SQLite

Check-in [fca799f03a]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge updates from trunk.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | vsix2013
Files: files | file ages | folders
SHA1: fca799f03ad04b7d36381108ff10e9c7d03656ac
User & Date: mistachkin 2013-09-12 00:40:54.982
Context
2013-09-13
22:38
VSIX tooling changes to support Visual Studio 2013. (check-in: d56fac4031 user: mistachkin tags: trunk)
2013-09-12
00:40
Merge updates from trunk. (Closed-Leaf check-in: fca799f03a user: mistachkin tags: vsix2013)
2013-09-11
14:57
Add test cases to cover TPC-H Q8. (check-in: eb5cef8351 user: drh tags: trunk)
2013-07-11
03:09
Environment variable names in nmake must be in all uppercase. (check-in: 0328e873f2 user: mistachkin tags: vsix2013)
Changes
Unified Diff Ignore Whitespace Patch
Changes to Makefile.msc.
89
90
91
92
93
94
95








96
97
98
99
100
101
102
# 3 == SQLITE_WIN32_MALLOC_VALIDATE: Validate the Win32 native heap per call.
# 4 == SQLITE_DEBUG_OS_TRACE: Enables output from the OSTRACE() macros.
# 5 == SQLITE_ENABLE_IOTRACE: Enables output from the IOTRACE() macros.
#
!IFNDEF DEBUG
DEBUG = 0
!ENDIF









# Check for the predefined command macro CC.  This should point to the compiler
# binary for the target platform.  If it is not defined, simply define it to
# the legacy default value 'cl.exe'.
#
!IFNDEF CC
CC = cl.exe







>
>
>
>
>
>
>
>







89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# 3 == SQLITE_WIN32_MALLOC_VALIDATE: Validate the Win32 native heap per call.
# 4 == SQLITE_DEBUG_OS_TRACE: Enables output from the OSTRACE() macros.
# 5 == SQLITE_ENABLE_IOTRACE: Enables output from the IOTRACE() macros.
#
!IFNDEF DEBUG
DEBUG = 0
!ENDIF

# Enable use of available compiler optimizations?  Normally, this should be
# non-zero.  Setting this to zero, thus disabling all compiler optimizations,
# can be useful for testing.
#
!IFNDEF OPTIMIZATIONS
OPTIMIZATIONS = 2
!ENDIF

# Check for the predefined command macro CC.  This should point to the compiler
# binary for the target platform.  If it is not defined, simply define it to
# the legacy default value 'cl.exe'.
#
!IFNDEF CC
CC = cl.exe
339
340
341
342
343
344
345

346

347
348
349

350

351
352
353
354
355
356
357
#
!IFNDEF TCLSH_CMD
TCLSH_CMD = tclsh85
!ENDIF

# Compiler options needed for programs that use the readline() library.
#

READLINE_FLAGS = -DHAVE_READLINE=0


# The library that programs using readline() must link against.
#

LIBREADLINE =


# Should the database engine be compiled threadsafe
#
TCC = $(TCC) -DSQLITE_THREADSAFE=1
RCC = $(RCC) -DSQLITE_THREADSAFE=1

# Do threads override each others locks by default (1), or do we test (-1)







>

>



>

>







347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#
!IFNDEF TCLSH_CMD
TCLSH_CMD = tclsh85
!ENDIF

# Compiler options needed for programs that use the readline() library.
#
!IFNDEF READLINE_FLAGS
READLINE_FLAGS = -DHAVE_READLINE=0
!ENDIF

# The library that programs using readline() must link against.
#
!IFNDEF LIBREADLINE
LIBREADLINE =
!ENDIF

# Should the database engine be compiled threadsafe
#
TCC = $(TCC) -DSQLITE_THREADSAFE=1
RCC = $(RCC) -DSQLITE_THREADSAFE=1

# Do threads override each others locks by default (1), or do we test (-1)
393
394
395
396
397
398
399
400
401
402
403
404
405
406










407
408



409
410

411
412
413
414
415
416
417
RCC = $(RCC) $(OPT_FEATURE_FLAGS)

# Add in any optional parameters specified on the make commane line
# ie.  make "OPTS=-DSQLITE_ENABLE_FOO=1 -DSQLITE_OMIT_FOO=1".
TCC = $(TCC) $(OPTS)
RCC = $(RCC) $(OPTS)

# If symbols are enabled, enable PDBs.
# If debugging is enabled, disable all optimizations and enable PDBs.
!IF $(DEBUG)>0
TCC = $(TCC) -Od -D_DEBUG
BCC = $(BCC) -Od -D_DEBUG
RCC = $(RCC) -D_DEBUG
!ELSE










TCC = $(TCC) -O2
BCC = $(BCC) -O2



!ENDIF


!IF $(DEBUG)>0 || $(SYMBOLS)!=0
TCC = $(TCC) -Zi
BCC = $(BCC) -Zi
!ENDIF

# If ICU support is enabled, add the compiler options for it.
!IF $(USE_ICU)!=0







<
|

|
|

|
>
>
>
>
>
>
>
>
>
>


>
>
>


>







405
406
407
408
409
410
411

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
RCC = $(RCC) $(OPT_FEATURE_FLAGS)

# Add in any optional parameters specified on the make commane line
# ie.  make "OPTS=-DSQLITE_ENABLE_FOO=1 -DSQLITE_OMIT_FOO=1".
TCC = $(TCC) $(OPTS)
RCC = $(RCC) $(OPTS)


# If compiling for debugging, add some defines.
!IF $(DEBUG)>0
TCC = $(TCC) -D_DEBUG
BCC = $(BCC) -D_DEBUG
RCC = $(RCC) -D_DEBUG
!ENDIF

# If optimizations are enabled or disabled (either implicitly or
# explicitly), add the necessary flags.
!IF $(DEBUG)>0 || $(OPTIMIZATIONS)==0
TCC = $(TCC) -Od
BCC = $(BCC) -Od
!ELSEIF $(OPTIMIZATIONS)>=3
TCC = $(TCC) -Ox
BCC = $(BCC) -Ox
!ELSEIF $(OPTIMIZATIONS)==2
TCC = $(TCC) -O2
BCC = $(BCC) -O2
!ELSEIF $(OPTIMIZATIONS)==1
TCC = $(TCC) -O1
BCC = $(BCC) -O1
!ENDIF

# If symbols are enabled (or compiling for debugging), enable PDBs.
!IF $(DEBUG)>0 || $(SYMBOLS)!=0
TCC = $(TCC) -Zi
BCC = $(BCC) -Zi
!ENDIF

# If ICU support is enabled, add the compiler options for it.
!IF $(USE_ICU)!=0
472
473
474
475
476
477
478

479

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
# If ICU support is enabled, add the linker options for it.
!IF $(USE_ICU)!=0
LTLIBPATHS = $(LTLIBPATHS) /LIBPATH:$(ICULIBDIR)
LTLIBS = $(LTLIBS) $(LIBICU)
!ENDIF

# nawk compatible awk.

NAWK = gawk.exe


# You should not have to change anything below this line
###############################################################################

# Object files for the SQLite library (non-amalgamation).
#
LIBOBJS0 = alter.lo analyze.lo attach.lo auth.lo \
         backup.lo bitvec.lo btmutex.lo btree.lo build.lo \
         callback.lo complete.lo ctime.lo date.lo delete.lo \
         expr.lo fault.lo fkey.lo \
         fts3.lo fts3_aux.lo fts3_expr.lo fts3_hash.lo fts3_icu.lo \
         fts3_porter.lo fts3_snippet.lo fts3_tokenizer.lo fts3_tokenizer1.lo \
         fts3_tokenize_vtab.lo fts3_unicode.lo fts3_unicode2.lo fts3_write.lo \
         func.lo global.lo hash.lo \
         icu.lo insert.lo journal.lo legacy.lo loadext.lo \
         main.lo malloc.lo mem0.lo mem1.lo mem2.lo mem3.lo mem5.lo \
         memjournal.lo \
         mutex.lo mutex_noop.lo mutex_unix.lo mutex_w32.lo \
         notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \
         pager.lo parse.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \
         random.lo resolve.lo rowset.lo rtree.lo select.lo status.lo \
         table.lo tokenize.lo trigger.lo \
         update.lo util.lo vacuum.lo \
         vdbe.lo vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbemem.lo vdbesort.lo \
         vdbetrace.lo wal.lo walker.lo where.lo utf.lo vtab.lo

# Object files for the amalgamation.
#
LIBOBJS1 = sqlite3.lo

# Determine the real value of LIBOBJ based on the 'configure' script







>

>






|












|



|







497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# If ICU support is enabled, add the linker options for it.
!IF $(USE_ICU)!=0
LTLIBPATHS = $(LTLIBPATHS) /LIBPATH:$(ICULIBDIR)
LTLIBS = $(LTLIBS) $(LIBICU)
!ENDIF

# nawk compatible awk.
!IFNDEF NAWK
NAWK = gawk.exe
!ENDIF

# You should not have to change anything below this line
###############################################################################

# Object files for the SQLite library (non-amalgamation).
#
LIBOBJS0 = vdbe.lo parse.lo alter.lo analyze.lo attach.lo auth.lo \
         backup.lo bitvec.lo btmutex.lo btree.lo build.lo \
         callback.lo complete.lo ctime.lo date.lo delete.lo \
         expr.lo fault.lo fkey.lo \
         fts3.lo fts3_aux.lo fts3_expr.lo fts3_hash.lo fts3_icu.lo \
         fts3_porter.lo fts3_snippet.lo fts3_tokenizer.lo fts3_tokenizer1.lo \
         fts3_tokenize_vtab.lo fts3_unicode.lo fts3_unicode2.lo fts3_write.lo \
         func.lo global.lo hash.lo \
         icu.lo insert.lo journal.lo legacy.lo loadext.lo \
         main.lo malloc.lo mem0.lo mem1.lo mem2.lo mem3.lo mem5.lo \
         memjournal.lo \
         mutex.lo mutex_noop.lo mutex_unix.lo mutex_w32.lo \
         notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \
         pager.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \
         random.lo resolve.lo rowset.lo rtree.lo select.lo status.lo \
         table.lo tokenize.lo trigger.lo \
         update.lo util.lo vacuum.lo \
         vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbemem.lo vdbesort.lo \
         vdbetrace.lo wal.lo walker.lo where.lo utf.lo vtab.lo

# Object files for the amalgamation.
#
LIBOBJS1 = sqlite3.lo

# Determine the real value of LIBOBJ based on the 'configure' script
1246
1247
1248
1249
1250
1251
1252



1253
1254
1255
1256
1257
1258
1259

soaktest:	testfixture.exe sqlite3.exe
	.\testfixture.exe $(TOP)\test\all.test -soak=1

fulltestonly:	testfixture.exe sqlite3.exe
	.\testfixture.exe $(TOP)\test\full.test




test:	testfixture.exe sqlite3.exe
	.\testfixture.exe $(TOP)\test\veryquick.test

sqlite3_analyzer.c: sqlite3.c $(TOP)\src\test_stat.c $(TOP)\src\tclsqlite.c $(TOP)\tool\spaceanal.tcl
	copy sqlite3.c + $(TOP)\src\test_stat.c + $(TOP)\src\tclsqlite.c $@
	echo static const char *tclsh_main_loop(void){ >> $@
	echo static const char *zMainloop = >> $@







>
>
>







1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

soaktest:	testfixture.exe sqlite3.exe
	.\testfixture.exe $(TOP)\test\all.test -soak=1

fulltestonly:	testfixture.exe sqlite3.exe
	.\testfixture.exe $(TOP)\test\full.test

queryplantest:	testfixture.exe sqlite3.exe
	.\testfixture.exe $(TOP)\test\permutations.test queryplanner

test:	testfixture.exe sqlite3.exe
	.\testfixture.exe $(TOP)\test\veryquick.test

sqlite3_analyzer.c: sqlite3.c $(TOP)\src\test_stat.c $(TOP)\src\tclsqlite.c $(TOP)\tool\spaceanal.tcl
	copy sqlite3.c + $(TOP)\src\test_stat.c + $(TOP)\src\tclsqlite.c $@
	echo static const char *tclsh_main_loop(void){ >> $@
	echo static const char *zMainloop = >> $@
Changes to VERSION.
1
3.7.17
|
1
3.8.1
Changes to configure.
1
2
3
4
5
6
7
8
9
10
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.62 for sqlite 3.7.17.
#
# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
# 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.
## --------------------- ##
## M4sh Initialization.  ##


|







1
2
3
4
5
6
7
8
9
10
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.62 for sqlite 3.8.1.
#
# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
# 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.
## --------------------- ##
## M4sh Initialization.  ##
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
MFLAGS=
MAKEFLAGS=
SHELL=${CONFIG_SHELL-/bin/sh}

# Identity of this package.
PACKAGE_NAME='sqlite'
PACKAGE_TARNAME='sqlite'
PACKAGE_VERSION='3.7.17'
PACKAGE_STRING='sqlite 3.7.17'
PACKAGE_BUGREPORT=''

# Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>







|
|







739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
MFLAGS=
MAKEFLAGS=
SHELL=${CONFIG_SHELL-/bin/sh}

# Identity of this package.
PACKAGE_NAME='sqlite'
PACKAGE_TARNAME='sqlite'
PACKAGE_VERSION='3.8.1'
PACKAGE_STRING='sqlite 3.8.1'
PACKAGE_BUGREPORT=''

# Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
SQLITE_THREADSAFE
XTHREADCONNECT
ALLOWRELEASE
TEMP_STORE
BUILD_EXEEXT
SQLITE_OS_UNIX
SQLITE_OS_WIN
SQLITE_OS_OS2
TARGET_EXEEXT
TCL_VERSION
TCL_BIN_DIR
TCL_SRC_DIR
TCL_INCLUDE_SPEC
TCL_LIB_FILE
TCL_LIB_FLAG







<







870
871
872
873
874
875
876

877
878
879
880
881
882
883
SQLITE_THREADSAFE
XTHREADCONNECT
ALLOWRELEASE
TEMP_STORE
BUILD_EXEEXT
SQLITE_OS_UNIX
SQLITE_OS_WIN

TARGET_EXEEXT
TCL_VERSION
TCL_BIN_DIR
TCL_SRC_DIR
TCL_INCLUDE_SPEC
TCL_LIB_FILE
TCL_LIB_FLAG
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
  # Omit some internal or obsolete options to make the list less imposing.
  # This message is too long to be a string in the A/UX 3.1 sh.
  cat <<_ACEOF
\`configure' configures sqlite 3.7.17 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.







|







1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
  # Omit some internal or obsolete options to make the list less imposing.
  # This message is too long to be a string in the A/UX 3.1 sh.
  cat <<_ACEOF
\`configure' configures sqlite 3.8.1 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
  --build=BUILD     configure for building on BUILD [guessed]
  --host=HOST       cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
  case $ac_init_help in
     short | recursive ) echo "Configuration of sqlite 3.7.17:";;
   esac
  cat <<\_ACEOF

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]







|







1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
  --build=BUILD     configure for building on BUILD [guessed]
  --host=HOST       cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
  case $ac_init_help in
     short | recursive ) echo "Configuration of sqlite 3.8.1:";;
   esac
  cat <<\_ACEOF

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
    cd "$ac_pwd" || { ac_status=$?; break; }
  done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
  cat <<\_ACEOF
sqlite configure 3.7.17
generated by GNU Autoconf 2.62

Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
  exit
fi
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by sqlite $as_me 3.7.17, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  $ $0 $@

_ACEOF
exec 5>>config.log
{







|













|







1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
    cd "$ac_pwd" || { ac_status=$?; break; }
  done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
  cat <<\_ACEOF
sqlite configure 3.8.1
generated by GNU Autoconf 2.62

Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
  exit
fi
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by sqlite $as_me 3.8.1, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  $ $0 $@

_ACEOF
exec 5>>config.log
{
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
{ $as_echo "$as_me:$LINENO: checking the name lister ($NM) interface" >&5
$as_echo_n "checking the name lister ($NM) interface... " >&6; }
if test "${lt_cv_nm_interface+set}" = set; then
  $as_echo_n "(cached) " >&6
else
  lt_cv_nm_interface="BSD nm"
  echo "int some_variable = 0;" > conftest.$ac_ext
  (eval echo "\"\$as_me:3736: $ac_compile\"" >&5)
  (eval "$ac_compile" 2>conftest.err)
  cat conftest.err >&5
  (eval echo "\"\$as_me:3739: $NM \\\"conftest.$ac_objext\\\"\"" >&5)
  (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out)
  cat conftest.err >&5
  (eval echo "\"\$as_me:3742: output\"" >&5)
  cat conftest.out >&5
  if $GREP 'External.*some_variable' conftest.out > /dev/null; then
    lt_cv_nm_interface="MS dumpbin"
  fi
  rm -f conftest*
fi
{ $as_echo "$as_me:$LINENO: result: $lt_cv_nm_interface" >&5







|


|


|







3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
{ $as_echo "$as_me:$LINENO: checking the name lister ($NM) interface" >&5
$as_echo_n "checking the name lister ($NM) interface... " >&6; }
if test "${lt_cv_nm_interface+set}" = set; then
  $as_echo_n "(cached) " >&6
else
  lt_cv_nm_interface="BSD nm"
  echo "int some_variable = 0;" > conftest.$ac_ext
  (eval echo "\"\$as_me:3735: $ac_compile\"" >&5)
  (eval "$ac_compile" 2>conftest.err)
  cat conftest.err >&5
  (eval echo "\"\$as_me:3738: $NM \\\"conftest.$ac_objext\\\"\"" >&5)
  (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out)
  cat conftest.err >&5
  (eval echo "\"\$as_me:3741: output\"" >&5)
  cat conftest.out >&5
  if $GREP 'External.*some_variable' conftest.out > /dev/null; then
    lt_cv_nm_interface="MS dumpbin"
  fi
  rm -f conftest*
fi
{ $as_echo "$as_me:$LINENO: result: $lt_cv_nm_interface" >&5
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
	;;
    esac
  fi
  rm -rf conftest*
  ;;
*-*-irix6*)
  # Find out which ABI we are using.
  echo '#line 4964 "configure"' > conftest.$ac_ext
  if { (eval echo "$as_me:$LINENO: \"$ac_compile\"") >&5
  (eval $ac_compile) 2>&5
  ac_status=$?
  $as_echo "$as_me:$LINENO: \$? = $ac_status" >&5
  (exit $ac_status); }; then
    if test "$lt_cv_prog_gnu_ld" = yes; then
      case `/usr/bin/file conftest.$ac_objext` in







|







4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
	;;
    esac
  fi
  rm -rf conftest*
  ;;
*-*-irix6*)
  # Find out which ABI we are using.
  echo '#line 4963 "configure"' > conftest.$ac_ext
  if { (eval echo "$as_me:$LINENO: \"$ac_compile\"") >&5
  (eval $ac_compile) 2>&5
  ac_status=$?
  $as_echo "$as_me:$LINENO: \$? = $ac_status" >&5
  (exit $ac_status); }; then
    if test "$lt_cv_prog_gnu_ld" = yes; then
      case `/usr/bin/file conftest.$ac_objext` in
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   # The option is referenced via a variable to avoid confusing sed.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:6833: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>conftest.err)
   ac_status=$?
   cat conftest.err >&5
   echo "$as_me:6837: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s "$ac_outfile"; then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings other than the usual output.
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp
     $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
     if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
       lt_cv_prog_compiler_rtti_exceptions=yes







|



|







6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   # The option is referenced via a variable to avoid confusing sed.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:6832: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>conftest.err)
   ac_status=$?
   cat conftest.err >&5
   echo "$as_me:6836: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s "$ac_outfile"; then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings other than the usual output.
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp
     $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
     if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
       lt_cv_prog_compiler_rtti_exceptions=yes
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   # The option is referenced via a variable to avoid confusing sed.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7172: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>conftest.err)
   ac_status=$?
   cat conftest.err >&5
   echo "$as_me:7176: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s "$ac_outfile"; then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings other than the usual output.
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp
     $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
     if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
       lt_cv_prog_compiler_pic_works=yes







|



|







7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   # The option is referenced via a variable to avoid confusing sed.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7171: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>conftest.err)
   ac_status=$?
   cat conftest.err >&5
   echo "$as_me:7175: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s "$ac_outfile"; then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings other than the usual output.
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp
     $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
     if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
       lt_cv_prog_compiler_pic_works=yes
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
   # (2) before a word containing "conftest.", or (3) at the end.
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7277: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>out/conftest.err)
   ac_status=$?
   cat out/conftest.err >&5
   echo "$as_me:7281: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s out/conftest2.$ac_objext
   then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp
     $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
     if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then







|



|







7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
   # (2) before a word containing "conftest.", or (3) at the end.
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7276: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>out/conftest.err)
   ac_status=$?
   cat out/conftest.err >&5
   echo "$as_me:7280: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s out/conftest2.$ac_objext
   then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp
     $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
     if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
   # (2) before a word containing "conftest.", or (3) at the end.
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7332: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>out/conftest.err)
   ac_status=$?
   cat out/conftest.err >&5
   echo "$as_me:7336: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s out/conftest2.$ac_objext
   then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp
     $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
     if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then







|



|







7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
   # (2) before a word containing "conftest.", or (3) at the end.
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7331: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>out/conftest.err)
   ac_status=$?
   cat out/conftest.err >&5
   echo "$as_me:7335: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s out/conftest2.$ac_objext
   then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp
     $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
     if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
else
  	  if test "$cross_compiling" = yes; then :
  lt_cv_dlopen_self=cross
else
  lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
  lt_status=$lt_dlunknown
  cat > conftest.$ac_ext <<_LT_EOF
#line 10145 "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>







|







10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
else
  	  if test "$cross_compiling" = yes; then :
  lt_cv_dlopen_self=cross
else
  lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
  lt_status=$lt_dlunknown
  cat > conftest.$ac_ext <<_LT_EOF
#line 10144 "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
else
  	  if test "$cross_compiling" = yes; then :
  lt_cv_dlopen_self_static=cross
else
  lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
  lt_status=$lt_dlunknown
  cat > conftest.$ac_ext <<_LT_EOF
#line 10241 "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>







|







10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
else
  	  if test "$cross_compiling" = yes; then :
  lt_cv_dlopen_self_static=cross
else
  lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
  lt_status=$lt_dlunknown
  cat > conftest.$ac_ext <<_LT_EOF
#line 10240 "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
USE_AMALGAMATION=1

#########
# See whether we can run specific tclsh versions known to work well;
# if not, then we fall back to plain tclsh.
# TODO: try other versions before falling back?
#
for ac_prog in tclsh8.5 tclsh
do
  # Extract the first word of "$ac_prog", so it can be a program name with args.
set dummy $ac_prog; ac_word=$2
{ $as_echo "$as_me:$LINENO: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if test "${ac_cv_prog_TCLSH_CMD+set}" = set; then
  $as_echo_n "(cached) " >&6







|







12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
USE_AMALGAMATION=1

#########
# See whether we can run specific tclsh versions known to work well;
# if not, then we fall back to plain tclsh.
# TODO: try other versions before falling back?
#
for ac_prog in tclsh8.6 tclsh8.5 tclsh
do
  # Extract the first word of "$ac_prog", so it can be a program name with args.
set dummy $ac_prog; ac_word=$2
{ $as_echo "$as_me:$LINENO: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if test "${ac_cv_prog_TCLSH_CMD+set}" = set; then
  $as_echo_n "(cached) " >&6
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
fi
if test x"$cross_compiling" = xno; then
  TARGET_EXEEXT=$BUILD_EXEEXT
else
  TARGET_EXEEXT=$config_TARGET_EXEEXT
fi
if test "$TARGET_EXEEXT" = ".exe"; then
  if test $OS2_SHELL ; then
    SQLITE_OS_UNIX=0
    SQLITE_OS_WIN=0
    SQLITE_OS_OS2=1
    CFLAGS="$CFLAGS -DSQLITE_OS_OS2=1"
  else
    SQLITE_OS_UNIX=0
    SQLITE_OS_WIN=1
    SQLITE_OS_OS2=0
    CFLAGS="$CFLAGS -DSQLITE_OS_WIN=1"
  fi
else
  SQLITE_OS_UNIX=1
  SQLITE_OS_WIN=0
  SQLITE_OS_OS2=0
  CFLAGS="$CFLAGS -DSQLITE_OS_UNIX=1"
fi







##########







<
|
<
<
<
<
<
|
<
|
<



<


<







12708
12709
12710
12711
12712
12713
12714

12715





12716

12717

12718
12719
12720

12721
12722

12723
12724
12725
12726
12727
12728
12729
fi
if test x"$cross_compiling" = xno; then
  TARGET_EXEEXT=$BUILD_EXEEXT
else
  TARGET_EXEEXT=$config_TARGET_EXEEXT
fi
if test "$TARGET_EXEEXT" = ".exe"; then

  SQLITE_OS_UNIX=0





  SQLITE_OS_WIN=1

  CFLAGS="$CFLAGS -DSQLITE_OS_WIN=1"

else
  SQLITE_OS_UNIX=1
  SQLITE_OS_WIN=0

  CFLAGS="$CFLAGS -DSQLITE_OS_UNIX=1"
fi







##########
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042

exec 6>&1

# Save the log message, to keep $[0] and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by sqlite $as_me 3.7.17, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  CONFIG_FILES    = $CONFIG_FILES
  CONFIG_HEADERS  = $CONFIG_HEADERS
  CONFIG_LINKS    = $CONFIG_LINKS
  CONFIG_COMMANDS = $CONFIG_COMMANDS
  $ $0 $@







|







14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031

exec 6>&1

# Save the log message, to keep $[0] and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by sqlite $as_me 3.8.1, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  CONFIG_FILES    = $CONFIG_FILES
  CONFIG_HEADERS  = $CONFIG_HEADERS
  CONFIG_LINKS    = $CONFIG_LINKS
  CONFIG_COMMANDS = $CONFIG_COMMANDS
  $ $0 $@
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
$config_commands

Report bugs to <bug-autoconf@gnu.org>."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_version="\\
sqlite config.status 3.7.17
configured by $0, generated by GNU Autoconf 2.62,
  with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"

Copyright (C) 2008 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."








|







14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
$config_commands

Report bugs to <bug-autoconf@gnu.org>."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_version="\\
sqlite config.status 3.8.1
configured by $0, generated by GNU Autoconf 2.62,
  with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"

Copyright (C) 2008 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."

Changes to configure.ac.
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
USE_AMALGAMATION=1

#########
# See whether we can run specific tclsh versions known to work well;
# if not, then we fall back to plain tclsh.
# TODO: try other versions before falling back?
# 
AC_CHECK_PROGS(TCLSH_CMD, [tclsh8.5 tclsh], none)
if test "$TCLSH_CMD" = "none"; then
  # If we can't find a local tclsh, then building the amalgamation will fail.
  # We act as though --disable-amalgamation has been used.
  echo "Warning: can't find tclsh - defaulting to non-amalgamation build."
  USE_AMALGAMATION=0
  TCLSH_CMD="tclsh"
fi







|







135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
USE_AMALGAMATION=1

#########
# See whether we can run specific tclsh versions known to work well;
# if not, then we fall back to plain tclsh.
# TODO: try other versions before falling back?
# 
AC_CHECK_PROGS(TCLSH_CMD, [tclsh8.6 tclsh8.5 tclsh], none)
if test "$TCLSH_CMD" = "none"; then
  # If we can't find a local tclsh, then building the amalgamation will fail.
  # We act as though --disable-amalgamation has been used.
  echo "Warning: can't find tclsh - defaulting to non-amalgamation build."
  USE_AMALGAMATION=0
  TCLSH_CMD="tclsh"
fi
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
fi
if test x"$cross_compiling" = xno; then
  TARGET_EXEEXT=$BUILD_EXEEXT
else
  TARGET_EXEEXT=$config_TARGET_EXEEXT
fi
if test "$TARGET_EXEEXT" = ".exe"; then
  if test $OS2_SHELL ; then
    SQLITE_OS_UNIX=0
    SQLITE_OS_WIN=0
    SQLITE_OS_OS2=1
    CFLAGS="$CFLAGS -DSQLITE_OS_OS2=1"
  else
    SQLITE_OS_UNIX=0
    SQLITE_OS_WIN=1
    SQLITE_OS_OS2=0
    CFLAGS="$CFLAGS -DSQLITE_OS_WIN=1"
  fi
else
  SQLITE_OS_UNIX=1
  SQLITE_OS_WIN=0
  SQLITE_OS_OS2=0
  CFLAGS="$CFLAGS -DSQLITE_OS_UNIX=1"
fi

AC_SUBST(BUILD_EXEEXT)
AC_SUBST(SQLITE_OS_UNIX)
AC_SUBST(SQLITE_OS_WIN)
AC_SUBST(SQLITE_OS_OS2)
AC_SUBST(TARGET_EXEEXT)

##########
# Figure out all the parameters needed to compile against Tcl.
#
# This code is derived from the SC_PATH_TCLCONFIG and SC_LOAD_TCLCONFIG
# macros in the in the tcl.m4 file of the standard TCL distribution.







<
|
<
<
<
<
<
|
<
|
<



<






<







336
337
338
339
340
341
342

343





344

345

346
347
348

349
350
351
352
353
354

355
356
357
358
359
360
361
fi
if test x"$cross_compiling" = xno; then
  TARGET_EXEEXT=$BUILD_EXEEXT
else
  TARGET_EXEEXT=$config_TARGET_EXEEXT
fi
if test "$TARGET_EXEEXT" = ".exe"; then

  SQLITE_OS_UNIX=0





  SQLITE_OS_WIN=1

  CFLAGS="$CFLAGS -DSQLITE_OS_WIN=1"

else
  SQLITE_OS_UNIX=1
  SQLITE_OS_WIN=0

  CFLAGS="$CFLAGS -DSQLITE_OS_UNIX=1"
fi

AC_SUBST(BUILD_EXEEXT)
AC_SUBST(SQLITE_OS_UNIX)
AC_SUBST(SQLITE_OS_WIN)

AC_SUBST(TARGET_EXEEXT)

##########
# Figure out all the parameters needed to compile against Tcl.
#
# This code is derived from the SC_PATH_TCLCONFIG and SC_LOAD_TCLCONFIG
# macros in the in the tcl.m4 file of the standard TCL distribution.
Changes to ext/fts1/fts1.c.
3331
3332
3333
3334
3335
3336
3337



3338
3339
3340
3341
3342
3343
3344
3345
int sqlite3Fts1Init(sqlite3 *db){
  sqlite3_overload_function(db, "snippet", -1);
  sqlite3_overload_function(db, "offsets", -1);
  return sqlite3_create_module(db, "fts1", &fulltextModule, 0);
}

#if !SQLITE_CORE



int sqlite3_extension_init(sqlite3 *db, char **pzErrMsg,
                           const sqlite3_api_routines *pApi){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3Fts1Init(db);
}
#endif

#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */







>
>
>
|
|






3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
int sqlite3Fts1Init(sqlite3 *db){
  sqlite3_overload_function(db, "snippet", -1);
  sqlite3_overload_function(db, "offsets", -1);
  return sqlite3_create_module(db, "fts1", &fulltextModule, 0);
}

#if !SQLITE_CORE
#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_fts1_init(sqlite3 *db, char **pzErrMsg,
                      const sqlite3_api_routines *pApi){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3Fts1Init(db);
}
#endif

#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */
Changes to ext/fts1/fulltext.c.
848
849
850
851
852
853
854
855




856


857
858
859
860
861
862
863
/* Current interface:
** argv[0] - module name
** argv[1] - database name
** argv[2] - table name
** argv[3] - tokenizer name (optional, a sensible default is provided)
** argv[4..] - passed to tokenizer (optional based on tokenizer)
**/
static int fulltextConnect(sqlite3 *db, void *pAux, int argc, char **argv,




                           sqlite3_vtab **ppVTab){


  int rc;
  fulltext_vtab *v;
  sqlite3_tokenizer_module *m = NULL;

  assert( argc>=3 );
  v = (fulltext_vtab *) malloc(sizeof(fulltext_vtab));
  /* sqlite will initialize v->base */







|
>
>
>
>
|
>
>







848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
/* Current interface:
** argv[0] - module name
** argv[1] - database name
** argv[2] - table name
** argv[3] - tokenizer name (optional, a sensible default is provided)
** argv[4..] - passed to tokenizer (optional based on tokenizer)
**/
static int fulltextConnect(
  sqlite3 *db,
  void *pAux,
  int argc,
  const char * const *argv,
  sqlite3_vtab **ppVTab,
  char **pzErr
){
  int rc;
  fulltext_vtab *v;
  sqlite3_tokenizer_module *m = NULL;

  assert( argc>=3 );
  v = (fulltext_vtab *) malloc(sizeof(fulltext_vtab));
  /* sqlite will initialize v->base */
894
895
896
897
898
899
900
901




902


903
904
905
906
907
908
909

  memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));

  *ppVTab = &v->base;
  return SQLITE_OK;
}

static int fulltextCreate(sqlite3 *db, void *pAux, int argc, char **argv,




                          sqlite3_vtab **ppVTab){


  int rc;
  assert( argc>=3 );

  /* The %_content table holds the text of each full-text item, with
  ** the rowid used as the docid.
  **
  ** The %_term table maps each term to a document list blob







|
>
>
>
>
|
>
>







900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921

  memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));

  *ppVTab = &v->base;
  return SQLITE_OK;
}

static int fulltextCreate(
  sqlite3 *db,
  void *pAux,
  int argc,
  const char * const *argv,
  sqlite3_vtab **ppVTab,
  char **pzErr
){
  int rc;
  assert( argc>=3 );

  /* The %_content table holds the text of each full-text item, with
  ** the rowid used as the docid.
  **
  ** The %_term table maps each term to a document list blob
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
  */
  rc = sql_exec(db, argv[2],
    "create table %_content(content text);"
    "create table %_term(term text, first integer, doclist blob);"
    "create index %_index on %_term(term, first)");
  if( rc!=SQLITE_OK ) return rc;

  return fulltextConnect(db, pAux, argc, argv, ppVTab);
}

/* Decide how to handle an SQL query.
 * At the moment, MATCH queries can include implicit boolean ANDs; we
 * haven't implemented phrase searches or OR yet. */
static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
  int i;







|







942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
  */
  rc = sql_exec(db, argv[2],
    "create table %_content(content text);"
    "create table %_term(term text, first integer, doclist blob);"
    "create index %_index on %_term(term, first)");
  if( rc!=SQLITE_OK ) return rc;

  return fulltextConnect(db, pAux, argc, argv, ppVTab, pzErr);
}

/* Decide how to handle an SQL query.
 * At the moment, MATCH queries can include implicit boolean ANDs; we
 * haven't implemented phrase searches or OR yet. */
static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
  int i;
1484
1485
1486
1487
1488
1489
1490



1491
1492
1493
1494
1495
1496
};

int fulltext_init(sqlite3 *db){
 return sqlite3_create_module(db, "fulltext", &fulltextModule, 0);
}

#if !SQLITE_CORE



int sqlite3_extension_init(sqlite3 *db, char **pzErrMsg,
                           const sqlite3_api_routines *pApi){
 SQLITE_EXTENSION_INIT2(pApi)
 return fulltext_init(db);
}
#endif







>
>
>
|
|




1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
};

int fulltext_init(sqlite3 *db){
 return sqlite3_create_module(db, "fulltext", &fulltextModule, 0);
}

#if !SQLITE_CORE
#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_fulltext_init(sqlite3 *db, char **pzErrMsg,
                          const sqlite3_api_routines *pApi){
 SQLITE_EXTENSION_INIT2(pApi)
 return fulltext_init(db);
}
#endif
Changes to ext/fts2/fts2.c.
6840
6841
6842
6843
6844
6845
6846



6847
6848
6849
6850
6851
6852
6853
6854
    sqlite3Fts2HashClear(pHash);
    sqlite3_free(pHash);
  }
  return rc;
}

#if !SQLITE_CORE



int sqlite3_extension_init(
  sqlite3 *db, 
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3Fts2Init(db);
}







>
>
>
|







6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
    sqlite3Fts2HashClear(pHash);
    sqlite3_free(pHash);
  }
  return rc;
}

#if !SQLITE_CORE
#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_fts2_init(
  sqlite3 *db, 
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3Fts2Init(db);
}
Changes to ext/fts2/fts2_hash.c.
26
27
28
29
30
31
32


33
34
35
36
37
38
39
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)

#include <assert.h>
#include <stdlib.h>
#include <string.h>

#include "sqlite3.h"


#include "fts2_hash.h"

/*
** Malloc and Free functions
*/
static void *fts2HashMalloc(int n){
  void *p = sqlite3_malloc(n);







>
>







26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)

#include <assert.h>
#include <stdlib.h>
#include <string.h>

#include "sqlite3.h"
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT3
#include "fts2_hash.h"

/*
** Malloc and Free functions
*/
static void *fts2HashMalloc(int n){
  void *p = sqlite3_malloc(n);
Changes to ext/fts2/fts2_porter.c.
26
27
28
29
30
31
32



33
34
35
36
37
38
39


#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>




#include "fts2_tokenizer.h"

/*
** Class derived from sqlite3_tokenizer
*/
typedef struct porter_tokenizer {
  sqlite3_tokenizer base;      /* Base class */







>
>
>







26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "sqlite3.h"
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT3
#include "fts2_tokenizer.h"

/*
** Class derived from sqlite3_tokenizer
*/
typedef struct porter_tokenizer {
  sqlite3_tokenizer base;      /* Base class */
Changes to ext/fts2/fts2_tokenizer.c.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
**       SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)


#include "sqlite3.h"
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1

#include "fts2_hash.h"
#include "fts2_tokenizer.h"
#include <assert.h>

/*
** Implementation of the SQL scalar function for accessing the underlying 







|







24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
**       SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)


#include "sqlite3.h"
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT3

#include "fts2_hash.h"
#include "fts2_tokenizer.h"
#include <assert.h>

/*
** Implementation of the SQL scalar function for accessing the underlying 
Changes to ext/fts2/fts2_tokenizer1.c.
26
27
28
29
30
31
32



33
34
35
36
37
38
39


#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>




#include "fts2_tokenizer.h"

typedef struct simple_tokenizer {
  sqlite3_tokenizer base;
  char delim[128];             /* flag ASCII delimiters */
} simple_tokenizer;








>
>
>







26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "sqlite3.h"
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT3
#include "fts2_tokenizer.h"

typedef struct simple_tokenizer {
  sqlite3_tokenizer base;
  char delim[128];             /* flag ASCII delimiters */
} simple_tokenizer;

Changes to ext/fts3/fts3.c.
1077
1078
1079
1080
1081
1082
1083


1084
1085
1086
1087
1088
1089
1090
1091
1092

1093
1094
1095









1096
1097
1098
1099
1100
1101
1102
  int bNoDocsize = 0;             /* True to omit %_docsize table */
  int bDescIdx = 0;               /* True to store descending indexes */
  char *zPrefix = 0;              /* Prefix parameter value (or NULL) */
  char *zCompress = 0;            /* compress=? parameter (or NULL) */
  char *zUncompress = 0;          /* uncompress=? parameter (or NULL) */
  char *zContent = 0;             /* content=? parameter (or NULL) */
  char *zLanguageid = 0;          /* languageid=? parameter (or NULL) */



  assert( strlen(argv[0])==4 );
  assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
       || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
  );

  nDb = (int)strlen(argv[1]) + 1;
  nName = (int)strlen(argv[2]) + 1;


  aCol = (const char **)sqlite3_malloc(sizeof(const char *) * (argc-2) );
  if( !aCol ) return SQLITE_NOMEM;
  memset((void *)aCol, 0, sizeof(const char *) * (argc-2));










  /* Loop through all of the arguments passed by the user to the FTS3/4
  ** module (i.e. all the column names and special arguments). This loop
  ** does the following:
  **
  **   + Figures out the number of columns the FTSX table will have, and
  **     the number of bytes of space that must be allocated to store copies







>
>









>
|
|
|
>
>
>
>
>
>
>
>
>







1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
  int bNoDocsize = 0;             /* True to omit %_docsize table */
  int bDescIdx = 0;               /* True to store descending indexes */
  char *zPrefix = 0;              /* Prefix parameter value (or NULL) */
  char *zCompress = 0;            /* compress=? parameter (or NULL) */
  char *zUncompress = 0;          /* uncompress=? parameter (or NULL) */
  char *zContent = 0;             /* content=? parameter (or NULL) */
  char *zLanguageid = 0;          /* languageid=? parameter (or NULL) */
  char **azNotindexed = 0;        /* The set of notindexed= columns */
  int nNotindexed = 0;            /* Size of azNotindexed[] array */

  assert( strlen(argv[0])==4 );
  assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
       || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
  );

  nDb = (int)strlen(argv[1]) + 1;
  nName = (int)strlen(argv[2]) + 1;

  nByte = sizeof(const char *) * (argc-2);
  aCol = (const char **)sqlite3_malloc(nByte);
  if( aCol ){
    memset((void*)aCol, 0, nByte);
    azNotindexed = (char **)sqlite3_malloc(nByte);
  }
  if( azNotindexed ){
    memset(azNotindexed, 0, nByte);
  }
  if( !aCol || !azNotindexed ){
    rc = SQLITE_NOMEM;
    goto fts3_init_out;
  }

  /* Loop through all of the arguments passed by the user to the FTS3/4
  ** module (i.e. all the column names and special arguments). This loop
  ** does the following:
  **
  **   + Figures out the number of columns the FTSX table will have, and
  **     the number of bytes of space that must be allocated to store copies
1127
1128
1129
1130
1131
1132
1133
1134

1135
1136
1137
1138
1139
1140
1141
      } aFts4Opt[] = {
        { "matchinfo",   9 },     /* 0 -> MATCHINFO */
        { "prefix",      6 },     /* 1 -> PREFIX */
        { "compress",    8 },     /* 2 -> COMPRESS */
        { "uncompress", 10 },     /* 3 -> UNCOMPRESS */
        { "order",       5 },     /* 4 -> ORDER */
        { "content",     7 },     /* 5 -> CONTENT */
        { "languageid", 10 }      /* 6 -> LANGUAGEID */

      };

      int iOpt;
      if( !zVal ){
        rc = SQLITE_NOMEM;
      }else{
        for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){







|
>







1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
      } aFts4Opt[] = {
        { "matchinfo",   9 },     /* 0 -> MATCHINFO */
        { "prefix",      6 },     /* 1 -> PREFIX */
        { "compress",    8 },     /* 2 -> COMPRESS */
        { "uncompress", 10 },     /* 3 -> UNCOMPRESS */
        { "order",       5 },     /* 4 -> ORDER */
        { "content",     7 },     /* 5 -> CONTENT */
        { "languageid", 10 },     /* 6 -> LANGUAGEID */
        { "notindexed", 10 }      /* 7 -> NOTINDEXED */
      };

      int iOpt;
      if( !zVal ){
        rc = SQLITE_NOMEM;
      }else{
        for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){
1193
1194
1195
1196
1197
1198
1199





1200
1201
1202
1203
1204
1205
1206

            case 6:              /* LANGUAGEID */
              assert( iOpt==6 );
              sqlite3_free(zLanguageid);
              zLanguageid = zVal;
              zVal = 0;
              break;





          }
        }
        sqlite3_free(zVal);
      }
    }

    /* Otherwise, the argument is a column name. */







>
>
>
>
>







1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224

            case 6:              /* LANGUAGEID */
              assert( iOpt==6 );
              sqlite3_free(zLanguageid);
              zLanguageid = zVal;
              zVal = 0;
              break;

            case 7:              /* NOTINDEXED */
              azNotindexed[nNotindexed++] = zVal;
              zVal = 0;
              break;
          }
        }
        sqlite3_free(zVal);
      }
    }

    /* Otherwise, the argument is a column name. */
1264
1265
1266
1267
1268
1269
1270

1271
1272
1273
1274
1275
1276
1277
  }
  if( rc!=SQLITE_OK ) goto fts3_init_out;

  /* Allocate and populate the Fts3Table structure. */
  nByte = sizeof(Fts3Table) +                  /* Fts3Table */
          nCol * sizeof(char *) +              /* azColumn */
          nIndex * sizeof(struct Fts3Index) +  /* aIndex */

          nName +                              /* zName */
          nDb +                                /* zDb */
          nString;                             /* Space for azColumn strings */
  p = (Fts3Table*)sqlite3_malloc(nByte);
  if( p==0 ){
    rc = SQLITE_NOMEM;
    goto fts3_init_out;







>







1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
  }
  if( rc!=SQLITE_OK ) goto fts3_init_out;

  /* Allocate and populate the Fts3Table structure. */
  nByte = sizeof(Fts3Table) +                  /* Fts3Table */
          nCol * sizeof(char *) +              /* azColumn */
          nIndex * sizeof(struct Fts3Index) +  /* aIndex */
          nCol * sizeof(u8) +                  /* abNotindexed */
          nName +                              /* zName */
          nDb +                                /* zDb */
          nString;                             /* Space for azColumn strings */
  p = (Fts3Table*)sqlite3_malloc(nByte);
  if( p==0 ){
    rc = SQLITE_NOMEM;
    goto fts3_init_out;
1297
1298
1299
1300
1301
1302
1303

1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326



















1327
1328
1329
1330
1331
1332
1333
1334

  p->aIndex = (struct Fts3Index *)&p->azColumn[nCol];
  memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex);
  p->nIndex = nIndex;
  for(i=0; i<nIndex; i++){
    fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1);
  }


  /* Fill in the zName and zDb fields of the vtab structure. */
  zCsr = (char *)&p->aIndex[nIndex];
  p->zName = zCsr;
  memcpy(zCsr, argv[2], nName);
  zCsr += nName;
  p->zDb = zCsr;
  memcpy(zCsr, argv[1], nDb);
  zCsr += nDb;

  /* Fill in the azColumn array */
  for(iCol=0; iCol<nCol; iCol++){
    char *z; 
    int n = 0;
    z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
    memcpy(zCsr, z, n);
    zCsr[n] = '\0';
    sqlite3Fts3Dequote(zCsr);
    p->azColumn[iCol] = zCsr;
    zCsr += n+1;
    assert( zCsr <= &((char *)p)[nByte] );
  }




















  if( (zCompress==0)!=(zUncompress==0) ){
    char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
    rc = SQLITE_ERROR;
    *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss);
  }
  p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
  p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
  if( rc!=SQLITE_OK ) goto fts3_init_out;







>


|




















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|







1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373

  p->aIndex = (struct Fts3Index *)&p->azColumn[nCol];
  memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex);
  p->nIndex = nIndex;
  for(i=0; i<nIndex; i++){
    fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1);
  }
  p->abNotindexed = (u8 *)&p->aIndex[nIndex];

  /* Fill in the zName and zDb fields of the vtab structure. */
  zCsr = (char *)&p->abNotindexed[nCol];
  p->zName = zCsr;
  memcpy(zCsr, argv[2], nName);
  zCsr += nName;
  p->zDb = zCsr;
  memcpy(zCsr, argv[1], nDb);
  zCsr += nDb;

  /* Fill in the azColumn array */
  for(iCol=0; iCol<nCol; iCol++){
    char *z; 
    int n = 0;
    z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
    memcpy(zCsr, z, n);
    zCsr[n] = '\0';
    sqlite3Fts3Dequote(zCsr);
    p->azColumn[iCol] = zCsr;
    zCsr += n+1;
    assert( zCsr <= &((char *)p)[nByte] );
  }

  /* Fill in the abNotindexed array */
  for(iCol=0; iCol<nCol; iCol++){
    int n = (int)strlen(p->azColumn[iCol]);
    for(i=0; i<nNotindexed; i++){
      char *zNot = azNotindexed[i];
      if( zNot && 0==sqlite3_strnicmp(p->azColumn[iCol], zNot, n) ){
        p->abNotindexed[iCol] = 1;
        sqlite3_free(zNot);
        azNotindexed[i] = 0;
      }
    }
  }
  for(i=0; i<nNotindexed; i++){
    if( azNotindexed[i] ){
      *pzErr = sqlite3_mprintf("no such column: %s", azNotindexed[i]);
      rc = SQLITE_ERROR;
    }
  }

  if( rc==SQLITE_OK && (zCompress==0)!=(zUncompress==0) ){
    char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
    rc = SQLITE_ERROR;
    *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss);
  }
  p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
  p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
  if( rc!=SQLITE_OK ) goto fts3_init_out;
1361
1362
1363
1364
1365
1366
1367

1368

1369
1370
1371
1372
1373
1374
1375
fts3_init_out:
  sqlite3_free(zPrefix);
  sqlite3_free(aIndex);
  sqlite3_free(zCompress);
  sqlite3_free(zUncompress);
  sqlite3_free(zContent);
  sqlite3_free(zLanguageid);

  sqlite3_free((void *)aCol);

  if( rc!=SQLITE_OK ){
    if( p ){
      fts3DisconnectMethod((sqlite3_vtab *)p);
    }else if( pTokenizer ){
      pTokenizer->pModule->xDestroy(pTokenizer);
    }
  }else{







>

>







1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
fts3_init_out:
  sqlite3_free(zPrefix);
  sqlite3_free(aIndex);
  sqlite3_free(zCompress);
  sqlite3_free(zUncompress);
  sqlite3_free(zContent);
  sqlite3_free(zLanguageid);
  for(i=0; i<nNotindexed; i++) sqlite3_free(azNotindexed[i]);
  sqlite3_free((void *)aCol);
  sqlite3_free((void *)azNotindexed);
  if( rc!=SQLITE_OK ){
    if( p ){
      fts3DisconnectMethod((sqlite3_vtab *)p);
    }else if( pTokenizer ){
      pTokenizer->pModule->xDestroy(pTokenizer);
    }
  }else{
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
  int iLangidCons = -1;           /* Index of langid=x constraint, if present */

  /* By default use a full table scan. This is an expensive option,
  ** so search through the constraints to see if a more efficient 
  ** strategy is possible.
  */
  pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
  pInfo->estimatedCost = 500000;
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
    if( pCons->usable==0 ) continue;

    /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
    if( iCons<0 
     && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ 







|







1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
  int iLangidCons = -1;           /* Index of langid=x constraint, if present */

  /* By default use a full table scan. This is an expensive option,
  ** so search through the constraints to see if a more efficient 
  ** strategy is possible.
  */
  pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
  pInfo->estimatedCost = 5000000;
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
    if( pCons->usable==0 ) continue;

    /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
    if( iCons<0 
     && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ 
5331
5332
5333
5334
5335
5336
5337



5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
}
#endif

#if !SQLITE_CORE
/*
** Initialize API pointer table, if required.
*/



int sqlite3_extension_init(
  sqlite3 *db, 
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3Fts3Init(db);
}
#endif

#endif







>
>
>
|










5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
}
#endif

#if !SQLITE_CORE
/*
** Initialize API pointer table, if required.
*/
#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_fts3_init(
  sqlite3 *db, 
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3Fts3Init(db);
}
#endif

#endif
Changes to ext/fts3/fts3Int.h.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#endif

#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

/* If not building as part of the core, include sqlite3ext.h. */
#ifndef SQLITE_CORE
# include "sqlite3ext.h" 
extern const sqlite3_api_routines *sqlite3_api;
#endif

#include "sqlite3.h"
#include "fts3_tokenizer.h"
#include "fts3_hash.h"

/*







|







28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#endif

#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

/* If not building as part of the core, include sqlite3ext.h. */
#ifndef SQLITE_CORE
# include "sqlite3ext.h" 
SQLITE_EXTENSION_INIT3
#endif

#include "sqlite3.h"
#include "fts3_tokenizer.h"
#include "fts3_hash.h"

/*
202
203
204
205
206
207
208

209
210
211
212
213
214
215
struct Fts3Table {
  sqlite3_vtab base;              /* Base class used by SQLite core */
  sqlite3 *db;                    /* The database connection */
  const char *zDb;                /* logical database name */
  const char *zName;              /* virtual table name */
  int nColumn;                    /* number of named columns in virtual table */
  char **azColumn;                /* column names.  malloced */

  sqlite3_tokenizer *pTokenizer;  /* tokenizer for inserts and queries */
  char *zContentTbl;              /* content=xxx option, or NULL */
  char *zLanguageid;              /* languageid=xxx option, or NULL */
  u8 bAutoincrmerge;              /* True if automerge=1 */
  u32 nLeafAdd;                   /* Number of leaf blocks added this trans */

  /* Precompiled statements used by the implementation. Each of these 







>







202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
struct Fts3Table {
  sqlite3_vtab base;              /* Base class used by SQLite core */
  sqlite3 *db;                    /* The database connection */
  const char *zDb;                /* logical database name */
  const char *zName;              /* virtual table name */
  int nColumn;                    /* number of named columns in virtual table */
  char **azColumn;                /* column names.  malloced */
  u8 *abNotindexed;               /* True for 'notindexed' columns */
  sqlite3_tokenizer *pTokenizer;  /* tokenizer for inserts and queries */
  char *zContentTbl;              /* content=xxx option, or NULL */
  char *zLanguageid;              /* languageid=xxx option, or NULL */
  u8 bAutoincrmerge;              /* True if automerge=1 */
  u32 nLeafAdd;                   /* Number of leaf blocks added this trans */

  /* Precompiled statements used by the implementation. Each of these 
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
int sqlite3Fts3Optimize(Fts3Table *);
int sqlite3Fts3SegReaderNew(int, int, sqlite3_int64,
  sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**);
int sqlite3Fts3SegReaderPending(
  Fts3Table*,int,const char*,int,int,Fts3SegReader**);
void sqlite3Fts3SegReaderFree(Fts3SegReader *);
int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, int, sqlite3_stmt **);
int sqlite3Fts3ReadLock(Fts3Table *);
int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*);

int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **);
int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **);

#ifndef SQLITE_DISABLE_FTS4_DEFERRED
void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);







<







430
431
432
433
434
435
436

437
438
439
440
441
442
443
int sqlite3Fts3Optimize(Fts3Table *);
int sqlite3Fts3SegReaderNew(int, int, sqlite3_int64,
  sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**);
int sqlite3Fts3SegReaderPending(
  Fts3Table*,int,const char*,int,int,Fts3SegReader**);
void sqlite3Fts3SegReaderFree(Fts3SegReader *);
int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, int, sqlite3_stmt **);

int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*);

int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **);
int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **);

#ifndef SQLITE_DISABLE_FTS4_DEFERRED
void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);
Changes to ext/fts3/fts3_snippet.c.
500
501
502
503
504
505
506

507
508
509
510
511
512
513
    char *zNew = sqlite3_realloc(pStr->z, nAlloc);
    if( !zNew ){
      return SQLITE_NOMEM;
    }
    pStr->z = zNew;
    pStr->nAlloc = nAlloc;
  }


  /* Append the data to the string buffer. */
  memcpy(&pStr->z[pStr->n], zAppend, nAppend);
  pStr->n += nAppend;
  pStr->z[pStr->n] = '\0';

  return SQLITE_OK;







>







500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    char *zNew = sqlite3_realloc(pStr->z, nAlloc);
    if( !zNew ){
      return SQLITE_NOMEM;
    }
    pStr->z = zNew;
    pStr->nAlloc = nAlloc;
  }
  assert( pStr->z!=0 && (pStr->nAlloc >= pStr->n+nAppend+1) );

  /* Append the data to the string buffer. */
  memcpy(&pStr->z[pStr->n], zAppend, nAppend);
  pStr->n += nAppend;
  pStr->z[pStr->n] = '\0';

  return SQLITE_OK;
Changes to ext/fts3/fts3_write.c.
896
897
898
899
900
901
902


903
904
905
906
907
908

909
910
911
912
913
914
915
  Fts3Table *p, 
  int iLangid, 
  sqlite3_value **apVal, 
  u32 *aSz
){
  int i;                          /* Iterator variable */
  for(i=2; i<p->nColumn+2; i++){


    const char *zText = (const char *)sqlite3_value_text(apVal[i]);
    int rc = fts3PendingTermsAdd(p, iLangid, zText, i-2, &aSz[i-2]);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);

  }
  return SQLITE_OK;
}

/*
** This function is called by the xUpdate() method for an INSERT operation.
** The apVal parameter is passed a copy of the apVal argument passed by







>
>
|
|
|
|
|
|
>







896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
  Fts3Table *p, 
  int iLangid, 
  sqlite3_value **apVal, 
  u32 *aSz
){
  int i;                          /* Iterator variable */
  for(i=2; i<p->nColumn+2; i++){
    int iCol = i-2;
    if( p->abNotindexed[iCol]==0 ){
      const char *zText = (const char *)sqlite3_value_text(apVal[i]);
      int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);
    }
  }
  return SQLITE_OK;
}

/*
** This function is called by the xUpdate() method for an INSERT operation.
** The apVal parameter is passed a copy of the apVal argument passed by
1048
1049
1050
1051
1052
1053
1054


1055
1056
1057

1058
1059
1060
1061
1062
1063
1064
  rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid);
  if( rc==SQLITE_OK ){
    if( SQLITE_ROW==sqlite3_step(pSelect) ){
      int i;
      int iLangid = langidFromSelect(p, pSelect);
      rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pSelect, 0));
      for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){


        const char *zText = (const char *)sqlite3_column_text(pSelect, i);
        rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[i-1]);
        aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i);

      }
      if( rc!=SQLITE_OK ){
        sqlite3_reset(pSelect);
        *pRC = rc;
        return;
      }
      *pbFound = 1;







>
>
|
|
|
>







1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
  rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid);
  if( rc==SQLITE_OK ){
    if( SQLITE_ROW==sqlite3_step(pSelect) ){
      int i;
      int iLangid = langidFromSelect(p, pSelect);
      rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pSelect, 0));
      for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){
        int iCol = i-1;
        if( p->abNotindexed[iCol]==0 ){
          const char *zText = (const char *)sqlite3_column_text(pSelect, i);
          rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]);
          aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i);
        }
      }
      if( rc!=SQLITE_OK ){
        sqlite3_reset(pSelect);
        *pRC = rc;
        return;
      }
      *pbFound = 1;
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
    ** following block advances it to point one byte past the end of
    ** the same offset list. */
    while( 1 ){
  
      /* The following line of code (and the "p++" below the while() loop) is
      ** normally all that is required to move pointer p to the desired 
      ** position. The exception is if this node is being loaded from disk
      ** incrementally and pointer "p" now points to the first byte passed
      ** the populated part of pReader->aNode[].
      */
      while( *p | c ) c = *p++ & 0x80;
      assert( *p==0 );
  
      if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break;
      rc = fts3SegReaderIncrRead(pReader);







|







1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
    ** following block advances it to point one byte past the end of
    ** the same offset list. */
    while( 1 ){
  
      /* The following line of code (and the "p++" below the while() loop) is
      ** normally all that is required to move pointer p to the desired 
      ** position. The exception is if this node is being loaded from disk
      ** incrementally and pointer "p" now points to the first byte past
      ** the populated part of pReader->aNode[].
      */
      while( *p | c ) c = *p++ & 0x80;
      assert( *p==0 );
  
      if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break;
      rc = fts3SegReaderIncrRead(pReader);
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
      */
      for(i=0; i<nMerge; i++){
        fts3SegReaderFirstDocid(p, apSegment[i]);
      }
      fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp);
      while( apSegment[0]->pOffsetList ){
        int j;                    /* Number of segments that share a docid */
        char *pList;
        int nList;
        int nByte;
        sqlite3_int64 iDocid = apSegment[0]->iDocid;
        fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
        j = 1;
        while( j<nMerge
            && apSegment[j]->pOffsetList
            && apSegment[j]->iDocid==iDocid







|
|







2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
      */
      for(i=0; i<nMerge; i++){
        fts3SegReaderFirstDocid(p, apSegment[i]);
      }
      fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp);
      while( apSegment[0]->pOffsetList ){
        int j;                    /* Number of segments that share a docid */
        char *pList = 0;
        int nList = 0;
        int nByte;
        sqlite3_int64 iDocid = apSegment[0]->iDocid;
        fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
        j = 1;
        while( j<nMerge
            && apSegment[j]->pOffsetList
            && apSegment[j]->iDocid==iDocid
3292
3293
3294
3295
3296
3297
3298

3299
3300
3301

3302
3303
3304
3305
3306
3307
3308

    while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
      int iCol;
      int iLangid = langidFromSelect(p, pStmt);
      rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pStmt, 0));
      memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1));
      for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){

        const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1);
        rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]);
        aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1);

      }
      if( p->bHasDocsize ){
        fts3InsertDocsize(&rc, p, aSz);
      }
      if( rc!=SQLITE_OK ){
        sqlite3_finalize(pStmt);
        pStmt = 0;







>
|
|
|
>







3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316

    while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
      int iCol;
      int iLangid = langidFromSelect(p, pStmt);
      rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pStmt, 0));
      memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1));
      for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
        if( p->abNotindexed[iCol]==0 ){
          const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1);
          rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]);
          aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1);
        }
      }
      if( p->bHasDocsize ){
        fts3InsertDocsize(&rc, p, aSz);
      }
      if( rc!=SQLITE_OK ){
        sqlite3_finalize(pStmt);
        pStmt = 0;
5097
5098
5099
5100
5101
5102
5103

5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129

5130
5131
5132
5133
5134
5135
5136
    sqlite3_tokenizer *pT = p->pTokenizer;
    sqlite3_tokenizer_module const *pModule = pT->pModule;
   
    assert( pCsr->isRequireSeek==0 );
    iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
  
    for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){

      const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
      sqlite3_tokenizer_cursor *pTC = 0;
  
      rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC);
      while( rc==SQLITE_OK ){
        char const *zToken;       /* Buffer containing token */
        int nToken = 0;           /* Number of bytes in token */
        int iDum1 = 0, iDum2 = 0; /* Dummy variables */
        int iPos = 0;             /* Position of token in zText */
  
        rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos);
        for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
          Fts3PhraseToken *pPT = pDef->pToken;
          if( (pDef->iCol>=p->nColumn || pDef->iCol==i)
           && (pPT->bFirst==0 || iPos==0)
           && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken))
           && (0==memcmp(zToken, pPT->z, pPT->n))
          ){
            fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
          }
        }
      }
      if( pTC ) pModule->xClose(pTC);
      if( rc==SQLITE_DONE ) rc = SQLITE_OK;
    }
  

    for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
      if( pDef->pList ){
        rc = fts3PendingListAppendVarint(&pDef->pList, 0);
      }
    }
  }








>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>







5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
    sqlite3_tokenizer *pT = p->pTokenizer;
    sqlite3_tokenizer_module const *pModule = pT->pModule;
   
    assert( pCsr->isRequireSeek==0 );
    iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
  
    for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
      if( p->abNotindexed[i]==0 ){
        const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
        sqlite3_tokenizer_cursor *pTC = 0;

        rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC);
        while( rc==SQLITE_OK ){
          char const *zToken;       /* Buffer containing token */
          int nToken = 0;           /* Number of bytes in token */
          int iDum1 = 0, iDum2 = 0; /* Dummy variables */
          int iPos = 0;             /* Position of token in zText */

          rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos);
          for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
            Fts3PhraseToken *pPT = pDef->pToken;
            if( (pDef->iCol>=p->nColumn || pDef->iCol==i)
                && (pPT->bFirst==0 || iPos==0)
                && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken))
                && (0==memcmp(zToken, pPT->z, pPT->n))
              ){
              fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
            }
          }
        }
        if( pTC ) pModule->xClose(pTC);
        if( rc==SQLITE_DONE ) rc = SQLITE_OK;
      }
    }

    for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
      if( pDef->pList ){
        rc = fts3PendingListAppendVarint(&pDef->pList, 0);
      }
    }
  }

Changes to ext/icu/icu.c.
484
485
486
487
488
489
490



491
492
493
494
495
496
497
498
    );
  }

  return rc;
}

#if !SQLITE_CORE



int sqlite3_extension_init(
  sqlite3 *db, 
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3IcuInit(db);
}







>
>
>
|







484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    );
  }

  return rc;
}

#if !SQLITE_CORE
#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_icu_init(
  sqlite3 *db, 
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3IcuInit(db);
}
Changes to ext/misc/closure.c.
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
  while( isspace(zStr[i]) ){ i++; }
  return zStr+i;
}

/*
** xConnect/xCreate method for the closure module. Arguments are:
**
**   argv[0]    -> module name  ("approximate_match")
**   argv[1]    -> database name
**   argv[2]    -> table name
**   argv[3...] -> arguments
*/
static int closureConnect(
  sqlite3 *db,
  void *pAux,







|







492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
  while( isspace(zStr[i]) ){ i++; }
  return zStr+i;
}

/*
** xConnect/xCreate method for the closure module. Arguments are:
**
**   argv[0]    -> module name  ("transitive_closure")
**   argv[1]    -> database name
**   argv[2]    -> table name
**   argv[3...] -> arguments
*/
static int closureConnect(
  sqlite3 *db,
  void *pAux,
822
823
824
825
826
827
828

829
830

831
832
833




834
835
836
837
838
839
840
841

842
843
844
845
846
847
848
849
850
851

852
853
854
855
856
857
858
859

860
861
862
863
864
865
866
static int closureBestIndex(
  sqlite3_vtab *pTab,             /* The virtual table */
  sqlite3_index_info *pIdxInfo    /* Information about the query */
){
  int iPlan = 0;
  int i;
  int idx = 1;

  const struct sqlite3_index_constraint *pConstraint;
  closure_vtab *pVtab = (closure_vtab*)pTab;


  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){




    if( pConstraint->usable==0 ) continue;
    if( (iPlan & 1)==0 
     && pConstraint->iColumn==CLOSURE_COL_ROOT
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 1;
      pIdxInfo->aConstraintUsage[i].argvIndex = 1;
      pIdxInfo->aConstraintUsage[i].omit = 1;

    }
    if( (iPlan & 0x0000f0)==0
     && pConstraint->iColumn==CLOSURE_COL_DEPTH
     && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
           || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE
           || pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ)
    ){
      iPlan |= idx<<4;
      pIdxInfo->aConstraintUsage[i].argvIndex = ++idx;
      if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT ) iPlan |= 0x000002;

    }
    if( (iPlan & 0x000f00)==0
     && pConstraint->iColumn==CLOSURE_COL_TABLENAME
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= idx<<8;
      pIdxInfo->aConstraintUsage[i].argvIndex = ++idx;
      pIdxInfo->aConstraintUsage[i].omit = 1;

    }
    if( (iPlan & 0x00f000)==0
     && pConstraint->iColumn==CLOSURE_COL_IDCOLUMN
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= idx<<12;
      pIdxInfo->aConstraintUsage[i].argvIndex = ++idx;







>


>



>
>
>
>








>










>








>







822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
static int closureBestIndex(
  sqlite3_vtab *pTab,             /* The virtual table */
  sqlite3_index_info *pIdxInfo    /* Information about the query */
){
  int iPlan = 0;
  int i;
  int idx = 1;
  int seenMatch = 0;
  const struct sqlite3_index_constraint *pConstraint;
  closure_vtab *pVtab = (closure_vtab*)pTab;
  double rCost = 10000000.0;

  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
    if( pConstraint->iColumn==CLOSURE_COL_ROOT
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
      seenMatch = 1;
    }
    if( pConstraint->usable==0 ) continue;
    if( (iPlan & 1)==0 
     && pConstraint->iColumn==CLOSURE_COL_ROOT
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 1;
      pIdxInfo->aConstraintUsage[i].argvIndex = 1;
      pIdxInfo->aConstraintUsage[i].omit = 1;
      rCost /= 100.0;
    }
    if( (iPlan & 0x0000f0)==0
     && pConstraint->iColumn==CLOSURE_COL_DEPTH
     && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
           || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE
           || pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ)
    ){
      iPlan |= idx<<4;
      pIdxInfo->aConstraintUsage[i].argvIndex = ++idx;
      if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT ) iPlan |= 0x000002;
      rCost /= 5.0;
    }
    if( (iPlan & 0x000f00)==0
     && pConstraint->iColumn==CLOSURE_COL_TABLENAME
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= idx<<8;
      pIdxInfo->aConstraintUsage[i].argvIndex = ++idx;
      pIdxInfo->aConstraintUsage[i].omit = 1;
      rCost /= 5.0;
    }
    if( (iPlan & 0x00f000)==0
     && pConstraint->iColumn==CLOSURE_COL_IDCOLUMN
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= idx<<12;
      pIdxInfo->aConstraintUsage[i].argvIndex = ++idx;
887
888
889
890
891
892
893

894
895
896
897
898
899
900
901
902
903
904
905
906
907
  pIdxInfo->idxNum = iPlan;
  if( pIdxInfo->nOrderBy==1
   && pIdxInfo->aOrderBy[0].iColumn==CLOSURE_COL_ID
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }

  pIdxInfo->estimatedCost = (double)10000;
   
  return SQLITE_OK;
}

/*
** A virtual table module that implements the "approximate_match".
*/
static sqlite3_module closureModule = {
  0,                      /* iVersion */
  closureConnect,         /* xCreate */
  closureConnect,         /* xConnect */
  closureBestIndex,       /* xBestIndex */
  closureDisconnect,      /* xDisconnect */







>
|





|







896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
  pIdxInfo->idxNum = iPlan;
  if( pIdxInfo->nOrderBy==1
   && pIdxInfo->aOrderBy[0].iColumn==CLOSURE_COL_ID
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }
  if( seenMatch && (iPlan&1)==0 ) rCost *= 1e30;
  pIdxInfo->estimatedCost = rCost;
   
  return SQLITE_OK;
}

/*
** A virtual table module that implements the "transitive_closure".
*/
static sqlite3_module closureModule = {
  0,                      /* iVersion */
  closureConnect,         /* xCreate */
  closureConnect,         /* xConnect */
  closureBestIndex,       /* xBestIndex */
  closureDisconnect,      /* xDisconnect */
Changes to ext/misc/fuzzer.c.
1073
1074
1075
1076
1077
1078
1079

1080


1081
1082




1083
1084
1085
1086
1087
1088
1089
1090

1091
1092
1093
1094
1095
1096
1097
1098

1099
1100
1101
1102
1103
1104
1105
1106

1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124

1125
1126
1127
1128
1129
1130
1131
1132
** filter.argv[2] if both bit-1 and bit-2 are set.
*/
static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
  int iPlan = 0;
  int iDistTerm = -1;
  int iRulesetTerm = -1;
  int i;

  const struct sqlite3_index_constraint *pConstraint;


  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){




    if( pConstraint->usable==0 ) continue;
    if( (iPlan & 1)==0 
     && pConstraint->iColumn==0
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
    ){
      iPlan |= 1;
      pIdxInfo->aConstraintUsage[i].argvIndex = 1;
      pIdxInfo->aConstraintUsage[i].omit = 1;

    }
    if( (iPlan & 2)==0
     && pConstraint->iColumn==1
     && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
           || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
    ){
      iPlan |= 2;
      iDistTerm = i;

    }
    if( (iPlan & 4)==0
     && pConstraint->iColumn==2
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 4;
      pIdxInfo->aConstraintUsage[i].omit = 1;
      iRulesetTerm = i;

    }
  }
  if( iPlan & 2 ){
    pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0);
  }
  if( iPlan & 4 ){
    int idx = 1;
    if( iPlan & 1 ) idx++;
    if( iPlan & 2 ) idx++;
    pIdxInfo->aConstraintUsage[iRulesetTerm].argvIndex = idx;
  }
  pIdxInfo->idxNum = iPlan;
  if( pIdxInfo->nOrderBy==1
   && pIdxInfo->aOrderBy[0].iColumn==1
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }

  pIdxInfo->estimatedCost = (double)10000;
   
  return SQLITE_OK;
}

/*
** A virtual table module that implements the "fuzzer".
*/







>

>
>


>
>
>
>








>








>








>


















>
|







1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
** filter.argv[2] if both bit-1 and bit-2 are set.
*/
static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
  int iPlan = 0;
  int iDistTerm = -1;
  int iRulesetTerm = -1;
  int i;
  int seenMatch = 0;
  const struct sqlite3_index_constraint *pConstraint;
  double rCost = 1e12;

  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
    if( pConstraint->iColumn==0
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
      seenMatch = 1;
    }
    if( pConstraint->usable==0 ) continue;
    if( (iPlan & 1)==0 
     && pConstraint->iColumn==0
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
    ){
      iPlan |= 1;
      pIdxInfo->aConstraintUsage[i].argvIndex = 1;
      pIdxInfo->aConstraintUsage[i].omit = 1;
      rCost /= 1e6;
    }
    if( (iPlan & 2)==0
     && pConstraint->iColumn==1
     && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
           || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
    ){
      iPlan |= 2;
      iDistTerm = i;
      rCost /= 10.0;
    }
    if( (iPlan & 4)==0
     && pConstraint->iColumn==2
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 4;
      pIdxInfo->aConstraintUsage[i].omit = 1;
      iRulesetTerm = i;
      rCost /= 10.0;
    }
  }
  if( iPlan & 2 ){
    pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0);
  }
  if( iPlan & 4 ){
    int idx = 1;
    if( iPlan & 1 ) idx++;
    if( iPlan & 2 ) idx++;
    pIdxInfo->aConstraintUsage[iRulesetTerm].argvIndex = idx;
  }
  pIdxInfo->idxNum = iPlan;
  if( pIdxInfo->nOrderBy==1
   && pIdxInfo->aOrderBy[0].iColumn==1
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }
  if( seenMatch && (iPlan&1)==0 ) rCost = 1e99;
  pIdxInfo->estimatedCost = rCost;
   
  return SQLITE_OK;
}

/*
** A virtual table module that implements the "fuzzer".
*/
Changes to ext/misc/ieee754.c.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
** and input of IEEE754 Binary64 floating-point numbers.
**
**   ieee754(X)
**   ieee754(Y,Z)
**
** In the first form, the value X should be a floating-point number.
** The function will return a string of the form 'ieee754(Y,Z)' where
** Y and Z are integers such that X==Y*pow(w.0,Z).
**
** In the second form, Y and Z are integers which are the mantissa and
** base-2 exponent of a new floating point number.  The function returns
** a floating-point value equal to Y*pow(2.0,Z).
**
** Examples:
**
**     ieee754(2.0)       ->     'ieee754(2,0)'
**     ieee754(45.25)     ->     'ieee754(181,-2)'
**     ieee754(2, 0)      ->     2.0
**     ieee754(181, -2)   ->     45.25







|



|







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
** and input of IEEE754 Binary64 floating-point numbers.
**
**   ieee754(X)
**   ieee754(Y,Z)
**
** In the first form, the value X should be a floating-point number.
** The function will return a string of the form 'ieee754(Y,Z)' where
** Y and Z are integers such that X==Y*pow(2,Z).
**
** In the second form, Y and Z are integers which are the mantissa and
** base-2 exponent of a new floating point number.  The function returns
** a floating-point value equal to Y*pow(2,Z).
**
** Examples:
**
**     ieee754(2.0)       ->     'ieee754(2,0)'
**     ieee754(45.25)     ->     'ieee754(181,-2)'
**     ieee754(2, 0)      ->     2.0
**     ieee754(181, -2)   ->     45.25
Changes to ext/misc/nextchar.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18










19
20
21
22
23
24
25
/*
** 2013-02-28
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code to implement the next_char(A,T,F,W) SQL function.
**
** The next_char(A,T,F,H) function finds all valid "next" characters for
** string A given the vocabulary in T.F.  The T.F field should be indexed.
** If the W value exists and is a non-empty string, then it is an SQL
** expression that limits the entries in T.F that will be considered.










