** Each callback contains the following information: ** ** argv[0] = "file-format" or "schema-cookie" or "table" or "index" ** argv[1] = table or index name or meta statement type. ** argv[2] = root page number for table or index. NULL for meta. ** argv[3] = SQL text for a CREATE TABLE or CREATE INDEX statement. ** argv[4] = "1" for temporary files, "0" for main database, "2" or more ** for auxiliary database files. ** */ static int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){ InitData *pData = (InitData*)pInit; int nErr = 0; assert( argc==5 ); if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ if( argv[0]==0 ){ corruptSchema(pData, 0); return 1; } switch( argv[0][0] ){ case 'v': case 'i': case 't': { /* CREATE TABLE, CREATE INDEX, or CREATE VIEW statements */ sqlite *db = pData->db; if( argv[2]==0 || argv[4]==0 ){ corruptSchema(pData, 0); return 1; } if( argv[3] && argv[3][0] ){ /* Call the parser to process a CREATE TABLE, INDEX or VIEW. ** But because db->init.busy is set to 1, no VDBE code is generated ** or executed. All the parser does is build the internal data ** structures that describe the table, index, or view. */ char *zErr; assert( db->init.busy ); db->init.iDb = atoi(argv[4]); assert( db->init.iDb>=0 && db->init.iDbnDb ); db->init.newTnum = atoi(argv[2]); if( sqlite3_exec(db, argv[3], 0, 0, &zErr) ){ corruptSchema(pData, zErr); sqlite3_freemem(zErr); } db->init.iDb = 0; }else{ /* If the SQL column is blank it means this is an index that ** was created to be the PRIMARY KEY or to fulfill a UNIQUE ** constraint for a CREATE TABLE. The index should have already ** been created when we processed the CREATE TABLE. All we have ** to do here is record the root page number for that index. */ int iDb; Index *pIndex; iDb = atoi(argv[4]); assert( iDb>=0 && iDbnDb ); pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zName); if( pIndex==0 || pIndex->tnum!=0 ){ /* This can occur if there exists an index on a TEMP table which ** has the same name as another index on a permanent index. Since ** the permanent table is hidden by the TEMP table, we can also ** safely ignore the index on the permanent table. */ /* Do Nothing */; }else{ pIndex->tnum = atoi(argv[2]); } } break; } default: { /* This can not happen! */ nErr = 1; assert( nErr==0 ); } } return nErr; } /* ** Attempt to read the database schema and initialize internal ** data structures for a single database file. The index of the ** database file is given by iDb. iDb==0 is used for the main ** database. iDb==1 should never be used. iDb>=2 is used for ** auxiliary databases. Return one of the SQLITE_ error codes to ** indicate success or failure. */ static int sqlite3InitOne(sqlite *db, int iDb, char **pzErrMsg){ int rc; BtCursor *curMain; int size; Table *pTab; char *azArg[6]; char zDbNum[30]; int meta[10]; InitData initData; /* ** The master database table has a structure like this */ static char master_schema[] = "CREATE TABLE sqlite_master(\n" " type text,\n" " name text,\n" " tbl_name text,\n" " rootpage integer,\n" " sql text\n" ")" ; static char temp_master_schema[] = "CREATE TEMP TABLE sqlite_temp_master(\n" " type text,\n" " name text,\n" " tbl_name text,\n" " rootpage integer,\n" " sql text\n" ")" ; /* The following SQL will read the schema from the master tables. */ static char init_script1[] = "SELECT type, name, rootpage, sql, 1 FROM sqlite_temp_master"; static char init_script2[] = "SELECT type, name, rootpage, sql, 0 FROM sqlite_master"; assert( iDb>=0 && iDb!