/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** ** $Id: main.c,v 1.288 2005/05/23 04:51:02 danielk1977 Exp $ */ #include "sqliteInt.h" #include "os.h" #include /* ** The following constant value is used by the SQLITE_BIGENDIAN and ** SQLITE_LITTLEENDIAN macros. */ const int sqlite3one = 1; #ifndef SQLITE_OMIT_GLOBALRECOVER /* ** Linked list of all open database handles. This is used by the ** sqlite3_global_recover() function. Entries are added to the list ** by openDatabase() and removed by sqlite3_close(). */ static sqlite3 *pDbList = 0; #endif /* ** Fill the InitData structure with an error message that indicates ** that the database is corrupt. */ static void corruptSchema(InitData *pData, const char *zExtra){ if( !sqlite3_malloc_failed ){ sqlite3SetString(pData->pzErrMsg, "malformed database schema", zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0); } } /* ** This is the callback routine for the code that initializes the ** database. See sqlite3Init() below for additional information. ** This routine is also called from the OP_ParseSchema opcode of the VDBE. ** ** Each callback contains the following information: ** ** argv[0] = name of thing being created ** argv[1] = root page number for table or index. NULL for trigger or view. ** argv[2] = SQL text for the CREATE statement. ** argv[3] = "1" for temporary files, "0" for main database, "2" or more ** for auxiliary database files. ** */ int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){ InitData *pData = (InitData*)pInit; sqlite3 *db = pData->db; int iDb; assert( argc==4 ); if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ if( argv[1]==0 || argv[3]==0 ){ corruptSchema(pData, 0); return 1; } iDb = atoi(argv[3]); assert( iDb>=0 && iDbnDb ); if( argv[2] && argv[2][0] ){ /* Call the parser to process a CREATE TABLE, INDEX or VIEW. ** But because db->init.busy is set to 1, no VDBE code is generated ** or executed. All the parser does is build the internal data ** structures that describe the table, index, or view. */ char *zErr; int rc; assert( db->init.busy ); db->init.iDb = iDb; db->init.newTnum = atoi(argv[1]); rc = sqlite3_exec(db, argv[2], 0, 0, &zErr); db->init.iDb = 0; if( SQLITE_OK!=rc ){ corruptSchema(pData, zErr); sqlite3_free(zErr); return rc; } }else{ /* If the SQL column is blank it means this is an index that ** was created to be the PRIMARY KEY or to fulfill a UNIQUE ** constraint for a CREATE TABLE. The index should have already ** been created when we processed the CREATE TABLE. All we have ** to do here is record the root page number for that index. */ Index *pIndex; pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName); if( pIndex==0 || pIndex->tnum!=0 ){ /* This can occur if there exists an index on a TEMP table which ** has the same name as another index on a permanent index. Since ** the permanent table is hidden by the TEMP table, we can also ** safely ignore the index on the permanent table. */ /* Do Nothing */; }else{ pIndex->tnum = atoi(argv[1]); } } return 0; } /* ** Attempt to read the database schema and initialize internal ** data structures for a single database file. The index of the ** database file is given by iDb. iDb==0 is used for the main ** database. iDb==1 should never be used. iDb>=2 is used for ** auxiliary databases. Return one of the SQLITE_ error codes to ** indicate success or failure. */ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){ int rc; BtCursor *curMain; int size; Table *pTab; char const *azArg[5]; char zDbNum[30]; int meta[10]; InitData initData; char const *zMasterSchema; char const *zMasterName = SCHEMA_TABLE(iDb); /* ** The master database table has a structure like this */ static const char master_schema[] = "CREATE TABLE sqlite_master(\n" " type text,\n" " name text,\n" " tbl_name text,\n" " rootpage integer,\n" " sql text\n" ")" ; #ifndef SQLITE_OMIT_TEMPDB static const char temp_master_schema[] = "CREATE TEMP TABLE sqlite_temp_master(\n" " type text,\n" " name text,\n" " tbl_name text,\n" " rootpage integer,\n" " sql text\n" ")" ; #else #define temp_master_schema 0 #endif assert( iDb>=0 && iDbnDb ); /* zMasterSchema and zInitScript are set to point at the master schema ** and initialisation script appropriate for the database being ** initialised. zMasterName is the name of the master table. */ if( !OMIT_TEMPDB && iDb==1 ){ zMasterSchema = temp_master_schema; }else{ zMasterSchema = master_schema; } zMasterName = SCHEMA_TABLE(iDb); /* Construct the schema tables. */ sqlite3SafetyOff(db); azArg[0] = zMasterName; azArg[1] = "1"; azArg[2] = zMasterSchema; sprintf(zDbNum, "%d", iDb); azArg[3] = zDbNum; azArg[4] = 0; initData.db = db; initData.pzErrMsg = pzErrMsg; rc = sqlite3InitCallback(&initData, 4, (char **)azArg, 0); if( rc!