/ Check-in [fef44c37]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Improved comments on the generate_series virtual table. Test cases for ORDER BY rowid DESC with generate_series.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | table-valued-functions
Files: files | file ages | folders
SHA1: fef44c37f31ca9fd7891cecdbe95cc46a987067b
User & Date: drh 2015-08-19 18:19:49
Context
2015-08-19
19:01
Fix eponymous virtual tables so that they do not automatically make the first column the rowid. Enhance the generate_series virtual table to support rowid. check-in: a325a085 user: drh tags: table-valued-functions
18:31
Merge support for table-valued functions. check-in: 96a5d44d user: drh tags: json
18:19
Improved comments on the generate_series virtual table. Test cases for ORDER BY rowid DESC with generate_series. check-in: fef44c37 user: drh tags: table-valued-functions
17:11
A list of arguments following a table name translates into equality constraints against hidden columns in that table. check-in: 40e12cfe user: drh tags: table-valued-functions
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to ext/misc/series.c.

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21


















22
23



























24
25
26
27
28
29
30
31
32
33



34
35
36

37
38
39
40
41
42
43













44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65



66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96



97

98
99
100
101
102

103
104
105
106
107

108
109
110
111
112
113
114
115

116
117
118
119
120
121
122

123
124
125
126
127
128
129
130
131

132
133
134

135



136
137
138
139
140
141

142


143
144
145
146
147
148






149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170
171
172










173
174
175
176
177



178





179
180
181
182
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
...
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements a virtual table that tries to replicate the 
** behavior of the generate_series() table-valued-function in Postgres.
**
** Example:
**
**     SELECT * FROM generate_series WHERE start=1 AND stop=9 AND step=2
**
** Results in:

**


















**     1 3 5 7 9
**



























*/
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>

#ifndef SQLITE_OMIT_VIRTUALTABLE


/* A series cursor object */



typedef struct series_cursor series_cursor;
struct series_cursor {
  sqlite3_vtab_cursor base;  /* Base class - must be first */

  sqlite3_int64 iValue;      /* Current value */
  sqlite3_int64 mnValue;     /* Mimimum value */
  sqlite3_int64 mxValue;     /* Maximum value */
  sqlite3_int64 iStep;       /* How much to increment on each step */
};

/* Methods for the series module */













static int seriesConnect(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  sqlite3_vtab *pNew;
  pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) );
  if( pNew==0 ) return SQLITE_NOMEM;


#define SERIES_COLUMN_VALUE 0
#define SERIES_COLUMN_START 1
#define SERIES_COLUMN_STOP  2
#define SERIES_COLUMN_STEP  3

  sqlite3_declare_vtab(db,
     "CREATE TABLE x(value,start hidden,stop hidden,step hidden)");
  memset(pNew, 0, sizeof(*pNew));
  return SQLITE_OK;
}




static int seriesDisconnect(sqlite3_vtab *pVtab){
  sqlite3_free(pVtab);
  return SQLITE_OK;
}

/*
** Open a new series cursor.
*/
static int seriesOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
  series_cursor *pCur;
  pCur = sqlite3_malloc( sizeof(*pCur) );
  if( pCur==0 ) return SQLITE_NOMEM;
  memset(pCur, 0, sizeof(*pCur));
  *ppCursor = &pCur->base;
  return SQLITE_OK;
}

/*
** Close a series cursor.
*/
static int seriesClose(sqlite3_vtab_cursor *cur){
  sqlite3_free(cur);
  return SQLITE_OK;
}


/*
** Advance a cursor to its next row of output
*/
static int seriesNext(sqlite3_vtab_cursor *cur){
  series_cursor *pCur = (series_cursor*)cur;



  pCur->iValue += pCur->iStep;

  return SQLITE_OK;
}

/*
** Return the value associated with a series.

*/
static int seriesColumn(
  sqlite3_vtab_cursor *cur,
  sqlite3_context *ctx,
  int i

){
  series_cursor *pCur = (series_cursor*)cur;
  sqlite3_int64 x;
  switch( i ){
    case 0:  x = pCur->iValue;  break;
    case 1:  x = pCur->mnValue; break;
    case 2:  x = pCur->mxValue; break;
    case 3:  x = pCur->iStep;   break;

  }
  sqlite3_result_int64(ctx, x);
  return SQLITE_OK;
}

/*
** The rowid.

*/
static int seriesRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
  series_cursor *pCur = (series_cursor*)cur;
  *pRowid = pCur->iValue;
  return SQLITE_OK;
}

/*
** Return TRUE if the last row has been output.