=1 && iDbnDb ); /* Construct the schema tables: sqlite_master and sqlite_temp_master */ sqlite3SafetyOff(db); azArg[0] = "table"; azArg[1] = MASTER_NAME; azArg[2] = "1"; azArg[3] = master_schema; sprintf(zDbNum, "%d", iDb); azArg[4] = zDbNum; azArg[5] = 0; initData.db = db; initData.pzErrMsg = pzErrMsg; sqlite3InitCallback(&initData, 5, azArg, 0); pTab = sqlite3FindTable(db, MASTER_NAME, "main"); if( pTab ){ pTab->readOnly = 1; } if( iDb==0 ){ azArg[1] = TEMP_MASTER_NAME; azArg[3] = temp_master_schema; azArg[4] = "1"; sqlite3InitCallback(&initData, 5, azArg, 0); pTab = sqlite3FindTable(db, TEMP_MASTER_NAME, "temp"); if( pTab ){ pTab->readOnly = 1; } } sqlite3SafetyOn(db); /* Create a cursor to hold the database open */ if( db->aDb[iDb].pBt==0 ) return SQLITE_OK; rc = sqlite3BtreeCursor(db->aDb[iDb].pBt, MASTER_ROOT, 0, 0, 0, &curMain); if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){ sqlite3SetString(pzErrMsg, sqlite3_error_string(rc), (char*)0); return rc; } /* Get the database meta information. ** ** Meta values are as follows: ** meta[0] Schema cookie. Changes with each schema change. ** meta[1] File format of schema layer. ** meta[2] Size of the page cache. ** meta[3] Synchronous setting. 1:off, 2:normal, 3:full ** meta[4] ** meta[5] Pragma temp_store value. See comments on BtreeFactory ** meta[6] ** meta[7] ** meta[8] ** meta[9] */ if( rc==SQLITE_OK ){ int i; for(i=0; rc==SQLITE_OK && iaDb[iDb].pBt, i+1, &meta[i]); } if( rc ){ sqlite3SetString(pzErrMsg, sqlite3_error_string(rc), (char*)0); sqlite3BtreeCloseCursor(curMain); return rc; } }else{ memset(meta, 0, sizeof(meta)); } db->aDb[iDb].schema_cookie = meta[0]; if( iDb==0 ){ db->next_cookie = meta[0]; db->file_format = meta[1]; size = meta[2]; if( size==0 ){ size = MAX_PAGES; } db->cache_size = size; db->safety_level = meta[3]; if( meta[5]>0 && meta[5]<=2 && db->temp_store==0 ){ db->temp_store = meta[5]; } if( db->safety_level==0 ) db->safety_level = 2; /* ** file_format==1 Version 3.0.0. */ if( db->file_format==0 ){ /* This happens if the database was initially empty */ db->file_format = 1; }else if( db->file_format>1 ){ sqlite3BtreeCloseCursor(curMain); sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0); return SQLITE_ERROR; } }else if( db->file_format!=meta[1] ){ if( meta[1]==0 ){ sqlite3SetString(pzErrMsg, "cannot attach empty database: ", db->aDb[iDb].zName, (char*)0); }else{ sqlite3SetString(pzErrMsg, "incompatible file format in auxiliary " "database: ", db->aDb[iDb].zName, (char*)0); } sqlite3BtreeClose(db->aDb[iDb].pBt); db->aDb[iDb].pBt = 0; return SQLITE_FORMAT; } sqlite3BtreeSetCacheSize(db->aDb[iDb].pBt, db->cache_size); sqlite3BtreeSetSafetyLevel(db->aDb[iDb].pBt, meta[3]==0 ? 2 : meta[3]); /* Read the schema information out of the schema tables */ assert( db->init.busy ); sqlite3SafetyOff(db); if( rc==SQLITE_EMPTY ){ /* For an empty database, there is nothing to read */ rc = SQLITE_OK; }else{ if( iDb==0 ){ /* This SQL statement tries to read the temp.* schema from the ** sqlite_temp_master table. It might return SQLITE_EMPTY. We ** unset the SQLITE_InternChanges flag temporarily to ensure ** that the sqlite_master entry is not removed from the internal ** schema if this does return SQLITE_EMPTY. */ assert( db->flags&SQLITE_InternChanges ); db->flags &= ~SQLITE_InternChanges; rc = sqlite3_exec(db, init_script1, sqlite3InitCallback, &initData, 0); db->flags |= SQLITE_InternChanges; if( rc==SQLITE_OK || rc==SQLITE_EMPTY ){ rc = sqlite3_exec(db, init_script2, sqlite3InitCallback, &initData, 0); } }else{ char *zSql = 0; sqlite3SetString(&zSql, "SELECT type, name, rootpage, sql, ", zDbNum, " FROM \"", db->aDb[iDb].zName, "\".sqlite_master", (char*)0); rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); sqliteFree(zSql); } sqlite3SafetyOn(db); sqlite3BtreeCloseCursor(curMain); } if( sqlite3_malloc_failed ){ sqlite3SetString(pzErrMsg, "out of memory", (char*)0); rc = SQLITE_NOMEM; sqlite3ResetInternalSchema(db, 0); } if( rc==SQLITE_OK ){ DbSetProperty(db, iDb, DB_SchemaLoaded); if( iDb==0 ){ DbSetProperty(db, 1, DB_SchemaLoaded); } }else{ sqlite3ResetInternalSchema(db, iDb); } return rc; } /* ** Initialize all database files - the main database file, the file ** used to store temporary tables, and any additional database files ** created using ATTACH statements. Return a success code. If an ** error occurs, write an error message into *pzErrMsg. ** ** After the database is initialized, the SQLITE_Initialized ** bit is set in the flags field of the sqlite structure. An ** attempt is made to initialize the database as soon as it ** is opened. If that fails (perhaps because another process ** has the sqlite_master table locked) than another attempt ** is made the first time the database is accessed. */ int sqlite3Init(sqlite *db, char **pzErrMsg){ int i, rc; if( db->init.busy ) return SQLITE_OK; assert( (db->flags & SQLITE_Initialized)==0 ); rc = SQLITE_OK; db->init.busy = 1; for(i=0; rc==SQLITE_OK && inDb; i++){ if( DbHasProperty(db, i, DB_SchemaLoaded) ) continue; assert( i!=1 ); /* Should have been initialized together with 0 */ rc = sqlite3InitOne(db, i, pzErrMsg); if( rc ){ sqlite3ResetInternalSchema(db, i); } } db->init.busy = 0; if( rc==SQLITE_OK ){ db->flags |= SQLITE_Initialized; sqlite3CommitInternalChanges(db); } if( rc!=SQLITE_OK ){ db->flags &= ~SQLITE_Initialized; } return rc; } /* ** The version of the library */ const char rcsid[] = "@(#) \044Id: SQLite version " SQLITE_VERSION " $"; const char sqlite3_version[] = SQLITE_VERSION; /* ** Does the library expect data to be encoded as UTF-8 or iso8859? The ** following global constant always lets us know. */ #ifdef SQLITE_UTF8 const char sqlite3_encoding[] = "UTF-8"; #else const char sqlite3_encoding[] = "iso8859"; #endif /* ** Open a new SQLite database. Construct an "sqlite" structure to define ** the state of this database and return a pointer to that structure. ** ** An attempt is made to initialize the in-memory data structures that ** hold the database schema. But if this fails (because the schema file ** is locked) then that step is deferred until the first call to ** sqlite3_exec(). */ sqlite *sqlite3_open(const char *zFilename, int mode, char **pzErrMsg){ sqlite *db; int rc, i; /* Allocate the sqlite data structure */ db = sqliteMalloc( sizeof(sqlite) ); if( pzErrMsg ) *pzErrMsg = 0; if( db==0 ) goto no_mem_on_open; db->onError = OE_Default; db->priorNewRowid = 0; db->magic = SQLITE_MAGIC_BUSY; db->nDb = 2; db->aDb = db->aDbStatic; /* db->flags |= SQLITE_ShortColNames; */ sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 1); for(i=0; inDb; i++){ sqlite3HashInit(&db->aDb[i].tblHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].idxHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].trigHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].aFKey, SQLITE_HASH_STRING, 1); } /* Open the backend database driver */ if( zFilename[0]==':' && strcmp(zFilename,":memory:")==0 ){ db->temp_store = 2; } rc = sqlite3BtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt); if( rc!=SQLITE_OK ){ switch( rc ){ default: { sqlite3SetString(pzErrMsg, "unable to open database: ", zFilename, (char*)0); } } sqliteFree(db); sqlite3StrRealloc(pzErrMsg); return 0; } db->aDb[0].zName = "main"; db->aDb[1].zName = "temp"; /* Attempt to read the schema */ sqlite3RegisterBuiltinFunctions(db); rc = sqlite3Init(db, pzErrMsg); db->magic = SQLITE_MAGIC_OPEN; if( sqlite3_malloc_failed ){ sqlite3_close(db); goto no_mem_on_open; }else if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ sqlite3_close(db); sqlite3StrRealloc(pzErrMsg); return 0; }else if( pzErrMsg ){ sqliteFree(*pzErrMsg); *pzErrMsg = 0; } /* Return a pointer to the newly opened database structure */ return db; no_mem_on_open: sqlite3SetString(pzErrMsg, "out of memory", (char*)0); sqlite3StrRealloc(pzErrMsg); return 0; } /* ** Return the ROWID of the most recent insert */ int sqlite3_last_insert_rowid(sqlite *db){ return db->lastRowid; } /* ** Return the number of changes in the most recent call to sqlite3_exec(). */ int sqlite3_changes(sqlite *db){ return db->nChange; } /* ** Return the number of changes produced by the last INSERT, UPDATE, or ** DELETE statement to complete execution. The count does not include ** changes due to SQL statements executed in trigger programs that were ** triggered by that