=SQLITE_OK ){ sqlite3SafetyOn(db); return rc; } pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName); if( pTab ){ pTab->readOnly = 1; } sqlite3SafetyOn(db); /* Create a cursor to hold the database open */ if( db->aDb[iDb].pBt==0 ){ if( !OMIT_TEMPDB && iDb==1 ) DbSetProperty(db, 1, DB_SchemaLoaded); return SQLITE_OK; } rc = sqlite3BtreeCursor(db->aDb[iDb].pBt, MASTER_ROOT, 0, 0, 0, &curMain); if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){ sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0); return rc; } /* Get the database meta information. ** ** Meta values are as follows: ** meta[0] Schema cookie. Changes with each schema change. ** meta[1] File format of schema layer. ** meta[2] Size of the page cache. ** meta[3] Use freelist if 0. Autovacuum if greater than zero. ** meta[4] Db text encoding. 1:UTF-8 3:UTF-16 LE 4:UTF-16 BE ** meta[5] The user cookie. Used by the application. ** meta[6] ** meta[7] ** meta[8] ** meta[9] ** ** Note: The hash defined SQLITE_UTF* symbols in sqliteInt.h correspond to ** the possible values of meta[4]. */ if( rc==SQLITE_OK ){ int i; for(i=0; rc==SQLITE_OK && iaDb[iDb].pBt, i+1, (u32 *)&meta[i]); } if( rc ){ sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0); sqlite3BtreeCloseCursor(curMain); return rc; } }else{ memset(meta, 0, sizeof(meta)); } db->aDb[iDb].schema_cookie = meta[0]; /* If opening a non-empty database, check the text encoding. For the ** main database, set sqlite3.enc to the encoding of the main database. ** For an attached db, it is an error if the encoding is not the same ** as sqlite3.enc. */ if( meta[4] ){ /* text encoding */ if( iDb==0 ){ /* If opening the main database, set db->enc. */ db->enc = (u8)meta[4]; db->pDfltColl = sqlite3FindCollSeq(db, db->enc, "BINARY", 6, 0); }else{ /* If opening an attached database, the encoding much match db->enc */ if( meta[4]!=db->enc ){ sqlite3BtreeCloseCursor(curMain); sqlite3SetString(pzErrMsg, "attached databases must use the same" " text encoding as main database", (char*)0); return SQLITE_ERROR; } } } size = meta[2]; if( size==0 ){ size = MAX_PAGES; } db->aDb[iDb].cache_size = size; if( iDb==0 ){ db->file_format = meta[1]; if( db->file_format==0 ){ /* This happens if the database was initially empty */ db->file_format = 1; } if( db->file_format==2 || db->file_format==3 ){ /* File format 2 is treated exactly as file format 1. New ** databases are created with file format 1. */ db->file_format = 1; } } /* ** file_format==1 Version 3.0.0. ** file_format==2 Version 3.1.3. ** file_format==3 Version 3.1.4. ** ** Version 3.0 can only use files with file_format==1. Version 3.1.3 ** can read and write files with file_format==1 or file_format==2. ** Version 3.1.4 can read and write file formats 1, 2 and 3. */ if( meta[1]>3 ){ sqlite3BtreeCloseCursor(curMain); sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0); return SQLITE_ERROR; } sqlite3BtreeSetCacheSize(db->aDb[iDb].pBt, db->aDb[iDb].cache_size); /* Read the schema information out of the schema tables */ assert( db->init.busy ); if( rc==SQLITE_EMPTY ){ /* For an empty database, there is nothing to read */ rc = SQLITE_OK; }else{ char *zSql; zSql = sqlite3MPrintf( "SELECT name, rootpage, sql, '%s' FROM '%q'.%s", zDbNum, db->aDb[iDb].zName, zMasterName); sqlite3SafetyOff(db); rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); sqlite3SafetyOn(db); sqliteFree(zSql); sqlite3BtreeCloseCursor(curMain); } if( sqlite3_malloc_failed ){ sqlite3SetString(pzErrMsg, "out of memory", (char*)0); rc = SQLITE_NOMEM; sqlite3ResetInternalSchema(db, 0); } if( rc==SQLITE_OK ){ DbSetProperty(db, iDb, DB_SchemaLoaded); }else{ sqlite3ResetInternalSchema(db, iDb); } return rc; } /* ** Initialize all database files - the main database file, the file ** used to store temporary tables, and any additional database files ** created using ATTACH statements. Return a success code. If an ** error occurs, write an error message into *pzErrMsg. ** ** After the database is initialized, the SQLITE_Initialized ** bit is set in the flags field of the sqlite structure. */ int sqlite3Init(sqlite3 *db, char **pzErrMsg){ int i, rc; if( db->init.busy ) return SQLITE_OK; assert( (db->flags & SQLITE_Initialized)==0 ); rc = SQLITE_OK; db->init.busy = 1; for(i=0; rc==SQLITE_OK && inDb; i++){ if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue; rc = sqlite3InitOne(db, i, pzErrMsg); if( rc ){ sqlite3ResetInternalSchema(db, i); } } /* Once all the other databases have been initialised, load the schema ** for the TEMP database. This is loaded last, as the TEMP database ** schema may contain references to objects in other databases. */ #ifndef SQLITE_OMIT_TEMPDB if( rc==SQLITE_OK && db->nDb>1 && !DbHasProperty(db, 1, DB_SchemaLoaded) ){ rc = sqlite3InitOne(db, 1, pzErrMsg); if( rc ){ sqlite3ResetInternalSchema(db, 1); } } #endif db->init.busy = 0; if( rc==SQLITE_OK ){ db->flags |= SQLITE_Initialized; sqlite3CommitInternalChanges(db); } if( rc!