/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** ** $Id: util.c,v 1.158 2005/12/20 14:38:00 danielk1977 Exp $ */ #include "sqliteInt.h" #include "os.h" #include #include /* ** MALLOC WRAPPER ARCHITECTURE ** ** The sqlite code accesses dynamic memory allocation/deallocation by invoking ** the following four APIs (which may be implemented as macros). ** ** sqlite3Malloc() ** sqlite3MallocRaw() ** sqlite3Realloc() ** sqlite3ReallocOrFree() ** sqlite3Free() ** sqlite3AllocSize() ** ** The function sqlite3FreeX performs the same task as sqlite3Free and is ** guaranteed to be a real function. The same holds for sqlite3MallocX ** ** The above APIs are implemented in terms of the functions provided at the Os ** level (not in this file). The Os level interface is never accessed directly ** by code outside of this file. ** ** sqlite3Os.xMalloc() ** sqlite3Os.xRealloc() ** sqlite3Os.xFree() ** sqlite3Os.xAllocationSize() ** ** Functions sqlite3MallocRaw() and sqlite3Realloc() may invoke ** sqlite3_release_memory() if a call to sqlite3Os.xMalloc() or ** sqlite3Os.xRealloc() fails (or if the soft-heap-limit for the thread is ** exceeded). Function sqlite3Malloc() usually invokes ** sqlite3MallocRaw(). ** ** MALLOC TEST WRAPPER ARCHITECTURE ** ** The test wrapper provides extra test facilities to ensure the library ** does not leak memory and handles the failure of the underlying (Os level) ** allocation system correctly. It is only present if the library is ** compiled with the SQLITE_MEMDEBUG macro set. ** ** * Guardposts to detect overwrites. ** * Ability to cause a specific Malloc() or Realloc() to fail. ** * Audit outstanding memory allocations (i.e check for leaks). */ #define MAX(x,y) ((x)>(y)?(x):(y)) #ifndef SQLITE_OMIT_MEMORY_MANAGEMENT /* ** Set the soft heap-size limit for the current thread. Passing a negative ** value indicates no limit. */ void sqlite3_soft_heap_limit(sqlite_int64 n){ sqlite3Tsd()->nSoftHeapLimit = n; } /* ** Release memory held by SQLite instances created by the current thread. */ int sqlite3_release_memory(int n){ return sqlite3pager_release_memory(n); } #else /* If SQLITE_OMIT_MEMORY_MANAGEMENT is defined, then define a version ** of sqlite3_release_memory() to be used by other code in this file. ** This is done for no better reason than to reduce the number of ** pre-processor #ifndef statements. */ #define sqlite3_release_memory(x) 0 /* 0 == no memory freed */ #endif #ifdef SQLITE_MEMDEBUG /*-------------------------------------------------------------------------- ** Begin code for memory allocation system test layer. ** ** Memory debugging is turned on by defining the SQLITE_MEMDEBUG macro. ** ** SQLITE_MEMDEBUG==1 -> Fence-posting only (thread safe) ** SQLITE_MEMDEBUG==2 -> Fence-posting + linked list of allocations (not ts) ** SQLITE_MEMDEBUG==3 -> Above + backtraces (not thread safe, req. glibc) */ /* Figure out whether or not to store backtrace() information for each malloc. ** The backtrace() function is only used if SQLITE_MEMDEBUG is set to 2 or ** greater and glibc is in use. If we don't want to use backtrace(), then just ** define it as an empty macro and set the amount of space reserved to 0. */ #if defined(__GLIBC__) && SQLITE_MEMDEBUG>2 extern int backtrace(void **, int); #define TESTALLOC_STACKSIZE 128 #define TESTALLOC_STACKFRAMES ((TESTALLOC_STACKSIZE-8)/sizeof(void*)) #else #define backtrace(x, y) #define TESTALLOC_STACKSIZE 0 #define TESTALLOC_STACKFRAMES 0 #endif /* ** Number of 32-bit guard words. This should probably be a multiple of ** 2 since on 64-bit machines we want the value returned by sqliteMalloc() ** to be 8-byte aligned. */ #define TESTALLOC_NGUARD 2 /* ** Size reserved for storing file-name along with each malloc()ed blob. */ #define TESTALLOC_FILESIZE 64 /* ** Size reserved for storing the user string. Each time a Malloc() or Realloc() ** call succeeds, up to TESTALLOC_USERSIZE bytes of the string pointed to by ** sqlite3_malloc_id are stored along