*/
static int seriesEof(sqlite3_vtab_cursor *cur){
  series_cursor *pCur = (series_cursor*)cur;

  return pCur->iValue>pCur->mxValue;



}

/*
** Called to "rewind" a cursor back to the beginning so that
** it starts its output over again.  Always called at least once
** prior to any seriesColumn, seriesRowid, or seriesEof call.

**


** idxNum is a bitmask showing which constraints are available:
**
**    1:    start=VALUE
**    2:    stop=VALUE
**    4:    step=VALUE
**






*/
static int seriesFilter(
  sqlite3_vtab_cursor *pVtabCursor, 
  int idxNum, const char *idxStr,
  int argc, sqlite3_value **argv
){
  series_cursor *pCur = (series_cursor *)pVtabCursor;
  int i = 0;
  if( idxNum & 1 ){
    pCur->mnValue = sqlite3_value_int64(argv[i++]);
  }else{
    pCur->mnValue = 0;
  }
  pCur->iValue = pCur->mnValue;
  if( idxNum & 2 ){
    pCur->mxValue = sqlite3_value_int64(argv[i++]);
  }else{
    pCur->mxValue = 0xffffffff;
  }
  if( idxNum & 4 ){
    pCur->iStep = sqlite3_value_int64(argv[i++]);

  }else{
    pCur->iStep = 1;
  }










  return SQLITE_OK;
}

/*
** Search for terms of these forms:



**





**  (1)  start = $value
**  (2)  stop = $value
**  (4)  step = $value
**
** idxNum is an ORed combination of 1, 2,  4.

*/
static int seriesBestIndex(
  sqlite3_vtab *tab,
  sqlite3_index_info *pIdxInfo
){
  int i;
  int idxNum = 0;
  int startIdx = -1;
  int stopIdx = -1;
  int stepIdx = -1;
  int nArg = 0;

  const struct sqlite3_index_constraint *pConstraint;
  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
    if( pConstraint->usable==0 ) continue;
    if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
    switch( pConstraint->iColumn ){
................................................................................
        break;
      case SERIES_COLUMN_STEP:
        stepIdx = i;
        idxNum |= 4;
        break;
    }
  }
  pIdxInfo->idxNum = idxNum;
  if( startIdx>=0 ){
    pIdxInfo->aConstraintUsage[startIdx].argvIndex = ++nArg;
    pIdxInfo->aConstraintUsage[startIdx].omit = 1;
  }
  if( stopIdx>=0 ){
    pIdxInfo->aConstraintUsage[stopIdx].argvIndex = ++nArg;
    pIdxInfo->aConstraintUsage[stopIdx].omit = 1;
  }
  if( stepIdx>=0 ){
    pIdxInfo->aConstraintUsage[stepIdx].argvIndex = ++nArg;
    pIdxInfo->aConstraintUsage[stepIdx].omit = 1;
  }
  if( pIdxInfo->nOrderBy==1
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }
  if( (idxNum & 3)==3 ){
    /* Both start= and stop= boundaries are available.  This is the 
    ** the preferred case */
    pIdxInfo->estimatedCost = (double)1;
  }else{
    /* If either boundary is missing, we have to generate a huge span
    ** of numbers.  Make this case very expensive so that the query
    ** planner will work hard to avoid it. */
    pIdxInfo->estimatedCost = (double)2000000000;
  }

  return SQLITE_OK;
}

/*
** A virtual table module that provides read-only access to a
** Tcl global variable namespace.
*/
static sqlite3_module seriesModule = {
  0,                         /* iVersion */
  0,                         /* xCreate */
  seriesConnect,
  seriesBestIndex,
  seriesDisconnect, 
  0,                         /* xDestroy */
  seriesOpen,                /* xOpen - open a cursor */
  seriesClose,               /* xClose - close a cursor */
  seriesFilter,              /* xFilter - configure scan constraints */
  seriesNext,                /* xNext - advance a cursor */
  seriesEof,                 /* xEof - check for end of scan */
  seriesColumn,              /* xColumn - read data */







|
|
|
|

|

|
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









|
>
>
>



>
|
|
|
|


<
>
>
>
>
>
>
>
>
>
>
>
>
>











>











>
>
>






|











|








|



>
>
>
|
>




|
>


|
|
<
>


|

<
|
|
|
>






|
>








|
>



>
|
>
>
>



|
|
|
>

>
>
|





>
>
>
>
>
>













<







>



>
>
>
>
>
>
>
>
>
>




|
>
>
>

>
>
>
>
>
|
|
|
<
<
>





|
|
|
|
|
|







 