=SQLITE_OK ){ db->flags &= ~SQLITE_Initialized; } return rc; } /* ** This routine is a no-op if the database schema is already initialised. ** Otherwise, the schema is loaded. An error code is returned. */ int sqlite3ReadSchema(Parse *pParse){ int rc = SQLITE_OK; sqlite3 *db = pParse->db; if( !db->init.busy ){ if( (db->flags & SQLITE_Initialized)==0 ){ rc = sqlite3Init(db, &pParse->zErrMsg); } } assert( rc!=SQLITE_OK || (db->flags & SQLITE_Initialized)||db->init.busy ); if( rc!=SQLITE_OK ){ pParse->rc = rc; pParse->nErr++; } return rc; } /* ** The version of the library */ const char rcsid3[] = "@(#) \044Id: SQLite version " SQLITE_VERSION " $"; const char sqlite3_version[] = SQLITE_VERSION; const char *sqlite3_libversion(void){ return sqlite3_version; } int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } /* ** This is the default collating function named "BINARY" which is always ** available. */ static int binCollFunc( void *NotUsed, int nKey1, const void *pKey1, int nKey2, const void *pKey2 ){ int rc, n; n = nKey1lastRowid; } /* ** Return the number of changes in the most recent call to sqlite3_exec(). */ int sqlite3_changes(sqlite3 *db){ return db->nChange; } /* ** Return the number of changes since the database handle was opened. */ int sqlite3_total_changes(sqlite3 *db){ return db->nTotalChange; } /* ** Close an existing SQLite database */ int sqlite3_close(sqlite3 *db){ HashElem *i; int j; if( !db ){ return SQLITE_OK; } if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } /* If there are any outstanding VMs, return SQLITE_BUSY. */ if( db->pVdbe ){ sqlite3Error(db, SQLITE_BUSY, "Unable to close due to unfinalised statements"); return SQLITE_BUSY; } assert( !sqlite3SafetyCheck(db) ); /* FIX ME: db->magic may be set to SQLITE_MAGIC_CLOSED if the database ** cannot be opened for some reason. So this routine needs to run in ** that case. But maybe there should be an extra magic value for the ** "failed to open" state. */ if( db->magic!=SQLITE_MAGIC_CLOSED && sqlite3SafetyOn(db) ){ /* printf("DID NOT CLOSE\n"); fflush(stdout); */ return SQLITE_ERROR; } for(j=0; jnDb; j++){ struct Db *pDb = &db->aDb[j]; if( pDb->pBt ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; } } sqlite3ResetInternalSchema(db, 0); assert( db->nDb<=2 ); assert( db->aDb==db->aDbStatic ); for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ FuncDef *pFunc, *pNext; for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){ pNext = pFunc->pNext; sqliteFree(pFunc); } } for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ CollSeq *pColl = (CollSeq *)sqliteHashData(i); sqliteFree(pColl); } sqlite3HashClear(&db->aCollSeq); sqlite3HashClear(&db->aFunc); sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ if( db->pValue ){ sqlite3ValueFree(db->pValue); } if( db->pErr ){ sqlite3ValueFree(db->pErr); } #ifndef SQLITE_OMIT_GLOBALRECOVER { sqlite3 *pPrev; sqlite3OsEnterMutex(); pPrev = pDbList; while( pPrev && pPrev->pNext!=db ){ pPrev = pPrev->pNext; } if( pPrev ){ pPrev->pNext = db->pNext; }else{ assert( pDbList==db ); pDbList = db->pNext; } sqlite3OsLeaveMutex(); } #endif #ifdef SQLITE_SSE sqlite3_finalize(db->pFetch); #endif db->magic = SQLITE_MAGIC_ERROR; sqliteFree(db); return SQLITE_OK; } /* ** Rollback all database files. */ void sqlite3RollbackAll(sqlite3 *db){ int i; for(i=0; inDb; i++){ if( db->aDb[i].pBt ){ sqlite3BtreeRollback(db->aDb[i].pBt); db->aDb[i].inTrans = 0; } } sqlite3ResetInternalSchema(db, 0); } /* ** Return a static string that describes the kind of error specified in the ** argument. */ const char *sqlite3ErrStr(int rc){ const char *z; switch( rc ){ case SQLITE_ROW: case SQLITE_DONE: case SQLITE_OK: z = "not an error"; break; case SQLITE_ERROR: z = "SQL logic error or missing database"; break; case SQLITE_INTERNAL: z = "internal SQLite implementation flaw"; break; case SQLITE_PERM: z = "access permission denied"; break; case SQLITE_ABORT: z = "callback requested query abort"; break; case SQLITE_BUSY: z = "database is locked"; break; case SQLITE_LOCKED: z = "database table is locked"; break; case SQLITE_NOMEM: z = "out