/* ** 2007 August 14 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** ** $Id: mem4.c,v 1.3 2008/06/18 17:09:10 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** This version of the memory allocator attempts to obtain memory ** from mmap() if the size of the allocation is close to the size ** of a virtual memory page. If the size of the allocation is different ** from the virtual memory page size, then ordinary malloc() is used. ** Ordinary malloc is also used if space allocated to mmap() is ** exhausted. ** ** Enable this memory allocation by compiling with -DSQLITE_MMAP_HEAP_SIZE=nnn ** where nnn is the maximum number of bytes of mmap-ed memory you want ** to support. This module may choose to use less memory than requested. ** */ #ifdef SQLITE_MMAP_HEAP_SIZE /* ** This is a test version of the memory allocator that attempts to ** use mmap() and madvise() for allocations and frees of approximately ** the virtual memory page size. */ #include #include #include #include /* ** All of the static variables used by this module are collected ** into a single structure named "mem". This is to keep the ** static variables organized and to reduce namespace pollution ** when this module is combined with other in the amalgamation. */ static struct { /* ** The alarm callback and its arguments. The mem.mutex lock will ** be held while the callback is running. Recursive calls into ** the memory subsystem are allowed, but no new callbacks will be ** issued. The alarmBusy variable is set to prevent recursive ** callbacks. */ sqlite3_int64 alarmThreshold; void (*alarmCallback)(void*, sqlite3_int64,int); void *alarmArg; int alarmBusy; /* ** Mutex to control access to the memory allocation subsystem. */ sqlite3_mutex *mutex; /* ** Current allocation and high-water mark. */ sqlite3_int64 nowUsed; sqlite3_int64 mxUsed; /* ** Current allocation and high-water marks for mmap allocated memory. */ sqlite3_int64 nowUsedMMap; sqlite3_int64 mxUsedMMap; /* ** Size of a single mmap page. Obtained from sysconf(). */ int szPage; int mnPage; /* ** The number of available mmap pages. */ int nPage; /* ** Index of the first free page. 0 means no pages have been freed. */ int firstFree; /* First unused page on the top of the heap. */ int firstUnused; /* ** Bulk memory obtained from from mmap(). */ char *mmapHeap; /* first byte of the heap */ } mem; /* ** Enter the mutex mem.mutex. Allocate it if it is not already allocated. ** The mmap() region is initialized the first time this routine is called. */ static void memsys4Enter(void){ if( mem.mutex==0 ){ mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); } sqlite3_mutex_enter(mem.mutex); } /* ** Attempt to free memory to the mmap heap. This only works if ** the pointer p is within the range of memory addresses that ** comprise the mmap heap. Return 1 if the memory was freed ** successfully. Return 0 if the pointer is out of range. */ static int mmapFree(void *p){ char *z; int idx, *a; if( mem.mmapHeap==MAP_FAILED || mem.nPage==0 ){ return 0; } z = (char*)p; idx = (z - mem.mmapHeap)/mem.szPage; if( idx<1 || idx>=mem.nPage ){ return 0; } a = (int*)mem.mmapHeap; a[idx] = a[mem.firstFree]; mem.firstFree = idx; mem.nowUsedMMap -= mem.szPage; madvise(p, mem.szPage, MADV_DONTNEED); return 1; } /* ** Attempt to allocate nBytes from the mmap heap. Return a pointer ** to the allocated page. Or, return NULL if the allocation fails. ** ** The allocation will fail if nBytes is not the right size. ** Or, the allocation will fail if the mmap heap has been exhausted. */ static void *mmapAlloc(int nBytes){ int idx = 0; if( nBytes>mem.szPage || nBytes mem.szPage ){ mem.nPage = mem.szPage/sizeof(int); } mem.mmapHeap = mmap(0, mem.szPage*mem.nPage, PROT_WRITE|PROT_READ, MAP_ANONYMOUS|MAP_SHARED, -1, 0); if( mem.mmapHeap==MAP_FAILED ){ mem.firstUnused = errno; }else{ mem.firstUnused = 1; mem.nowUsedMMap = mem.szPage; } } if( mem.mmapHeap==MAP_FAILED ){ return 0; } if( mem.firstFree ){ int idx = mem.firstFree; int *a = (int*)mem.mmapHeap; mem.firstFree = a[idx]; }else if( mem.firstUnusedmem.mxUsedMMap ){ mem.mxUsedMMap = mem.nowUsedMMap; } return (void*)&mem.mmapHeap[idx*mem.szPage]; }else{ return 0; } } /* ** Release the mmap-ed memory region if it is currently allocated and ** is not in use. */ static void mmapUnmap(void){ if( mem.mmapHeap==MAP_FAILED ) return; if( mem.nPage==0 ) return; if( mem.nowUsedMMap>mem.szPage ) return; munmap(mem.mmapHeap, mem.nPage*mem.szPage); mem.nowUsedMMap = 0; mem.nPage = 0; } /* ** Return the amount of memory currently checked out. */ sqlite3_int64 sqlite3_memory_used(void){ sqlite3_int64 n; memsys4Enter(); n = mem.nowUsed + mem.nowUsedMMap; sqlite3_mutex_leave(mem.mutex); return n; } /* ** Return the maximum amount of memory that has ever been ** checked out since either the beginning of this process ** or since the most recent reset. */ sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ sqlite3_int64 n; memsys4Enter(); n = mem.mxUsed + mem.mxUsedMMap; if( resetFlag ){ mem.mxUsed = mem.nowUsed; mem.mxUsedMMap = mem.nowUsedMMap; } sqlite3_mutex_leave(mem.mutex); return n; } /* ** Change the alarm callback */ int sqlite3_memory_alarm( void(*xCallback)(void *pArg, sqlite3_int64 used,int N), void *pArg, sqlite3_int64 iThreshold ){ memsys4Enter(); mem.alarmCallback = xCallback; mem.alarmArg = pArg; mem.alarmThreshold = iThreshold; sqlite3_mutex_leave(mem.mutex); return SQLITE_OK; } /* ** Trigger the alarm */ static void sqlite3MemsysAlarm(int nByte){ void (*xCallback)(void*,sqlite3_int64,int); sqlite3_int64 nowUsed; void *pArg; if( mem.alarmCallback==0 || mem.alarmBusy ) return; mem.alarmBusy = 1; xCallback = mem.alarmCallback; nowUsed = mem.nowUsed; pArg = mem.alarmArg; sqlite3_mutex_leave(mem.mutex); xCallback(pArg, nowUsed, nByte); sqlite3_mutex_enter(mem.mutex); mem.alarmBusy = 0; } /* ** Allocate nBytes of memory */ static void *memsys4Malloc(int nBytes){ sqlite3_int64 *p = 0; if( mem.alarmCallback!=0 && mem.nowUsed+mem.nowUsedMMap+nBytes>=mem.alarmThreshold ){ sqlite3MemsysAlarm(nBytes); } if( (p = mmapAlloc(nBytes))==0 ){ p = malloc(nBytes+8); if( p==0 ){ sqlite3MemsysAlarm(nBytes); p = malloc(nBytes+8); } if( p ){ p[0] = nBytes; p++; mem.nowUsed += nBytes; if( mem.nowUsed>mem.mxUsed ){ mem.mxUsed = mem.nowUsed; } } } return (void*)p; } /* ** Return the size of a memory allocation */ static int memsys4Size(void *pPrior){ char *z = (char*)pPrior; int idx = mem.nPage ? (z - mem.mmapHeap)/mem.szPage : 0; int nByte; if( idx>=1 && idx0 ){ memsys4Enter(); p = memsys4Malloc(nBytes); sqlite3_mutex_leave(mem.mutex); } return (void*)p; } /* ** Free memory. */ void sqlite3_free(void *pPrior){ if( pPrior==0 ){ return; } assert( mem.mutex!=0 ); sqlite3_mutex_enter(mem.mutex); memsys4Free(pPrior); sqlite3_mutex_leave(mem.mutex); } /* ** Change the size of an existing memory allocation */ void *sqlite3_realloc(void *pPrior, int nBytes){ int nOld; sqlite3_int64 *p; if( pPrior==0 ){ return sqlite3_malloc(nBytes); } if( nBytes<=0 ){ sqlite3_free(pPrior); return 0; } nOld = memsys4Size(pPrior); if( nBytes<=nOld && nBytes>=nOld-128 ){ return pPrior; } assert( mem.mutex!=0 ); sqlite3_mutex_enter(mem.mutex); p = memsys4Malloc(nBytes); if( p ){ if( nOld