<












|
|
<












>




|
|




|
|
|







6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

178
179
180
181
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285


286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
...
312
313
314
315
316
317
318

319
320
321
322
323
324
325
326
327
328
329
330
331
332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file demonstrates how to create a table-valued-function using
** a virtual table.  This demo implements the generate_series() function
** which gives similar results to the eponymous function in PostgreSQL.
** Examples:
**
**      SELECT * FROM generate_series(0,100,5);
**
** The query above returns integers from 0 through 100 counting by steps
** of 5.
**
**      SELECT * FROM generate_series(0,100);
**
** Integers from 0 through 100 with a step size of 1.
**
**      SELECT * FROM generate_series(20) LIMIT 10;
**
** Integers 20 through 29.
**
** HOW IT WORKS
**
** The generate_series "function" is really a virtual table with the
** following schema:
**
**     CREATE FUNCTION generate_series(
**       value,
**       start HIDDEN,
**       stop HIDDEN,
**       step HIDDEN
**     );
**
** Function arguments in queries against this virtual table are translated
** into equality constraints against successive hidden columns.  In other
** words, the following pairs of queries are equivalent to each other:
**
**    SELECT * FROM generate_series(0,100,5);
**    SELECT * FROM generate_series WHERE start=0 AND stop=100 AND step=5;
**
**    SELECT * FROM generate_series(0,100);
**    SELECT * FROM generate_series WHERE start=0 AND stop=100;
**
**    SELECT * FROM generate_series(20) LIMIT 10;
**    SELECT * FROM generate_series WHERE start=20 LIMIT 10;
**
** The generate_series virtual table implementation leaves the xCreate method
** set to NULL.  This means that it is not possible to do a CREATE VIRTUAL
** TABLE command with "generate_series" as the USING argument.  Instead, there
** is a single generate_series virtual table that is always available without
** having to be created first.
**
** The xBestIndex method looks for equality constraints against the hidden
** start, stop, and step columns, and if present, it uses those constraints
** to bound the sequence of generated values.  If the equality constraints
** are missing, it uses 0 for start, 4294967295 for stop, and 1 for step.
** xBestIndex returns a small cost when both start and stop are available,
** and a very large cost if either start or stop are unavailable.  This
** encourages the query planner to order joins such that the bounds of the
** series are well-defined.
*/
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>

#ifndef SQLITE_OMIT_VIRTUALTABLE


/* series_cursor is a subclas of sqlite3_vtab_cursor which will
** serve as the underlying representation of a cursor that scans
** over rows of the result
*/
typedef struct series_cursor series_cursor;
struct series_cursor {
  sqlite3_vtab_cursor base;  /* Base class - must be first */
  int isDesc;                /* True to count down rather than up */
  sqlite3_int64 iValue;      /* Current value ("value") */
  sqlite3_int64 mnValue;     /* Mimimum value ("start") */
  sqlite3_int64 mxValue;     /* Maximum value ("stop") */
  sqlite3_int64 iStep;       /* Increment ("step") */
};


/*
** The seriesConnect() method is invoked to create a new
** series_vtab that describes the generate_series virtual table.
**
** Think of this routine as the constructor for series_vtab objects.
**
** All this routine needs to do is:
**
**    (1) Allocate the series_vtab object and initialize all fields.
**
**    (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the
**        result set of queries against generate_series will look like.
*/
static int seriesConnect(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  sqlite3_vtab *pNew;
  pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) );
  if( pNew==0 ) return SQLITE_NOMEM;

/* Column numbers */
#define SERIES_COLUMN_VALUE 0
#define SERIES_COLUMN_START 1
#define SERIES_COLUMN_STOP  2
#define SERIES_COLUMN_STEP  3

  sqlite3_declare_vtab(db,
     "CREATE TABLE x(value,start hidden,stop hidden,step hidden)");
  memset(pNew, 0, sizeof(*pNew));
  return SQLITE_OK;
}

/*
** This method is the destructor for series_cursor objects.
*/
static int seriesDisconnect(sqlite3_vtab *pVtab){
  sqlite3_free(pVtab);
  return SQLITE_OK;
}

/*
** Constructor for a new series_cursor object.
*/
static int seriesOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
  series_cursor *pCur;
  pCur = sqlite3_malloc( sizeof(*pCur) );
  if( pCur==0 ) return SQLITE_NOMEM;
  memset(pCur, 0, sizeof(*pCur));
  *ppCursor = &pCur->base;
  return SQLITE_OK;
}