of memory"; break; case SQLITE_READONLY: z = "attempt to write a readonly database"; break; case SQLITE_INTERRUPT: z = "interrupted"; break; case SQLITE_IOERR: z = "disk I/O error"; break; case SQLITE_CORRUPT: z = "database disk image is malformed"; break; case SQLITE_NOTFOUND: z = "table or record not found"; break; case SQLITE_FULL: z = "database is full"; break; case SQLITE_CANTOPEN: z = "unable to open database file"; break; case SQLITE_PROTOCOL: z = "database locking protocol failure"; break; case SQLITE_EMPTY: z = "table contains no data"; break; case SQLITE_SCHEMA: z = "database schema has changed"; break; case SQLITE_TOOBIG: z = "too much data for one table row"; break; case SQLITE_CONSTRAINT: z = "constraint failed"; break; case SQLITE_MISMATCH: z = "datatype mismatch"; break; case SQLITE_MISUSE: z = "library routine called out of sequence";break; case SQLITE_NOLFS: z = "kernel lacks large file support"; break; case SQLITE_AUTH: z = "authorization denied"; break; case SQLITE_FORMAT: z = "auxiliary database format error"; break; case SQLITE_RANGE: z = "bind or column index out of range"; break; case SQLITE_NOTADB: z = "file is encrypted or is not a database";break; default: z = "unknown error"; break; } return z; } /* ** This routine implements a busy callback that sleeps and tries ** again until a timeout value is reached. The timeout value is ** an integer number of milliseconds passed in as the first ** argument. */ static int sqliteDefaultBusyCallback( void *Timeout, /* Maximum amount of time to wait */ int count /* Number of times table has been busy */ ){ #if SQLITE_MIN_SLEEP_MS==1 static const u8 delays[] = { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; static const u8 totals[] = { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; # define NDELAY (sizeof(delays)/sizeof(delays[0])) ptr timeout = (ptr)Timeout; ptr delay, prior; assert( count>=0 ); if( count < NDELAY ){ delay = delays[count]; prior = totals[count]; }else{ delay = delays[NDELAY-1]; prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); } if( prior + delay > timeout ){ delay = timeout - prior; if( delay<=0 ) return 0; } sqlite3OsSleep(delay); return 1; #else int timeout = (int)Timeout; if( (count+1)*1000 > timeout ){ return 0; } sqlite3OsSleep(1000); return 1; #endif } /* ** This routine sets the busy callback for an Sqlite database to the ** given callback function with the given argument. */ int sqlite3_busy_handler( sqlite3 *db, int (*xBusy)(void*,int), void *pArg ){ if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } db->busyHandler.xFunc = xBusy; db->busyHandler.pArg = pArg; return SQLITE_OK; } #ifndef SQLITE_OMIT_PROGRESS_CALLBACK /* ** This routine sets the progress callback for an Sqlite database to the ** given callback function with the given argument. The progress callback will ** be invoked every nOps opcodes. */ void sqlite3_progress_handler( sqlite3 *db, int nOps, int (*xProgress)(void*), void *pArg ){ if( !sqlite3SafetyCheck(db) ){ if( nOps>0 ){ db->xProgress = xProgress; db->nProgressOps = nOps; db->pProgressArg = pArg; }else{ db->xProgress = 0; db->nProgressOps = 0; db->pProgressArg = 0; } } } #endif /* ** This routine installs a default busy handler that waits for the ** specified number of milliseconds before returning 0. */ int sqlite3_busy_timeout(sqlite3 *db, int ms){ if( ms>0 ){ sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)(ptr)ms); }else{ sqlite3_busy_handler(db, 0, 0); } return SQLITE_OK; } /* ** Cause any pending operation to stop at its earliest opportunity. */ void sqlite3_interrupt(sqlite3 *db){ if( !sqlite3SafetyCheck(db) ){ db->flags |= SQLITE_Interrupt; } } /* ** Windows systems should call this routine to free memory that ** is returned in the in the errmsg parameter of sqlite3_open() when ** SQLite is a DLL. For some reason, it does not work to call free() ** directly. ** ** Note that we need to call free() not sqliteFree() here. */ void sqlite3_free(char *p){ free(p); } /* ** Create new user functions. */ int sqlite3_create_function( sqlite3 *db, const char *zFunctionName, int nArg, int enc, void *pUserData, void (*xFunc)(sqlite3_context*,int,sqlite3_value **), void (*xStep)(sqlite3_context*,int,sqlite3_value **), void (*xFinal)(sqlite3_context*) ){ FuncDef *p; int nName; if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } if( zFunctionName==0 || (xFunc && (xFinal || xStep)) || (!xFunc && (xFinal && !xStep)) || (!xFunc && (!xFinal && xStep)) || (nArg<-1 || nArg>127) || (255<(nName = strlen(zFunctionName))) ){ return SQLITE_ERROR; } #ifndef SQLITE_OMIT_UTF16 /* If SQLITE_UTF16 is specified as the encoding type, transform this ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. ** ** If SQLITE_ANY is specified, add three versions of the function ** to the hash table. */ if( enc==SQLITE_UTF16 ){ enc = SQLITE_UTF16NATIVE; }else if( enc==SQLITE_ANY ){ int rc; rc = sqlite3_create_function(db, zFunctionName, nArg, SQLITE_UTF8, pUserData, xFunc, xStep, xFinal); if( rc!