**
** For example, suppose an application has a dictionary like this:
**
**   CREATE TABLE dictionary(word TEXT UNIQUE);
**
** Further suppose that for user keypad entry, it is desired to disable
** (gray out) keys that are not valid as the next character.  If the












|

|
|
|
|
>
>
>
>
>
>
>
>
>
>







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/*
** 2013-02-28
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code to implement the next_char(A,T,F,W,C) SQL function.
**
** The next_char(A,T,F,W,C) function finds all valid "next" characters for
** string A given the vocabulary in T.F.  If the W value exists and is a
** non-empty string, then it is an SQL expression that limits the entries
** in T.F that will be considered.  If C exists and is a non-empty string,
** then it is the name of the collating sequence to use for comparison.  If
** 
** Only the first three arguments are required.  If the C parameter is 
** omitted or is NULL or is an empty string, then the default collating 
** sequence of T.F is used for comparision.  If the W parameter is omitted
** or is NULL or is an empty string, then no filtering of the output is
** done.
**
** The T.F column should be indexed using collation C or else this routine
** will be quite slow.
**
** For example, suppose an application has a dictionary like this:
**
**   CREATE TABLE dictionary(word TEXT UNIQUE);
**
** Further suppose that for user keypad entry, it is desired to disable
** (gray out) keys that are not valid as the next character.  If the
180
181
182
183
184
185
186



187
188
189
190
191
192
193
194
195
196
197
198
199
200






201



202
203
204





205


206
207
208
209
210
211
212
213



214
215
216
217
218
219
220
  int argc,
  sqlite3_value **argv
){
  nextCharContext c;
  const unsigned char *zTable = sqlite3_value_text(argv[1]);
  const unsigned char *zField = sqlite3_value_text(argv[2]);
  const unsigned char *zWhere;



  char *zSql;
  int rc;

  memset(&c, 0, sizeof(c));
  c.db = sqlite3_context_db_handle(context);
  c.zPrefix = sqlite3_value_text(argv[0]);
  c.nPrefix = sqlite3_value_bytes(argv[0]);
  if( zTable==0 || zField==0 || c.zPrefix==0 ) return;
  if( argc<4
   || (zWhere = sqlite3_value_text(argv[3]))==0
   || zWhere[0]==0
  ){
    zSql = sqlite3_mprintf(
        "SELECT \"%w\" FROM \"%w\""






        " WHERE \"%w\">=(?1 || ?2)"



        "   AND \"%w\"<=(?1 || char(1114111))" /* 1114111 == 0x10ffff */
        " ORDER BY 1 ASC LIMIT 1",
        zField, zTable, zField, zField);





  }else{


    zSql = sqlite3_mprintf(
        "SELECT \"%w\" FROM \"%w\""
        " WHERE \"%w\">=(?1 || ?2)"
        "   AND \"%w\"<=(?1 || char(1114111))" /* 1114111 == 0x10ffff */
        "   AND (%s)"
        " ORDER BY 1 ASC LIMIT 1",
        zField, zTable, zField, zField, zWhere);
  }



  if( zSql==0 ){
    sqlite3_result_error_nomem(context);
    return;
  }

  rc = sqlite3_prepare_v2(c.db, zSql, -1, &c.pStmt, 0);
  sqlite3_free(zSql);







>
>
>








|
|
|

|
|
>
>
>
>
>
>
|
>
>
>
|
<
<
>
>
>
>
>

>
>
|
|
|
|
|
|
|
<
>
>
>







190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224


225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
  int argc,
  sqlite3_value **argv
){
  nextCharContext c;
  const unsigned char *zTable = sqlite3_value_text(argv[1]);
  const unsigned char *zField = sqlite3_value_text(argv[2]);
  const unsigned char *zWhere;
  const unsigned char *zCollName;
  char *zWhereClause = 0;
  char *zColl = 0;
  char *zSql;
  int rc;

  memset(&c, 0, sizeof(c));
  c.db = sqlite3_context_db_handle(context);
  c.zPrefix = sqlite3_value_text(argv[0]);
  c.nPrefix = sqlite3_value_bytes(argv[0]);
  if( zTable==0 || zField==0 || c.zPrefix==0 ) return;
  if( argc>=4
   && (zWhere = sqlite3_value_text(argv[3]))!=0
   && zWhere[0]!=0
  ){
    zWhereClause = sqlite3_mprintf("AND (%s)", zWhere);
    if( zWhereClause==0 ){
      sqlite3_result_error_nomem(context);
      return;
    }
  }else{
    zWhereClause = "";
  }
  if( argc>=5
   && (zCollName = sqlite3_value_text(argv[4]))!=0
   && zCollName[0]!=0 
  ){
    zColl = sqlite3_mprintf("collate \"%w\"", zCollName);


    if( zColl==0 ){
      sqlite3_result_error_nomem(context);
      if( zWhereClause[0] ) sqlite3_free(zWhereClause);
      return;
    }
  }else{
    zColl = "";
  }
  zSql = sqlite3_mprintf(
    "SELECT \"%w\" FROM \"%w\""
    " WHERE \"%w\">=(?1 || ?2) %s"
    "   AND \"%w\"<=(?1 || char(1114111)) %s" /* 1114111 == 0x10ffff */
    "   %s"
    " ORDER BY 1 %s ASC LIMIT 1",
    zField, zTable, zField, zColl, zField, zColl, zWhereClause, zColl

  );
  if( zWhereClause[0] ) sqlite3_free(zWhereClause);
  if( zColl[0] ) sqlite3_free(zColl);
  if( zSql==0 ){
    sqlite3_result_error_nomem(context);
    return;
  }

  rc = sqlite3_prepare_v2(c.db, zSql, -1, &c.pStmt, 0);
  sqlite3_free(zSql);
257
258
259
260
261
262
263




264
265
  (void)pzErrMsg;  /* Unused parameter */
  rc = sqlite3_create_function(db, "next_char", 3, SQLITE_UTF8, 0,
                               nextCharFunc, 0, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "next_char", 4, SQLITE_UTF8, 0,
                                 nextCharFunc, 0, 0);
  }




  return rc;
}







>
>
>
>


286
287
288
289
290
291
292
293
294
295
296
297
298
  (void)pzErrMsg;  /* Unused parameter */
  rc = sqlite3_create_function(db, "next_char", 3, SQLITE_UTF8, 0,
                               nextCharFunc, 0, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "next_char", 4, SQLITE_UTF8, 0,
                                 nextCharFunc, 0, 0);
  }
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "next_char", 5, SQLITE_UTF8, 0,
                                 nextCharFunc, 0, 0);
  }
  return rc;
}
Changes to ext/misc/percentile.c.
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  double ix, vx;
  p = (Percentile*)sqlite3_aggregate_context(pCtx, 0);
  if( p==0 ) return;
  if( p->a==0 ) return;
  if( p->nUsed ){
    qsort(p->a, p->nUsed, sizeof(double), doubleCmp);
    ix = (p->rPct-1.0)*(p->nUsed-1)*0.01;
    i1 = ix;
    i2 = ix==(double)i1 || i1==p->nUsed-1 ? i1 : i1+1;
    v1 = p->a[i1];
    v2 = p->a[i2];
    vx = v1 + (v2-v1)*(ix-i1);
    sqlite3_result_double(pCtx, vx);
  }
  sqlite3_free(p->a);







|







186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  double ix, vx;
  p = (Percentile*)sqlite3_aggregate_context(pCtx, 0);
  if( p==0 ) return;
  if( p->a==0 ) return;
  if( p->nUsed ){
    qsort(p->a, p->nUsed, sizeof(double), doubleCmp);
    ix = (p->rPct-1.0)*(p->nUsed-1)*0.01;
    i1 = (unsigned)ix;
    i2 = ix==(double)i1 || i1==p->nUsed-1 ? i1 : i1+1;
    v1 = p->a[i1];
    v2 = p->a[i2];
    vx = v1 + (v2-v1)*(ix-i1);
    sqlite3_result_double(pCtx, vx);
  }
  sqlite3_free(p->a);
Changes to ext/misc/regexp.c.
709
710
711
712
713
714
715

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736



737
738
739
740
741
742
743
  int argc, 
  sqlite3_value **argv
){
  ReCompiled *pRe;          /* Compiled regular expression */
  const char *zPattern;     /* The regular expression */
  const unsigned char *zStr;/* String being searched */
  const char *zErr;         /* Compile error message */


  pRe = sqlite3_get_auxdata(context, 0);
  if( pRe==0 ){
    zPattern = (const char*)sqlite3_value_text(argv[0]);
    if( zPattern==0 ) return;
    zErr = re_compile(&pRe, zPattern, 0);
    if( zErr ){
      re_free(pRe);
      sqlite3_result_error(context, zErr, -1);
      return;
    }
    if( pRe==0 ){
      sqlite3_result_error_nomem(context);
      return;
    }
    sqlite3_set_auxdata(context, 0, pRe, (void(*)(void*))re_free);
  }
  zStr = (const unsigned char*)sqlite3_value_text(argv[1]);
  if( zStr!=0 ){
    sqlite3_result_int(context, re_match(pRe, zStr, -1));
  }



}

/*
** Invoke this routine to register the regexp() function with the
** SQLite database connection.
*/
#ifdef _WIN32







>















|





>
>
>







709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
  int argc, 
  sqlite3_value **argv
){
  ReCompiled *pRe;          /* Compiled regular expression */
  const char *zPattern;     /* The regular expression */
  const unsigned char *zStr;/* String being searched */
  const char *zErr;         /* Compile error message */
  int setAux = 0;           /* True to invoke sqlite3_set_auxdata() */

  pRe = sqlite3_get_auxdata(context, 0);
  if( pRe==0 ){
    zPattern = (const char*)sqlite3_value_text(argv[0]);
    if( zPattern==0 ) return;
    zErr = re_compile(&pRe, zPattern, 0);
    if( zErr ){
      re_free(pRe);
      sqlite3_result_error(context, zErr, -1);
      return;
    }
    if( pRe==0 ){
      sqlite3_result_error_nomem(context);
      return;
    }
    setAux = 1;
  }
  zStr = (const unsigned char*)sqlite3_value_text(argv[1]);
  if( zStr!=0 ){
    sqlite3_result_int(context, re_match(pRe, zStr, -1));
  }
  if( setAux ){
    sqlite3_set_auxdata(context, 0, pRe, (void(*)(void*))re_free);
  }
}

/*
** Invoke this routine to register the regexp() function with the
** SQLite database connection.
*/
#ifdef _WIN32
Changes to ext/misc/spellfix.c.
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
      pIdxInfo->aConstraintUsage[iScopeTerm].argvIndex = idx++;
      pIdxInfo->aConstraintUsage[iScopeTerm].omit = 1;
    }
    if( iPlan&(16|32) ){
      pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = idx++;
      pIdxInfo->aConstraintUsage[iDistTerm].omit = 1;
    }
    pIdxInfo->estimatedCost = (double)10000;
  }else{
    pIdxInfo->idxNum = 0;
    pIdxInfo->estimatedCost = (double)10000000;
  }
  return SQLITE_OK;
}

/*
** Open a new fuzzy-search cursor.
*/







|


|







2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
      pIdxInfo->aConstraintUsage[iScopeTerm].argvIndex = idx++;
      pIdxInfo->aConstraintUsage[iScopeTerm].omit = 1;
    }
    if( iPlan&(16|32) ){
      pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = idx++;
      pIdxInfo->aConstraintUsage[iDistTerm].omit = 1;
    }
    pIdxInfo->estimatedCost = 1e5;
  }else{
    pIdxInfo->idxNum = 0;
    pIdxInfo->estimatedCost = 1e50;
  }
  return SQLITE_OK;
}

/*
** Open a new fuzzy-search cursor.
*/
Added ext/misc/vtshim.c.














































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*
** 2013-06-12
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** A shim that sits between the SQLite virtual table interface and
** runtimes with garbage collector based memory management.
*/
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>

#ifndef SQLITE_OMIT_VIRTUALTABLE

/* Forward references */
typedef struct vtshim_aux vtshim_aux;
typedef struct vtshim_vtab vtshim_vtab;
typedef struct vtshim_cursor vtshim_cursor;


/* The vtshim_aux argument is the auxiliary parameter that is passed
** into sqlite3_create_module_v2().
*/
struct vtshim_aux {
  void *pChildAux;              /* pAux for child virtual tables */
  void (*xChildDestroy)(void*); /* Destructor for pChildAux */
  sqlite3_module *pMod;         /* Methods for child virtual tables */
  sqlite3 *db;                  /* The database to which we are attached */
  char *zName;                  /* Name of the module */
  int bDisposed;                /* True if disposed */
  vtshim_vtab *pAllVtab;        /* List of all vtshim_vtab objects */
  sqlite3_module sSelf;         /* Methods used by this shim */
};

/* A vtshim virtual table object */
struct vtshim_vtab {
  sqlite3_vtab base;       /* Base class - must be first */
  sqlite3_vtab *pChild;    /* Child virtual table */
  vtshim_aux *pAux;        /* Pointer to vtshim_aux object */
  vtshim_cursor *pAllCur;  /* List of all cursors */
  vtshim_vtab **ppPrev;    /* Previous on list */
  vtshim_vtab *pNext;      /* Next on list */
};

/* A vtshim cursor object */
struct vtshim_cursor {
  sqlite3_vtab_cursor base;    /* Base class - must be first */
  sqlite3_vtab_cursor *pChild; /* Cursor generated by the managed subclass */
  vtshim_cursor **ppPrev;      /* Previous on list of all cursors */
  vtshim_cursor *pNext;        /* Next on list of all cursors */
};

/* Macro used to copy the child vtable error message to outer vtable */
#define VTSHIM_COPY_ERRMSG()                                             \
  do {                                                                   \
    sqlite3_free(pVtab->base.zErrMsg);                                   \
    pVtab->base.zErrMsg = sqlite3_mprintf("%s", pVtab->pChild->zErrMsg); \
  } while (0)

/* Methods for the vtshim module */
static int vtshimCreate(
  sqlite3 *db,
  void *ppAux,
  int argc,
  const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  vtshim_aux *pAux = (vtshim_aux*)ppAux;
  vtshim_vtab *pNew;
  int rc;

  assert( db==pAux->db );
  if( pAux->bDisposed ){
    if( pzErr ){
      *pzErr = sqlite3_mprintf("virtual table was disposed: \"%s\"",
                               pAux->zName);
    }
    return SQLITE_ERROR;
  }
  pNew = sqlite3_malloc( sizeof(*pNew) );
  *ppVtab = (sqlite3_vtab*)pNew;
  if( pNew==0 ) return SQLITE_NOMEM;
  memset(pNew, 0, sizeof(*pNew));
  rc = pAux->pMod->xCreate(db, pAux->pChildAux, argc, argv,
                           &pNew->pChild, pzErr);
  if( rc ){
    sqlite3_free(pNew);
    *ppVtab = 0;
  }
  pNew->pAux = pAux;
  pNew->ppPrev = &pAux->pAllVtab;
  pNew->pNext = pAux->pAllVtab;
  if( pAux->pAllVtab ) pAux->pAllVtab->ppPrev = &pNew->pNext;
  pAux->pAllVtab = pNew;
  return rc;
}

static int vtshimConnect(
  sqlite3 *db,
  void *ppAux,
  int argc,
  const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  vtshim_aux *pAux = (vtshim_aux*)ppAux;
  vtshim_vtab *pNew;
  int rc;

  assert( db==pAux->db );
  if( pAux->bDisposed ){
    if( pzErr ){
      *pzErr = sqlite3_mprintf("virtual table was disposed: \"%s\"",
                               pAux->zName);
    }
    return SQLITE_ERROR;
  }
  pNew = sqlite3_malloc( sizeof(*pNew) );
  *ppVtab = (sqlite3_vtab*)pNew;
  if( pNew==0 ) return SQLITE_NOMEM;
  memset(pNew, 0, sizeof(*pNew));
  rc = pAux->pMod->xConnect(db, pAux->pChildAux, argc, argv,
                            &pNew->pChild, pzErr);
  if( rc ){
    sqlite3_free(pNew);
    *ppVtab = 0;
  }
  pNew->pAux = pAux;
  pNew->ppPrev = &pAux->pAllVtab;
  pNew->pNext = pAux->pAllVtab;
  if( pAux->pAllVtab ) pAux->pAllVtab->ppPrev = &pNew->pNext;
  pAux->pAllVtab = pNew;
  return rc;
}

static int vtshimBestIndex(
  sqlite3_vtab *pBase,
  sqlite3_index_info *pIdxInfo
){
  vtshim_vtab *pVtab = (vtshim_vtab*)pBase;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  rc = pAux->pMod->xBestIndex(pVtab->pChild, pIdxInfo);
  if( rc!=SQLITE_OK ){
    VTSHIM_COPY_ERRMSG();
  }
  return rc;
}

static int vtshimDisconnect(sqlite3_vtab *pBase){
  vtshim_vtab *pVtab = (vtshim_vtab*)pBase;
  vtshim_aux *pAux = pVtab->pAux;
  int rc = SQLITE_OK;
  if( !pAux->bDisposed ){
    rc = pAux->pMod->xDisconnect(pVtab->pChild);
  }
  if( pVtab->pNext ) pVtab->pNext->ppPrev = pVtab->ppPrev;
  *pVtab->ppPrev = pVtab->pNext;
  sqlite3_free(pVtab);
  return rc;
}

static int vtshimDestroy(sqlite3_vtab *pBase){
  vtshim_vtab *pVtab = (vtshim_vtab*)pBase;
  vtshim_aux *pAux = pVtab->pAux;
  int rc = SQLITE_OK;
  if( !pAux->bDisposed ){
    rc = pAux->pMod->xDestroy(pVtab->pChild);
  }
  if( pVtab->pNext ) pVtab->pNext->ppPrev = pVtab->ppPrev;
  *pVtab->ppPrev = pVtab->pNext;
  sqlite3_free(pVtab);
  return rc;
}

static int vtshimOpen(sqlite3_vtab *pBase, sqlite3_vtab_cursor **ppCursor){
  vtshim_vtab *pVtab = (vtshim_vtab*)pBase;
  vtshim_aux *pAux = pVtab->pAux;
  vtshim_cursor *pCur;
  int rc;
  *ppCursor = 0;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  pCur = sqlite3_malloc( sizeof(*pCur) );
  if( pCur==0 ) return SQLITE_NOMEM;
  memset(pCur, 0, sizeof(*pCur));
  rc = pAux->pMod->xOpen(pVtab->pChild, &pCur->pChild);
  if( rc ){
    sqlite3_free(pCur);
    VTSHIM_COPY_ERRMSG();
    return rc;
  }
  pCur->pChild->pVtab = pVtab->pChild;
  *ppCursor = &pCur->base;
  pCur->ppPrev = &pVtab->pAllCur;
  if( pVtab->pAllCur ) pVtab->pAllCur->ppPrev = &pCur->pNext;
  pCur->pNext = pVtab->pAllCur;
  pVtab->pAllCur = pCur;
  return SQLITE_OK;
}

static int vtshimClose(sqlite3_vtab_cursor *pX){
  vtshim_cursor *pCur = (vtshim_cursor*)pX;
  vtshim_vtab *pVtab = (vtshim_vtab*)pCur->base.pVtab;
  vtshim_aux *pAux = pVtab->pAux;
  int rc = SQLITE_OK;
  if( !pAux->bDisposed ){
    rc = pAux->pMod->xClose(pCur->pChild);
    if( rc!=SQLITE_OK ){
      VTSHIM_COPY_ERRMSG();
    }
  }
  if( pCur->pNext ) pCur->pNext->ppPrev = pCur->ppPrev;
  *pCur->ppPrev = pCur->pNext;
  sqlite3_free(pCur);
  return rc;
}

static int vtshimFilter(
  sqlite3_vtab_cursor *pX,
  int idxNum,
  const char *idxStr,
  int argc,
  sqlite3_value **argv
){
  vtshim_cursor *pCur = (vtshim_cursor*)pX;
  vtshim_vtab *pVtab = (vtshim_vtab*)pCur->base.pVtab;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  rc = pAux->pMod->xFilter(pCur->pChild, idxNum, idxStr, argc, argv);
  if( rc!=SQLITE_OK ){
    VTSHIM_COPY_ERRMSG();
  }
  return rc;
}

static int vtshimNext(sqlite3_vtab_cursor *pX){
  vtshim_cursor *pCur = (vtshim_cursor*)pX;
  vtshim_vtab *pVtab = (vtshim_vtab*)pCur->base.pVtab;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  rc = pAux->pMod->xNext(pCur->pChild);
  if( rc!=SQLITE_OK ){
    VTSHIM_COPY_ERRMSG();
  }
  return rc;
}

static int vtshimEof(sqlite3_vtab_cursor *pX){
  vtshim_cursor *pCur = (vtshim_cursor*)pX;
  vtshim_vtab *pVtab = (vtshim_vtab*)pCur->base.pVtab;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return 1;
  rc = pAux->pMod->xEof(pCur->pChild);
  VTSHIM_COPY_ERRMSG();
  return rc;
}

static int vtshimColumn(sqlite3_vtab_cursor *pX, sqlite3_context *ctx, int i){
  vtshim_cursor *pCur = (vtshim_cursor*)pX;
  vtshim_vtab *pVtab = (vtshim_vtab*)pCur->base.pVtab;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  rc = pAux->pMod->xColumn(pCur->pChild, ctx, i);
  if( rc!=SQLITE_OK ){
    VTSHIM_COPY_ERRMSG();
  }
  return rc;
}

static int vtshimRowid(sqlite3_vtab_cursor *pX, sqlite3_int64 *pRowid){
  vtshim_cursor *pCur = (vtshim_cursor*)pX;
  vtshim_vtab *pVtab = (vtshim_vtab*)pCur->base.pVtab;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  rc = pAux->pMod->xRowid(pCur->pChild, pRowid);
  if( rc!=SQLITE_OK ){
    VTSHIM_COPY_ERRMSG();
  }
  return rc;
}

static int vtshimUpdate(
  sqlite3_vtab *pBase,
  int argc,
  sqlite3_value **argv,
  sqlite3_int64 *pRowid
){
  vtshim_vtab *pVtab = (vtshim_vtab*)pBase;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  rc = pAux->pMod->xUpdate(pVtab->pChild, argc, argv, pRowid);
  if( rc!=SQLITE_OK ){
    VTSHIM_COPY_ERRMSG();
  }
  return rc;
}

static int vtshimBegin(sqlite3_vtab *pBase){
  vtshim_vtab *pVtab = (vtshim_vtab*)pBase;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  rc = pAux->pMod->xBegin(pVtab->pChild);
  if( rc!=SQLITE_OK ){
    VTSHIM_COPY_ERRMSG();
  }
  return rc;
}

static int vtshimSync(sqlite3_vtab *pBase){
  vtshim_vtab *pVtab = (vtshim_vtab*)pBase;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  rc = pAux->pMod->xSync(pVtab->pChild);
  if( rc!=SQLITE_OK ){
    VTSHIM_COPY_ERRMSG();
  }
  return rc;
}

static int vtshimCommit(sqlite3_vtab *pBase){
  vtshim_vtab *pVtab = (vtshim_vtab*)pBase;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  rc = pAux->pMod->xCommit(pVtab->pChild);
  if( rc!=SQLITE_OK ){
    VTSHIM_COPY_ERRMSG();
  }
  return rc;
}

static int vtshimRollback(sqlite3_vtab *pBase){
  vtshim_vtab *pVtab = (vtshim_vtab*)pBase;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  rc = pAux->pMod->xRollback(pVtab->pChild);
  if( rc!=SQLITE_OK ){
    VTSHIM_COPY_ERRMSG();
  }
  return rc;
}

static int vtshimFindFunction(
  sqlite3_vtab *pBase,
  int nArg,
  const char *zName,
  void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
  void **ppArg
){
  vtshim_vtab *pVtab = (vtshim_vtab*)pBase;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return 0;
  rc = pAux->pMod->xFindFunction(pVtab->pChild, nArg, zName, pxFunc, ppArg);
  VTSHIM_COPY_ERRMSG();
  return rc;
}

static int vtshimRename(sqlite3_vtab *pBase, const char *zNewName){
  vtshim_vtab *pVtab = (vtshim_vtab*)pBase;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  rc = pAux->pMod->xRename(pVtab->pChild, zNewName);
  if( rc!=SQLITE_OK ){
    VTSHIM_COPY_ERRMSG();
  }
  return rc;
}

static int vtshimSavepoint(sqlite3_vtab *pBase, int n){
  vtshim_vtab *pVtab = (vtshim_vtab*)pBase;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  rc = pAux->pMod->xSavepoint(pVtab->pChild, n);
  if( rc!=SQLITE_OK ){
    VTSHIM_COPY_ERRMSG();
  }
  return rc;
}

static int vtshimRelease(sqlite3_vtab *pBase, int n){
  vtshim_vtab *pVtab = (vtshim_vtab*)pBase;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  rc = pAux->pMod->xRelease(pVtab->pChild, n);
  if( rc!=SQLITE_OK ){
    VTSHIM_COPY_ERRMSG();
  }
  return rc;
}

static int vtshimRollbackTo(sqlite3_vtab *pBase, int n){
  vtshim_vtab *pVtab = (vtshim_vtab*)pBase;
  vtshim_aux *pAux = pVtab->pAux;
  int rc;
  if( pAux->bDisposed ) return SQLITE_ERROR;
  rc = pAux->pMod->xRollbackTo(pVtab->pChild, n);
  if( rc!=SQLITE_OK ){
    VTSHIM_COPY_ERRMSG();
  }
  return rc;
}

/* The destructor function for a disposible module */
static void vtshimAuxDestructor(void *pXAux){
  vtshim_aux *pAux = (vtshim_aux*)pXAux;
  assert( pAux->pAllVtab==0 );
  if( !pAux->bDisposed && pAux->xChildDestroy ){
    pAux->xChildDestroy(pAux->pChildAux);
    pAux->xChildDestroy = 0;
  }
  sqlite3_free(pAux->zName);
  sqlite3_free(pAux->pMod);
  sqlite3_free(pAux);
}

static int vtshimCopyModule(
  const sqlite3_module *pMod,   /* Source module to be copied */
  sqlite3_module **ppMod        /* Destination for copied module */
){
  sqlite3_module *p;
  if( !pMod || !ppMod ) return SQLITE_ERROR;
  p = sqlite3_malloc( sizeof(*p) );
  if( p==0 ) return SQLITE_NOMEM;
  memcpy(p, pMod, sizeof(*p));
  *ppMod = p;
  return SQLITE_OK;
}

#ifdef _WIN32
__declspec(dllexport)
#endif
void *sqlite3_create_disposable_module(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData,         /* Client data for xCreate/xConnect */
  void(*xDestroy)(void*)     /* Module destructor function */
){
  vtshim_aux *pAux;
  sqlite3_module *pMod;
  int rc;
  pAux = sqlite3_malloc( sizeof(*pAux) );
  if( pAux==0 ){
    if( xDestroy ) xDestroy(pClientData);
    return 0;
  }
  rc = vtshimCopyModule(p, &pMod);
  if( rc!=SQLITE_OK ){
    sqlite3_free(pAux);
    return 0;
  }
  pAux->pChildAux = pClientData;
  pAux->xChildDestroy = xDestroy;
  pAux->pMod = pMod;
  pAux->db = db;
  pAux->zName = sqlite3_mprintf("%s", zName);
  pAux->bDisposed = 0;
  pAux->pAllVtab = 0;
  pAux->sSelf.iVersion = p->iVersion<=2 ? p->iVersion : 2;
  pAux->sSelf.xCreate = p->xCreate ? vtshimCreate : 0;
  pAux->sSelf.xConnect = p->xConnect ? vtshimConnect : 0;
  pAux->sSelf.xBestIndex = p->xBestIndex ? vtshimBestIndex : 0;
  pAux->sSelf.xDisconnect = p->xDisconnect ? vtshimDisconnect : 0;
  pAux->sSelf.xDestroy = p->xDestroy ? vtshimDestroy : 0;
  pAux->sSelf.xOpen = p->xOpen ? vtshimOpen : 0;
  pAux->sSelf.xClose = p->xClose ? vtshimClose : 0;
  pAux->sSelf.xFilter = p->xFilter ? vtshimFilter : 0;
  pAux->sSelf.xNext = p->xNext ? vtshimNext : 0;
  pAux->sSelf.xEof = p->xEof ? vtshimEof : 0;
  pAux->sSelf.xColumn = p->xColumn ? vtshimColumn : 0;
  pAux->sSelf.xRowid = p->xRowid ? vtshimRowid : 0;
  pAux->sSelf.xUpdate = p->xUpdate ? vtshimUpdate : 0;
  pAux->sSelf.xBegin = p->xBegin ? vtshimBegin : 0;
  pAux->sSelf.xSync = p->xSync ? vtshimSync : 0;
  pAux->sSelf.xCommit = p->xCommit ? vtshimCommit : 0;
  pAux->sSelf.xRollback = p->xRollback ? vtshimRollback : 0;
  pAux->sSelf.xFindFunction = p->xFindFunction ? vtshimFindFunction : 0;
  pAux->sSelf.xRename = p->xRename ? vtshimRename : 0;
  if( p->iVersion>=2 ){
    pAux->sSelf.xSavepoint = p->xSavepoint ? vtshimSavepoint : 0;
    pAux->sSelf.xRelease = p->xRelease ? vtshimRelease : 0;
    pAux->sSelf.xRollbackTo = p->xRollbackTo ? vtshimRollbackTo : 0;
  }else{
    pAux->sSelf.xSavepoint = 0;
    pAux->sSelf.xRelease = 0;
    pAux->sSelf.xRollbackTo = 0;
  }
  rc = sqlite3_create_module_v2(db, zName, &pAux->sSelf,
                                pAux, vtshimAuxDestructor);
  return rc==SQLITE_OK ? (void*)pAux : 0;
}

#ifdef _WIN32
__declspec(dllexport)
#endif
void sqlite3_dispose_module(void *pX){
  vtshim_aux *pAux = (vtshim_aux*)pX;
  if( !pAux->bDisposed ){
    vtshim_vtab *pVtab;
    vtshim_cursor *pCur;
    for(pVtab=pAux->pAllVtab; pVtab; pVtab=pVtab->pNext){
      for(pCur=pVtab->pAllCur; pCur; pCur=pCur->pNext){
        pAux->pMod->xClose(pCur->pChild);
      }
      pAux->pMod->xDisconnect(pVtab->pChild);
    }
    pAux->bDisposed = 1;
    if( pAux->xChildDestroy ){
      pAux->xChildDestroy(pAux->pChildAux);
      pAux->xChildDestroy = 0;
    }
  }
}


#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_vtshim_init(
  sqlite3 *db,
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi);
  return SQLITE_OK;
}
Changes to ext/rtree/rtree.c.
3346
3347
3348
3349
3350
3351
3352



3353
3354
3355
3356
3357
3358
3359
3360
  ** the context object when it is no longer required.  */
  return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, 
      (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free
  );
}

#if !SQLITE_CORE



int sqlite3_extension_init(
  sqlite3 *db,
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3RtreeInit(db);
}







>
>
>
|







3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
  ** the context object when it is no longer required.  */
  return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, 
      (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free
  );
}

#if !SQLITE_CORE
#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_rtree_init(
  sqlite3 *db,
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3RtreeInit(db);
}
Changes to ext/rtree/rtree6.test.
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
do_test rtree6-1.5 {
  rtree_strategy {SELECT * FROM t1,t2 WHERE k=+ii AND x1<10}
} {Ca}

do_eqp_test rtree6.2.1 {
  SELECT * FROM t1,t2 WHERE k=+ii AND x1<10
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:Ca (~0 rows)} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}

do_eqp_test rtree6.2.2 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<10
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:Ca (~0 rows)} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}

do_eqp_test rtree6.2.3 {
  SELECT * FROM t1,t2 WHERE k=ii
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2: (~0 rows)} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}

do_eqp_test rtree6.2.4 {
  SELECT * FROM t1,t2 WHERE v=10 and x1<10 and x2>10
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:CaEb (~0 rows)} 
  0 1 1 {SCAN TABLE t2 (~100000 rows)}
}

do_eqp_test rtree6.2.5 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<v
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2: (~0 rows)} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}

do_execsql_test rtree6-3.1 {
  CREATE VIRTUAL TABLE t3 USING rtree(id, x1, x2, y1, y2);
  INSERT INTO t3 VALUES(NULL, 1, 1, 2, 2);
  SELECT * FROM t3 WHERE 
    x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND 







|
|





|
|





|
|





|
|





|
|







70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
do_test rtree6-1.5 {
  rtree_strategy {SELECT * FROM t1,t2 WHERE k=+ii AND x1<10}
} {Ca}

do_eqp_test rtree6.2.1 {
  SELECT * FROM t1,t2 WHERE k=+ii AND x1<10
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:Ca} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test rtree6.2.2 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<10
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:Ca} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test rtree6.2.3 {
  SELECT * FROM t1,t2 WHERE k=ii
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test rtree6.2.4 {
  SELECT * FROM t1,t2 WHERE v=10 and x1<10 and x2>10
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:CaEb} 
  0 1 1 {SCAN TABLE t2}
}

do_eqp_test rtree6.2.5 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<v
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_execsql_test rtree6-3.1 {
  CREATE VIRTUAL TABLE t3 USING rtree(id, x1, x2, y1, y2);
  INSERT INTO t3 VALUES(NULL, 1, 1, 2, 2);
  SELECT * FROM t3 WHERE 
    x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND 
Changes to ext/rtree/rtree8.test.
164
165
166
167
168
169
170
171
    execsql { DELETE FROM t2 WHERE id = $i }
  }
  execsql COMMIT
} {}


finish_test








<
164
165
166
167
168
169
170

    execsql { DELETE FROM t2 WHERE id = $i }
  }
  execsql COMMIT
} {}


finish_test

Changes to main.mk.
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#
TCCX =  $(TCC) $(OPTS) -I. -I$(TOP)/src -I$(TOP) 
TCCX += -I$(TOP)/ext/rtree -I$(TOP)/ext/icu -I$(TOP)/ext/fts3
TCCX += -I$(TOP)/ext/async

# Object files for the SQLite library.
#

LIBOBJ+= alter.o analyze.o attach.o auth.o \
         backup.o bitvec.o btmutex.o btree.o build.o \
         callback.o complete.o ctime.o date.o delete.o expr.o fault.o fkey.o \
         fts3.o fts3_aux.o fts3_expr.o fts3_hash.o fts3_icu.o fts3_porter.o \
         fts3_snippet.o fts3_tokenizer.o fts3_tokenizer1.o \
         fts3_tokenize_vtab.o \
	 fts3_unicode.o fts3_unicode2.o \
         fts3_write.o func.o global.o hash.o \
         icu.o insert.o journal.o legacy.o loadext.o \
         main.o malloc.o mem0.o mem1.o mem2.o mem3.o mem5.o \
         memjournal.o \
         mutex.o mutex_noop.o mutex_unix.o mutex_w32.o \
         notify.o opcodes.o os.o os_unix.o os_win.o \
         pager.o parse.o pcache.o pcache1.o pragma.o prepare.o printf.o \
         random.o resolve.o rowset.o rtree.o select.o status.o \
         table.o tokenize.o trigger.o \
         update.o util.o vacuum.o \
         vdbe.o vdbeapi.o vdbeaux.o vdbeblob.o vdbemem.o vdbesort.o \
	 vdbetrace.o wal.o walker.o where.o utf.o vtab.o



# All of the source code files.
#
SRC = \







>
|












|



|







46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#
TCCX =  $(TCC) $(OPTS) -I. -I$(TOP)/src -I$(TOP) 
TCCX += -I$(TOP)/ext/rtree -I$(TOP)/ext/icu -I$(TOP)/ext/fts3
TCCX += -I$(TOP)/ext/async

# Object files for the SQLite library.
#
LIBOBJ+= vdbe.o parse.o \
         alter.o analyze.o attach.o auth.o \
         backup.o bitvec.o btmutex.o btree.o build.o \
         callback.o complete.o ctime.o date.o delete.o expr.o fault.o fkey.o \
         fts3.o fts3_aux.o fts3_expr.o fts3_hash.o fts3_icu.o fts3_porter.o \
         fts3_snippet.o fts3_tokenizer.o fts3_tokenizer1.o \
         fts3_tokenize_vtab.o \
	 fts3_unicode.o fts3_unicode2.o \
         fts3_write.o func.o global.o hash.o \
         icu.o insert.o journal.o legacy.o loadext.o \
         main.o malloc.o mem0.o mem1.o mem2.o mem3.o mem5.o \
         memjournal.o \
         mutex.o mutex_noop.o mutex_unix.o mutex_w32.o \
         notify.o opcodes.o os.o os_unix.o os_win.o \
         pager.o pcache.o pcache1.o pragma.o prepare.o printf.o \
         random.o resolve.o rowset.o rtree.o select.o status.o \
         table.o tokenize.o trigger.o \
         update.o util.o vacuum.o \
         vdbeapi.o vdbeaux.o vdbeblob.o vdbemem.o vdbesort.o \
	 vdbetrace.o wal.o walker.o where.o utf.o vtab.o



# All of the source code files.
#
SRC = \
589
590
591
592
593
594
595



596
597
598
599
600
601
602

soaktest:	testfixture$(EXE) sqlite3$(EXE)
	./testfixture$(EXE) $(TOP)/test/all.test -soak=1

fulltestonly:	testfixture$(EXE) sqlite3$(EXE)
	./testfixture$(EXE) $(TOP)/test/full.test




test:	testfixture$(EXE) sqlite3$(EXE)
	./testfixture$(EXE) $(TOP)/test/veryquick.test

# The next two rules are used to support the "threadtest" target. Building
# threadtest runs a few thread-safety tests that are implemented in C. This
# target is invoked by the releasetest.tcl script.
# 







>
>
>







590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

soaktest:	testfixture$(EXE) sqlite3$(EXE)
	./testfixture$(EXE) $(TOP)/test/all.test -soak=1

fulltestonly:	testfixture$(EXE) sqlite3$(EXE)
	./testfixture$(EXE) $(TOP)/test/full.test

queryplantest:	testfixture$(EXE) sqlite3$(EXE)
	./testfixture$(EXE) $(TOP)/test/permutations.test queryplanner

test:	testfixture$(EXE) sqlite3$(EXE)
	./testfixture$(EXE) $(TOP)/test/veryquick.test

# The next two rules are used to support the "threadtest" target. Building
# threadtest runs a few thread-safety tests that are implemented in C. This
# target is invoked by the releasetest.tcl script.
# 
Changes to mkextw.sh.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/bin/sh
#
# This script is used to compile SQLite extensions into DLLs.
#
make fts2amal.c
PATH=$PATH:/opt/mingw/bin
OPTS='-DTHREADSAFE=1 -DBUILD_sqlite=1 -DSQLITE_OS_WIN=1'
CC="i386-mingw32msvc-gcc -O2 $OPTS -Itsrc"
NM="i386-mingw32msvc-nm"
CMD="$CC -c fts2amal.c"
echo $CMD
$CMD
echo 'EXPORTS' >fts2.def
echo 'sqlite3_extension_init' >>fts2.def
i386-mingw32msvc-dllwrap \
     --def fts2.def -v --export-all \
     --driver-name i386-mingw32msvc-gcc \
     --dlltool-name i386-mingw32msvc-dlltool \
     --as i386-mingw32msvc-as \
     --target i386-mingw32 \
     -dllname fts2.dll -lmsvcrt fts2amal.o













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/bin/sh
#
# This script is used to compile SQLite extensions into DLLs.
#
make fts2amal.c
PATH=$PATH:/opt/mingw/bin
OPTS='-DTHREADSAFE=1 -DBUILD_sqlite=1 -DSQLITE_OS_WIN=1'
CC="i386-mingw32msvc-gcc -O2 $OPTS -Itsrc"
NM="i386-mingw32msvc-nm"
CMD="$CC -c fts2amal.c"
echo $CMD
$CMD
echo 'EXPORTS' >fts2.def
echo 'sqlite3_fts2_init' >>fts2.def
i386-mingw32msvc-dllwrap \
     --def fts2.def -v --export-all \
     --driver-name i386-mingw32msvc-gcc \
     --dlltool-name i386-mingw32msvc-dlltool \
     --as i386-mingw32msvc-as \
     --target i386-mingw32 \
     -dllname fts2.dll -lmsvcrt fts2amal.o
Changes to mkopcodeh.awk.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60

61
62
63
64
65
66
67
# properties apply to that opcode.  Set corresponding flags using the
# OPFLG_INITIALIZER macro.
#


# Remember the TK_ values from the parse.h file
/^#define TK_/ {
  tk[$2] = 0+$3
}

# Scan for "case OP_aaaa:" lines in the vdbe.c file
/^case OP_/ {
  name = $2
  sub(/:/,"",name)
  sub("\r","",name)
  op[name] = -1
  jump[name] = 0
  out2_prerelease[name] = 0
  in1[name] = 0
  in2[name] = 0
  in3[name] = 0
  out2[name] = 0
  out3[name] = 0
  for(i=3; i<NF; i++){
    if($i=="same" && $(i+1)=="as"){
      sym = $(i+2)
      sub(/,/,"",sym)

      op[name] = tk[sym]
      used[op[name]] = 1
      sameas[op[name]] = sym

    }
    x = $i
    sub(",","",x)
    if(x=="jump"){
      jump[name] = 1
    }else if(x=="out2-prerelease"){
      out2_prerelease[name] = 1







|







|











>
|
|
|
>







31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# properties apply to that opcode.  Set corresponding flags using the
# OPFLG_INITIALIZER macro.
#


# Remember the TK_ values from the parse.h file
/^#define TK_/ {
  tk[$2] = 0+$3    # tk[x] holds the numeric value for TK symbol X
}

# Scan for "case OP_aaaa:" lines in the vdbe.c file
/^case OP_/ {
  name = $2
  sub(/:/,"",name)
  sub("\r","",name)
  op[name] = -1       # op[x] holds the numeric value for OP symbol x
  jump[name] = 0
  out2_prerelease[name] = 0
  in1[name] = 0
  in2[name] = 0
  in3[name] = 0
  out2[name] = 0
  out3[name] = 0
  for(i=3; i<NF; i++){
    if($i=="same" && $(i+1)=="as"){
      sym = $(i+2)
      sub(/,/,"",sym)
      val = tk[sym]
      op[name] = val
      used[val] = 1
      sameas[val] = sym
      def[val] = name
    }
    x = $i
    sub(",","",x)
    if(x=="jump"){
      jump[name] = 1
    }else if(x=="out2-prerelease"){
      out2_prerelease[name] = 1
86
87
88
89
90
91
92





























93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116


117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
  max = 0
  print "/* Automatically generated.  Do not edit */"
  print "/* See the mkopcodeh.awk script for details */"
  op["OP_Noop"] = -1;
  order[n_op++] = "OP_Noop";
  op["OP_Explain"] = -1;
  order[n_op++] = "OP_Explain";





























  for(i=0; i<n_op; i++){
    name = order[i];
    if( op[name]<0 ){
      cnt++
      while( used[cnt] ) cnt++
      op[name] = cnt
    }
    used[op[name]] = 1;
    if( op[name]>max ) max = op[name]
    printf "#define %-25s %15d", name, op[name]
    if( sameas[op[name]] ) {
      printf "   /* same as %-12s*/", sameas[op[name]]
    } 
    printf "\n"

  }
  seenUnused = 0;
  for(i=1; i<max; i++){
    if( !used[i] ){
      if( !seenUnused ){
        printf "\n/* The following opcode values are never used */\n"
        seenUnused = 1
      }
      printf "#define %-25s %15d\n", sprintf( "OP_NotUsed_%-3d", i ), i


    }

  }

  # Generate the bitvectors:
  #
  #  bit 0:     jump
  #  bit 1:     pushes a result onto stack
  #  bit 2:     output to p1.  release p1 before opcode runs
  #
  for(i=0; i<=max; i++) bv[i] = 0;
  for(i=0; i<n_op; i++){
    name = order[i];
    x = op[name]
    a0 = a1 = a2 = a3 = a4 = a5 = a6 = a7 = 0
    # a7 = a9 = a10 = a11 = a12 = a13 = a14 = a15 = 0
    if( jump[name] ) a0 = 1;
    if( out2_prerelease[name] ) a1 = 2;
    if( in1[name] ) a2 = 4;
    if( in2[name] ) a3 = 8;
    if( in3[name] ) a4 = 16;
    if( out2[name] ) a5 = 32;
    if( out3[name] ) a6 = 64;
    # bv[x] = a0+a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+a11+a12+a13+a14+a15;
    bv[x] = a0+a1+a2+a3+a4+a5+a6+a7;
  }
  print "\n"
  print "/* Properties such as \"out2\" or \"jump\" that are specified in"
  print "** comments following the \"case\" for each opcode in the vdbe.c"
  print "** are encoded into bitvectors as follows:"
  print "*/"
  print "#define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */"







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






<
|
|
<
<
<
|
<
|
<
|
|

<
<
|
|
|
>
>
|
>








|
<
|
<

<







<
|







88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131



132

133

134
135
136


137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153

154

155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
  max = 0
  print "/* Automatically generated.  Do not edit */"
  print "/* See the mkopcodeh.awk script for details */"
  op["OP_Noop"] = -1;
  order[n_op++] = "OP_Noop";
  op["OP_Explain"] = -1;
  order[n_op++] = "OP_Explain";

  # Assign small values to opcodes that are processed by resolveP2Values()
  # to make code generation for the switch() statement smaller and faster.
  for(i=0; i<n_op; i++){
    name = order[i];
    if( op[name]>=0 ) continue;
    if( name=="OP_Function"      \
     || name=="OP_AggStep"       \
     || name=="OP_Transaction"   \
     || name=="OP_AutoCommit"    \
     || name=="OP_Savepoint"     \
     || name=="OP_Checkpoint"    \
     || name=="OP_Vacuum"        \
     || name=="OP_JournalMode"   \
     || name=="OP_VUpdate"       \
     || name=="OP_VFilter"       \
     || name=="OP_Next"          \
     || name=="OP_SorterNext"    \
     || name=="OP_Prev"          \
    ){
      cnt++
      while( used[cnt] ) cnt++
      op[name] = cnt
      used[cnt] = 1
      def[cnt] = name
    }
  }

  # Generate the numeric values for opcodes
  for(i=0; i<n_op; i++){
    name = order[i];
    if( op[name]<0 ){
      cnt++
      while( used[cnt] ) cnt++
      op[name] = cnt

      used[cnt] = 1
      def[cnt] = name



    }

  }

  max = cnt
  for(i=1; i<=max; i++){
    if( !used[i] ){


      def[i] = "OP_NotUsed_" i 
    }
    printf "#define %-25s %15d", def[i], i
    if( sameas[i] ){
      printf "   /* same as %-12s*/", sameas[i]
    } 
    printf "\n"
  }

  # Generate the bitvectors:
  #
  #  bit 0:     jump
  #  bit 1:     pushes a result onto stack
  #  bit 2:     output to p1.  release p1 before opcode runs
  #
  for(i=0; i<=max; i++){

    name = def[i]

    a0 = a1 = a2 = a3 = a4 = a5 = a6 = a7 = 0

    if( jump[name] ) a0 = 1;
    if( out2_prerelease[name] ) a1 = 2;
    if( in1[name] ) a2 = 4;
    if( in2[name] ) a3 = 8;
    if( in3[name] ) a4 = 16;
    if( out2[name] ) a5 = 32;
    if( out3[name] ) a6 = 64;

    bv[i] = a0+a1+a2+a3+a4+a5+a6+a7;
  }
  print "\n"
  print "/* Properties such as \"out2\" or \"jump\" that are specified in"
  print "** comments following the \"case\" for each opcode in the vdbe.c"
  print "** are encoded into bitvectors as follows:"
  print "*/"
  print "#define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */"
Changes to sqlite3.pc.in.
1
2
3
4
5
6
7
8
9
10
11
12
13
# Package Information for pkg-config

prefix=@prefix@
exec_prefix=@exec_prefix@
libdir=@libdir@
includedir=@includedir@

Name: SQLite
Description: SQL database engine
Version: @RELEASE@
Libs: -L${libdir} -lsqlite3
Libs.private: @LIBS@
Cflags: -I${includedir}









|



1
2
3
4
5
6
7
8
9
10
11
12
13
# Package Information for pkg-config

prefix=@prefix@
exec_prefix=@exec_prefix@
libdir=@libdir@
includedir=@includedir@

Name: SQLite
Description: SQL database engine
Version: @PACKAGE_VERSION@
Libs: -L${libdir} -lsqlite3
Libs.private: @LIBS@
Cflags: -I${includedir}
Changes to src/alter.c.
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    return;
  }

  /* Ensure the default expression is something that sqlite3ValueFromExpr()
  ** can handle (i.e. not CURRENT_TIME etc.)
  */
  if( pDflt ){
    sqlite3_value *pVal;
    if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
      db->mallocFailed = 1;
      return;
    }
    if( !pVal ){
      sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
      return;







|







683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    return;
  }

  /* Ensure the default expression is something that sqlite3ValueFromExpr()
  ** can handle (i.e. not CURRENT_TIME etc.)
  */
  if( pDflt ){
    sqlite3_value *pVal = 0;
    if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
      db->mallocFailed = 1;
      return;
    }
    if( !pVal ){
      sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
      return;
Changes to src/analyze.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31







32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
/*
** 2005 July 8
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code associated with the ANALYZE command.
**
** The ANALYZE command gather statistics about the content of tables
** and indices.  These statistics are made available to the query planner
** to help it make better decisions about how to perform queries.
**
** The following system tables are or have been supported:
**
**    CREATE TABLE sqlite_stat1(tbl, idx, stat);
**    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
**    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);

**
** Additional tables might be added in future releases of SQLite.
** The sqlite_stat2 table is not created or used unless the SQLite version
** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
** created and used by SQLite versions 3.7.9 and later and with
** SQLITE_ENABLE_STAT3 defined.  The fucntionality of sqlite_stat3
** is a superset of sqlite_stat2.  







**
** Format of sqlite_stat1:
**
** There is normally one row per index, with the index identified by the
** name in the idx column.  The tbl column is the name of the table to
** which the index belongs.  In each such row, the stat column will be
** a string consisting of a list of integers.  The first integer in this
** list is the number of rows in the index and in the table.  The second

** integer is the average number of rows in the index that have the same
** value in the first column of the index.  The third integer is the average
** number of rows in the index that have the same value for the first two
** columns.  The N-th integer (for N>1) is the average number of rows in 
** the index which have the same value for the first N-1 columns.  For
** a K-column index, there will be K+1 integers in the stat column.  If
** the index is unique, then the last integer will be 1.

|




















>







|
|
>
>
>
>
>
>
>







|
>







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/*
** 2005-07-08
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code associated with the ANALYZE command.
**
** The ANALYZE command gather statistics about the content of tables
** and indices.  These statistics are made available to the query planner
** to help it make better decisions about how to perform queries.
**
** The following system tables are or have been supported:
**
**    CREATE TABLE sqlite_stat1(tbl, idx, stat);
**    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
**    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
**    CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
**
** Additional tables might be added in future releases of SQLite.
** The sqlite_stat2 table is not created or used unless the SQLite version
** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
** created and used by SQLite versions 3.7.9 and later and with
** SQLITE_ENABLE_STAT3 defined.  The functionality of sqlite_stat3
** is a superset of sqlite_stat2.  The sqlite_stat4 is an enhanced
** version of sqlite_stat3 and is only available when compiled with
** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.0 and later.  It is
** not possible to enable both STAT3 and STAT4 at the same time.  If they
** are both enabled, then STAT4 takes precedence.
**
** For most applications, sqlite_stat1 provides all the statisics required
** for the query planner to make good choices.
**
** Format of sqlite_stat1:
**
** There is normally one row per index, with the index identified by the
** name in the idx column.  The tbl column is the name of the table to
** which the index belongs.  In each such row, the stat column will be
** a string consisting of a list of integers.  The first integer in this
** list is the number of rows in the index.  (This is the same as the
** number of rows in the table, except for partial indices.)  The second
** integer is the average number of rows in the index that have the same
** value in the first column of the index.  The third integer is the average
** number of rows in the index that have the same value for the first two
** columns.  The N-th integer (for N>1) is the average number of rows in 
** the index which have the same value for the first N-1 columns.  For
** a K-column index, there will be K+1 integers in the stat column.  If
** the index is unique, then the last integer will be 1.
79
80
81
82
83
84
85
86
87

88
89






90
91
92
93

94

95
96







97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114










115
116
117
118














119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146



147
148




149
150
151
152
153
154
155
156
157
158



159
160
161
162
163
164
165
166
167
168
169
170

171
172
173
174
175
176
177
178
179

180
181
182
183
184

185
186
187
188

189
190
191
192
193
194
195
196
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

218











219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241
242
243

244
245
246
247
248
249
250

251


252
253
254

255
256


257

258








259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

274
275
276


277
278
279
280
281
282








283


284
285



















286



287
288
289
290


291
292

293
294

295



296









297











298
299
300
301
302


303






304
305



306





307






308
309







310

311
312

313


314





315


316

317

318



319
320
321


322
323

324

325
















326


327

328
329
330
331

332
333



334












335









336









337





338


339




340




341

342

343
344
345

346
347



348


















349



350

351
352
353





354


355







356


357




358



359






360
361





362
363



364
365
366
367
368
369
370
371
372
373
374
375
376



































377


378
379
380

381


382










383
384
385
386
387
388
389
390
391
392

393
394


395








396
397









398
399
400

401

402




403



404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

419











420
421
422


























423
424
425
426
427
428
429
430
431
432
433

434
435
436
437

438
439
440
441
442
443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466


467

468
469
470
471
472
473
474
** The format for sqlite_stat2 is recorded here for legacy reference.  This
** version of SQLite does not support sqlite_stat2.  It neither reads nor
** writes the sqlite_stat2 table.  This version of SQLite only supports
** sqlite_stat3.
**
** Format for sqlite_stat3:
**
** The sqlite_stat3 is an enhancement to sqlite_stat2.  A new name is
** used to avoid compatibility problems.  

**
** The format of the sqlite_stat3 table is similar to the format of






** the sqlite_stat2 table.  There are multiple entries for each index.
** The idx column names the index and the tbl column is the table of the
** index.  If the idx and tbl columns are the same, then the sample is
** of the INTEGER PRIMARY KEY.  The sample column is a value taken from

** the left-most column of the index.  The nEq column is the approximate

** number of entires in the index whose left-most column exactly matches
** the sample.  nLt is the approximate number of entires whose left-most







** column is less than the sample.  The nDLt column is the approximate
** number of distinct left-most entries in the index that are less than
** the sample.
**
** Future versions of SQLite might change to store a string containing
** multiple integers values in the nDLt column of sqlite_stat3.  The first
** integer will be the number of prior index entires that are distinct in
** the left-most column.  The second integer will be the number of prior index
** entries that are distinct in the first two columns.  The third integer
** will be the number of prior index entries that are distinct in the first
** three columns.  And so forth.  With that extension, the nDLt field is
** similar in function to the sqlite_stat1.stat field.
**
** There can be an arbitrary number of sqlite_stat3 entries per index.
** The ANALYZE command will typically generate sqlite_stat3 tables
** that contain between 10 and 40 samples which are distributed across
** the key space, though not uniformly, and which include samples with
** largest possible nEq values.










*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"















/*
** This routine generates code that opens the sqlite_stat1 table for
** writing with cursor iStatCur. If the library was built with the
** SQLITE_ENABLE_STAT3 macro defined, then the sqlite_stat3 table is
** opened for writing using cursor (iStatCur+1)

**
** If the sqlite_stat1 tables does not previously exist, it is created.
** Similarly, if the sqlite_stat3 table does not exist and the library
** is compiled with SQLITE_ENABLE_STAT3 defined, it is created. 
**
** Argument zWhere may be a pointer to a buffer containing a table name,
** or it may be a NULL pointer. If it is not NULL, then all entries in
** the sqlite_stat1 and (if applicable) sqlite_stat3 tables associated
** with the named table are deleted. If zWhere==0, then code is generated
** to delete all stat table entries.
*/
static void openStatTable(
  Parse *pParse,          /* Parsing context */
  int iDb,                /* The database we are looking in */
  int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
  const char *zWhere,     /* Delete entries for this table or index */
  const char *zWhereType  /* Either "tbl" or "idx" */
){
  static const struct {
    const char *zName;
    const char *zCols;
  } aTable[] = {
    { "sqlite_stat1", "tbl,idx,stat" },



#ifdef SQLITE_ENABLE_STAT3
    { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },




#endif
  };

  int aRoot[] = {0, 0};
  u8 aCreateTbl[] = {0, 0};

  int i;
  sqlite3 *db = pParse->db;
  Db *pDb;
  Vdbe *v = sqlite3GetVdbe(pParse);



  if( v==0 ) return;
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  assert( sqlite3VdbeDb(v)==db );
  pDb = &db->aDb[iDb];

  /* Create new statistic tables if they do not exist, or clear them
  ** if they do already exist.
  */
  for(i=0; i<ArraySize(aTable); i++){
    const char *zTab = aTable[i].zName;
    Table *pStat;
    if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){

      /* The sqlite_stat[12] table does not exist. Create it. Note that a 
      ** side-effect of the CREATE TABLE statement is to leave the rootpage 
      ** of the new table in register pParse->regRoot. This is important 
      ** because the OpenWrite opcode below will be needing it. */
      sqlite3NestedParse(pParse,
          "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
      );
      aRoot[i] = pParse->regRoot;
      aCreateTbl[i] = OPFLAG_P2ISREG;

    }else{
      /* The table already exists. If zWhere is not NULL, delete all entries 
      ** associated with the table zWhere. If zWhere is NULL, delete the
      ** entire contents of the table. */
      aRoot[i] = pStat->tnum;

      sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
      if( zWhere ){
        sqlite3NestedParse(pParse,
           "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere

        );
      }else{
        /* The sqlite_stat[12] table already exists.  Delete all rows. */
        sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
      }
    }
  }

  /* Open the sqlite_stat[13] tables for writing. */

  for(i=0; i<ArraySize(aTable); i++){
    sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
    sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
    sqlite3VdbeChangeP5(v, aCreateTbl[i]);
  }
}

/*
** Recommended number of samples for sqlite_stat3
*/
#ifndef SQLITE_STAT3_SAMPLES
# define SQLITE_STAT3_SAMPLES 24
#endif

/*
** Three SQL functions - stat3_init(), stat3_push(), and stat3_pop() -
** share an instance of the following structure to hold their state
** information.
*/
typedef struct Stat3Accum Stat3Accum;

struct Stat3Accum {











  tRowcnt nRow;             /* Number of rows in the entire table */
  tRowcnt nPSample;         /* How often to do a periodic sample */
  int iMin;                 /* Index of entry with minimum nEq and hash */
  int mxSample;             /* Maximum number of samples to accumulate */
  int nSample;              /* Current number of samples */
  u32 iPrn;                 /* Pseudo-random number used for sampling */
  struct Stat3Sample {
    i64 iRowid;                /* Rowid in main table of the key */
    tRowcnt nEq;               /* sqlite_stat3.nEq */
    tRowcnt nLt;               /* sqlite_stat3.nLt */
    tRowcnt nDLt;              /* sqlite_stat3.nDLt */
    u8 isPSample;              /* True if a periodic sample */
    u32 iHash;                 /* Tiebreaker hash */
  } *a;                     /* An array of samples */
};

#ifdef SQLITE_ENABLE_STAT3
/*
** Implementation of the stat3_init(C,S) SQL function.  The two parameters
** are the number of rows in the table or index (C) and the number of samples
** to accumulate (S).