/*
** Destructor for a series_cursor.
*/
static int seriesClose(sqlite3_vtab_cursor *cur){
  sqlite3_free(cur);
  return SQLITE_OK;
}


/*
** Advance a series_cursor to its next row of output.
*/
static int seriesNext(sqlite3_vtab_cursor *cur){
  series_cursor *pCur = (series_cursor*)cur;
  if( pCur->isDesc ){
    pCur->iValue -= pCur->iStep;
  }else{
    pCur->iValue += pCur->iStep;
  }
  return SQLITE_OK;
}

/*
** Return values of columns for the row at which the series_cursor
** is currently pointing.
*/
static int seriesColumn(
  sqlite3_vtab_cursor *cur,   /* The cursor */
  sqlite3_context *ctx,       /* First argument to sqlite3_result_...() */

  int i                       /* Which column to return */
){
  series_cursor *pCur = (series_cursor*)cur;
  sqlite3_int64 x = 0;
  switch( i ){

    case SERIES_COLUMN_START:  x = pCur->mnValue; break;
    case SERIES_COLUMN_STOP:   x = pCur->mxValue; break;
    case SERIES_COLUMN_STEP:   x = pCur->iStep;   break;
    default:                   x = pCur->iValue;  break;
  }
  sqlite3_result_int64(ctx, x);
  return SQLITE_OK;
}

/*
** Return the rowid for the current row.  In this implementation, the
** rowid is the same as the output value.
*/
static int seriesRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
  series_cursor *pCur = (series_cursor*)cur;
  *pRowid = pCur->iValue;
  return SQLITE_OK;
}

/*
** Return TRUE if the cursor has been moved off of the last
** row of output.
*/
static int seriesEof(sqlite3_vtab_cursor *cur){
  series_cursor *pCur = (series_cursor*)cur;
  if( pCur->isDesc ){
    return pCur->iValue < pCur->mnValue;
  }else{
    return pCur->iValue > pCur->mxValue;
  }
}

/*
** This method is called to "rewind" the series_cursor object back
** to the first row of output.  This method is always called at least
** once prior to any call to seriesColumn() or seriesRowid() or 
** seriesEof().
**
** The query plan selected by seriesBestIndex is passed in the idxNum
** parameter.  (idxStr is not used in this implementation.)  idxNum
** is a bitmask showing which constraints are available:
**
**    1:    start=VALUE
**    2:    stop=VALUE
**    4:    step=VALUE
**
** Also, if bit 8 is set, that means that the series should be output
** in descending order rather than in ascending order.
**
** This routine should initialize the cursor and position it so that it
** is pointing at the first row, or pointing off the end of the table
** (so that seriesEof() will return true) if the table is empty.
*/
static int seriesFilter(
  sqlite3_vtab_cursor *pVtabCursor, 
  int idxNum, const char *idxStr,
  int argc, sqlite3_value **argv
){
  series_cursor *pCur = (series_cursor *)pVtabCursor;
  int i = 0;
  if( idxNum & 1 ){
    pCur->mnValue = sqlite3_value_int64(argv[i++]);
  }else{
    pCur->mnValue = 0;
  }

  if( idxNum & 2 ){
    pCur->mxValue = sqlite3_value_int64(argv[i++]);
  }else{
    pCur->mxValue = 0xffffffff;
  }
  if( idxNum & 4 ){
    pCur->iStep = sqlite3_value_int64(argv[i++]);
    if( pCur->iStep<1 ) pCur->iStep = 1;
  }else{
    pCur->iStep = 1;
  }
  if( idxNum & 8 ){
    pCur->isDesc = 1;
    pCur->iValue = pCur->mxValue;
    if( pCur->iStep>0 ){
      pCur->iValue -= (pCur->mxValue - pCur->mnValue)%pCur->iStep;
    }
  }else{
    pCur->isDesc = 0;
    pCur->iValue = pCur->mnValue;
  }
  return SQLITE_OK;
}

/*
** SQLite will invoke this method one or more times while planning a query
** that uses the generate_series virtual table.  This routine needs to create
** a query plan for each invocation and compute an estimated cost for that
** plan.
**
** In this implementation idxNum is used to represent the
** query plan.  idxStr is unused.
**
** The query plan is represented by bits in idxNum:
**
**  (1)  start = $value  -- constraint exists
**  (2)  stop = $value   -- constraint exists
**  (4)  step = $value   -- constraint exists