with the other test system metadata. */ #define TESTALLOC_USERSIZE 64 const char *sqlite3_malloc_id = 0; /* ** Blocks used by the test layer have the following format: ** ** ** ** ** ** ** <32-bit line number> ** ** */ #define TESTALLOC_OFFSET_GUARD1(p) (sizeof(void *) * 2) #define TESTALLOC_OFFSET_DATA(p) ( \ TESTALLOC_OFFSET_GUARD1(p) + sizeof(u32) * TESTALLOC_NGUARD \ ) #define TESTALLOC_OFFSET_GUARD2(p) ( \ TESTALLOC_OFFSET_DATA(p) + sqlite3Os.xAllocationSize(p) - TESTALLOC_OVERHEAD \ ) #define TESTALLOC_OFFSET_LINENUMBER(p) ( \ TESTALLOC_OFFSET_GUARD2(p) + sizeof(u32) * TESTALLOC_NGUARD \ ) #define TESTALLOC_OFFSET_FILENAME(p) ( \ TESTALLOC_OFFSET_LINENUMBER(p) + sizeof(u32) \ ) #define TESTALLOC_OFFSET_USER(p) ( \ TESTALLOC_OFFSET_FILENAME(p) + TESTALLOC_FILESIZE \ ) #define TESTALLOC_OFFSET_STACK(p) ( \ TESTALLOC_OFFSET_USER(p) + TESTALLOC_USERSIZE + 8 - \ (TESTALLOC_OFFSET_USER(p) % 8) \ ) #define TESTALLOC_OVERHEAD ( \ sizeof(void *)*2 + /* pPrev and pNext pointers */ \ TESTALLOC_NGUARD*sizeof(u32)*2 + /* Guard words */ \ sizeof(u32) + TESTALLOC_FILESIZE + /* File and line number */ \ TESTALLOC_USERSIZE + /* User string */ \ TESTALLOC_STACKSIZE /* backtrace() stack */ \ ) /* ** For keeping track of the number of mallocs and frees. This ** is used to check for memory leaks. The iMallocFail and iMallocReset ** values are used to simulate malloc() failures during testing in ** order to verify that the library correctly handles an out-of-memory ** condition. */ int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */ int sqlite3_nFree; /* Number of sqliteFree() calls */ int sqlite3_memUsed; /* TODO Total memory obtained from malloc */ int sqlite3_memMax; /* TODO Mem usage high-water mark */ int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */ int sqlite3_iMallocReset = -1; /* When iMallocFail reaches 0, set to this */ /* ** Check for a simulated memory allocation failure. Return true if ** the failure should be simulated. Return false to proceed as normal. */ static int failMalloc(){ SqliteTsd *pTsd = sqlite3Tsd(); if( pTsd->isFail ){ return 1; } if( sqlite3_iMallocFail>=0 ){ sqlite3_iMallocFail--; if( sqlite3_iMallocFail==0 ){ sqlite3_iMallocFail = sqlite3_iMallocReset; pTsd->isFail = 1; return 1; } } return 0; } /* ** The argument is a pointer returned by sqlite3Os.xMalloc() or xRealloc(). ** assert() that the first and last (TESTALLOC_NGUARD*4) bytes are set to the ** values set by the applyGuards() function. */ static void checkGuards(u32 *p) { int i; char *zAlloc = (char *)p; char *z; /* First set of guard words */ z = &zAlloc[TESTALLOC_OFFSET_GUARD1(p)]; for(i=0; iiLine, sizeof(u32)); /* File name */ z = &zAlloc[TESTALLOC_OFFSET_FILENAME(p)]; strncpy(z, sqlite3Tsd()->zFile, TESTALLOC_FILESIZE); z[TESTALLOC_FILESIZE - 1] = '\0'; /* User string */ z = &zAlloc[TESTALLOC_OFFSET_USER(p)]; z[0] = 0; if( sqlite3_malloc_id ){ strncpy(z, sqlite3_malloc_id, TESTALLOC_USERSIZE); z[TESTALLOC_USERSIZE-1] = 0; } /* backtrace() stack */ z = &zAlloc[TESTALLOC_OFFSET_STACK(p)]; backtrace((void **)z, TESTALLOC_STACKFRAMES); /* Sanity check to make sure checkGuards() is working */ checkGuards(p); } static void *getOsPointer(void *p) { char *z = (char *)p; return (void *)(&z[-1 * TESTALLOC_OFFSET_DATA(p)]); } #if SQLITE_MEMDEBUG>1 /* ** The argument points to an Os level allocation. Link it into the threads list ** of allocations. */ static void linkAlloc(void *p){ SqliteTsd *pTsd = sqlite3Tsd(); void **pp = (void **)p; pp[0] = 0; pp[1] = pTsd->pFirst; if( pTsd->pFirst ){ ((void **)pTsd->pFirst)[0] = p; } pTsd->pFirst = p; } /* ** The argument points to an Os level allocation. Unlinke it from the threads ** list of allocations. */ static void unlinkAlloc(void *p) { SqliteTsd *pTsd = sqlite3Tsd(); void **pp = (void **)p; if( p==pTsd->pFirst ){ assert(!pp[0]); assert(!pp[1] || ((void **)(pp[1]))[0]==p); pTsd->pFirst = pp[1]; if( pTsd->pFirst ){ ((void **)pTsd->pFirst)[0] = 0; } }else{ void **pprev = pp[0]; void **pnext = pp[1]; assert(pprev); assert(pprev[1]==p); pprev[1] = (void *)pnext; if( pnext ){ assert(pnext[0]==p); pnext[0] = (void *)pprev; } } } /* ** Pointer p is a pointer to an OS level allocation that has just been ** realloc()ed. Set the list pointers that point to this entry to it's new ** location. */ static void relinkAlloc(void *p) { void **pp = (void **)p; if( pp[0] ){ ((void **)(pp[0]))[1] = p; }else{ SqliteTsd *pTsd = sqlite3Tsd(); pTsd->pFirst = p; } if( pp[1] ){ ((void **)(pp[1]))[0] = p; } } #else #define linkAlloc(x) #define relinkAlloc(x) #define unlinkAlloc(x) #endif /* ** This function sets the result of the Tcl interpreter passed as an argument ** to a list containing an entry for each currently outstanding call made to ** sqliteMalloc and friends by the current thread. Each list entry is itself a ** list, consisting of the following (in order): ** ** * The number of bytes allocated ** * The __FILE__ macro at the time of the sqliteMalloc() call. ** * The __LINE__ macro ... ** * The value of the sqlite3_malloc_id variable ... ** * The output of backtrace() (if available) ... ** ** Todo: We could have a version of this function that outputs to stdout, ** to debug memory leaks when Tcl is not available. */ #ifdef TCLSH #include int sqlite3OutstandingMallocs(Tcl_Interp *interp){ void *p; SqliteTsd *pTsd = sqlite3Tsd(); Tcl_Obj *pRes = Tcl_NewObj(); Tcl_IncrRefCount(pRes); for(p=pTsd->pFirst; p; p=((void **)p)[1]){ Tcl_Obj *pEntry = Tcl_NewObj(); Tcl_Obj *pStack = Tcl_NewObj(); char *z; u32 iLine; int nBytes = sqlite3Os.xAllocationSize(p) - TESTALLOC_OVERHEAD; char *zAlloc = (char *)p; int i; Tcl_ListObjAppendElement(0, pEntry, Tcl_NewIntObj(nBytes)); z = &zAlloc[TESTALLOC_OFFSET_FILENAME(p)]; Tcl_ListObjAppendElement(0, pEntry, Tcl_NewStringObj(z, -1)); z = &zAlloc[TESTALLOC_OFFSET_LINENUMBER(p)]; memcpy(&iLine, z, sizeof(u32)); Tcl_ListObjAppendElement(0, pEntry, Tcl_NewIntObj(iLine)); z = &zAlloc[TESTALLOC_OFFSET_USER(p)]; Tcl_ListObjAppendElement(0, pEntry, Tcl_NewStringObj(z, -1)); z = &zAlloc[TESTALLOC_OFFSET_STACK(p)]; for(i=0; inMaxAlloc = MAX(pTsd->nMaxAlloc, pTsd->nAlloc); #endif if( !failMalloc() ){ u32 *p; p = (u32 *)sqlite3Os.xMalloc(n + TESTALLOC_OVERHEAD); assert(p); sqlite3_nMalloc++; applyGuards(p); linkAlloc(p); return (void *)(&p[TESTALLOC_NGUARD + 2*sizeof(void *)/sizeof(u32)]); } return 0; } /* ** This is the test layer's wrapper around sqlite3Os.xFree(). The argument is a ** pointer to the space allocated for the application to use. */ void OSFREE(void *pFree){ u32 *p = (u32 *)getOsPointer(pFree); /* p points to Os level allocation */ checkGuards(p); unlinkAlloc(p); sqlite3Os.xFree(p); sqlite3_nFree++; } /* ** This is the test layer's wrapper around sqlite3Os.xRealloc(). */ void * OSREALLOC(void *pRealloc, int n){ #ifndef SQLITE_OMIT_MEMORY_MANAGEMENT SqliteTsd *pTsd = sqlite3Tsd(); pTsd->nMaxAlloc = MAX(pTsd->nMaxAlloc, pTsd->nAlloc); #endif if( !failMalloc() ){ u32 *p = (u32 *)getOsPointer(pRealloc); checkGuards(p); p = sqlite3Os.xRealloc(p, n + TESTALLOC_OVERHEAD); applyGuards(p); relinkAlloc(p); return (void *)(&p[TESTALLOC_NGUARD + 2*sizeof(void *)/sizeof(u32)]); } return 0; } void OSMALLOC_FAILED(){ sqlite3Tsd()->isFail = 0; } int OSSIZEOF(void *p){ if( p ){ u32 *pOs = (u32 *)getOsPointer(p); return sqlite3Os.xAllocationSize(pOs) - TESTALLOC_OVERHEAD; } return 0; } #else /* Define macros to call the sqlite3Os.xXXX interface directly if ** the SQLITE_MEMDEBUG macro is not defined. */ #define OSMALLOC(x) sqlite3Os.xMalloc(x) #define OSREALLOC(x,y) sqlite3Os.xRealloc(x,y) #define OSFREE(x) sqlite3Os.xFree(x) #define OSSIZEOF(x) sqlite3Os.xAllocationSize(x) #define OSMALLOC_FAILED() #endif /* ** End code for memory allocation system test layer. **--------------------------------------------------------------------------*/ /* ** The handleSoftLimit() function is called before each call to ** sqlite3Os.xMalloc() or xRealloc(). The parameter 'n' is the number of ** extra bytes