**
** This routine allocates the Stat3Accum object.
**
** The return value is the Stat3Accum object (P).

*/
static void stat3Init(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  Stat3Accum *p;

  tRowcnt nRow;


  int mxSample;
  int n;


  UNUSED_PARAMETER(argc);
  nRow = (tRowcnt)sqlite3_value_int64(argv[0]);


  mxSample = sqlite3_value_int(argv[1]);

  n = sizeof(*p) + sizeof(p->a[0])*mxSample;








  p = sqlite3MallocZero( n );
  if( p==0 ){
    sqlite3_result_error_nomem(context);
    return;
  }
  p->a = (struct Stat3Sample*)&p[1];
  p->nRow = nRow;
  p->mxSample = mxSample;
  p->nPSample = p->nRow/(mxSample/3+1) + 1;
  sqlite3_randomness(sizeof(p->iPrn), &p->iPrn);
  sqlite3_result_blob(context, p, sizeof(p), sqlite3_free);
}
static const FuncDef stat3InitFuncdef = {
  2,                /* nArg */
  SQLITE_UTF8,      /* iPrefEnc */

  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */


  stat3Init,        /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_init",     /* zName */
  0,                /* pHash */
  0                 /* pDestructor */








};























/*



** Implementation of the stat3_push(nEq,nLt,nDLt,rowid,P) SQL function.  The
** arguments describe a single key instance.  This routine makes the 
** decision about whether or not to retain this key for the sqlite_stat3
** table.


**
** The return value is NULL.

*/
static void stat3Push(

  sqlite3_context *context,



  int argc,









  sqlite3_value **argv











){
  Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[4]);
  tRowcnt nEq = sqlite3_value_int64(argv[0]);
  tRowcnt nLt = sqlite3_value_int64(argv[1]);
  tRowcnt nDLt = sqlite3_value_int64(argv[2]);


  i64 rowid = sqlite3_value_int64(argv[3]);






  u8 isPSample = 0;
  u8 doInsert = 0;



  int iMin = p->iMin;





  struct Stat3Sample *pSample;






  int i;
  u32 h;









  UNUSED_PARAMETER(context);
  UNUSED_PARAMETER(argc);

  if( nEq==0 ) return;


  h = p->iPrn = p->iPrn*1103515245 + 12345;





  if( (nLt/p->nPSample)!=((nEq+nLt)/p->nPSample) ){


    doInsert = isPSample = 1;

  }else if( p->nSample<p->mxSample ){

    doInsert = 1;



  }else{
    if( nEq>p->a[iMin].nEq || (nEq==p->a[iMin].nEq && h>p->a[iMin].iHash) ){
      doInsert = 1;


    }
  }

  if( !doInsert ) return;

  if( p->nSample==p->mxSample ){
















    assert( p->nSample - iMin - 1 >= 0 );


    memmove(&p->a[iMin], &p->a[iMin+1], sizeof(p->a[0])*(p->nSample-iMin-1));

    pSample = &p->a[p->nSample-1];
  }else{
    pSample = &p->a[p->nSample++];
  }

  pSample->iRowid = rowid;
  pSample->nEq = nEq;



  pSample->nLt = nLt;












  pSample->nDLt = nDLt;









  pSample->iHash = h;









  pSample->isPSample = isPSample;








  /* Find the new minimum */




  if( p->nSample==p->mxSample ){




    pSample = p->a;

    i = 0;

    while( pSample->isPSample ){
      i++;
      pSample++;

      assert( i<p->nSample );
    }



    nEq = pSample->nEq;


















    h = pSample->iHash;



    iMin = i;

    for(i++, pSample++; i<p->nSample; i++, pSample++){
      if( pSample->isPSample ) continue;
      if( pSample->nEq<nEq





       || (pSample->nEq==nEq && pSample->iHash<h)


      ){







        iMin = i;


        nEq = pSample->nEq;




        h = pSample->iHash;



      }






    }
    p->iMin = iMin;





  }
}



static const FuncDef stat3PushFuncdef = {
  5,                /* nArg */
  SQLITE_UTF8,      /* iPrefEnc */
  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */
  stat3Push,        /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_push",     /* zName */
  0,                /* pHash */
  0                 /* pDestructor */
};






































/*
** Implementation of the stat3_get(P,N,...) SQL function.  This routine is
** used to query the results.  Content is returned for the Nth sqlite_stat3

** row where N is between 0 and S-1 and S is the number of samples.  The


** value returned depends on the number of arguments.










**
**   argc==2    result:  rowid
**   argc==3    result:  nEq
**   argc==4    result:  nLt
**   argc==5    result:  nDLt
*/
static void stat3Get(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv

){
  int n = sqlite3_value_int(argv[1]);


  Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[0]);









  assert( p!=0 );









  if( p->nSample<=n ) return;
  switch( argc ){
    case 2:  sqlite3_result_int64(context, p->a[n].iRowid); break;

    case 3:  sqlite3_result_int64(context, p->a[n].nEq);    break;

    case 4:  sqlite3_result_int64(context, p->a[n].nLt);    break;




    default: sqlite3_result_int64(context, p->a[n].nDLt);   break;



  }
}
static const FuncDef stat3GetFuncdef = {
  -1,               /* nArg */
  SQLITE_UTF8,      /* iPrefEnc */
  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */
  stat3Get,         /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_get",     /* zName */
  0,                /* pHash */
  0                 /* pDestructor */
};

#endif /* SQLITE_ENABLE_STAT3 */









































/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
  Table *pTab,     /* Table whose indices are to be analyzed */
  Index *pOnlyIdx, /* If not NULL, only analyze this one index */
  int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
  int iMem         /* Available memory locations begin here */

){
  sqlite3 *db = pParse->db;    /* Database handle */
  Index *pIdx;                 /* An index to being analyzed */
  int iIdxCur;                 /* Cursor open on index being analyzed */

  Vdbe *v;                     /* The virtual machine being built up */
  int i;                       /* Loop counter */
  int topOfLoop;               /* The top of the loop */
  int endOfLoop;               /* The end of the loop */
  int jZeroRows = -1;          /* Jump from here if number of rows is zero */
  int iDb;                     /* Index of database containing pTab */

  int regTabname = iMem++;     /* Register containing table name */
  int regIdxname = iMem++;     /* Register containing index name */
  int regStat1 = iMem++;       /* The stat column of sqlite_stat1 */
#ifdef SQLITE_ENABLE_STAT3
  int regNumEq = regStat1;     /* Number of instances.  Same as regStat1 */
  int regNumLt = iMem++;       /* Number of keys less than regSample */
  int regNumDLt = iMem++;      /* Number of distinct keys less than regSample */
  int regSample = iMem++;      /* The next sample value */
  int regRowid = regSample;    /* Rowid of a sample */
  int regAccum = iMem++;       /* Register to hold Stat3Accum object */
  int regLoop = iMem++;        /* Loop counter */
  int regCount = iMem++;       /* Number of rows in the table or index */
  int regTemp1 = iMem++;       /* Intermediate register */
  int regTemp2 = iMem++;       /* Intermediate register */
  int once = 1;                /* One-time initialization */
  int shortJump = 0;           /* Instruction address */
  int iTabCur = pParse->nTab++; /* Table cursor */
#endif
  int regCol = iMem++;         /* Content of a column in analyzed table */
  int regRec = iMem++;         /* Register holding completed record */
  int regTemp = iMem++;        /* Temporary use register */
  int regNewRowid = iMem++;    /* Rowid for the inserted record */





  v = sqlite3GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) ){
    return;
  }
  if( pTab->tnum==0 ){
    /* Do not gather statistics on views or virtual tables */
    return;







|
|
>

|
>
>
>
>
>
>
|


|
>
|
>
|
|
>
>
>
>
>
>
>
|
|
|

<
<
<
<
<
<
<
<
<
|
|


|
>
>
>
>
>
>
>
>
>
>




>
>
>
>
>
>
>
>
>
>
>
>
>
>

|
<
|
|
>

|
<
<



<
|
|













>
>
>
|

>
>
>
>


<
<
<
<




>
>
>












>
|
|
|
|
|
|
|
|
|
>





>



|
>


|





|
>
|







|

|
|



|



|
>
|
>
>
>
>
>
>
>
>
>
>
>


|

|

<
<
|
|
<
|
|
|


<

|
|
<
>

|
<
|
>

|




|
>
|
>
>
|
|

>

|
>
>
|
>
|
>
>
>
>
>
>
>
>
|




|
|
|
|
|
<
|
<
<
|
>
|
|
|
>
>
|
|
|
|
|
|
>
>
>
>
>
>
>
>
|
>
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
|
<
<
<
>
>

|
>

|
>
|
>
>
>
|
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>

<
|
|
|
>
>
|
>
>
>
>
>
>
|
|
>
>
>
|
>
>
>
>
>
|
>
>
>
>
>
>
|
<
>
>
>
>
>
>
>

>
|
<
>
|
>
>
|
>
>
>
>
>
|
>
>
|
>
|
>
|
>
>
>
|
<
|
>
>


>
|
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
|
>
|
|
|
|
>
|
|
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
|
>
>
|
>
>
>
>
|
>
>
>
>
|
>
|
>
|
<
|
>
|

>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
|
>
|
|
|
>
>
>
>
>
|
>
>
|
>
>
>
>
>
>
>
|
>
>
|
>
>
>
>
|
>
>
>
|
>
>
>
>
>
>

|
>
>
>
>
>
|
|
>
>
>
|
|
|
<
|
|
|
|
|
|
|
|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
|
<
<
>
|
>
>
|
>
>
>
>
>
>
>
>
>
>
|
|
<
<
<
|
<
|
|
|
>
|
|
>
>
|
>
>
>
>
>
>
>
>
|
|
>
>
>
>
>
>
>
>
>
|
<
|
>
|
>
|
>
>
>
>
|
>
>
>
|
|
|
<
<
<
<
<
|
<
<
<
|
<
|
>
|
>
>
>
>
>
>
>
>
>
>
>
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>










|
>




>


<
<


>
|
|
|
|
<
<
<
<
<
<
<
<
|
<
<
<
<

<
<

|
|
>
>

>







88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125









126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

161
162
163
164
165


166
167
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194




195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284


285
286

287
288
289
290
291

292
293
294

295
296
297

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

340


341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390



391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

457
458
459
460
461
462
463
464
465
466

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718


719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735



736

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781





782



783

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845


846
847
848
849
850
851
852








853




854


855
856
857
858
859
860
861
862
863
864
865
866
867
868
** The format for sqlite_stat2 is recorded here for legacy reference.  This
** version of SQLite does not support sqlite_stat2.  It neither reads nor
** writes the sqlite_stat2 table.  This version of SQLite only supports
** sqlite_stat3.
**
** Format for sqlite_stat3:
**
** The sqlite_stat3 format is a subset of sqlite_stat4.  Hence, the
** sqlite_stat4 format will be described first.  Further information
** about sqlite_stat3 follows the sqlite_stat4 description.
**
** Format for sqlite_stat4:
**
** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
** to aid the query planner in choosing good indices based on the values
** that indexed columns are compared against in the WHERE clauses of
** queries.
**
** The sqlite_stat4 table contains multiple entries for each index.
** The idx column names the index and the tbl column is the table of the
** index.  If the idx and tbl columns are the same, then the sample is
** of the INTEGER PRIMARY KEY.  The sample column is a blob which is the
** binary encoding of a key from the index, with the trailing rowid
** omitted.  The nEq column is a list of integers.  The first integer
** is the approximate number of entries in the index whose left-most 
** column exactly matches the left-most column of the sample.  The second
** integer in nEq is the approximate number of entries in the index where
** the first two columns match the first two columns of the sample.
** And so forth.  nLt is another list of integers that show the approximate
** number of entries that are strictly less than the sample.  The first
** integer in nLt contains the number of entries in the index where the
** left-most column is less than the left-most column of the sample.
** The K-th integer in the nLt entry is the number of index entries 
** where the first K columns are less than the first K columns of the
** sample.  The nDLt column is like nLt except that it contains the 
** number of distinct entries in the index that are less than the
** sample.
**









** There can be an arbitrary number of sqlite_stat4 entries per index.
** The ANALYZE command will typically generate sqlite_stat4 tables
** that contain between 10 and 40 samples which are distributed across
** the key space, though not uniformly, and which include samples with
** large nEq values.
**
** Format for sqlite_stat3 redux:
**
** The sqlite_stat3 table is like sqlite_stat4 except that it only
** looks at the left-most column of the index.  The sqlite_stat3.sample
** column contains the actual value of the left-most column instead
** of a blob encoding of the complete index key as is found in
** sqlite_stat4.sample.  The nEq, nLt, and nDLt entries of sqlite_stat3
** all contain just a single integer which is the same as the first
** integer in the equivalent columns in sqlite_stat4.
*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"

#if defined(SQLITE_ENABLE_STAT4)
# define IsStat4     1
# define IsStat3     0
#elif defined(SQLITE_ENABLE_STAT3)
# define IsStat4     0
# define IsStat3     1
#else
# define IsStat4     0
# define IsStat3     0
# undef SQLITE_STAT4_SAMPLES
# define SQLITE_STAT4_SAMPLES 1
#endif
#define IsStat34    (IsStat3+IsStat4)  /* 1 for STAT3 or STAT4. 0 otherwise */

/*
** This routine generates code that opens the sqlite_statN tables.

** The sqlite_stat1 table is always relevant.  sqlite_stat2 is now
** obsolete.  sqlite_stat3 and sqlite_stat4 are only opened when
** appropriate compile-time options are provided.
**
** If the sqlite_statN tables do not previously exist, it is created.


**
** Argument zWhere may be a pointer to a buffer containing a table name,
** or it may be a NULL pointer. If it is not NULL, then all entries in

** the sqlite_statN tables associated with the named table are deleted.
** If zWhere==0, then code is generated to delete all stat table entries.
*/
static void openStatTable(
  Parse *pParse,          /* Parsing context */
  int iDb,                /* The database we are looking in */
  int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
  const char *zWhere,     /* Delete entries for this table or index */
  const char *zWhereType  /* Either "tbl" or "idx" */
){
  static const struct {
    const char *zName;
    const char *zCols;
  } aTable[] = {
    { "sqlite_stat1", "tbl,idx,stat" },
#if defined(SQLITE_ENABLE_STAT4)
    { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
    { "sqlite_stat3", 0 },
#elif defined(SQLITE_ENABLE_STAT3)
    { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
    { "sqlite_stat4", 0 },
#else
    { "sqlite_stat3", 0 },
    { "sqlite_stat4", 0 },
#endif
  };




  int i;
  sqlite3 *db = pParse->db;
  Db *pDb;
  Vdbe *v = sqlite3GetVdbe(pParse);
  int aRoot[ArraySize(aTable)];
  u8 aCreateTbl[ArraySize(aTable)];

  if( v==0 ) return;
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  assert( sqlite3VdbeDb(v)==db );
  pDb = &db->aDb[iDb];

  /* Create new statistic tables if they do not exist, or clear them
  ** if they do already exist.
  */
  for(i=0; i<ArraySize(aTable); i++){
    const char *zTab = aTable[i].zName;
    Table *pStat;
    if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
      if( aTable[i].zCols ){
        /* The sqlite_statN table does not exist. Create it. Note that a 
        ** side-effect of the CREATE TABLE statement is to leave the rootpage 
        ** of the new table in register pParse->regRoot. This is important 
        ** because the OpenWrite opcode below will be needing it. */
        sqlite3NestedParse(pParse,
            "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
        );
        aRoot[i] = pParse->regRoot;
        aCreateTbl[i] = OPFLAG_P2ISREG;
      }
    }else{
      /* The table already exists. If zWhere is not NULL, delete all entries 
      ** associated with the table zWhere. If zWhere is NULL, delete the
      ** entire contents of the table. */
      aRoot[i] = pStat->tnum;
      aCreateTbl[i] = 0;
      sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
      if( zWhere ){
        sqlite3NestedParse(pParse,
           "DELETE FROM %Q.%s WHERE %s=%Q",
           pDb->zName, zTab, zWhereType, zWhere
        );
      }else{
        /* The sqlite_stat[134] table already exists.  Delete all rows. */
        sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
      }
    }
  }

  /* Open the sqlite_stat[134] tables for writing. */
  for(i=0; aTable[i].zCols; i++){
    assert( i<ArraySize(aTable) );
    sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
    sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
    sqlite3VdbeChangeP5(v, aCreateTbl[i]);
  }
}

/*
** Recommended number of samples for sqlite_stat4
*/
#ifndef SQLITE_STAT4_SAMPLES
# define SQLITE_STAT4_SAMPLES 24
#endif

/*
** Three SQL functions - stat_init(), stat_push(), and stat_get() -
** share an instance of the following structure to hold their state
** information.
*/
typedef struct Stat4Accum Stat4Accum;
typedef struct Stat4Sample Stat4Sample;
struct Stat4Sample {
  tRowcnt *anEq;                  /* sqlite_stat4.nEq */
  tRowcnt *anDLt;                 /* sqlite_stat4.nDLt */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  tRowcnt *anLt;                  /* sqlite_stat4.nLt */
  i64 iRowid;                     /* Rowid in main table of the key */
  u8 isPSample;                   /* True if a periodic sample */
  int iCol;                       /* If !isPSample, the reason for inclusion */
  u32 iHash;                      /* Tiebreaker hash */
#endif
};                                                    
struct Stat4Accum {
  tRowcnt nRow;             /* Number of rows in the entire table */
  tRowcnt nPSample;         /* How often to do a periodic sample */
  int nCol;                 /* Number of columns in index + rowid */
  int mxSample;             /* Maximum number of samples to accumulate */
  Stat4Sample current;      /* Current row as a Stat4Sample */
  u32 iPrn;                 /* Pseudo-random number used for sampling */


  Stat4Sample *aBest;       /* Array of (nCol-1) best samples */
  int iMin;                 /* Index in a[] of entry with minimum score */

  int nSample;              /* Current number of samples */
  int iGet;                 /* Index of current sample accessed by stat_get() */
  Stat4Sample *a;           /* Array of mxSample Stat4Sample objects */
};


/*
** Implementation of the stat_init(N,C) SQL function. The two parameters
** are the number of rows in the table or index (C) and the number of columns

** in the index (N).  The second argument (C) is only used for STAT3 and STAT4.
**
** This routine allocates the Stat4Accum object in heap memory. The return 

** value is a pointer to the the Stat4Accum object encoded as a blob (i.e. 
** the size of the blob is sizeof(void*) bytes). 
*/
static void statInit(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  Stat4Accum *p;
  int nCol;                       /* Number of columns in index being sampled */
  int nColUp;                     /* nCol rounded up for alignment */
  int n;                          /* Bytes of space to allocate */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  int mxSample = SQLITE_STAT4_SAMPLES;
#endif

  /* Decode the three function arguments */
  UNUSED_PARAMETER(argc);
  nCol = sqlite3_value_int(argv[0]);
  assert( nCol>1 );               /* >1 because it includes the rowid column */
  nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;

  /* Allocate the space required for the Stat4Accum object */
  n = sizeof(*p) 
    + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anEq */
    + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anDLt */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anLt */
    + sizeof(Stat4Sample)*(nCol+mxSample)   /* Stat4Accum.aBest[], a[] */
    + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample)
#endif
  ;
  p = sqlite3MallocZero(n);
  if( p==0 ){
    sqlite3_result_error_nomem(context);
    return;
  }

  p->nRow = 0;
  p->nCol = nCol;
  p->current.anDLt = (tRowcnt*)&p[1];
  p->current.anEq = &p->current.anDLt[nColUp];




#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  {
    u8 *pSpace;                     /* Allocated space not yet assigned */
    int i;                          /* Used to iterate through p->aSample[] */

    p->iGet = -1;
    p->mxSample = mxSample;
    p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[1])/(mxSample/3+1) + 1);
    p->current.anLt = &p->current.anEq[nColUp];
    p->iPrn = nCol*0x689e962d ^ sqlite3_value_int(argv[1])*0xd0944565;
  
    /* Set up the Stat4Accum.a[] and aBest[] arrays */
    p->a = (struct Stat4Sample*)&p->current.anLt[nColUp];
    p->aBest = &p->a[mxSample];
    pSpace = (u8*)(&p->a[mxSample+nCol]);
    for(i=0; i<(mxSample+nCol); i++){
      p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
      p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
      p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
    }
    assert( (pSpace - (u8*)p)==n );
  
    for(i=0; i<nCol; i++){
      p->aBest[i].iCol = i;
    }
  }
#endif

  /* Return a pointer to the allocated object to the caller */
  sqlite3_result_blob(context, p, sizeof(p), sqlite3_free);
}
static const FuncDef statInitFuncdef = {
  1+IsStat34,      /* nArg */
  SQLITE_UTF8,     /* funcFlags */
  0,               /* pUserData */
  0,               /* pNext */
  statInit,        /* xFunc */
  0,               /* xStep */
  0,               /* xFinalize */
  "stat_init",     /* zName */
  0,               /* pHash */
  0                /* pDestructor */
};

#ifdef SQLITE_ENABLE_STAT4
/*
** pNew and pOld are both candidate non-periodic samples selected for 
** the same column (pNew->iCol==pOld->iCol). Ignoring this column and 
** considering only any trailing columns and the sample hash value, this
** function returns true if sample pNew is to be preferred over pOld.



** In other words, if we assume that the cardinalities of the selected
** column for pNew and pOld are equal, is pNew to be preferred over pOld.
**
** This function assumes that for each argument sample, the contents of
** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. 
*/
static int sampleIsBetterPost(
  Stat4Accum *pAccum, 
  Stat4Sample *pNew, 
  Stat4Sample *pOld
){
  int nCol = pAccum->nCol;
  int i;
  assert( pNew->iCol==pOld->iCol );
  for(i=pNew->iCol+1; i<nCol; i++){
    if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
    if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
  }
  if( pNew->iHash>pOld->iHash ) return 1;
  return 0;
}
#endif

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Return true if pNew is to be preferred over pOld.
**
** This function assumes that for each argument sample, the contents of
** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. 
*/
static int sampleIsBetter(
  Stat4Accum *pAccum, 
  Stat4Sample *pNew, 
  Stat4Sample *pOld
){

  tRowcnt nEqNew = pNew->anEq[pNew->iCol];
  tRowcnt nEqOld = pOld->anEq[pOld->iCol];

  assert( pOld->isPSample==0 && pNew->isPSample==0 );
  assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );

  if( (nEqNew>nEqOld) ) return 1;
#ifdef SQLITE_ENABLE_STAT4
  if( nEqNew==nEqOld ){
    if( pNew->iCol<pOld->iCol ) return 1;
    return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
  }
  return 0;
#else
  return (nEqNew==nEqOld && pNew->iHash>pOld->iHash);
#endif
}

/*
** Copy the contents of object (*pFrom) into (*pTo).
*/
void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){
  pTo->iRowid = pFrom->iRowid;
  pTo->isPSample = pFrom->isPSample;
  pTo->iCol = pFrom->iCol;
  pTo->iHash = pFrom->iHash;
  memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
  memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
  memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
}


/*
** Copy the contents of sample *pNew into the p->a[] array. If necessary,
** remove the least desirable sample from p->a[] to make room.
*/
static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){
  Stat4Sample *pSample;
  int i;

  assert( IsStat4 || nEqZero==0 );


#ifdef SQLITE_ENABLE_STAT4
  if( pNew->isPSample==0 ){
    Stat4Sample *pUpgrade = 0;
    assert( pNew->anEq[pNew->iCol]>0 );

    /* This sample is being added because the prefix that ends in column 
    ** iCol occurs many times in the table. However, if we have already
    ** added a sample that shares this prefix, there is no need to add
    ** this one. Instead, upgrade the priority of the highest priority
    ** existing sample that shares this prefix.  */
    for(i=p->nSample-1; i>=0; i--){
      Stat4Sample *pOld = &p->a[i];
      if( pOld->anEq[pNew->iCol]==0 ){
        if( pOld->isPSample ) return;
        assert( pOld->iCol>pNew->iCol );
        assert( sampleIsBetter(p, pNew, pOld) );
        if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
          pUpgrade = pOld;
        }
      }
    }
    if( pUpgrade ){

      pUpgrade->iCol = pNew->iCol;
      pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
      goto find_new_min;
    }
  }
#endif

  /* If necessary, remove sample iMin to make room for the new sample. */
  if( p->nSample>=p->mxSample ){
    Stat4Sample *pMin = &p->a[p->iMin];
    tRowcnt *anEq = pMin->anEq;
    tRowcnt *anLt = pMin->anLt;
    tRowcnt *anDLt = pMin->anDLt;
    memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
    pSample = &p->a[p->nSample-1];
    pSample->anEq = anEq;
    pSample->anDLt = anDLt;
    pSample->anLt = anLt;
    p->nSample = p->mxSample-1;
  }

  /* The "rows less-than" for the rowid column must be greater than that
  ** for the last sample in the p->a[] array. Otherwise, the samples would
  ** be out of order. */
#ifdef SQLITE_ENABLE_STAT4
  assert( p->nSample==0 
       || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
#endif

  /* Insert the new sample */
  pSample = &p->a[p->nSample];
  sampleCopy(p, pSample, pNew);
  p->nSample++;

  /* Zero the first nEqZero entries in the anEq[] array. */
  memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);

#ifdef SQLITE_ENABLE_STAT4
 find_new_min:
#endif
  if( p->nSample>=p->mxSample ){
    int iMin = -1;
    for(i=0; i<p->mxSample; i++){
      if( p->a[i].isPSample ) continue;
      if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
        iMin = i;
      }
    }
    assert( iMin>=0 );
    p->iMin = iMin;
  }
}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

/*
** Field iChng of the index being scanned has changed. So at this point
** p->current contains a sample that reflects the previous row of the
** index. The value of anEq[iChng] and subsequent anEq[] elements are
** correct at this point.
*/
static void samplePushPrevious(Stat4Accum *p, int iChng){
#ifdef SQLITE_ENABLE_STAT4
  int i;

  /* Check if any samples from the aBest[] array should be pushed
  ** into IndexSample.a[] at this point.  */
  for(i=(p->nCol-2); i>=iChng; i--){
    Stat4Sample *pBest = &p->aBest[i];
    pBest->anEq[i] = p->current.anEq[i];
    if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
      sampleInsert(p, pBest, i);
    }
  }

  /* Update the anEq[] fields of any samples already collected. */
  for(i=p->nSample-1; i>=0; i--){
    int j;
    for(j=iChng; j<p->nCol; j++){
      if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
    }
  }
#endif

#if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4)
  if( iChng==0 ){
    tRowcnt nLt = p->current.anLt[0];
    tRowcnt nEq = p->current.anEq[0];

    /* Check if this is to be a periodic sample. If so, add it. */
    if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){
      p->current.isPSample = 1;
      sampleInsert(p, &p->current, 0);
      p->current.isPSample = 0;
    }else 

    /* Or if it is a non-periodic sample. Add it in this case too. */
    if( p->nSample<p->mxSample 

     || sampleIsBetter(p, &p->current, &p->a[p->iMin]) 
    ){
      sampleInsert(p, &p->current, 0);
    }
  }
#endif
}

/*
** Implementation of the stat_push SQL function:  stat_push(P,R,C)
** Arguments:
**
**    P     Pointer to the Stat4Accum object created by stat_init()
**    C     Index of left-most column to differ from previous row
**    R     Rowid for the current row
**
** The SQL function always returns NULL.
**
** The R parameter is only used for STAT3 and STAT4.
*/
static void statPush(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  int i;

  /* The three function arguments */
  Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
  int iChng = sqlite3_value_int(argv[1]);

  assert( p->nCol>1 );        /* Includes rowid field */
  assert( iChng<p->nCol );

  if( p->nRow==0 ){
    /* This is the first call to this function. Do initialization. */
    for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
  }else{
    /* Second and subsequent calls get processed here */
    samplePushPrevious(p, iChng);

    /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
    ** to the current row of the index. */
    for(i=0; i<iChng; i++){
      p->current.anEq[i]++;
    }
    for(i=iChng; i<p->nCol; i++){
      p->current.anDLt[i]++;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
      p->current.anLt[i] += p->current.anEq[i];
#endif
      p->current.anEq[i] = 1;
    }
  }
  p->nRow++;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  p->current.iRowid = sqlite3_value_int64(argv[2]);
  p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
#endif

#ifdef SQLITE_ENABLE_STAT4
  {
    tRowcnt nLt = p->current.anLt[p->nCol-1];

    /* Check if this is to be a periodic sample. If so, add it. */
    if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
      p->current.isPSample = 1;
      p->current.iCol = 0;
      sampleInsert(p, &p->current, p->nCol-1);
      p->current.isPSample = 0;
    }

    /* Update the aBest[] array. */
    for(i=0; i<(p->nCol-1); i++){
      p->current.iCol = i;
      if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
        sampleCopy(p, &p->aBest[i], &p->current);
      }
    }
  }
#endif
}
static const FuncDef statPushFuncdef = {
  2+IsStat34,      /* nArg */
  SQLITE_UTF8,     /* funcFlags */

  0,               /* pUserData */
  0,               /* pNext */
  statPush,        /* xFunc */
  0,               /* xStep */
  0,               /* xFinalize */
  "stat_push",     /* zName */
  0,               /* pHash */
  0                /* pDestructor */
};

#define STAT_GET_STAT1 0          /* "stat" column of stat1 table */
#define STAT_GET_ROWID 1          /* "rowid" column of stat[34] entry */
#define STAT_GET_NEQ   2          /* "neq" column of stat[34] entry */
#define STAT_GET_NLT   3          /* "nlt" column of stat[34] entry */
#define STAT_GET_NDLT  4          /* "ndlt" column of stat[34] entry */

/*
** Implementation of the stat_get(P,J) SQL function.  This routine is
** used to query the results.  Content is returned for parameter J
** which is one of the STAT_GET_xxxx values defined above.
**
** If neither STAT3 nor STAT4 are enabled, then J is always
** STAT_GET_STAT1 and is hence omitted and this routine becomes
** a one-parameter function, stat_get(P), that always returns the
** stat1 table entry information.
*/
static void statGet(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  /* STAT3 and STAT4 have a parameter on this routine. */
  int eCall = sqlite3_value_int(argv[1]);
  assert( argc==2 );
  assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 
       || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
       || eCall==STAT_GET_NDLT 
  );
  if( eCall==STAT_GET_STAT1 )
#else
  assert( argc==1 );
#endif
  {
    /* Return the value to store in the "stat" column of the sqlite_stat1
    ** table for this index.
    **


    ** The value is a string composed of a list of integers describing 
    ** the index. The first integer in the list is the total number of 
    ** entries in the index. There is one additional integer in the list 
    ** for each indexed column. This additional integer is an estimate of
    ** the number of rows matched by a stabbing query on the index using
    ** a key with the corresponding number of fields. In other words,
    ** if the index is on columns (a,b) and the sqlite_stat1 value is 
    ** "100 10 2", then SQLite estimates that:
    **
    **   * the index contains 100 rows,
    **   * "WHERE a=?" matches 10 rows, and
    **   * "WHERE a=? AND b=?" matches 2 rows.
    **
    ** If D is the count of distinct values and K is the total number of 
    ** rows, then each estimate is computed as:
    **
    **        I = (K+D-1)/D



    */

    char *z;
    int i;

    char *zRet = sqlite3MallocZero(p->nCol * 25);
    if( zRet==0 ){
      sqlite3_result_error_nomem(context);
      return;
    }

    sqlite3_snprintf(24, zRet, "%lld", p->nRow);
    z = zRet + sqlite3Strlen30(zRet);
    for(i=0; i<(p->nCol-1); i++){
      i64 nDistinct = p->current.anDLt[i] + 1;
      i64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
      sqlite3_snprintf(24, z, " %lld", iVal);
      z += sqlite3Strlen30(z);
      assert( p->current.anEq[i] );
    }
    assert( z[0]=='\0' && z>zRet );

    sqlite3_result_text(context, zRet, -1, sqlite3_free);
  }
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  else if( eCall==STAT_GET_ROWID ){
    if( p->iGet<0 ){
      samplePushPrevious(p, 0);
      p->iGet = 0;
    }
    if( p->iGet<p->nSample ){

      sqlite3_result_int64(context, p->a[p->iGet].iRowid);
    }
  }else{
    tRowcnt *aCnt = 0;

    assert( p->iGet<p->nSample );
    switch( eCall ){
      case STAT_GET_NEQ:  aCnt = p->a[p->iGet].anEq; break;
      case STAT_GET_NLT:  aCnt = p->a[p->iGet].anLt; break;
      default: {
        aCnt = p->a[p->iGet].anDLt; 
        p->iGet++;
        break;
      }
    }






    if( IsStat3 ){



      sqlite3_result_int64(context, (i64)aCnt[0]);

    }else{
      char *zRet = sqlite3MallocZero(p->nCol * 25);
      if( zRet==0 ){
        sqlite3_result_error_nomem(context);
      }else{
        int i;
        char *z = zRet;
        for(i=0; i<p->nCol; i++){
          sqlite3_snprintf(24, z, "%lld ", aCnt[i]);
          z += sqlite3Strlen30(z);
        }
        assert( z[0]=='\0' && z>zRet );
        z[-1] = '\0';
        sqlite3_result_text(context, zRet, -1, sqlite3_free);
      }
    }
  }
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
}
static const FuncDef statGetFuncdef = {
  1+IsStat34,      /* nArg */
  SQLITE_UTF8,     /* funcFlags */
  0,               /* pUserData */
  0,               /* pNext */
  statGet,         /* xFunc */
  0,               /* xStep */
  0,               /* xFinalize */
  "stat_get",      /* zName */
  0,               /* pHash */
  0                /* pDestructor */
};

static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){
  assert( regOut!=regStat4 && regOut!=regStat4+1 );
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1);
#else
  assert( iParam==STAT_GET_STAT1 );
#endif
  sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regOut);
  sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF);
  sqlite3VdbeChangeP5(v, 1 + IsStat34);
}

/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
  Table *pTab,     /* Table whose indices are to be analyzed */
  Index *pOnlyIdx, /* If not NULL, only analyze this one index */
  int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
  int iMem,        /* Available memory locations begin here */
  int iTab         /* Next available cursor */
){
  sqlite3 *db = pParse->db;    /* Database handle */
  Index *pIdx;                 /* An index to being analyzed */
  int iIdxCur;                 /* Cursor open on index being analyzed */
  int iTabCur;                 /* Table cursor */
  Vdbe *v;                     /* The virtual machine being built up */
  int i;                       /* Loop counter */


  int jZeroRows = -1;          /* Jump from here if number of rows is zero */
  int iDb;                     /* Index of database containing pTab */
  u8 needTableCnt = 1;         /* True to count the table */
  int regNewRowid = iMem++;    /* Rowid for the inserted record */
  int regStat4 = iMem++;       /* Register to hold Stat4Accum object */
  int regChng = iMem++;        /* Index of changed index field */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4








  int regRowid = iMem++;       /* Rowid argument passed to stat_push() */




#endif


  int regTemp = iMem++;        /* Temporary use register */
  int regTabname = iMem++;     /* Register containing table name */
  int regIdxname = iMem++;     /* Register containing index name */
  int regStat1 = iMem++;       /* Value for the stat column of sqlite_stat1 */
  int regPrev = iMem;          /* MUST BE LAST (see below) */

  pParse->nMem = MAX(pParse->nMem, iMem);
  v = sqlite3GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) ){
    return;
  }
  if( pTab->tnum==0 ){
    /* Do not gather statistics on views or virtual tables */
    return;
484
485
486
487
488
489
490
491



492
493
494


495

496
497
498
499
500



501
502

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

522



523
524
525
526
527
528

529
530
531
532
533
534
535
536
537





538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556



557

558
559
560
561
562
563
564

565



566
567
568
569
570
571
572
573
574
575
576
577
578
579
580


581
582
583
584
585
586




587









588

589
590
591
592
593






594

595
596
597
598

599
600
601
602
603
604
605
606
607
608
609










610
611







612
613
614
615
616
617
618
619
620
621
622

623
624
625
626
627
628
629
630
631
632
633
634

635
636
637
638
639
640

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664

665
666
667
668
669


670

671
672




673


674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690


691



692









693
694
695
696
697
698
699

700
701
702
703
704
705
706
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      db->aDb[iDb].zName ) ){
    return;
  }
#endif

  /* Establish a read-lock on the table at the shared-cache level. */



  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

  iIdxCur = pParse->nTab++;


  sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);

  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol;
    KeyInfo *pKey;
    int addrIfNot = 0;           /* address of OP_IfNot */
    int *aChngAddr;              /* Array of jump instruction addresses */




    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;

    VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
    nCol = pIdx->nColumn;
    aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*nCol);
    if( aChngAddr==0 ) continue;
    pKey = sqlite3IndexKeyinfo(pParse, pIdx);
    if( iMem+1+(nCol*2)>pParse->nMem ){
      pParse->nMem = iMem+1+(nCol*2);
    }

    /* Open a cursor to the index to be analyzed. */
    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
        (char *)pKey, P4_KEYINFO_HANDOFF);
    VdbeComment((v, "%s", pIdx->zName));

    /* Populate the register containing the index name. */
    sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);

#ifdef SQLITE_ENABLE_STAT3

    if( once ){



      once = 0;
      sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
    }
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount);
    sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT3_SAMPLES, regTemp1);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumEq);

    sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumLt);
    sqlite3VdbeAddOp2(v, OP_Integer, -1, regNumDLt);
    sqlite3VdbeAddOp3(v, OP_Null, 0, regSample, regAccum);
    sqlite3VdbeAddOp4(v, OP_Function, 1, regCount, regAccum,
                      (char*)&stat3InitFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2);
#endif /* SQLITE_ENABLE_STAT3 */

    /* The block of memory cells initialized here is used as follows.





    **
    **    iMem:                
    **        The total number of rows in the table.
    **
    **    iMem+1 .. iMem+nCol: 
    **        Number of distinct entries in index considering the 
    **        left-most N columns only, where N is between 1 and nCol, 
    **        inclusive.
    **
    **    iMem+nCol+1 .. Mem+2*nCol:  
    **        Previous value of indexed columns, from left to right.
    **
    ** Cells iMem through iMem+nCol are initialized to 0. The others are 
    ** initialized to contain an SQL NULL.
    */
    for(i=0; i<=nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
    }
    for(i=0; i<nCol; i++){



      sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);

    }

    /* Start the analysis loop. This loop runs through all the entries in
    ** the index b-tree.  */
    endOfLoop = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);

    sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);  /* Increment row counter */




    for(i=0; i<nCol; i++){
      CollSeq *pColl;
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
      if( i==0 ){
        /* Always record the very first row */
        addrIfNot = sqlite3VdbeAddOp1(v, OP_IfNot, iMem+1);
      }
      assert( pIdx->azColl!=0 );
      assert( pIdx->azColl[i]!=0 );
      pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
      aChngAddr[i] = sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1,
                                      (char*)pColl, P4_COLLSEQ);
      sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
      VdbeComment((v, "jump if column %d changed", i));


#ifdef SQLITE_ENABLE_STAT3
      if( i==0 ){
        sqlite3VdbeAddOp2(v, OP_AddImm, regNumEq, 1);
        VdbeComment((v, "incr repeat count"));
      }
#endif




    }









    sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);

    for(i=0; i<nCol; i++){
      sqlite3VdbeJumpHere(v, aChngAddr[i]);  /* Set jump dest for the OP_Ne */
      if( i==0 ){
        sqlite3VdbeJumpHere(v, addrIfNot);   /* Jump dest for OP_IfNot */
#ifdef SQLITE_ENABLE_STAT3






        sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,

                          (char*)&stat3PushFuncdef, P4_FUNCDEF);
        sqlite3VdbeChangeP5(v, 5);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, pIdx->nColumn, regRowid);
        sqlite3VdbeAddOp3(v, OP_Add, regNumEq, regNumLt, regNumLt);

        sqlite3VdbeAddOp2(v, OP_AddImm, regNumDLt, 1);
        sqlite3VdbeAddOp2(v, OP_Integer, 1, regNumEq);
#endif        
      }
      sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
    }
    sqlite3DbFree(db, aChngAddr);

    /* Always jump here after updating the iMem+1...iMem+1+nCol counters */
    sqlite3VdbeResolveLabel(v, endOfLoop);











    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);







    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
#ifdef SQLITE_ENABLE_STAT3
    sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
                      (char*)&stat3PushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 5);
    sqlite3VdbeAddOp2(v, OP_Integer, -1, regLoop);
    shortJump = 
    sqlite3VdbeAddOp2(v, OP_AddImm, regLoop, 1);
    sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regTemp1,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2);

    sqlite3VdbeAddOp1(v, OP_IsNull, regTemp1);
    sqlite3VdbeAddOp3(v, OP_NotExists, iTabCur, shortJump, regTemp1);
    sqlite3VdbeAddOp3(v, OP_Column, iTabCur, pIdx->aiColumn[0], regSample);
    sqlite3ColumnDefault(v, pTab, pIdx->aiColumn[0], regSample);
    sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumEq,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 3);
    sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumLt,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 4);
    sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumDLt,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);

    sqlite3VdbeChangeP5(v, 5);
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regRec, "bbbbbb", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regNewRowid);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, shortJump);
    sqlite3VdbeJumpHere(v, shortJump+2);

#endif        

    /* Store the results in sqlite_stat1.
    **
    ** The result is a single row of the sqlite_stat1 table.  The first
    ** two columns are the names of the table and index.  The third column
    ** is a string composed of a list of integer statistics about the
    ** index.  The first integer in the list is the total number of entries
    ** in the index.  There is one additional integer in the list for each
    ** column of the table.  This additional integer is a guess of how many
    ** rows of the table the index will select.  If D is the count of distinct
    ** values and K is the total number of rows, then the integer is computed
    ** as:
    **
    **        I = (K+D-1)/D
    **
    ** If K==0 then no entry is made into the sqlite_stat1 table.  
    ** If K>0 then it is always the case the D>0 so division by zero
    ** is never possible.
    */
    sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regStat1);
    if( jZeroRows<0 ){
      jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
    }

    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
      sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
      sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);


      sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);

      sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);




    }


    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
  }

  /* If the table has no indices, create a single sqlite_stat1 entry
  ** containing NULL as the index name and the row count as the content.
  */
  if( pTab->pIndex==0 ){
    sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat1);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
  }else{
    sqlite3VdbeJumpHere(v, jZeroRows);


    jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto);



  }









  sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
  sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
  sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
  sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
  sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
  if( pParse->nMem<regRec ) pParse->nMem = regRec;
  sqlite3VdbeJumpHere(v, jZeroRows);

}


/*
** Generate code that will cause the most recent index analysis to
** be loaded into internal hash tables where is can be used.
*/







|
>
>
>

|
|
>
>

>

|
|
<
|
>
>
>


>


|
|

<
<
<
<
<
<
<
<
<




<
>
|
>
>
>
|
<
<
<
|
<
>
|
|
|
|
|
|
|
|
|
>
>
>
>
>

|
<
<
|
<
<
|
|
|
<

<
|

<
<
|
<
>
>
>
|
>
|
|
<
<
|
|
|
>
|
>
>
>
|
<
|
<
<
<
<
<
<
<
<
<
<
<
<
>
>
|
<
|
<
<

>
>
>
>
|
>
>
>
>
>
>
>
>
>
|
>
|
|
|
|
|
>
>
>
>
>
>
|
>
|
|
|
<
>
|
|
<
|
|
|
|
<
|
<
<
>
>
>
>
>
>
>
>
>
>
|
|
>
>
>
>
>
>
>
|
|
<
<
<
|
<
|
<
<
<
>
|
<
<
<
|
<
|
<
<
|
|
|
>
|
|
|
|
|
|
>
|
|
|
<
|
|
|
|
|
|
<
<
|
<
<
<
<
<
<
<
<
<
<
|
>
|
|
|
|
|
>
>
|
>
|
|
>
>
>
>
|
>
>
|
|
|
<
<
<
<
<
<
<
<
<
|
<
<
<
|
>
>
|
>
>
>

>
>
>
>
>
>
>
>
>
|
|
|
|
|
<
|
>







878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898

899
900
901
902
903
904
905
906
907
908
909
910









911
912
913
914

915
916
917
918
919
920



921

922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938


939


940
941
942

943

944
945


946

947
948
949
950
951
952
953


954
955
956
957
958
959
960
961
962

963












964
965
966

967


968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

1001
1002
1003

1004
1005
1006
1007

1008


1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029



1030

1031



1032
1033



1034

1035


1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

1050
1051
1052
1053
1054
1055


1056










1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079









1080



1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102

1103
1104
1105
1106
1107
1108
1109
1110
1111
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      db->aDb[iDb].zName ) ){
    return;
  }
#endif

  /* Establish a read-lock on the table at the shared-cache level. 
  ** Open a read-only cursor on the table. Also allocate a cursor number
  ** to use for scanning indexes (iIdxCur). No index cursor is opened at
  ** this time though.  */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
  iTabCur = iTab++;
  iIdxCur = iTab++;
  pParse->nTab = MAX(pParse->nTab, iTab);
  sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
  sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);

  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol;                     /* Number of columns indexed by pIdx */
    KeyInfo *pKey;                /* KeyInfo structure for pIdx */

    int *aGotoChng;               /* Array of jump instruction addresses */
    int addrRewind;               /* Address of "OP_Rewind iIdxCur" */
    int addrGotoChng0;            /* Address of "Goto addr_chng_0" */
    int addrNextRow;              /* Address of "next_row:" */

    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
    if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
    VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
    nCol = pIdx->nColumn;
    aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*(nCol+1));
    if( aGotoChng==0 ) continue;
    pKey = sqlite3IndexKeyinfo(pParse, pIdx);










    /* Populate the register containing the index name. */
    sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);


    /*
    ** Pseudo-code for loop that calls stat_push():
    **
    **   Rewind csr
    **   if eof(csr) goto end_of_scan;
    **   regChng = 0



    **   goto chng_addr_0;

    **
    **  next_row:
    **   regChng = 0
    **   if( idx(0) != regPrev(0) ) goto chng_addr_0
    **   regChng = 1
    **   if( idx(1) != regPrev(1) ) goto chng_addr_1
    **   ...
    **   regChng = N
    **   goto chng_addr_N
    **
    **  chng_addr_0:
    **   regPrev(0) = idx(0)
    **  chng_addr_1:
    **   regPrev(1) = idx(1)
    **  ...
    **
    **  chng_addr_N:


    **   regRowid = idx(rowid)


    **   stat_push(P, regChng, regRowid)
    **   Next csr
    **   if !eof(csr) goto next_row;

    **

    **  end_of_scan:
    */




    /* Make sure there are enough memory cells allocated to accommodate 
    ** the regPrev array and a trailing rowid (the rowid slot is required
    ** when building a record to insert into the sample column of 
    ** the sqlite_stat4 table.  */
    pParse->nMem = MAX(pParse->nMem, regPrev+nCol);

    /* Open a read-only cursor on the index being analyzed. */


    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
    sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF); 
    VdbeComment((v, "%s", pIdx->zName));

    /* Invoke the stat_init() function. The arguments are:
    ** 
    **    (1) the number of columns in the index including the rowid,
    **    (2) the number of rows in the index,

    **












    ** The second argument is only used for STAT3 and STAT4
    */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4

    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+2);


#endif
    sqlite3VdbeAddOp2(v, OP_Integer, nCol+1, regStat4+1);
    sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4);
    sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 1+IsStat34);

    /* Implementation of the following:
    **
    **   Rewind csr
    **   if eof(csr) goto end_of_scan;
    **   regChng = 0
    **   goto next_push_0;
    **
    */
    addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
    addrGotoChng0 = sqlite3VdbeAddOp0(v, OP_Goto);

    /*
    **  next_row:
    **   regChng = 0
    **   if( idx(0) != regPrev(0) ) goto chng_addr_0
    **   regChng = 1
    **   if( idx(1) != regPrev(1) ) goto chng_addr_1
    **   ...
    **   regChng = N
    **   goto chng_addr_N
    */
    addrNextRow = sqlite3VdbeCurrentAddr(v);
    for(i=0; i<nCol; i++){
      char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
      sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);

      aGotoChng[i] = 
      sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
      sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);

    }
    sqlite3VdbeAddOp2(v, OP_Integer, nCol, regChng);
    aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto);


    /*


    **  chng_addr_0:
    **   regPrev(0) = idx(0)
    **  chng_addr_1:
    **   regPrev(1) = idx(1)
    **  ...
    */
    sqlite3VdbeJumpHere(v, addrGotoChng0);
    for(i=0; i<nCol; i++){
      sqlite3VdbeJumpHere(v, aGotoChng[i]);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
    }

    /*
    **  chng_addr_N:
    **   regRowid = idx(rowid)            // STAT34 only
    **   stat_push(P, regChng, regRowid)  // 3rd parameter STAT34 only
    **   Next csr
    **   if !eof(csr) goto next_row;
    */
    sqlite3VdbeJumpHere(v, aGotoChng[nCol]);
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4



    sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);

    assert( regRowid==(regStat4+2) );



#endif
    assert( regChng==(regStat4+1) );



    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp);

    sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF);


    sqlite3VdbeChangeP5(v, 2+IsStat34);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow);

    /* Add the entry to the stat1 table. */
    callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);

    /* Add the entries to the stat3 or stat4 table. */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    {
      int regEq = regStat1;

      int regLt = regStat1+1;
      int regDLt = regStat1+2;
      int regSample = regStat1+3;
      int regCol = regStat1+4;
      int regSampleRowid = regCol + nCol;
      int addrNext;


      int addrIsNull;











      pParse->nMem = MAX(pParse->nMem, regCol+nCol+1);

      addrNext = sqlite3VdbeCurrentAddr(v);
      callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid);
      addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
      callStatGet(v, regStat4, STAT_GET_NEQ, regEq);
      callStatGet(v, regStat4, STAT_GET_NLT, regLt);
      callStatGet(v, regStat4, STAT_GET_NDLT, regDLt);
      sqlite3VdbeAddOp3(v, OP_NotExists, iTabCur, addrNext, regSampleRowid);
#ifdef SQLITE_ENABLE_STAT3
      sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, 
                                      pIdx->aiColumn[0], regSample);
#else
      for(i=0; i<nCol; i++){
        int iCol = pIdx->aiColumn[i];
        sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i);
      }
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol+1, regSample);
#endif
      sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regTemp, "bbbbbb", 0);
      sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);









      sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);



      sqlite3VdbeJumpHere(v, addrIsNull);
    }
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

    /* End of analysis */
    sqlite3VdbeJumpHere(v, addrRewind);
    sqlite3DbFree(db, aGotoChng);
  }


  /* Create a single sqlite_stat1 entry containing NULL as the index
  ** name and the row count as the content.
  */
  if( pOnlyIdx==0 && needTableCnt ){
    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
    sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);

    sqlite3VdbeJumpHere(v, jZeroRows);
  }
}


/*
** Generate code that will cause the most recent index analysis to
** be loaded into internal hash tables where is can be used.
*/
716
717
718
719
720
721
722

723
724
725
726
727
728

729
730
731
732
733
734
735
736
737
738
739
*/
static void analyzeDatabase(Parse *pParse, int iDb){
  sqlite3 *db = pParse->db;
  Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
  HashElem *k;
  int iStatCur;
  int iMem;


  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  openStatTable(pParse, iDb, iStatCur, 0, 0);
  iMem = pParse->nMem+1;

  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, 0, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
}

/*
** Generate code that will do an analysis of a single table in
** a database.  If pOnlyIdx is not NULL then it is a single index







>






>



|







1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
*/
static void analyzeDatabase(Parse *pParse, int iDb){
  sqlite3 *db = pParse->db;
  Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
  HashElem *k;
  int iStatCur;
  int iMem;
  int iTab;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  openStatTable(pParse, iDb, iStatCur, 0, 0);
  iMem = pParse->nMem+1;
  iTab = pParse->nTab;
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
  }
  loadAnalysis(pParse, iDb);
}

/*
** Generate code that will do an analysis of a single table in
** a database.  If pOnlyIdx is not NULL then it is a single index
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  if( pOnlyIdx ){
    openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
  }else{
    openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
  }
  analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1);
  loadAnalysis(pParse, iDb);
}

/*
** Generate code for the ANALYZE command.  The parser calls this routine
** when it recognizes an ANALYZE command.
**







|







1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  if( pOnlyIdx ){
    openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
  }else{
    openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
  }
  analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
  loadAnalysis(pParse, iDb);
}

/*
** Generate code for the ANALYZE command.  The parser calls this routine
** when it recognizes an ANALYZE command.
**
832
833
834
835
836
837
838





































839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

884
885
886
887
888

889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921














922




















923












924
925






926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949



950
951
952



953
954
955
956
957



958


959

960




961
962
963
964
965
966
967








968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990




991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

1016




1017
1018
1019



1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

1037

1038
1039
1040






1041







1042
1043






1044

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
** callback routine.
*/
typedef struct analysisInfo analysisInfo;
struct analysisInfo {
  sqlite3 *db;
  const char *zDatabase;
};






































/*
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.  
**
**     argv[0] = name of the table
**     argv[1] = name of the index (might be NULL)
**     argv[2] = results of analysis - on integer for each column
**
** Entries for which argv[1]==NULL simply record the number of rows in
** the table.
*/
static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
  analysisInfo *pInfo = (analysisInfo*)pData;
  Index *pIndex;
  Table *pTable;
  int i, c, n;
  tRowcnt v;
  const char *z;

  assert( argc==3 );
  UNUSED_PARAMETER2(NotUsed, argc);

  if( argv==0 || argv[0]==0 || argv[2]==0 ){
    return 0;
  }
  pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
  if( pTable==0 ){
    return 0;
  }
  if( argv[1] ){
    pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
  }else{
    pIndex = 0;
  }
  n = pIndex ? pIndex->nColumn : 0;
  z = argv[2];
  for(i=0; *z && i<=n; i++){
    v = 0;
    while( (c=z[0])>='0' && c<='9' ){
      v = v*10 + c - '0';
      z++;
    }
    if( i==0 ) pTable->nRowEst = v;
    if( pIndex==0 ) break;

    pIndex->aiRowEst[i] = v;
    if( *z==' ' ) z++;
    if( strcmp(z, "unordered")==0 ){
      pIndex->bUnordered = 1;
      break;

    }
  }
  return 0;
}

/*
** If the Index.aSample variable is not NULL, delete the aSample[] array
** and its contents.
*/
void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
#ifdef SQLITE_ENABLE_STAT3
  if( pIdx->aSample ){
    int j;
    for(j=0; j<pIdx->nSample; j++){
      IndexSample *p = &pIdx->aSample[j];
      if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
        sqlite3DbFree(db, p->u.z);
      }
    }
    sqlite3DbFree(db, pIdx->aSample);
  }
  if( db && db->pnBytesFreed==0 ){
    pIdx->nSample = 0;
    pIdx->aSample = 0;
  }
#else
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(pIdx);
#endif
}

#ifdef SQLITE_ENABLE_STAT3
/*














** Load content from the sqlite_stat3 table into the Index.aSample[]




















** arrays of all indices.












*/
static int loadStat3(sqlite3 *db, const char *zDb){






  int rc;                       /* Result codes from subroutines */
  sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
  char *zSql;                   /* Text of the SQL statement */
  Index *pPrevIdx = 0;          /* Previous index in the loop */
  int idx = 0;                  /* slot in pIdx->aSample[] for next sample */
  int eType;                    /* Datatype of a sample */
  IndexSample *pSample;         /* A slot in pIdx->aSample[] */

  assert( db->lookaside.bEnabled==0 );
  if( !sqlite3FindTable(db, "sqlite_stat3", zDb) ){
    return SQLITE_OK;
  }

  zSql = sqlite3MPrintf(db, 
      "SELECT idx,count(*) FROM %Q.sqlite_stat3"
      " GROUP BY idx", zDb);
  if( !zSql ){
    return SQLITE_NOMEM;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite3_step(pStmt)==SQLITE_ROW ){



    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int nSample;    /* Number of samples */




    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    nSample = sqlite3_column_int(pStmt, 1);
    pIdx = sqlite3FindIndex(db, zIndex, zDb);



    if( pIdx==0 ) continue;


    assert( pIdx->nSample==0 );

    pIdx->nSample = nSample;




    pIdx->aSample = sqlite3DbMallocZero(db, nSample*sizeof(IndexSample));
    pIdx->avgEq = pIdx->aiRowEst[1];
    if( pIdx->aSample==0 ){
      db->mallocFailed = 1;
      sqlite3_finalize(pStmt);
      return SQLITE_NOMEM;
    }








  }
  rc = sqlite3_finalize(pStmt);
  if( rc ) return rc;

  zSql = sqlite3MPrintf(db, 
      "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat3", zDb);
  if( !zSql ){
    return SQLITE_NOMEM;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int i;          /* Loop counter */
    tRowcnt sumEq;  /* Sum of the nEq values */

    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    pIdx = sqlite3FindIndex(db, zIndex, zDb);
    if( pIdx==0 ) continue;




    if( pIdx==pPrevIdx ){
      idx++;
    }else{
      pPrevIdx = pIdx;
      idx = 0;
    }
    assert( idx<pIdx->nSample );
    pSample = &pIdx->aSample[idx];
    pSample->nEq = (tRowcnt)sqlite3_column_int64(pStmt, 1);
    pSample->nLt = (tRowcnt)sqlite3_column_int64(pStmt, 2);
    pSample->nDLt = (tRowcnt)sqlite3_column_int64(pStmt, 3);
    if( idx==pIdx->nSample-1 ){
      if( pSample->nDLt>0 ){
        for(i=0, sumEq=0; i<=idx-1; i++) sumEq += pIdx->aSample[i].nEq;
        pIdx->avgEq = (pSample->nLt - sumEq)/pSample->nDLt;
      }
      if( pIdx->avgEq<=0 ) pIdx->avgEq = 1;
    }
    eType = sqlite3_column_type(pStmt, 4);
    pSample->eType = (u8)eType;
    switch( eType ){
      case SQLITE_INTEGER: {
        pSample->u.i = sqlite3_column_int64(pStmt, 4);
        break;
      }

      case SQLITE_FLOAT: {




        pSample->u.r = sqlite3_column_double(pStmt, 4);
        break;
      }



      case SQLITE_NULL: {
        break;
      }
      default: assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); {
        const char *z = (const char *)(
              (eType==SQLITE_BLOB) ?
              sqlite3_column_blob(pStmt, 4):
              sqlite3_column_text(pStmt, 4)
           );
        int n = z ? sqlite3_column_bytes(pStmt, 4) : 0;
        pSample->nByte = n;
        if( n < 1){
          pSample->u.z = 0;
        }else{
          pSample->u.z = sqlite3DbMallocRaw(db, n);
          if( pSample->u.z==0 ){
            db->mallocFailed = 1;

            sqlite3_finalize(pStmt);

            return SQLITE_NOMEM;
          }
          memcpy(pSample->u.z, z, n);






        }







      }
    }






  }

  return sqlite3_finalize(pStmt);
}
#endif /* SQLITE_ENABLE_STAT3 */

/*
** Load the content of the sqlite_stat1 and sqlite_stat3 tables. The
** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
** arrays. The contents of sqlite_stat3 are used to populate the
** Index.aSample[] arrays.
**
** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
** is returned. In this case, even if SQLITE_ENABLE_STAT3 was defined 
** during compilation and the sqlite_stat3 table is present, no data is 
** read from it.
**
** If SQLITE_ENABLE_STAT3 was defined during compilation and the 
** sqlite_stat3 table is not present in the database, SQLITE_ERROR is
** returned. However, in this case, data is read from the sqlite_stat1
** table (if it is present) before returning.
**
** If an OOM error occurs, this function always sets db->mallocFailed.
** This means if the caller does not care about other errors, the return
** code may be ignored.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
















<
<

















<

<
<
<
<
<
|
<
|
>
|
<
|
|
|
>
|
|








|




<
|
<










|


|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>

|
>
>
>
>
>
>




<
<



<
<
<
<
|
<
<








>
>
>



>
>
>





>
>
>
|
>
>
|
>
|
>
>
>
>
|
<

<



>
>
>
>
>
>
>
>




|
<








|
|
|
<





>
>
>
>
|
|
<

<

<
|
|
|
<
<
<
<
<
<
<
<
|
<
<
<
<
<
|
>
|
>
>
>
>
|
<
<
>
>
>
|
<
|
<
<
<
|
<
<
<
<
<
|
<
<
<
<
>
|
>
|
|
|
>
>
>
>
>
>
|
>
>
>
>
>
>
>
|
|
>
>
>
>
>
>

>
|

|


|

|



|
|


|
|







1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298


1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

1316





1317

1318
1319
1320

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339

1340

1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415


1416
1417
1418




1419


1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

1456

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483

1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494

1495

1496

1497
1498
1499








1500





1501
1502
1503
1504
1505
1506
1507
1508


1509
1510
1511
1512

1513



1514





1515




1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
** callback routine.
*/
typedef struct analysisInfo analysisInfo;
struct analysisInfo {
  sqlite3 *db;
  const char *zDatabase;
};

/*
** The first argument points to a nul-terminated string containing a
** list of space separated integers. Read the first nOut of these into
** the array aOut[].
*/
static void decodeIntArray(
  char *zIntArray, 
  int nOut, 
  tRowcnt *aOut, 
  int *pbUnordered
){
  char *z = zIntArray;
  int c;
  int i;
  tRowcnt v;

  assert( pbUnordered==0 || *pbUnordered==0 );

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( z==0 ) z = "";
#else
  if( NEVER(z==0) ) z = "";
#endif
  for(i=0; *z && i<nOut; i++){
    v = 0;
    while( (c=z[0])>='0' && c<='9' ){
      v = v*10 + c - '0';
      z++;
    }
    aOut[i] = v;
    if( *z==' ' ) z++;
  }
  if( pbUnordered && strcmp(z, "unordered")==0 ){
    *pbUnordered = 1;
  }
}

/*
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.  
**
**     argv[0] = name of the table
**     argv[1] = name of the index (might be NULL)
**     argv[2] = results of analysis - on integer for each column
**
** Entries for which argv[1]==NULL simply record the number of rows in
** the table.
*/
static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
  analysisInfo *pInfo = (analysisInfo*)pData;
  Index *pIndex;
  Table *pTable;


  const char *z;

  assert( argc==3 );
  UNUSED_PARAMETER2(NotUsed, argc);

  if( argv==0 || argv[0]==0 || argv[2]==0 ){
    return 0;
  }
  pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
  if( pTable==0 ){
    return 0;
  }
  if( argv[1] ){
    pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
  }else{
    pIndex = 0;
  }

  z = argv[2];







  if( pIndex ){
    int bUnordered = 0;
    decodeIntArray((char*)z, pIndex->nColumn+1, pIndex->aiRowEst,&bUnordered);

    if( pIndex->pPartIdxWhere==0 ) pTable->nRowEst = pIndex->aiRowEst[0];
    pIndex->bUnordered = bUnordered;
  }else{
    decodeIntArray((char*)z, 1, &pTable->nRowEst, 0);
  }

  return 0;
}

/*
** If the Index.aSample variable is not NULL, delete the aSample[] array
** and its contents.
*/
void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( pIdx->aSample ){
    int j;
    for(j=0; j<pIdx->nSample; j++){
      IndexSample *p = &pIdx->aSample[j];

      sqlite3DbFree(db, p->p);

    }
    sqlite3DbFree(db, pIdx->aSample);
  }
  if( db && db->pnBytesFreed==0 ){
    pIdx->nSample = 0;
    pIdx->aSample = 0;
  }
#else
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(pIdx);
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
}

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Populate the pIdx->aAvgEq[] array based on the samples currently
** stored in pIdx->aSample[]. 
*/
static void initAvgEq(Index *pIdx){
  if( pIdx ){
    IndexSample *aSample = pIdx->aSample;
    IndexSample *pFinal = &aSample[pIdx->nSample-1];
    int iCol;
    for(iCol=0; iCol<pIdx->nColumn; iCol++){
      int i;                    /* Used to iterate through samples */
      tRowcnt sumEq = 0;        /* Sum of the nEq values */
      tRowcnt nSum = 0;         /* Number of terms contributing to sumEq */
      tRowcnt avgEq = 0;
      tRowcnt nDLt = pFinal->anDLt[iCol];

      /* Set nSum to the number of distinct (iCol+1) field prefixes that
      ** occur in the stat4 table for this index before pFinal. Set
      ** sumEq to the sum of the nEq values for column iCol for the same
      ** set (adding the value only once where there exist dupicate 
      ** prefixes).  */
      for(i=0; i<(pIdx->nSample-1); i++){
        if( aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){
          sumEq += aSample[i].anEq[iCol];
          nSum++;
        }
      }
      if( nDLt>nSum ){
        avgEq = (pFinal->anLt[iCol] - sumEq)/(nDLt - nSum);
      }
      if( avgEq==0 ) avgEq = 1;
      pIdx->aAvgEq[iCol] = avgEq;
      if( pIdx->nSampleCol==1 ) break;
    }
  }
}

/*
** Load the content from either the sqlite_stat4 or sqlite_stat3 table 
** into the relevant Index.aSample[] arrays.
**
** Arguments zSql1 and zSql2 must point to SQL statements that return
** data equivalent to the following (statements are different for stat3,
** see the caller of this function for details):
**
**    zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
**    zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
**
** where %Q is replaced with the database name before the SQL is executed.
*/
static int loadStatTbl(
  sqlite3 *db,                  /* Database handle */
  int bStat3,                   /* Assume single column records only */
  const char *zSql1,            /* SQL statement 1 (see above) */
  const char *zSql2,            /* SQL statement 2 (see above) */
  const char *zDb               /* Database name (e.g. "main") */
){
  int rc;                       /* Result codes from subroutines */
  sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
  char *zSql;                   /* Text of the SQL statement */
  Index *pPrevIdx = 0;          /* Previous index in the loop */


  IndexSample *pSample;         /* A slot in pIdx->aSample[] */

  assert( db->lookaside.bEnabled==0 );




  zSql = sqlite3MPrintf(db, zSql1, zDb);


  if( !zSql ){
    return SQLITE_NOMEM;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    int nIdxCol = 1;              /* Number of columns in stat4 records */
    int nAvgCol = 1;              /* Number of entries in Index.aAvgEq */

    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int nSample;    /* Number of samples */
    int nByte;      /* Bytes of space required */
    int i;          /* Bytes of space required */
    tRowcnt *pSpace;