**  (8)  output in descending order
*/
static int seriesBestIndex(
  sqlite3_vtab *tab,
  sqlite3_index_info *pIdxInfo
){
  int i;                 /* Loop over constraints */
  int idxNum = 0;        /* The query plan bitmask */
  int startIdx = -1;     /* Index of the start= constraint, or -1 if none */
  int stopIdx = -1;      /* Index of the stop= constraint, or -1 if none */
  int stepIdx = -1;      /* Index of the step= constraint, or -1 if none */
  int nArg = 0;          /* Number of arguments that seriesFilter() expects */

  const struct sqlite3_index_constraint *pConstraint;
  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
    if( pConstraint->usable==0 ) continue;
    if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
    switch( pConstraint->iColumn ){
................................................................................
        break;
      case SERIES_COLUMN_STEP:
        stepIdx = i;
        idxNum |= 4;
        break;
    }
  }

  if( startIdx>=0 ){
    pIdxInfo->aConstraintUsage[startIdx].argvIndex = ++nArg;
    pIdxInfo->aConstraintUsage[startIdx].omit = 1;
  }
  if( stopIdx>=0 ){
    pIdxInfo->aConstraintUsage[stopIdx].argvIndex = ++nArg;
    pIdxInfo->aConstraintUsage[stopIdx].omit = 1;
  }
  if( stepIdx>=0 ){
    pIdxInfo->aConstraintUsage[stepIdx].argvIndex = ++nArg;
    pIdxInfo->aConstraintUsage[stepIdx].omit = 1;
  }
  if( pIdxInfo->nOrderBy==1 ){
    if( pIdxInfo->aOrderBy[0].desc ) idxNum |= 8;

    pIdxInfo->orderByConsumed = 1;
  }
  if( (idxNum & 3)==3 ){
    /* Both start= and stop= boundaries are available.  This is the 
    ** the preferred case */
    pIdxInfo->estimatedCost = (double)1;
  }else{
    /* If either boundary is missing, we have to generate a huge span
    ** of numbers.  Make this case very expensive so that the query
    ** planner will work hard to avoid it. */
    pIdxInfo->estimatedCost = (double)2000000000;
  }
  pIdxInfo->idxNum = idxNum;
  return SQLITE_OK;
}

/*
** This following structure defines all the methods for the 
** generate_series virtual table.
*/
static sqlite3_module seriesModule = {
  0,                         /* iVersion */
  0,                         /* xCreate */
  seriesConnect,             /* xConnect */
  seriesBestIndex,           /* xBestIndex */
  seriesDisconnect,          /* xDisconnect */
  0,                         /* xDestroy */
  seriesOpen,                /* xOpen - open a cursor */
  seriesClose,               /* xClose - close a cursor */
  seriesFilter,              /* xFilter - configure scan constraints */
  seriesNext,                /* xNext - advance a cursor */
  seriesEof,                 /* xEof - check for end of scan */
  seriesColumn,              /* xColumn - read data */

Changes to test/tabfunc01.test.

40
41
42
43
44
45
46




47
48
49
50
51
52
53
54
55
} {1 2 3 4 5 6 7 8 9}
do_execsql_test tabfunc01-1.6 {
  SELECT * FROM generate_series(1,10) WHERE step=3;
} {1 4 7 10}
do_catchsql_test tabfunc01-1.7 {
  SELECT * FROM generate_series(1,9,2,11);
} {1 {too many arguments on generate_series - max 3}}





do_execsql_test tabfunc01-2.1 {
  CREATE TABLE t1(x);
  INSERT INTO t1(x) VALUES(2),(3);
  SELECT *, '|' FROM t1, generate_series(1,x) ORDER BY 1, 2
  
} {2 1 | 2 2 | 3 1 | 3 2 | 3 3 |}

finish_test







>
>
>
>





<



40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
} {1 2 3 4 5 6 7 8 9}
do_execsql_test tabfunc01-1.6 {
  SELECT * FROM generate_series(1,10) WHERE step=3;
} {1 4 7 10}
do_catchsql_test tabfunc01-1.7 {
  SELECT * FROM generate_series(1,9,2,11);
} {1 {too many arguments on generate_series - max 3}}

do_execsql_test tabfunc01-1.8 {
  SELECT * FROM generate_series(0,32,5) ORDER BY rowid DESC;
} {30 25 20 15 10 5 0}

do_execsql_test tabfunc01-2.1 {
  CREATE TABLE t1(x);
  INSERT INTO t1(x) VALUES(2),(3);
  SELECT *, '|' FROM t1, generate_series(1,x) ORDER BY 1, 2

} {2 1 | 2 2 | 3 1 | 3 2 | 3 3 |}

finish_test