=SQLITE_OK ) return rc; rc = sqlite3_create_function(db, zFunctionName, nArg, SQLITE_UTF16LE, pUserData, xFunc, xStep, xFinal); if( rc!=SQLITE_OK ) return rc; enc = SQLITE_UTF16BE; } #else enc = SQLITE_UTF8; #endif /* Check if an existing function is being overridden or deleted. If so, ** and there are active VMs, then return SQLITE_BUSY. If a function ** is being overridden/deleted but there are no active VMs, allow the ** operation to continue but invalidate all precompiled statements. */ p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 0); if( p && p->iPrefEnc==enc && p->nArg==nArg ){ if( db->activeVdbeCnt ){ sqlite3Error(db, SQLITE_BUSY, "Unable to delete/modify user-function due to active statements"); return SQLITE_BUSY; }else{ sqlite3ExpirePreparedStatements(db); } } p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1); if( p==0 ) return SQLITE_NOMEM; p->xFunc = xFunc; p->xStep = xStep; p->xFinalize = xFinal; p->pUserData = pUserData; return SQLITE_OK; } #ifndef SQLITE_OMIT_UTF16 int sqlite3_create_function16( sqlite3 *db, const void *zFunctionName, int nArg, int eTextRep, void *pUserData, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ){ int rc; char const *zFunc8; sqlite3_value *pTmp; if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } pTmp = sqlite3GetTransientValue(db); sqlite3ValueSetStr(pTmp, -1, zFunctionName, SQLITE_UTF16NATIVE,SQLITE_STATIC); zFunc8 = sqlite3ValueText(pTmp, SQLITE_UTF8); if( !zFunc8 ){ return SQLITE_NOMEM; } rc = sqlite3_create_function(db, zFunc8, nArg, eTextRep, pUserData, xFunc, xStep, xFinal); return rc; } #endif /* ** Register a trace function. The pArg from the previously registered trace ** is returned. ** ** A NULL trace function means that no tracing is executes. A non-NULL ** trace is a pointer to a function that is invoked at the start of each ** sqlite3_exec(). */ void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ void *pOld = db->pTraceArg; db->xTrace = xTrace; db->pTraceArg = pArg; return pOld; } /*** EXPERIMENTAL *** ** ** Register a function to be invoked when a transaction comments. ** If either function returns non-zero, then the commit becomes a ** rollback. */ void *sqlite3_commit_hook( sqlite3 *db, /* Attach the hook to this database */ int (*xCallback)(void*), /* Function to invoke on each commit */ void *pArg /* Argument to the function */ ){ void *pOld = db->pCommitArg; db->xCommitCallback = xCallback; db->pCommitArg = pArg; return pOld; } /* ** This routine is called to create a connection to a database BTree ** driver. If zFilename is the name of a file, then that file is ** opened and used. If zFilename is the magic name ":memory:" then ** the database is stored in memory (and is thus forgotten as soon as ** the connection is closed.) If zFilename is NULL then the database ** is for temporary use only and is deleted as soon as the connection ** is closed. ** ** A temporary database can be either a disk file (that is automatically ** deleted when the file is closed) or a set of red-black trees held in memory, ** depending on the values of the TEMP_STORE compile-time macro and the ** db->temp_store variable, according to the following chart: ** ** TEMP_STORE db->temp_store Location of temporary database ** ---------- -------------- ------------------------------ ** 0 any file ** 1 1 file ** 1 2 memory ** 1 0 file ** 2 1 file ** 2 2 memory ** 2 0 memory ** 3 any memory */ int sqlite3BtreeFactory( const sqlite3 *db, /* Main database when opening aux otherwise 0 */ const char *zFilename, /* Name of the file containing the BTree database */ int omitJournal, /* if TRUE then do not journal this file */ int nCache, /* How many pages in the page cache */ Btree **ppBtree /* Pointer to new Btree object written here */ ){ int btree_flags = 0; int rc; assert( ppBtree != 0); if( omitJournal ){ btree_flags |= BTREE_OMIT_JOURNAL; } if( db->flags & SQLITE_NoReadlock ){ btree_flags |= BTREE_NO_READLOCK; } if( zFilename==0 ){ #if TEMP_STORE==0 /* Do nothing */ #endif #ifndef SQLITE_OMIT_MEMORYDB #if TEMP_STORE==1 if( db->temp_store==2 ) zFilename = ":memory:"; #endif #if TEMP_STORE==2 if( db->temp_store!