    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    nSample = sqlite3_column_int(pStmt, 1);
    pIdx = sqlite3FindIndex(db, zIndex, zDb);
    assert( pIdx==0 || bStat3 || pIdx->nSample==0 );
    /* Index.nSample is non-zero at this point if data has already been
    ** loaded from the stat4 table. In this case ignore stat3 data.  */
    if( pIdx==0 || pIdx->nSample ) continue;
    if( bStat3==0 ){
      nIdxCol = pIdx->nColumn+1;
      nAvgCol = pIdx->nColumn;
    }
    pIdx->nSampleCol = nIdxCol;
    nByte = sizeof(IndexSample) * nSample;
    nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
    nByte += nAvgCol * sizeof(tRowcnt);     /* Space for Index.aAvgEq[] */

    pIdx->aSample = sqlite3DbMallocZero(db, nByte);

    if( pIdx->aSample==0 ){

      sqlite3_finalize(pStmt);
      return SQLITE_NOMEM;
    }
    pSpace = (tRowcnt*)&pIdx->aSample[nSample];
    pIdx->aAvgEq = pSpace; pSpace += nAvgCol;
    for(i=0; i<nSample; i++){
      pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
      pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
      pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
    }
    assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
  }
  rc = sqlite3_finalize(pStmt);
  if( rc ) return rc;

  zSql = sqlite3MPrintf(db, zSql2, zDb);

  if( !zSql ){
    return SQLITE_NOMEM;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    char *zIndex;                 /* Index name */
    Index *pIdx;                  /* Pointer to the index object */
    int nCol = 1;                 /* Number of columns in index */


    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    pIdx = sqlite3FindIndex(db, zIndex, zDb);
    if( pIdx==0 ) continue;
    /* This next condition is true if data has already been loaded from 
    ** the sqlite_stat4 table. In this case ignore stat3 data.  */
    nCol = pIdx->nSampleCol;
    if( bStat3 && nCol>1 ) continue;
    if( pIdx!=pPrevIdx ){
      initAvgEq(pPrevIdx);

      pPrevIdx = pIdx;

    }

    pSample = &pIdx->aSample[pIdx->nSample];
    decodeIntArray((char*)sqlite3_column_text(pStmt,1), nCol, pSample->anEq, 0);
    decodeIntArray((char*)sqlite3_column_text(pStmt,2), nCol, pSample->anLt, 0);








    decodeIntArray((char*)sqlite3_column_text(pStmt,3), nCol, pSample->anDLt,0);






    /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
    ** This is in case the sample record is corrupted. In that case, the
    ** sqlite3VdbeRecordCompare() may read up to two varints past the
    ** end of the allocated buffer before it realizes it is dealing with
    ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
    ** a buffer overread.  */
    pSample->n = sqlite3_column_bytes(pStmt, 4);


    pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
    if( pSample->p==0 ){
      sqlite3_finalize(pStmt);
      return SQLITE_NOMEM;

    }



    memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);





    pIdx->nSample++;




  }
  rc = sqlite3_finalize(pStmt);
  if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
  return rc;
}

/*
** Load content from the sqlite_stat4 and sqlite_stat3 tables into 
** the Index.aSample[] arrays of all indices.
*/
static int loadStat4(sqlite3 *db, const char *zDb){
  int rc = SQLITE_OK;             /* Result codes from subroutines */

  assert( db->lookaside.bEnabled==0 );
  if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){
    rc = loadStatTbl(db, 0,
      "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 
      "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
      zDb
    );
  }

  if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){
    rc = loadStatTbl(db, 1,
      "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx", 
      "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3",
      zDb
    );
  }

  return rc;
}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

/*
** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The
** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
** arrays. The contents of sqlite_stat3/4 are used to populate the
** Index.aSample[] arrays.
**
** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined 
** during compilation and the sqlite_stat3/4 table is present, no data is 
** read from it.
**
** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the 
** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
** returned. However, in this case, data is read from the sqlite_stat1
** table (if it is present) before returning.
**
** If an OOM error occurs, this function always sets db->mallocFailed.
** This means if the caller does not care about other errors, the return
** code may be ignored.
*/
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
  assert( db->aDb[iDb].pBt!=0 );

  /* Clear any prior statistics */
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3DefaultRowEst(pIdx);
#ifdef SQLITE_ENABLE_STAT3
    sqlite3DeleteIndexSamples(db, pIdx);
    pIdx->aSample = 0;
#endif
  }

  /* Check to make sure the sqlite_stat1 table exists */
  sInfo.db = db;







|







1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
  assert( db->aDb[iDb].pBt!=0 );

  /* Clear any prior statistics */
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3DefaultRowEst(pIdx);
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    sqlite3DeleteIndexSamples(db, pIdx);
    pIdx->aSample = 0;
#endif
  }

  /* Check to make sure the sqlite_stat1 table exists */
  sInfo.db = db;
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
    rc = SQLITE_NOMEM;
  }else{
    rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat3 table. */
#ifdef SQLITE_ENABLE_STAT3
  if( rc==SQLITE_OK ){
    int lookasideEnabled = db->lookaside.bEnabled;
    db->lookaside.bEnabled = 0;
    rc = loadStat3(db, sInfo.zDatabase);
    db->lookaside.bEnabled = lookasideEnabled;
  }
#endif

  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */







|
|



|












1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
    rc = SQLITE_NOMEM;
  }else{
    rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat4 table. */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( rc==SQLITE_OK ){
    int lookasideEnabled = db->lookaside.bEnabled;
    db->lookaside.bEnabled = 0;
    rc = loadStat4(db, sInfo.zDatabase);
    db->lookaside.bEnabled = lookasideEnabled;
  }
#endif

  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */
Changes to src/attach.c.
154
155
156
157
158
159
160



161
162
163
164
165
166
167
        "attached databases must use the same text encoding as main database");
      rc = SQLITE_ERROR;
    }
    pPager = sqlite3BtreePager(aNew->pBt);
    sqlite3PagerLockingMode(pPager, db->dfltLockMode);
    sqlite3BtreeSecureDelete(aNew->pBt,
                             sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) );



  }
  aNew->safety_level = 3;
  aNew->zName = sqlite3DbStrDup(db, zName);
  if( rc==SQLITE_OK && aNew->zName==0 ){
    rc = SQLITE_NOMEM;
  }








>
>
>







154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        "attached databases must use the same text encoding as main database");
      rc = SQLITE_ERROR;
    }
    pPager = sqlite3BtreePager(aNew->pBt);
    sqlite3PagerLockingMode(pPager, db->dfltLockMode);
    sqlite3BtreeSecureDelete(aNew->pBt,
                             sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) );
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
    sqlite3BtreeSetPagerFlags(aNew->pBt, 3 | (db->flags & PAGER_FLAGS_MASK));
#endif
  }
  aNew->safety_level = 3;
  aNew->zName = sqlite3DbStrDup(db, zName);
  if( rc==SQLITE_OK && aNew->zName==0 ){
    rc = SQLITE_NOMEM;
  }

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
** Called by the parser to compile a DETACH statement.
**
**     DETACH pDbname
*/
void sqlite3Detach(Parse *pParse, Expr *pDbname){
  static const FuncDef detach_func = {
    1,                /* nArg */
    SQLITE_UTF8,      /* iPrefEnc */
    0,                /* flags */
    0,                /* pUserData */
    0,                /* pNext */
    detachFunc,       /* xFunc */
    0,                /* xStep */
    0,                /* xFinalize */
    "sqlite_detach",  /* zName */
    0,                /* pHash */
    0                 /* pDestructor */
  };
  codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname);
}

/*
** Called by the parser to compile an ATTACH statement.
**
**     ATTACH p AS pDbname KEY pKey
*/
void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
  static const FuncDef attach_func = {
    3,                /* nArg */
    SQLITE_UTF8,      /* iPrefEnc */
    0,                /* flags */
    0,                /* pUserData */
    0,                /* pNext */
    attachFunc,       /* xFunc */
    0,                /* xStep */
    0,                /* xFinalize */
    "sqlite_attach",  /* zName */
    0,                /* pHash */







|
<




















|
<







375
376
377
378
379
380
381
382

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

404
405
406
407
408
409
410
** Called by the parser to compile a DETACH statement.
**
**     DETACH pDbname
*/
void sqlite3Detach(Parse *pParse, Expr *pDbname){
  static const FuncDef detach_func = {
    1,                /* nArg */
    SQLITE_UTF8,      /* funcFlags */

    0,                /* pUserData */
    0,                /* pNext */
    detachFunc,       /* xFunc */
    0,                /* xStep */
    0,                /* xFinalize */
    "sqlite_detach",  /* zName */
    0,                /* pHash */
    0                 /* pDestructor */
  };
  codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname);
}

/*
** Called by the parser to compile an ATTACH statement.
**
**     ATTACH p AS pDbname KEY pKey
*/
void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
  static const FuncDef attach_func = {
    3,                /* nArg */
    SQLITE_UTF8,      /* funcFlags */

    0,                /* pUserData */
    0,                /* pNext */
    attachFunc,       /* xFunc */
    0,                /* xStep */
    0,                /* xFinalize */
    "sqlite_attach",  /* zName */
    0,                /* pHash */
Changes to src/backup.c.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
*************************************************************************
** This file contains the implementation of the sqlite3_backup_XXX() 
** API functions and the related features.
*/
#include "sqliteInt.h"
#include "btreeInt.h"

/* Macro to find the minimum of two numeric values.
*/
#ifndef MIN
# define MIN(x,y) ((x)<(y)?(x):(y))
#endif

/*
** Structure allocated for each backup operation.
*/
struct sqlite3_backup {
  sqlite3* pDestDb;        /* Destination database handle */
  Btree *pDest;            /* Destination b-tree file */
  u32 iDestSchema;         /* Original schema cookie in destination */







<
<
<
<
<
<







11
12
13
14
15
16
17






18
19
20
21
22
23
24
*************************************************************************
** This file contains the implementation of the sqlite3_backup_XXX() 
** API functions and the related features.
*/
#include "sqliteInt.h"
#include "btreeInt.h"







/*
** Structure allocated for each backup operation.
*/
struct sqlite3_backup {
  sqlite3* pDestDb;        /* Destination database handle */
  Btree *pDest;            /* Destination b-tree file */
  u32 iDestSchema;         /* Original schema cookie in destination */
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc);
    assert( nSrcPage>=0 );
    for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
      const Pgno iSrcPg = p->iNext;                 /* Source page number */
      if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
        DbPage *pSrcPg;                             /* Source page object */
        rc = sqlite3PagerAcquire(pSrcPager, iSrcPg, &pSrcPg,
                                 PAGER_ACQUIRE_READONLY);
        if( rc==SQLITE_OK ){
          rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0);
          sqlite3PagerUnref(pSrcPg);
        }
      }
      p->iNext++;
    }







|







388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc);
    assert( nSrcPage>=0 );
    for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
      const Pgno iSrcPg = p->iNext;                 /* Source page number */
      if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
        DbPage *pSrcPg;                             /* Source page object */
        rc = sqlite3PagerAcquire(pSrcPager, iSrcPg, &pSrcPg,
                                 PAGER_GET_READONLY);
        if( rc==SQLITE_OK ){
          rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0);
          sqlite3PagerUnref(pSrcPg);
        }
      }
      p->iNext++;
    }
Changes to src/btree.c.
720
721
722
723
724
725
726



727
728
729
730
731
732
733
  }
  pCur->eState = CURSOR_INVALID;
  rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
  if( rc==SQLITE_OK ){
    sqlite3_free(pCur->pKey);
    pCur->pKey = 0;
    assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );



  }
  return rc;
}

#define restoreCursorPosition(p) \
  (p->eState>=CURSOR_REQUIRESEEK ? \
         btreeRestoreCursorPosition(p) : \







>
>
>







720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
  }
  pCur->eState = CURSOR_INVALID;
  rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
  if( rc==SQLITE_OK ){
    sqlite3_free(pCur->pKey);
    pCur->pKey = 0;
    assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
    if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
      pCur->eState = CURSOR_SKIPNEXT;
    }
  }
  return rc;
}

#define restoreCursorPosition(p) \
  (p->eState>=CURSOR_REQUIRESEEK ? \
         btreeRestoreCursorPosition(p) : \
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
  int rc;

  rc = restoreCursorPosition(pCur);
  if( rc ){
    *pHasMoved = 1;
    return rc;
  }
  if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
    *pHasMoved = 1;
  }else{
    *pHasMoved = 0;
  }
  return SQLITE_OK;
}








|







748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
  int rc;

  rc = restoreCursorPosition(pCur);
  if( rc ){
    *pHasMoved = 1;
    return rc;
  }
  if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
    *pHasMoved = 1;
  }else{
    *pHasMoved = 0;
  }
  return SQLITE_OK;
}

933
934
935
936
937
938
939

940
941
942
943
944
945
946
947

  pInfo->pCell = pCell;
  assert( pPage->leaf==0 || pPage->leaf==1 );
  n = pPage->childPtrSize;
  assert( n==4-4*pPage->leaf );
  if( pPage->intKey ){
    if( pPage->hasData ){

      n += getVarint32(&pCell[n], nPayload);
    }else{
      nPayload = 0;
    }
    n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
    pInfo->nData = nPayload;
  }else{
    pInfo->nData = 0;







>
|







936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

  pInfo->pCell = pCell;
  assert( pPage->leaf==0 || pPage->leaf==1 );
  n = pPage->childPtrSize;
  assert( n==4-4*pPage->leaf );
  if( pPage->intKey ){
    if( pPage->hasData ){
      assert( n==0 );
      n = getVarint32(pCell, nPayload);
    }else{
      nPayload = 0;
    }
    n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
    pInfo->nData = nPayload;
  }else{
    pInfo->nData = 0;
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
** means we have started to be concerned about content and the disk
** read should occur at that point.
*/
static int btreeGetPage(
  BtShared *pBt,       /* The btree */
  Pgno pgno,           /* Number of the page to fetch */
  MemPage **ppPage,    /* Return the page in this parameter */
  int noContent,       /* Do not load page content if true */
  int bReadonly        /* True if a read-only (mmap) page is ok */
){
  int rc;
  DbPage *pDbPage;
  int flags = (noContent ? PAGER_ACQUIRE_NOCONTENT : 0) 
            | (bReadonly ? PAGER_ACQUIRE_READONLY : 0);

  assert( noContent==0 || bReadonly==0 );
  assert( sqlite3_mutex_held(pBt->mutex) );
  rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
  if( rc ) return rc;
  *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
  return SQLITE_OK;
}








|
<



<
<

|







1581
1582
1583
1584
1585
1586
1587
1588

1589
1590
1591


1592
1593
1594
1595
1596
1597
1598
1599
1600
** means we have started to be concerned about content and the disk
** read should occur at that point.
*/
static int btreeGetPage(
  BtShared *pBt,       /* The btree */
  Pgno pgno,           /* Number of the page to fetch */
  MemPage **ppPage,    /* Return the page in this parameter */
  int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */

){
  int rc;
  DbPage *pDbPage;



  assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
  assert( sqlite3_mutex_held(pBt->mutex) );
  rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
  if( rc ) return rc;
  *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
  return SQLITE_OK;
}

1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643

1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
** If an error occurs, then the value *ppPage is set to is undefined. It
** may remain unchanged, or it may be set to an invalid value.
*/
static int getAndInitPage(
  BtShared *pBt,                  /* The database file */
  Pgno pgno,                      /* Number of the page to get */
  MemPage **ppPage,               /* Write the page pointer here */
  int bReadonly                   /* True if a read-only (mmap) page is ok */
){
  int rc;
  assert( sqlite3_mutex_held(pBt->mutex) );


  if( pgno>btreePagecount(pBt) ){
    rc = SQLITE_CORRUPT_BKPT;
  }else{
    rc = btreeGetPage(pBt, pgno, ppPage, 0, bReadonly);
    if( rc==SQLITE_OK ){
      rc = btreeInitPage(*ppPage);
      if( rc!=SQLITE_OK ){
        releasePage(*ppPage);
      }
    }
  }







|



>




|







1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
** If an error occurs, then the value *ppPage is set to is undefined. It
** may remain unchanged, or it may be set to an invalid value.
*/
static int getAndInitPage(
  BtShared *pBt,                  /* The database file */
  Pgno pgno,                      /* Number of the page to get */
  MemPage **ppPage,               /* Write the page pointer here */
  int bReadonly                   /* PAGER_GET_READONLY or 0 */
){
  int rc;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );

  if( pgno>btreePagecount(pBt) ){
    rc = SQLITE_CORRUPT_BKPT;
  }else{
    rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
    if( rc==SQLITE_OK ){
      rc = btreeInitPage(*ppPage);
      if( rc!=SQLITE_OK ){
        releasePage(*ppPage);
      }
    }
  }
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
** how well the database resists damage due to OS crashes and power
** failures.  Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage)  Level 2 is the default.  There
** is a very low but non-zero probability of damage.  Level 3 reduces the
** probability of damage to near zero but with a write performance reduction.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
int sqlite3BtreeSetSafetyLevel(
  Btree *p,              /* The btree to set the safety level on */
  int level,             /* PRAGMA synchronous.  1=OFF, 2=NORMAL, 3=FULL */
  int fullSync,          /* PRAGMA fullfsync. */
  int ckptFullSync       /* PRAGMA checkpoint_fullfync */
){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->db->mutex) );
  assert( level>=1 && level<=3 );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}
#endif

/*
** Return TRUE if the given btree is set to safety level 1.  In other







|

<
<
|



<

|







2163
2164
2165
2166
2167
2168
2169
2170
2171


2172
2173
2174
2175

2176
2177
2178
2179
2180
2181
2182
2183
2184
** how well the database resists damage due to OS crashes and power
** failures.  Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage)  Level 2 is the default.  There
** is a very low but non-zero probability of damage.  Level 3 reduces the
** probability of damage to near zero but with a write performance reduction.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
int sqlite3BtreeSetPagerFlags(
  Btree *p,              /* The btree to set the safety level on */


  unsigned pgFlags       /* Various PAGER_* flags */
){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->db->mutex) );

  sqlite3BtreeEnter(p);
  sqlite3PagerSetFlags(pBt->pPager, pgFlags);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}
#endif

/*
** Return TRUE if the given btree is set to safety level 1.  In other
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
  int nPageFile = 0;   /* Number of pages in the database file */
  int nPageHeader;     /* Number of pages in the database according to hdr */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pBt->pPage1==0 );
  rc = sqlite3PagerSharedLock(pBt->pPager);
  if( rc!=SQLITE_OK ) return rc;
  rc = btreeGetPage(pBt, 1, &pPage1, 0, 0);
  if( rc!=SQLITE_OK ) return rc;

  /* Do some checking to help insure the file we opened really is
  ** a valid database file. 
  */
  nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
  sqlite3PagerPagecount(pBt->pPager, &nPageFile);







|







2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
  int nPageFile = 0;   /* Number of pages in the database file */
  int nPageHeader;     /* Number of pages in the database according to hdr */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pBt->pPage1==0 );
  rc = sqlite3PagerSharedLock(pBt->pPager);
  if( rc!=SQLITE_OK ) return rc;
  rc = btreeGetPage(pBt, 1, &pPage1, 0);
  if( rc!=SQLITE_OK ) return rc;

  /* Do some checking to help insure the file we opened really is
  ** a valid database file. 
  */
  nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
  sqlite3PagerPagecount(pBt->pPager, &nPageFile);
2505
2506
2507
2508
2509
2510
2511

2512
2513
2514
2515
2516
2517
2518
    pBt->max1bytePayload = 127;
  }else{
    pBt->max1bytePayload = (u8)pBt->maxLocal;
  }
  assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
  pBt->pPage1 = pPage1;
  pBt->nPage = nPage;

  return SQLITE_OK;

page1_init_failed:
  releasePage(pPage1);
  pBt->pPage1 = 0;
  return rc;
}







>







2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
    pBt->max1bytePayload = 127;
  }else{
    pBt->max1bytePayload = (u8)pBt->maxLocal;
  }
  assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
  pBt->pPage1 = pPage1;
  pBt->nPage = nPage;
assert( pPage1->leaf==0 || pPage1->leaf==1 );
  return SQLITE_OK;

page1_init_failed:
  releasePage(pPage1);
  pBt->pPage1 = 0;
  return rc;
}
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
  }

  /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
  ** that it points at iFreePage. Also fix the pointer map entry for
  ** iPtrPage.
  */
  if( eType!=PTRMAP_ROOTPAGE ){
    rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0, 0);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    rc = sqlite3PagerWrite(pPtrPage->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(pPtrPage);
      return rc;







|







2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
  }

  /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
  ** that it points at iFreePage. Also fix the pointer map entry for
  ** iPtrPage.
  */
  if( eType!=PTRMAP_ROOTPAGE ){
    rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    rc = sqlite3PagerWrite(pPtrPage->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(pPtrPage);
      return rc;
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
      }
    } else {
      Pgno iFreePg;             /* Index of free page to move pLastPg to */
      MemPage *pLastPg;
      u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
      Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */

      rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* If bCommit is zero, this loop runs exactly once and page pLastPg
      ** is swapped with the first free page pulled off the free list.
      **







|







3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
      }
    } else {
      Pgno iFreePg;             /* Index of free page to move pLastPg to */
      MemPage *pLastPg;
      u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
      Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */

      rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* If bCommit is zero, this loop runs exactly once and page pLastPg
      ** is swapped with the first free page pulled off the free list.
      **
3269
3270
3271
3272
3273
3274
3275

3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288

/*
** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
** at the conclusion of a transaction.
*/
static void btreeEndTransaction(Btree *p){
  BtShared *pBt = p->pBt;

  assert( sqlite3BtreeHoldsMutex(p) );

#ifndef SQLITE_OMIT_AUTOVACUUM
  pBt->bDoTruncate = 0;
#endif
  if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
    /* If there are other active statements that belong to this database
    ** handle, downgrade to a read-only transaction. The other statements
    ** may still be reading from the database.  */
    downgradeAllSharedCacheTableLocks(p);
    p->inTrans = TRANS_READ;
  }else{
    /* If the handle had any kind of transaction open, decrement the 







>





|







3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289

/*
** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
** at the conclusion of a transaction.
*/
static void btreeEndTransaction(Btree *p){
  BtShared *pBt = p->pBt;
  sqlite3 *db = p->db;
  assert( sqlite3BtreeHoldsMutex(p) );

#ifndef SQLITE_OMIT_AUTOVACUUM
  pBt->bDoTruncate = 0;
#endif
  if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
    /* If there are other active statements that belong to this database
    ** handle, downgrade to a read-only transaction. The other statements
    ** may still be reading from the database.  */
    downgradeAllSharedCacheTableLocks(p);
    p->inTrans = TRANS_READ;
  }else{
    /* If the handle had any kind of transaction open, decrement the 
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
    if( rc2!=SQLITE_OK ){
      rc = rc2;
    }

    /* The rollback may have destroyed the pPage1->aData value.  So
    ** call btreeGetPage() on page 1 again to make
    ** sure pPage1->aData is set correctly. */
    if( btreeGetPage(pBt, 1, &pPage1, 0, 0)==SQLITE_OK ){
      int nPage = get4byte(28+(u8*)pPage1->aData);
      testcase( nPage==0 );
      if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
      testcase( pBt->nPage!=nPage );
      pBt->nPage = nPage;
      releasePage(pPage1);
    }







|







3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
    if( rc2!=SQLITE_OK ){
      rc = rc2;
    }

    /* The rollback may have destroyed the pPage1->aData value.  So
    ** call btreeGetPage() on page 1 again to make
    ** sure pPage1->aData is set correctly. */
    if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
      int nPage = get4byte(28+(u8*)pPage1->aData);
      testcase( nPage==0 );
      if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
      testcase( pBt->nPage!=nPage );
      pBt->nPage = nPage;
      releasePage(pPage1);
    }
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
      }
    }
  }
#endif

  assert( next==0 || rc==SQLITE_DONE );
  if( rc==SQLITE_OK ){
    rc = btreeGetPage(pBt, ovfl, &pPage, 0, (ppPage==0));
    assert( rc==SQLITE_OK || pPage==0 );
    if( rc==SQLITE_OK ){
      next = get4byte(pPage->aData);
    }
  }

  *pPgnoNext = next;







|







3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
      }
    }
  }
#endif

  assert( next==0 || rc==SQLITE_DONE );
  if( rc==SQLITE_OK ){
    rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
    assert( rc==SQLITE_OK || pPage==0 );
    if( rc==SQLITE_OK ){
      next = get4byte(pPage->aData);
    }
  }

  *pPgnoNext = next;
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
          memcpy(aWrite, aSave, 4);
        }else
#endif

        {
          DbPage *pDbPage;
          rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
              (eOp==0 ? PAGER_ACQUIRE_READONLY : 0)
          );
          if( rc==SQLITE_OK ){
            aPayload = sqlite3PagerGetData(pDbPage);
            nextPage = get4byte(aPayload);
            rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
            sqlite3PagerUnref(pDbPage);
            offset = 0;







|







4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
          memcpy(aWrite, aSave, 4);
        }else
#endif

        {
          DbPage *pDbPage;
          rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
              (eOp==0 ? PAGER_GET_READONLY : 0)
          );
          if( rc==SQLITE_OK ){
            aPayload = sqlite3PagerGetData(pDbPage);
            nextPage = get4byte(aPayload);
            rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
            sqlite3PagerUnref(pDbPage);
            offset = 0;
4282
4283
4284
4285
4286
4287
4288
4289

4290
4291
4292
4293
4294
4295
4296
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->iPage>=0 );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }
  rc = getAndInitPage(pBt, newPgno, &pNewPage, (pCur->wrFlag==0));

  if( rc ) return rc;
  pCur->apPage[i+1] = pNewPage;
  pCur->aiIdx[i+1] = 0;
  pCur->iPage++;

  pCur->info.nSize = 0;
  pCur->validNKey = 0;







|
>







4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->iPage>=0 );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }
  rc = getAndInitPage(pBt, newPgno, &pNewPage,
               pCur->wrFlag==0 ? PAGER_GET_READONLY : 0);
  if( rc ) return rc;
  pCur->apPage[i+1] = pNewPage;
  pCur->aiIdx[i+1] = 0;
  pCur->iPage++;

  pCur->info.nSize = 0;
  pCur->validNKey = 0;
4399
4400
4401
4402
4403
4404
4405
4406

4407
4408
4409
4410
4411
4412
4413
      releasePage(pCur->apPage[i]);
    }
    pCur->iPage = 0;
  }else if( pCur->pgnoRoot==0 ){
    pCur->eState = CURSOR_INVALID;
    return SQLITE_OK;
  }else{
    rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0], pCur->wrFlag==0);

    if( rc!=SQLITE_OK ){
      pCur->eState = CURSOR_INVALID;
      return rc;
    }
    pCur->iPage = 0;

    /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor







|
>







4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
      releasePage(pCur->apPage[i]);
    }
    pCur->iPage = 0;
  }else if( pCur->pgnoRoot==0 ){
    pCur->eState = CURSOR_INVALID;
    return SQLITE_OK;
  }else{
    rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0],
                        pCur->wrFlag==0 ? PAGER_GET_READONLY : 0);
    if( rc!=SQLITE_OK ){
      pCur->eState = CURSOR_INVALID;
      return rc;
    }
    pCur->iPage = 0;

    /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4794
4795
4796
4797
4798
4799
4800



4801
4802

4803
4804
4805
4806
4807
4808
4809



4810
4811
4812
4813
4814
4815


4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833



4834
4835
4836
4837
4838
4839
4840
*/
int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
  int rc;
  int idx;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );



  rc = restoreCursorPosition(pCur);
  if( rc!=SQLITE_OK ){

    return rc;
  }
  assert( pRes!=0 );
  if( CURSOR_INVALID==pCur->eState ){
    *pRes = 1;
    return SQLITE_OK;
  }



  if( pCur->skipNext>0 ){
    pCur->skipNext = 0;
    *pRes = 0;
    return SQLITE_OK;
  }
  pCur->skipNext = 0;



  pPage = pCur->apPage[pCur->iPage];
  idx = ++pCur->aiIdx[pCur->iPage];
  assert( pPage->isInit );

  /* If the database file is corrupt, it is possible for the value of idx 
  ** to be invalid here. This can only occur if a second cursor modifies
  ** the page while cursor pCur is holding a reference to it. Which can
  ** only happen if the database is corrupt in such a way as to link the
  ** page into more than one b-tree structure. */
  testcase( idx>pPage->nCell );

  pCur->info.nSize = 0;
  pCur->validNKey = 0;
  if( idx>=pPage->nCell ){
    if( !pPage->leaf ){
      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
      if( rc ) return rc;



      rc = moveToLeftmost(pCur);
      *pRes = 0;
      return rc;
    }
    do{
      if( pCur->iPage==0 ){
        *pRes = 1;







>
>
>
|
|
>
|
|
<
|
|
|
|
>
>
>
|
|
|
|
|
|
>
>

















|
>
>
>







4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811

4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
*/
int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
  int rc;
  int idx;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  assert( pRes!=0 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  if( pCur->eState!=CURSOR_VALID ){
    rc = restoreCursorPosition(pCur);
    if( rc!=SQLITE_OK ){
      *pRes = 0;
      return rc;
    }

    if( CURSOR_INVALID==pCur->eState ){
      *pRes = 1;
      return SQLITE_OK;
    }
    if( pCur->skipNext ){
      assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
      pCur->eState = CURSOR_VALID;
      if( pCur->skipNext>0 ){
        pCur->skipNext = 0;
        *pRes = 0;
        return SQLITE_OK;
      }
      pCur->skipNext = 0;
    }
  }

  pPage = pCur->apPage[pCur->iPage];
  idx = ++pCur->aiIdx[pCur->iPage];
  assert( pPage->isInit );

  /* If the database file is corrupt, it is possible for the value of idx 
  ** to be invalid here. This can only occur if a second cursor modifies
  ** the page while cursor pCur is holding a reference to it. Which can
  ** only happen if the database is corrupt in such a way as to link the
  ** page into more than one b-tree structure. */
  testcase( idx>pPage->nCell );

  pCur->info.nSize = 0;
  pCur->validNKey = 0;
  if( idx>=pPage->nCell ){
    if( !pPage->leaf ){
      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
      if( rc ){
        *pRes = 0;
        return rc;
      }
      rc = moveToLeftmost(pCur);
      *pRes = 0;
      return rc;
    }
    do{
      if( pCur->iPage==0 ){
        *pRes = 1;
4868
4869
4870
4871
4872
4873
4874





4875
4876

4877
4878
4879

4880
4881
4882
4883



4884
4885
4886
4887
4888
4889


4890
4891
4892
4893
4894
4895
4896

4897
4898
4899
4900
4901
4902
4903
** this routine was called, then set *pRes=1.
*/
int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );





  rc = restoreCursorPosition(pCur);
  if( rc!=SQLITE_OK ){

    return rc;
  }
  pCur->atLast = 0;

  if( CURSOR_INVALID==pCur->eState ){
    *pRes = 1;
    return SQLITE_OK;
  }



  if( pCur->skipNext<0 ){
    pCur->skipNext = 0;
    *pRes = 0;
    return SQLITE_OK;
  }
  pCur->skipNext = 0;



  pPage = pCur->apPage[pCur->iPage];
  assert( pPage->isInit );
  if( !pPage->leaf ){
    int idx = pCur->aiIdx[pCur->iPage];
    rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
    if( rc ){

      return rc;
    }
    rc = moveToRightmost(pCur);
  }else{
    while( pCur->aiIdx[pCur->iPage]==0 ){
      if( pCur->iPage==0 ){
        pCur->eState = CURSOR_INVALID;







>
>
>
>
>
|
|
>
|
|
<
>
|
|
|
|
>
>
>
|
|
|
|
|
|
>
>







>







4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898

4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
** this routine was called, then set *pRes=1.
*/
int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  assert( pRes!=0 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  pCur->atLast = 0;
  if( pCur->eState!=CURSOR_VALID ){
    if( ALWAYS(pCur->eState>=CURSOR_REQUIRESEEK) ){
      rc = btreeRestoreCursorPosition(pCur);
      if( rc!=SQLITE_OK ){
        *pRes = 0;
        return rc;
      }

    }
    if( CURSOR_INVALID==pCur->eState ){
      *pRes = 1;
      return SQLITE_OK;
    }
    if( pCur->skipNext ){
      assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
      pCur->eState = CURSOR_VALID;
      if( pCur->skipNext<0 ){
        pCur->skipNext = 0;
        *pRes = 0;
        return SQLITE_OK;
      }
      pCur->skipNext = 0;
    }
  }

  pPage = pCur->apPage[pCur->iPage];
  assert( pPage->isInit );
  if( !pPage->leaf ){
    int idx = pCur->aiIdx[pCur->iPage];
    rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
    if( rc ){
      *pRes = 0;
      return rc;
    }
    rc = moveToRightmost(pCur);
  }else{
    while( pCur->aiIdx[pCur->iPage]==0 ){
      if( pCur->iPage==0 ){
        pCur->eState = CURSOR_INVALID;
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
      }else{
        iTrunk = get4byte(&pPage1->aData[32]);
      }
      testcase( iTrunk==mxPage );
      if( iTrunk>mxPage ){
        rc = SQLITE_CORRUPT_BKPT;
      }else{
        rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0, 0);
      }
      if( rc ){
        pTrunk = 0;
        goto end_allocate_page;
      }
      assert( pTrunk!=0 );
      assert( pTrunk->aData!=0 );







|







5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
      }else{
        iTrunk = get4byte(&pPage1->aData[32]);
      }
      testcase( iTrunk==mxPage );
      if( iTrunk>mxPage ){
        rc = SQLITE_CORRUPT_BKPT;
      }else{
        rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
      }
      if( rc ){
        pTrunk = 0;
        goto end_allocate_page;
      }
      assert( pTrunk!=0 );
      assert( pTrunk->aData!=0 );
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
          MemPage *pNewTrunk;
          Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
          if( iNewTrunk>mxPage ){ 
            rc = SQLITE_CORRUPT_BKPT;
            goto end_allocate_page;
          }
          testcase( iNewTrunk==mxPage );
          rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0, 0);
          if( rc!=SQLITE_OK ){
            goto end_allocate_page;
          }
          rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
          if( rc!=SQLITE_OK ){
            releasePage(pNewTrunk);
            goto end_allocate_page;







|







5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
          MemPage *pNewTrunk;
          Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
          if( iNewTrunk>mxPage ){ 
            rc = SQLITE_CORRUPT_BKPT;
            goto end_allocate_page;
          }
          testcase( iNewTrunk==mxPage );
          rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
          if( rc!=SQLITE_OK ){
            goto end_allocate_page;
          }
          rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
          if( rc!=SQLITE_OK ){
            releasePage(pNewTrunk);
            goto end_allocate_page;
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
                 *pPgno, closest+1, k, pTrunk->pgno, n-1));
          rc = sqlite3PagerWrite(pTrunk->pDbPage);
          if( rc ) goto end_allocate_page;
          if( closest<k-1 ){
            memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
          }
          put4byte(&aData[4], k-1);
          noContent = !btreeGetHasContent(pBt, *pPgno);
          rc = btreeGetPage(pBt, *pPgno, ppPage, noContent, 0);
          if( rc==SQLITE_OK ){
            rc = sqlite3PagerWrite((*ppPage)->pDbPage);
            if( rc!=SQLITE_OK ){
              releasePage(*ppPage);
            }
          }
          searchList = 0;







|
|







5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
                 *pPgno, closest+1, k, pTrunk->pgno, n-1));
          rc = sqlite3PagerWrite(pTrunk->pDbPage);
          if( rc ) goto end_allocate_page;
          if( closest<k-1 ){
            memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
          }
          put4byte(&aData[4], k-1);
          noContent = !btreeGetHasContent(pBt, *pPgno) ? PAGER_GET_NOCONTENT : 0;
          rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
          if( rc==SQLITE_OK ){
            rc = sqlite3PagerWrite((*ppPage)->pDbPage);
            if( rc!=SQLITE_OK ){
              releasePage(*ppPage);
            }
          }
          searchList = 0;
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
    **
    ** Note that the pager will not actually attempt to load or journal 
    ** content for any page that really does lie past the end of the database
    ** file on disk. So the effects of disabling the no-content optimization
    ** here are confined to those pages that lie between the end of the
    ** database image and the end of the database file.
    */
    int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate));

    rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
    if( rc ) return rc;
    pBt->nPage++;
    if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;

#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
      /* If *pPgno refers to a pointer-map page, allocate two new pages
      ** at the end of the file instead of one. The first allocated page
      ** becomes a new pointer-map page, the second is used by the caller.
      */
      MemPage *pPg = 0;
      TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
      assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
      rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent, 0);
      if( rc==SQLITE_OK ){
        rc = sqlite3PagerWrite(pPg->pDbPage);
        releasePage(pPg);
      }
      if( rc ) return rc;
      pBt->nPage++;
      if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
    }
#endif
    put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
    *pPgno = pBt->nPage;

    assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
    rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent, 0);
    if( rc ) return rc;
    rc = sqlite3PagerWrite((*ppPage)->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
    }
    TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
  }







|















|













|







5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
    **
    ** Note that the pager will not actually attempt to load or journal 
    ** content for any page that really does lie past the end of the database
    ** file on disk. So the effects of disabling the no-content optimization
    ** here are confined to those pages that lie between the end of the
    ** database image and the end of the database file.
    */
    int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate)) ? PAGER_GET_NOCONTENT : 0;

    rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
    if( rc ) return rc;
    pBt->nPage++;
    if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;

#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
      /* If *pPgno refers to a pointer-map page, allocate two new pages
      ** at the end of the file instead of one. The first allocated page
      ** becomes a new pointer-map page, the second is used by the caller.
      */
      MemPage *pPg = 0;
      TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
      assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
      rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
      if( rc==SQLITE_OK ){
        rc = sqlite3PagerWrite(pPg->pDbPage);
        releasePage(pPg);
      }
      if( rc ) return rc;
      pBt->nPage++;
      if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
    }
#endif
    put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
    *pPgno = pBt->nPage;

    assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
    rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
    if( rc ) return rc;
    rc = sqlite3PagerWrite((*ppPage)->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
    }
    TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
  }
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
  nFree = get4byte(&pPage1->aData[36]);
  put4byte(&pPage1->aData[36], nFree+1);

  if( pBt->btsFlags & BTS_SECURE_DELETE ){
    /* If the secure_delete option is enabled, then
    ** always fully overwrite deleted information with zeros.
    */
    if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0, 0))!=0) )
     ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
    ){
      goto freepage_out;
    }
    memset(pPage->aData, 0, pPage->pBt->pageSize);
  }








|







5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
  nFree = get4byte(&pPage1->aData[36]);
  put4byte(&pPage1->aData[36], nFree+1);

  if( pBt->btsFlags & BTS_SECURE_DELETE ){
    /* If the secure_delete option is enabled, then
    ** always fully overwrite deleted information with zeros.
    */
    if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
     ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
    ){
      goto freepage_out;
    }
    memset(pPage->aData, 0, pPage->pBt->pageSize);
  }

5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
  ** first trunk page in the current free-list. This block tests if it
  ** is possible to add the page as a new free-list leaf.
  */
  if( nFree!=0 ){
    u32 nLeaf;                /* Initial number of leaf cells on trunk page */

    iTrunk = get4byte(&pPage1->aData[32]);
    rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0, 0);
    if( rc!=SQLITE_OK ){
      goto freepage_out;
    }

    nLeaf = get4byte(&pTrunk->aData[4]);
    assert( pBt->usableSize>32 );
    if( nLeaf > (u32)pBt->usableSize/4 - 2 ){







|







5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
  ** first trunk page in the current free-list. This block tests if it
  ** is possible to add the page as a new free-list leaf.
  */
  if( nFree!=0 ){
    u32 nLeaf;                /* Initial number of leaf cells on trunk page */

    iTrunk = get4byte(&pPage1->aData[32]);
    rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
    if( rc!=SQLITE_OK ){
      goto freepage_out;
    }

    nLeaf = get4byte(&pTrunk->aData[4]);
    assert( pBt->usableSize>32 );
    if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374

  /* If control flows to this point, then it was not possible to add the
  ** the page being freed as a leaf page of the first trunk in the free-list.
  ** Possibly because the free-list is empty, or possibly because the 
  ** first trunk in the free-list is full. Either way, the page being freed
  ** will become the new first trunk page in the free-list.
  */
  if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0, 0)) ){
    goto freepage_out;
  }
  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc!=SQLITE_OK ){
    goto freepage_out;
  }
  put4byte(pPage->aData, iTrunk);







|







5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400

  /* If control flows to this point, then it was not possible to add the
  ** the page being freed as a leaf page of the first trunk in the free-list.
  ** Possibly because the free-list is empty, or possibly because the 
  ** first trunk in the free-list is full. Either way, the page being freed
  ** will become the new first trunk page in the free-list.
  */
  if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
    goto freepage_out;
  }
  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc!=SQLITE_OK ){
    goto freepage_out;
  }
  put4byte(pPage->aData, iTrunk);
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
      rc = saveAllCursors(pBt, 0, 0);
      releasePage(pPageMove);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* Move the page currently at pgnoRoot to pgnoMove. */
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
      if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
        rc = SQLITE_CORRUPT_BKPT;
      }
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
      }
      assert( eType!=PTRMAP_ROOTPAGE );
      assert( eType!=PTRMAP_FREEPAGE );
      rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
      releasePage(pRoot);

      /* Obtain the page at pgnoRoot */
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = sqlite3PagerWrite(pRoot->pDbPage);
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;







|




















|







7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
      rc = saveAllCursors(pBt, 0, 0);
      releasePage(pPageMove);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* Move the page currently at pgnoRoot to pgnoMove. */
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
      if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
        rc = SQLITE_CORRUPT_BKPT;
      }
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
      }
      assert( eType!=PTRMAP_ROOTPAGE );
      assert( eType!=PTRMAP_FREEPAGE );
      rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
      releasePage(pRoot);

      /* Obtain the page at pgnoRoot */
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = sqlite3PagerWrite(pRoot->pDbPage);
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
  ** This error is caught long before control reaches this point.
  */
  if( NEVER(pBt->pCursor) ){
    sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
    return SQLITE_LOCKED_SHAREDCACHE;
  }

  rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0, 0);
  if( rc ) return rc;
  rc = sqlite3BtreeClearTable(p, iTable, 0);
  if( rc ){
    releasePage(pPage);
    return rc;
  }








|







7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
  ** This error is caught long before control reaches this point.
  */
  if( NEVER(pBt->pCursor) ){
    sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
    return SQLITE_LOCKED_SHAREDCACHE;
  }

  rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
  if( rc ) return rc;
  rc = sqlite3BtreeClearTable(p, iTable, 0);
  if( rc ){
    releasePage(pPage);
    return rc;
  }

7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
      }else{
        /* The table being dropped does not have the largest root-page
        ** number in the database. So move the page that does into the 
        ** gap left by the deleted root-page.
        */
        MemPage *pMove;
        releasePage(pPage);
        rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0, 0);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        pMove = 0;
        rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0, 0);
        freePage(pMove, &rc);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        *piMoved = maxRootPgno;
      }







|









|







7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
      }else{
        /* The table being dropped does not have the largest root-page
        ** number in the database. So move the page that does into the 
        ** gap left by the deleted root-page.
        */
        MemPage *pMove;
        releasePage(pPage);
        rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        pMove = 0;
        rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
        freePage(pMove, &rc);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        *piMoved = maxRootPgno;
      }
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  }
  if( zMsg1 ){
    sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
  }
  sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.mallocFailed ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK








|







7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  }
  if( zMsg1 ){
    sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
  }
  sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK

7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929

  /* Check that the page exists
  */
  pBt = pCheck->pBt;
  usableSize = pBt->usableSize;
  if( iPage==0 ) return 0;
  if( checkRef(pCheck, iPage, zParentContext) ) return 0;
  if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0, 0))!=0 ){
    checkAppendMsg(pCheck, zContext,
       "unable to get the page. error code=%d", rc);
    return 0;
  }

  /* Clear MemPage.isInit to make sure the corruption detection code in
  ** btreeInitPage() is executed.  */







|







7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955

  /* Check that the page exists
  */
  pBt = pCheck->pBt;
  usableSize = pBt->usableSize;
  if( iPage==0 ) return 0;
  if( checkRef(pCheck, iPage, zParentContext) ) return 0;
  if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
    checkAppendMsg(pCheck, zContext,
       "unable to get the page. error code=%d", rc);
    return 0;
  }

  /* Clear MemPage.isInit to make sure the corruption detection code in
  ** btreeInitPage() is executed.  */
Changes to src/btree.h.
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#define BTREE_MEMORY        2  /* This is an in-memory DB */
#define BTREE_SINGLE        4  /* The file contains at most 1 b-tree */
#define BTREE_UNORDERED     8  /* Use of a hash implementation is OK */

int sqlite3BtreeClose(Btree*);
int sqlite3BtreeSetCacheSize(Btree*,int);
int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64);
int sqlite3BtreeSetSafetyLevel(Btree*,int,int,int);
int sqlite3BtreeSyncDisabled(Btree*);
int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
int sqlite3BtreeGetPageSize(Btree*);
int sqlite3BtreeMaxPageCount(Btree*,int);
u32 sqlite3BtreeLastPage(Btree*);
int sqlite3BtreeSecureDelete(Btree*,int);
int sqlite3BtreeGetReserve(Btree*);







|







60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#define BTREE_MEMORY        2  /* This is an in-memory DB */
#define BTREE_SINGLE        4  /* The file contains at most 1 b-tree */
#define BTREE_UNORDERED     8  /* Use of a hash implementation is OK */

int sqlite3BtreeClose(Btree*);
int sqlite3BtreeSetCacheSize(Btree*,int);
int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64);
int sqlite3BtreeSetPagerFlags(Btree*,unsigned);
int sqlite3BtreeSyncDisabled(Btree*);
int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
int sqlite3BtreeGetPageSize(Btree*);
int sqlite3BtreeMaxPageCount(Btree*,int);
u32 sqlite3BtreeLastPage(Btree*);
int sqlite3BtreeSecureDelete(Btree*,int);
int sqlite3BtreeGetReserve(Btree*);
Changes to src/btreeInt.h.
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530








531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

547
548
549
550
551
552
553
554
555
  u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
  MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
};

/*
** Potential values for BtCursor.eState.
**
** CURSOR_VALID:
**   Cursor points to a valid entry. getPayload() etc. may be called.
**
** CURSOR_INVALID:
**   Cursor does not point to a valid entry. This can happen (for example) 
**   because the table is empty or because BtreeCursorFirst() has not been
**   called.
**








** CURSOR_REQUIRESEEK:
**   The table that this cursor was opened on still exists, but has been 
**   modified since the cursor was last used. The cursor position is saved
**   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in 
**   this state, restoreCursorPosition() can be called to attempt to
**   seek the cursor to the saved position.
**
** CURSOR_FAULT:
**   A unrecoverable error (an I/O error or a malloc failure) has occurred
**   on a different connection that shares the BtShared cache with this
**   cursor.  The error has left the cache in an inconsistent state.
**   Do nothing else with this cursor.  Any attempt to use the cursor
**   should return the error code stored in BtCursor.skip
*/
#define CURSOR_INVALID           0
#define CURSOR_VALID             1

#define CURSOR_REQUIRESEEK       2
#define CURSOR_FAULT             3

/* 
** The database page the PENDING_BYTE occupies. This page is never used.
*/
# define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt)

/*







<
<
<





>
>
>
>
>
>
>
>
















>
|
|







516
517
518
519
520
521
522



523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
  u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
  MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
};

/*
** Potential values for BtCursor.eState.
**



** CURSOR_INVALID:
**   Cursor does not point to a valid entry. This can happen (for example) 
**   because the table is empty or because BtreeCursorFirst() has not been
**   called.
**
** CURSOR_VALID:
**   Cursor points to a valid entry. getPayload() etc. may be called.
**
** CURSOR_SKIPNEXT:
**   Cursor is valid except that the Cursor.skipNext field is non-zero
**   indicating that the next sqlite3BtreeNext() or sqlite3BtreePrevious()
**   operation should be a no-op.
**
** CURSOR_REQUIRESEEK:
**   The table that this cursor was opened on still exists, but has been 
**   modified since the cursor was last used. The cursor position is saved
**   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in 
**   this state, restoreCursorPosition() can be called to attempt to
**   seek the cursor to the saved position.
**
** CURSOR_FAULT:
**   A unrecoverable error (an I/O error or a malloc failure) has occurred
**   on a different connection that shares the BtShared cache with this
**   cursor.  The error has left the cache in an inconsistent state.
**   Do nothing else with this cursor.  Any attempt to use the cursor
**   should return the error code stored in BtCursor.skip
*/
#define CURSOR_INVALID           0
#define CURSOR_VALID             1
#define CURSOR_SKIPNEXT          2
#define CURSOR_REQUIRESEEK       3
#define CURSOR_FAULT             4

/* 
** The database page the PENDING_BYTE occupies. This page is never used.
*/
# define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt)

/*
Changes to src/build.c.
378
379
380
381
382
383
384

385
386
387
388
389
390
391
/*
** Reclaim the memory used by an index
*/
static void freeIndex(sqlite3 *db, Index *p){
#ifndef SQLITE_OMIT_ANALYZE
  sqlite3DeleteIndexSamples(db, p);
#endif

  sqlite3DbFree(db, p->zColAff);
  sqlite3DbFree(db, p);
}

/*
** For the index called zIdxName which is found in the database iDb,
** unlike that index from its Table then remove the index from







>







378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/*
** Reclaim the memory used by an index
*/
static void freeIndex(sqlite3 *db, Index *p){
#ifndef SQLITE_OMIT_ANALYZE
  sqlite3DeleteIndexSamples(db, p);
#endif
  sqlite3ExprDelete(db, p->pPartIdxWhere);
  sqlite3DbFree(db, p->zColAff);
  sqlite3DbFree(db, p);
}

/*
** For the index called zIdxName which is found in the database iDb,
** unlike that index from its Table then remove the index from
1221
1222
1223
1224
1225
1226
1227
1228

1229
1230
1231
1232
1233
1234
1235
  }else if( autoInc ){
#ifndef SQLITE_OMIT_AUTOINCREMENT
    sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
       "INTEGER PRIMARY KEY");
#endif
  }else{
    Index *p;
    p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);

    if( p ){
      p->autoIndex = 2;
    }
    pList = 0;
  }

primary_key_exit:







|
>







1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
  }else if( autoInc ){
#ifndef SQLITE_OMIT_AUTOINCREMENT
    sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
       "INTEGER PRIMARY KEY");
#endif
  }else{
    Index *p;
    p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
                           0, sortOrder, 0);
    if( p ){
      p->autoIndex = 2;
    }
    pList = 0;
  }

primary_key_exit:
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549

  iDb = sqlite3SchemaToIndex(db, p->pSchema);

#ifndef SQLITE_OMIT_CHECK
  /* Resolve names in all CHECK constraint expressions.
  */
  if( p->pCheck ){
    SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
    NameContext sNC;                /* Name context for pParse->pNewTable */
    ExprList *pList;                /* List of all CHECK constraints */
    int i;                          /* Loop counter */

    memset(&sNC, 0, sizeof(sNC));
    memset(&sSrc, 0, sizeof(sSrc));
    sSrc.nSrc = 1;
    sSrc.a[0].zName = p->zName;
    sSrc.a[0].pTab = p;
    sSrc.a[0].iCursor = -1;
    sNC.pParse = pParse;
    sNC.pSrcList = &sSrc;
    sNC.ncFlags = NC_IsCheck;
    pList = p->pCheck;
    for(i=0; i<pList->nExpr; i++){
      if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
        return;
      }
    }
  }
#endif /* !defined(SQLITE_OMIT_CHECK) */

  /* If the db->init.busy is 1 it means we are reading the SQL off the
  ** "sqlite_master" or "sqlite_temp_master" table on the disk.
  ** So do not write to the disk again.  Extract the root page number
  ** for the table from the db->init.newTnum field.  (The page number







<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1518
1519
1520
1521
1522
1523
1524




1525















1526
1527
1528
1529
1530
1531
1532

  iDb = sqlite3SchemaToIndex(db, p->pSchema);

#ifndef SQLITE_OMIT_CHECK
  /* Resolve names in all CHECK constraint expressions.
  */
  if( p->pCheck ){




    sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);















  }
#endif /* !defined(SQLITE_OMIT_CHECK) */

  /* If the db->init.busy is 1 it means we are reading the SQL off the
  ** "sqlite_master" or "sqlite_temp_master" table on the disk.
  ** So do not write to the disk again.  Extract the root page number
  ** for the table from the db->init.newTnum field.  (The page number
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
  Parse *pParse,         /* The parsing context */
  int iDb,               /* The database number */
  const char *zType,     /* "idx" or "tbl" */
  const char *zName      /* Name of index or table */
){
  int i;
  const char *zDbName = pParse->db->aDb[iDb].zName;
  for(i=1; i<=3; i++){
    char zTab[24];
    sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
    if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
      sqlite3NestedParse(pParse,
        "DELETE FROM %Q.%s WHERE %s=%Q",
        zDbName, zTab, zType, zName
      );







|







2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
  Parse *pParse,         /* The parsing context */
  int iDb,               /* The database number */
  const char *zType,     /* "idx" or "tbl" */
  const char *zName      /* Name of index or table */
){
  int i;
  const char *zDbName = pParse->db->aDb[iDb].zName;
  for(i=1; i<=4; i++){
    char zTab[24];
    sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
    if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
      sqlite3NestedParse(pParse,
        "DELETE FROM %Q.%s WHERE %s=%Q",
        zDbName, zTab, zType, zName
      );
2387
2388
2389
2390
2391
2392
2393

2394
2395
2396
2397
2398
2399
2400
  Table *pTab = pIndex->pTable;  /* The table that is indexed */
  int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
  int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
  int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
  int addr1;                     /* Address of top of loop */
  int addr2;                     /* Address to jump to for next iteration */
  int tnum;                      /* Root page of index */

  Vdbe *v;                       /* Generate code into this virtual machine */
  KeyInfo *pKey;                 /* KeyInfo for index */
  int regRecord;                 /* Register holding assemblied index record */
  sqlite3 *db = pParse->db;      /* The database connection */
  int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);

#ifndef SQLITE_OMIT_AUTHORIZATION







>







2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
  Table *pTab = pIndex->pTable;  /* The table that is indexed */
  int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
  int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
  int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
  int addr1;                     /* Address of top of loop */
  int addr2;                     /* Address to jump to for next iteration */
  int tnum;                      /* Root page of index */
  int iPartIdxLabel;             /* Jump to this label to skip a row */
  Vdbe *v;                       /* Generate code into this virtual machine */
  KeyInfo *pKey;                 /* KeyInfo for index */
  int regRecord;                 /* Register holding assemblied index record */
  sqlite3 *db = pParse->db;      /* The database connection */
  int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);

#ifndef SQLITE_OMIT_AUTHORIZATION
2426
2427
2428
2429
2430
2431
2432
2433
2434

2435
2436
2437
2438
2439
2440
2441

  /* Open the table. Loop through all rows of the table, inserting index
  ** records into the sorter. */
  sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
  addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
  regRecord = sqlite3GetTempReg(pParse);

  sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
  sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);

  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
  sqlite3VdbeJumpHere(v, addr1);
  addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0);
  if( pIndex->onError!=OE_None ){
    int j2 = sqlite3VdbeCurrentAddr(v) + 3;
    sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
    addr2 = sqlite3VdbeCurrentAddr(v);







|

>







2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426

  /* Open the table. Loop through all rows of the table, inserting index
  ** records into the sorter. */
  sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
  addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
  regRecord = sqlite3GetTempReg(pParse);

  sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1, &iPartIdxLabel);
  sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
  sqlite3VdbeResolveLabel(v, iPartIdxLabel);
  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
  sqlite3VdbeJumpHere(v, addr1);
  addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0);
  if( pIndex->onError!=OE_None ){
    int j2 = sqlite3VdbeCurrentAddr(v) + 3;
    sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
    addr2 = sqlite3VdbeCurrentAddr(v);
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
  Parse *pParse,     /* All information about this parse */
  Token *pName1,     /* First part of index name. May be NULL */
  Token *pName2,     /* Second part of index name. May be NULL */
  SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
  ExprList *pList,   /* A list of columns to be indexed */
  int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  Token *pStart,     /* The CREATE token that begins this statement */
  Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
  int sortOrder,     /* Sort order of primary key when pList==NULL */
  int ifNotExist     /* Omit error if index already exists */
){
  Index *pRet = 0;     /* Pointer to return */
  Table *pTab = 0;     /* Table to be indexed */
  Index *pIndex = 0;   /* The index to be created */
  char *zName = 0;     /* Name of the index */







|







2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
  Parse *pParse,     /* All information about this parse */
  Token *pName1,     /* First part of index name. May be NULL */
  Token *pName2,     /* Second part of index name. May be NULL */
  SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
  ExprList *pList,   /* A list of columns to be indexed */
  int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  Token *pStart,     /* The CREATE token that begins this statement */
  Expr *pPIWhere,    /* WHERE clause for partial indices */
  int sortOrder,     /* Sort order of primary key when pList==NULL */
  int ifNotExist     /* Omit error if index already exists */
){
  Index *pRet = 0;     /* Pointer to return */
  Table *pTab = 0;     /* Table to be indexed */
  Index *pIndex = 0;   /* The index to be created */
  char *zName = 0;     /* Name of the index */
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
  int iDb;             /* Index of the database that is being written */
  Token *pName = 0;    /* Unqualified name of the index to create */
  struct ExprList_item *pListItem; /* For looping over pList */
  int nCol;
  int nExtra = 0;
  char *zExtra;

  assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
  assert( pParse->nErr==0 );      /* Never called with prior errors */
  if( db->mallocFailed || IN_DECLARE_VTAB ){
    goto exit_create_index;
  }
  if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
    goto exit_create_index;
  }







<







2485
2486
2487
2488
2489
2490
2491

2492
2493
2494
2495
2496
2497
2498
  int iDb;             /* Index of the database that is being written */
  Token *pName = 0;    /* Unqualified name of the index to create */
  struct ExprList_item *pListItem; /* For looping over pList */
  int nCol;
  int nExtra = 0;
  char *zExtra;


  assert( pParse->nErr==0 );      /* Never called with prior errors */
  if( db->mallocFailed || IN_DECLARE_VTAB ){
    goto exit_create_index;
  }
  if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
    goto exit_create_index;
  }
2546
2547
2548
2549
2550
2551
2552
2553





2554
2555
2556
2557
2558
2559
2560
      /* Because the parser constructs pTblName from a single identifier,
      ** sqlite3FixSrcList can never fail. */
      assert(0);
    }
    pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
    assert( db->mallocFailed==0 || pTab==0 );
    if( pTab==0 ) goto exit_create_index;
    assert( db->aDb[iDb].pSchema==pTab->pSchema );





  }else{
    assert( pName==0 );
    assert( pStart==0 );
    pTab = pParse->pNewTable;
    if( !pTab ) goto exit_create_index;
    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  }







|
>
>
>
>
>







2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
      /* Because the parser constructs pTblName from a single identifier,
      ** sqlite3FixSrcList can never fail. */
      assert(0);
    }
    pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
    assert( db->mallocFailed==0 || pTab==0 );
    if( pTab==0 ) goto exit_create_index;
    if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
      sqlite3ErrorMsg(pParse, 
           "cannot create a TEMP index on non-TEMP table \"%s\"",
           pTab->zName);
      goto exit_create_index;
    }
  }else{
    assert( pName==0 );
    assert( pStart==0 );
    pTab = pParse->pNewTable;
    if( !pTab ) goto exit_create_index;
    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  }
2692
2693
2694
2695
2696
2697
2698

2699
2700





2701
2702
2703
2704
2705
2706
2707
  pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]);
  pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
  zExtra = (char *)(&pIndex->zName[nName+1]);
  memcpy(pIndex->zName, zName, nName+1);
  pIndex->pTable = pTab;
  pIndex->nColumn = pList->nExpr;
  pIndex->onError = (u8)onError;

  pIndex->autoIndex = (u8)(pName==0);
  pIndex->pSchema = db->aDb[iDb].pSchema;





  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );

  /* Check to see if we should honor DESC requests on index columns
  */
  if( pDb->pSchema->file_format>=4 ){
    sortOrderMask = -1;   /* Honor DESC */
  }else{







>


>
>
>
>
>







2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
  pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]);
  pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
  zExtra = (char *)(&pIndex->zName[nName+1]);
  memcpy(pIndex->zName, zName, nName+1);
  pIndex->pTable = pTab;
  pIndex->nColumn = pList->nExpr;
  pIndex->onError = (u8)onError;
  pIndex->uniqNotNull = onError==OE_Abort;
  pIndex->autoIndex = (u8)(pName==0);
  pIndex->pSchema = db->aDb[iDb].pSchema;
  if( pPIWhere ){
    sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
    pIndex->pPartIdxWhere = pPIWhere;
    pPIWhere = 0;
  }
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );

  /* Check to see if we should honor DESC requests on index columns
  */
  if( pDb->pSchema->file_format>=4 ){
    sortOrderMask = -1;   /* Honor DESC */
  }else{
2750
2751
2752
2753
2754
2755
2756

2757
2758
2759
2760
2761
2762
2763
    }
    if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
      goto exit_create_index;
    }
    pIndex->azColl[i] = zColl;
    requestedSortOrder = pListItem->sortOrder & sortOrderMask;
    pIndex->aSortOrder[i] = (u8)requestedSortOrder;

  }
  sqlite3DefaultRowEst(pIndex);

  if( pTab==pParse->pNewTable ){
    /* This routine has been called to create an automatic index as a
    ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
    ** a PRIMARY KEY or UNIQUE clause following the column definitions.