about to be allocated (for Realloc() this means the size of the ** new allocation less the size of the old allocation). If the extra allocation ** means that the total memory allocated to SQLite in this thread would exceed ** the limit set by sqlite3_soft_heap_limit(), then sqlite3_release_memory() is ** called to try to avoid this. No indication of whether or not this is ** successful is returned to the caller. ** ** If SQLITE_OMIT_MEMORY_MANAGEMENT is defined, this function is a no-op. */ #ifndef SQLITE_OMIT_MEMORY_MANAGEMENT static void handleSoftLimit(int n){ SqliteTsd *pTsd = sqlite3Tsd(); pTsd->nAlloc += (i64)n; if( n>0 && pTsd->nSoftHeapLimit>0 ){ while( pTsd->nAlloc>pTsd->nSoftHeapLimit && sqlite3_release_memory(n) ); } } #else #define handleSoftLimit() #endif /* ** Allocate and return N bytes of uninitialised memory by calling ** sqlite3Os.xMalloc(). If the Malloc() call fails, attempt to free memory ** by calling sqlite3_release_memory(). */ void *sqlite3MallocRaw(int n){ SqliteTsd *pTsd = sqlite3Tsd(); void *p = 0; if( n>0 && !pTsd->mallocFailed ){ handleSoftLimit(n); while( !(p = OSMALLOC(n)) && sqlite3_release_memory(n) ); if( !p ){ /* If the allocation failed, call handleSoftLimit() again, this time ** with the additive inverse of the argument passed to ** handleSoftLimit() above. This is so the SqliteTsd.nAlloc variable is ** still correct after a malloc() failure. */ handleSoftLimit(n * -1); sqlite3Tsd()->mallocFailed = 1; OSMALLOC_FAILED(); } } return p; } /* ** Resize the allocation at p to n bytes by calling sqlite3Os.xRealloc(). The ** pointer to the new allocation is returned. If the Realloc() call fails, ** attempt to free memory by calling sqlite3_release_memory(). */ void *sqlite3Realloc(void *p, int n){ SqliteTsd *pTsd = sqlite3Tsd(); if( pTsd->mallocFailed ){ return 0; } if( !p ){ return sqlite3Malloc(n); }else{ void *np = 0; handleSoftLimit(n - OSSIZEOF(p)); while( !(np = OSREALLOC(p, n)) && sqlite3_release_memory(n) ); if( !np ){ /* If the allocation failed, call handleSoftLimit() again, this time ** with the additive inverse of the argument passed to ** handleSoftLimit() above. This is so the SqliteTsd.nAlloc variable is ** still correct after a malloc() failure. */ handleSoftLimit(OSSIZEOF(p) - n); pTsd->mallocFailed = 1; OSMALLOC_FAILED(); } return np; } } /* ** Free the memory pointed to by p. p must be either a NULL pointer or a ** value returned by a previous call to sqlite3Malloc() or sqlite3Realloc(). */ void sqlite3FreeX(void *p){ handleSoftLimit(0 - OSSIZEOF(p)); if( p ){ OSFREE(p); } } /* ** A version of sqliteMalloc() that is always a function, not a macro. ** Currently, this is used only to alloc to allocate the parser engine. */ void *sqlite3MallocX(int n){ return sqliteMalloc(n); } /* ** sqlite3Malloc ** sqlite3ReallocOrFree ** ** These two are implemented as wrappers around sqlite3MallocRaw(), ** sqlite3Realloc() and sqlite3Free(). */ void *sqlite3Malloc(int n){ void *p = sqlite3MallocRaw(n); if( p ){ memset(p, 0, n); } return p; } void sqlite3ReallocOrFree(void **pp, int n){ void *p = sqlite3Realloc(*pp, n); if( !p ){ sqlite3FreeX(*pp); } *pp = p; } /* ** Return the number of bytes allocated at location p. p must be either ** a NULL pointer (in which case 0 is returned) or a pointer returned by ** sqlite3Malloc(), sqlite3Realloc() or sqlite3ReallocOrFree(). ** ** The number of bytes allocated does not include any overhead inserted by ** any malloc() wrapper functions that may be called. So the value returned ** is the number of bytes that were available to SQLite using pointer p, ** regardless of how much memory was actually allocated. */ int sqlite3AllocSize(void *p){ return OSSIZEOF(p); } /* ** Make a copy of a string in memory obtained from sqliteMalloc(). These ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This ** is because when memory debugging is turned on, these two functions are ** called via macros that record the current file and line number in the ** SqliteTsd structure. */ char *sqlite3StrDup(const char *z){ char *zNew; if( z==0 ) return 0; zNew = sqlite3MallocRaw(strlen(z)+1); if( zNew ) strcpy(zNew, z); return zNew; } char *sqlite3StrNDup(const char *z, int n){ char *zNew; if( z==0 ) return 0; zNew = sqlite3MallocRaw(n+1); if( zNew ){ memcpy(zNew, z, n); zNew[n] = 0; } return zNew; } /* ** Create a string from the 2nd and subsequent arguments (up to the ** first NULL argument), store the string in memory obtained from ** sqliteMalloc() and make the pointer indicated by the 1st argument ** point to that string. The 1st argument must either be NULL or ** point to memory obtained from sqliteMalloc(). */ void sqlite3SetString(char **pz, ...){ va_list ap; int nByte; const char *z; char *zResult; if( pz==0 ) return; nByte = 1; va_start(ap, pz); while( (z = va_arg(ap, const char*))!=0 ){ nByte += strlen(z); } va_end(ap); sqliteFree(*pz); *pz = zResult = sqliteMallocRaw( nByte ); if( zResult==0 ){ return; } *zResult = 0; va_start(ap, pz); while( (z = va_arg(ap, const char*))!=0 ){ strcpy(zResult, z); zResult += strlen(zResult); } va_end(ap); } /* ** Set the most recent error code and error string for the sqlite ** handle "db". The error code is set to "err_code". ** ** If it is not NULL, string zFormat specifies the format of the ** error string in the style of the printf functions: The following ** format characters are allowed: ** ** %s Insert a string ** %z A string that should be freed after use ** %d Insert an integer ** %T Insert a token ** %S Insert the first element of a SrcList ** ** zFormat and any string tokens that follow it are assumed to be ** encoded in UTF-8. ** ** To clear the most recent error for sqlite handle "db", sqlite3Error ** should be called with err_code set to SQLITE_OK and zFormat set ** to NULL. */ void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ if( db && (db->pErr || (db->pErr = sqlite3ValueNew()))!=0 ){ db->errCode = err_code; if( zFormat ){ char *z; va_list ap; va_start(ap, zFormat); z = sqlite3VMPrintf(zFormat, ap); va_end(ap); sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3FreeX); }else{ sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); } } } /* ** Add an error message to pParse->zErrMsg and increment pParse->nErr. ** The following formatting characters are allowed: ** ** %s Insert a string ** %z A string that should be freed after use ** %d Insert an integer ** %T Insert a token ** %S Insert the first element of a SrcList ** ** This function should be used to report any error that occurs whilst ** compiling an SQL statement (i.e. within sqlite3_prepare()). The ** last thing the sqlite3_prepare() function does is copy the error ** stored by this function into the database handle using sqlite3Error(). ** Function sqlite3Error() should be used during statement execution ** (sqlite3_step() etc.). */ void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ va_list ap; pParse->nErr++; sqliteFree(pParse->zErrMsg); va_start(ap, zFormat); pParse->zErrMsg = sqlite3VMPrintf(zFormat, ap); va_end(ap); } /* ** Convert an SQL-style quoted string into a normal string by removing ** the quote characters. The conversion is done in-place. If the ** input does not begin with a quote character, then this routine ** is a no-op. ** ** 2002-Feb-14: This routine is extended to remove MS-Access style ** brackets from around identifers. For example: "[a-b-c]" becomes ** "a-b-c". */ void sqlite3Dequote(char *z){ int quote; int i, j; if( z==0 ) return; quote = z[0]; switch( quote ){ case '\'': break; case '"': break; case '`': break; /* For MySQL compatibility */ case '[': quote = ']'; break; /* For MS SqlServer compatibility */ default: return; } for(i=1, j=0; z[i]; i++){ if( z[i]==quote ){ if( z[i+1]==quote ){ z[j++] = quote; i++; }else{ z[j++] = 0; break; } }else{ z[j++] = z[i]; } } } /* An array to map all upper-case characters into their corresponding ** lower-case character. */ const unsigned char