statement */ int sqlite3_last_statement_changes(sqlite *db){ return db->lsChange; } /* ** Close an existing SQLite database */ void sqlite3_close(sqlite *db){ HashElem *i; int j; db->want_to_close = 1; if( sqlite3SafetyCheck(db) || sqlite3SafetyOn(db) ){ /* printf("DID NOT CLOSE\n"); fflush(stdout); */ return; } db->magic = SQLITE_MAGIC_CLOSED; for(j=0; jnDb; j++){ struct Db *pDb = &db->aDb[j]; if( pDb->pBt ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; } } sqlite3ResetInternalSchema(db, 0); assert( db->nDb<=2 ); assert( db->aDb==db->aDbStatic ); for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ FuncDef *pFunc, *pNext; for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){ pNext = pFunc->pNext; sqliteFree(pFunc); } } sqlite3HashClear(&db->aFunc); sqliteFree(db); } /* ** Rollback all database files. */ void sqlite3RollbackAll(sqlite *db){ int i; for(i=0; inDb; i++){ if( db->aDb[i].pBt ){ sqlite3BtreeRollback(db->aDb[i].pBt); db->aDb[i].inTrans = 0; } } sqlite3ResetInternalSchema(db, 0); /* sqlite3RollbackInternalChanges(db); */ } /* ** Execute SQL code. Return one of the SQLITE_ success/failure ** codes. Also write an error message into memory obtained from ** malloc() and make *pzErrMsg point to that message. ** ** If the SQL is a query, then for each row in the query result ** the xCallback() function is called. pArg becomes the first ** argument to xCallback(). If xCallback=NULL then no callback ** is invoked, even for queries. */ int sqlite3_exec( sqlite *db, /* The database on which the SQL executes */ const char *zSql, /* The SQL to be executed */ sqlite_callback xCallback, /* Invoke this callback routine */ void *pArg, /* First argument to xCallback() */ char **pzErrMsg /* Write error messages here */ ){ int rc = SQLITE_OK; const char *zLeftover; sqlite_vm *pVm; int nRetry = 0; int nChange = 0; int nCallback; if( zSql==0 ) return SQLITE_OK; while( rc==SQLITE_OK && zSql[0] ){ pVm = 0; rc = sqlite3_compile(db, zSql, &zLeftover, &pVm, pzErrMsg); if( rc!=SQLITE_OK ){ assert( pVm==0 || sqlite3_malloc_failed ); return rc; } if( pVm==0 ){ /* This happens if the zSql input contained only whitespace */ break; } db->nChange += nChange; nCallback = 0; while(1){ int nArg; char **azArg, **azCol; rc = sqlite3_step(pVm, &nArg, (const char***)&azArg,(const char***)&azCol); if( rc==SQLITE_ROW ){ if( xCallback!=0 && xCallback(pArg, nArg, azArg, azCol) ){ sqlite3_finalize(pVm, 0); return SQLITE_ABORT; } nCallback++; }else{ if( rc==SQLITE_DONE && nCallback==0 && (db->flags & SQLITE_NullCallback)!=0 && xCallback!=0 ){ xCallback(pArg, nArg, azArg, azCol); } rc = sqlite3_finalize(pVm, pzErrMsg); if( rc==SQLITE_SCHEMA && nRetry<2 ){ nRetry++; rc = SQLITE_OK; break; } if( db->pVdbe==0 ){ nChange = db->nChange; } nRetry = 0; zSql = zLeftover; while( isspace(zSql[0]) ) zSql++; break; } } } return rc; } /* ** Compile a single statement of SQL into a virtual machine. Return one ** of the SQLITE_ success/failure codes. Also write an error message into ** memory obtained from malloc() and make *pzErrMsg point to that message. */ int sqlite3_compile( sqlite *db, /* The database on which the SQL executes */ const char *zSql, /* The SQL to be executed */ const char **pzTail, /* OUT: Next statement after the first */ sqlite_vm **ppVm, /* OUT: The virtual machine */ char **pzErrMsg /* OUT: Write error messages here */ ){ Parse sParse; if( pzErrMsg ) *pzErrMsg = 0; if( sqlite3SafetyOn(db) ) goto exec_misuse; if( !db->init.busy ){ if( (db->flags & SQLITE_Initialized)==0 ){ int rc, cnt = 1; while( (rc = sqlite3Init(db, pzErrMsg))==SQLITE_BUSY && db->xBusyCallback && db->xBusyCallback(db->pBusyArg, "", cnt++)!=0 ){} if( rc!=SQLITE_OK ){ sqlite3StrRealloc(pzErrMsg); sqlite3SafetyOff(db); return rc; } if( pzErrMsg ){ sqliteFree(*pzErrMsg); *pzErrMsg = 0; } } } assert( (db->flags & SQLITE_Initialized)!