/* ** This program is a debugging and analysis utility that displays ** information about an FTS3 or FTS4 index. ** ** Link this program against the SQLite3 amalgamation with the ** SQLITE_ENABLE_FTS4 compile-time option. Then run it as: ** ** fts3view DATABASE ** ** to get a list of all FTS3/4 tables in DATABASE, or do ** ** fts3view DATABASE TABLE COMMAND .... ** ** to see various aspects of the TABLE table. Type fts3view with no ** arguments for a list of available COMMANDs. */ #include #include #include #include #include #include "sqlite3.h" /* ** Extra command-line arguments: */ int nExtra; char **azExtra; /* ** Look for a command-line argument. */ const char *findOption(const char *zName, int hasArg, const char *zDefault){ int i; const char *zResult = zDefault; for(i=0; i=2000 ){ n = 0; pStmt = prepare(db, "SELECT count(*) FROM %s" " WHERE col='*' AND occurrences<=%d", zAux, nDoc/1000); while( sqlite3_step(pStmt)==SQLITE_ROW ){ n = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); printf("Tokens used in 0.1%% or less of docs...... %9d %5.2f%%\n", n, n*100.0/nToken); } if( nDoc>=200 ){ n = 0; pStmt = prepare(db, "SELECT count(*) FROM %s" " WHERE col='*' AND occurrences<=%d", zAux, nDoc/100); while( sqlite3_step(pStmt)==SQLITE_ROW ){ n = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); printf("Tokens used in 1%% or less of docs........ %9d %5.2f%%\n", n, n*100.0/nToken); } nTop = atoi(findOption("top", 1, "25")); printf("The %d most common tokens:\n", nTop); pStmt = prepare(db, "SELECT term, documents FROM %s" " WHERE col='*'" " ORDER BY documents DESC, term" " LIMIT %d", zAux, nTop); i = 0; while( sqlite3_step(pStmt)==SQLITE_ROW ){ i++; n = sqlite3_column_int(pStmt, 1); printf(" %2d. %-30s %9d docs %5.2f%%\n", i, sqlite3_column_text(pStmt, 0), n, n*100.0/nDoc); } sqlite3_finalize(pStmt); end_vocab: runSql(db, "ROLLBACK"); sqlite3_free(zAux); } /* ** Report on the number and sizes of segments */ static void showSegmentStats(sqlite3 *db, const char *zTab){ sqlite3_stmt *pStmt; int nSeg = 0; sqlite3_int64 szSeg = 0, mxSeg = 0; int nIdx = 0; sqlite3_int64 szIdx = 0, mxIdx = 0; int nRoot = 0; sqlite3_int64 szRoot = 0, mxRoot = 0; sqlite3_int64 mx; int nLeaf; int n; int pgsz; int mxLevel; int i; pStmt = prepare(db, "SELECT count(*), sum(length(block)), max(length(block))" " FROM '%q_segments'", zTab); while( sqlite3_step(pStmt)==SQLITE_ROW ){ nSeg = sqlite3_column_int(pStmt, 0); szSeg = sqlite3_column_int64(pStmt, 1); mxSeg = sqlite3_column_int64(pStmt, 2); } sqlite3_finalize(pStmt); pStmt = prepare(db, "SELECT count(*), sum(length(block)), max(length(block))" " FROM '%q_segments' a JOIN '%q_segdir' b" " WHERE a.blockid BETWEEN b.leaves_end_block+1 AND b.end_block", zTab, zTab); while( sqlite3_step(pStmt)==SQLITE_ROW ){ nIdx = sqlite3_column_int(pStmt, 0); szIdx = sqlite3_column_int64(pStmt, 1); mxIdx = sqlite3_column_int64(pStmt, 2); } sqlite3_finalize(pStmt); pStmt = prepare(db, "SELECT count(*), sum(length(root)), max(length(root))" " FROM '%q_segdir'", zTab); while( sqlite3_step(pStmt)==SQLITE_ROW ){ nRoot = sqlite3_column_int(pStmt, 0); szRoot = sqlite3_column_int64(pStmt, 1); mxRoot = sqlite3_column_int64(pStmt, 