>







2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
    }
    if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
      goto exit_create_index;
    }
    pIndex->azColl[i] = zColl;
    requestedSortOrder = pListItem->sortOrder & sortOrderMask;
    pIndex->aSortOrder[i] = (u8)requestedSortOrder;
    if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0;
  }
  sqlite3DefaultRowEst(pIndex);

  if( pTab==pParse->pNewTable ){
    /* This routine has been called to create an automatic index as a
    ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
    ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872

2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
  ** we don't want to recreate it.
  **
  ** If pTblName==0 it means this index is generated as a primary key
  ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
  ** has just been created, it contains no data and the index initialization
  ** step can be skipped.
  */
  else{ /* if( db->init.busy==0 ) */
    Vdbe *v;
    char *zStmt;
    int iMem = ++pParse->nMem;

    v = sqlite3GetVdbe(pParse);
    if( v==0 ) goto exit_create_index;


    /* Create the rootpage for the index
    */
    sqlite3BeginWriteOperation(pParse, 1, iDb);
    sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);

    /* Gather the complete text of the CREATE INDEX statement into
    ** the zStmt variable
    */
    if( pStart ){

      assert( pEnd!=0 );
      /* A named index with an explicit CREATE INDEX statement */
      zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
        onError==OE_None ? "" : " UNIQUE",
        (int)(pEnd->z - pName->z) + 1,
        pName->z);
    }else{
      /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
      /* zStmt = sqlite3MPrintf(""); */
      zStmt = 0;
    }

    /* Add an entry in sqlite_master for this index







|

















>
|


|
<
<







2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873


2874
2875
2876
2877
2878
2879
2880
  ** we don't want to recreate it.
  **
  ** If pTblName==0 it means this index is generated as a primary key
  ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
  ** has just been created, it contains no data and the index initialization
  ** step can be skipped.
  */
  else if( pParse->nErr==0 ){
    Vdbe *v;
    char *zStmt;
    int iMem = ++pParse->nMem;

    v = sqlite3GetVdbe(pParse);
    if( v==0 ) goto exit_create_index;


    /* Create the rootpage for the index
    */
    sqlite3BeginWriteOperation(pParse, 1, iDb);
    sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);

    /* Gather the complete text of the CREATE INDEX statement into
    ** the zStmt variable
    */
    if( pStart ){
      int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
      if( pName->z[n-1]==';' ) n--;
      /* A named index with an explicit CREATE INDEX statement */
      zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
        onError==OE_None ? "" : " UNIQUE", n, pName->z);


    }else{
      /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
      /* zStmt = sqlite3MPrintf(""); */
      zStmt = 0;
    }

    /* Add an entry in sqlite_master for this index
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
    }
    pRet = pIndex;
    pIndex = 0;
  }

  /* Clean up before exiting */
exit_create_index:
  if( pIndex ){
    sqlite3DbFree(db, pIndex->zColAff);
    sqlite3DbFree(db, pIndex);
  }
  sqlite3ExprListDelete(db, pList);
  sqlite3SrcListDelete(db, pTblName);
  sqlite3DbFree(db, zName);
  return pRet;
}

/*







|
<
|
<







2922
2923
2924
2925
2926
2927
2928
2929

2930

2931
2932
2933
2934
2935
2936
2937
    }
    pRet = pIndex;
    pIndex = 0;
  }

  /* Clean up before exiting */
exit_create_index:
  if( pIndex ) freeIndex(db, pIndex);

  sqlite3ExprDelete(db, pPIWhere);

  sqlite3ExprListDelete(db, pList);
  sqlite3SrcListDelete(db, pTblName);
  sqlite3DbFree(db, zName);
  return pRet;
}

/*
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
               sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
    if( pNew==0 ){
      assert( db->mallocFailed );
      return pSrc;
    }
    pSrc = pNew;
    nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
    pSrc->nAlloc = (u16)nGot;
  }

  /* Move existing slots that come after the newly inserted slots
  ** out of the way */
  for(i=pSrc->nSrc-1; i>=iStart; i--){
    pSrc->a[i+nExtra] = pSrc->a[i];
  }
  pSrc->nSrc += (i16)nExtra;

  /* Zero the newly allocated slots */
  memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
  for(i=iStart; i<iStart+nExtra; i++){
    pSrc->a[i].iCursor = -1;
  }








|







|







3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
               sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
    if( pNew==0 ){
      assert( db->mallocFailed );
      return pSrc;
    }
    pSrc = pNew;
    nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
    pSrc->nAlloc = (u8)nGot;
  }

  /* Move existing slots that come after the newly inserted slots
  ** out of the way */
  for(i=pSrc->nSrc-1; i>=iStart; i--){
    pSrc->a[i+nExtra] = pSrc->a[i];
  }
  pSrc->nSrc += (i8)nExtra;

  /* Zero the newly allocated slots */
  memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
  for(i=iStart; i<iStart+nExtra; i++){
    pSrc->a[i].iCursor = -1;
  }

3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818

3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
** pointer. If an error occurs (out of memory or missing collation 
** sequence), NULL is returned and the state of pParse updated to reflect
** the error.
*/
KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
  int i;
  int nCol = pIdx->nColumn;
  int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
  sqlite3 *db = pParse->db;
  KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);


  if( pKey ){
    pKey->db = pParse->db;
    pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
    assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
    for(i=0; i<nCol; i++){
      char *zColl = pIdx->azColl[i];
      assert( zColl );
      pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
      pKey->aSortOrder[i] = pIdx->aSortOrder[i];
    }
    pKey->nField = (u16)nCol;
  }

  if( pParse->nErr ){
    sqlite3DbFree(db, pKey);
    pKey = 0;
  }
  return pKey;
}







<
<
|

>

<
<
<






<



|




3801
3802
3803
3804
3805
3806
3807


3808
3809
3810
3811



3812
3813
3814
3815
3816
3817

3818
3819
3820
3821
3822
3823
3824
3825
** pointer. If an error occurs (out of memory or missing collation 
** sequence), NULL is returned and the state of pParse updated to reflect
** the error.
*/
KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
  int i;
  int nCol = pIdx->nColumn;


  KeyInfo *pKey;

  pKey = sqlite3KeyInfoAlloc(pParse->db, nCol);
  if( pKey ){



    for(i=0; i<nCol; i++){
      char *zColl = pIdx->azColl[i];
      assert( zColl );
      pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
      pKey->aSortOrder[i] = pIdx->aSortOrder[i];
    }

  }

  if( pParse->nErr ){
    sqlite3DbFree(pParse->db, pKey);
    pKey = 0;
  }
  return pKey;
}
Changes to src/callback.c.
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
  if( p->nArg==nArg ){
    match = 4;
  }else{
    match = 1;
  }

  /* Bonus points if the text encoding matches */
  if( enc==p->iPrefEnc ){
    match += 2;  /* Exact encoding match */
  }else if( (enc & p->iPrefEnc & 2)!=0 ){
    match += 1;  /* Both are UTF16, but with different byte orders */
  }

  return match;
}

/*







|

|







266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
  if( p->nArg==nArg ){
    match = 4;
  }else{
    match = 1;
  }

  /* Bonus points if the text encoding matches */
  if( enc==(p->funcFlags & SQLITE_FUNC_ENCMASK) ){
    match += 2;  /* Exact encoding match */
  }else if( (enc & p->funcFlags & 2)!=0 ){
    match += 1;  /* Both are UTF16, but with different byte orders */
  }

  return match;
}

/*
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
  ** exact match for the name, number of arguments and encoding, then add a
  ** new entry to the hash table and return it.
  */
  if( createFlag && bestScore<FUNC_PERFECT_MATCH && 
      (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
    pBest->zName = (char *)&pBest[1];
    pBest->nArg = (u16)nArg;
    pBest->iPrefEnc = enc;
    memcpy(pBest->zName, zName, nName);
    pBest->zName[nName] = 0;
    sqlite3FuncDefInsert(&db->aFunc, pBest);
  }

  if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){
    return pBest;







|







402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
  ** exact match for the name, number of arguments and encoding, then add a
  ** new entry to the hash table and return it.
  */
  if( createFlag && bestScore<FUNC_PERFECT_MATCH && 
      (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
    pBest->zName = (char *)&pBest[1];
    pBest->nArg = (u16)nArg;
    pBest->funcFlags = enc;
    memcpy(pBest->zName, zName, nName);
    pBest->zName[nName] = 0;
    sqlite3FuncDefInsert(&db->aFunc, pBest);
  }

  if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){
    return pBest;
Changes to src/ctime.c.
113
114
115
116
117
118
119


120
121
122
123
124
125
126
127
#endif
#ifdef SQLITE_ENABLE_OVERSIZE_CELL_CHECK
  "ENABLE_OVERSIZE_CELL_CHECK",
#endif
#ifdef SQLITE_ENABLE_RTREE
  "ENABLE_RTREE",
#endif


#ifdef SQLITE_ENABLE_STAT3
  "ENABLE_STAT3",
#endif
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
  "ENABLE_UNLOCK_NOTIFY",
#endif
#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
  "ENABLE_UPDATE_DELETE_LIMIT",







>
>
|







113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#endif
#ifdef SQLITE_ENABLE_OVERSIZE_CELL_CHECK
  "ENABLE_OVERSIZE_CELL_CHECK",
#endif
#ifdef SQLITE_ENABLE_RTREE
  "ENABLE_RTREE",
#endif
#if defined(SQLITE_ENABLE_STAT4)
  "ENABLE_STAT4",
#elif defined(SQLITE_ENABLE_STAT3)
  "ENABLE_STAT3",
#endif
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
  "ENABLE_UNLOCK_NOTIFY",
#endif
#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
  "ENABLE_UPDATE_DELETE_LIMIT",
Changes to src/delete.c.
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
    ** being deleted. Do not attempt to delete the row a second time, and 
    ** do not fire AFTER triggers.  */
    sqlite3VdbeAddOp3(v, OP_NotExists, iCur, iLabel, iRowid);

    /* Do FK processing. This call checks that any FK constraints that
    ** refer to this table (i.e. constraints attached to other tables) 
    ** are not violated by deleting this row.  */
    sqlite3FkCheck(pParse, pTab, iOld, 0);
  }

  /* Delete the index and table entries. Skip this step if pTab is really
  ** a view (in which case the only effect of the DELETE statement is to
  ** fire the INSTEAD OF triggers).  */ 
  if( pTab->pSelect==0 ){
    sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0);
    sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
    if( count ){
      sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
    }
  }

  /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
  ** handle rows (possibly in other tables) that refer via a foreign key
  ** to the row just deleted. */ 
  sqlite3FkActions(pParse, pTab, 0, iOld);

  /* Invoke AFTER DELETE trigger programs. */
  sqlite3CodeRowTrigger(pParse, pTrigger, 
      TK_DELETE, 0, TRIGGER_AFTER, pTab, iOld, onconf, iLabel
  );

  /* Jump here if the row had already been deleted before any BEFORE







|
















|







532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
    ** being deleted. Do not attempt to delete the row a second time, and 
    ** do not fire AFTER triggers.  */
    sqlite3VdbeAddOp3(v, OP_NotExists, iCur, iLabel, iRowid);

    /* Do FK processing. This call checks that any FK constraints that
    ** refer to this table (i.e. constraints attached to other tables) 
    ** are not violated by deleting this row.  */
    sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0);
  }

  /* Delete the index and table entries. Skip this step if pTab is really
  ** a view (in which case the only effect of the DELETE statement is to
  ** fire the INSTEAD OF triggers).  */ 
  if( pTab->pSelect==0 ){
    sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0);
    sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
    if( count ){
      sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
    }
  }

  /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
  ** handle rows (possibly in other tables) that refer via a foreign key
  ** to the row just deleted. */ 
  sqlite3FkActions(pParse, pTab, 0, iOld, 0, 0);

  /* Invoke AFTER DELETE trigger programs. */
  sqlite3CodeRowTrigger(pParse, pTrigger, 
      TK_DELETE, 0, TRIGGER_AFTER, pTab, iOld, onconf, iLabel
  );

  /* Jump here if the row had already been deleted before any BEFORE
587
588
589
590
591
592
593


594
595
596
597
598

599
600
601
602
603
604
605
606
607
608
609
610
611







612
613
614
615
616
617
618

619
620
621
622
623
624
625










626
627
628
629
630
631
632
  Table *pTab,       /* Table containing the row to be deleted */
  int iCur,          /* Cursor number for the table */
  int *aRegIdx       /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
){
  int i;
  Index *pIdx;
  int r1;



  for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
    if( aRegIdx!=0 && aRegIdx[i-1]==0 ) continue;
    r1 = sqlite3GenerateIndexKey(pParse, pIdx, iCur, 0, 0);
    sqlite3VdbeAddOp3(pParse->pVdbe, OP_IdxDelete, iCur+i, r1,pIdx->nColumn+1);

  }
}

/*
** Generate code that will assemble an index key and put it in register
** regOut.  The key with be for index pIdx which is an index on pTab.
** iCur is the index of a cursor open on the pTab table and pointing to
** the entry that needs indexing.
**
** Return a register number which is the first in a block of
** registers that holds the elements of the index key.  The
** block of registers has already been deallocated by the time
** this routine returns.







*/
int sqlite3GenerateIndexKey(
  Parse *pParse,     /* Parsing context */
  Index *pIdx,       /* The index for which to generate a key */
  int iCur,          /* Cursor number for the pIdx->pTable table */
  int regOut,        /* Write the new index key to this register */
  int doMakeRec      /* Run the OP_MakeRecord instruction if true */

){
  Vdbe *v = pParse->pVdbe;
  int j;
  Table *pTab = pIdx->pTable;
  int regBase;
  int nCol;











  nCol = pIdx->nColumn;
  regBase = sqlite3GetTempRange(pParse, nCol+1);
  sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase+nCol);
  for(j=0; j<nCol; j++){
    int idx = pIdx->aiColumn[j];
    if( idx==pTab->iPKey ){
      sqlite3VdbeAddOp2(v, OP_SCopy, regBase+nCol, regBase+j);







>
>



|
|
>













>
>
>
>
>
>
>


|
|
|
|
|
>







>
>
>
>
>
>
>
>
>
>







587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
  Table *pTab,       /* Table containing the row to be deleted */
  int iCur,          /* Cursor number for the table */
  int *aRegIdx       /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
){
  int i;
  Index *pIdx;
  int r1;
  int iPartIdxLabel;
  Vdbe *v = pParse->pVdbe;

  for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
    if( aRegIdx!=0 && aRegIdx[i-1]==0 ) continue;
    r1 = sqlite3GenerateIndexKey(pParse, pIdx, iCur, 0, 0, &iPartIdxLabel);
    sqlite3VdbeAddOp3(v, OP_IdxDelete, iCur+i, r1, pIdx->nColumn+1);
    sqlite3VdbeResolveLabel(v, iPartIdxLabel);
  }
}

/*
** Generate code that will assemble an index key and put it in register
** regOut.  The key with be for index pIdx which is an index on pTab.
** iCur is the index of a cursor open on the pTab table and pointing to
** the entry that needs indexing.
**
** Return a register number which is the first in a block of
** registers that holds the elements of the index key.  The
** block of registers has already been deallocated by the time
** this routine returns.
**
** If *piPartIdxLabel is not NULL, fill it in with a label and jump
** to that label if pIdx is a partial index that should be skipped.
** A partial index should be skipped if its WHERE clause evaluates
** to false or null.  If pIdx is not a partial index, *piPartIdxLabel
** will be set to zero which is an empty label that is ignored by
** sqlite3VdbeResolveLabel().
*/
int sqlite3GenerateIndexKey(
  Parse *pParse,       /* Parsing context */
  Index *pIdx,         /* The index for which to generate a key */
  int iCur,            /* Cursor number for the pIdx->pTable table */
  int regOut,          /* Write the new index key to this register */
  int doMakeRec,       /* Run the OP_MakeRecord instruction if true */
  int *piPartIdxLabel  /* OUT: Jump to this label to skip partial index */
){
  Vdbe *v = pParse->pVdbe;
  int j;
  Table *pTab = pIdx->pTable;
  int regBase;
  int nCol;

  if( piPartIdxLabel ){
    if( pIdx->pPartIdxWhere ){
      *piPartIdxLabel = sqlite3VdbeMakeLabel(v);
      pParse->iPartIdxTab = iCur;
      sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, *piPartIdxLabel, 
                         SQLITE_JUMPIFNULL);
    }else{
      *piPartIdxLabel = 0;
    }
  }
  nCol = pIdx->nColumn;
  regBase = sqlite3GetTempRange(pParse, nCol+1);
  sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase+nCol);
  for(j=0; j<nCol; j++){
    int idx = pIdx->aiColumn[j];
    if( idx==pTab->iPKey ){
      sqlite3VdbeAddOp2(v, OP_SCopy, regBase+nCol, regBase+j);
Changes to src/expr.c.
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
  Expr *p = pExpr;
  while( p ){
    int op = p->op;
    if( op==TK_CAST || op==TK_UPLUS ){
      p = p->pLeft;
      continue;
    }
    assert( op!=TK_REGISTER || p->op2!=TK_COLLATE );
    if( op==TK_COLLATE ){
      pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
      break;
    }
    if( p->pTab!=0
     && (op==TK_AGG_COLUMN || op==TK_COLUMN
          || op==TK_REGISTER || op==TK_TRIGGER)
    ){







<
|







110
111
112
113
114
115
116

117
118
119
120
121
122
123
124
  Expr *p = pExpr;
  while( p ){
    int op = p->op;
    if( op==TK_CAST || op==TK_UPLUS ){
      p = p->pLeft;
      continue;
    }

    if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
      pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
      break;
    }
    if( p->pTab!=0
     && (op==TK_AGG_COLUMN || op==TK_COLUMN
          || op==TK_REGISTER || op==TK_TRIGGER)
    ){
916
917
918
919
920
921
922

923
924
925
926
927
928
929
  for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
    Expr *pOldExpr = pOldItem->pExpr;
    pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
    pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
    pItem->sortOrder = pOldItem->sortOrder;
    pItem->done = 0;

    pItem->iOrderByCol = pOldItem->iOrderByCol;
    pItem->iAlias = pOldItem->iAlias;
  }
  return pNew;
}

/*







>







915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
  for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
    Expr *pOldExpr = pOldItem->pExpr;
    pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
    pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
    pItem->sortOrder = pOldItem->sortOrder;
    pItem->done = 0;
    pItem->bSpanIsTab = pOldItem->bSpanIsTab;
    pItem->iOrderByCol = pOldItem->iOrderByCol;
    pItem->iAlias = pOldItem->iAlias;
  }
  return pNew;
}

/*
1274
1275
1276
1277
1278
1279
1280

1281
1282
1283
1284
1285
1286
1287
    case TK_UPLUS: {
      rc = sqlite3ExprIsInteger(p->pLeft, pValue);
      break;
    }
    case TK_UMINUS: {
      int v;
      if( sqlite3ExprIsInteger(p->pLeft, &v) ){

        *pValue = -v;
        rc = 1;
      }
      break;
    }
    default: break;
  }







>







1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
    case TK_UPLUS: {
      rc = sqlite3ExprIsInteger(p->pLeft, pValue);
      break;
    }
    case TK_UMINUS: {
      int v;
      if( sqlite3ExprIsInteger(p->pLeft, &v) ){
        assert( v!=(-2147483647-1) );
        *pValue = -v;
        rc = 1;
      }
      break;
    }
    default: break;
  }
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
    }
  }

  if( eType==0 ){
    /* Could not found an existing table or index to use as the RHS b-tree.
    ** We will have to generate an ephemeral table to do the job.
    */
    double savedNQueryLoop = pParse->nQueryLoop;
    int rMayHaveNull = 0;
    eType = IN_INDEX_EPH;
    if( prNotFound ){
      *prNotFound = rMayHaveNull = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
    }else{
      testcase( pParse->nQueryLoop>(double)1 );
      pParse->nQueryLoop = (double)1;
      if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
        eType = IN_INDEX_ROWID;
      }
    }
    sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
    pParse->nQueryLoop = savedNQueryLoop;
  }else{







|






|
|







1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
    }
  }

  if( eType==0 ){
    /* Could not found an existing table or index to use as the RHS b-tree.
    ** We will have to generate an ephemeral table to do the job.
    */
    u32 savedNQueryLoop = pParse->nQueryLoop;
    int rMayHaveNull = 0;
    eType = IN_INDEX_EPH;
    if( prNotFound ){
      *prNotFound = rMayHaveNull = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
    }else{
      testcase( pParse->nQueryLoop>0 );
      pParse->nQueryLoop = 0;
      if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
        eType = IN_INDEX_ROWID;
      }
    }
    sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
    pParse->nQueryLoop = savedNQueryLoop;
  }else{
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697

1698
1699
1700
1701
1702
1703
1704
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
#endif

  switch( pExpr->op ){
    case TK_IN: {
      char affinity;              /* Affinity of the LHS of the IN */
      KeyInfo keyInfo;            /* Keyinfo for the generated table */
      static u8 sortOrder = 0;    /* Fake aSortOrder for keyInfo */
      int addr;                   /* Address of OP_OpenEphemeral instruction */
      Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */


      if( rMayHaveNull ){
        sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
      }

      affinity = sqlite3ExprAffinity(pLeft);








<
<


>







1688
1689
1690
1691
1692
1693
1694


1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
#endif

  switch( pExpr->op ){
    case TK_IN: {
      char affinity;              /* Affinity of the LHS of the IN */


      int addr;                   /* Address of OP_OpenEphemeral instruction */
      Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
      KeyInfo *pKeyInfo = 0;      /* Key information */

      if( rMayHaveNull ){
        sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
      }

      affinity = sqlite3ExprAffinity(pLeft);

1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738

1739

1740
1741
1742


1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762

1763
1764

1765
1766
1767
1768
1769
1770
1771
      ** if either column has NUMERIC or INTEGER affinity. If neither
      ** 'x' nor the SELECT... statement are columns, then numeric affinity
      ** is used.
      */
      pExpr->iTable = pParse->nTab++;
      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
      if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
      memset(&keyInfo, 0, sizeof(keyInfo));
      keyInfo.nField = 1;
      keyInfo.aSortOrder = &sortOrder;

      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */
        SelectDest dest;
        ExprList *pEList;

        assert( !isRowid );
        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
        dest.affSdst = (u8)affinity;
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
        pExpr->x.pSelect->iLimit = 0;

        if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){

          return 0;
        }
        pEList = pExpr->x.pSelect->pEList;


        if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 
          keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
              pEList->a[0].pExpr);
        }
      }else if( ALWAYS(pExpr->x.pList!=0) ){
        /* Case 2:     expr IN (exprlist)
        **
        ** For each expression, build an index key from the evaluation and
        ** store it in the temporary table. If <expr> is a column, then use
        ** that columns affinity when building index keys. If <expr> is not
        ** a column, use numeric affinity.
        */
        int i;
        ExprList *pList = pExpr->x.pList;
        struct ExprList_item *pItem;
        int r1, r2, r3;

        if( !affinity ){
          affinity = SQLITE_AFF_NONE;
        }

        keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
        keyInfo.aSortOrder = &sortOrder;


        /* Loop through each expression in <exprlist>. */
        r1 = sqlite3GetTempReg(pParse);
        r2 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
        for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
          Expr *pE2 = pItem->pExpr;







<
|
<















>

>



>
>
|
|
|
<
















>
|
<
>







1714
1715
1716
1717
1718
1719
1720

1721

1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747

1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765

1766
1767
1768
1769
1770
1771
1772
1773
      ** if either column has NUMERIC or INTEGER affinity. If neither
      ** 'x' nor the SELECT... statement are columns, then numeric affinity
      ** is used.
      */
      pExpr->iTable = pParse->nTab++;
      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
      if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);

      pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1);


      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */
        SelectDest dest;
        ExprList *pEList;

        assert( !isRowid );
        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
        dest.affSdst = (u8)affinity;
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
        pExpr->x.pSelect->iLimit = 0;
        testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
        if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
          sqlite3DbFree(pParse->db, pKeyInfo);
          return 0;
        }
        pEList = pExpr->x.pSelect->pEList;
        assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
        assert( pEList!=0 );
        assert( pEList->nExpr>0 );
        pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
                                                         pEList->a[0].pExpr);

      }else if( ALWAYS(pExpr->x.pList!=0) ){
        /* Case 2:     expr IN (exprlist)
        **
        ** For each expression, build an index key from the evaluation and
        ** store it in the temporary table. If <expr> is a column, then use
        ** that columns affinity when building index keys. If <expr> is not
        ** a column, use numeric affinity.
        */
        int i;
        ExprList *pList = pExpr->x.pList;
        struct ExprList_item *pItem;
        int r1, r2, r3;

        if( !affinity ){
          affinity = SQLITE_AFF_NONE;
        }
        if( pKeyInfo ){
          pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);

        }

        /* Loop through each expression in <exprlist>. */
        r1 = sqlite3GetTempReg(pParse);
        r2 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
        for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
          Expr *pE2 = pItem->pExpr;
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
              sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
            }
          }
        }
        sqlite3ReleaseTempReg(pParse, r1);
        sqlite3ReleaseTempReg(pParse, r2);
      }
      if( !isRowid ){
        sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
      }
      break;
    }

    case TK_EXISTS:
    case TK_SELECT:
    default: {







|
|







1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
              sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
            }
          }
        }
        sqlite3ReleaseTempReg(pParse, r1);
        sqlite3ReleaseTempReg(pParse, r2);
      }
      if( pKeyInfo ){
        sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO_HANDOFF);
      }
      break;
    }

    case TK_EXISTS:
    case TK_SELECT:
    default: {
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366

2367

2368




2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
        sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
                              pCol->iSorterColumn, target);
        break;
      }
      /* Otherwise, fall thru into the TK_COLUMN case */
    }
    case TK_COLUMN: {
      if( pExpr->iTable<0 ){
        /* This only happens when coding check constraints */
        assert( pParse->ckBase>0 );

        inReg = pExpr->iColumn + pParse->ckBase;

      }else{




        inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
                                 pExpr->iColumn, pExpr->iTable, target,
                                 pExpr->op2);
      }
      break;
    }
    case TK_INTEGER: {
      codeInteger(pParse, pExpr, 0, target);
      break;
    }
#ifndef SQLITE_OMIT_FLOATING_POINT







|
|
|
>
|
>
|
>
>
>
>
|
|
|
<







2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379

2380
2381
2382
2383
2384
2385
2386
        sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
                              pCol->iSorterColumn, target);
        break;
      }
      /* Otherwise, fall thru into the TK_COLUMN case */
    }
    case TK_COLUMN: {
      int iTab = pExpr->iTable;
      if( iTab<0 ){
        if( pParse->ckBase>0 ){
          /* Generating CHECK constraints or inserting into partial index */
          inReg = pExpr->iColumn + pParse->ckBase;
          break;
        }else{
          /* Deleting from a partial index */
          iTab = pParse->iPartIdxTab;
        }
      }
      inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
                               pExpr->iColumn, iTab, target,
                               pExpr->op2);

      break;
    }
    case TK_INTEGER: {
      codeInteger(pParse, pExpr, 0, target);
      break;
    }
#ifndef SQLITE_OMIT_FLOATING_POINT
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
        break;
      }

      /* Attempt a direct implementation of the built-in COALESCE() and
      ** IFNULL() functions.  This avoids unnecessary evalation of
      ** arguments past the first non-NULL argument.
      */
      if( pDef->flags & SQLITE_FUNC_COALESCE ){
        int endCoalesce = sqlite3VdbeMakeLabel(v);
        assert( nFarg>=2 );
        sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
        for(i=1; i<nFarg; i++){
          sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
          sqlite3ExprCacheRemove(pParse, target, 1);
          sqlite3ExprCachePush(pParse);







|







2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
        break;
      }

      /* Attempt a direct implementation of the built-in COALESCE() and
      ** IFNULL() functions.  This avoids unnecessary evalation of
      ** arguments past the first non-NULL argument.
      */
      if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
        int endCoalesce = sqlite3VdbeMakeLabel(v);
        assert( nFarg>=2 );
        sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
        for(i=1; i<nFarg; i++){
          sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
          sqlite3ExprCacheRemove(pParse, target, 1);
          sqlite3ExprCachePush(pParse);
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661

2662
2663
2664
2665
2666
2667
2668
2669
2670
        r1 = sqlite3GetTempRange(pParse, nFarg);

        /* For length() and typeof() functions with a column argument,
        ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
        ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
        ** loading.
        */
        if( (pDef->flags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
          u8 exprOp;
          assert( nFarg==1 );
          assert( pFarg->a[0].pExpr!=0 );
          exprOp = pFarg->a[0].pExpr->op;
          if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
            assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
            assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );

            testcase( pDef->flags==SQLITE_FUNC_LENGTH );
            pFarg->a[0].pExpr->op2 = pDef->flags;
          }
        }

        sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
        sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
        sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
      }else{







|







>
|
|







2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
        r1 = sqlite3GetTempRange(pParse, nFarg);

        /* For length() and typeof() functions with a column argument,
        ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
        ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
        ** loading.
        */
        if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
          u8 exprOp;
          assert( nFarg==1 );
          assert( pFarg->a[0].pExpr!=0 );
          exprOp = pFarg->a[0].pExpr->op;
          if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
            assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
            assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
            testcase( (pDef->funcFlags&~SQLITE_FUNC_ENCMASK)
                       ==SQLITE_FUNC_LENGTH );
            pFarg->a[0].pExpr->op2 = pDef->funcFlags&~SQLITE_FUNC_ENCMASK;
          }
        }

        sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
        sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
        sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
      }else{
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
        pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
      }
#endif
      for(i=0; i<nFarg; i++){
        if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
          constMask |= (1<<i);
        }
        if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
          pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
        }
      }
      if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
        if( !pColl ) pColl = db->pDfltColl; 
        sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
      }
      sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
                        (char*)pDef, P4_FUNCDEF);
      sqlite3VdbeChangeP5(v, (u8)nFarg);
      if( nFarg ){







|



|







2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
        pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
      }
#endif
      for(i=0; i<nFarg; i++){
        if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
          constMask |= (1<<i);
        }
        if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
          pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
        }
      }
      if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
        if( !pColl ) pColl = db->pDfltColl; 
        sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
      }
      sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
                        (char*)pDef, P4_FUNCDEF);
      sqlite3VdbeChangeP5(v, (u8)nFarg);
      if( nFarg ){
3493
3494
3495
3496
3497
3498
3499

3500
3501
3502
3503
3504
3505
3506
  compLeft.op = TK_GE;
  compLeft.pLeft = &exprX;
  compLeft.pRight = pExpr->x.pList->a[0].pExpr;
  compRight.op = TK_LE;
  compRight.pLeft = &exprX;
  compRight.pRight = pExpr->x.pList->a[1].pExpr;
  exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);

  exprX.op = TK_REGISTER;
  if( jumpIfTrue ){
    sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
  }else{
    sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
  }
  sqlite3ReleaseTempReg(pParse, regFree1);







>







3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
  compLeft.op = TK_GE;
  compLeft.pLeft = &exprX;
  compLeft.pRight = pExpr->x.pList->a[0].pExpr;
  compRight.op = TK_LE;
  compRight.pLeft = &exprX;
  compRight.pRight = pExpr->x.pList->a[1].pExpr;
  exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
  exprX.op2 = exprX.op;
  exprX.op = TK_REGISTER;
  if( jumpIfTrue ){
    sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
  }else{
    sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
  }
  sqlite3ReleaseTempReg(pParse, regFree1);
3788
3789
3790
3791
3792
3793
3794






3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826

3827


3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844



3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862







































3863
3864
3865
3866
3867
3868
3869

/*
** Do a deep comparison of two expression trees.  Return 0 if the two
** expressions are completely identical.  Return 1 if they differ only
** by a COLLATE operator at the top level.  Return 2 if there are differences
** other than the top-level COLLATE operator.
**






** Sometimes this routine will return 2 even if the two expressions
** really are equivalent.  If we cannot prove that the expressions are
** identical, we return 2 just to be safe.  So if this routine
** returns 2, then you do not really know for certain if the two
** expressions are the same.  But if you get a 0 or 1 return, then you
** can be sure the expressions are the same.  In the places where
** this routine is used, it does not hurt to get an extra 2 - that
** just might result in some slightly slower code.  But returning
** an incorrect 0 or 1 could lead to a malfunction.
*/
int sqlite3ExprCompare(Expr *pA, Expr *pB){
  if( pA==0||pB==0 ){
    return pB==pA ? 0 : 2;
  }
  assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
  assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
  if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
    return 2;
  }
  if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
  if( pA->op!=pB->op ){
    if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB)<2 ){
      return 1;
    }
    if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft)<2 ){
      return 1;
    }
    return 2;
  }
  if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
  if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
  if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;

  if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;


  if( ExprHasProperty(pA, EP_IntValue) ){
    if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
      return 2;
    }
  }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){
    if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
    if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
      return pA->op==TK_COLLATE ? 1 : 2;
    }
  }
  return 0;
}

/*
** Compare two ExprList objects.  Return 0 if they are identical and 
** non-zero if they differ in any way.
**



** This routine might return non-zero for equivalent ExprLists.  The
** only consequence will be disabled optimizations.  But this routine
** must never return 0 if the two ExprList objects are different, or
** a malfunction will result.
**
** Two NULL pointers are considered to be the same.  But a NULL pointer
** always differs from a non-NULL pointer.
*/
int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
  int i;
  if( pA==0 && pB==0 ) return 0;
  if( pA==0 || pB==0 ) return 1;
  if( pA->nExpr!=pB->nExpr ) return 1;
  for(i=0; i<pA->nExpr; i++){
    Expr *pExprA = pA->a[i].pExpr;
    Expr *pExprB = pB->a[i].pExpr;
    if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
    if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;







































  }
  return 0;
}

/*
** An instance of the following structure is used by the tree walker
** to count references to table columns in the arguments of an 







>
>
>
>
>
>










|









|
|


|




|
|
|
>
|
>
>

















>
>
>








|








|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929

/*
** Do a deep comparison of two expression trees.  Return 0 if the two
** expressions are completely identical.  Return 1 if they differ only
** by a COLLATE operator at the top level.  Return 2 if there are differences
** other than the top-level COLLATE operator.
**
** If any subelement of pB has Expr.iTable==(-1) then it is allowed
** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
**
** The pA side might be using TK_REGISTER.  If that is the case and pB is
** not using TK_REGISTER but is otherwise equivalent, then still return 0.
**
** Sometimes this routine will return 2 even if the two expressions
** really are equivalent.  If we cannot prove that the expressions are
** identical, we return 2 just to be safe.  So if this routine
** returns 2, then you do not really know for certain if the two
** expressions are the same.  But if you get a 0 or 1 return, then you
** can be sure the expressions are the same.  In the places where
** this routine is used, it does not hurt to get an extra 2 - that
** just might result in some slightly slower code.  But returning
** an incorrect 0 or 1 could lead to a malfunction.
*/
int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
  if( pA==0||pB==0 ){
    return pB==pA ? 0 : 2;
  }
  assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
  assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
  if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
    return 2;
  }
  if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
  if( pA->op!=pB->op && (pA->op!=TK_REGISTER || pA->op2!=pB->op) ){
    if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
      return 1;
    }
    if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
      return 1;
    }
    return 2;
  }
  if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
  if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
  if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
  if( pA->iColumn!=pB->iColumn ) return 2;
  if( pA->iTable!=pB->iTable 
   && pA->op!=TK_REGISTER
   && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
  if( ExprHasProperty(pA, EP_IntValue) ){
    if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
      return 2;
    }
  }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){
    if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
    if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
      return pA->op==TK_COLLATE ? 1 : 2;
    }
  }
  return 0;
}

/*
** Compare two ExprList objects.  Return 0 if they are identical and 
** non-zero if they differ in any way.
**
** If any subelement of pB has Expr.iTable==(-1) then it is allowed
** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
**
** This routine might return non-zero for equivalent ExprLists.  The
** only consequence will be disabled optimizations.  But this routine
** must never return 0 if the two ExprList objects are different, or
** a malfunction will result.
**
** Two NULL pointers are considered to be the same.  But a NULL pointer
** always differs from a non-NULL pointer.
*/
int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
  int i;
  if( pA==0 && pB==0 ) return 0;
  if( pA==0 || pB==0 ) return 1;
  if( pA->nExpr!=pB->nExpr ) return 1;
  for(i=0; i<pA->nExpr; i++){
    Expr *pExprA = pA->a[i].pExpr;
    Expr *pExprB = pB->a[i].pExpr;
    if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
    if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
  }
  return 0;
}

/*
** Return true if we can prove the pE2 will always be true if pE1 is
** true.  Return false if we cannot complete the proof or if pE2 might
** be false.  Examples:
**
**     pE1: x==5       pE2: x==5             Result: true
**     pE1: x>0        pE2: x==5             Result: false
**     pE1: x=21       pE2: x=21 OR y=43     Result: true
**     pE1: x!=123     pE2: x IS NOT NULL    Result: true
**     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
**     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
**     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
**
** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
** Expr.iTable<0 then assume a table number given by iTab.
**
** When in doubt, return false.  Returning true might give a performance
** improvement.  Returning false might cause a performance reduction, but
** it will always give the correct answer and is hence always safe.
*/
int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
  if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
    return 1;
  }
  if( pE2->op==TK_OR
   && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
             || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
  ){
    return 1;
  }
  if( pE2->op==TK_NOTNULL
   && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
   && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
  ){
    return 1;
  }
  return 0;
}

/*
** An instance of the following structure is used by the tree walker
** to count references to table columns in the arguments of an 
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
       && pWalker->walkerDepth==pExpr->op2
      ){
        /* Check to see if pExpr is a duplicate of another aggregate 
        ** function that is already in the pAggInfo structure
        */
        struct AggInfo_func *pItem = pAggInfo->aFunc;
        for(i=0; i<pAggInfo->nFunc; i++, pItem++){
          if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
            break;
          }
        }
        if( i>=pAggInfo->nFunc ){
          /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
          */
          u8 enc = ENC(pParse->db);







|







4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
       && pWalker->walkerDepth==pExpr->op2
      ){
        /* Check to see if pExpr is a duplicate of another aggregate 
        ** function that is already in the pAggInfo structure
        */
        struct AggInfo_func *pItem = pAggInfo->aFunc;
        for(i=0; i<pAggInfo->nFunc; i++, pItem++){
          if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
            break;
          }
        }
        if( i>=pAggInfo->nFunc ){
          /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
          */
          u8 enc = ENC(pParse->db);
Changes to src/fkey.c.
418
419
420
421
422
423
424


425

426
427
428
429
430
431
432
      sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0);
  
      sqlite3ReleaseTempReg(pParse, regRec);
      sqlite3ReleaseTempRange(pParse, regTemp, nCol);
    }
  }



  if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){

    /* Special case: If this is an INSERT statement that will insert exactly
    ** one row into the table, raise a constraint immediately instead of
    ** incrementing a counter. This is necessary as the VM code is being
    ** generated for will not open a statement transaction.  */
    assert( nIncr==1 );
    sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
        OE_Abort, "foreign key constraint failed", P4_STATIC







>
>
|
>







418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
      sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0);
  
      sqlite3ReleaseTempReg(pParse, regRec);
      sqlite3ReleaseTempRange(pParse, regTemp, nCol);
    }
  }

  if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
   && !pParse->pToplevel 
   && !pParse->isMultiWrite 
  ){
    /* Special case: If this is an INSERT statement that will insert exactly
    ** one row into the table, raise a constraint immediately instead of
    ** incrementing a counter. This is necessary as the VM code is being
    ** generated for will not open a statement transaction.  */
    assert( nIncr==1 );
    sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
        OE_Abort, "foreign key constraint failed", P4_STATIC
675
676
677
678
679
680
681
































































682
683
684
685
686
687
688

    if( iSkip ){
      sqlite3VdbeResolveLabel(v, iSkip);
    }
  }
}

































































/*
** This function is called when inserting, deleting or updating a row of
** table pTab to generate VDBE code to perform foreign key constraint 
** processing for the operation.
**
** For a DELETE operation, parameter regOld is passed the index of the
** first register in an array of (pTab->nCol+1) registers containing the







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

    if( iSkip ){
      sqlite3VdbeResolveLabel(v, iSkip);
    }
  }
}


/*
** The second argument points to an FKey object representing a foreign key
** for which pTab is the child table. An UPDATE statement against pTab
** is currently being processed. For each column of the table that is 
** actually updated, the corresponding element in the aChange[] array
** is zero or greater (if a column is unmodified the corresponding element
** is set to -1). If the rowid column is modified by the UPDATE statement
** the bChngRowid argument is non-zero.
**
** This function returns true if any of the columns that are part of the
** child key for FK constraint *p are modified.
*/
static int fkChildIsModified(
  Table *pTab,                    /* Table being updated */
  FKey *p,                        /* Foreign key for which pTab is the child */
  int *aChange,                   /* Array indicating modified columns */
  int bChngRowid                  /* True if rowid is modified by this update */
){
  int i;
  for(i=0; i<p->nCol; i++){
    int iChildKey = p->aCol[i].iFrom;
    if( aChange[iChildKey]>=0 ) return 1;
    if( iChildKey==pTab->iPKey && bChngRowid ) return 1;
  }
  return 0;
}

/*
** The second argument points to an FKey object representing a foreign key
** for which pTab is the parent table. An UPDATE statement against pTab
** is currently being processed. For each column of the table that is 
** actually updated, the corresponding element in the aChange[] array
** is zero or greater (if a column is unmodified the corresponding element
** is set to -1). If the rowid column is modified by the UPDATE statement
** the bChngRowid argument is non-zero.
**
** This function returns true if any of the columns that are part of the
** parent key for FK constraint *p are modified.
*/
static int fkParentIsModified(
  Table *pTab, 
  FKey *p, 
  int *aChange, 
  int bChngRowid
){
  int i;
  for(i=0; i<p->nCol; i++){
    char *zKey = p->aCol[i].zCol;
    int iKey;
    for(iKey=0; iKey<pTab->nCol; iKey++){
      if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){
        Column *pCol = &pTab->aCol[iKey];
        if( zKey ){
          if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1;
        }else if( pCol->colFlags & COLFLAG_PRIMKEY ){
          return 1;
        }
      }
    }
  }
  return 0;
}

/*
** This function is called when inserting, deleting or updating a row of
** table pTab to generate VDBE code to perform foreign key constraint 
** processing for the operation.
**
** For a DELETE operation, parameter regOld is passed the index of the
** first register in an array of (pTab->nCol+1) registers containing the
699
700
701
702
703
704
705
706


707
708
709
710
711
712
713
** described for DELETE. Then again after the original record is deleted
** but before the new record is inserted using the INSERT convention. 
*/
void sqlite3FkCheck(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Row is being deleted from this table */ 
  int regOld,                     /* Previous row data is stored here */
  int regNew                      /* New row data is stored here */


){
  sqlite3 *db = pParse->db;       /* Database handle */
  FKey *pFKey;                    /* Used to iterate through FKs */
  int iDb;                        /* Index of database containing pTab */
  const char *zDb;                /* Name of database containing pTab */
  int isIgnoreErrors = pParse->disableTriggers;








|
>
>







766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
** described for DELETE. Then again after the original record is deleted
** but before the new record is inserted using the INSERT convention. 
*/
void sqlite3FkCheck(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Row is being deleted from this table */ 
  int regOld,                     /* Previous row data is stored here */
  int regNew,                     /* New row data is stored here */
  int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
  int bChngRowid                  /* True if rowid is UPDATEd */
){
  sqlite3 *db = pParse->db;       /* Database handle */
  FKey *pFKey;                    /* Used to iterate through FKs */
  int iDb;                        /* Index of database containing pTab */
  const char *zDb;                /* Name of database containing pTab */
  int isIgnoreErrors = pParse->disableTriggers;

726
727
728
729
730
731
732







733
734
735
736
737
738
739
    Table *pTo;                   /* Parent table of foreign key pFKey */
    Index *pIdx = 0;              /* Index on key columns in pTo */
    int *aiFree = 0;
    int *aiCol;
    int iCol;
    int i;
    int isIgnore = 0;








    /* Find the parent table of this foreign key. Also find a unique index 
    ** on the parent key columns in the parent table. If either of these 
    ** schema items cannot be located, set an error in pParse and return 
    ** early.  */
    if( pParse->disableTriggers ){
      pTo = sqlite3FindTable(db, pFKey->zTo, zDb);







>
>
>
>
>
>
>







795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
    Table *pTo;                   /* Parent table of foreign key pFKey */
    Index *pIdx = 0;              /* Index on key columns in pTo */
    int *aiFree = 0;
    int *aiCol;
    int iCol;
    int i;
    int isIgnore = 0;

    if( aChange 
     && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
     && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 
    ){
      continue;
    }

    /* Find the parent table of this foreign key. Also find a unique index 
    ** on the parent key columns in the parent table. If either of these 
    ** schema items cannot be located, set an error in pParse and return 
    ** early.  */
    if( pParse->disableTriggers ){
      pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
809
810
811
812
813
814
815





816

817
818
819
820
821
822
823

  /* Loop through all the foreign key constraints that refer to this table */
  for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
    Index *pIdx = 0;              /* Foreign key index for pFKey */
    SrcList *pSrc;
    int *aiCol = 0;






    if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){

      assert( regOld==0 && regNew!=0 );
      /* Inserting a single row into a parent table cannot cause an immediate
      ** foreign key violation. So do nothing in this case.  */
      continue;
    }

    if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){







>
>
>
>
>
|
>







885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905

  /* Loop through all the foreign key constraints that refer to this table */
  for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
    Index *pIdx = 0;              /* Foreign key index for pFKey */
    SrcList *pSrc;
    int *aiCol = 0;

    if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){
      continue;
    }

    if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 
     && !pParse->pToplevel && !pParse->isMultiWrite 
    ){
      assert( regOld==0 && regNew!=0 );
      /* Inserting a single row into a parent table cannot cause an immediate
      ** foreign key violation. So do nothing in this case.  */
      continue;
    }

    if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
879
880
881
882
883
884
885

886
887
888
889
890
891
892
      if( pIdx ){
        for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
      }
    }
  }
  return mask;
}


/*
** This function is called before generating code to update or delete a 
** row contained in table pTab. If the operation is a DELETE, then
** parameter aChange is passed a NULL value. For an UPDATE, aChange points
** to an array of size N, where N is the number of columns in table pTab.
** If the i'th column is not modified by the UPDATE, then the corresponding 







>







961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
      if( pIdx ){
        for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
      }
    }
  }
  return mask;
}


/*
** This function is called before generating code to update or delete a 
** row contained in table pTab. If the operation is a DELETE, then
** parameter aChange is passed a NULL value. For an UPDATE, aChange points
** to an array of size N, where N is the number of columns in table pTab.
** If the i'th column is not modified by the UPDATE, then the corresponding 
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
      /* A DELETE operation. Foreign key processing is required if the 
      ** table in question is either the child or parent table for any 
      ** foreign key constraint.  */
      return (sqlite3FkReferences(pTab) || pTab->pFKey);
    }else{
      /* This is an UPDATE. Foreign key processing is only required if the
      ** operation modifies one or more child or parent key columns. */
      int i;
      FKey *p;

      /* Check if any child key columns are being modified. */
      for(p=pTab->pFKey; p; p=p->pNextFrom){
        for(i=0; i<p->nCol; i++){
          int iChildKey = p->aCol[i].iFrom;
          if( aChange[iChildKey]>=0 ) return 1;
          if( iChildKey==pTab->iPKey && chngRowid ) return 1;
        }
      }

      /* Check if any parent key columns are being modified. */
      for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
        for(i=0; i<p->nCol; i++){
          char *zKey = p->aCol[i].zCol;
          int iKey;
          for(iKey=0; iKey<pTab->nCol; iKey++){
            Column *pCol = &pTab->aCol[iKey];
            if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey)
                      : (pCol->colFlags & COLFLAG_PRIMKEY)!=0) ){
              if( aChange[iKey]>=0 ) return 1;
              if( iKey==pTab->iPKey && chngRowid ) return 1;
            }
          }
        }
      }
    }
  }
  return 0;
}

/*







<




<
<
|
<
<




<
<
<
<
<
<
<
<
|
<
<
<







992
993
994
995
996
997
998

999
1000
1001
1002


1003


1004
1005
1006
1007








1008



1009
1010
1011
1012
1013
1014
1015
      /* A DELETE operation. Foreign key processing is required if the 
      ** table in question is either the child or parent table for any 
      ** foreign key constraint.  */
      return (sqlite3FkReferences(pTab) || pTab->pFKey);
    }else{
      /* This is an UPDATE. Foreign key processing is only required if the
      ** operation modifies one or more child or parent key columns. */

      FKey *p;

      /* Check if any child key columns are being modified. */
      for(p=pTab->pFKey; p; p=p->pNextFrom){


        if( fkChildIsModified(pTab, p, aChange, chngRowid) ) return 1;


      }

      /* Check if any parent key columns are being modified. */
      for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){








        if( fkParentIsModified(pTab, p, aChange, chngRowid) ) return 1;



      }
    }
  }
  return 0;
}

/*
1160
1161
1162
1163
1164
1165
1166
1167


1168
1169
1170
1171
1172
1173
1174
1175

1176
1177
1178

1179
1180
1181
1182
1183
1184
1185
** This function is called when deleting or updating a row to implement
** any required CASCADE, SET NULL or SET DEFAULT actions.
*/
void sqlite3FkActions(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being updated or deleted from */
  ExprList *pChanges,             /* Change-list for UPDATE, NULL for DELETE */
  int regOld                      /* Address of array containing old row */


){
  /* If foreign-key support is enabled, iterate through all FKs that 
  ** refer to table pTab. If there is an action associated with the FK 
  ** for this operation (either update or delete), invoke the associated 
  ** trigger sub-program.  */
  if( pParse->db->flags&SQLITE_ForeignKeys ){
    FKey *pFKey;                  /* Iterator variable */
    for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){

      Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
      if( pAction ){
        sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);

      }
    }
  }
}

#endif /* ifndef SQLITE_OMIT_TRIGGER */








|
>
>








>
|
|
|
>







1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
** This function is called when deleting or updating a row to implement
** any required CASCADE, SET NULL or SET DEFAULT actions.
*/
void sqlite3FkActions(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being updated or deleted from */
  ExprList *pChanges,             /* Change-list for UPDATE, NULL for DELETE */
  int regOld,                     /* Address of array containing old row */
  int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
  int bChngRowid                  /* True if rowid is UPDATEd */
){
  /* If foreign-key support is enabled, iterate through all FKs that 
  ** refer to table pTab. If there is an action associated with the FK 
  ** for this operation (either update or delete), invoke the associated 
  ** trigger sub-program.  */
  if( pParse->db->flags&SQLITE_ForeignKeys ){
    FKey *pFKey;                  /* Iterator variable */
    for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
      if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){
        Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges);
        if( pAct ){
          sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0);
        }
      }
    }
  }
}

#endif /* ifndef SQLITE_OMIT_TRIGGER */

Changes to src/func.c.
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
    sqlite3StrAccumAppend(pAccum, zVal, nVal);
  }
}
static void groupConcatFinalize(sqlite3_context *context){
  StrAccum *pAccum;
  pAccum = sqlite3_aggregate_context(context, 0);
  if( pAccum ){
    if( pAccum->tooBig ){
      sqlite3_result_error_toobig(context);
    }else if( pAccum->mallocFailed ){
      sqlite3_result_error_nomem(context);
    }else{    
      sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, 
                          sqlite3_free);
    }
  }
}







|

|







1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
    sqlite3StrAccumAppend(pAccum, zVal, nVal);
  }
}
static void groupConcatFinalize(sqlite3_context *context){
  StrAccum *pAccum;
  pAccum = sqlite3_aggregate_context(context, 0);
  if( pAccum ){
    if( pAccum->accError==STRACCUM_TOOBIG ){
      sqlite3_result_error_toobig(context);
    }else if( pAccum->accError==STRACCUM_NOMEM ){
      sqlite3_result_error_nomem(context);
    }else{    
      sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, 
                          sqlite3_free);
    }
  }
}
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
** Set the LIKEOPT flag on the 2-argument function with the given name.
*/
static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
  FuncDef *pDef;
  pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName),
                             2, SQLITE_UTF8, 0);
  if( ALWAYS(pDef) ){
    pDef->flags = flagVal;
  }
}

/*
** Register the built-in LIKE and GLOB functions.  The caseSensitive
** parameter determines whether or not the LIKE operator is case
** sensitive.  GLOB is always case sensitive.







|







1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
** Set the LIKEOPT flag on the 2-argument function with the given name.
*/
static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
  FuncDef *pDef;
  pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName),
                             2, SQLITE_UTF8, 0);
  if( ALWAYS(pDef) ){
    pDef->funcFlags |= flagVal;
  }
}

/*
** Register the built-in LIKE and GLOB functions.  The caseSensitive
** parameter determines whether or not the LIKE operator is case
** sensitive.  GLOB is always case sensitive.
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
  ){
    return 0;
  }
  assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
  pDef = sqlite3FindFunction(db, pExpr->u.zToken, 
                             sqlite3Strlen30(pExpr->u.zToken),
                             2, SQLITE_UTF8, 0);
  if( NEVER(pDef==0) || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
    return 0;
  }

  /* The memcpy() statement assumes that the wildcard characters are
  ** the first three statements in the compareInfo structure.  The
  ** asserts() that follow verify that assumption
  */
  memcpy(aWc, pDef->pUserData, 3);
  assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
  assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
  assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
  *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0;
  return 1;
}

/*
** All all of the FuncDef structures in the aBuiltinFunc[] array above
** to the global function hash table.  This occurs at start-time (as
** a consequence of calling sqlite3_initialize()).







|











|







1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
  ){
    return 0;
  }
  assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
  pDef = sqlite3FindFunction(db, pExpr->u.zToken, 
                             sqlite3Strlen30(pExpr->u.zToken),
                             2, SQLITE_UTF8, 0);
  if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
    return 0;
  }

  /* The memcpy() statement assumes that the wildcard characters are
  ** the first three statements in the compareInfo structure.  The
  ** asserts() that follow verify that assumption
  */
  memcpy(aWc, pDef->pUserData, 3);
  assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
  assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
  assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
  *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
  return 1;
}

/*
** All all of the FuncDef structures in the aBuiltinFunc[] array above
** to the global function hash table.  This occurs at start-time (as
** a consequence of calling sqlite3_initialize()).
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
    FUNCTION(load_extension,     1, 0, 0, loadExt          ),
    FUNCTION(load_extension,     2, 0, 0, loadExt          ),
  #endif
    AGGREGATE(sum,               1, 0, 0, sumStep,         sumFinalize    ),
    AGGREGATE(total,             1, 0, 0, sumStep,         totalFinalize    ),
    AGGREGATE(avg,               1, 0, 0, sumStep,         avgFinalize    ),
 /* AGGREGATE(count,             0, 0, 0, countStep,       countFinalize  ), */
    {0,SQLITE_UTF8,SQLITE_FUNC_COUNT,0,0,0,countStep,countFinalize,"count",0,0},
    AGGREGATE(count,             1, 0, 0, countStep,       countFinalize  ),
    AGGREGATE(group_concat,      1, 0, 0, groupConcatStep, groupConcatFinalize),
    AGGREGATE(group_concat,      2, 0, 0, groupConcatStep, groupConcatFinalize),
  
    LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
  #ifdef SQLITE_CASE_SENSITIVE_LIKE
    LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),







|







1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
    FUNCTION(load_extension,     1, 0, 0, loadExt          ),
    FUNCTION(load_extension,     2, 0, 0, loadExt          ),
  #endif
    AGGREGATE(sum,               1, 0, 0, sumStep,         sumFinalize    ),
    AGGREGATE(total,             1, 0, 0, sumStep,         totalFinalize    ),
    AGGREGATE(avg,               1, 0, 0, sumStep,         avgFinalize    ),
 /* AGGREGATE(count,             0, 0, 0, countStep,       countFinalize  ), */
    {0,SQLITE_UTF8|SQLITE_FUNC_COUNT,0,0,0,countStep,countFinalize,"count",0,0},
    AGGREGATE(count,             1, 0, 0, countStep,       countFinalize  ),
    AGGREGATE(group_concat,      1, 0, 0, groupConcatStep, groupConcatFinalize),
    AGGREGATE(group_concat,      2, 0, 0, groupConcatStep, groupConcatFinalize),
  
    LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
  #ifdef SQLITE_CASE_SENSITIVE_LIKE
    LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1710
1711
1712
1713
1714
1715
1716
1717



1718

  for(i=0; i<ArraySize(aBuiltinFunc); i++){
    sqlite3FuncDefInsert(pHash, &aFunc[i]);
  }
  sqlite3RegisterDateTimeFunctions();
#ifndef SQLITE_OMIT_ALTERTABLE
  sqlite3AlterFunctions();
#endif



}








>
>
>

1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721

  for(i=0; i<ArraySize(aBuiltinFunc); i++){
    sqlite3FuncDefInsert(pHash, &aFunc[i]);
  }
  sqlite3RegisterDateTimeFunctions();
#ifndef SQLITE_OMIT_ALTERTABLE
  sqlite3AlterFunctions();
#endif
#if defined(SQLITE_ENABLE_STAT3) || defined(SQLITE_ENABLE_STAT4)
  sqlite3AnalyzeFunctions();
#endif
}
Changes to src/insert.c.
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
    }else
#endif
    {
      int isReplace;    /* Set to true if constraints may cause a replace */
      sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx,
          keyColumn>=0, 0, onError, endOfLoop, &isReplace
      );
      sqlite3FkCheck(pParse, pTab, 0, regIns);
      sqlite3CompleteInsertion(
          pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0
      );
    }
  }

  /* Update the count of rows that are inserted







|







1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
    }else
#endif
    {
      int isReplace;    /* Set to true if constraints may cause a replace */
      sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx,
          keyColumn>=0, 0, onError, endOfLoop, &isReplace
      );
      sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
      sqlite3CompleteInsertion(
          pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0
      );
    }
  }

  /* Update the count of rows that are inserted
1375
1376
1377
1378
1379
1380
1381

1382
1383









1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404
1405
1406
1407
1408
1409
1410
  /* Test all UNIQUE constraints by creating entries for each UNIQUE
  ** index and making sure that duplicate entries do not already exist.
  ** Add the new records to the indices as we go.
  */
  for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
    int regIdx;
    int regR;


    if( aRegIdx[iCur]==0 ) continue;  /* Skip unused indices */










    /* Create a key for accessing the index entry */
    regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
    for(i=0; i<pIdx->nColumn; i++){
      int idx = pIdx->aiColumn[i];
      if( idx==pTab->iPKey ){
        sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
      }else{
        sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
      }
    }
    sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
    sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT);
    sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);

    /* Find out what action to take in case there is an indexing conflict */
    onError = pIdx->onError;
    if( onError==OE_None ){ 
      sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);

      continue;  /* pIdx is not a UNIQUE index */
    }
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }







>


>
>
>
>
>
>
>
>
>




















>







1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
  /* Test all UNIQUE constraints by creating entries for each UNIQUE
  ** index and making sure that duplicate entries do not already exist.
  ** Add the new records to the indices as we go.
  */
  for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
    int regIdx;
    int regR;
    int addrSkipRow = 0;

    if( aRegIdx[iCur]==0 ) continue;  /* Skip unused indices */

    if( pIdx->pPartIdxWhere ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[iCur]);
      addrSkipRow = sqlite3VdbeMakeLabel(v);
      pParse->ckBase = regData;
      sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, addrSkipRow,
                         SQLITE_JUMPIFNULL);
      pParse->ckBase = 0;
    }

    /* Create a key for accessing the index entry */
    regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
    for(i=0; i<pIdx->nColumn; i++){
      int idx = pIdx->aiColumn[i];
      if( idx==pTab->iPKey ){
        sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
      }else{
        sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
      }
    }
    sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
    sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT);
    sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);

    /* Find out what action to take in case there is an indexing conflict */
    onError = pIdx->onError;
    if( onError==OE_None ){ 
      sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
      sqlite3VdbeResolveLabel(v, addrSkipRow);
      continue;  /* pIdx is not a UNIQUE index */
    }
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
1466
1467
1468
1469
1470
1471
1472

1473
1474
1475
1476
1477
1478
1479
            pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace
        );
        seenReplace = 1;
        break;
      }
    }
    sqlite3VdbeJumpHere(v, j3);

    sqlite3ReleaseTempReg(pParse, regR);
  }
  
  if( pbMayReplace ){
    *pbMayReplace = seenReplace;
  }
}







>







1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
            pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace
        );
        seenReplace = 1;
        break;
      }
    }
    sqlite3VdbeJumpHere(v, j3);
    sqlite3VdbeResolveLabel(v, addrSkipRow);
    sqlite3ReleaseTempReg(pParse, regR);
  }
  
  if( pbMayReplace ){
    *pbMayReplace = seenReplace;
  }
}
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513



1514
1515
1516
1517
1518
1519
1520
  int *aRegIdx,       /* Register used by each index.  0 for unused indices */
  int isUpdate,       /* True for UPDATE, False for INSERT */
  int appendBias,     /* True if this is likely to be an append */
  int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
){
  int i;
  Vdbe *v;
  int nIdx;
  Index *pIdx;
  u8 pik_flags;
  int regData;
  int regRec;

  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
  for(i=nIdx-1; i>=0; i--){
    if( aRegIdx[i]==0 ) continue;



    sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
    if( useSeekResult ){
      sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
    }
  }
  regData = regRowid + 1;
  regRec = sqlite3GetTempReg(pParse);







<








|
<

>
>
>







1507
1508
1509
1510
1511
1512
1513

1514
1515
1516
1517
1518
1519
1520
1521
1522

1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
  int *aRegIdx,       /* Register used by each index.  0 for unused indices */
  int isUpdate,       /* True for UPDATE, False for INSERT */
  int appendBias,     /* True if this is likely to be an append */
  int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
){
  int i;
  Vdbe *v;

  Index *pIdx;
  u8 pik_flags;
  int regData;
  int regRec;

  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){

    if( aRegIdx[i]==0 ) continue;
    if( pIdx->pPartIdxWhere ){
      sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
    }
    sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
    if( useSeekResult ){
      sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
    }
  }
  regData = regRowid + 1;
  regRec = sqlite3GetTempReg(pParse);
1608
1609
1610
1611
1612
1613
1614

1615
1616
1617
1618
1619
1620
1621
** for index pDest in an insert transfer optimization.  The rules
** for a compatible index:
**
**    *   The index is over the same set of columns
**    *   The same DESC and ASC markings occurs on all columns
**    *   The same onError processing (OE_Abort, OE_Ignore, etc)
**    *   The same collating sequence on each column

*/
static int xferCompatibleIndex(Index *pDest, Index *pSrc){
  int i;
  assert( pDest && pSrc );
  assert( pDest->pTable!=pSrc->pTable );
  if( pDest->nColumn!=pSrc->nColumn ){
    return 0;   /* Different number of columns */







>







1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
** for index pDest in an insert transfer optimization.  The rules
** for a compatible index:
**
**    *   The index is over the same set of columns
**    *   The same DESC and ASC markings occurs on all columns
**    *   The same onError processing (OE_Abort, OE_Ignore, etc)
**    *   The same collating sequence on each column
**    *   The index has the exact same WHERE clause
*/
static int xferCompatibleIndex(Index *pDest, Index *pSrc){
  int i;
  assert( pDest && pSrc );
  assert( pDest->pTable!=pSrc->pTable );
  if( pDest->nColumn!=pSrc->nColumn ){
    return 0;   /* Different number of columns */
1629
1630
1631
1632
1633
1634
1635



1636
1637
1638
1639
1640
1641
1642
    }
    if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
      return 0;   /* Different sort orders */
    }
    if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
      return 0;   /* Different collating sequences */
    }



  }

  /* If no test above fails then the indices must be compatible */
  return 1;
}

/*







>
>
>







1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
    }
    if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
      return 0;   /* Different sort orders */
    }
    if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
      return 0;   /* Different collating sequences */
    }
  }
  if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
    return 0;     /* Different WHERE clauses */
  }

  /* If no test above fails then the indices must be compatible */
  return 1;
}

/*
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
      if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
    }
    if( pSrcIdx==0 ){
      return 0;    /* pDestIdx has no corresponding index in pSrc */
    }
  }
#ifndef SQLITE_OMIT_CHECK
  if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck, pDest->pCheck) ){
    return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
  }
#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
  /* Disallow the transfer optimization if the destination table constains
  ** any foreign key constraints.  This is more restrictive than necessary.
  ** But the main beneficiary of the transfer optimization is the VACUUM 







|







1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
      if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
    }
    if( pSrcIdx==0 ){
      return 0;    /* pDestIdx has no corresponding index in pSrc */
    }
  }
#ifndef SQLITE_OMIT_CHECK
  if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
    return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
  }
#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
  /* Disallow the transfer optimization if the destination table constains
  ** any foreign key constraints.  This is more restrictive than necessary.
  ** But the main beneficiary of the transfer optimization is the VACUUM 
Changes to src/loadext.c.
663
664
665
666
667
668
669





























670
671
672
673
674
675
676
      }
    }
    sqlite3_mutex_leave(mutex);
    assert( (rc&0xff)==rc );
    return rc;
  }
}






























/*
** Reset the automatic extension loading mechanism.
*/
void sqlite3_reset_auto_extension(void){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize()==SQLITE_OK )







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
      }
    }
    sqlite3_mutex_leave(mutex);
    assert( (rc&0xff)==rc );
    return rc;
  }
}

/*
** Cancel a prior call to sqlite3_auto_extension.  Remove xInit from the
** set of routines that is invoked for each new database connection, if it
** is currently on the list.  If xInit is not on the list, then this
** routine is a no-op.
**
** Return 1 if xInit was found on the list and removed.  Return 0 if xInit
** was not on the list.
*/
int sqlite3_cancel_auto_extension(void (*xInit)(void)){
#if SQLITE_THREADSAFE
  sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
  int i;
  int n = 0;
  wsdAutoextInit;
  sqlite3_mutex_enter(mutex);
  for(i=wsdAutoext.nExt-1; i>=0; i--){
    if( wsdAutoext.aExt[i]==xInit ){
      wsdAutoext.nExt--;
      wsdAutoext.aExt[i] = wsdAutoext.aExt[wsdAutoext.nExt];
      n++;
      break;
    }
  }
  sqlite3_mutex_leave(mutex);
  return n;
}

/*
** Reset the automatic extension loading mechanism.
*/
void sqlite3_reset_auto_extension(void){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize()==SQLITE_OK )
Changes to src/main.c.
113
114
115
116
117
118
119



120
121
122
123
124
125
126
**
**    *  Recursive calls to this routine from thread X return immediately
**       without blocking.
*/
int sqlite3_initialize(void){
  MUTEX_LOGIC( sqlite3_mutex *pMaster; )       /* The main static mutex */
  int rc;                                      /* Result code */




#ifdef SQLITE_OMIT_WSD
  rc = sqlite3_wsd_init(4096, 24);
  if( rc!=SQLITE_OK ){
    return rc;
  }
#endif







>
>
>







113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
**
**    *  Recursive calls to this routine from thread X return immediately
**       without blocking.
*/
int sqlite3_initialize(void){
  MUTEX_LOGIC( sqlite3_mutex *pMaster; )       /* The main static mutex */
  int rc;                                      /* Result code */
#ifdef SQLITE_EXTRA_INIT
  int bRunExtraInit = 0;                       /* Extra initialization needed */
#endif

#ifdef SQLITE_OMIT_WSD
  rc = sqlite3_wsd_init(4096, 24);
  if( rc!=SQLITE_OK ){
    return rc;
  }
#endif
210
211
212
213
214
215
216



217
218
219
220
221
222
223
      sqlite3GlobalConfig.isPCacheInit = 1;
      rc = sqlite3OsInit();
    }
    if( rc==SQLITE_OK ){
      sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 
          sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage);
      sqlite3GlobalConfig.isInit = 1;



    }
    sqlite3GlobalConfig.inProgress = 0;
  }
  sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex);

  /* Go back under the static mutex and clean up the recursive
  ** mutex to prevent a resource leak.