=1 ) zFilename = ":memory:"; #endif #if TEMP_STORE==3 zFilename = ":memory:"; #endif #endif /* SQLITE_OMIT_MEMORYDB */ } rc = sqlite3BtreeOpen(zFilename, ppBtree, btree_flags); if( rc==SQLITE_OK ){ sqlite3BtreeSetBusyHandler(*ppBtree, (void*)&db->busyHandler); sqlite3BtreeSetCacheSize(*ppBtree, nCache); } return rc; } /* ** Return UTF-8 encoded English language explanation of the most recent ** error. */ const char *sqlite3_errmsg(sqlite3 *db){ const char *z; if( sqlite3_malloc_failed ){ return sqlite3ErrStr(SQLITE_NOMEM); } if( sqlite3SafetyCheck(db) || db->errCode==SQLITE_MISUSE ){ return sqlite3ErrStr(SQLITE_MISUSE); } z = sqlite3_value_text(db->pErr); if( z==0 ){ z = sqlite3ErrStr(db->errCode); } return z; } #ifndef SQLITE_OMIT_UTF16 /* ** Return UTF-16 encoded English language explanation of the most recent ** error. */ const void *sqlite3_errmsg16(sqlite3 *db){ /* Because all the characters in the string are in the unicode ** range 0x00-0xFF, if we pad the big-endian string with a ** zero byte, we can obtain the little-endian string with ** &big_endian[1]. */ static const char outOfMemBe[] = { 0, 'o', 0, 'u', 0, 't', 0, ' ', 0, 'o', 0, 'f', 0, ' ', 0, 'm', 0, 'e', 0, 'm', 0, 'o', 0, 'r', 0, 'y', 0, 0, 0 }; static const char misuseBe [] = { 0, 'l', 0, 'i', 0, 'b', 0, 'r', 0, 'a', 0, 'r', 0, 'y', 0, ' ', 0, 'r', 0, 'o', 0, 'u', 0, 't', 0, 'i', 0, 'n', 0, 'e', 0, ' ', 0, 'c', 0, 'a', 0, 'l', 0, 'l', 0, 'e', 0, 'd', 0, ' ', 0, 'o', 0, 'u', 0, 't', 0, ' ', 0, 'o', 0, 'f', 0, ' ', 0, 's', 0, 'e', 0, 'q', 0, 'u', 0, 'e', 0, 'n', 0, 'c', 0, 'e', 0, 0, 0 }; const void *z; if( sqlite3_malloc_failed ){ return (void *)(&outOfMemBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]); } if( sqlite3SafetyCheck(db) || db->errCode==SQLITE_MISUSE ){ return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]); } z = sqlite3_value_text16(db->pErr); if( z==0 ){ sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), SQLITE_UTF8, SQLITE_STATIC); z = sqlite3_value_text16(db->pErr); } return z; } #endif /* SQLITE_OMIT_UTF16 */ /* ** Return the most recent error code generated by an SQLite routine. */ int sqlite3_errcode(sqlite3 *db){ if( sqlite3_malloc_failed ){ return SQLITE_NOMEM; } if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } return db->errCode; } /* ** Check schema cookies in all databases. If any cookie is out ** of date, return 0. If all schema cookies are current, return 1. */ static int schemaIsValid(sqlite3 *db){ int iDb; int rc; BtCursor *curTemp; int cookie; int allOk = 1; for(iDb=0; allOk && iDbnDb; iDb++){ Btree *pBt; pBt = db->aDb[iDb].pBt; if( pBt==0 ) continue; rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, 0, &curTemp); if( rc==SQLITE_OK ){ rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie); if( rc==SQLITE_OK && cookie!=db->aDb[iDb].schema_cookie ){ allOk = 0; } sqlite3BtreeCloseCursor(curTemp); } } return allOk; } /* ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. */ int sqlite3_prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char** pzTail /* OUT: End of parsed string */ ){ Parse sParse; char *zErrMsg = 0; int rc = SQLITE_OK; if( sqlite3_malloc_failed ){ return SQLITE_NOMEM; } assert( ppStmt ); *ppStmt = 0; if( sqlite3SafetyOn(db) ){ return SQLITE_MISUSE; } memset(&sParse, 0, sizeof(sParse)); sParse.db = db; sqlite3RunParser(&sParse, zSql, &zErrMsg); if( sqlite3_malloc_failed ){ rc = SQLITE_NOMEM; sqlite3RollbackAll(db); sqlite3ResetInternalSchema(db, 0); db->flags &= ~SQLITE_InTrans; goto prepare_out; } if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK; if( sParse.rc!=SQLITE_OK && sParse.checkSchema && !schemaIsValid(db) ){ sParse.rc = SQLITE_SCHEMA; } if( sParse.rc==SQLITE_SCHEMA ){ sqlite3ResetInternalSchema(db, 0); } if( pzTail ) *pzTail = sParse.zTail; rc = sParse.rc; #ifndef SQLITE_OMIT_EXPLAIN if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){ sqlite3VdbeSetNumCols(sParse.pVdbe, 5); sqlite3VdbeSetColName(sParse.pVdbe, 0, "addr", P3_STATIC); sqlite3VdbeSetColName(sParse.pVdbe, 1, "opcode", P3_STATIC); sqlite3VdbeSetColName(sParse.pVdbe, 2, "p1", P3_STATIC); sqlite3VdbeSetColName(sParse.pVdbe, 3, "p2", P3_STATIC); sqlite3VdbeSetColName(sParse.pVdbe, 4, "p3", P3_STATIC); } #endif prepare_out: if( sqlite3SafetyOff(db) ){ rc = SQLITE_MISUSE; } if( rc==SQLITE_OK ){ *ppStmt = (sqlite3_stmt*)sParse.pVdbe; }else if( sParse.pVdbe ){ sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe); } if( zErrMsg ){ sqlite3Error(db, rc, "%s", zErrMsg); sqliteFree(zErrMsg); }else{ sqlite3Error(db, rc, 0); } return rc; } #ifndef SQLITE_OMIT_UTF16 /* ** Compile the UTF-16 encoded SQL statement zSql into a statement handle. */ int sqlite3_prepare16( sqlite3 *db, /* Database handle. */ const void *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const void **pzTail /* OUT: End of parsed string */ ){ /* This function currently works by first transforming the UTF-16 ** encoded string to UTF-8, then invoking sqlite3_prepare(). The ** tricky bit is figuring out the pointer to return in *pzTail. */ char const *zSql8 = 0; char const *zTail8 = 0; int rc; sqlite3_value *pTmp; if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } pTmp = sqlite3GetTransientValue(db); sqlite3ValueSetStr(pTmp, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC); zSql8 = sqlite3ValueText(pTmp, SQLITE_UTF8); if( !zSql8 ){ sqlite3Error(db, SQLITE_NOMEM, 0); return SQLITE_NOMEM; } rc = sqlite3_prepare(db, zSql8, -1, ppStmt, &zTail8); if( zTail8 && pzTail ){ /* If sqlite3_prepare returns a tail pointer, we calculate the ** equivalent pointer into the UTF-16 string by counting the unicode ** characters between zSql8 and zTail8, and then returning a pointer ** the same number of characters into the UTF-16 string. */ int chars_parsed = sqlite3utf8CharLen(zSql8, zTail8-zSql8); *pzTail = (u8 *)zSql + sqlite3utf16ByteLen(zSql, chars_parsed); } return rc; } #endif /* SQLITE_OMIT_UTF16 */ /* ** This routine does the work of opening a database on behalf of ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" ** is UTF-8 encoded. */ static int openDatabase( const char *zFilename, /* Database filename UTF-8 encoded */ sqlite3 **ppDb /* OUT: Returned database handle */ ){ sqlite3 *db; int rc, i; /* Allocate the sqlite data structure */ db = sqliteMalloc( sizeof(sqlite3) ); if( db==0 ) goto opendb_out; db->priorNewRowid = 0; db->magic = SQLITE_MAGIC_BUSY; db->nDb = 2; db->aDb = db->aDbStatic; db->enc = SQLITE_UTF8; db->autoCommit = 1; db->flags |= SQLITE_ShortColNames; sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0); for(i=0; inDb; i++){ sqlite3HashInit(&db->aDb[i].tblHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].idxHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].trigHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].aFKey, SQLITE_HASH_STRING, 1); } /* Add the default collation sequence BINARY. BINARY works for both UTF-8 ** and UTF-16, so add a version for each to avoid any unnecessary ** conversions. The only error that can occur here is a malloc() failure. */ if( sqlite3_create_collation(db, "BINARY", SQLITE_UTF8, 0,binCollFunc) || sqlite3_create_collation(db, "BINARY", SQLITE_UTF16, 0,binCollFunc) || !(db->pDfltColl = sqlite3FindCollSeq(db, db->enc, "BINARY", 6, 0)) ){ rc = db->errCode; assert( rc!=SQLITE_OK ); db->magic = SQLITE_MAGIC_CLOSED; goto opendb_out; } /* Also add a UTF-8 case-insensitive collation sequence. */ sqlite3_create_collation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc); /* Open the backend database driver */ rc = sqlite3BtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt); if( rc!=SQLITE_OK ){ sqlite3Error(db, rc, 0); db->magic = SQLITE_MAGIC_CLOSED; goto opendb_out; } /* The default safety_level for the main database is 'full'; for the temp ** database it is 'NONE'. This matches the pager layer defaults. */ db->aDb[0].zName = "main"; db->aDb[0].safety_level = 3; #ifndef SQLITE_OMIT_TEMPDB db->aDb[1].zName = "temp"; db->aDb[1].safety_level = 1; #endif /* Register all built-in functions, but do not attempt to read the ** database schema yet. This is delayed until the first time the database ** is accessed. */ sqlite3RegisterBuiltinFunctions(db); sqlite3Error(db, SQLITE_OK, 0); db->magic = SQLITE_MAGIC_OPEN; opendb_out: if( sqlite3_errcode(db)==SQLITE_OK && sqlite3_malloc_failed ){ sqlite3Error(db, SQLITE_NOMEM, 0); } *ppDb = db; #ifndef SQLITE_OMIT_GLOBALRECOVER if( db ){ sqlite3OsEnterMutex(); db->pNext = pDbList; pDbList = db; sqlite3OsLeaveMutex(); } #endif return sqlite3_errcode(db); } /* ** Open a new database handle. */ int sqlite3_open( const char *zFilename, sqlite3 **ppDb ){ return openDatabase(zFilename, ppDb); } #ifndef SQLITE_OMIT_UTF16 /* ** Open a new database handle. */ int sqlite3_open16( const void *zFilename, sqlite3 **ppDb ){ char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ int rc = SQLITE_NOMEM; sqlite3_value *pVal; assert( ppDb ); *ppDb = 0; pVal = sqlite3ValueNew(); sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); if( zFilename8 ){ rc = openDatabase(zFilename8, ppDb); if( rc==SQLITE_OK && *ppDb ){ sqlite3_exec(*ppDb, "PRAGMA encoding = 'UTF-16'", 0, 0, 0); } } if( pVal ){ sqlite3ValueFree(pVal); } return rc; } #endif /* SQLITE_OMIT_UTF16 */ /* ** The following routine destroys a virtual machine