=0 || db->init.busy ); if( db->pVdbe==0 ){ db->nChange = 0; } memset(&sParse, 0, sizeof(sParse)); sParse.db = db; sqlite3RunParser(&sParse, zSql, pzErrMsg); if( db->xTrace && !db->init.busy ){ /* Trace only the statment that was compiled. ** Make a copy of that part of the SQL string since zSQL is const ** and we must pass a zero terminated string to the trace function ** The copy is unnecessary if the tail pointer is pointing at the ** beginnig or end of the SQL string. */ if( sParse.zTail && sParse.zTail!=zSql && *sParse.zTail ){ char *tmpSql = sqliteStrNDup(zSql, sParse.zTail - zSql); if( tmpSql ){ db->xTrace(db->pTraceArg, tmpSql); free(tmpSql); }else{ /* If a memory error occurred during the copy, ** trace entire SQL string and fall through to the ** sqlite3_malloc_failed test to report the error. */ db->xTrace(db->pTraceArg, zSql); } }else{ db->xTrace(db->pTraceArg, zSql); } } if( sqlite3_malloc_failed ){ sqlite3SetString(pzErrMsg, "out of memory", (char*)0); sParse.rc = SQLITE_NOMEM; sqlite3RollbackAll(db); sqlite3ResetInternalSchema(db, 0); db->flags &= ~SQLITE_InTrans; } if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK; if( sParse.rc!=SQLITE_OK && pzErrMsg && *pzErrMsg==0 ){ sqlite3SetString(pzErrMsg, sqlite3_error_string(sParse.rc), (char*)0); } sqlite3StrRealloc(pzErrMsg); if( sParse.rc==SQLITE_SCHEMA ){ sqlite3ResetInternalSchema(db, 0); } assert( ppVm ); *ppVm = (sqlite_vm*)sParse.pVdbe; if( pzTail ) *pzTail = sParse.zTail; if( sqlite3SafetyOff(db) ) goto exec_misuse; return sParse.rc; exec_misuse: if( pzErrMsg ){ *pzErrMsg = 0; sqlite3SetString(pzErrMsg, sqlite3_error_string(SQLITE_MISUSE), (char*)0); sqlite3StrRealloc(pzErrMsg); } return SQLITE_MISUSE; } /* ** The following routine destroys a virtual machine that is created by ** the sqlite3_compile() routine. ** ** The integer returned is an SQLITE_ success/failure code that describes ** the result of executing the virtual machine. An error message is ** written into memory obtained from malloc and *pzErrMsg is made to ** point to that error if pzErrMsg is not NULL. The calling routine ** should use sqlite3_freemem() to delete the message when it has finished ** with it. */ int sqlite3_finalize( sqlite_vm *pVm, /* The virtual machine to be destroyed */ char **pzErrMsg /* OUT: Write error messages here */ ){ int rc = sqlite3VdbeFinalize((Vdbe*)pVm, pzErrMsg); sqlite3StrRealloc(pzErrMsg); return rc; } /* ** Terminate the current execution of a virtual machine then ** reset the virtual machine back to its starting state so that it ** can be reused. Any error message resulting from the prior execution ** is written into *pzErrMsg. A success code from the prior execution ** is returned. */ int sqlite3_reset( sqlite_vm *pVm, /* The virtual machine to be destroyed */ char **pzErrMsg /* OUT: Write error messages here */ ){ int rc = sqlite3VdbeReset((Vdbe*)pVm, pzErrMsg); sqlite3VdbeMakeReady((Vdbe*)pVm, -1, 0); sqlite3StrRealloc(pzErrMsg); return rc; } /* ** Return a static string that describes the kind of error specified in the ** argument. */ const char *sqlite3_error_string(int rc){ const char *z; switch( rc ){ case SQLITE_OK: z = "not an error"; break; case SQLITE_ERROR: z = "SQL logic error or missing database"; break; case SQLITE_INTERNAL: z = "internal SQLite implementation flaw"; break; case SQLITE_PERM: z = "access permission denied"; break; case SQLITE_ABORT: z = "callback requested query abort"; break; case SQLITE_BUSY: z = "database is locked"; break; case SQLITE_LOCKED: z = "database table is locked"; break; case SQLITE_NOMEM: z = "out of memory"; break; case SQLITE_READONLY: z = "attempt to write a readonly database"; break; case SQLITE_INTERRUPT: z = "interrupted"; break; case SQLITE_IOERR: z = "disk I/O error"; break; case SQLITE_CORRUPT: z = "database disk image is malformed"; break; case SQLITE_NOTFOUND: z = "table or record not found"; break; case SQLITE_FULL: z = "database is full"; break; case SQLITE_CANTOPEN: z = "unable to open database file"; break; case SQLITE_PROTOCOL: z = "database locking protocol