sqlite3UpperToLower[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103, 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121, 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107, 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125, 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161, 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179, 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197, 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215, 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233, 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251, 252,253,254,255 }; #define UpperToLower sqlite3UpperToLower /* ** Some systems have stricmp(). Others have strcasecmp(). Because ** there is no consistency, we will define our own. */ int sqlite3StrICmp(const char *zLeft, const char *zRight){ register unsigned char *a, *b; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return UpperToLower[*a] - UpperToLower[*b]; } int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ register unsigned char *a, *b; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; } /* ** Return TRUE if z is a pure numeric string. Return FALSE if the ** string contains any character which is not part of a number. If ** the string is numeric and contains the '.' character, set *realnum ** to TRUE (otherwise FALSE). ** ** An empty string is considered non-numeric. */ int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ int incr = (enc==SQLITE_UTF8?1:2); if( enc==SQLITE_UTF16BE ) z++; if( *z=='-' || *z=='+' ) z += incr; if( !isdigit(*(u8*)z) ){ return 0; } z += incr; if( realnum ) *realnum = 0; while( isdigit(*(u8*)z) ){ z += incr; } if( *z=='.' ){ z += incr; if( !isdigit(*(u8*)z) ) return 0; while( isdigit(*(u8*)z) ){ z += incr; } if( realnum ) *realnum = 1; } if( *z=='e' || *z=='E' ){ z += incr; if( *z=='+' || *z=='-' ) z += incr; if( !isdigit(*(u8*)z) ) return 0; while( isdigit(*(u8*)z) ){ z += incr; } if( realnum ) *realnum = 1; } return *z==0; } /* ** The string z[] is an ascii representation of a real number. ** Convert this string to a double. ** ** This routine assumes that z[] really is a valid number. If it ** is not, the result is undefined. ** ** This routine is used instead of the library atof() function because ** the library atof() might want to use "," as the decimal point instead ** of "." depending on how locale is set. But that would cause problems ** for SQL. So this routine always uses "." regardless of locale. */ int sqlite3AtoF(const char *z, double *pResult){ #ifndef SQLITE_OMIT_FLOATING_POINT int sign = 1; const char *zBegin = z; LONGDOUBLE_TYPE v1 = 0.0; if( *z=='-' ){ sign = -1; z++; }else if( *z=='+' ){ z++; } while( isdigit(*(u8*)z) ){ v1 = v1*10.0 + (*z - '0'); z++; } if( *z=='.' ){ LONGDOUBLE_TYPE divisor = 1.0; z++; while( isdigit(*(u8*)z) ){ v1 = v1*10.0 + (*z - '0'); divisor *= 10.0; z++; } v1 /= divisor; } if( *z=='e' || *z=='E' ){ int esign = 1; int eval = 0; LONGDOUBLE_TYPE scale = 1.0; z++; if( *z=='-' ){ esign = -1; z++; }else if( *z=='+' ){ z++; } while( isdigit(*(u8*)z) ){ eval = eval*10 + *z - '0'; z++; } while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } if( esign<0 ){ v1 /= scale; }else{ v1 *= scale; } } *pResult = sign<0 ? -v1 : v1; return z - zBegin; #else return sqlite3atoi64(z, pResult); #endif /* SQLITE_OMIT_FLOATING_POINT */ } /* ** Return TRUE if zNum is a 64-bit signed integer and write ** the value of the integer into *pNum. If zNum is not an integer ** or is an integer that is too large to be expressed with 64 bits, ** then return false. If n>0 and the integer is string is not ** exactly n bytes long, return false. ** ** When this routine was originally written it dealt with only ** 32-bit numbers. At that time, it was much faster than the ** atoi() library routine in RedHat 7.2. */ int sqlite3atoi64(const char *zNum, i64 *pNum){ i64 v = 0; int neg; int i, c; if( *zNum=='-' ){ neg = 1; zNum++; }else if( *zNum=='+' ){ neg = 0; zNum++; }else{ neg = 