>
>
>







213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
      sqlite3GlobalConfig.isPCacheInit = 1;
      rc = sqlite3OsInit();
    }
    if( rc==SQLITE_OK ){
      sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 
          sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage);
      sqlite3GlobalConfig.isInit = 1;
#ifdef SQLITE_EXTRA_INIT
      bRunExtraInit = 1;
#endif
    }
    sqlite3GlobalConfig.inProgress = 0;
  }
  sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex);

  /* Go back under the static mutex and clean up the recursive
  ** mutex to prevent a resource leak.
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#endif
#endif

  /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT
  ** compile-time option.
  */
#ifdef SQLITE_EXTRA_INIT
  if( rc==SQLITE_OK && sqlite3GlobalConfig.isInit ){
    int SQLITE_EXTRA_INIT(const char*);
    rc = SQLITE_EXTRA_INIT(0);
  }
#endif

  return rc;
}







|







256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#endif
#endif

  /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT
  ** compile-time option.
  */
#ifdef SQLITE_EXTRA_INIT
  if( bRunExtraInit ){
    int SQLITE_EXTRA_INIT(const char*);
    rc = SQLITE_EXTRA_INIT(0);
  }
#endif

  return rc;
}
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
        ** back to NULL pointers too.  This will cause the malloc to go
        ** back to its default implementation when sqlite3_initialize() is
        ** run.
        */
        memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
      }else{
        /* The heap pointer is not NULL, then install one of the
        ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor
        ** ENABLE_MEMSYS5 is defined, return an error.
        */
#ifdef SQLITE_ENABLE_MEMSYS3
        sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
#endif
#ifdef SQLITE_ENABLE_MEMSYS5
        sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
#endif
      }
      break;
    }
#endif

    case SQLITE_CONFIG_LOOKASIDE: {
      sqlite3GlobalConfig.szLookaside = va_arg(ap, int);
      sqlite3GlobalConfig.nLookaside = va_arg(ap, int);
      break;
    }
    
    /* Record a pointer to the logger funcction and its first argument.
    ** The default is NULL.  Logging is disabled if the function pointer is
    ** NULL.
    */
    case SQLITE_CONFIG_LOG: {
      /* MSVC is picky about pulling func ptrs from va lists.
      ** http://support.microsoft.com/kb/47961
      ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*));







|
|


















|







444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
        ** back to NULL pointers too.  This will cause the malloc to go
        ** back to its default implementation when sqlite3_initialize() is
        ** run.
        */
        memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
      }else{
        /* The heap pointer is not NULL, then install one of the
        ** mem5.c/mem3.c methods.  The enclosing #if guarantees at
        ** least one of these methods is currently enabled.
        */
#ifdef SQLITE_ENABLE_MEMSYS3
        sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
#endif
#ifdef SQLITE_ENABLE_MEMSYS5
        sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
#endif
      }
      break;
    }
#endif

    case SQLITE_CONFIG_LOOKASIDE: {
      sqlite3GlobalConfig.szLookaside = va_arg(ap, int);
      sqlite3GlobalConfig.nLookaside = va_arg(ap, int);
      break;
    }
    
    /* Record a pointer to the logger function and its first argument.
    ** The default is NULL.  Logging is disabled if the function pointer is
    ** NULL.
    */
    case SQLITE_CONFIG_LOG: {
      /* MSVC is picky about pulling func ptrs from va lists.
      ** http://support.microsoft.com/kb/47961
      ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*));
1033
1034
1035
1036
1037
1038
1039


1040
1041
1042
1043
1044
1045
1046
    sqlite3ExpirePreparedStatements(db);
    sqlite3ResetAllSchemasOfConnection(db);
  }
  sqlite3BtreeLeaveAll(db);

  /* Any deferred constraint violations have now been resolved. */
  db->nDeferredCons = 0;



  /* If one has been configured, invoke the rollback-hook callback */
  if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
    db->xRollbackCallback(db->pRollbackArg);
  }
}








>
>







1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
    sqlite3ExpirePreparedStatements(db);
    sqlite3ResetAllSchemasOfConnection(db);
  }
  sqlite3BtreeLeaveAll(db);

  /* Any deferred constraint violations have now been resolved. */
  db->nDeferredCons = 0;
  db->nDeferredImmCons = 0;
  db->flags &= ~SQLITE_DeferFKs;

  /* If one has been configured, invoke the rollback-hook callback */
  if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
    db->xRollbackCallback(db->pRollbackArg);
  }
}

1059
1060
1061
1062
1063
1064
1065

1066
1067
1068
1069
1070
1071
1072
      case SQLITE_ERROR:              zName = "SQLITE_ERROR";             break;
      case SQLITE_INTERNAL:           zName = "SQLITE_INTERNAL";          break;
      case SQLITE_PERM:               zName = "SQLITE_PERM";              break;
      case SQLITE_ABORT:              zName = "SQLITE_ABORT";             break;
      case SQLITE_ABORT_ROLLBACK:     zName = "SQLITE_ABORT_ROLLBACK";    break;
      case SQLITE_BUSY:               zName = "SQLITE_BUSY";              break;
      case SQLITE_BUSY_RECOVERY:      zName = "SQLITE_BUSY_RECOVERY";     break;

      case SQLITE_LOCKED:             zName = "SQLITE_LOCKED";            break;
      case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break;
      case SQLITE_NOMEM:              zName = "SQLITE_NOMEM";             break;
      case SQLITE_READONLY:           zName = "SQLITE_READONLY";          break;
      case SQLITE_READONLY_RECOVERY:  zName = "SQLITE_READONLY_RECOVERY"; break;
      case SQLITE_READONLY_CANTLOCK:  zName = "SQLITE_READONLY_CANTLOCK"; break;
      case SQLITE_READONLY_ROLLBACK:  zName = "SQLITE_READONLY_ROLLBACK"; break;







>







1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
      case SQLITE_ERROR:              zName = "SQLITE_ERROR";             break;
      case SQLITE_INTERNAL:           zName = "SQLITE_INTERNAL";          break;
      case SQLITE_PERM:               zName = "SQLITE_PERM";              break;
      case SQLITE_ABORT:              zName = "SQLITE_ABORT";             break;
      case SQLITE_ABORT_ROLLBACK:     zName = "SQLITE_ABORT_ROLLBACK";    break;
      case SQLITE_BUSY:               zName = "SQLITE_BUSY";              break;
      case SQLITE_BUSY_RECOVERY:      zName = "SQLITE_BUSY_RECOVERY";     break;
      case SQLITE_BUSY_SNAPSHOT:      zName = "SQLITE_BUSY_SNAPSHOT";     break;
      case SQLITE_LOCKED:             zName = "SQLITE_LOCKED";            break;
      case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break;
      case SQLITE_NOMEM:              zName = "SQLITE_NOMEM";             break;
      case SQLITE_READONLY:           zName = "SQLITE_READONLY";          break;
      case SQLITE_READONLY_RECOVERY:  zName = "SQLITE_READONLY_RECOVERY"; break;
      case SQLITE_READONLY_CANTLOCK:  zName = "SQLITE_READONLY_CANTLOCK"; break;
      case SQLITE_READONLY_ROLLBACK:  zName = "SQLITE_READONLY_ROLLBACK"; break;
1093
1094
1095
1096
1097
1098
1099


1100
1101
1102
1103
1104
1105
1106
1107

1108
1109
1110
1111
1112
1113
1114
      case SQLITE_IOERR_SHMOPEN:      zName = "SQLITE_IOERR_SHMOPEN";     break;
      case SQLITE_IOERR_SHMSIZE:      zName = "SQLITE_IOERR_SHMSIZE";     break;
      case SQLITE_IOERR_SHMLOCK:      zName = "SQLITE_IOERR_SHMLOCK";     break;
      case SQLITE_IOERR_SHMMAP:       zName = "SQLITE_IOERR_SHMMAP";      break;
      case SQLITE_IOERR_SEEK:         zName = "SQLITE_IOERR_SEEK";        break;
      case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break;
      case SQLITE_IOERR_MMAP:         zName = "SQLITE_IOERR_MMAP";        break;


      case SQLITE_CORRUPT:            zName = "SQLITE_CORRUPT";           break;
      case SQLITE_CORRUPT_VTAB:       zName = "SQLITE_CORRUPT_VTAB";      break;
      case SQLITE_NOTFOUND:           zName = "SQLITE_NOTFOUND";          break;
      case SQLITE_FULL:               zName = "SQLITE_FULL";              break;
      case SQLITE_CANTOPEN:           zName = "SQLITE_CANTOPEN";          break;
      case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break;
      case SQLITE_CANTOPEN_ISDIR:     zName = "SQLITE_CANTOPEN_ISDIR";    break;
      case SQLITE_CANTOPEN_FULLPATH:  zName = "SQLITE_CANTOPEN_FULLPATH"; break;

      case SQLITE_PROTOCOL:           zName = "SQLITE_PROTOCOL";          break;
      case SQLITE_EMPTY:              zName = "SQLITE_EMPTY";             break;
      case SQLITE_SCHEMA:             zName = "SQLITE_SCHEMA";            break;
      case SQLITE_TOOBIG:             zName = "SQLITE_TOOBIG";            break;
      case SQLITE_CONSTRAINT:         zName = "SQLITE_CONSTRAINT";        break;
      case SQLITE_CONSTRAINT_UNIQUE:  zName = "SQLITE_CONSTRAINT_UNIQUE"; break;
      case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break;







>
>








>







1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
      case SQLITE_IOERR_SHMOPEN:      zName = "SQLITE_IOERR_SHMOPEN";     break;
      case SQLITE_IOERR_SHMSIZE:      zName = "SQLITE_IOERR_SHMSIZE";     break;
      case SQLITE_IOERR_SHMLOCK:      zName = "SQLITE_IOERR_SHMLOCK";     break;
      case SQLITE_IOERR_SHMMAP:       zName = "SQLITE_IOERR_SHMMAP";      break;
      case SQLITE_IOERR_SEEK:         zName = "SQLITE_IOERR_SEEK";        break;
      case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break;
      case SQLITE_IOERR_MMAP:         zName = "SQLITE_IOERR_MMAP";        break;
      case SQLITE_IOERR_GETTEMPPATH:  zName = "SQLITE_IOERR_GETTEMPPATH"; break;
      case SQLITE_IOERR_CONVPATH:     zName = "SQLITE_IOERR_CONVPATH";    break;
      case SQLITE_CORRUPT:            zName = "SQLITE_CORRUPT";           break;
      case SQLITE_CORRUPT_VTAB:       zName = "SQLITE_CORRUPT_VTAB";      break;
      case SQLITE_NOTFOUND:           zName = "SQLITE_NOTFOUND";          break;
      case SQLITE_FULL:               zName = "SQLITE_FULL";              break;
      case SQLITE_CANTOPEN:           zName = "SQLITE_CANTOPEN";          break;
      case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break;
      case SQLITE_CANTOPEN_ISDIR:     zName = "SQLITE_CANTOPEN_ISDIR";    break;
      case SQLITE_CANTOPEN_FULLPATH:  zName = "SQLITE_CANTOPEN_FULLPATH"; break;
      case SQLITE_CANTOPEN_CONVPATH:  zName = "SQLITE_CANTOPEN_CONVPATH"; break;
      case SQLITE_PROTOCOL:           zName = "SQLITE_PROTOCOL";          break;
      case SQLITE_EMPTY:              zName = "SQLITE_EMPTY";             break;
      case SQLITE_SCHEMA:             zName = "SQLITE_SCHEMA";            break;
      case SQLITE_TOOBIG:             zName = "SQLITE_TOOBIG";            break;
      case SQLITE_CONSTRAINT:         zName = "SQLITE_CONSTRAINT";        break;
      case SQLITE_CONSTRAINT_UNIQUE:  zName = "SQLITE_CONSTRAINT_UNIQUE"; break;
      case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break;
1132
1133
1134
1135
1136
1137
1138

1139
1140
1141
1142
1143
1144
1145
      case SQLITE_NOTADB:             zName = "SQLITE_NOTADB";            break;
      case SQLITE_ROW:                zName = "SQLITE_ROW";               break;
      case SQLITE_NOTICE:             zName = "SQLITE_NOTICE";            break;
      case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break;
      case SQLITE_NOTICE_RECOVER_ROLLBACK:
                                zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break;
      case SQLITE_WARNING:            zName = "SQLITE_WARNING";           break;

      case SQLITE_DONE:               zName = "SQLITE_DONE";              break;
    }
  }
  if( zName==0 ){
    static char zBuf[50];
    sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc);
    zName = zBuf;







>







1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
      case SQLITE_NOTADB:             zName = "SQLITE_NOTADB";            break;
      case SQLITE_ROW:                zName = "SQLITE_ROW";               break;
      case SQLITE_NOTICE:             zName = "SQLITE_NOTICE";            break;
      case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break;
      case SQLITE_NOTICE_RECOVER_ROLLBACK:
                                zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break;
      case SQLITE_WARNING:            zName = "SQLITE_WARNING";           break;
      case SQLITE_WARNING_AUTOINDEX:  zName = "SQLITE_WARNING_AUTOINDEX"; break;
      case SQLITE_DONE:               zName = "SQLITE_DONE";              break;
    }
  }
  if( zName==0 ){
    static char zBuf[50];
    sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc);
    zName = zBuf;
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
  int nOps,
  int (*xProgress)(void*), 
  void *pArg
){
  sqlite3_mutex_enter(db->mutex);
  if( nOps>0 ){
    db->xProgress = xProgress;
    db->nProgressOps = nOps;
    db->pProgressArg = pArg;
  }else{
    db->xProgress = 0;
    db->nProgressOps = 0;
    db->pProgressArg = 0;
  }
  sqlite3_mutex_leave(db->mutex);







|







1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
  int nOps,
  int (*xProgress)(void*), 
  void *pArg
){
  sqlite3_mutex_enter(db->mutex);
  if( nOps>0 ){
    db->xProgress = xProgress;
    db->nProgressOps = (unsigned)nOps;
    db->pProgressArg = pArg;
  }else{
    db->xProgress = 0;
    db->nProgressOps = 0;
    db->pProgressArg = 0;
  }
  sqlite3_mutex_leave(db->mutex);
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
  
  /* Check if an existing function is being overridden or deleted. If so,
  ** and there are active VMs, then return SQLITE_BUSY. If a function
  ** is being overridden/deleted but there are no active VMs, allow the
  ** operation to continue but invalidate all precompiled statements.
  */
  p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0);
  if( p && p->iPrefEnc==enc && p->nArg==nArg ){
    if( db->activeVdbeCnt ){
      sqlite3Error(db, SQLITE_BUSY, 
        "unable to delete/modify user-function due to active statements");
      assert( !db->mallocFailed );
      return SQLITE_BUSY;
    }else{
      sqlite3ExpirePreparedStatements(db);
    }







|
|







1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
  
  /* Check if an existing function is being overridden or deleted. If so,
  ** and there are active VMs, then return SQLITE_BUSY. If a function
  ** is being overridden/deleted but there are no active VMs, allow the
  ** operation to continue but invalidate all precompiled statements.
  */
  p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0);
  if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==enc && p->nArg==nArg ){
    if( db->nVdbeActive ){
      sqlite3Error(db, SQLITE_BUSY, 
        "unable to delete/modify user-function due to active statements");
      assert( !db->mallocFailed );
      return SQLITE_BUSY;
    }else{
      sqlite3ExpirePreparedStatements(db);
    }
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
  ** being replaced invoke the destructor function here. */
  functionDestroy(db, p);

  if( pDestructor ){
    pDestructor->nRef++;
  }
  p->pDestructor = pDestructor;
  p->flags = 0;
  p->xFunc = xFunc;
  p->xStep = xStep;
  p->xFinalize = xFinal;
  p->pUserData = pUserData;
  p->nArg = (u16)nArg;
  return SQLITE_OK;
}







|







1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
  ** being replaced invoke the destructor function here. */
  functionDestroy(db, p);

  if( pDestructor ){
    pDestructor->nRef++;
  }
  p->pDestructor = pDestructor;
  p->funcFlags &= SQLITE_FUNC_ENCMASK;
  p->xFunc = xFunc;
  p->xStep = xStep;
  p->xFinalize = xFinal;
  p->pUserData = pUserData;
  p->nArg = (u16)nArg;
  return SQLITE_OK;
}
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

  /* Check if this call is removing or replacing an existing collation 
  ** sequence. If so, and there are active VMs, return busy. If there
  ** are no active VMs, invalidate any pre-compiled statements.
  */
  pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0);
  if( pColl && pColl->xCmp ){
    if( db->activeVdbeCnt ){
      sqlite3Error(db, SQLITE_BUSY, 
        "unable to delete/modify collation sequence due to active statements");
      return SQLITE_BUSY;
    }
    sqlite3ExpirePreparedStatements(db);

    /* If collation sequence pColl was created directly by a call to







|







1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998

  /* Check if this call is removing or replacing an existing collation 
  ** sequence. If so, and there are active VMs, return busy. If there
  ** are no active VMs, invalidate any pre-compiled statements.
  */
  pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0);
  if( pColl && pColl->xCmp ){
    if( db->nVdbeActive ){
      sqlite3Error(db, SQLITE_BUSY, 
        "unable to delete/modify collation sequence due to active statements");
      return SQLITE_BUSY;
    }
    sqlite3ExpirePreparedStatements(db);

    /* If collation sequence pColl was created directly by a call to
2169
2170
2171
2172
2173
2174
2175


2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189

2190
2191
2192
2193
2194
2195
2196
    ** method that there may be extra parameters following the file-name.  */
    flags |= SQLITE_OPEN_URI;

    for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&');
    zFile = sqlite3_malloc(nByte);
    if( !zFile ) return SQLITE_NOMEM;



    /* Discard the scheme and authority segments of the URI. */
    if( zUri[5]=='/' && zUri[6]=='/' ){
      iIn = 7;
      while( zUri[iIn] && zUri[iIn]!='/' ) iIn++;

      if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){
        *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 
            iIn-7, &zUri[7]);
        rc = SQLITE_ERROR;
        goto parse_uri_out;
      }
    }else{
      iIn = 5;
    }


    /* Copy the filename and any query parameters into the zFile buffer. 
    ** Decode %HH escape codes along the way. 
    **
    ** Within this loop, variable eState may be set to 0, 1 or 2, depending
    ** on the parsing context. As follows:
    **







>
>




<






<
<

>







2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194

2195
2196
2197
2198
2199
2200


2201
2202
2203
2204
2205
2206
2207
2208
2209
    ** method that there may be extra parameters following the file-name.  */
    flags |= SQLITE_OPEN_URI;

    for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&');
    zFile = sqlite3_malloc(nByte);
    if( !zFile ) return SQLITE_NOMEM;

    iIn = 5;
#ifndef SQLITE_ALLOW_URI_AUTHORITY
    /* Discard the scheme and authority segments of the URI. */
    if( zUri[5]=='/' && zUri[6]=='/' ){
      iIn = 7;
      while( zUri[iIn] && zUri[iIn]!='/' ) iIn++;

      if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){
        *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 
            iIn-7, &zUri[7]);
        rc = SQLITE_ERROR;
        goto parse_uri_out;
      }


    }
#endif

    /* Copy the filename and any query parameters into the zFile buffer. 
    ** Decode %HH escape codes along the way. 
    **
    ** Within this loop, variable eState may be set to 0, 1 or 2, depending
    ** on the parsing context. As follows:
    **
2446
2447
2448
2449
2450
2451
2452
2453



2454
2455
2456
2457
2458
2459
2460

  assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
  memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
  db->autoCommit = 1;
  db->nextAutovac = -1;
  db->szMmap = sqlite3GlobalConfig.szMmap;
  db->nextPagesize = 0;
  db->flags |= SQLITE_ShortColNames | SQLITE_AutoIndex | SQLITE_EnableTrigger



#if SQLITE_DEFAULT_FILE_FORMAT<4
                 | SQLITE_LegacyFileFmt
#endif
#ifdef SQLITE_ENABLE_LOAD_EXTENSION
                 | SQLITE_LoadExtension
#endif
#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS







|
>
>
>







2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476

  assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
  memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
  db->autoCommit = 1;
  db->nextAutovac = -1;
  db->szMmap = sqlite3GlobalConfig.szMmap;
  db->nextPagesize = 0;
  db->flags |= SQLITE_ShortColNames | SQLITE_EnableTrigger | SQLITE_CacheSpill
#if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX
                 | SQLITE_AutoIndex
#endif
#if SQLITE_DEFAULT_FILE_FORMAT<4
                 | SQLITE_LegacyFileFmt
#endif
#ifdef SQLITE_ENABLE_LOAD_EXTENSION
                 | SQLITE_LoadExtension
#endif
#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
Changes to src/mem2.c.
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
*/
static int sqlite3MemSize(void *p){
  struct MemBlockHdr *pHdr;
  if( !p ){
    return 0;
  }
  pHdr = sqlite3MemsysGetHeader(p);
  return pHdr->iSize;
}

/*
** Initialize the memory allocation subsystem.
*/
static int sqlite3MemInit(void *NotUsed){
  UNUSED_PARAMETER(NotUsed);







|







175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
*/
static int sqlite3MemSize(void *p){
  struct MemBlockHdr *pHdr;
  if( !p ){
    return 0;
  }
  pHdr = sqlite3MemsysGetHeader(p);
  return (int)pHdr->iSize;
}

/*
** Initialize the memory allocation subsystem.
*/
static int sqlite3MemInit(void *NotUsed){
  UNUSED_PARAMETER(NotUsed);
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
** to clear the content of a freed allocation to unpredictable values.
*/
static void randomFill(char *pBuf, int nByte){
  unsigned int x, y, r;
  x = SQLITE_PTR_TO_INT(pBuf);
  y = nByte | 1;
  while( nByte >= 4 ){
    x = (x>>1) ^ (-(x&1) & 0xd0000001);
    y = y*1103515245 + 12345;
    r = x ^ y;
    *(int*)pBuf = r;
    pBuf += 4;
    nByte -= 4;
  }
  while( nByte-- > 0 ){
    x = (x>>1) ^ (-(x&1) & 0xd0000001);
    y = y*1103515245 + 12345;
    r = x ^ y;
    *(pBuf++) = r & 0xff;
  }
}

/*







|







|







217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
** to clear the content of a freed allocation to unpredictable values.
*/
static void randomFill(char *pBuf, int nByte){
  unsigned int x, y, r;
  x = SQLITE_PTR_TO_INT(pBuf);
  y = nByte | 1;
  while( nByte >= 4 ){
    x = (x>>1) ^ (-(int)(x&1) & 0xd0000001);
    y = y*1103515245 + 12345;
    r = x ^ y;
    *(int*)pBuf = r;
    pBuf += 4;
    nByte -= 4;
  }
  while( nByte-- > 0 ){
    x = (x>>1) ^ (-(int)(x&1) & 0xd0000001);
    y = y*1103515245 + 12345;
    r = x ^ y;
    *(pBuf++) = r & 0xff;
  }
}

/*
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    pHdr->pNext->pPrev = pHdr->pPrev;
  }else{
    assert( mem.pLast==pHdr );
    mem.pLast = pHdr->pPrev;
  }
  z = (char*)pBt;
  z -= pHdr->nTitle;
  adjustStats(pHdr->iSize, -1);
  randomFill(z, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
                pHdr->iSize + sizeof(int) + pHdr->nTitle);
  free(z);
  sqlite3_mutex_leave(mem.mutex);  
}

/*
** Change the size of an existing memory allocation.
**







|

|







320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    pHdr->pNext->pPrev = pHdr->pPrev;
  }else{
    assert( mem.pLast==pHdr );
    mem.pLast = pHdr->pPrev;
  }
  z = (char*)pBt;
  z -= pHdr->nTitle;
  adjustStats((int)pHdr->iSize, -1);
  randomFill(z, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
                (int)pHdr->iSize + sizeof(int) + pHdr->nTitle);
  free(z);
  sqlite3_mutex_leave(mem.mutex);  
}

/*
** Change the size of an existing memory allocation.
**
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
  struct MemBlockHdr *pOldHdr;
  void *pNew;
  assert( mem.disallow==0 );
  assert( (nByte & 7)==0 );     /* EV: R-46199-30249 */
  pOldHdr = sqlite3MemsysGetHeader(pPrior);
  pNew = sqlite3MemMalloc(nByte);
  if( pNew ){
    memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize);
    if( nByte>pOldHdr->iSize ){
      randomFill(&((char*)pNew)[pOldHdr->iSize], nByte - pOldHdr->iSize);
    }
    sqlite3MemFree(pPrior);
  }
  return pNew;
}

/*







|

|







344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
  struct MemBlockHdr *pOldHdr;
  void *pNew;
  assert( mem.disallow==0 );
  assert( (nByte & 7)==0 );     /* EV: R-46199-30249 */
  pOldHdr = sqlite3MemsysGetHeader(pPrior);
  pNew = sqlite3MemMalloc(nByte);
  if( pNew ){
    memcpy(pNew, pPrior, (int)(nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize));
    if( nByte>pOldHdr->iSize ){
      randomFill(&((char*)pNew)[pOldHdr->iSize], nByte - (int)pOldHdr->iSize);
    }
    sqlite3MemFree(pPrior);
  }
  return pNew;
}

/*
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
}

void sqlite3MemdebugSync(){
  struct MemBlockHdr *pHdr;
  for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
    void **pBt = (void**)pHdr;
    pBt -= pHdr->nBacktraceSlots;
    mem.xBacktrace(pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]);
  }
}

/*
** Open the file indicated and write a log of all unfreed memory 
** allocations into that log.
*/







|







461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
}

void sqlite3MemdebugSync(){
  struct MemBlockHdr *pHdr;
  for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
    void **pBt = (void**)pHdr;
    pBt -= pHdr->nBacktraceSlots;
    mem.xBacktrace((int)pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]);
  }
}

/*
** Open the file indicated and write a log of all unfreed memory 
** allocations into that log.
*/
Changes to src/mem5.c.
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
  ** of each block.  One byte per block.
  */
  u8 *aCtrl;

} mem5;

/*
** Access the static variable through a macro for SQLITE_OMIT_WSD
*/
#define mem5 GLOBAL(struct Mem5Global, mem5)

/*
** Assuming mem5.zPool is divided up into an array of Mem5Link
** structures, return a pointer to the idx-th such lik.
*/
#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))

/*
** Unlink the chunk at mem5.aPool[i] from list it is currently
** on.  It should be found on mem5.aiFreelist[iLogsize].
*/







|





|







126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
  ** of each block.  One byte per block.
  */
  u8 *aCtrl;

} mem5;

/*
** Access the static variable through a macro for SQLITE_OMIT_WSD.
*/
#define mem5 GLOBAL(struct Mem5Global, mem5)

/*
** Assuming mem5.zPool is divided up into an array of Mem5Link
** structures, return a pointer to the idx-th such link.
*/
#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))

/*
** Unlink the chunk at mem5.aPool[i] from list it is currently
** on.  It should be found on mem5.aiFreelist[iLogsize].
*/
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
  return iFirst;
}

/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.  Return NULL if nBytes==0.
**
** The caller guarantees that nByte positive.
**
** The caller has obtained a mutex prior to invoking this
** routine so there is never any chance that two or more
** threads can be in this routine at the same time.
*/
static void *memsys5MallocUnsafe(int nByte){
  int i;           /* Index of a mem5.aPool[] slot */







|







228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
  return iFirst;
}

/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.  Return NULL if nBytes==0.
**
** The caller guarantees that nByte is positive.
**
** The caller has obtained a mutex prior to invoking this
** routine so there is never any chance that two or more
** threads can be in this routine at the same time.
*/
static void *memsys5MallocUnsafe(int nByte){
  int i;           /* Index of a mem5.aPool[] slot */
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    }
    size *= 2;
  }
  memsys5Link(iBlock, iLogsize);
}

/*
** Allocate nBytes of memory
*/
static void *memsys5Malloc(int nBytes){
  sqlite3_int64 *p = 0;
  if( nBytes>0 ){
    memsys5Enter();
    p = memsys5MallocUnsafe(nBytes);
    memsys5Leave();







|







350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    }
    size *= 2;
  }
  memsys5Link(iBlock, iLogsize);
}

/*
** Allocate nBytes of memory.
*/
static void *memsys5Malloc(int nBytes){
  sqlite3_int64 *p = 0;
  if( nBytes>0 ){
    memsys5Enter();
    p = memsys5MallocUnsafe(nBytes);
    memsys5Leave();
Changes to src/memjournal.c.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
** The size chosen is a little less than a power of two.  That way,
** the FileChunk object will have a size that almost exactly fills
** a power-of-two allocation.  This mimimizes wasted space in power-of-two
** memory allocators.
*/
#define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*)))

/* Macro to find the minimum of two numeric values.
*/
#ifndef MIN
# define MIN(x,y) ((x)<(y)?(x):(y))
#endif

/*
** The rollback journal is composed of a linked list of these structures.
*/
struct FileChunk {
  FileChunk *pNext;               /* Next chunk in the journal */
  u8 zChunk[JOURNAL_CHUNKSIZE];   /* Content of this chunk */
};







<
<
<
<
<
<







27
28
29
30
31
32
33






34
35
36
37
38
39
40
** The size chosen is a little less than a power of two.  That way,
** the FileChunk object will have a size that almost exactly fills
** a power-of-two allocation.  This mimimizes wasted space in power-of-two
** memory allocators.
*/
#define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*)))







/*
** The rollback journal is composed of a linked list of these structures.
*/
struct FileChunk {
  FileChunk *pNext;               /* Next chunk in the journal */
  u8 zChunk[JOURNAL_CHUNKSIZE];   /* Content of this chunk */
};
Changes to src/mutex_w32.c.
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
      OSVERSIONINFO sInfo;
      sInfo.dwOSVersionInfoSize = sizeof(sInfo);
      GetVersionEx(&sInfo);
      osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
    }
    return osType==2;
  }
#endif /* SQLITE_OS_WINCE */
#endif

#ifdef SQLITE_DEBUG
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use only inside assert() statements.
*/







|







65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
      OSVERSIONINFO sInfo;
      sInfo.dwOSVersionInfoSize = sizeof(sInfo);
      GetVersionEx(&sInfo);
      osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
    }
    return osType==2;
  }
#endif /* SQLITE_OS_WINCE || SQLITE_OS_WINRT */
#endif

#ifdef SQLITE_DEBUG
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use only inside assert() statements.
*/
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
};
static int winMutex_isInit = 0;
/* As winMutexInit() and winMutexEnd() are called as part
** of the sqlite3_initialize and sqlite3_shutdown()
** processing, the "interlocked" magic is probably not
** strictly necessary.
*/
static long winMutex_lock = 0;

void sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */

static int winMutexInit(void){ 
  /* The first to increment to 1 does actual initialization */
  if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){
    int i;







|







103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
};
static int winMutex_isInit = 0;
/* As winMutexInit() and winMutexEnd() are called as part
** of the sqlite3_initialize and sqlite3_shutdown()
** processing, the "interlocked" magic is probably not
** strictly necessary.
*/
static LONG winMutex_lock = 0;

void sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */

static int winMutexInit(void){ 
  /* The first to increment to 1 does actual initialization */
  if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){
    int i;
Changes to src/os_unix.c.
214
215
216
217
218
219
220

221
222
223
224
225

226
227
228
229
230
231
232
  unsigned short int ctrlFlags;       /* Behavioral bits.  UNIXFILE_* flags */
  int lastErrno;                      /* The unix errno from last I/O error */
  void *lockingContext;               /* Locking style specific state */
  UnixUnusedFd *pUnused;              /* Pre-allocated UnixUnusedFd */
  const char *zPath;                  /* Name of the file */
  unixShm *pShm;                      /* Shared memory segment information */
  int szChunk;                        /* Configured by FCNTL_CHUNK_SIZE */

  int nFetchOut;                      /* Number of outstanding xFetch refs */
  sqlite3_int64 mmapSize;             /* Usable size of mapping at pMapRegion */
  sqlite3_int64 mmapSizeActual;       /* Actual size of mapping at pMapRegion */
  sqlite3_int64 mmapSizeMax;          /* Configured FCNTL_MMAP_SIZE value */
  void *pMapRegion;                   /* Memory mapped region */

#ifdef __QNXNTO__
  int sectorSize;                     /* Device sector size */
  int deviceCharacteristics;          /* Precomputed device characteristics */
#endif
#if SQLITE_ENABLE_LOCKING_STYLE
  int openFlags;                      /* The flags specified at open() */
#endif







>





>







214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
  unsigned short int ctrlFlags;       /* Behavioral bits.  UNIXFILE_* flags */
  int lastErrno;                      /* The unix errno from last I/O error */
  void *lockingContext;               /* Locking style specific state */
  UnixUnusedFd *pUnused;              /* Pre-allocated UnixUnusedFd */
  const char *zPath;                  /* Name of the file */
  unixShm *pShm;                      /* Shared memory segment information */
  int szChunk;                        /* Configured by FCNTL_CHUNK_SIZE */
#if SQLITE_MAX_MMAP_SIZE>0
  int nFetchOut;                      /* Number of outstanding xFetch refs */
  sqlite3_int64 mmapSize;             /* Usable size of mapping at pMapRegion */
  sqlite3_int64 mmapSizeActual;       /* Actual size of mapping at pMapRegion */
  sqlite3_int64 mmapSizeMax;          /* Configured FCNTL_MMAP_SIZE value */
  void *pMapRegion;                   /* Memory mapped region */
#endif
#ifdef __QNXNTO__
  int sectorSize;                     /* Device sector size */
  int deviceCharacteristics;          /* Precomputed device characteristics */
#endif
#if SQLITE_ENABLE_LOCKING_STYLE
  int openFlags;                      /* The flags specified at open() */
#endif
445
446
447
448
449
450
451

452
453
454
455
456
457
458
459
460
461
462
463

464
465
466
467
468
469
470

  { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
#define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)

  { "fchown",       (sqlite3_syscall_ptr)posixFchown,     0 },
#define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)


  { "mmap",       (sqlite3_syscall_ptr)mmap,     0 },
#define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[21].pCurrent)

  { "munmap",       (sqlite3_syscall_ptr)munmap,          0 },
#define osMunmap ((void*(*)(void*,size_t))aSyscall[22].pCurrent)

#if HAVE_MREMAP
  { "mremap",       (sqlite3_syscall_ptr)mremap,          0 },
#else
  { "mremap",       (sqlite3_syscall_ptr)0,               0 },
#endif
#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[23].pCurrent)


}; /* End of the overrideable system calls */

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable







>












>







447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

  { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
#define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)

  { "fchown",       (sqlite3_syscall_ptr)posixFchown,     0 },
#define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)

#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
  { "mmap",       (sqlite3_syscall_ptr)mmap,     0 },
#define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[21].pCurrent)

  { "munmap",       (sqlite3_syscall_ptr)munmap,          0 },
#define osMunmap ((void*(*)(void*,size_t))aSyscall[22].pCurrent)

#if HAVE_MREMAP
  { "mremap",       (sqlite3_syscall_ptr)mremap,          0 },
#else
  { "mremap",       (sqlite3_syscall_ptr)0,               0 },
#endif
#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[23].pCurrent)
#endif

}; /* End of the overrideable system calls */

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable
543
544
545
546
547
548
549









550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

571
572
573
574
575

576









577
578
579
580
581
582
583
  }
  for(i++; i<ArraySize(aSyscall); i++){
    if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
  }
  return 0;
}










/*
** Invoke open().  Do so multiple times, until it either succeeds or
** fails for some reason other than EINTR.
**
** If the file creation mode "m" is 0 then set it to the default for
** SQLite.  The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
** 0644) as modified by the system umask.  If m is not 0, then
** make the file creation mode be exactly m ignoring the umask.
**
** The m parameter will be non-zero only when creating -wal, -journal,
** and -shm files.  We want those files to have *exactly* the same
** permissions as their original database, unadulterated by the umask.
** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
** transaction crashes and leaves behind hot journals, then any
** process that is able to write to the database will also be able to
** recover the hot journals.
*/
static int robust_open(const char *z, int f, mode_t m){
  int fd;
  mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS;
  do{

#if defined(O_CLOEXEC)
    fd = osOpen(z,f|O_CLOEXEC,m2);
#else
    fd = osOpen(z,f,m2);
#endif

  }while( fd<0 && errno==EINTR );









  if( fd>=0 ){
    if( m!=0 ){
      struct stat statbuf;
      if( osFstat(fd, &statbuf)==0 
       && statbuf.st_size==0
       && (statbuf.st_mode&0777)!=m 
      ){







>
>
>
>
>
>
>
>
>




















<
>





>
|
>
>
>
>
>
>
>
>
>







547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
  }
  for(i++; i<ArraySize(aSyscall); i++){
    if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
  }
  return 0;
}

/*
** Do not accept any file descriptor less than this value, in order to avoid
** opening database file using file descriptors that are commonly used for 
** standard input, output, and error.
*/
#ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR
# define SQLITE_MINIMUM_FILE_DESCRIPTOR 3
#endif

/*
** Invoke open().  Do so multiple times, until it either succeeds or
** fails for some reason other than EINTR.
**
** If the file creation mode "m" is 0 then set it to the default for
** SQLite.  The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
** 0644) as modified by the system umask.  If m is not 0, then
** make the file creation mode be exactly m ignoring the umask.
**
** The m parameter will be non-zero only when creating -wal, -journal,
** and -shm files.  We want those files to have *exactly* the same
** permissions as their original database, unadulterated by the umask.
** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
** transaction crashes and leaves behind hot journals, then any
** process that is able to write to the database will also be able to
** recover the hot journals.
*/
static int robust_open(const char *z, int f, mode_t m){
  int fd;
  mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS;

  while(1){
#if defined(O_CLOEXEC)
    fd = osOpen(z,f|O_CLOEXEC,m2);
#else
    fd = osOpen(z,f,m2);
#endif
    if( fd<0 ){
      if( errno==EINTR ) continue;
      break;
    }
    if( fd>=SQLITE_MINIMUM_FILE_DESCRIPTOR ) break;
    osClose(fd);
    sqlite3_log(SQLITE_WARNING, 
                "attempt to open \"%s\" as file descriptor %d", z, fd);
    fd = -1;
    if( osOpen("/dev/null", f, m)<0 ) break;
  }
  if( fd>=0 ){
    if( m!=0 ){
      struct stat statbuf;
      if( osFstat(fd, &statbuf)==0 
       && statbuf.st_size==0
       && (statbuf.st_mode&0777)!=m 
      ){
1867
1868
1869
1870
1871
1872
1873

1874
1875

1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888

1889

1890
1891
1892
1893
1894
1895
1896
** the requested locking level, this routine is a no-op.
*/
static int unixUnlock(sqlite3_file *id, int eFileLock){
  assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 );
  return posixUnlock(id, eFileLock, 0);
}


static int unixMapfile(unixFile *pFd, i64 nByte);
static void unixUnmapfile(unixFile *pFd);


/*
** This function performs the parts of the "close file" operation 
** common to all locking schemes. It closes the directory and file
** handles, if they are valid, and sets all fields of the unixFile
** structure to 0.
**
** It is *not* necessary to hold the mutex when this routine is called,
** even on VxWorks.  A mutex will be acquired on VxWorks by the
** vxworksReleaseFileId() routine.
*/
static int closeUnixFile(sqlite3_file *id){
  unixFile *pFile = (unixFile*)id;

  unixUnmapfile(pFile);

  if( pFile->h>=0 ){
    robust_close(pFile, pFile->h, __LINE__);
    pFile->h = -1;
  }
#if OS_VXWORKS
  if( pFile->pId ){
    if( pFile->ctrlFlags & UNIXFILE_DELETE ){







>


>













>

>







1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
** the requested locking level, this routine is a no-op.
*/
static int unixUnlock(sqlite3_file *id, int eFileLock){
  assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 );
  return posixUnlock(id, eFileLock, 0);
}

#if SQLITE_MAX_MMAP_SIZE>0
static int unixMapfile(unixFile *pFd, i64 nByte);
static void unixUnmapfile(unixFile *pFd);
#endif

/*
** This function performs the parts of the "close file" operation 
** common to all locking schemes. It closes the directory and file
** handles, if they are valid, and sets all fields of the unixFile
** structure to 0.
**
** It is *not* necessary to hold the mutex when this routine is called,
** even on VxWorks.  A mutex will be acquired on VxWorks by the
** vxworksReleaseFileId() routine.
*/
static int closeUnixFile(sqlite3_file *id){
  unixFile *pFile = (unixFile*)id;
#if SQLITE_MAX_MMAP_SIZE>0
  unixUnmapfile(pFile);
#endif
  if( pFile->h>=0 ){
    robust_close(pFile, pFile->h, __LINE__);
    pFile->h = -1;
  }
#if OS_VXWORKS
  if( pFile->pId ){
    if( pFile->ctrlFlags & UNIXFILE_DELETE ){
3087
3088
3089
3090
3091
3092
3093

3094
3095
3096
3097
3098
3099
3100
  int got;
  int prior = 0;
#if (!defined(USE_PREAD) && !defined(USE_PREAD64))
  i64 newOffset;
#endif
  TIMER_START;
  assert( cnt==(cnt&0x1ffff) );

  cnt &= 0x1ffff;
  do{
#if defined(USE_PREAD)
    got = osPread(id->h, pBuf, cnt, offset);
    SimulateIOError( got = -1 );
#elif defined(USE_PREAD64)
    got = osPread64(id->h, pBuf, cnt, offset);







>







3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
  int got;
  int prior = 0;
#if (!defined(USE_PREAD) && !defined(USE_PREAD64))
  i64 newOffset;
#endif
  TIMER_START;
  assert( cnt==(cnt&0x1ffff) );
  assert( id->h>2 );
  cnt &= 0x1ffff;
  do{
#if defined(USE_PREAD)
    got = osPread(id->h, pBuf, cnt, offset);
    SimulateIOError( got = -1 );
#elif defined(USE_PREAD64)
    got = osPread64(id->h, pBuf, cnt, offset);
3201
3202
3203
3204
3205
3206
3207

3208
3209
3210
3211
3212
3213
3214
  const void *pBuf,               /* Copy data from this buffer to the file */
  int nBuf,                       /* Size of buffer pBuf in bytes */
  int *piErrno                    /* OUT: Error number if error occurs */
){
  int rc = 0;                     /* Value returned by system call */

  assert( nBuf==(nBuf&0x1ffff) );

  nBuf &= 0x1ffff;
  TIMER_START;

#if defined(USE_PREAD)
  do{ rc = osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR );
#elif defined(USE_PREAD64)
  do{ rc = osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR);







>







3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
  const void *pBuf,               /* Copy data from this buffer to the file */
  int nBuf,                       /* Size of buffer pBuf in bytes */
  int *piErrno                    /* OUT: Error number if error occurs */
){
  int rc = 0;                     /* Value returned by system call */

  assert( nBuf==(nBuf&0x1ffff) );
  assert( fd>2 );
  nBuf &= 0x1ffff;
  TIMER_START;

#if defined(USE_PREAD)
  do{ rc = osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR );
#elif defined(USE_PREAD64)
  do{ rc = osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR);
3586
3587
3588
3589
3590
3591
3592

3593
3594
3595
3596
3597
3598
3599

3600
3601
3602
3603
3604
3605
3606
    ** source.
    */
    if( pFile->inNormalWrite && nByte==0 ){
      pFile->transCntrChng = 1;
    }
#endif


    /* If the file was just truncated to a size smaller than the currently
    ** mapped region, reduce the effective mapping size as well. SQLite will
    ** use read() and write() to access data beyond this point from now on.  
    */
    if( nByte<pFile->mmapSize ){
      pFile->mmapSize = nByte;
    }


    return SQLITE_OK;
  }
}

/*
** Determine the current size of a file in bytes







>







>







3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
    ** source.
    */
    if( pFile->inNormalWrite && nByte==0 ){
      pFile->transCntrChng = 1;
    }
#endif

#if SQLITE_MAX_MMAP_SIZE>0
    /* If the file was just truncated to a size smaller than the currently
    ** mapped region, reduce the effective mapping size as well. SQLite will
    ** use read() and write() to access data beyond this point from now on.  
    */
    if( nByte<pFile->mmapSize ){
      pFile->mmapSize = nByte;
    }
#endif

    return SQLITE_OK;
  }
}

/*
** Determine the current size of a file in bytes
3682
3683
3684
3685
3686
3687
3688

3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700

3701
3702
3703
3704
3705
3706
3707
        if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
        iWrite += nBlk;
      }
#endif
    }
  }


  if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
    int rc;
    if( pFile->szChunk<=0 ){
      if( robust_ftruncate(pFile->h, nByte) ){
        pFile->lastErrno = errno;
        return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
      }
    }

    rc = unixMapfile(pFile, nByte);
    return rc;
  }


  return SQLITE_OK;
}

/*
** If *pArg is inititially negative then this is a query.  Set *pArg to
** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.







>












>







3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
        if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
        iWrite += nBlk;
      }
#endif
    }
  }

#if SQLITE_MAX_MMAP_SIZE>0
  if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
    int rc;
    if( pFile->szChunk<=0 ){
      if( robust_ftruncate(pFile->h, nByte) ){
        pFile->lastErrno = errno;
        return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
      }
    }

    rc = unixMapfile(pFile, nByte);
    return rc;
  }
#endif

  return SQLITE_OK;
}

/*
** If *pArg is inititially negative then this is a query.  Set *pArg to
** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
3762
3763
3764
3765
3766
3767
3768

3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784

3785
3786
3787
3788
3789
3790
3791
      char *zTFile = sqlite3_malloc( pFile->pVfs->mxPathname );
      if( zTFile ){
        unixGetTempname(pFile->pVfs->mxPathname, zTFile);
        *(char**)pArg = zTFile;
      }
      return SQLITE_OK;
    }

    case SQLITE_FCNTL_MMAP_SIZE: {
      i64 newLimit = *(i64*)pArg;
      int rc = SQLITE_OK;
      if( newLimit>sqlite3GlobalConfig.mxMmap ){
        newLimit = sqlite3GlobalConfig.mxMmap;
      }
      *(i64*)pArg = pFile->mmapSizeMax;
      if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
        pFile->mmapSizeMax = newLimit;
        if( pFile->mmapSize>0 ){
          unixUnmapfile(pFile);
          rc = unixMapfile(pFile, -1);
        }
      }
      return rc;
    }

#ifdef SQLITE_DEBUG
    /* The pager calls this method to signal that it has done
    ** a rollback and that the database is therefore unchanged and
    ** it hence it is OK for the transaction change counter to be
    ** unchanged.
    */
    case SQLITE_FCNTL_DB_UNCHANGED: {







>
















>







3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
      char *zTFile = sqlite3_malloc( pFile->pVfs->mxPathname );
      if( zTFile ){
        unixGetTempname(pFile->pVfs->mxPathname, zTFile);
        *(char**)pArg = zTFile;
      }
      return SQLITE_OK;
    }
#if SQLITE_MAX_MMAP_SIZE>0
    case SQLITE_FCNTL_MMAP_SIZE: {
      i64 newLimit = *(i64*)pArg;
      int rc = SQLITE_OK;
      if( newLimit>sqlite3GlobalConfig.mxMmap ){
        newLimit = sqlite3GlobalConfig.mxMmap;
      }
      *(i64*)pArg = pFile->mmapSizeMax;
      if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
        pFile->mmapSizeMax = newLimit;
        if( pFile->mmapSize>0 ){
          unixUnmapfile(pFile);
          rc = unixMapfile(pFile, -1);
        }
      }
      return rc;
    }
#endif
#ifdef SQLITE_DEBUG
    /* The pager calls this method to signal that it has done
    ** a rollback and that the database is therefore unchanged and
    ** it hence it is OK for the transaction change counter to be
    ** unchanged.
    */
    case SQLITE_FCNTL_DB_UNCHANGED: {
4588
4589
4590
4591
4592
4593
4594

4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
#else
# define unixShmMap     0
# define unixShmLock    0
# define unixShmBarrier 0
# define unixShmUnmap   0
#endif /* #ifndef SQLITE_OMIT_WAL */


/*
** If it is currently memory mapped, unmap file pFd.
*/
static void unixUnmapfile(unixFile *pFd){
  assert( pFd->nFetchOut==0 );
#if SQLITE_MAX_MMAP_SIZE>0
  if( pFd->pMapRegion ){
    osMunmap(pFd->pMapRegion, pFd->mmapSizeActual);
    pFd->pMapRegion = 0;
    pFd->mmapSize = 0;
    pFd->mmapSizeActual = 0;
  }
#endif
}

#if SQLITE_MAX_MMAP_SIZE>0
/*
** Return the system page size.
*/
static int unixGetPagesize(void){
#if HAVE_MREMAP
  return 512;
#elif defined(_BSD_SOURCE)
  return getpagesize();
#else
  return (int)sysconf(_SC_PAGESIZE);
#endif
}
#endif /* SQLITE_MAX_MMAP_SIZE>0 */

#if SQLITE_MAX_MMAP_SIZE>0
/*
** Attempt to set the size of the memory mapping maintained by file 
** descriptor pFd to nNew bytes. Any existing mapping is discarded.
**
** If successful, this function sets the following variables:
**
**       unixFile.pMapRegion







>





<






<


<












<

<







4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635

4636
4637
4638
4639
4640
4641

4642
4643

4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655

4656

4657
4658
4659
4660
4661
4662
4663
#else
# define unixShmMap     0
# define unixShmLock    0
# define unixShmBarrier 0
# define unixShmUnmap   0
#endif /* #ifndef SQLITE_OMIT_WAL */

#if SQLITE_MAX_MMAP_SIZE>0
/*
** If it is currently memory mapped, unmap file pFd.
*/
static void unixUnmapfile(unixFile *pFd){
  assert( pFd->nFetchOut==0 );

  if( pFd->pMapRegion ){
    osMunmap(pFd->pMapRegion, pFd->mmapSizeActual);
    pFd->pMapRegion = 0;
    pFd->mmapSize = 0;
    pFd->mmapSizeActual = 0;
  }

}


/*
** Return the system page size.
*/
static int unixGetPagesize(void){
#if HAVE_MREMAP
  return 512;
#elif defined(_BSD_SOURCE)
  return getpagesize();
#else
  return (int)sysconf(_SC_PAGESIZE);
#endif
}



/*
** Attempt to set the size of the memory mapping maintained by file 
** descriptor pFd to nNew bytes. Any existing mapping is discarded.
**
** If successful, this function sets the following variables:
**
**       unixFile.pMapRegion
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
    ** will probably fail too. Fall back to using xRead/xWrite exclusively
    ** in this case.  */
    pFd->mmapSizeMax = 0;
  }
  pFd->pMapRegion = (void *)pNew;
  pFd->mmapSize = pFd->mmapSizeActual = nNew;
}
#endif

/*
** Memory map or remap the file opened by file-descriptor pFd (if the file
** is already mapped, the existing mapping is replaced by the new). Or, if 
** there already exists a mapping for this file, and there are still 
** outstanding xFetch() references to it, this function is a no-op.
**
** If parameter nByte is non-negative, then it is the requested size of 
** the mapping to create. Otherwise, if nByte is less than zero, then the 
** requested size is the size of the file on disk. The actual size of the
** created mapping is either the requested size or the value configured 
** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller.
**
** SQLITE_OK is returned if no error occurs (even if the mapping is not
** recreated as a result of outstanding references) or an SQLite error
** code otherwise.
*/
static int unixMapfile(unixFile *pFd, i64 nByte){
#if SQLITE_MAX_MMAP_SIZE>0
  i64 nMap = nByte;
  int rc;

  assert( nMap>=0 || pFd->nFetchOut==0 );
  if( pFd->nFetchOut>0 ) return SQLITE_OK;

  if( nMap<0 ){







<


















<







4734
4735
4736
4737
4738
4739
4740

4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758

4759
4760
4761
4762
4763
4764
4765
    ** will probably fail too. Fall back to using xRead/xWrite exclusively
    ** in this case.  */
    pFd->mmapSizeMax = 0;
  }
  pFd->pMapRegion = (void *)pNew;
  pFd->mmapSize = pFd->mmapSizeActual = nNew;
}


/*
** Memory map or remap the file opened by file-descriptor pFd (if the file
** is already mapped, the existing mapping is replaced by the new). Or, if 
** there already exists a mapping for this file, and there are still 
** outstanding xFetch() references to it, this function is a no-op.
**
** If parameter nByte is non-negative, then it is the requested size of 
** the mapping to create. Otherwise, if nByte is less than zero, then the 
** requested size is the size of the file on disk. The actual size of the
** created mapping is either the requested size or the value configured 
** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller.
**
** SQLITE_OK is returned if no error occurs (even if the mapping is not
** recreated as a result of outstanding references) or an SQLite error
** code otherwise.
*/
static int unixMapfile(unixFile *pFd, i64 nByte){

  i64 nMap = nByte;
  int rc;

  assert( nMap>=0 || pFd->nFetchOut==0 );
  if( pFd->nFetchOut>0 ) return SQLITE_OK;

  if( nMap<0 ){
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758

4759
4760
4761
4762
4763
4764
4765
  if( nMap!=pFd->mmapSize ){
    if( nMap>0 ){
      unixRemapfile(pFd, nMap);
    }else{
      unixUnmapfile(pFd);
    }
  }
#endif

  return SQLITE_OK;
}


/*
** If possible, return a pointer to a mapping of file fd starting at offset
** iOff. The mapping must be valid for at least nAmt bytes.
**
** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.







<



>







4777
4778
4779
4780
4781
4782
4783

4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
  if( nMap!=pFd->mmapSize ){
    if( nMap>0 ){
      unixRemapfile(pFd, nMap);
    }else{
      unixUnmapfile(pFd);
    }
  }


  return SQLITE_OK;
}
#endif /* SQLITE_MAX_MMAP_SIZE>0 */

/*
** If possible, return a pointer to a mapping of file fd starting at offset
** iOff. The mapping must be valid for at least nAmt bytes.
**
** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.
4800
4801
4802
4803
4804
4805
4806

4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821

4822
4823
4824
4825
4826
4827
4828
** to inform the VFS layer that, according to POSIX, any existing mapping 
** may now be invalid and should be unmapped.
*/
static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){
  unixFile *pFd = (unixFile *)fd;   /* The underlying database file */
  UNUSED_PARAMETER(iOff);


  /* If p==0 (unmap the entire file) then there must be no outstanding 
  ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
  ** then there must be at least one outstanding.  */
  assert( (p==0)==(pFd->nFetchOut==0) );

  /* If p!=0, it must match the iOff value. */
  assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] );

  if( p ){
    pFd->nFetchOut--;
  }else{
    unixUnmapfile(pFd);
  }

  assert( pFd->nFetchOut>=0 );

  return SQLITE_OK;
}

/*
** Here ends the implementation of all sqlite3_file methods.
**
********************** End sqlite3_file Methods *******************************







>















>







4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
** to inform the VFS layer that, according to POSIX, any existing mapping 
** may now be invalid and should be unmapped.
*/
static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){
  unixFile *pFd = (unixFile *)fd;   /* The underlying database file */
  UNUSED_PARAMETER(iOff);

#if SQLITE_MAX_MMAP_SIZE>0
  /* If p==0 (unmap the entire file) then there must be no outstanding 
  ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
  ** then there must be at least one outstanding.  */
  assert( (p==0)==(pFd->nFetchOut==0) );

  /* If p!=0, it must match the iOff value. */
  assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] );

  if( p ){
    pFd->nFetchOut--;
  }else{
    unixUnmapfile(pFd);
  }

  assert( pFd->nFetchOut>=0 );
#endif
  return SQLITE_OK;
}

/*
** Here ends the implementation of all sqlite3_file methods.
**
********************** End sqlite3_file Methods *******************************
5146
5147
5148
5149
5150
5151
5152

5153

5154
5155
5156
5157
5158
5159
5160
  assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 );

  OSTRACE(("OPEN    %-3d %s\n", h, zFilename));
  pNew->h = h;
  pNew->pVfs = pVfs;
  pNew->zPath = zFilename;
  pNew->ctrlFlags = (u8)ctrlFlags;

  pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap;

  if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
                           "psow", SQLITE_POWERSAFE_OVERWRITE) ){
    pNew->ctrlFlags |= UNIXFILE_PSOW;
  }
  if( strcmp(pVfs->zName,"unix-excl")==0 ){
    pNew->ctrlFlags |= UNIXFILE_EXCL;
  }







>

>







5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
  assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 );

  OSTRACE(("OPEN    %-3d %s\n", h, zFilename));
  pNew->h = h;
  pNew->pVfs = pVfs;
  pNew->zPath = zFilename;
  pNew->ctrlFlags = (u8)ctrlFlags;
#if SQLITE_MAX_MMAP_SIZE>0
  pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap;
#endif
  if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
                           "psow", SQLITE_POWERSAFE_OVERWRITE) ){
    pNew->ctrlFlags |= UNIXFILE_PSOW;
  }
  if( strcmp(pVfs->zName,"unix-excl")==0 ){
    pNew->ctrlFlags |= UNIXFILE_EXCL;
  }
5302
5303
5304
5305
5306
5307
5308

5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320

5321
5322
5323
5324
5325
5326
5327
/*
** Return the name of a directory in which to put temporary files.
** If no suitable temporary file directory can be found, return NULL.
*/
static const char *unixTempFileDir(void){
  static const char *azDirs[] = {
     0,

     0,
     "/var/tmp",
     "/usr/tmp",
     "/tmp",
     0        /* List terminator */
  };
  unsigned int i;
  struct stat buf;
  const char *zDir = 0;

  azDirs[0] = sqlite3_temp_directory;
  if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");

  for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
    if( zDir==0 ) continue;
    if( osStat(zDir, &buf) ) continue;
    if( !S_ISDIR(buf.st_mode) ) continue;
    if( osAccess(zDir, 07) ) continue;
    break;
  }







>











|
>







5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
/*
** Return the name of a directory in which to put temporary files.
** If no suitable temporary file directory can be found, return NULL.
*/
static const char *unixTempFileDir(void){
  static const char *azDirs[] = {
     0,
     0,
     0,
     "/var/tmp",
     "/usr/tmp",
     "/tmp",
     0        /* List terminator */
  };
  unsigned int i;
  struct stat buf;
  const char *zDir = 0;

  azDirs[0] = sqlite3_temp_directory;
  if( !azDirs[1] ) azDirs[1] = getenv("SQLITE_TMPDIR");
  if( !azDirs[2] ) azDirs[2] = getenv("TMPDIR");
  for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
    if( zDir==0 ) continue;
    if( osStat(zDir, &buf) ) continue;
    if( !S_ISDIR(buf.st_mode) ) continue;
    if( osAccess(zDir, 07) ) continue;
    break;
  }
Changes to src/os_win.c.
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51




































































52
53
54
55
56
57
58
** This file contains code that is specific to Windows.
*/
#include "sqliteInt.h"
#if SQLITE_OS_WIN               /* This file is used for Windows only */

#ifdef __CYGWIN__
# include <sys/cygwin.h>

#endif

/*
** Include code that is common to all os_*.c files
*/
#include "os_common.h"

/*
** Compiling and using WAL mode requires several APIs that are only
** available in Windows platforms based on the NT kernel.
*/
#if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL)
# error "WAL mode requires support from the Windows NT kernel, compile\
 with SQLITE_OMIT_WAL."
#endif

/*
** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions
** based on the sub-platform)?
*/
#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
#  define SQLITE_WIN32_HAS_ANSI
#endif

/*
** Are most of the Win32 Unicode APIs available (i.e. with certain exceptions
** based on the sub-platform)?
*/
#if SQLITE_OS_WINCE || SQLITE_OS_WINNT || SQLITE_OS_WINRT

#  define SQLITE_WIN32_HAS_WIDE
#endif





































































/*
** Do we need to manually define the Win32 file mapping APIs for use with WAL
** mode (e.g. these APIs are available in the Windows CE SDK; however, they
** are not present in the header file)?
*/
#if SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL)
/*







>












|







|







|
>



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
** This file contains code that is specific to Windows.
*/
#include "sqliteInt.h"
#if SQLITE_OS_WIN               /* This file is used for Windows only */

#ifdef __CYGWIN__
# include <sys/cygwin.h>
# include <errno.h> /* amalgamator: keep */
#endif

/*
** Include code that is common to all os_*.c files
*/
#include "os_common.h"

/*
** Compiling and using WAL mode requires several APIs that are only
** available in Windows platforms based on the NT kernel.
*/
#if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL)
#  error "WAL mode requires support from the Windows NT kernel, compile\
 with SQLITE_OMIT_WAL."
#endif

/*
** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions
** based on the sub-platform)?
*/
#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(SQLITE_WIN32_NO_ANSI)
#  define SQLITE_WIN32_HAS_ANSI
#endif

/*
** Are most of the Win32 Unicode APIs available (i.e. with certain exceptions
** based on the sub-platform)?
*/
#if (SQLITE_OS_WINCE || SQLITE_OS_WINNT || SQLITE_OS_WINRT) && \
    !defined(SQLITE_WIN32_NO_WIDE)
#  define SQLITE_WIN32_HAS_WIDE
#endif

/*
** Make sure at least one set of Win32 APIs is available.
*/
#if !defined(SQLITE_WIN32_HAS_ANSI) && !defined(SQLITE_WIN32_HAS_WIDE)
#  error "At least one of SQLITE_WIN32_HAS_ANSI and SQLITE_WIN32_HAS_WIDE\
 must be defined."
#endif

/*
** Maximum pathname length (in chars) for Win32.  This should normally be
** MAX_PATH.
*/
#ifndef SQLITE_WIN32_MAX_PATH_CHARS
#  define SQLITE_WIN32_MAX_PATH_CHARS   (MAX_PATH)
#endif

/*
** Maximum pathname length (in chars) for WinNT.  This should normally be
** 32767.
*/
#ifndef SQLITE_WINNT_MAX_PATH_CHARS
#  define SQLITE_WINNT_MAX_PATH_CHARS   (32767)
#endif

/*
** Maximum pathname length (in bytes) for Win32.  The MAX_PATH macro is in
** characters, so we allocate 3 bytes per character assuming worst-case of
** 4-bytes-per-character for UTF8.
*/
#ifndef SQLITE_WIN32_MAX_PATH_BYTES
#  define SQLITE_WIN32_MAX_PATH_BYTES   (SQLITE_WIN32_MAX_PATH_CHARS*4)
#endif

/*
** Maximum pathname length (in bytes) for WinNT.  This should normally be
** 32767 * sizeof(WCHAR).
*/
#ifndef SQLITE_WINNT_MAX_PATH_BYTES
#  define SQLITE_WINNT_MAX_PATH_BYTES   \
                            (sizeof(WCHAR) * SQLITE_WINNT_MAX_PATH_CHARS)
#endif

/*
** Maximum error message length (in chars) for WinRT.
*/
#ifndef SQLITE_WIN32_MAX_ERRMSG_CHARS
#  define SQLITE_WIN32_MAX_ERRMSG_CHARS (1024)
#endif

/*
** Returns non-zero if the character should be treated as a directory
** separator.
*/
#ifndef winIsDirSep
#  define winIsDirSep(a)                (((a) == '/') || ((a) == '\\'))
#endif

/*
** Returns the string that should be used as the directory separator.
*/
#ifndef winGetDirDep
#  ifdef __CYGWIN__
#    define winGetDirDep()              "/"
#  else
#    define winGetDirDep()              "\\"
#  endif
#endif

/*
** Do we need to manually define the Win32 file mapping APIs for use with WAL
** mode (e.g. these APIs are available in the Windows CE SDK; however, they
** are not present in the header file)?
*/
#if SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL)
/*
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

/*
** This file mapping API is common to both Win32 and WinRT.
*/
WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID);
#endif /* SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL) */

/*
** Macro to find the minimum of two numeric values.
*/
#ifndef MIN
# define MIN(x,y) ((x)<(y)?(x):(y))
#endif

/*
** Some Microsoft compilers lack this definition.
*/
#ifndef INVALID_FILE_ATTRIBUTES
# define INVALID_FILE_ATTRIBUTES ((DWORD)-1) 
#endif

#ifndef FILE_FLAG_MASK
# define FILE_FLAG_MASK          (0xFF3C0000)
#endif

#ifndef FILE_ATTRIBUTE_MASK
# define FILE_ATTRIBUTE_MASK     (0x0003FFF7)
#endif

#ifndef SQLITE_OMIT_WAL
/* Forward references */
typedef struct winShm winShm;           /* A connection to shared-memory */
typedef struct winShmNode winShmNode;   /* A region of shared-memory */
#endif

/*
** WinCE lacks native support for file locking so we have to fake it
** with some code of our own.