failure"; break; case SQLITE_EMPTY: z = "table contains no data"; break; case SQLITE_SCHEMA: z = "database schema has changed"; break; case SQLITE_TOOBIG: z = "too much data for one table row"; break; case SQLITE_CONSTRAINT: z = "constraint failed"; break; case SQLITE_MISMATCH: z = "datatype mismatch"; break; case SQLITE_MISUSE: z = "library routine called out of sequence";break; case SQLITE_NOLFS: z = "kernel lacks large file support"; break; case SQLITE_AUTH: z = "authorization denied"; break; case SQLITE_FORMAT: z = "auxiliary database format error"; break; case SQLITE_RANGE: z = "bind index out of range"; break; case SQLITE_NOTADB: z = "file is encrypted or is not a database";break; default: z = "unknown error"; break; } return z; } /* ** This routine implements a busy callback that sleeps and tries ** again until a timeout value is reached. The timeout value is ** an integer number of milliseconds passed in as the first ** argument. */ static int sqliteDefaultBusyCallback( void *Timeout, /* Maximum amount of time to wait */ const char *NotUsed, /* The name of the table that is busy */ int count /* Number of times table has been busy */ ){ #if SQLITE_MIN_SLEEP_MS==1 static const char delays[] = { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 50, 100}; static const short int totals[] = { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228, 287}; # define NDELAY (sizeof(delays)/sizeof(delays[0])) int timeout = (int)Timeout; int delay, prior; if( count <= NDELAY ){ delay = delays[count-1]; prior = totals[count-1]; }else{ delay = delays[NDELAY-1]; prior = totals[NDELAY-1] + delay*(count-NDELAY-1); } if( prior + delay > timeout ){ delay = timeout - prior; if( delay<=0 ) return 0; } sqlite3OsSleep(delay); return 1; #else int timeout = (int)Timeout; if( (count+1)*1000 > timeout ){ return 0; } sqlite3OsSleep(1000); return 1; #endif } /* ** This routine sets the busy callback for an Sqlite database to the ** given callback function with the given argument. */ void sqlite3_busy_handler( sqlite *db, int (*xBusy)(void*,const char*,int), void *pArg ){ db->xBusyCallback = xBusy; db->pBusyArg = pArg; } #ifndef SQLITE_OMIT_PROGRESS_CALLBACK /* ** This routine sets the progress callback for an Sqlite database to the ** given callback function with the given argument. The progress callback will ** be invoked every nOps opcodes. */ void sqlite3_progress_handler( sqlite *db, int nOps, int (*xProgress)(void*), void *pArg ){ if( nOps>0 ){ db->xProgress = xProgress; db->nProgressOps = nOps; db->pProgressArg = pArg; }else{ db->xProgress = 0; db->nProgressOps = 0; db->pProgressArg = 0; } } #endif /* ** This routine installs a default busy handler that waits for the ** specified number of milliseconds before returning 0. */ void sqlite3_busy_timeout(sqlite *db, int ms){ if( ms>0 ){ sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)ms); }else{ sqlite3_busy_handler(db, 0, 0); } } /* ** Cause any pending operation to stop at its earliest opportunity. */ void sqlite3_interrupt(sqlite *db){ db->flags |= SQLITE_Interrupt; } /* ** Windows systems should call this routine to free memory that ** is returned in the in the errmsg parameter of sqlite3_open() when ** SQLite is a DLL. For some reason, it does not work to call free() ** directly. ** ** Note that we need to call free() not sqliteFree() here, since every ** string that is exported from SQLite should have already passed through ** sqlite3StrRealloc(). */ void sqlite3_freemem(void *p){ free(p); } /* ** Windows systems need functions to call to return the sqlite3_version ** and sqlite3_encoding strings since they are unable to access constants ** within DLLs. */ const char *sqlite3_libversion(void){ return sqlite3_version; } const char *sqlite3_libencoding(void){ return sqlite3_encoding; } /* ** Create new user-defined functions. The sqlite3_create_function() ** routine creates a regular function and sqlite3_create_aggregate() ** creates an