that is created by ** the sqlite3_compile() routine. The integer returned is an SQLITE_ ** success/failure code that describes the result of executing the virtual ** machine. ** ** This routine sets the error code and string returned by ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). */ int sqlite3_finalize(sqlite3_stmt *pStmt){ int rc; if( pStmt==0 ){ rc = SQLITE_OK; }else{ rc = sqlite3VdbeFinalize((Vdbe*)pStmt); } return rc; } /* ** Terminate the current execution of an SQL statement and reset it ** back to its starting state so that it can be reused. A success code from ** the prior execution is returned. ** ** This routine sets the error code and string returned by ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). */ int sqlite3_reset(sqlite3_stmt *pStmt){ int rc; if( pStmt==0 ){ rc = SQLITE_OK; }else{ rc = sqlite3VdbeReset((Vdbe*)pStmt); sqlite3VdbeMakeReady((Vdbe*)pStmt, -1, 0, 0, 0, 0); } return rc; } /* ** Register a new collation sequence with the database handle db. */ int sqlite3_create_collation( sqlite3* db, const char *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ CollSeq *pColl; int rc = SQLITE_OK; if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } /* If SQLITE_UTF16 is specified as the encoding type, transform this ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. */ if( enc==SQLITE_UTF16 ){ enc = SQLITE_UTF16NATIVE; } if( enc!=SQLITE_UTF8 && enc!=SQLITE_UTF16LE && enc!=SQLITE_UTF16BE ){ sqlite3Error(db, SQLITE_ERROR, "Param 3 to sqlite3_create_collation() must be one of " "SQLITE_UTF8, SQLITE_UTF16, SQLITE_UTF16LE or SQLITE_UTF16BE" ); return SQLITE_ERROR; } /* Check if this call is removing or replacing an existing collation ** sequence. If so, and there are active VMs, return busy. If there ** are no active VMs, invalidate any pre-compiled statements. */ pColl = sqlite3FindCollSeq(db, (u8)enc, zName, strlen(zName), 0); if( pColl && pColl->xCmp ){ if( db->activeVdbeCnt ){ sqlite3Error(db, SQLITE_BUSY, "Unable to delete/modify collation sequence due to active statements"); return SQLITE_BUSY; } sqlite3ExpirePreparedStatements(db); } pColl = sqlite3FindCollSeq(db, (u8)enc, zName, strlen(zName), 1); if( 0==pColl ){ rc = SQLITE_NOMEM; }else{ pColl->xCmp = xCompare; pColl->pUser = pCtx; pColl->enc = enc; } sqlite3Error(db, rc, 0); return rc; } #ifndef SQLITE_OMIT_UTF16 /* ** Register a new collation sequence with the database handle db. */ int sqlite3_create_collation16( sqlite3* db, const char *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ char const *zName8; sqlite3_value *pTmp; if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } pTmp = sqlite3GetTransientValue(db); sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF16NATIVE, SQLITE_STATIC); zName8 = sqlite3ValueText(pTmp, SQLITE_UTF8); return sqlite3_create_collation(db, zName8, enc, pCtx, xCompare); } #endif /* SQLITE_OMIT_UTF16 */ /* ** Register a collation sequence factory callback with the database handle ** db. Replace any previously installed collation sequence factory. */ int sqlite3_collation_needed( sqlite3 *db, void *pCollNeededArg, void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) ){ if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } db->xCollNeeded = xCollNeeded; db->xCollNeeded16 = 0; db->pCollNeededArg = pCollNeededArg; return SQLITE_OK; } #ifndef SQLITE_OMIT_UTF16 /* ** Register a collation sequence factory callback with the database handle ** db. Replace any previously installed collation sequence factory. */ int sqlite3_collation_needed16( sqlite3 *db, void *pCollNeededArg, void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) ){ if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } db->xCollNeeded = 0; db->xCollNeeded16 = xCollNeeded16; db->pCollNeededArg = pCollNeededArg; return SQLITE_OK; } #endif /* SQLITE_OMIT_UTF16 */ #ifndef SQLITE_OMIT_GLOBALRECOVER /* ** This function is called to recover from a malloc failure that occured ** within SQLite. ** ** This function is *not* threadsafe. Calling this from within a threaded ** application when threads other than the caller have used SQLite is ** dangerous and will almost certainly result in malfunctions. */ int sqlite3_global_recover(){ int rc = SQLITE_OK; if( sqlite3_malloc_failed ){ sqlite3 *db; int i; sqlite3_malloc_failed = 0; for(db=pDbList; db; db=db->pNext ){ sqlite3ExpirePreparedStatements(db); for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt && (rc=sqlite3BtreeReset(pBt)) ){ goto recover_out; } } db->autoCommit = 1; } } recover_out: if( rc!=SQLITE_OK ){ sqlite3_malloc_failed = 1; } return rc; } #endif