<
<
<
<
<
<
<
















|







150
151
152
153
154
155
156







157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

/*
** This file mapping API is common to both Win32 and WinRT.
*/
WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID);
#endif /* SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL) */








/*
** Some Microsoft compilers lack this definition.
*/
#ifndef INVALID_FILE_ATTRIBUTES
# define INVALID_FILE_ATTRIBUTES ((DWORD)-1) 
#endif

#ifndef FILE_FLAG_MASK
# define FILE_FLAG_MASK          (0xFF3C0000)
#endif

#ifndef FILE_ATTRIBUTE_MASK
# define FILE_ATTRIBUTE_MASK     (0x0003FFF7)
#endif

#ifndef SQLITE_OMIT_WAL
/* Forward references to structures used for WAL */
typedef struct winShm winShm;           /* A connection to shared-memory */
typedef struct winShmNode winShmNode;   /* A region of shared-memory */
#endif

/*
** WinCE lacks native support for file locking so we have to fake it
** with some code of our own.
232
233
234
235
236
237
238

239
240
241
242
243
244
245
/*
 * The extra flags to use in calls to the Win32 heap APIs.  This value may be
 * zero for the default behavior.
 */
#ifndef SQLITE_WIN32_HEAP_FLAGS
#  define SQLITE_WIN32_HEAP_FLAGS     (0)
#endif


/*
** The winMemData structure stores information required by the Win32-specific
** sqlite3_mem_methods implementation.
*/
typedef struct winMemData winMemData;
struct winMemData {







>







295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*
 * The extra flags to use in calls to the Win32 heap APIs.  This value may be
 * zero for the default behavior.
 */
#ifndef SQLITE_WIN32_HEAP_FLAGS
#  define SQLITE_WIN32_HEAP_FLAGS     (0)
#endif


/*
** The winMemData structure stores information required by the Win32-specific
** sqlite3_mem_methods implementation.
*/
typedef struct winMemData winMemData;
struct winMemData {
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
** Here is an interesting observation:  Win95, Win98, and WinME lack
** the LockFileEx() API.  But we can still statically link against that
** API as long as we don't call it when running Win95/98/ME.  A call to
** this routine is used to determine if the host is Win95/98/ME or
** WinNT/2K/XP so that we will know whether or not we can safely call
** the LockFileEx() API.
*/
#if SQLITE_OS_WINCE || SQLITE_OS_WINRT
# define isNT()  (1)
#elif !defined(SQLITE_WIN32_HAS_WIDE)
# define isNT()  (0)
#else
  static int isNT(void){
    if( sqlite3_os_type==0 ){
      OSVERSIONINFOA sInfo;
      sInfo.dwOSVersionInfoSize = sizeof(sInfo);
      osGetVersionExA(&sInfo);
      sqlite3_os_type = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
    }
    return sqlite3_os_type==2;







|
|

|

|







1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
** Here is an interesting observation:  Win95, Win98, and WinME lack
** the LockFileEx() API.  But we can still statically link against that
** API as long as we don't call it when running Win95/98/ME.  A call to
** this routine is used to determine if the host is Win95/98/ME or
** WinNT/2K/XP so that we will know whether or not we can safely call
** the LockFileEx() API.
*/
#if SQLITE_OS_WINCE || SQLITE_OS_WINRT || !defined(SQLITE_WIN32_HAS_ANSI)
# define osIsNT()  (1)
#elif !defined(SQLITE_WIN32_HAS_WIDE)
# define osIsNT()  (0)
#else
  static int osIsNT(void){
    if( sqlite3_os_type==0 ){
      OSVERSIONINFOA sInfo;
      sInfo.dwOSVersionInfoSize = sizeof(sInfo);
      osGetVersionExA(&sInfo);
      sqlite3_os_type = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
    }
    return sqlite3_os_type==2;
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
#endif /* SQLITE_WIN32_MALLOC */

/*
** Convert a UTF-8 string to Microsoft Unicode (UTF-16?). 
**
** Space to hold the returned string is obtained from malloc.
*/
static LPWSTR utf8ToUnicode(const char *zFilename){
  int nChar;
  LPWSTR zWideFilename;

  nChar = osMultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
  if( nChar==0 ){
    return 0;
  }







|







1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
#endif /* SQLITE_WIN32_MALLOC */

/*
** Convert a UTF-8 string to Microsoft Unicode (UTF-16?). 
**
** Space to hold the returned string is obtained from malloc.
*/
static LPWSTR winUtf8ToUnicode(const char *zFilename){
  int nChar;
  LPWSTR zWideFilename;

  nChar = osMultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
  if( nChar==0 ){
    return 0;
  }
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
  return zWideFilename;
}

/*
** Convert Microsoft Unicode to UTF-8.  Space to hold the returned string is
** obtained from sqlite3_malloc().
*/
static char *unicodeToUtf8(LPCWSTR zWideFilename){
  int nByte;
  char *zFilename;

  nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0);
  if( nByte == 0 ){
    return 0;
  }







|







1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
  return zWideFilename;
}

/*
** Convert Microsoft Unicode to UTF-8.  Space to hold the returned string is
** obtained from sqlite3_malloc().
*/
static char *winUnicodeToUtf8(LPCWSTR zWideFilename){
  int nByte;
  char *zFilename;

  nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0);
  if( nByte == 0 ){
    return 0;
  }
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
/*
** Convert an ANSI string to Microsoft Unicode, based on the
** current codepage settings for file apis.
** 
** Space to hold the returned string is obtained
** from sqlite3_malloc.
*/
static LPWSTR mbcsToUnicode(const char *zFilename){
  int nByte;
  LPWSTR zMbcsFilename;
  int codepage = osAreFileApisANSI() ? CP_ACP : CP_OEMCP;

  nByte = osMultiByteToWideChar(codepage, 0, zFilename, -1, NULL,
                                0)*sizeof(WCHAR);
  if( nByte==0 ){







|







1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
/*
** Convert an ANSI string to Microsoft Unicode, based on the
** current codepage settings for file apis.
** 
** Space to hold the returned string is obtained
** from sqlite3_malloc.
*/
static LPWSTR winMbcsToUnicode(const char *zFilename){
  int nByte;
  LPWSTR zMbcsFilename;
  int codepage = osAreFileApisANSI() ? CP_ACP : CP_OEMCP;

  nByte = osMultiByteToWideChar(codepage, 0, zFilename, -1, NULL,
                                0)*sizeof(WCHAR);
  if( nByte==0 ){
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
/*
** Convert Microsoft Unicode to multi-byte character string, based on the
** user's ANSI codepage.
**
** Space to hold the returned string is obtained from
** sqlite3_malloc().
*/
static char *unicodeToMbcs(LPCWSTR zWideFilename){
  int nByte;
  char *zFilename;
  int codepage = osAreFileApisANSI() ? CP_ACP : CP_OEMCP;

  nByte = osWideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0);
  if( nByte == 0 ){
    return 0;







|







1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
/*
** Convert Microsoft Unicode to multi-byte character string, based on the
** user's ANSI codepage.
**
** Space to hold the returned string is obtained from
** sqlite3_malloc().
*/
static char *winUnicodeToMbcs(LPCWSTR zWideFilename){
  int nByte;
  char *zFilename;
  int codepage = osAreFileApisANSI() ? CP_ACP : CP_OEMCP;

  nByte = osWideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0);
  if( nByte == 0 ){
    return 0;
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
** Convert multibyte character string to UTF-8.  Space to hold the
** returned string is obtained from sqlite3_malloc().
*/
char *sqlite3_win32_mbcs_to_utf8(const char *zFilename){
  char *zFilenameUtf8;
  LPWSTR zTmpWide;

  zTmpWide = mbcsToUnicode(zFilename);
  if( zTmpWide==0 ){
    return 0;
  }
  zFilenameUtf8 = unicodeToUtf8(zTmpWide);
  sqlite3_free(zTmpWide);
  return zFilenameUtf8;
}

/*
** Convert UTF-8 to multibyte character string.  Space to hold the 
** returned string is obtained from sqlite3_malloc().
*/
char *sqlite3_win32_utf8_to_mbcs(const char *zFilename){
  char *zFilenameMbcs;
  LPWSTR zTmpWide;

  zTmpWide = utf8ToUnicode(zFilename);
  if( zTmpWide==0 ){
    return 0;
  }
  zFilenameMbcs = unicodeToMbcs(zTmpWide);
  sqlite3_free(zTmpWide);
  return zFilenameMbcs;
}

/*
** This function sets the data directory or the temporary directory based on
** the provided arguments.  The type argument must be 1 in order to set the







|



|












|



|







1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
** Convert multibyte character string to UTF-8.  Space to hold the
** returned string is obtained from sqlite3_malloc().
*/
char *sqlite3_win32_mbcs_to_utf8(const char *zFilename){
  char *zFilenameUtf8;
  LPWSTR zTmpWide;

  zTmpWide = winMbcsToUnicode(zFilename);
  if( zTmpWide==0 ){
    return 0;
  }
  zFilenameUtf8 = winUnicodeToUtf8(zTmpWide);
  sqlite3_free(zTmpWide);
  return zFilenameUtf8;
}

/*
** Convert UTF-8 to multibyte character string.  Space to hold the 
** returned string is obtained from sqlite3_malloc().
*/
char *sqlite3_win32_utf8_to_mbcs(const char *zFilename){
  char *zFilenameMbcs;
  LPWSTR zTmpWide;

  zTmpWide = winUtf8ToUnicode(zFilename);
  if( zTmpWide==0 ){
    return 0;
  }
  zFilenameMbcs = winUnicodeToMbcs(zTmpWide);
  sqlite3_free(zTmpWide);
  return zFilenameMbcs;
}

/*
** This function sets the data directory or the temporary directory based on
** the provided arguments.  The type argument must be 1 in order to set the
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
  assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE
          || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE
  );
  assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) );
  if( ppDirectory ){
    char *zValueUtf8 = 0;
    if( zValue && zValue[0] ){
      zValueUtf8 = unicodeToUtf8(zValue);
      if ( zValueUtf8==0 ){
        return SQLITE_NOMEM;
      }
    }
    sqlite3_free(*ppDirectory);
    *ppDirectory = zValueUtf8;
    return SQLITE_OK;
  }
  return SQLITE_ERROR;
}

/*
** The return value of getLastErrorMsg
** is zero if the error message fits in the buffer, or non-zero
** otherwise (if the message was truncated).
*/
static int getLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){
  /* FormatMessage returns 0 on failure.  Otherwise it
  ** returns the number of TCHARs written to the output
  ** buffer, excluding the terminating null char.
  */
  DWORD dwLen = 0;
  char *zOut = 0;

  if( isNT() ){
#if SQLITE_OS_WINRT
    WCHAR zTempWide[MAX_PATH+1]; /* NOTE: Somewhat arbitrary. */
    dwLen = osFormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM |
                             FORMAT_MESSAGE_IGNORE_INSERTS,
                             NULL,
                             lastErrno,
                             0,
                             zTempWide,
                             MAX_PATH,
                             0);
#else
    LPWSTR zTempWide = NULL;
    dwLen = osFormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER |
                             FORMAT_MESSAGE_FROM_SYSTEM |
                             FORMAT_MESSAGE_IGNORE_INSERTS,
                             NULL,
                             lastErrno,
                             0,
                             (LPWSTR) &zTempWide,
                             0,
                             0);
#endif
    if( dwLen > 0 ){
      /* allocate a buffer and convert to UTF8 */
      sqlite3BeginBenignMalloc();
      zOut = unicodeToUtf8(zTempWide);
      sqlite3EndBenignMalloc();
#if !SQLITE_OS_WINRT
      /* free the system buffer allocated by FormatMessage */
      osLocalFree(zTempWide);
#endif
    }
  }







|












|



|







|

|






|
















|







1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
  assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE
          || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE
  );
  assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) );
  if( ppDirectory ){
    char *zValueUtf8 = 0;
    if( zValue && zValue[0] ){
      zValueUtf8 = winUnicodeToUtf8(zValue);
      if ( zValueUtf8==0 ){
        return SQLITE_NOMEM;
      }
    }
    sqlite3_free(*ppDirectory);
    *ppDirectory = zValueUtf8;
    return SQLITE_OK;
  }
  return SQLITE_ERROR;
}

/*
** The return value of winGetLastErrorMsg
** is zero if the error message fits in the buffer, or non-zero
** otherwise (if the message was truncated).
*/
static int winGetLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){
  /* FormatMessage returns 0 on failure.  Otherwise it
  ** returns the number of TCHARs written to the output
  ** buffer, excluding the terminating null char.
  */
  DWORD dwLen = 0;
  char *zOut = 0;

  if( osIsNT() ){
#if SQLITE_OS_WINRT
    WCHAR zTempWide[SQLITE_WIN32_MAX_ERRMSG_CHARS+1];
    dwLen = osFormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM |
                             FORMAT_MESSAGE_IGNORE_INSERTS,
                             NULL,
                             lastErrno,
                             0,
                             zTempWide,
                             SQLITE_WIN32_MAX_ERRMSG_CHARS,
                             0);
#else
    LPWSTR zTempWide = NULL;
    dwLen = osFormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER |
                             FORMAT_MESSAGE_FROM_SYSTEM |
                             FORMAT_MESSAGE_IGNORE_INSERTS,
                             NULL,
                             lastErrno,
                             0,
                             (LPWSTR) &zTempWide,
                             0,
                             0);
#endif
    if( dwLen > 0 ){
      /* allocate a buffer and convert to UTF8 */
      sqlite3BeginBenignMalloc();
      zOut = winUnicodeToUtf8(zTempWide);
      sqlite3EndBenignMalloc();
#if !SQLITE_OS_WINRT
      /* free the system buffer allocated by FormatMessage */
      osLocalFree(zTempWide);
#endif
    }
  }
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
  const char *zPath,              /* File path associated with error */
  int iLine                       /* Source line number where error occurred */
){
  char zMsg[500];                 /* Human readable error text */
  int i;                          /* Loop counter */

  zMsg[0] = 0;
  getLastErrorMsg(lastErrno, sizeof(zMsg), zMsg);
  assert( errcode!=SQLITE_OK );
  if( zPath==0 ) zPath = "";
  for(i=0; zMsg[i] && zMsg[i]!='\r' && zMsg[i]!='\n'; i++){}
  zMsg[i] = 0;
  sqlite3_log(errcode,
      "os_win.c:%d: (%lu) %s(%s) - %s",
      iLine, lastErrno, zFunc, zPath, zMsg







|







1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
  const char *zPath,              /* File path associated with error */
  int iLine                       /* Source line number where error occurred */
){
  char zMsg[500];                 /* Human readable error text */
  int i;                          /* Loop counter */

  zMsg[0] = 0;
  winGetLastErrorMsg(lastErrno, sizeof(zMsg), zMsg);
  assert( errcode!=SQLITE_OK );
  if( zPath==0 ) zPath = "";
  for(i=0; zMsg[i] && zMsg[i]!='\r' && zMsg[i]!='\n'; i++){}
  zMsg[i] = 0;
  sqlite3_log(errcode,
      "os_win.c:%d: (%lu) %s(%s) - %s",
      iLine, lastErrno, zFunc, zPath, zMsg
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
*/
#ifndef SQLITE_WIN32_IOERR_RETRY
# define SQLITE_WIN32_IOERR_RETRY 10
#endif
#ifndef SQLITE_WIN32_IOERR_RETRY_DELAY
# define SQLITE_WIN32_IOERR_RETRY_DELAY 25
#endif
static int win32IoerrRetry = SQLITE_WIN32_IOERR_RETRY;
static int win32IoerrRetryDelay = SQLITE_WIN32_IOERR_RETRY_DELAY;

/*
** If a ReadFile() or WriteFile() error occurs, invoke this routine
** to see if it should be retried.  Return TRUE to retry.  Return FALSE
** to give up with an error.
*/
static int retryIoerr(int *pnRetry, DWORD *pError){
  DWORD e = osGetLastError();
  if( *pnRetry>=win32IoerrRetry ){
    if( pError ){
      *pError = e;
    }
    return 0;
  }
  if( e==ERROR_ACCESS_DENIED ||
      e==ERROR_LOCK_VIOLATION ||
      e==ERROR_SHARING_VIOLATION ){
    sqlite3_win32_sleep(win32IoerrRetryDelay*(1+*pnRetry));
    ++*pnRetry;
    return 1;
  }
  if( pError ){
    *pError = e;
  }
  return 0;
}

/*
** Log a I/O error retry episode.
*/
static void logIoerr(int nRetry){
  if( nRetry ){
    sqlite3_log(SQLITE_IOERR, 
      "delayed %dms for lock/sharing conflict",
      win32IoerrRetryDelay*nRetry*(nRetry+1)/2
    );
  }
}

#if SQLITE_OS_WINCE
/*************************************************************************
** This section contains code for WinCE only.







|
|






|

|








|












|



|







1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
*/
#ifndef SQLITE_WIN32_IOERR_RETRY
# define SQLITE_WIN32_IOERR_RETRY 10
#endif
#ifndef SQLITE_WIN32_IOERR_RETRY_DELAY
# define SQLITE_WIN32_IOERR_RETRY_DELAY 25
#endif
static int winIoerrRetry = SQLITE_WIN32_IOERR_RETRY;
static int winIoerrRetryDelay = SQLITE_WIN32_IOERR_RETRY_DELAY;

/*
** If a ReadFile() or WriteFile() error occurs, invoke this routine
** to see if it should be retried.  Return TRUE to retry.  Return FALSE
** to give up with an error.
*/
static int winRetryIoerr(int *pnRetry, DWORD *pError){
  DWORD e = osGetLastError();
  if( *pnRetry>=winIoerrRetry ){
    if( pError ){
      *pError = e;
    }
    return 0;
  }
  if( e==ERROR_ACCESS_DENIED ||
      e==ERROR_LOCK_VIOLATION ||
      e==ERROR_SHARING_VIOLATION ){
    sqlite3_win32_sleep(winIoerrRetryDelay*(1+*pnRetry));
    ++*pnRetry;
    return 1;
  }
  if( pError ){
    *pError = e;
  }
  return 0;
}

/*
** Log a I/O error retry episode.
*/
static void winLogIoerr(int nRetry){
  if( nRetry ){
    sqlite3_log(SQLITE_IOERR, 
      "delayed %dms for lock/sharing conflict",
      winIoerrRetryDelay*nRetry*(nRetry+1)/2
    );
  }
}

#if SQLITE_OS_WINCE
/*************************************************************************
** This section contains code for WinCE only.
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708

1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
static int winceCreateLock(const char *zFilename, winFile *pFile){
  LPWSTR zTok;
  LPWSTR zName;
  DWORD lastErrno;
  BOOL bLogged = FALSE;
  BOOL bInit = TRUE;

  zName = utf8ToUnicode(zFilename);
  if( zName==0 ){
    /* out of memory */
    return SQLITE_IOERR_NOMEM;
  }

  /* Initialize the local lockdata */
  memset(&pFile->local, 0, sizeof(pFile->local));

  /* Replace the backslashes from the filename and lowercase it
  ** to derive a mutex name. */
  zTok = osCharLowerW(zName);
  for (;*zTok;zTok++){
    if (*zTok == '\\') *zTok = '_';
  }

  /* Create/open the named mutex */
  pFile->hMutex = osCreateMutexW(NULL, FALSE, zName);
  if (!pFile->hMutex){
    pFile->lastErrno = osGetLastError();

    winLogError(SQLITE_IOERR, pFile->lastErrno,
                "winceCreateLock1", zFilename);
    sqlite3_free(zName);
    return SQLITE_IOERR;
  }

  /* Acquire the mutex before continuing */
  winceMutexAcquire(pFile->hMutex);
  
  /* Since the names of named mutexes, semaphores, file mappings etc are 
  ** case-sensitive, take advantage of that by uppercasing the mutex name







|



















>
|
|
<
<







1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775


1776
1777
1778
1779
1780
1781
1782
static int winceCreateLock(const char *zFilename, winFile *pFile){
  LPWSTR zTok;
  LPWSTR zName;
  DWORD lastErrno;
  BOOL bLogged = FALSE;
  BOOL bInit = TRUE;

  zName = winUtf8ToUnicode(zFilename);
  if( zName==0 ){
    /* out of memory */
    return SQLITE_IOERR_NOMEM;
  }

  /* Initialize the local lockdata */
  memset(&pFile->local, 0, sizeof(pFile->local));

  /* Replace the backslashes from the filename and lowercase it
  ** to derive a mutex name. */
  zTok = osCharLowerW(zName);
  for (;*zTok;zTok++){
    if (*zTok == '\\') *zTok = '_';
  }

  /* Create/open the named mutex */
  pFile->hMutex = osCreateMutexW(NULL, FALSE, zName);
  if (!pFile->hMutex){
    pFile->lastErrno = osGetLastError();
    sqlite3_free(zName);
    return winLogError(SQLITE_IOERR, pFile->lastErrno,
                       "winceCreateLock1", zFilename);


  }

  /* Acquire the mutex before continuing */
  winceMutexAcquire(pFile->hMutex);
  
  /* Since the names of named mutexes, semaphores, file mappings etc are 
  ** case-sensitive, take advantage of that by uppercasing the mutex name
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
  /*
  ** NOTE: Windows CE is handled differently here due its lack of the Win32
  **       API LockFile.
  */
  return winceLockFile(phFile, offsetLow, offsetHigh,
                       numBytesLow, numBytesHigh);
#else
  if( isNT() ){
    OVERLAPPED ovlp;
    memset(&ovlp, 0, sizeof(OVERLAPPED));
    ovlp.Offset = offsetLow;
    ovlp.OffsetHigh = offsetHigh;
    return osLockFileEx(*phFile, flags, 0, numBytesLow, numBytesHigh, &ovlp);
  }else{
    return osLockFile(*phFile, offsetLow, offsetHigh, numBytesLow,







|







2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
  /*
  ** NOTE: Windows CE is handled differently here due its lack of the Win32
  **       API LockFile.
  */
  return winceLockFile(phFile, offsetLow, offsetHigh,
                       numBytesLow, numBytesHigh);
#else
  if( osIsNT() ){
    OVERLAPPED ovlp;
    memset(&ovlp, 0, sizeof(OVERLAPPED));
    ovlp.Offset = offsetLow;
    ovlp.OffsetHigh = offsetHigh;
    return osLockFileEx(*phFile, flags, 0, numBytesLow, numBytesHigh, &ovlp);
  }else{
    return osLockFile(*phFile, offsetLow, offsetHigh, numBytesLow,
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
  /*
  ** NOTE: Windows CE is handled differently here due its lack of the Win32
  **       API UnlockFile.
  */
  return winceUnlockFile(phFile, offsetLow, offsetHigh,
                         numBytesLow, numBytesHigh);
#else
  if( isNT() ){
    OVERLAPPED ovlp;
    memset(&ovlp, 0, sizeof(OVERLAPPED));
    ovlp.Offset = offsetLow;
    ovlp.OffsetHigh = offsetHigh;
    return osUnlockFileEx(*phFile, 0, numBytesLow, numBytesHigh, &ovlp);
  }else{
    return osUnlockFile(*phFile, offsetLow, offsetHigh, numBytesLow,







|







2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
  /*
  ** NOTE: Windows CE is handled differently here due its lack of the Win32
  **       API UnlockFile.
  */
  return winceUnlockFile(phFile, offsetLow, offsetHigh,
                         numBytesLow, numBytesHigh);
#else
  if( osIsNT() ){
    OVERLAPPED ovlp;
    memset(&ovlp, 0, sizeof(OVERLAPPED));
    ovlp.Offset = offsetLow;
    ovlp.OffsetHigh = offsetHigh;
    return osUnlockFileEx(*phFile, 0, numBytesLow, numBytesHigh, &ovlp);
  }else{
    return osUnlockFile(*phFile, offsetLow, offsetHigh, numBytesLow,
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
#endif

/*
** Move the current position of the file handle passed as the first 
** argument to offset iOffset within the file. If successful, return 0. 
** Otherwise, set pFile->lastErrno and return non-zero.
*/
static int seekWinFile(winFile *pFile, sqlite3_int64 iOffset){
#if !SQLITE_OS_WINRT
  LONG upperBits;                 /* Most sig. 32 bits of new offset */
  LONG lowerBits;                 /* Least sig. 32 bits of new offset */
  DWORD dwRet;                    /* Value returned by SetFilePointer() */
  DWORD lastErrno;                /* Value returned by GetLastError() */

  OSTRACE(("SEEK file=%p, offset=%lld\n", pFile->h, iOffset));







|







2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
#endif

/*
** Move the current position of the file handle passed as the first 
** argument to offset iOffset within the file. If successful, return 0. 
** Otherwise, set pFile->lastErrno and return non-zero.
*/
static int winSeekFile(winFile *pFile, sqlite3_int64 iOffset){
#if !SQLITE_OS_WINRT
  LONG upperBits;                 /* Most sig. 32 bits of new offset */
  LONG lowerBits;                 /* Least sig. 32 bits of new offset */
  DWORD dwRet;                    /* Value returned by SetFilePointer() */
  DWORD lastErrno;                /* Value returned by GetLastError() */

  OSTRACE(("SEEK file=%p, offset=%lld\n", pFile->h, iOffset));
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080

2081
2082
2083
2084
2085
2086
2087
  */
  dwRet = osSetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);

  if( (dwRet==INVALID_SET_FILE_POINTER
      && ((lastErrno = osGetLastError())!=NO_ERROR)) ){
    pFile->lastErrno = lastErrno;
    winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno,
             "seekWinFile", pFile->zPath);
    OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h));
    return 1;
  }

  OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h));
  return 0;
#else
  /*
  ** Same as above, except that this implementation works for WinRT.
  */

  LARGE_INTEGER x;                /* The new offset */
  BOOL bRet;                      /* Value returned by SetFilePointerEx() */

  x.QuadPart = iOffset;
  bRet = osSetFilePointerEx(pFile->h, x, 0, FILE_BEGIN);

  if(!bRet){
    pFile->lastErrno = osGetLastError();
    winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno,
             "seekWinFile", pFile->zPath);
    OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h));
    return 1;
  }

  OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h));
  return 0;
#endif
}

#if SQLITE_MAX_MMAP_SIZE>0
/* Forward references to VFS methods */

static int winUnmapfile(winFile*);
#endif

/*
** Close a file.
**
** It is reported that an attempt to close a handle might sometimes







|




















|










|
>







2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
  */
  dwRet = osSetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);

  if( (dwRet==INVALID_SET_FILE_POINTER
      && ((lastErrno = osGetLastError())!=NO_ERROR)) ){
    pFile->lastErrno = lastErrno;
    winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno,
                "winSeekFile", pFile->zPath);
    OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h));
    return 1;
  }

  OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h));
  return 0;
#else
  /*
  ** Same as above, except that this implementation works for WinRT.
  */

  LARGE_INTEGER x;                /* The new offset */
  BOOL bRet;                      /* Value returned by SetFilePointerEx() */

  x.QuadPart = iOffset;
  bRet = osSetFilePointerEx(pFile->h, x, 0, FILE_BEGIN);

  if(!bRet){
    pFile->lastErrno = osGetLastError();
    winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno,
                "winSeekFile", pFile->zPath);
    OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h));
    return 1;
  }

  OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h));
  return 0;
#endif
}

#if SQLITE_MAX_MMAP_SIZE>0
/* Forward references to VFS helper methods used for memory mapped files */
static int winMapfile(winFile*, sqlite3_int64);
static int winUnmapfile(winFile*);
#endif

/*
** Close a file.
**
** It is reported that an attempt to close a handle might sometimes
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
      amt -= nCopy;
      offset += nCopy;
    }
  }
#endif

#if SQLITE_OS_WINCE
  if( seekWinFile(pFile, offset) ){
    OSTRACE(("READ file=%p, rc=SQLITE_FULL\n", pFile->h));
    return SQLITE_FULL;
  }
  while( !osReadFile(pFile->h, pBuf, amt, &nRead, 0) ){
#else
  memset(&overlapped, 0, sizeof(OVERLAPPED));
  overlapped.Offset = (LONG)(offset & 0xffffffff);
  overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
  while( !osReadFile(pFile->h, pBuf, amt, &nRead, &overlapped) &&
         osGetLastError()!=ERROR_HANDLE_EOF ){
#endif
    DWORD lastErrno;
    if( retryIoerr(&nRetry, &lastErrno) ) continue;
    pFile->lastErrno = lastErrno;
    OSTRACE(("READ file=%p, rc=SQLITE_IOERR_READ\n", pFile->h));
    return winLogError(SQLITE_IOERR_READ, pFile->lastErrno,
             "winRead", pFile->zPath);
  }
  logIoerr(nRetry);
  if( nRead<(DWORD)amt ){
    /* Unread parts of the buffer must be zero-filled */
    memset(&((char*)pBuf)[nRead], 0, amt-nRead);
    OSTRACE(("READ file=%p, rc=SQLITE_IOERR_SHORT_READ\n", pFile->h));
    return SQLITE_IOERR_SHORT_READ;
  }








|












|



|

|







2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
      amt -= nCopy;
      offset += nCopy;
    }
  }
#endif

#if SQLITE_OS_WINCE
  if( winSeekFile(pFile, offset) ){
    OSTRACE(("READ file=%p, rc=SQLITE_FULL\n", pFile->h));
    return SQLITE_FULL;
  }
  while( !osReadFile(pFile->h, pBuf, amt, &nRead, 0) ){
#else
  memset(&overlapped, 0, sizeof(OVERLAPPED));
  overlapped.Offset = (LONG)(offset & 0xffffffff);
  overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
  while( !osReadFile(pFile->h, pBuf, amt, &nRead, &overlapped) &&
         osGetLastError()!=ERROR_HANDLE_EOF ){
#endif
    DWORD lastErrno;
    if( winRetryIoerr(&nRetry, &lastErrno) ) continue;
    pFile->lastErrno = lastErrno;
    OSTRACE(("READ file=%p, rc=SQLITE_IOERR_READ\n", pFile->h));
    return winLogError(SQLITE_IOERR_READ, pFile->lastErrno,
                       "winRead", pFile->zPath);
  }
  winLogIoerr(nRetry);
  if( nRead<(DWORD)amt ){
    /* Unread parts of the buffer must be zero-filled */
    memset(&((char*)pBuf)[nRead], 0, amt-nRead);
    OSTRACE(("READ file=%p, rc=SQLITE_IOERR_SHORT_READ\n", pFile->h));
    return SQLITE_IOERR_SHORT_READ;
  }

2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
      amt -= nCopy;
      offset += nCopy;
    }
  }
#endif

#if SQLITE_OS_WINCE
  rc = seekWinFile(pFile, offset);
  if( rc==0 ){
#else
  {
#endif
#if !SQLITE_OS_WINCE
    OVERLAPPED overlapped;        /* The offset for WriteFile. */
#endif







|







2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
      amt -= nCopy;
      offset += nCopy;
    }
  }
#endif

#if SQLITE_OS_WINCE
  rc = winSeekFile(pFile, offset);
  if( rc==0 ){
#else
  {
#endif
#if !SQLITE_OS_WINCE
    OVERLAPPED overlapped;        /* The offset for WriteFile. */
#endif
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288

    while( nRem>0 ){
#if SQLITE_OS_WINCE
      if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){
#else
      if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, &overlapped) ){
#endif
        if( retryIoerr(&nRetry, &lastErrno) ) continue;
        break;
      }
      assert( nWrite==0 || nWrite<=(DWORD)nRem );
      if( nWrite==0 || nWrite>(DWORD)nRem ){
        lastErrno = osGetLastError();
        break;
      }







|







2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352

    while( nRem>0 ){
#if SQLITE_OS_WINCE
      if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){
#else
      if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, &overlapped) ){
#endif
        if( winRetryIoerr(&nRetry, &lastErrno) ) continue;
        break;
      }
      assert( nWrite==0 || nWrite<=(DWORD)nRem );
      if( nWrite==0 || nWrite>(DWORD)nRem ){
        lastErrno = osGetLastError();
        break;
      }
2300
2301
2302
2303
2304
2305
2306
2307

2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
    }
  }

  if( rc ){
    if(   ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL )
       || ( pFile->lastErrno==ERROR_DISK_FULL )){
      OSTRACE(("WRITE file=%p, rc=SQLITE_FULL\n", pFile->h));
      return SQLITE_FULL;

    }
    OSTRACE(("WRITE file=%p, rc=SQLITE_IOERR_WRITE\n", pFile->h));
    return winLogError(SQLITE_IOERR_WRITE, pFile->lastErrno,
             "winWrite", pFile->zPath);
  }else{
    logIoerr(nRetry);
  }
  OSTRACE(("WRITE file=%p, rc=SQLITE_OK\n", pFile->h));
  return SQLITE_OK;
}

/*
** Truncate an open file to a specified size







|
>



|

|







2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
    }
  }

  if( rc ){
    if(   ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL )
       || ( pFile->lastErrno==ERROR_DISK_FULL )){
      OSTRACE(("WRITE file=%p, rc=SQLITE_FULL\n", pFile->h));
      return winLogError(SQLITE_FULL, pFile->lastErrno,
                         "winWrite1", pFile->zPath);
    }
    OSTRACE(("WRITE file=%p, rc=SQLITE_IOERR_WRITE\n", pFile->h));
    return winLogError(SQLITE_IOERR_WRITE, pFile->lastErrno,
                       "winWrite2", pFile->zPath);
  }else{
    winLogIoerr(nRetry);
  }
  OSTRACE(("WRITE file=%p, rc=SQLITE_OK\n", pFile->h));
  return SQLITE_OK;
}

/*
** Truncate an open file to a specified size
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
  ** size).
  */
  if( pFile->szChunk>0 ){
    nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
  }

  /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */
  if( seekWinFile(pFile, nByte) ){
    rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno,
                     "winTruncate1", pFile->zPath);
  }else if( 0==osSetEndOfFile(pFile->h) &&
            ((lastErrno = osGetLastError())!=ERROR_USER_MAPPED_FILE) ){
    pFile->lastErrno = lastErrno;
    rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno,
                     "winTruncate2", pFile->zPath);







|







2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
  ** size).
  */
  if( pFile->szChunk>0 ){
    nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
  }

  /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */
  if( winSeekFile(pFile, nByte) ){
    rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno,
                     "winTruncate1", pFile->zPath);
  }else if( 0==osSetEndOfFile(pFile->h) &&
            ((lastErrno = osGetLastError())!=ERROR_USER_MAPPED_FILE) ){
    pFile->lastErrno = lastErrno;
    rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno,
                     "winTruncate2", pFile->zPath);
2416
2417
2418
2419
2420
2421
2422

2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
  sqlite3_sync_count++;
#endif

  /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
  ** no-op
  */
#ifdef SQLITE_NO_SYNC

  return SQLITE_OK;
#else
  rc = osFlushFileBuffers(pFile->h);
  SimulateIOError( rc=FALSE );
  if( rc ){
    OSTRACE(("SYNC file=%p, rc=SQLITE_OK\n", pFile->h));
    return SQLITE_OK;
  }else{
    pFile->lastErrno = osGetLastError();
    OSTRACE(("SYNC file=%p, rc=SQLITE_IOERR_FSYNC\n", pFile->h));
    return winLogError(SQLITE_IOERR_FSYNC, pFile->lastErrno,
             "winSync", pFile->zPath);
  }
#endif
}

/*
** Determine the current size of a file in bytes
*/







>











|







2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
  sqlite3_sync_count++;
#endif

  /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
  ** no-op
  */
#ifdef SQLITE_NO_SYNC
  OSTRACE(("SYNC-NOP file=%p, rc=SQLITE_OK\n", pFile->h));
  return SQLITE_OK;
#else
  rc = osFlushFileBuffers(pFile->h);
  SimulateIOError( rc=FALSE );
  if( rc ){
    OSTRACE(("SYNC file=%p, rc=SQLITE_OK\n", pFile->h));
    return SQLITE_OK;
  }else{
    pFile->lastErrno = osGetLastError();
    OSTRACE(("SYNC file=%p, rc=SQLITE_IOERR_FSYNC\n", pFile->h));
    return winLogError(SQLITE_IOERR_FSYNC, pFile->lastErrno,
                       "winSync", pFile->zPath);
  }
#endif
}

/*
** Determine the current size of a file in bytes
*/
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482

    lowerBits = osGetFileSize(pFile->h, &upperBits);
    *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits;
    if(   (lowerBits == INVALID_FILE_SIZE)
       && ((lastErrno = osGetLastError())!=NO_ERROR) ){
      pFile->lastErrno = lastErrno;
      rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno,
             "winFileSize", pFile->zPath);
    }
  }
#endif
  OSTRACE(("SIZE file=%p, pSize=%p, *pSize=%lld, rc=%s\n",
           pFile->h, pSize, *pSize, sqlite3ErrName(rc)));
  return rc;
}







|







2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548

    lowerBits = osGetFileSize(pFile->h, &upperBits);
    *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits;
    if(   (lowerBits == INVALID_FILE_SIZE)
       && ((lastErrno = osGetLastError())!=NO_ERROR) ){
      pFile->lastErrno = lastErrno;
      rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno,
                       "winFileSize", pFile->zPath);
    }
  }
#endif
  OSTRACE(("SIZE file=%p, pSize=%p, *pSize=%lld, rc=%s\n",
           pFile->h, pSize, *pSize, sqlite3ErrName(rc)));
  return rc;
}
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
#endif

/*
** Acquire a reader lock.
** Different API routines are called depending on whether or not this
** is Win9x or WinNT.
*/
static int getReadLock(winFile *pFile){
  int res;
  OSTRACE(("READ-LOCK file=%p, lock=%d\n", pFile->h, pFile->locktype));
  if( isNT() ){
#if SQLITE_OS_WINCE
    /*
    ** NOTE: Windows CE is handled differently here due its lack of the Win32
    **       API LockFileEx.
    */
    res = winceLockFile(&pFile->h, SHARED_FIRST, 0, 1, 0);
#else







|


|







2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
#endif

/*
** Acquire a reader lock.
** Different API routines are called depending on whether or not this
** is Win9x or WinNT.
*/
static int winGetReadLock(winFile *pFile){
  int res;
  OSTRACE(("READ-LOCK file=%p, lock=%d\n", pFile->h, pFile->locktype));
  if( osIsNT() ){
#if SQLITE_OS_WINCE
    /*
    ** NOTE: Windows CE is handled differently here due its lack of the Win32
    **       API LockFileEx.
    */
    res = winceLockFile(&pFile->h, SHARED_FIRST, 0, 1, 0);
#else
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
  OSTRACE(("READ-LOCK file=%p, rc=%s\n", pFile->h, sqlite3ErrName(res)));
  return res;
}

/*
** Undo a readlock
*/
static int unlockReadLock(winFile *pFile){
  int res;
  DWORD lastErrno;
  OSTRACE(("READ-UNLOCK file=%p, lock=%d\n", pFile->h, pFile->locktype));
  if( isNT() ){
    res = winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    res = winUnlockFile(&pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
  }
#endif
  if( res==0 && ((lastErrno = osGetLastError())!=ERROR_NOT_LOCKED) ){
    pFile->lastErrno = lastErrno;
    winLogError(SQLITE_IOERR_UNLOCK, pFile->lastErrno,
             "unlockReadLock", pFile->zPath);
  }
  OSTRACE(("READ-UNLOCK file=%p, rc=%s\n", pFile->h, sqlite3ErrName(res)));
  return res;
}

/*
** Lock the file with the lock specified by parameter locktype - one







|



|










|







2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
  OSTRACE(("READ-LOCK file=%p, rc=%s\n", pFile->h, sqlite3ErrName(res)));
  return res;
}

/*
** Undo a readlock
*/
static int winUnlockReadLock(winFile *pFile){
  int res;
  DWORD lastErrno;
  OSTRACE(("READ-UNLOCK file=%p, lock=%d\n", pFile->h, pFile->locktype));
  if( osIsNT() ){
    res = winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    res = winUnlockFile(&pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
  }
#endif
  if( res==0 && ((lastErrno = osGetLastError())!=ERROR_NOT_LOCKED) ){
    pFile->lastErrno = lastErrno;
    winLogError(SQLITE_IOERR_UNLOCK, pFile->lastErrno,
                "winUnlockReadLock", pFile->zPath);
  }
  OSTRACE(("READ-UNLOCK file=%p, rc=%s\n", pFile->h, sqlite3ErrName(res)));
  return res;
}

/*
** Lock the file with the lock specified by parameter locktype - one
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
    }
  }

  /* Acquire a shared lock
  */
  if( locktype==SHARED_LOCK && res ){
    assert( pFile->locktype==NO_LOCK );
    res = getReadLock(pFile);
    if( res ){
      newLocktype = SHARED_LOCK;
    }else{
      lastErrno = osGetLastError();
    }
  }








|







2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
    }
  }

  /* Acquire a shared lock
  */
  if( locktype==SHARED_LOCK && res ){
    assert( pFile->locktype==NO_LOCK );
    res = winGetReadLock(pFile);
    if( res ){
      newLocktype = SHARED_LOCK;
    }else{
      lastErrno = osGetLastError();
    }
  }

2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719


2720
2721
2722
2723
2724
2725
2726
    gotPendingLock = 0;
  }

  /* Acquire an EXCLUSIVE lock
  */
  if( locktype==EXCLUSIVE_LOCK && res ){
    assert( pFile->locktype>=SHARED_LOCK );
    res = unlockReadLock(pFile);
    res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, SHARED_FIRST, 0,
                      SHARED_SIZE, 0);
    if( res ){
      newLocktype = EXCLUSIVE_LOCK;
    }else{
      lastErrno = osGetLastError();
      getReadLock(pFile);
    }
  }

  /* If we are holding a PENDING lock that ought to be released, then
  ** release it now.
  */
  if( gotPendingLock && locktype==SHARED_LOCK ){
    winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0);
  }

  /* Update the state of the lock has held in the file descriptor then
  ** return the appropriate result code.
  */
  if( res ){
    rc = SQLITE_OK;
  }else{
    OSTRACE(("LOCK-FAIL file=%p, wanted=%d, got=%d\n",
             pFile->h, locktype, newLocktype));
    pFile->lastErrno = lastErrno;
    rc = SQLITE_BUSY;


  }
  pFile->locktype = (u8)newLocktype;
  OSTRACE(("LOCK file=%p, lock=%d, rc=%s\n",
           pFile->h, pFile->locktype, sqlite3ErrName(rc)));
  return rc;
}








|






|
















<
<


>
>







2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781


2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
    gotPendingLock = 0;
  }

  /* Acquire an EXCLUSIVE lock
  */
  if( locktype==EXCLUSIVE_LOCK && res ){
    assert( pFile->locktype>=SHARED_LOCK );
    res = winUnlockReadLock(pFile);
    res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, SHARED_FIRST, 0,
                      SHARED_SIZE, 0);
    if( res ){
      newLocktype = EXCLUSIVE_LOCK;
    }else{
      lastErrno = osGetLastError();
      winGetReadLock(pFile);
    }
  }

  /* If we are holding a PENDING lock that ought to be released, then
  ** release it now.
  */
  if( gotPendingLock && locktype==SHARED_LOCK ){
    winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0);
  }

  /* Update the state of the lock has held in the file descriptor then
  ** return the appropriate result code.
  */
  if( res ){
    rc = SQLITE_OK;
  }else{


    pFile->lastErrno = lastErrno;
    rc = SQLITE_BUSY;
    OSTRACE(("LOCK-FAIL file=%p, wanted=%d, got=%d\n",
             pFile->h, locktype, newLocktype));
  }
  pFile->locktype = (u8)newLocktype;
  OSTRACE(("LOCK file=%p, lock=%d, rc=%s\n",
           pFile->h, pFile->locktype, sqlite3ErrName(rc)));
  return rc;
}

2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
  assert( pFile!=0 );
  assert( locktype<=SHARED_LOCK );
  OSTRACE(("UNLOCK file=%p, oldLock=%d(%d), newLock=%d\n",
           pFile->h, pFile->locktype, pFile->sharedLockByte, locktype));
  type = pFile->locktype;
  if( type>=EXCLUSIVE_LOCK ){
    winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
    if( locktype==SHARED_LOCK && !getReadLock(pFile) ){
      /* This should never happen.  We should always be able to
      ** reacquire the read lock */
      rc = winLogError(SQLITE_IOERR_UNLOCK, osGetLastError(),
               "winUnlock", pFile->zPath);
    }
  }
  if( type>=RESERVED_LOCK ){
    winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0);
  }
  if( locktype==NO_LOCK && type>=SHARED_LOCK ){
    unlockReadLock(pFile);
  }
  if( type>=PENDING_LOCK ){
    winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0);
  }
  pFile->locktype = (u8)locktype;
  OSTRACE(("UNLOCK file=%p, lock=%d, rc=%s\n",
           pFile->h, pFile->locktype, sqlite3ErrName(rc)));







|



|






|







2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
  assert( pFile!=0 );
  assert( locktype<=SHARED_LOCK );
  OSTRACE(("UNLOCK file=%p, oldLock=%d(%d), newLock=%d\n",
           pFile->h, pFile->locktype, pFile->sharedLockByte, locktype));
  type = pFile->locktype;
  if( type>=EXCLUSIVE_LOCK ){
    winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
    if( locktype==SHARED_LOCK && !winGetReadLock(pFile) ){
      /* This should never happen.  We should always be able to
      ** reacquire the read lock */
      rc = winLogError(SQLITE_IOERR_UNLOCK, osGetLastError(),
                       "winUnlock", pFile->zPath);
    }
  }
  if( type>=RESERVED_LOCK ){
    winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0);
  }
  if( locktype==NO_LOCK && type>=SHARED_LOCK ){
    winUnlockReadLock(pFile);
  }
  if( type>=PENDING_LOCK ){
    winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0);
  }
  pFile->locktype = (u8)locktype;
  OSTRACE(("UNLOCK file=%p, lock=%d, rc=%s\n",
           pFile->h, pFile->locktype, sqlite3ErrName(rc)));
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821

2822
2823
2824
2825
2826
2827
2828
  }else if( (*pArg)==0 ){
    pFile->ctrlFlags &= ~mask;
  }else{
    pFile->ctrlFlags |= mask;
  }
}

/* Forward declaration */
static int getTempname(int nBuf, char *zBuf);
#if SQLITE_MAX_MMAP_SIZE>0
static int winMapfile(winFile*, sqlite3_int64);
#endif


/*
** Control and query of the open file handle.
*/
static int winFileControl(sqlite3_file *id, int op, void *pArg){
  winFile *pFile = (winFile*)id;
  OSTRACE(("FCNTL file=%p, op=%d, pArg=%p\n", pFile->h, op, pArg));







|
|
<
|
<
>







2876
2877
2878
2879
2880
2881
2882
2883
2884

2885

2886
2887
2888
2889
2890
2891
2892
2893
  }else if( (*pArg)==0 ){
    pFile->ctrlFlags &= ~mask;
  }else{
    pFile->ctrlFlags |= mask;
  }
}

/* Forward references to VFS helper methods used for temporary files */
static int winGetTempname(sqlite3_vfs *, char **);

static int winIsDir(const void *);

static BOOL winIsDriveLetterAndColon(const char *);

/*
** Control and query of the open file handle.
*/
static int winFileControl(sqlite3_file *id, int op, void *pArg){
  winFile *pFile = (winFile*)id;
  OSTRACE(("FCNTL file=%p, op=%d, pArg=%p\n", pFile->h, op, pArg));
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896

2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
      *(char**)pArg = sqlite3_mprintf("win32");
      OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_WIN32_AV_RETRY: {
      int *a = (int*)pArg;
      if( a[0]>0 ){
        win32IoerrRetry = a[0];
      }else{
        a[0] = win32IoerrRetry;
      }
      if( a[1]>0 ){
        win32IoerrRetryDelay = a[1];
      }else{
        a[1] = win32IoerrRetryDelay;
      }
      OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_TEMPFILENAME: {
      char *zTFile = sqlite3MallocZero( pFile->pVfs->mxPathname );
      if( zTFile ){
        getTempname(pFile->pVfs->mxPathname, zTFile);

        *(char**)pArg = zTFile;
      }
      OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
      return SQLITE_OK;
    }
#if SQLITE_MAX_MMAP_SIZE>0
    case SQLITE_FCNTL_MMAP_SIZE: {
      i64 newLimit = *(i64*)pArg;
      int rc = SQLITE_OK;
      if( newLimit>sqlite3GlobalConfig.mxMmap ){
        newLimit = sqlite3GlobalConfig.mxMmap;
      }
      *(i64*)pArg = pFile->mmapSizeMax;
      if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
        pFile->mmapSizeMax = newLimit;
        if( pFile->mmapSize>0 ){
          (void)winUnmapfile(pFile);
          rc = winMapfile(pFile, -1);
        }
      }
      OSTRACE(("FCNTL file=%p, rc=%d\n", pFile->h, rc));
      return rc;
    }
#endif
  }
  OSTRACE(("FCNTL file=%p, rc=SQLITE_NOTFOUND\n", pFile->h));
  return SQLITE_NOTFOUND;
}







|

|


|

|





|
<
|
>


|
|
















|







2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959

2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
      *(char**)pArg = sqlite3_mprintf("win32");
      OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_WIN32_AV_RETRY: {
      int *a = (int*)pArg;
      if( a[0]>0 ){
        winIoerrRetry = a[0];
      }else{
        a[0] = winIoerrRetry;
      }
      if( a[1]>0 ){
        winIoerrRetryDelay = a[1];
      }else{
        a[1] = winIoerrRetryDelay;
      }
      OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_TEMPFILENAME: {
      char *zTFile = 0;

      int rc = winGetTempname(pFile->pVfs, &zTFile);
      if( rc==SQLITE_OK ){
        *(char**)pArg = zTFile;
      }
      OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
      return rc;
    }
#if SQLITE_MAX_MMAP_SIZE>0
    case SQLITE_FCNTL_MMAP_SIZE: {
      i64 newLimit = *(i64*)pArg;
      int rc = SQLITE_OK;
      if( newLimit>sqlite3GlobalConfig.mxMmap ){
        newLimit = sqlite3GlobalConfig.mxMmap;
      }
      *(i64*)pArg = pFile->mmapSizeMax;
      if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
        pFile->mmapSizeMax = newLimit;
        if( pFile->mmapSize>0 ){
          (void)winUnmapfile(pFile);
          rc = winMapfile(pFile, -1);
        }
      }
      OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
      return rc;
    }
#endif
  }
  OSTRACE(("FCNTL file=%p, rc=SQLITE_NOTFOUND\n", pFile->h));
  return SQLITE_NOTFOUND;
}
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
    /* Check to see if another process is holding the dead-man switch.
    ** If not, truncate the file to zero length. 
    */
    if( winShmSystemLock(pShmNode, _SHM_WRLCK, WIN_SHM_DMS, 1)==SQLITE_OK ){
      rc = winTruncate((sqlite3_file *)&pShmNode->hFile, 0);
      if( rc!=SQLITE_OK ){
        rc = winLogError(SQLITE_IOERR_SHMOPEN, osGetLastError(),
                 "winOpenShm", pDbFd->zPath);
      }
    }
    if( rc==SQLITE_OK ){
      winShmSystemLock(pShmNode, _SHM_UNLCK, WIN_SHM_DMS, 1);
      rc = winShmSystemLock(pShmNode, _SHM_RDLCK, WIN_SHM_DMS, 1);
    }
    if( rc ) goto shm_open_err;







|







3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
    /* Check to see if another process is holding the dead-man switch.
    ** If not, truncate the file to zero length. 
    */
    if( winShmSystemLock(pShmNode, _SHM_WRLCK, WIN_SHM_DMS, 1)==SQLITE_OK ){
      rc = winTruncate((sqlite3_file *)&pShmNode->hFile, 0);
      if( rc!=SQLITE_OK ){
        rc = winLogError(SQLITE_IOERR_SHMOPEN, osGetLastError(),
                         "winOpenShm", pDbFd->zPath);
      }
    }
    if( rc==SQLITE_OK ){
      winShmSystemLock(pShmNode, _SHM_UNLCK, WIN_SHM_DMS, 1);
      rc = winShmSystemLock(pShmNode, _SHM_RDLCK, WIN_SHM_DMS, 1);
    }
    if( rc ) goto shm_open_err;
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
    /* The requested region is not mapped into this processes address space.
    ** Check to see if it has been allocated (i.e. if the wal-index file is
    ** large enough to contain the requested region).
    */
    rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz);
    if( rc!=SQLITE_OK ){
      rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(),
               "winShmMap1", pDbFd->zPath);
      goto shmpage_out;
    }

    if( sz<nByte ){
      /* The requested memory region does not exist. If isWrite is set to
      ** zero, exit early. *pp will be set to NULL and SQLITE_OK returned.
      **
      ** Alternatively, if isWrite is non-zero, use ftruncate() to allocate
      ** the requested memory region.
      */
      if( !isWrite ) goto shmpage_out;
      rc = winTruncate((sqlite3_file *)&pShmNode->hFile, nByte);
      if( rc!=SQLITE_OK ){
        rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(),
                 "winShmMap2", pDbFd->zPath);
        goto shmpage_out;
      }
    }

    /* Map the requested memory region into this processes address space. */
    apNew = (struct ShmRegion *)sqlite3_realloc(
        pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0])







|














|







3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
    /* The requested region is not mapped into this processes address space.
    ** Check to see if it has been allocated (i.e. if the wal-index file is
    ** large enough to contain the requested region).
    */
    rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz);
    if( rc!=SQLITE_OK ){
      rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(),
                       "winShmMap1", pDbFd->zPath);
      goto shmpage_out;
    }

    if( sz<nByte ){
      /* The requested memory region does not exist. If isWrite is set to
      ** zero, exit early. *pp will be set to NULL and SQLITE_OK returned.
      **
      ** Alternatively, if isWrite is non-zero, use ftruncate() to allocate
      ** the requested memory region.
      */
      if( !isWrite ) goto shmpage_out;
      rc = winTruncate((sqlite3_file *)&pShmNode->hFile, nByte);
      if( rc!=SQLITE_OK ){
        rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(),
                         "winShmMap2", pDbFd->zPath);
        goto shmpage_out;
      }
    }

    /* Map the requested memory region into this processes address space. */
    apNew = (struct ShmRegion *)sqlite3_realloc(
        pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0])
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
        OSTRACE(("SHM-MAP-MAP pid=%lu, region=%d, offset=%d, size=%d, rc=%s\n",
                 osGetCurrentProcessId(), pShmNode->nRegion, iOffset,
                 szRegion, pMap ? "ok" : "failed"));
      }
      if( !pMap ){
        pShmNode->lastErrno = osGetLastError();
        rc = winLogError(SQLITE_IOERR_SHMMAP, pShmNode->lastErrno,
                 "winShmMap3", pDbFd->zPath);
        if( hMap ) osCloseHandle(hMap);
        goto shmpage_out;
      }

      pShmNode->aRegion[pShmNode->nRegion].pMap = pMap;
      pShmNode->aRegion[pShmNode->nRegion].hMap = hMap;
      pShmNode->nRegion++;







|







3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
        OSTRACE(("SHM-MAP-MAP pid=%lu, region=%d, offset=%d, size=%d, rc=%s\n",
                 osGetCurrentProcessId(), pShmNode->nRegion, iOffset,
                 szRegion, pMap ? "ok" : "failed"));
      }
      if( !pMap ){
        pShmNode->lastErrno = osGetLastError();
        rc = winLogError(SQLITE_IOERR_SHMMAP, pShmNode->lastErrno,
                         "winShmMap3", pDbFd->zPath);
        if( hMap ) osCloseHandle(hMap);
        goto shmpage_out;
      }

      pShmNode->aRegion[pShmNode->nRegion].pMap = pMap;
      pShmNode->aRegion[pShmNode->nRegion].hMap = hMap;
      pShmNode->nRegion++;
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
  if( pFile->pMapRegion ){
    if( !osUnmapViewOfFile(pFile->pMapRegion) ){
      pFile->lastErrno = osGetLastError();
      OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, pMapRegion=%p, "
               "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile,
               pFile->pMapRegion));
      return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
                         "winUnmap1", pFile->zPath);
    }
    pFile->pMapRegion = 0;
    pFile->mmapSize = 0;
    pFile->mmapSizeActual = 0;
  }
  if( pFile->hMap!=NULL ){
    if( !osCloseHandle(pFile->hMap) ){
      pFile->lastErrno = osGetLastError();
      OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, rc=SQLITE_IOERR_MMAP\n",
               osGetCurrentProcessId(), pFile, pFile->hMap));
      return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
                         "winUnmap2", pFile->zPath);
    }
    pFile->hMap = NULL;
  }
  OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n",
           osGetCurrentProcessId(), pFile));
  return SQLITE_OK;
}







|











|







3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
  if( pFile->pMapRegion ){
    if( !osUnmapViewOfFile(pFile->pMapRegion) ){
      pFile->lastErrno = osGetLastError();
      OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, pMapRegion=%p, "
               "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile,
               pFile->pMapRegion));
      return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
                         "winUnmapfile1", pFile->zPath);
    }
    pFile->pMapRegion = 0;
    pFile->mmapSize = 0;
    pFile->mmapSizeActual = 0;
  }
  if( pFile->hMap!=NULL ){
    if( !osCloseHandle(pFile->hMap) ){
      pFile->lastErrno = osGetLastError();
      OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, rc=SQLITE_IOERR_MMAP\n",
               osGetCurrentProcessId(), pFile, pFile->hMap));
      return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
                         "winUnmapfile2", pFile->zPath);
    }
    pFile->hMap = NULL;
  }
  OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n",
           osGetCurrentProcessId(), pFile));
  return SQLITE_OK;
}
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703

3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715

3716
3717
3718
3719
3720
3721
3722
3723
3724
    pFd->hMap = osCreateFileMappingA(pFd->h, NULL, protect,
                                (DWORD)((nMap>>32) & 0xffffffff),
                                (DWORD)(nMap & 0xffffffff), NULL);
#endif
    if( pFd->hMap==NULL ){
      pFd->lastErrno = osGetLastError();
      rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno,
                       "winMapfile", pFd->zPath);
      /* Log the error, but continue normal operation using xRead/xWrite */
      OSTRACE(("MAP-FILE-CREATE pid=%lu, pFile=%p, rc=SQLITE_IOERR_MMAP\n",
               osGetCurrentProcessId(), pFd));
      return SQLITE_OK;
    }
    assert( (nMap % winSysInfo.dwPageSize)==0 );

#if SQLITE_OS_WINRT
    pNew = osMapViewOfFileFromApp(pFd->hMap, flags, 0, nMap);
#else
    assert( sizeof(SIZE_T)==sizeof(sqlite3_int64) || nMap<=0xffffffff );
    pNew = osMapViewOfFile(pFd->hMap, flags, 0, 0, (SIZE_T)nMap);
#endif
    if( pNew==NULL ){
      osCloseHandle(pFd->hMap);
      pFd->hMap = NULL;
      pFd->lastErrno = osGetLastError();
      winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno,
                  "winMapfile", pFd->zPath);

      OSTRACE(("MAP-FILE-MAP pid=%lu, pFile=%p, rc=SQLITE_IOERR_MMAP\n",
               osGetCurrentProcessId(), pFd));
      return SQLITE_OK;
    }
    pFd->pMapRegion = pNew;
    pFd->mmapSize = nMap;
    pFd->mmapSizeActual = nMap;
  }








|

|
|



>

|

<






|
|
>
|
|







3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772

3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
    pFd->hMap = osCreateFileMappingA(pFd->h, NULL, protect,
                                (DWORD)((nMap>>32) & 0xffffffff),
                                (DWORD)(nMap & 0xffffffff), NULL);
#endif
    if( pFd->hMap==NULL ){
      pFd->lastErrno = osGetLastError();
      rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno,
                       "winMapfile1", pFd->zPath);
      /* Log the error, but continue normal operation using xRead/xWrite */
      OSTRACE(("MAP-FILE-CREATE pid=%lu, pFile=%p, rc=%s\n",
               osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
      return SQLITE_OK;
    }
    assert( (nMap % winSysInfo.dwPageSize)==0 );
    assert( sizeof(SIZE_T)==sizeof(sqlite3_int64) || nMap<=0xffffffff );
#if SQLITE_OS_WINRT
    pNew = osMapViewOfFileFromApp(pFd->hMap, flags, 0, (SIZE_T)nMap);
#else

    pNew = osMapViewOfFile(pFd->hMap, flags, 0, 0, (SIZE_T)nMap);
#endif
    if( pNew==NULL ){
      osCloseHandle(pFd->hMap);
      pFd->hMap = NULL;
      pFd->lastErrno = osGetLastError();
      rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno,
                       "winMapfile2", pFd->zPath);
      /* Log the error, but continue normal operation using xRead/xWrite */
      OSTRACE(("MAP-FILE-MAP pid=%lu, pFile=%p, rc=%s\n",
               osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
      return SQLITE_OK;
    }
    pFd->pMapRegion = pNew;
    pFd->mmapSize = nMap;
    pFd->mmapSizeActual = nMap;
  }

3848
3849
3850
3851
3852
3853
3854



















3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876




3877





3878



3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894



3895




3896






3897

3898

3899



















































































3900
3901
3902

3903




3904






3905
3906
3907
3908

3909


3910
3911
3912
3913
3914
3915
3916

3917




3918





3919
3920
3921
3922
3923

3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936

3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953

3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999

/****************************************************************************
**************************** sqlite3_vfs methods ****************************
**
** This division contains the implementation of methods on the
** sqlite3_vfs object.
*/




















/*
** Convert a UTF-8 filename into whatever form the underlying
** operating system wants filenames in.  Space to hold the result
** is obtained from malloc and must be freed by the calling
** function.
*/
static void *convertUtf8Filename(const char *zFilename){
  void *zConverted = 0;
  if( isNT() ){
    zConverted = utf8ToUnicode(zFilename);
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    zConverted = sqlite3_win32_utf8_to_mbcs(zFilename);
  }
#endif
  /* caller will handle out of memory */
  return zConverted;
}

/*




** Create a temporary file name in zBuf.  zBuf must be big enough to





** hold at pVfs->mxPathname characters.



*/
static int getTempname(int nBuf, char *zBuf){
  static char zChars[] =
    "abcdefghijklmnopqrstuvwxyz"
    "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
    "0123456789";
  size_t i, j;
  int nTempPath;
  char zTempPath[MAX_PATH+2];

  /* It's odd to simulate an io-error here, but really this is just
  ** using the io-error infrastructure to test that SQLite handles this
  ** function failing. 
  */
  SimulateIOError( return SQLITE_IOERR );




  memset(zTempPath, 0, MAX_PATH+2);











  if( sqlite3_temp_directory ){

    sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory);

  }



















































































#if !SQLITE_OS_WINRT
  else if( isNT() ){
    char *zMulti;

    WCHAR zWidePath[MAX_PATH];




    osGetTempPathW(MAX_PATH-30, zWidePath);






    zMulti = unicodeToUtf8(zWidePath);
    if( zMulti ){
      sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti);
      sqlite3_free(zMulti);

    }else{


      OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
      return SQLITE_IOERR_NOMEM;
    }
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    char *zUtf8;

    char zMbcsPath[MAX_PATH];




    osGetTempPathA(MAX_PATH-30, zMbcsPath);





    zUtf8 = sqlite3_win32_mbcs_to_utf8(zMbcsPath);
    if( zUtf8 ){
      sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8);
      sqlite3_free(zUtf8);
    }else{

      OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
      return SQLITE_IOERR_NOMEM;
    }
  }
#endif
#endif

  /* Check that the output buffer is large enough for the temporary file 
  ** name. If it is not, return SQLITE_ERROR.
  */
  nTempPath = sqlite3Strlen30(zTempPath);

  if( (nTempPath + sqlite3Strlen30(SQLITE_TEMP_FILE_PREFIX) + 18) >= nBuf ){

    OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
    return SQLITE_ERROR;
  }

  for(i=nTempPath; i>0 && zTempPath[i-1]=='\\'; i--){}
  zTempPath[i] = 0;

  sqlite3_snprintf(nBuf-18, zBuf, (nTempPath > 0) ?
                       "%s\\"SQLITE_TEMP_FILE_PREFIX : SQLITE_TEMP_FILE_PREFIX,
                   zTempPath);
  j = sqlite3Strlen30(zBuf);
  sqlite3_randomness(15, &zBuf[j]);
  for(i=0; i<15; i++, j++){
    zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
  }
  zBuf[j] = 0;
  zBuf[j+1] = 0;


  OSTRACE(("TEMP-FILENAME name=%s, rc=SQLITE_OK\n", zBuf));
  return SQLITE_OK;
}

/*
** Return TRUE if the named file is really a directory.  Return false if
** it is something other than a directory, or if there is any kind of memory
** allocation failure.
*/
static int winIsDir(const void *zConverted){
  DWORD attr;
  int rc = 0;
  DWORD lastErrno;

  if( isNT() ){
    int cnt = 0;
    WIN32_FILE_ATTRIBUTE_DATA sAttrData;
    memset(&sAttrData, 0, sizeof(sAttrData));
    while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted,
                             GetFileExInfoStandard,
                             &sAttrData)) && retryIoerr(&cnt, &lastErrno) ){}
    if( !rc ){
      return 0; /* Invalid name? */
    }
    attr = sAttrData.dwFileAttributes;
#if SQLITE_OS_WINCE==0
  }else{
    attr = osGetFileAttributesA((char*)zConverted);
#endif
  }
  return (attr!=INVALID_FILE_ATTRIBUTES) && (attr&FILE_ATTRIBUTE_DIRECTORY);
}

/*
** Open a file.
*/
static int winOpen(
  sqlite3_vfs *pVfs,        /* Not used */
  const char *zName,        /* Name of the file (UTF-8) */
  sqlite3_file *id,         /* Write the SQLite file handle here */
  int flags,                /* Open mode flags */
  int *pOutFlags            /* Status return flags */
){
  HANDLE h;
  DWORD lastErrno;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







|

|
|











>
>
>
>
|
>
>
>
>
>
|
>
>
>

|





|
|







>
>
>
|
>
>
>
>
|
>
>
>
>
>
>

>
|
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|

>
|
>
>
>
>
|
>
>
>
>
>
>
|

|

>

>
>







>
|
>
>
>
>
|
>
>
>
>
>


|


>




|
|




|

|
>

|


<
|

<
<
<







>















|





|
















|







3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161

4162
4163



4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217

/****************************************************************************
**************************** sqlite3_vfs methods ****************************
**
** This division contains the implementation of methods on the
** sqlite3_vfs object.
*/

/*
** Convert a filename from whatever the underlying operating system
** supports for filenames into UTF-8.  Space to hold the result is
** obtained from malloc and must be freed by the calling function.
*/
static char *winConvertToUtf8Filename(const void *zFilename){
  char *zConverted = 0;
  if( osIsNT() ){
    zConverted = winUnicodeToUtf8(zFilename);
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    zConverted = sqlite3_win32_mbcs_to_utf8(zFilename);
  }
#endif
  /* caller will handle out of memory */
  return zConverted;
}

/*
** Convert a UTF-8 filename into whatever form the underlying
** operating system wants filenames in.  Space to hold the result
** is obtained from malloc and must be freed by the calling
** function.
*/
static void *winConvertFromUtf8Filename(const char *zFilename){
  void *zConverted = 0;
  if( osIsNT() ){
    zConverted = winUtf8ToUnicode(zFilename);
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    zConverted = sqlite3_win32_utf8_to_mbcs(zFilename);
  }
#endif
  /* caller will handle out of memory */
  return zConverted;
}

/*
** This function returns non-zero if the specified UTF-8 string buffer
** ends with a directory separator character.
*/
static int winEndsInDirSep(char *zBuf){
  if( zBuf ){
    int nLen = sqlite3Strlen30(zBuf);
    return nLen>0 && winIsDirSep(zBuf[nLen-1]);
  }
  return 0;
}

/*
** Create a temporary file name and store the resulting pointer into pzBuf.
** The pointer returned in pzBuf must be freed via sqlite3_free().
*/
static int winGetTempname(sqlite3_vfs *pVfs, char **pzBuf){
  static char zChars[] =
    "abcdefghijklmnopqrstuvwxyz"
    "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
    "0123456789";
  size_t i, j;
  int nBuf, nLen;
  char *zBuf;

  /* It's odd to simulate an io-error here, but really this is just
  ** using the io-error infrastructure to test that SQLite handles this
  ** function failing. 
  */
  SimulateIOError( return SQLITE_IOERR );

  /* Allocate a temporary buffer to store the fully qualified file
  ** name for the temporary file.  If this fails, we cannot continue.
  */
  nBuf = pVfs->mxPathname;
  zBuf = sqlite3MallocZero( nBuf+2 );
  if( !zBuf ){
    OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
    return SQLITE_IOERR_NOMEM;
  }

  /* Figure out the effective temporary directory.  First, check if one
  ** has been explicitly set by the application; otherwise, use the one
  ** configured by the operating system.
  */
  assert( nBuf>30 );
  if( sqlite3_temp_directory ){
    sqlite3_snprintf(nBuf-30, zBuf, "%s%s", sqlite3_temp_directory,
                     winEndsInDirSep(sqlite3_temp_directory) ? "" :
                     winGetDirDep());
  }
#if defined(__CYGWIN__)
  else{
    static const char *azDirs[] = {
       0, /* getenv("SQLITE_TMPDIR") */
       0, /* getenv("TMPDIR") */
       0, /* getenv("TMP") */
       0, /* getenv("TEMP") */
       0, /* getenv("USERPROFILE") */
       "/var/tmp",
       "/usr/tmp",
       "/tmp",
       ".",
       0        /* List terminator */
    };
    unsigned int i;
    const char *zDir = 0;

    if( !azDirs[0] ) azDirs[0] = getenv("SQLITE_TMPDIR");
    if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
    if( !azDirs[2] ) azDirs[2] = getenv("TMP");
    if( !azDirs[3] ) azDirs[3] = getenv("TEMP");
    if( !azDirs[4] ) azDirs[4] = getenv("USERPROFILE");
    for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
      void *zConverted;
      if( zDir==0 ) continue;
      /* If the path starts with a drive letter followed by the colon
      ** character, assume it is already a native Win32 path; otherwise,
      ** it must be converted to a native Win32 path prior via the Cygwin
      ** API prior to using it.
      */
      if( winIsDriveLetterAndColon(zDir) ){
        zConverted = winConvertFromUtf8Filename(zDir);
        if( !zConverted ){
          OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
          return SQLITE_IOERR_NOMEM;
        }
        if( winIsDir(zConverted) ){
          sqlite3_snprintf(nBuf-30, zBuf, "%s", zDir);
          sqlite3_free(zConverted);
          break;
        }
        sqlite3_free(zConverted);
      }else{
        zConverted = sqlite3MallocZero( nBuf+1 );
        if( !zConverted ){
          OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
          return SQLITE_IOERR_NOMEM;
        }
        if( cygwin_conv_path(
                osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A, zDir,
                zConverted, nBuf+1)<0 ){
          sqlite3_free(zConverted);
          OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_CONVPATH\n"));
          return winLogError(SQLITE_IOERR_CONVPATH, (DWORD)errno,
                             "winGetTempname1", zDir);
        }
        if( winIsDir(zConverted) ){
          /* At this point, we know the candidate directory exists and should
          ** be used.  However, we may need to convert the string containing
          ** its name into UTF-8 (i.e. if it is UTF-16 right now).
          */
          if( osIsNT() ){
            char *zUtf8 = winUnicodeToUtf8(zConverted);
            if( !zUtf8 ){
              sqlite3_free(zConverted);
              OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
              return SQLITE_IOERR_NOMEM;
            }
            sqlite3_snprintf(nBuf-30, zBuf, "%s", zUtf8);
            sqlite3_free(zUtf8);
            sqlite3_free(zConverted);
            break;
          }else{
            sqlite3_snprintf(nBuf-30, zBuf, "%s", zConverted);
            sqlite3_free(zConverted);
            break;
          }
        }
        sqlite3_free(zConverted);
      }
      break;
    }
  }
#elif !SQLITE_OS_WINRT && !defined(__CYGWIN__)
  else if( osIsNT() ){
    char *zMulti;
    LPWSTR zWidePath = sqlite3MallocZero( nBuf*sizeof(WCHAR) );
    if( !zWidePath ){
      sqlite3_free(zBuf);
      OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
      return SQLITE_IOERR_NOMEM;
    }
    if( osGetTempPathW(nBuf, zWidePath)==0 ){
      sqlite3_free(zWidePath);
      sqlite3_free(zBuf);
      OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_GETTEMPPATH\n"));
      return winLogError(SQLITE_IOERR_GETTEMPPATH, osGetLastError(),
                         "winGetTempname1", 0);
    }
    zMulti = winUnicodeToUtf8(zWidePath);
    if( zMulti ){
      sqlite3_snprintf(nBuf-30, zBuf, "%s", zMulti);
      sqlite3_free(zMulti);
      sqlite3_free(zWidePath);
    }else{
      sqlite3_free(zWidePath);
      sqlite3_free(zBuf);
      OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
      return SQLITE_IOERR_NOMEM;
    }
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    char *zUtf8;
    char *zMbcsPath = sqlite3MallocZero( nBuf );
    if( !zMbcsPath ){
      sqlite3_free(zBuf);
      OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
      return SQLITE_IOERR_NOMEM;
    }
    if( osGetTempPathA(nBuf, zMbcsPath)==0 ){
      sqlite3_free(zBuf);
      OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_GETTEMPPATH\n"));
      return winLogError(SQLITE_IOERR_GETTEMPPATH, osGetLastError(),
                         "winGetTempname2", 0);
    }
    zUtf8 = sqlite3_win32_mbcs_to_utf8(zMbcsPath);
    if( zUtf8 ){
      sqlite3_snprintf(nBuf-30, zBuf, "%s", zUtf8);
      sqlite3_free(zUtf8);
    }else{
      sqlite3_free(zBuf);
      OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
      return SQLITE_IOERR_NOMEM;
    }
  }
#endif /* SQLITE_WIN32_HAS_ANSI */
#endif /* !SQLITE_OS_WINRT */

  /* Check that the output buffer is large enough for the temporary file 
  ** name. If it is not, return SQLITE_ERROR.
  */
  nLen = sqlite3Strlen30(zBuf);

  if( (nLen + sqlite3Strlen30(SQLITE_TEMP_FILE_PREFIX) + 18) >= nBuf ){
    sqlite3_free(zBuf);
    OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
    return winLogError(SQLITE_ERROR, 0, "winGetTempname3", 0);
  }


  sqlite3_snprintf(nBuf-18-nLen, zBuf+nLen, SQLITE_TEMP_FILE_PREFIX);




  j = sqlite3Strlen30(zBuf);
  sqlite3_randomness(15, &zBuf[j]);
  for(i=0; i<15; i++, j++){
    zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
  }
  zBuf[j] = 0;
  zBuf[j+1] = 0;
  *pzBuf = zBuf;