aggregate function. ** ** Passing a NULL xFunc argument or NULL xStep and xFinalize arguments ** disables the function. Calling sqlite3_create_function() with the ** same name and number of arguments as a prior call to ** sqlite3_create_aggregate() disables the prior call to ** sqlite3_create_aggregate(), and vice versa. ** ** If nArg is -1 it means that this function will accept any number ** of arguments, including 0. The maximum allowed value of nArg is 127. */ int sqlite3_create_function( sqlite *db, /* Add the function to this database connection */ const char *zName, /* Name of the function to add */ int nArg, /* Number of arguments */ void (*xFunc)(sqlite_func*,int,const char**), /* The implementation */ void *pUserData /* User data */ ){ FuncDef *p; int nName; if( db==0 || zName==0 || sqlite3SafetyCheck(db) ) return 1; if( nArg<-1 || nArg>127 ) return 1; nName = strlen(zName); if( nName>255 ) return 1; p = sqlite3FindFunction(db, zName, nName, nArg, 1); if( p==0 ) return 1; p->xFunc = xFunc; p->xStep = 0; p->xFinalize = 0; p->pUserData = pUserData; return 0; } int sqlite3_create_aggregate( sqlite *db, /* Add the function to this database connection */ const char *zName, /* Name of the function to add */ int nArg, /* Number of arguments */ void (*xStep)(sqlite_func*,int,const char**), /* The step function */ void (*xFinalize)(sqlite_func*), /* The finalizer */ void *pUserData /* User data */ ){ FuncDef *p; int nName; if( db==0 || zName==0 || sqlite3SafetyCheck(db) ) return 1; if( nArg<-1 || nArg>127 ) return 1; nName = strlen(zName); if( nName>255 ) return 1; p = sqlite3FindFunction(db, zName, nName, nArg, 1); if( p==0 ) return 1; p->xFunc = 0; p->xStep = xStep; p->xFinalize = xFinalize; p->pUserData = pUserData; return 0; } /* ** Change the datatype for all functions with a given name. See the ** header comment for the prototype of this function in sqlite.h for ** additional information. */ int sqlite3_function_type(sqlite *db, const char *zName, int dataType){ FuncDef *p = (FuncDef*)sqlite3HashFind(&db->aFunc, zName, strlen(zName)); while( p ){ p->dataType = dataType; p = p->pNext; } return SQLITE_OK; } /* ** Register a trace function. The pArg from the previously registered trace ** is returned. ** ** A NULL trace function means that no tracing is executes. A non-NULL ** trace is a pointer to a function that is invoked at the start of each ** sqlite3_exec(). */ void *sqlite3_trace(sqlite *db, void (*xTrace)(void*,const char*), void *pArg){ void *pOld = db->pTraceArg; db->xTrace = xTrace; db->pTraceArg = pArg; return pOld; } /*** EXPERIMENTAL *** ** ** Register a function to be invoked when a transaction comments. ** If either function returns non-zero, then the commit becomes a ** rollback. */ void *sqlite3_commit_hook( sqlite *db, /* Attach the hook to this database */ int (*xCallback)(void*), /* Function to invoke on each commit */ void *pArg /* Argument to the function */ ){ void *pOld = db->pCommitArg; db->xCommitCallback = xCallback; db->pCommitArg = pArg; return pOld; } /* ** This routine is called to create a connection to a database BTree ** driver. If zFilename is the name of a file, then that file is ** opened and used. If zFilename is the magic name ":memory:" then ** the database is stored in memory (and is thus forgotten as soon as ** the connection is closed.) If zFilename is NULL then the database ** is for temporary use only and is deleted as soon as the connection ** is closed. ** ** A temporary database can be either a disk file (that is automatically ** deleted when the file is closed) or a set of red-black trees held in memory, ** depending on the values of the TEMP_STORE compile-time macro and the ** db->temp_store variable, according to the following chart: ** ** TEMP_STORE db->temp_store Location of temporary database ** ---------- -------------- ------------------------------ ** 0 any file ** 1 1 file ** 1 2 memory ** 1 0 file ** 2 1 file ** 2 2 memory ** 2 0 memory ** 3 any memory */ int sqlite3BtreeFactory( const sqlite *db, /* Main database when opening aux otherwise 0 */ const char *zFilename, /* Name of the file containing the BTree database */ int omitJournal, /* if TRUE then do not journal this file */ int nCache, /* How many pages in the page cache */ Btree **ppBtree /* Pointer to new Btree object written here */ ){ int btree_flags = 0; assert( ppBtree != 0); if( omitJournal ){ btree_flags |= BTREE_OMIT_JOURNAL; } if( !zFilename ){ btree_flags |= BTREE_MEMORY; } return sqlite3BtreeOpen(zFilename, ppBtree, nCache, btree_flags); } #if 0 /* ** sqlite3_open ** */ int sqlite3_open(const char *filename, sqlite3 **pDb, const char **options){ *pDb = sqlite3_open(filename, 0, &errmsg); return (*pDb?SQLITE_OK:SQLITE_ERROR); } int sqlite3_open16(const void *filename, sqlite3 **pDb, const char **options){ int rc; char * filename8; filename8 = sqlite3utf16to8(filename, -1); if( !filename8 ){ return SQLITE_NOMEM; } rc = sqlite3_open(filename8, pDb, options); sqliteFree(filename8); return rc; } /* ** sqlite3_close ** */ int sqlite3_close(sqlite3 *db){ return sqlite3_close(db); } /* ** sqlite3_errmsg ** ** TODO: ! */ const char *sqlite3_errmsg(sqlite3 *db){ assert(!"TODO"); } const void *sqlite3_errmsg16(sqlite3 *db){ assert(!"TODO"); } /* ** sqlite3_errcode ** ** TODO: ! */ int sqlite3_errcode(sqlite3 *db){ assert(!"TODO"); } struct sqlite_stmt { }; /* ** sqlite3_prepare ** ** TODO: error message handling */ int sqlite3_prepare( sqlite3 *db, const char *zSql, sqlite3_stmt **ppStmt, const char** pzTail ){ int rc; rc = sqlite3_compile(db, zSql, pzTail, ppStmt, 0); return rc; } int sqlite3_prepare16( sqlite3 *db, const void *zSql, sqlite3_stmt **ppStmt, const void **pzTail ){ int rc; char *sql8; sql8 = sqlite3utf16to8(zSql, -1); if( !sql8 ){ return SQLITE_NOMEM; } /* TODO: Have to set *pzTail to point into the original UTF-16 string ** somehow. */ rc = sqlite3_prepare(db, sql8, ppStmt, 0); sqliteFree(filename8); return rc; } /* ** sqlite3_finalize */ int sqlite3_finalize(sqlite3_stmt *stmt){ return sqlite3_finalize(stmt, 0); } /* ** sqlite3_reset */ int sqlite3_reset(sqlite3_stmt*){ return sqlite3_reset(stmt, 0); } /* ** sqlite3_step */ int sqlite3_step(sqlite3_stmt *pStmt){ return sqlite3_step(pStmt); } /* ** sqlite3_bind_text */ int sqlite3_bind_text( sqlite3_stmt *pStmt, int i, const char *zVal, int n, int eCopy ){ return sqlite3_bind(pStmt, i, zVal, n, eCopy); } int sqlite3_bind_text16( sqlite3_stmt *pStmt, int i, void *zVal, int n, int eCopy ){ int rc; char * zVal8; /* convert the first n bytes of the UTF-16 string to UTF-8 */ zVal8 = sqlite3utf16to8(zVal, n); if( !zVal8 ){ return SQLITE_NOMEM; } /* Pass -1 as the length of the UTF-8 string. It is guaranteed to be ** NULL-terminated by sqlite3utf16to8(). */ rc = sqlite3_bind_text(pStmt, i, zVal8, -1, eCopy); sqliteFree(filename8); return rc; } /* ** sqlite3_bind_null */ int sqlite3_bind_null(sqlite3_stmt*, int iParm){ return sqlite3_bind(pStmt, i, 0, 0, 0); } int sqlite3_bind_int32(sqlite3_stmt*, int iParm, int iValue){ assert(!"TODO"); } int sqlite3_bind_int64(sqlite3_stmt*, int iParm, long long int iValue){ assert(!"TODO"); } int sqlite3_bind_double(sqlite3_stmt*, int iParm, double iValue){ assert(!"TODO"); } int sqlite3_bind_blob(sqlite3_stmt*, int i, const void*, int n, int eCopy){ assert(!"TODO"); } int sqlite3_column_count(sqlite3_stmt*){ } int sqlite3_column_type(sqlite3_stmt*,int){ } const char *sqlite3_column_decltype(sqlite3_stmt*,int){ } const void *sqlite3_column_decltype16(sqlite3_stmt*,int){ } const char *sqlite3_column_name(sqlite3_stmt*,int){ } const void *sqlite3_column_name16(sqlite3_stmt*,int){ } const unsigned char *sqlite3_column_data(sqlite3_stmt*,int){ } const void *sqlite3_column_data16(sqlite3_stmt*,int){ } int sqlite3_column_bytes(sqlite3_stmt*,int){ } long long int sqlite3_column_int(sqlite3_stmt*,int){ } double sqlite3_column_float(sqlite3_stmt*,int){ } #endif