2); } sqlite3_finalize(pStmt); printf("Number of segments....................... %9d\n", nSeg+nRoot); printf("Number of leaf segments.................. %9d\n", nSeg-nIdx); printf("Number of index segments................. %9d\n", nIdx); printf("Number of root segments.................. %9d\n", nRoot); printf("Total size of all segments............... %9lld\n", szSeg+szRoot); printf("Total size of all leaf segments.......... %9lld\n", szSeg-szIdx); printf("Total size of all index segments......... %9lld\n", szIdx); printf("Total size of all root segments.......... %9lld\n", szRoot); if( nSeg>0 ){ printf("Average size of all segments............. %11.1f\n", (double)(szSeg+szRoot)/(double)(nSeg+nRoot)); printf("Average size of leaf segments............ %11.1f\n", (double)(szSeg-szIdx)/(double)(nSeg-nIdx)); } if( nIdx>0 ){ printf("Average size of index segments........... %11.1f\n", (double)szIdx/(double)nIdx); } if( nRoot>0 ){ printf("Average size of root segments............ %11.1f\n", (double)szRoot/(double)nRoot); } mx = mxSeg; if( mx%d", zTab, zTab, pgsz-45); n = 0; while( sqlite3_step(pStmt)==SQLITE_ROW ){ n = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); nLeaf = nSeg - nIdx; printf("Leaf segments larger than %5d bytes.... %9d %5.2f%%\n", pgsz-45, n, nLeaf>0 ? n*100.0/nLeaf : 0.0); pStmt = prepare(db, "SELECT max(level%%1024) FROM '%q_segdir'", zTab); mxLevel = 0; while( sqlite3_step(pStmt)==SQLITE_ROW ){ mxLevel = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); for(i=0; i<=mxLevel; i++){ pStmt = prepare(db, "SELECT count(*), sum(len), avg(len), max(len), sum(len>%d)," " count(distinct idx)" " FROM (SELECT length(a.block) AS len, idx" " FROM '%q_segments' a JOIN '%q_segdir' b" " WHERE (a.blockid BETWEEN b.start_block" " AND b.leaves_end_block)" " AND (b.level%%1024)==%d)", pgsz-45, zTab, zTab, i); if( sqlite3_step(pStmt)==SQLITE_ROW && (nLeaf = sqlite3_column_int(pStmt, 0))>0 ){ int nIdx = sqlite3_column_int(pStmt, 5); sqlite3_int64 sz; printf("For level %d:\n", i); printf(" Number of indexes...................... %9d\n", nIdx); printf(" Number of leaf segments................ %9d\n", nLeaf); if( nIdx>1 ){ printf(" Average leaf segments per index........ %11.1f\n", (double)nLeaf/(double)nIdx); } printf(" Total size of all leaf segments........ %9lld\n", (sz = sqlite3_column_int64(pStmt, 1))); printf(" Average size of leaf segments.......... %11.1f\n", sqlite3_column_double(pStmt, 2)); if( nIdx>1 ){ printf(" Average leaf segment size per index.... %11.1f\n", (double)sz/(double)nIdx); } printf(" Maximum leaf segment size.............. %9lld\n", sqlite3_column_int64(pStmt, 3)); n = sqlite3_column_int(pStmt, 4); printf(" Leaf segments larger than %5d bytes.. %9d %5.2f%%\n", pgsz-45, n, n*100.0/nLeaf); } sqlite3_finalize(pStmt); } } /* ** Print a single "tree" line of the segdir map output. */ static void printTreeLine(sqlite3_int64 iLower, sqlite3_int64 iUpper){ printf(" tree %9lld", iLower); if( iUpper>iLower ){ printf(" thru %9lld (%lld blocks)", iUpper, iUpper-iLower+1); } printf("\n"); } /* ** Check to see if the block of a %_segments entry is NULL. */ static int isNullSegment(sqlite3 *db, const char *zTab, sqlite3_int64 iBlockId){ sqlite3_stmt *pStmt; int rc = 1; pStmt = prepare(db, "SELECT block IS NULL FROM '%q_segments'" " WHERE blockid=%lld", zTab, iBlockId); if( sqlite3_step(pStmt)==SQLITE_ROW ){ rc = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); return rc; } /* ** Show a map of segments derived from the %_segdir table. */ static void showSegdirMap(sqlite3 *db, const char *zTab){ int mxIndex, iIndex; sqlite3_stmt *pStmt = 0; sqlite3_stmt *pStmt2 = 0; int prevLevel; pStmt = prepare(db, "SELECT max(level/1024) FROM '%q_segdir'", zTab); if( sqlite3_step(pStmt)==SQLITE_ROW ){ mxIndex = sqlite3_column_int(pStmt, 0); }else{ mxIndex = 0; } sqlite3_finalize(pStmt); printf("Number of inverted indices............... %3d\n", mxIndex+1); pStmt = prepare(db, "SELECT level, idx, start_block, leaves_end_block, end_block, rowid" " FROM '%q_segdir'" " WHERE level/1024==?" " ORDER BY level DESC, idx", zTab); pStmt2 = prepare(db, "SELECT blockid FROM '%q_segments'" " WHERE blockid BETWEEN ? AND ? ORDER BY blockid", zTab); for(iIndex=0; iIndex<=mxIndex; iIndex++){ if( mxIndex>0 ){ printf("**************************** Index %d " "****************************\n", iIndex); } sqlite3_bind_int(pStmt, 1, iIndex); prevLevel = -1; while( sqlite3_step(pStmt)==SQLITE_ROW ){ int iLevel = sqlite3_column_int(pStmt, 0)%1024; int iIdx = sqlite3_column_int(pStmt, 1); sqlite3_int64 iStart = sqlite3_column_int64(pStmt, 2); sqlite3_int64 iLEnd = sqlite3_column_int64(pStmt, 3); sqlite3_int64 iEnd = sqlite3_column_int64(pStmt, 4); char rtag[20]; if( iLevel!=prevLevel ){ printf("level %2d idx %2d", iLevel, iIdx); prevLevel = iLevel; }else{ printf(" idx %2d", iIdx); } sqlite3_snprintf(sizeof(rtag), rtag, "r%lld", sqlite3_column_int64(pStmt,5)); printf(" root %9s\n", rtag); if( iLEnd>iStart ){ sqlite3_int64 iLower, iPrev, iX; if( iLEnd+1<=iEnd ){ sqlite3_bind_int64(pStmt2, 1, iLEnd+1); sqlite3_bind_int64(pStmt2, 2, iEnd); iLower = -1; while( sqlite3_step(pStmt2)==SQLITE_ROW ){ iX = sqlite3_column_int64(pStmt2, 0); if( iLower<0 ){ iLower = iPrev = iX; }else if( iX==iPrev+1 ){ iPrev = iX; }else{ printTreeLine(iLower, iPrev); iLower = iPrev = iX; } } sqlite3_reset(pStmt2); if( iLower>=0 ){ if( iLower==iPrev && iLower==iEnd && isNullSegment(db,zTab,iLower) ){ printf(" null %9lld\n", iLower); }else{ printTreeLine(iLower, iPrev); } } } printf(" leaves %9lld thru %9lld (%lld blocks)\n", iStart, iLEnd, iLEnd - iStart + 1); } } sqlite3_reset(pStmt); } sqlite3_finalize(pStmt); sqlite3_finalize(pStmt2); } /* ** Decode a single segment block and display the results on stdout. */ static void decodeSegment( const unsigned char *aData, /* Content to print */ int nData /* Number of bytes of content */ ){ sqlite3_int64 iChild; sqlite3_int64 iPrefix; sqlite3_int64 nTerm; sqlite3_int64 n; sqlite3_int64 iDocsz; int iHeight; sqlite3_int64 i = 0; int cnt = 0; char zTerm[1000]; i += getVarint(aData, &n); iHeight = (int)n; printf("height: %d\n", iHeight); if( iHeight>0 ){ i += getVarint(aData+i, &iChild); printf("left-child: %lld\n", iChild); } while( i0 ){ i += getVarint(aData+i, &iPrefix); }else{ iPrefix = 0; } i += getVarint(aData+i, &nTerm); if( iPrefix+nTerm+1 >= sizeof(zTerm) ){ fprintf(stderr, "term to long\n"); exit(1); } memcpy(zTerm+iPrefix, aData+i, (size_t)nTerm); zTerm[iPrefix+nTerm] = 0; i += nTerm; if( iHeight==0 ){ i += getVarint(aData+i, &iDocsz); printf("term: %-25s doclist %7lld bytes offset %lld\n", zTerm, iDocsz, i); i += iDocsz; }else{ printf("term: %-25s child %lld\n", zTerm, ++iChild); } } } /* ** Print a a blob as hex and ascii. */ static void printBlob( const unsigned char *aData, /* Content to print */ int nData /* Number of bytes of content */ ){ int i, j; const char *zOfstFmt; const int perLine = 16; if( (nData&~0xfff)==0 ){ zOfstFmt = " %03x: "; }else if( (nData&~0xffff)==0 ){ zOfstFmt = " %04x: "; }else if( (nData&~0xfffff)==0 ){ zOfstFmt = " %05x: "; }else if( (nData&~0xffffff)==0 ){ zOfstFmt = " %06x: "; }else{ zOfstFmt = " %08x: "; } for(i=0; inData ){ fprintf(stdout, " "); }else{ fprintf(stdout,"%02x ", aData[i+j]); } } for(j=0; jnData ){ fprintf(stdout, " "); }else{ fprintf(stdout,"%c", isprint(aData[i+j]) ? aData[i+j] : '.'); } } fprintf(stdout,"\n"); } } /* ** Convert text to a 64-bit integer */ static sqlite3_int64 atoi64(const char *z){ sqlite3_int64 v = 0; while( z[0]>='0' && z[0]<='9' ){ v = v*10 + z[0] - '0'; z++; } return v; } /* ** Return a prepared statement which, when stepped, will return in its ** first column the blob associated with segment zId. If zId begins with ** 'r' then it is a rowid of a %_segdir entry. Otherwise it is a ** %_segment entry. */ static sqlite3_stmt *prepareToGetSegment( sqlite3 *db, /* The database */ const char *zTab, /* The FTS3/4 table name */ const char *zId /* ID of the segment to open */ ){ sqlite3_stmt *pStmt; if( zId[0]=='r' ){ pStmt = prepare(db, "SELECT root FROM '%q_segdir' WHERE rowid=%lld", zTab, atoi64(zId+1)); }else{ pStmt = prepare(db, "SELECT block FROM '%q_segments' WHERE blockid=%lld", zTab, atoi64(zId)); } return pStmt; } /* ** Print the content of a segment or of the root of a segdir. The segment ** or root is identified by azExtra[0]. If the first character of azExtra[0] ** is 'r' then the remainder is the integer rowid of the %_segdir entry. ** If the first character of azExtra[0] is not 'r' then, then all of ** azExtra[0] is an integer which is the block number. ** ** If the --raw option is present in azExtra, then a hex dump is provided. ** Otherwise a decoding is shown. */ static void showSegment(sqlite3 *db, const char *zTab){ const unsigned char *aData; int nData; sqlite3_stmt *pStmt; pStmt = prepareToGetSegment(db, zTab, azExtra[0]); if( sqlite3_step(pStmt)!=SQLITE_ROW ){ sqlite3_finalize(pStmt); return; } nData = sqlite3_column_bytes(pStmt, 0); aData = sqlite3_column_blob(pStmt, 0); printf("Segment %s of size %d bytes:\n", azExtra[0], nData); if( findOption("raw", 0, 0)!=0 ){ printBlob(aData, nData); }else{ decodeSegment(aData, nData); } sqlite3_finalize(pStmt); } /* ** Decode a single doclist and display the results on stdout. */ static void decodeDoclist( const unsigned char *aData, /* Content to print */ int nData /* Number of bytes of content */ ){ sqlite3_int64 iPrevDocid = 0; sqlite3_int64 iDocid; sqlite3_int64 iPos; sqlite3_int64 iPrevPos = 0; sqlite3_int64 iCol; int i = 0; while( i