0; } for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ v = v*10 + c - '0'; } *pNum = neg ? -v : v; return c==0 && i>0 && (i<19 || (i==19 && memcmp(zNum,"9223372036854775807",19)<=0)); } /* ** The string zNum represents an integer. There might be some other ** information following the integer too, but that part is ignored. ** If the integer that the prefix of zNum represents will fit in a ** 32-bit signed integer, return TRUE. Otherwise return FALSE. ** ** This routine returns FALSE for the string -2147483648 even that ** that number will in fact fit in a 32-bit integer. But positive ** 2147483648 will not fit in 32 bits. So it seems safer to return ** false. */ static int sqlite3FitsIn32Bits(const char *zNum){ int i, c; if( *zNum=='-' || *zNum=='+' ) zNum++; for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} return i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0); } /* ** If zNum represents an integer that will fit in 32-bits, then set ** *pValue to that integer and return true. Otherwise return false. */ int sqlite3GetInt32(const char *zNum, int *pValue){ if( sqlite3FitsIn32Bits(zNum) ){ *pValue = atoi(zNum); return 1; } return 0; } /* ** The string zNum represents an integer. There might be some other ** information following the integer too, but that part is ignored. ** If the integer that the prefix of zNum represents will fit in a ** 64-bit signed integer, return TRUE. Otherwise return FALSE. ** ** This routine returns FALSE for the string -9223372036854775808 even that ** that number will, in theory fit in a 64-bit integer. Positive ** 9223373036854775808 will not fit in 64 bits. So it seems safer to return ** false. */ int sqlite3FitsIn64Bits(const char *zNum){ int i, c; if( *zNum=='-' || *zNum=='+' ) zNum++; for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} return i<19 || (i==19 && memcmp(zNum,"9223372036854775807",19)<=0); } /* ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN ** when this routine is called. ** ** This routine is a attempt to detect if two threads use the ** same sqlite* pointer at the same time. There is a race ** condition so it is possible that the error is not detected. ** But usually the problem will be seen. The result will be an ** error which can be used to debug the application that is ** using SQLite incorrectly. ** ** Ticket #202: If db->magic is not a valid open value, take care not ** to modify the db structure at all. It could be that db is a stale ** pointer. In other words, it could be that there has been a prior ** call to sqlite3_close(db) and db has been deallocated. And we do ** not want to write into deallocated memory. */ int sqlite3SafetyOn(sqlite3 *db){ if( db->magic==SQLITE_MAGIC_OPEN ){ db->magic = SQLITE_MAGIC_BUSY; return 0; }else if( db->magic==SQLITE_MAGIC_BUSY ){ db->magic = SQLITE_MAGIC_ERROR; db->flags |= SQLITE_Interrupt; } return 1; } /* ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY ** when this routine is called. */ int sqlite3SafetyOff(sqlite3 *db){ if( db->magic==SQLITE_MAGIC_BUSY ){ db->magic = SQLITE_MAGIC_OPEN; return 0; }else if( db->magic==SQLITE_MAGIC_OPEN ){ db->magic = SQLITE_MAGIC_ERROR; db->flags |= SQLITE_Interrupt; } return 1; } /* ** Check to make sure we have a valid db pointer. This test is not ** foolproof but it does provide some measure of protection against ** misuse of the interface such as passing in db pointers that are ** NULL or which have been previously closed. If this routine returns ** TRUE it means that the db pointer is invalid and should not be ** dereferenced for any reason. The calling function should invoke ** SQLITE_MISUSE immediately. */ int sqlite3SafetyCheck(sqlite3 *db){ int magic; if( db==0 ) return 1; magic = db->magic; if( magic!=SQLITE_MAGIC_CLOSED && magic!=SQLITE_MAGIC_OPEN && magic!=SQLITE_MAGIC_BUSY ) return 1; return 0; } /* ** The variable-length integer encoding is as follows: ** ** KEY: ** A = 0xxxxxxx 7 bits of data and one flag bit ** B = 1xxxxxxx 7 bits of data and one flag bit ** C = xxxxxxxx 8 bits of data ** ** 7 bits - A ** 14 bits - BA ** 21 bits - BBA ** 28 bits - BBBA ** 35 bits - BBBBA ** 42 bits - BBBBBA ** 49 bits - BBBBBBA ** 56 bits - BBBBBBBA ** 64 bits - BBBBBBBBC */ /* ** Write a 64-bit variable-length integer to memory starting at p[0]. ** The length of data write will be between 1 and 9 bytes. The number ** of bytes written is returned. ** ** A variable-length integer consists of the lower 7 bits of each byte ** for all bytes that have the 8th bit set and one byte with the 8th ** bit clear. Except, if we get to the 9th byte, it stores the full ** 8 bits and is the last byte. */ int sqlite3PutVarint(unsigned char *p, u64 v){ int i, j, n; u8 buf[10]; if( v & (((u64)0xff000000)<<32) ){ p[8] = v; v >>= 8; for(i=7; i>=0; i--){ p[i] = (v & 0x7f) | 0x80; v >>= 7; } return 9; } n = 0; do{ buf[n++] = (v & 0x7f) | 0x80; v >>= 7; }while( v!=0 ); buf[0] &= 0x7f; assert( n<=9 ); for(i=0, j=n-1; j>=0; j--, i++){ p[i] = buf[j]; } return n; } /* ** Read a 64-bit variable-length integer from memory starting at p[0]. ** Return the number of bytes read. The value is stored in *v. */ int sqlite3GetVarint(const unsigned char *p, u64 *v){ u32 x; u64 x64; int n; unsigned char c; if( ((c = p[0]) & 0x80)==0 ){ *v = c; return 1; } x = c & 0x7f; if( ((c = p[1]) & 0x80)==0 ){ *v = (x<<7) | c; return 2; } x = (x<<7) | (c&0x7f); if( ((c = p[2]) & 0x80)==0 ){ *v = (x<<7) | c; return 3; } x = (x<<7) | (c&0x7f); if( ((c = p[3]) & 0x80)==0 ){ *v = (x<<7) | c; return 4; } x64 = (x<<7) | (c&0x7f); n = 4; do{ c = p[n++]; if( n==9 ){ x64 = (x64<<8) | c; break; } x64 = (x64<<7) | (c&0x7f); }while( (c & 0x80)!=0 ); *v = x64; return n; } /* ** Read a 32-bit variable-length integer from memory starting at p[0]. ** Return the number of bytes read. The value is stored in *v. */ int sqlite3GetVarint32(const unsigned char *p, u32 *v){ u32 x; int n; unsigned char c; if( ((signed char*)p)[0]>=0 ){ *v = p[0]; return 1; } x = p[0] & 0x7f; if( ((signed char*)p)[1]>=0 ){ *v = (x<<7) | p[1]; return 2; } x = (x<<7) | (p[1] & 0x7f); n = 2; do{ x = (x<<7) | ((c = p[n++])&0x7f); }while( (c & 0x80)!=0 && n<9 ); *v = x; return n; } /* ** Return the number of bytes that will be needed to store the given ** 64-bit integer. */ int sqlite3VarintLen(u64 v){ int i = 0; do{ i++; v >>= 7; }while( v!=0 && i<9 ); return i; } #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) \ || defined(SQLITE_TEST) /* ** Translate a single byte of Hex into an integer. */ static int hexToInt(int h){ if( h>='0' && h<='9' ){ return h - '0'; }else if( h>='a' && h<='f' ){ return h - 'a' + 10; }else{ assert( h>='A' && h<='F' ); return h - 'A' + 10; } } #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC || SQLITE_TEST */ #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) /* ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary ** value. Return a pointer to its binary value. Space to hold the ** binary value has been obtained from malloc and must be freed by ** the calling routine. */ void *sqlite3HexToBlob(const char *z){ char *zBlob; int i; int n = strlen(z); if( n%2 ) return 0; zBlob = (char *)sqliteMalloc(n/2); for(i=0; iisInit ){ pTsd->nSoftHeapLimit = -1; #ifndef NDEBUG pTsd->mallocAllowed = 1; #endif pTsd->isInit = 1; } return pTsd; } /* ** Clear the "mallocFailed" flag. This should be invoked before exiting any ** entry points that may have called sqliteMalloc(). */ void sqlite3MallocClearFailed(){ sqlite3Tsd()->mallocFailed = 0; } #ifndef NDEBUG /* ** This function sets a flag in the thread-specific-data structure that will ** cause an assert to fail if sqliteMalloc() or sqliteRealloc() is called. */ void sqlite3MallocDisallow(){ assert(sqlite3Tsd()->mallocAllowed); sqlite3Tsd()->mallocAllowed = 0; } /* ** This function clears the flag set in the thread-specific-data structure set ** by sqlite3MallocDisallow(). */ void sqlite3MallocAllow(){ assert(!sqlite3Tsd()->mallocAllowed); sqlite3Tsd()->mallocAllowed = 1; } #endif