  OSTRACE(("TEMP-FILENAME name=%s, rc=SQLITE_OK\n", zBuf));
  return SQLITE_OK;
}

/*
** Return TRUE if the named file is really a directory.  Return false if
** it is something other than a directory, or if there is any kind of memory
** allocation failure.
*/
static int winIsDir(const void *zConverted){
  DWORD attr;
  int rc = 0;
  DWORD lastErrno;

  if( osIsNT() ){
    int cnt = 0;
    WIN32_FILE_ATTRIBUTE_DATA sAttrData;
    memset(&sAttrData, 0, sizeof(sAttrData));
    while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted,
                             GetFileExInfoStandard,
                             &sAttrData)) && winRetryIoerr(&cnt, &lastErrno) ){}
    if( !rc ){
      return 0; /* Invalid name? */
    }
    attr = sAttrData.dwFileAttributes;
#if SQLITE_OS_WINCE==0
  }else{
    attr = osGetFileAttributesA((char*)zConverted);
#endif
  }
  return (attr!=INVALID_FILE_ATTRIBUTES) && (attr&FILE_ATTRIBUTE_DIRECTORY);
}

/*
** Open a file.
*/
static int winOpen(
  sqlite3_vfs *pVfs,        /* Used to get maximum path name length */
  const char *zName,        /* Name of the file (UTF-8) */
  sqlite3_file *id,         /* Write the SQLite file handle here */
  int flags,                /* Open mode flags */
  int *pOutFlags            /* Status return flags */
){
  HANDLE h;
  DWORD lastErrno;
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
  void *zConverted;              /* Filename in OS encoding */
  const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */
  int cnt = 0;

  /* If argument zPath is a NULL pointer, this function is required to open
  ** a temporary file. Use this buffer to store the file name in.
  */
  char zTmpname[MAX_PATH+2];     /* Buffer used to create temp filename */

  int rc = SQLITE_OK;            /* Function Return Code */
#if !defined(NDEBUG) || SQLITE_OS_WINCE
  int eType = flags&0xFFFFFF00;  /* Type of file to open */
#endif

  int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);







|







4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
  void *zConverted;              /* Filename in OS encoding */
  const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */
  int cnt = 0;

  /* If argument zPath is a NULL pointer, this function is required to open
  ** a temporary file. Use this buffer to store the file name in.
  */
  char *zTmpname = 0; /* For temporary filename, if necessary. */

  int rc = SQLITE_OK;            /* Function Return Code */
#if !defined(NDEBUG) || SQLITE_OS_WINCE
  int eType = flags&0xFFFFFF00;  /* Type of file to open */
#endif

  int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099

4100
4101
4102
4103
4104
4105

4106
4107
4108
4109
4110
4111
4112
  );

  assert( pFile!=0 );
  memset(pFile, 0, sizeof(winFile));
  pFile->h = INVALID_HANDLE_VALUE;

#if SQLITE_OS_WINRT
  if( !sqlite3_temp_directory ){
    sqlite3_log(SQLITE_ERROR,
        "sqlite3_temp_directory variable should be set for WinRT");
  }
#endif

  /* If the second argument to this function is NULL, generate a 
  ** temporary file name to use 
  */
  if( !zUtf8Name ){
    assert(isDelete && !isOpenJournal);
    memset(zTmpname, 0, MAX_PATH+2);
    rc = getTempname(MAX_PATH+2, zTmpname);
    if( rc!=SQLITE_OK ){
      OSTRACE(("OPEN name=%s, rc=%s", zUtf8Name, sqlite3ErrName(rc)));
      return rc;
    }
    zUtf8Name = zTmpname;
  }

  /* Database filenames are double-zero terminated if they are not
  ** URIs with parameters.  Hence, they can always be passed into
  ** sqlite3_uri_parameter().
  */
  assert( (eType!=SQLITE_OPEN_MAIN_DB) || (flags & SQLITE_OPEN_URI) ||
        zUtf8Name[strlen(zUtf8Name)+1]==0 );

  /* Convert the filename to the system encoding. */
  zConverted = convertUtf8Filename(zUtf8Name);
  if( zConverted==0 ){

    OSTRACE(("OPEN name=%s, rc=SQLITE_IOERR_NOMEM", zUtf8Name));
    return SQLITE_IOERR_NOMEM;
  }

  if( winIsDir(zConverted) ){
    sqlite3_free(zConverted);

    OSTRACE(("OPEN name=%s, rc=SQLITE_CANTOPEN_ISDIR", zUtf8Name));
    return SQLITE_CANTOPEN_ISDIR;
  }

  if( isReadWrite ){
    dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
  }else{







|









|
<
|












|


|

>






>







4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298

4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
  );

  assert( pFile!=0 );
  memset(pFile, 0, sizeof(winFile));
  pFile->h = INVALID_HANDLE_VALUE;

#if SQLITE_OS_WINRT
  if( !zUtf8Name && !sqlite3_temp_directory ){
    sqlite3_log(SQLITE_ERROR,
        "sqlite3_temp_directory variable should be set for WinRT");
  }
#endif

  /* If the second argument to this function is NULL, generate a 
  ** temporary file name to use 
  */
  if( !zUtf8Name ){
    assert( isDelete && !isOpenJournal );

    rc = winGetTempname(pVfs, &zTmpname);
    if( rc!=SQLITE_OK ){
      OSTRACE(("OPEN name=%s, rc=%s", zUtf8Name, sqlite3ErrName(rc)));
      return rc;
    }
    zUtf8Name = zTmpname;
  }

  /* Database filenames are double-zero terminated if they are not
  ** URIs with parameters.  Hence, they can always be passed into
  ** sqlite3_uri_parameter().
  */
  assert( (eType!=SQLITE_OPEN_MAIN_DB) || (flags & SQLITE_OPEN_URI) ||
       zUtf8Name[sqlite3Strlen30(zUtf8Name)+1]==0 );

  /* Convert the filename to the system encoding. */
  zConverted = winConvertFromUtf8Filename(zUtf8Name);
  if( zConverted==0 ){
    sqlite3_free(zTmpname);
    OSTRACE(("OPEN name=%s, rc=SQLITE_IOERR_NOMEM", zUtf8Name));
    return SQLITE_IOERR_NOMEM;
  }

  if( winIsDir(zConverted) ){
    sqlite3_free(zConverted);
    sqlite3_free(zTmpname);
    OSTRACE(("OPEN name=%s, rc=SQLITE_CANTOPEN_ISDIR", zUtf8Name));
    return SQLITE_CANTOPEN_ISDIR;
  }

  if( isReadWrite ){
    dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
  }else{
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203

4204
4205
4206
4207
4208
4209
4210
  }
  /* Reports from the internet are that performance is always
  ** better if FILE_FLAG_RANDOM_ACCESS is used.  Ticket #2699. */
#if SQLITE_OS_WINCE
  dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
#endif

  if( isNT() ){
#if SQLITE_OS_WINRT
    CREATEFILE2_EXTENDED_PARAMETERS extendedParameters;
    extendedParameters.dwSize = sizeof(CREATEFILE2_EXTENDED_PARAMETERS);
    extendedParameters.dwFileAttributes =
            dwFlagsAndAttributes & FILE_ATTRIBUTE_MASK;
    extendedParameters.dwFileFlags = dwFlagsAndAttributes & FILE_FLAG_MASK;
    extendedParameters.dwSecurityQosFlags = SECURITY_ANONYMOUS;
    extendedParameters.lpSecurityAttributes = NULL;
    extendedParameters.hTemplateFile = NULL;
    while( (h = osCreateFile2((LPCWSTR)zConverted,
                              dwDesiredAccess,
                              dwShareMode,
                              dwCreationDisposition,
                              &extendedParameters))==INVALID_HANDLE_VALUE &&
                              retryIoerr(&cnt, &lastErrno) ){
               /* Noop */
    }
#else
    while( (h = osCreateFileW((LPCWSTR)zConverted,
                              dwDesiredAccess,
                              dwShareMode, NULL,
                              dwCreationDisposition,
                              dwFlagsAndAttributes,
                              NULL))==INVALID_HANDLE_VALUE &&
                              retryIoerr(&cnt, &lastErrno) ){
               /* Noop */
    }
#endif
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    while( (h = osCreateFileA((LPCSTR)zConverted,
                              dwDesiredAccess,
                              dwShareMode, NULL,
                              dwCreationDisposition,
                              dwFlagsAndAttributes,
                              NULL))==INVALID_HANDLE_VALUE &&
                              retryIoerr(&cnt, &lastErrno) ){
               /* Noop */
    }
  }
#endif
  logIoerr(cnt);

  OSTRACE(("OPEN file=%p, name=%s, access=%lx, rc=%s\n", h, zUtf8Name,
           dwDesiredAccess, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok"));

  if( h==INVALID_HANDLE_VALUE ){
    pFile->lastErrno = lastErrno;
    winLogError(SQLITE_CANTOPEN, pFile->lastErrno, "winOpen", zUtf8Name);
    sqlite3_free(zConverted);

    if( isReadWrite && !isExclusive ){
      return winOpen(pVfs, zName, id, 
         ((flags|SQLITE_OPEN_READONLY) &
                     ~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)),
         pOutFlags);
    }else{
      return SQLITE_CANTOPEN_BKPT;







|














|









|












|




|








>







4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
  }
  /* Reports from the internet are that performance is always
  ** better if FILE_FLAG_RANDOM_ACCESS is used.  Ticket #2699. */
#if SQLITE_OS_WINCE
  dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
#endif

  if( osIsNT() ){
#if SQLITE_OS_WINRT
    CREATEFILE2_EXTENDED_PARAMETERS extendedParameters;
    extendedParameters.dwSize = sizeof(CREATEFILE2_EXTENDED_PARAMETERS);
    extendedParameters.dwFileAttributes =
            dwFlagsAndAttributes & FILE_ATTRIBUTE_MASK;
    extendedParameters.dwFileFlags = dwFlagsAndAttributes & FILE_FLAG_MASK;
    extendedParameters.dwSecurityQosFlags = SECURITY_ANONYMOUS;
    extendedParameters.lpSecurityAttributes = NULL;
    extendedParameters.hTemplateFile = NULL;
    while( (h = osCreateFile2((LPCWSTR)zConverted,
                              dwDesiredAccess,
                              dwShareMode,
                              dwCreationDisposition,
                              &extendedParameters))==INVALID_HANDLE_VALUE &&
                              winRetryIoerr(&cnt, &lastErrno) ){
               /* Noop */
    }
#else
    while( (h = osCreateFileW((LPCWSTR)zConverted,
                              dwDesiredAccess,
                              dwShareMode, NULL,
                              dwCreationDisposition,
                              dwFlagsAndAttributes,
                              NULL))==INVALID_HANDLE_VALUE &&
                              winRetryIoerr(&cnt, &lastErrno) ){
               /* Noop */
    }
#endif
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    while( (h = osCreateFileA((LPCSTR)zConverted,
                              dwDesiredAccess,
                              dwShareMode, NULL,
                              dwCreationDisposition,
                              dwFlagsAndAttributes,
                              NULL))==INVALID_HANDLE_VALUE &&
                              winRetryIoerr(&cnt, &lastErrno) ){
               /* Noop */
    }
  }
#endif
  winLogIoerr(cnt);

  OSTRACE(("OPEN file=%p, name=%s, access=%lx, rc=%s\n", h, zUtf8Name,
           dwDesiredAccess, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok"));

  if( h==INVALID_HANDLE_VALUE ){
    pFile->lastErrno = lastErrno;
    winLogError(SQLITE_CANTOPEN, pFile->lastErrno, "winOpen", zUtf8Name);
    sqlite3_free(zConverted);
    sqlite3_free(zTmpname);
    if( isReadWrite && !isExclusive ){
      return winOpen(pVfs, zName, id, 
         ((flags|SQLITE_OPEN_READONLY) &
                     ~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)),
         pOutFlags);
    }else{
      return SQLITE_CANTOPEN_BKPT;
4225
4226
4227
4228
4229
4230
4231

4232
4233
4234
4235
4236
4237
4238
4239
4240

4241
4242
4243
4244
4245
4246
4247

#if SQLITE_OS_WINCE
  if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB
       && (rc = winceCreateLock(zName, pFile))!=SQLITE_OK
  ){
    osCloseHandle(h);
    sqlite3_free(zConverted);

    OSTRACE(("OPEN-CE-LOCK name=%s, rc=%s\n", zName, sqlite3ErrName(rc)));
    return rc;
  }
  if( isTemp ){
    pFile->zDeleteOnClose = zConverted;
  }else
#endif
  {
    sqlite3_free(zConverted);

  }

  pFile->pMethod = &winIoMethod;
  pFile->pVfs = pVfs;
  pFile->h = h;
  if( isReadonly ){
    pFile->ctrlFlags |= WINFILE_RDONLY;







>









>







4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469

#if SQLITE_OS_WINCE
  if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB
       && (rc = winceCreateLock(zName, pFile))!=SQLITE_OK
  ){
    osCloseHandle(h);
    sqlite3_free(zConverted);
    sqlite3_free(zTmpname);
    OSTRACE(("OPEN-CE-LOCK name=%s, rc=%s\n", zName, sqlite3ErrName(rc)));
    return rc;
  }
  if( isTemp ){
    pFile->zDeleteOnClose = zConverted;
  }else
#endif
  {
    sqlite3_free(zConverted);
    sqlite3_free(zTmpname);
  }

  pFile->pMethod = &winIoMethod;
  pFile->pVfs = pVfs;
  pFile->h = h;
  if( isReadonly ){
    pFile->ctrlFlags |= WINFILE_RDONLY;
4287
4288
4289
4290
4291
4292
4293
4294
4295

4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
  void *zConverted;
  UNUSED_PARAMETER(pVfs);
  UNUSED_PARAMETER(syncDir);

  SimulateIOError(return SQLITE_IOERR_DELETE);
  OSTRACE(("DELETE name=%s, syncDir=%d\n", zFilename, syncDir));

  zConverted = convertUtf8Filename(zFilename);
  if( zConverted==0 ){

    return SQLITE_IOERR_NOMEM;
  }
  if( isNT() ){
    do {
#if SQLITE_OS_WINRT
      WIN32_FILE_ATTRIBUTE_DATA sAttrData;
      memset(&sAttrData, 0, sizeof(sAttrData));
      if ( osGetFileAttributesExW(zConverted, GetFileExInfoStandard,
                                  &sAttrData) ){
        attr = sAttrData.dwFileAttributes;







|

>


|







4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
  void *zConverted;
  UNUSED_PARAMETER(pVfs);
  UNUSED_PARAMETER(syncDir);

  SimulateIOError(return SQLITE_IOERR_DELETE);
  OSTRACE(("DELETE name=%s, syncDir=%d\n", zFilename, syncDir));

  zConverted = winConvertFromUtf8Filename(zFilename);
  if( zConverted==0 ){
    OSTRACE(("DELETE name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename));
    return SQLITE_IOERR_NOMEM;
  }
  if( osIsNT() ){
    do {
#if SQLITE_OS_WINRT
      WIN32_FILE_ATTRIBUTE_DATA sAttrData;
      memset(&sAttrData, 0, sizeof(sAttrData));
      if ( osGetFileAttributesExW(zConverted, GetFileExInfoStandard,
                                  &sAttrData) ){
        attr = sAttrData.dwFileAttributes;
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
        rc = SQLITE_ERROR; /* Files only. */
        break;
      }
      if ( osDeleteFileW(zConverted) ){
        rc = SQLITE_OK; /* Deleted OK. */
        break;
      }
      if ( !retryIoerr(&cnt, &lastErrno) ){
        rc = SQLITE_ERROR; /* No more retries. */
        break;
      }
    } while(1);
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{







|







4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
        rc = SQLITE_ERROR; /* Files only. */
        break;
      }
      if ( osDeleteFileW(zConverted) ){
        rc = SQLITE_OK; /* Deleted OK. */
        break;
      }
      if ( !winRetryIoerr(&cnt, &lastErrno) ){
        rc = SQLITE_ERROR; /* No more retries. */
        break;
      }
    } while(1);
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
        rc = SQLITE_ERROR; /* Files only. */
        break;
      }
      if ( osDeleteFileA(zConverted) ){
        rc = SQLITE_OK; /* Deleted OK. */
        break;
      }
      if ( !retryIoerr(&cnt, &lastErrno) ){
        rc = SQLITE_ERROR; /* No more retries. */
        break;
      }
    } while(1);
  }
#endif
  if( rc && rc!=SQLITE_IOERR_DELETE_NOENT ){
    rc = winLogError(SQLITE_IOERR_DELETE, lastErrno,
             "winDelete", zFilename);
  }else{
    logIoerr(cnt);
  }
  sqlite3_free(zConverted);
  OSTRACE(("DELETE name=%s, rc=%s\n", zFilename, sqlite3ErrName(rc)));
  return rc;
}

/*







|







|
<

|







4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596

4597
4598
4599
4600
4601
4602
4603
4604
4605
        rc = SQLITE_ERROR; /* Files only. */
        break;
      }
      if ( osDeleteFileA(zConverted) ){
        rc = SQLITE_OK; /* Deleted OK. */
        break;
      }
      if ( !winRetryIoerr(&cnt, &lastErrno) ){
        rc = SQLITE_ERROR; /* No more retries. */
        break;
      }
    } while(1);
  }
#endif
  if( rc && rc!=SQLITE_IOERR_DELETE_NOENT ){
    rc = winLogError(SQLITE_IOERR_DELETE, lastErrno, "winDelete", zFilename);

  }else{
    winLogIoerr(cnt);
  }
  sqlite3_free(zConverted);
  OSTRACE(("DELETE name=%s, rc=%s\n", zFilename, sqlite3ErrName(rc)));
  return rc;
}

/*
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430

4431
4432
4433
4434
4435
4436
4437
  void *zConverted;
  UNUSED_PARAMETER(pVfs);

  SimulateIOError( return SQLITE_IOERR_ACCESS; );
  OSTRACE(("ACCESS name=%s, flags=%x, pResOut=%p\n",
           zFilename, flags, pResOut));

  zConverted = convertUtf8Filename(zFilename);
  if( zConverted==0 ){
    OSTRACE(("ACCESS name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename));
    return SQLITE_IOERR_NOMEM;
  }
  if( isNT() ){
    int cnt = 0;
    WIN32_FILE_ATTRIBUTE_DATA sAttrData;
    memset(&sAttrData, 0, sizeof(sAttrData));
    while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted,
                             GetFileExInfoStandard, 
                             &sAttrData)) && retryIoerr(&cnt, &lastErrno) ){}
    if( rc ){
      /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file
      ** as if it does not exist.
      */
      if(    flags==SQLITE_ACCESS_EXISTS
          && sAttrData.nFileSizeHigh==0 
          && sAttrData.nFileSizeLow==0 ){
        attr = INVALID_FILE_ATTRIBUTES;
      }else{
        attr = sAttrData.dwFileAttributes;
      }
    }else{
      logIoerr(cnt);
      if( lastErrno!=ERROR_FILE_NOT_FOUND && lastErrno!=ERROR_PATH_NOT_FOUND ){
        winLogError(SQLITE_IOERR_ACCESS, lastErrno, "winAccess", zFilename);
        sqlite3_free(zConverted);
        return SQLITE_IOERR_ACCESS;

      }else{
        attr = INVALID_FILE_ATTRIBUTES;
      }
    }
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{







|




|





|












|

<

|
>







4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649

4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
  void *zConverted;
  UNUSED_PARAMETER(pVfs);

  SimulateIOError( return SQLITE_IOERR_ACCESS; );
  OSTRACE(("ACCESS name=%s, flags=%x, pResOut=%p\n",
           zFilename, flags, pResOut));

  zConverted = winConvertFromUtf8Filename(zFilename);
  if( zConverted==0 ){
    OSTRACE(("ACCESS name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename));
    return SQLITE_IOERR_NOMEM;
  }
  if( osIsNT() ){
    int cnt = 0;
    WIN32_FILE_ATTRIBUTE_DATA sAttrData;
    memset(&sAttrData, 0, sizeof(sAttrData));
    while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted,
                             GetFileExInfoStandard, 
                             &sAttrData)) && winRetryIoerr(&cnt, &lastErrno) ){}
    if( rc ){
      /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file
      ** as if it does not exist.
      */
      if(    flags==SQLITE_ACCESS_EXISTS
          && sAttrData.nFileSizeHigh==0 
          && sAttrData.nFileSizeLow==0 ){
        attr = INVALID_FILE_ATTRIBUTES;
      }else{
        attr = sAttrData.dwFileAttributes;
      }
    }else{
      winLogIoerr(cnt);
      if( lastErrno!=ERROR_FILE_NOT_FOUND && lastErrno!=ERROR_PATH_NOT_FOUND ){

        sqlite3_free(zConverted);
        return winLogError(SQLITE_IOERR_ACCESS, lastErrno, "winAccess",
                           zFilename);
      }else{
        attr = INVALID_FILE_ATTRIBUTES;
      }
    }
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
4453
4454
4455
4456
4457
4458
4459









4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
  }
  *pResOut = rc;
  OSTRACE(("ACCESS name=%s, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n",
           zFilename, pResOut, *pResOut));
  return SQLITE_OK;
}











/*
** Returns non-zero if the specified path name should be used verbatim.  If
** non-zero is returned from this function, the calling function must simply
** use the provided path name verbatim -OR- resolve it into a full path name
** using the GetFullPathName Win32 API function (if available).
*/
static BOOL winIsVerbatimPathname(
  const char *zPathname
){
  /*
  ** If the path name starts with a forward slash or a backslash, it is either
  ** a legal UNC name, a volume relative path, or an absolute path name in the
  ** "Unix" format on Windows.  There is no easy way to differentiate between
  ** the final two cases; therefore, we return the safer return value of TRUE
  ** so that callers of this function will simply use it verbatim.
  */
  if ( zPathname[0]=='/' || zPathname[0]=='\\' ){
    return TRUE;
  }

  /*
  ** If the path name starts with a letter and a colon it is either a volume
  ** relative path or an absolute path.  Callers of this function must not
  ** attempt to treat it as a relative path name (i.e. they should simply use
  ** it verbatim).
  */
  if ( sqlite3Isalpha(zPathname[0]) && zPathname[1]==':' ){
    return TRUE;
  }

  /*
  ** If we get to this point, the path name should almost certainly be a purely
  ** relative one (i.e. not a UNC name, not absolute, and not volume relative).
  */







>
>
>
>
>
>
>
>
>

















|









|







4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
  }
  *pResOut = rc;
  OSTRACE(("ACCESS name=%s, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n",
           zFilename, pResOut, *pResOut));
  return SQLITE_OK;
}

/*
** Returns non-zero if the specified path name starts with a drive letter
** followed by a colon character.
*/
static BOOL winIsDriveLetterAndColon(
  const char *zPathname
){
  return ( sqlite3Isalpha(zPathname[0]) && zPathname[1]==':' );
}

/*
** Returns non-zero if the specified path name should be used verbatim.  If
** non-zero is returned from this function, the calling function must simply
** use the provided path name verbatim -OR- resolve it into a full path name
** using the GetFullPathName Win32 API function (if available).
*/
static BOOL winIsVerbatimPathname(
  const char *zPathname
){
  /*
  ** If the path name starts with a forward slash or a backslash, it is either
  ** a legal UNC name, a volume relative path, or an absolute path name in the
  ** "Unix" format on Windows.  There is no easy way to differentiate between
  ** the final two cases; therefore, we return the safer return value of TRUE
  ** so that callers of this function will simply use it verbatim.
  */
  if ( winIsDirSep(zPathname[0]) ){
    return TRUE;
  }

  /*
  ** If the path name starts with a letter and a colon it is either a volume
  ** relative path or an absolute path.  Callers of this function must not
  ** attempt to treat it as a relative path name (i.e. they should simply use
  ** it verbatim).
  */
  if ( winIsDriveLetterAndColon(zPathname) ){
    return TRUE;
  }

  /*
  ** If we get to this point, the path name should almost certainly be a purely
  ** relative one (i.e. not a UNC name, not absolute, and not volume relative).
  */
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523


4524
4525




4526
4527

4528
4529



4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593

4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607

4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621

4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635

4636
4637
4638
4639
4640
4641
4642
  int nFull,                    /* Size of output buffer in bytes */
  char *zFull                   /* Output buffer */
){
  
#if defined(__CYGWIN__)
  SimulateIOError( return SQLITE_ERROR );
  UNUSED_PARAMETER(nFull);
  assert( pVfs->mxPathname>=MAX_PATH );
  assert( nFull>=pVfs->mxPathname );
  if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
    /*
    ** NOTE: We are dealing with a relative path name and the data
    **       directory has been set.  Therefore, use it as the basis
    **       for converting the relative path name to an absolute
    **       one by prepending the data directory and a slash.
    */
    char zOut[MAX_PATH+1];
    memset(zOut, 0, MAX_PATH+1);


    cygwin_conv_path(CCP_POSIX_TO_WIN_A|CCP_RELATIVE, zRelative, zOut,
                     MAX_PATH+1);




    sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s\\%s",
                     sqlite3_data_directory, zOut);

  }else{
    cygwin_conv_path(CCP_POSIX_TO_WIN_A, zRelative, zFull, nFull);



  }
  return SQLITE_OK;
#endif

#if (SQLITE_OS_WINCE || SQLITE_OS_WINRT) && !defined(__CYGWIN__)
  SimulateIOError( return SQLITE_ERROR );
  /* WinCE has no concept of a relative pathname, or so I am told. */
  /* WinRT has no way to convert a relative path to an absolute one. */
  if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
    /*
    ** NOTE: We are dealing with a relative path name and the data
    **       directory has been set.  Therefore, use it as the basis
    **       for converting the relative path name to an absolute
    **       one by prepending the data directory and a backslash.
    */
    sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s\\%s",
                     sqlite3_data_directory, zRelative);
  }else{
    sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zRelative);
  }
  return SQLITE_OK;
#endif

#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__)
  DWORD nByte;
  void *zConverted;
  char *zOut;

  /* If this path name begins with "/X:", where "X" is any alphabetic
  ** character, discard the initial "/" from the pathname.
  */
  if( zRelative[0]=='/' && sqlite3Isalpha(zRelative[1]) && zRelative[2]==':' ){
    zRelative++;
  }

  /* It's odd to simulate an io-error here, but really this is just
  ** using the io-error infrastructure to test that SQLite handles this
  ** function failing. This function could fail if, for example, the
  ** current working directory has been unlinked.
  */
  SimulateIOError( return SQLITE_ERROR );
  if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
    /*
    ** NOTE: We are dealing with a relative path name and the data
    **       directory has been set.  Therefore, use it as the basis
    **       for converting the relative path name to an absolute
    **       one by prepending the data directory and a backslash.
    */
    sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s\\%s",
                     sqlite3_data_directory, zRelative);
    return SQLITE_OK;
  }
  zConverted = convertUtf8Filename(zRelative);
  if( zConverted==0 ){
    return SQLITE_IOERR_NOMEM;
  }
  if( isNT() ){
    LPWSTR zTemp;
    nByte = osGetFullPathNameW((LPCWSTR)zConverted, 0, 0, 0);
    if( nByte==0 ){
      winLogError(SQLITE_ERROR, osGetLastError(),
                  "GetFullPathNameW1", zConverted);
      sqlite3_free(zConverted);
      return SQLITE_CANTOPEN_FULLPATH;

    }
    nByte += 3;
    zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) );
    if( zTemp==0 ){
      sqlite3_free(zConverted);
      return SQLITE_IOERR_NOMEM;
    }
    nByte = osGetFullPathNameW((LPCWSTR)zConverted, nByte, zTemp, 0);
    if( nByte==0 ){
      winLogError(SQLITE_ERROR, osGetLastError(),
                  "GetFullPathNameW2", zConverted);
      sqlite3_free(zConverted);
      sqlite3_free(zTemp);
      return SQLITE_CANTOPEN_FULLPATH;

    }
    sqlite3_free(zConverted);
    zOut = unicodeToUtf8(zTemp);
    sqlite3_free(zTemp);
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    char *zTemp;
    nByte = osGetFullPathNameA((char*)zConverted, 0, 0, 0);
    if( nByte==0 ){
      winLogError(SQLITE_ERROR, osGetLastError(),
                  "GetFullPathNameA1", zConverted);
      sqlite3_free(zConverted);
      return SQLITE_CANTOPEN_FULLPATH;

    }
    nByte += 3;
    zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) );
    if( zTemp==0 ){
      sqlite3_free(zConverted);
      return SQLITE_IOERR_NOMEM;
    }
    nByte = osGetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
    if( nByte==0 ){
      winLogError(SQLITE_ERROR, osGetLastError(),
                  "GetFullPathNameA2", zConverted);
      sqlite3_free(zConverted);
      sqlite3_free(zTemp);
      return SQLITE_CANTOPEN_FULLPATH;

    }
    sqlite3_free(zConverted);
    zOut = sqlite3_win32_mbcs_to_utf8(zTemp);
    sqlite3_free(zTemp);
  }
#endif
  if( zOut ){







<








|
|
>
>
|
|
>
>
>
>
|
|
>

|
>
>
>















|
|














|
















|
|


|



|



<
<

|
>









<
<


|
>


|







<
<

|
>









<
<


|
>







4737
4738
4739
4740
4741
4742
4743

4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829


4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841


4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855


4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867


4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
  int nFull,                    /* Size of output buffer in bytes */
  char *zFull                   /* Output buffer */
){
  
#if defined(__CYGWIN__)
  SimulateIOError( return SQLITE_ERROR );
  UNUSED_PARAMETER(nFull);

  assert( nFull>=pVfs->mxPathname );
  if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
    /*
    ** NOTE: We are dealing with a relative path name and the data
    **       directory has been set.  Therefore, use it as the basis
    **       for converting the relative path name to an absolute
    **       one by prepending the data directory and a slash.
    */
    char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 );
    if( !zOut ){
      return SQLITE_IOERR_NOMEM;
    }
    if( cygwin_conv_path(CCP_POSIX_TO_WIN_A|CCP_RELATIVE, zRelative, zOut,
                         pVfs->mxPathname+1)<0 ){
      sqlite3_free(zOut);
      return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno,
                         "winFullPathname1", zRelative);
    }
    sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%s%s",
                     sqlite3_data_directory, winGetDirDep(), zOut);
    sqlite3_free(zOut);
  }else{
    if( cygwin_conv_path(CCP_POSIX_TO_WIN_A, zRelative, zFull, nFull)<0 ){
      return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno,
                         "winFullPathname2", zRelative);
    }
  }
  return SQLITE_OK;
#endif

#if (SQLITE_OS_WINCE || SQLITE_OS_WINRT) && !defined(__CYGWIN__)
  SimulateIOError( return SQLITE_ERROR );
  /* WinCE has no concept of a relative pathname, or so I am told. */
  /* WinRT has no way to convert a relative path to an absolute one. */
  if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
    /*
    ** NOTE: We are dealing with a relative path name and the data
    **       directory has been set.  Therefore, use it as the basis
    **       for converting the relative path name to an absolute
    **       one by prepending the data directory and a backslash.
    */
    sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%s%s",
                     sqlite3_data_directory, winGetDirDep(), zRelative);
  }else{
    sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zRelative);
  }
  return SQLITE_OK;
#endif

#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__)
  DWORD nByte;
  void *zConverted;
  char *zOut;

  /* If this path name begins with "/X:", where "X" is any alphabetic
  ** character, discard the initial "/" from the pathname.
  */
  if( zRelative[0]=='/' && winIsDriveLetterAndColon(zRelative+1) ){
    zRelative++;
  }

  /* It's odd to simulate an io-error here, but really this is just
  ** using the io-error infrastructure to test that SQLite handles this
  ** function failing. This function could fail if, for example, the
  ** current working directory has been unlinked.
  */
  SimulateIOError( return SQLITE_ERROR );
  if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
    /*
    ** NOTE: We are dealing with a relative path name and the data
    **       directory has been set.  Therefore, use it as the basis
    **       for converting the relative path name to an absolute
    **       one by prepending the data directory and a backslash.
    */
    sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%s%s",
                     sqlite3_data_directory, winGetDirDep(), zRelative);
    return SQLITE_OK;
  }
  zConverted = winConvertFromUtf8Filename(zRelative);
  if( zConverted==0 ){
    return SQLITE_IOERR_NOMEM;
  }
  if( osIsNT() ){
    LPWSTR zTemp;
    nByte = osGetFullPathNameW((LPCWSTR)zConverted, 0, 0, 0);
    if( nByte==0 ){


      sqlite3_free(zConverted);
      return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
                         "winFullPathname1", zRelative);
    }
    nByte += 3;
    zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) );
    if( zTemp==0 ){
      sqlite3_free(zConverted);
      return SQLITE_IOERR_NOMEM;
    }
    nByte = osGetFullPathNameW((LPCWSTR)zConverted, nByte, zTemp, 0);
    if( nByte==0 ){


      sqlite3_free(zConverted);
      sqlite3_free(zTemp);
      return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
                         "winFullPathname2", zRelative);
    }
    sqlite3_free(zConverted);
    zOut = winUnicodeToUtf8(zTemp);
    sqlite3_free(zTemp);
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    char *zTemp;
    nByte = osGetFullPathNameA((char*)zConverted, 0, 0, 0);
    if( nByte==0 ){


      sqlite3_free(zConverted);
      return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
                         "winFullPathname3", zRelative);
    }
    nByte += 3;
    zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) );
    if( zTemp==0 ){
      sqlite3_free(zConverted);
      return SQLITE_IOERR_NOMEM;
    }
    nByte = osGetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
    if( nByte==0 ){


      sqlite3_free(zConverted);
      sqlite3_free(zTemp);
      return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
                         "winFullPathname4", zRelative);
    }
    sqlite3_free(zConverted);
    zOut = sqlite3_win32_mbcs_to_utf8(zTemp);
    sqlite3_free(zTemp);
  }
#endif
  if( zOut ){
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
*/
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
  HANDLE h;
  void *zConverted = convertUtf8Filename(zFilename);
  UNUSED_PARAMETER(pVfs);
  if( zConverted==0 ){
    return 0;
  }
  if( isNT() ){
#if SQLITE_OS_WINRT
    h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0);
#else
    h = osLoadLibraryW((LPCWSTR)zConverted);
#endif
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    h = osLoadLibraryA((char*)zConverted);
  }
#endif
  sqlite3_free(zConverted);
  return (void*)h;
}
static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
  UNUSED_PARAMETER(pVfs);
  getLastErrorMsg(osGetLastError(), nBuf, zBufOut);
}
static void (*winDlSym(sqlite3_vfs *pVfs,void *pH,const char *zSym))(void){
  UNUSED_PARAMETER(pVfs);
  return (void(*)(void))osGetProcAddressA((HANDLE)pH, zSym);
}
static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
  UNUSED_PARAMETER(pVfs);







|




|
















|







4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
*/
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
  HANDLE h;
  void *zConverted = winConvertFromUtf8Filename(zFilename);
  UNUSED_PARAMETER(pVfs);
  if( zConverted==0 ){
    return 0;
  }
  if( osIsNT() ){
#if SQLITE_OS_WINRT
    h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0);
#else
    h = osLoadLibraryW((LPCWSTR)zConverted);
#endif
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    h = osLoadLibraryA((char*)zConverted);
  }
#endif
  sqlite3_free(zConverted);
  return (void*)h;
}
static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
  UNUSED_PARAMETER(pVfs);
  winGetLastErrorMsg(osGetLastError(), nBuf, zBufOut);
}
static void (*winDlSym(sqlite3_vfs *pVfs,void *pH,const char *zSym))(void){
  UNUSED_PARAMETER(pVfs);
  return (void(*)(void))osGetProcAddressA((HANDLE)pH, zSym);
}
static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
  UNUSED_PARAMETER(pVfs);
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891


























4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907





4908
4909
4910
4911
4912
4913
4914
**
** However if an error message is supplied, it will be incorporated
** by sqlite into the error message available to the user using
** sqlite3_errmsg(), possibly making IO errors easier to debug.
*/
static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
  UNUSED_PARAMETER(pVfs);
  return getLastErrorMsg(osGetLastError(), nBuf, zBuf);
}

/*
** Initialize and deinitialize the operating system interface.
*/
int sqlite3_os_init(void){
  static sqlite3_vfs winVfs = {
    3,                   /* iVersion */
    sizeof(winFile),     /* szOsFile */
    MAX_PATH,            /* mxPathname */
    0,                   /* pNext */
    "win32",             /* zName */
    0,                   /* pAppData */
    winOpen,             /* xOpen */
    winDelete,           /* xDelete */
    winAccess,           /* xAccess */
    winFullPathname,     /* xFullPathname */
    winDlOpen,           /* xDlOpen */
    winDlError,          /* xDlError */
    winDlSym,            /* xDlSym */
    winDlClose,          /* xDlClose */
    winRandomness,       /* xRandomness */
    winSleep,            /* xSleep */
    winCurrentTime,      /* xCurrentTime */
    winGetLastError,     /* xGetLastError */
    winCurrentTimeInt64, /* xCurrentTimeInt64 */
    winSetSystemCall,    /* xSetSystemCall */
    winGetSystemCall,    /* xGetSystemCall */
    winNextSystemCall,   /* xNextSystemCall */
  };



























  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==74 );

  /* get memory map allocation granularity */
  memset(&winSysInfo, 0, sizeof(SYSTEM_INFO));
#if SQLITE_OS_WINRT
  osGetNativeSystemInfo(&winSysInfo);
#else
  osGetSystemInfo(&winSysInfo);
#endif
  assert( winSysInfo.dwAllocationGranularity>0 );
  assert( winSysInfo.dwPageSize>0 );

  sqlite3_vfs_register(&winVfs, 1);





  return SQLITE_OK; 
}

int sqlite3_os_end(void){ 
#if SQLITE_OS_WINRT
  if( sleepObj!=NULL ){
    osCloseHandle(sleepObj);







|









|




















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
















>
>
>
>
>







5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
**
** However if an error message is supplied, it will be incorporated
** by sqlite into the error message available to the user using
** sqlite3_errmsg(), possibly making IO errors easier to debug.
*/
static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
  UNUSED_PARAMETER(pVfs);
  return winGetLastErrorMsg(osGetLastError(), nBuf, zBuf);
}

/*
** Initialize and deinitialize the operating system interface.
*/
int sqlite3_os_init(void){
  static sqlite3_vfs winVfs = {
    3,                   /* iVersion */
    sizeof(winFile),     /* szOsFile */
    SQLITE_WIN32_MAX_PATH_BYTES, /* mxPathname */
    0,                   /* pNext */
    "win32",             /* zName */
    0,                   /* pAppData */
    winOpen,             /* xOpen */
    winDelete,           /* xDelete */
    winAccess,           /* xAccess */
    winFullPathname,     /* xFullPathname */
    winDlOpen,           /* xDlOpen */
    winDlError,          /* xDlError */
    winDlSym,            /* xDlSym */
    winDlClose,          /* xDlClose */
    winRandomness,       /* xRandomness */
    winSleep,            /* xSleep */
    winCurrentTime,      /* xCurrentTime */
    winGetLastError,     /* xGetLastError */
    winCurrentTimeInt64, /* xCurrentTimeInt64 */
    winSetSystemCall,    /* xSetSystemCall */
    winGetSystemCall,    /* xGetSystemCall */
    winNextSystemCall,   /* xNextSystemCall */
  };
#if defined(SQLITE_WIN32_HAS_WIDE)
  static sqlite3_vfs winLongPathVfs = {
    3,                   /* iVersion */
    sizeof(winFile),     /* szOsFile */
    SQLITE_WINNT_MAX_PATH_BYTES, /* mxPathname */
    0,                   /* pNext */
    "win32-longpath",    /* zName */
    0,                   /* pAppData */
    winOpen,             /* xOpen */
    winDelete,           /* xDelete */
    winAccess,           /* xAccess */
    winFullPathname,     /* xFullPathname */
    winDlOpen,           /* xDlOpen */
    winDlError,          /* xDlError */
    winDlSym,            /* xDlSym */
    winDlClose,          /* xDlClose */
    winRandomness,       /* xRandomness */
    winSleep,            /* xSleep */
    winCurrentTime,      /* xCurrentTime */
    winGetLastError,     /* xGetLastError */
    winCurrentTimeInt64, /* xCurrentTimeInt64 */
    winSetSystemCall,    /* xSetSystemCall */
    winGetSystemCall,    /* xGetSystemCall */
    winNextSystemCall,   /* xNextSystemCall */
  };
#endif

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==74 );

  /* get memory map allocation granularity */
  memset(&winSysInfo, 0, sizeof(SYSTEM_INFO));
#if SQLITE_OS_WINRT
  osGetNativeSystemInfo(&winSysInfo);
#else
  osGetSystemInfo(&winSysInfo);
#endif
  assert( winSysInfo.dwAllocationGranularity>0 );
  assert( winSysInfo.dwPageSize>0 );

  sqlite3_vfs_register(&winVfs, 1);

#if defined(SQLITE_WIN32_HAS_WIDE)
  sqlite3_vfs_register(&winLongPathVfs, 0);
#endif

  return SQLITE_OK; 
}

int sqlite3_os_end(void){ 
#if SQLITE_OS_WINRT
  if( sleepObj!=NULL ){
    osCloseHandle(sleepObj);
Changes to src/pager.c.
449
450
451
452
453
454
455







456
457
458
459
460
461
462
  Pgno nOrig;                  /* Original number of pages in file */
  Pgno iSubRec;                /* Index of first record in sub-journal */
#ifndef SQLITE_OMIT_WAL
  u32 aWalData[WAL_SAVEPOINT_NDATA];        /* WAL savepoint context */
#endif
};








/*
** A open page cache is an instance of struct Pager. A description of
** some of the more important member variables follows:
**
** eState
**
**   The current 'state' of the pager object. See the comment and state







>
>
>
>
>
>
>







449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
  Pgno nOrig;                  /* Original number of pages in file */
  Pgno iSubRec;                /* Index of first record in sub-journal */
#ifndef SQLITE_OMIT_WAL
  u32 aWalData[WAL_SAVEPOINT_NDATA];        /* WAL savepoint context */
#endif
};

/*
** Bits of the Pager.doNotSpill flag.  See further description below.
*/
#define SPILLFLAG_OFF         0x01      /* Never spill cache.  Set via pragma */
#define SPILLFLAG_ROLLBACK    0x02      /* Current rolling back, so do not spill */
#define SPILLFLAG_NOSYNC      0x04      /* Spill is ok, but do not sync */

/*
** A open page cache is an instance of struct Pager. A description of
** some of the more important member variables follows:
**
** eState
**
**   The current 'state' of the pager object. See the comment and state
515
516
517
518
519
520
521
522
523
524
525
526
527

528
529
530
531
532

533
534
535
536
537
538
539
540
541
**   subsequently interrupted transaction that reuses the journal file.
**
**   The flag is cleared as soon as the journal file is finalized (either
**   by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the
**   journal file from being successfully finalized, the setMaster flag
**   is cleared anyway (and the pager will move to ERROR state).
**
** doNotSpill, doNotSyncSpill
**
**   These two boolean variables control the behavior of cache-spills
**   (calls made by the pcache module to the pagerStress() routine to
**   write cached data to the file-system in order to free up memory).
**

**   When doNotSpill is non-zero, writing to the database from pagerStress()
**   is disabled altogether. This is done in a very obscure case that
**   comes up during savepoint rollback that requires the pcache module
**   to allocate a new page to prevent the journal file from being written
**   while it is being traversed by code in pager_playback().

** 
**   If doNotSyncSpill is non-zero, writing to the database from pagerStress()
**   is permitted, but syncing the journal file is not. This flag is set
**   by sqlite3PagerWrite() when the file-system sector-size is larger than
**   the database page-size in order to prevent a journal sync from happening 
**   in between the journalling of two pages on the same sector. 
**
** subjInMemory
**







|

|
|
|

>
|
|


|
>

|







522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
**   subsequently interrupted transaction that reuses the journal file.
**
**   The flag is cleared as soon as the journal file is finalized (either
**   by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the
**   journal file from being successfully finalized, the setMaster flag
**   is cleared anyway (and the pager will move to ERROR state).
**
** doNotSpill
**
**   This variables control the behavior of cache-spills  (calls made by
**   the pcache module to the pagerStress() routine to write cached data
**   to the file-system in order to free up memory).
**
**   When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set,
**   writing to the database from pagerStress() is disabled altogether.
**   The SPILLFLAG_ROLLBACK case is done in a very obscure case that
**   comes up during savepoint rollback that requires the pcache module
**   to allocate a new page to prevent the journal file from being written
**   while it is being traversed by code in pager_playback().  The SPILLFLAG_OFF
**   case is a user preference.
** 
**   If the SPILLFLAG_NOSYNC bit is set, writing to the database from pagerStress()
**   is permitted, but syncing the journal file is not. This flag is set
**   by sqlite3PagerWrite() when the file-system sector-size is larger than
**   the database page-size in order to prevent a journal sync from happening 
**   in between the journalling of two pages on the same sector. 
**
** subjInMemory
**
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
  ** "configuration" of the pager.
  */
  u8 eState;                  /* Pager state (OPEN, READER, WRITER_LOCKED..) */
  u8 eLock;                   /* Current lock held on database file */
  u8 changeCountDone;         /* Set after incrementing the change-counter */
  u8 setMaster;               /* True if a m-j name has been written to jrnl */
  u8 doNotSpill;              /* Do not spill the cache when non-zero */
  u8 doNotSyncSpill;          /* Do not do a spill that requires jrnl sync */
  u8 subjInMemory;            /* True to use in-memory sub-journals */
  Pgno dbSize;                /* Number of pages in the database */
  Pgno dbOrigSize;            /* dbSize before the current transaction */
  Pgno dbFileSize;            /* Number of pages in the database file */
  Pgno dbHintSize;            /* Value passed to FCNTL_SIZE_HINT call */
  int errCode;                /* One of several kinds of errors */
  int nRec;                   /* Pages journalled since last j-header written */







<







640
641
642
643
644
645
646

647
648
649
650
651
652
653
  ** "configuration" of the pager.
  */
  u8 eState;                  /* Pager state (OPEN, READER, WRITER_LOCKED..) */
  u8 eLock;                   /* Current lock held on database file */
  u8 changeCountDone;         /* Set after incrementing the change-counter */
  u8 setMaster;               /* True if a m-j name has been written to jrnl */
  u8 doNotSpill;              /* Do not spill the cache when non-zero */

  u8 subjInMemory;            /* True to use in-memory sub-journals */
  Pgno dbSize;                /* Number of pages in the database */
  Pgno dbOrigSize;            /* dbSize before the current transaction */
  Pgno dbFileSize;            /* Number of pages in the database file */
  Pgno dbHintSize;            /* Value passed to FCNTL_SIZE_HINT call */
  int errCode;                /* One of several kinds of errors */
  int nRec;                   /* Pages journalled since last j-header written */
1010
1011
1012
1013
1014
1015
1016
1017
1018


1019


1020
1021
1022
1023

1024
1025
1026
1027
1028
1029
1030
** or more open savepoints for which:
**
**   * The page-number is less than or equal to PagerSavepoint.nOrig, and
**   * The bit corresponding to the page-number is not set in
**     PagerSavepoint.pInSavepoint.
*/
static int subjRequiresPage(PgHdr *pPg){
  Pgno pgno = pPg->pgno;
  Pager *pPager = pPg->pPager;


  int i;


  for(i=0; i<pPager->nSavepoint; i++){
    PagerSavepoint *p = &pPager->aSavepoint[i];
    if( p->nOrig>=pgno && 0==sqlite3BitvecTest(p->pInSavepoint, pgno) ){
      return 1;

    }
  }
  return 0;
}

/*
** Return true if the page is already in the journal file.







<

>
>

>
>
|
|
|
|
>







1018
1019
1020
1021
1022
1023
1024

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
** or more open savepoints for which:
**
**   * The page-number is less than or equal to PagerSavepoint.nOrig, and
**   * The bit corresponding to the page-number is not set in
**     PagerSavepoint.pInSavepoint.
*/
static int subjRequiresPage(PgHdr *pPg){

  Pager *pPager = pPg->pPager;
  PagerSavepoint *p;
  Pgno pgno;
  int i;
  if( pPager->nSavepoint ){
    pgno = pPg->pgno;
    for(i=0; i<pPager->nSavepoint; i++){
      p = &pPager->aSavepoint[i];
      if( p->nOrig>=pgno && 0==sqlite3BitvecTest(p->pInSavepoint, pgno) ){
        return 1;
      }
    }
  }
  return 0;
}

/*
** Return true if the page is already in the journal file.
1808
1809
1810
1811
1812
1813
1814

1815
1816
1817
1818
1819
1820
1821
  */
  if( pPager->errCode ){
    assert( !MEMDB );
    pager_reset(pPager);
    pPager->changeCountDone = pPager->tempFile;
    pPager->eState = PAGER_OPEN;
    pPager->errCode = SQLITE_OK;

  }

  pPager->journalOff = 0;
  pPager->journalHdr = 0;
  pPager->setMaster = 0;
}








>







1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
  */
  if( pPager->errCode ){
    assert( !MEMDB );
    pager_reset(pPager);
    pPager->changeCountDone = pPager->tempFile;
    pPager->eState = PAGER_OPEN;
    pPager->errCode = SQLITE_OK;
    if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0);
  }

  pPager->journalOff = 0;
  pPager->journalHdr = 0;
  pPager->setMaster = 0;
}

2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
    **
    ** The solution is to add an in-memory page to the cache containing
    ** the data just read from the sub-journal. Mark the page as dirty 
    ** and if the pager requires a journal-sync, then mark the page as 
    ** requiring a journal-sync before it is written.
    */
    assert( isSavepnt );
    assert( pPager->doNotSpill==0 );
    pPager->doNotSpill++;
    rc = sqlite3PagerAcquire(pPager, pgno, &pPg, 1);
    assert( pPager->doNotSpill==1 );
    pPager->doNotSpill--;
    if( rc!=SQLITE_OK ) return rc;
    pPg->flags &= ~PGHDR_NEED_READ;
    sqlite3PcacheMakeDirty(pPg);
  }
  if( pPg ){
    /* No page should ever be explicitly rolled back that is in use, except
    ** for page 1 which is held in use in order to keep the lock on the







|
|

|
|







2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
    **
    ** The solution is to add an in-memory page to the cache containing
    ** the data just read from the sub-journal. Mark the page as dirty 
    ** and if the pager requires a journal-sync, then mark the page as 
    ** requiring a journal-sync before it is written.
    */
    assert( isSavepnt );
    assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 );
    pPager->doNotSpill |= SPILLFLAG_ROLLBACK;
    rc = sqlite3PagerAcquire(pPager, pgno, &pPg, 1);
    assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 );
    pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK;
    if( rc!=SQLITE_OK ) return rc;
    pPg->flags &= ~PGHDR_NEED_READ;
    sqlite3PcacheMakeDirty(pPg);
  }
  if( pPg ){
    /* No page should ever be explicitly rolled back that is in use, except
    ** for page 1 which is held in use in order to keep the lock on the
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
  Pgno pgno = pPg->pgno;       /* Page number to read */
  int rc = SQLITE_OK;          /* Return code */
  int pgsz = pPager->pageSize; /* Number of bytes to read */

  assert( pPager->eState>=PAGER_READER && !MEMDB );
  assert( isOpen(pPager->fd) );

  if( NEVER(!isOpen(pPager->fd)) ){
    assert( pPager->tempFile );
    memset(pPg->pData, 0, pPager->pageSize);
    return SQLITE_OK;
  }

#ifndef SQLITE_OMIT_WAL
  if( iFrame ){
    /* Try to pull the page from the write-ahead log. */
    rc = sqlite3WalReadFrame(pPager->pWal, iFrame, pgsz, pPg->pData);
  }else
#endif
  {







<
<
<
<
<
<







2874
2875
2876
2877
2878
2879
2880






2881
2882
2883
2884
2885
2886
2887
  Pgno pgno = pPg->pgno;       /* Page number to read */
  int rc = SQLITE_OK;          /* Return code */
  int pgsz = pPager->pageSize; /* Number of bytes to read */

  assert( pPager->eState>=PAGER_READER && !MEMDB );
  assert( isOpen(pPager->fd) );







#ifndef SQLITE_OMIT_WAL
  if( iFrame ){
    /* Try to pull the page from the write-ahead log. */
    rc = sqlite3WalReadFrame(pPager->pWal, iFrame, pgsz, pPg->pData);
  }else
#endif
  {
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384

3385
3386
3387
3388
3389
3390
3391

/*
** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap.
*/
static void pagerFixMaplimit(Pager *pPager){
#if SQLITE_MAX_MMAP_SIZE>0
  sqlite3_file *fd = pPager->fd;
  if( isOpen(fd) ){
    sqlite3_int64 sz;
    pPager->bUseFetch = (fd->pMethods->iVersion>=3) && pPager->szMmap>0;
    sz = pPager->szMmap;

    sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz);
  }
#endif
}

/*
** Change the maximum size of any memory mapping made of the database file.







|

<

>







3381
3382
3383
3384
3385
3386
3387
3388
3389

3390
3391
3392
3393
3394
3395
3396
3397
3398

/*
** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap.
*/
static void pagerFixMaplimit(Pager *pPager){
#if SQLITE_MAX_MMAP_SIZE>0
  sqlite3_file *fd = pPager->fd;
  if( isOpen(fd) && fd->pMethods->iVersion>=3 ){
    sqlite3_int64 sz;

    sz = pPager->szMmap;
    pPager->bUseFetch = (sz>0);
    sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz);
  }
#endif
}

/*
** Change the maximum size of any memory mapping made of the database file.
3399
3400
3401
3402
3403
3404
3405



3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
** Free as much memory as possible from the pager.
*/
void sqlite3PagerShrink(Pager *pPager){
  sqlite3PcacheShrink(pPager->pPCache);
}

/*



** Adjust the robustness of the database to damage due to OS crashes
** or power failures by changing the number of syncs()s when writing
** the rollback journal.  There are three levels:
**
**    OFF       sqlite3OsSync() is never called.  This is the default
**              for temporary and transient files.
**
**    NORMAL    The journal is synced once before writes begin on the
**              database.  This is normally adequate protection, but
**              it is theoretically possible, though very unlikely,







>
>
>
|
|
|







3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
** Free as much memory as possible from the pager.
*/
void sqlite3PagerShrink(Pager *pPager){
  sqlite3PcacheShrink(pPager->pPCache);
}

/*
** Adjust settings of the pager to those specified in the pgFlags parameter.
**
** The "level" in pgFlags & PAGER_SYNCHRONOUS_MASK sets the robustness
** of the database to damage due to OS crashes or power failures by
** changing the number of syncs()s when writing the journals.
** There are three levels:
**
**    OFF       sqlite3OsSync() is never called.  This is the default
**              for temporary and transient files.
**
**    NORMAL    The journal is synced once before writes begin on the
**              database.  This is normally adequate protection, but
**              it is theoretically possible, though very unlikely,
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454

3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474





3475
3476
3477
3478
3479
3480
3481
** synchronous=FULL versus synchronous=NORMAL setting determines when
** the xSync primitive is called and is relevant to all platforms.
**
** Numeric values associated with these states are OFF==1, NORMAL=2,
** and FULL=3.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
void sqlite3PagerSetSafetyLevel(
  Pager *pPager,        /* The pager to set safety level for */
  int level,            /* PRAGMA synchronous.  1=OFF, 2=NORMAL, 3=FULL */  
  int bFullFsync,       /* PRAGMA fullfsync */
  int bCkptFullFsync    /* PRAGMA checkpoint_fullfsync */
){

  assert( level>=1 && level<=3 );
  pPager->noSync =  (level==1 || pPager->tempFile) ?1:0;
  pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0;
  if( pPager->noSync ){
    pPager->syncFlags = 0;
    pPager->ckptSyncFlags = 0;
  }else if( bFullFsync ){
    pPager->syncFlags = SQLITE_SYNC_FULL;
    pPager->ckptSyncFlags = SQLITE_SYNC_FULL;
  }else if( bCkptFullFsync ){
    pPager->syncFlags = SQLITE_SYNC_NORMAL;
    pPager->ckptSyncFlags = SQLITE_SYNC_FULL;
  }else{
    pPager->syncFlags = SQLITE_SYNC_NORMAL;
    pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL;
  }
  pPager->walSyncFlags = pPager->syncFlags;
  if( pPager->fullSync ){
    pPager->walSyncFlags |= WAL_SYNC_TRANSACTIONS;
  }





}
#endif

/*
** The following global variable is incremented whenever the library
** attempts to open a temporary file.  This information is used for
** testing and analysis only.  







|

<
|
<

>






|


|










>
>
>
>
>







3452
3453
3454
3455
3456
3457
3458
3459
3460

3461

3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
** synchronous=FULL versus synchronous=NORMAL setting determines when
** the xSync primitive is called and is relevant to all platforms.
**
** Numeric values associated with these states are OFF==1, NORMAL=2,
** and FULL=3.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
void sqlite3PagerSetFlags(
  Pager *pPager,        /* The pager to set safety level for */

  unsigned pgFlags      /* Various flags */

){
  unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK;
  assert( level>=1 && level<=3 );
  pPager->noSync =  (level==1 || pPager->tempFile) ?1:0;
  pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0;
  if( pPager->noSync ){
    pPager->syncFlags = 0;
    pPager->ckptSyncFlags = 0;
  }else if( pgFlags & PAGER_FULLFSYNC ){
    pPager->syncFlags = SQLITE_SYNC_FULL;
    pPager->ckptSyncFlags = SQLITE_SYNC_FULL;
  }else if( pgFlags & PAGER_CKPT_FULLFSYNC ){
    pPager->syncFlags = SQLITE_SYNC_NORMAL;
    pPager->ckptSyncFlags = SQLITE_SYNC_FULL;
  }else{
    pPager->syncFlags = SQLITE_SYNC_NORMAL;
    pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL;
  }
  pPager->walSyncFlags = pPager->syncFlags;
  if( pPager->fullSync ){
    pPager->walSyncFlags |= WAL_SYNC_TRANSACTIONS;
  }
  if( pgFlags & PAGER_CACHESPILL ){
    pPager->doNotSpill &= ~SPILLFLAG_OFF;
  }else{
    pPager->doNotSpill |= SPILLFLAG_OFF;
  }
}
#endif

/*
** The following global variable is incremented whenever the library
** attempts to open a temporary file.  This information is used for
** testing and analysis only.  
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381

4382
4383
4384
4385
4386
4387
4388
4389
4390



4391

4392

4393
4394
4395
4396
4397
4398
4399
static int pagerStress(void *p, PgHdr *pPg){
  Pager *pPager = (Pager *)p;
  int rc = SQLITE_OK;

  assert( pPg->pPager==pPager );
  assert( pPg->flags&PGHDR_DIRTY );

  /* The doNotSyncSpill flag is set during times when doing a sync of
  ** journal (and adding a new header) is not allowed.  This occurs
  ** during calls to sqlite3PagerWrite() while trying to journal multiple
  ** pages belonging to the same sector.
  **
  ** The doNotSpill flag inhibits all cache spilling regardless of whether
  ** or not a sync is required.  This is set during a rollback.

  **
  ** Spilling is also prohibited when in an error state since that could
  ** lead to database corruption.   In the current implementaton it 
  ** is impossible for sqlite3PcacheFetch() to be called with createFlag==1
  ** while in the error state, hence it is impossible for this routine to
  ** be called in the error state.  Nevertheless, we include a NEVER()
  ** test for the error state as a safeguard against future changes.
  */
  if( NEVER(pPager->errCode) ) return SQLITE_OK;



  if( pPager->doNotSpill ) return SQLITE_OK;

  if( pPager->doNotSyncSpill && (pPg->flags & PGHDR_NEED_SYNC)!=0 ){

    return SQLITE_OK;
  }

  pPg->pDirty = 0;
  if( pagerUseWal(pPager) ){
    /* Write a single frame for this page to the log. */
    if( subjRequiresPage(pPg) ){ 







|




|
|
>









>
>
>
|
>
|
>







4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
static int pagerStress(void *p, PgHdr *pPg){
  Pager *pPager = (Pager *)p;
  int rc = SQLITE_OK;

  assert( pPg->pPager==pPager );
  assert( pPg->flags&PGHDR_DIRTY );

  /* The doNotSpill NOSYNC bit is set during times when doing a sync of
  ** journal (and adding a new header) is not allowed.  This occurs
  ** during calls to sqlite3PagerWrite() while trying to journal multiple
  ** pages belonging to the same sector.
  **
  ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling
  ** regardless of whether or not a sync is required.  This is set during
  ** a rollback or by user request, respectively.
  **
  ** Spilling is also prohibited when in an error state since that could
  ** lead to database corruption.   In the current implementaton it 
  ** is impossible for sqlite3PcacheFetch() to be called with createFlag==1
  ** while in the error state, hence it is impossible for this routine to
  ** be called in the error state.  Nevertheless, we include a NEVER()
  ** test for the error state as a safeguard against future changes.
  */
  if( NEVER(pPager->errCode) ) return SQLITE_OK;
  testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK );
  testcase( pPager->doNotSpill & SPILLFLAG_OFF );
  testcase( pPager->doNotSpill & SPILLFLAG_NOSYNC );
  if( pPager->doNotSpill
   && ((pPager->doNotSpill & (SPILLFLAG_ROLLBACK|SPILLFLAG_OFF))!=0
      || (pPg->flags & PGHDR_NEED_SYNC)!=0)
  ){
    return SQLITE_OK;
  }

  pPg->pDirty = 0;
  if( pagerUseWal(pPager) ){
    /* Write a single frame for this page to the log. */
    if( subjRequiresPage(pPg) ){ 
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
** Since Lookup() never goes to disk, it never has to deal with locks
** or journal files.
*/
int sqlite3PagerAcquire(
  Pager *pPager,      /* The pager open on the database file */
  Pgno pgno,          /* Page number to fetch */
  DbPage **ppPage,    /* Write a pointer to the page here */
  int flags           /* PAGER_ACQUIRE_XXX flags */
){
  int rc = SQLITE_OK;
  PgHdr *pPg = 0;
  u32 iFrame = 0;                 /* Frame to read from WAL file */
  const int noContent = (flags & PAGER_ACQUIRE_NOCONTENT);

  /* It is acceptable to use a read-only (mmap) page for any page except
  ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY
  ** flag was specified by the caller. And so long as the db is not a 
  ** temporary or in-memory database.  */
  const int bMmapOk = (pgno!=1 && USEFETCH(pPager)
   && (pPager->eState==PAGER_READER || (flags & PAGER_ACQUIRE_READONLY))
#ifdef SQLITE_HAS_CODEC
   && pPager->xCodec==0
#endif
  );

  assert( pPager->eState>=PAGER_READER );
  assert( assert_pager_state(pPager) );







|




|






|







5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
** Since Lookup() never goes to disk, it never has to deal with locks
** or journal files.
*/
int sqlite3PagerAcquire(
  Pager *pPager,      /* The pager open on the database file */
  Pgno pgno,          /* Page number to fetch */
  DbPage **ppPage,    /* Write a pointer to the page here */
  int flags           /* PAGER_GET_XXX flags */
){
  int rc = SQLITE_OK;
  PgHdr *pPg = 0;
  u32 iFrame = 0;                 /* Frame to read from WAL file */
  const int noContent = (flags & PAGER_GET_NOCONTENT);

  /* It is acceptable to use a read-only (mmap) page for any page except
  ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY
  ** flag was specified by the caller. And so long as the db is not a 
  ** temporary or in-memory database.  */
  const int bMmapOk = (pgno!=1 && USEFETCH(pPager)
   && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY))
#ifdef SQLITE_HAS_CODEC
   && pPager->xCodec==0
#endif
  );

  assert( pPager->eState>=PAGER_READER );
  assert( assert_pager_state(pPager) );
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
  if( nPagePerSector>1 ){
    Pgno nPageCount;          /* Total number of pages in database file */
    Pgno pg1;                 /* First page of the sector pPg is located on. */
    int nPage = 0;            /* Number of pages starting at pg1 to journal */
    int ii;                   /* Loop counter */
    int needSync = 0;         /* True if any page has PGHDR_NEED_SYNC */

    /* Set the doNotSyncSpill flag to 1. This is because we cannot allow
    ** a journal header to be written between the pages journaled by
    ** this function.
    */
    assert( !MEMDB );
    assert( pPager->doNotSyncSpill==0 );
    pPager->doNotSyncSpill++;

    /* This trick assumes that both the page-size and sector-size are
    ** an integer power of 2. It sets variable pg1 to the identifier
    ** of the first page of the sector pPg is located on.
    */
    pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;








|




|
|







5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
  if( nPagePerSector>1 ){
    Pgno nPageCount;          /* Total number of pages in database file */
    Pgno pg1;                 /* First page of the sector pPg is located on. */
    int nPage = 0;            /* Number of pages starting at pg1 to journal */
    int ii;                   /* Loop counter */
    int needSync = 0;         /* True if any page has PGHDR_NEED_SYNC */

    /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow
    ** a journal header to be written between the pages journaled by
    ** this function.
    */
    assert( !MEMDB );
    assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 );
    pPager->doNotSpill |= SPILLFLAG_NOSYNC;

    /* This trick assumes that both the page-size and sector-size are
    ** an integer power of 2. It sets variable pg1 to the identifier
    ** of the first page of the sector pPg is located on.
    */
    pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;

5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
        if( pPage ){
          pPage->flags |= PGHDR_NEED_SYNC;
          sqlite3PagerUnref(pPage);
        }
      }
    }

    assert( pPager->doNotSyncSpill==1 );
    pPager->doNotSyncSpill--;
  }else{
    rc = pager_write(pDbPage);
  }
  return rc;
}

/*







|
|







5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
        if( pPage ){
          pPage->flags |= PGHDR_NEED_SYNC;
          sqlite3PagerUnref(pPage);
        }
      }
    }

    assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)!=0 );
    pPager->doNotSpill &= ~SPILLFLAG_NOSYNC;
  }else{
    rc = pager_write(pDbPage);
  }
  return rc;
}

/*
Changes to src/pager.h.
77
78
79
80
81
82
83
84
85












86
87
88
89
90
91
92
#define PAGER_JOURNALMODE_TRUNCATE    3   /* Commit by truncating journal */
#define PAGER_JOURNALMODE_MEMORY      4   /* In-memory journal file */
#define PAGER_JOURNALMODE_WAL         5   /* Use write-ahead logging */

/*
** Flags that make up the mask passed to sqlite3PagerAcquire().
*/
#define PAGER_ACQUIRE_NOCONTENT     0x01  /* Do not load data from disk */
#define PAGER_ACQUIRE_READONLY      0x02  /* Read-only page is acceptable */













/*
** The remainder of this file contains the declarations of the functions
** that make up the Pager sub-system API. See source code comments for 
** a detailed description of each routine.
*/








|
|
>
>
>
>
>
>
>
>
>
>
>
>







77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#define PAGER_JOURNALMODE_TRUNCATE    3   /* Commit by truncating journal */
#define PAGER_JOURNALMODE_MEMORY      4   /* In-memory journal file */
#define PAGER_JOURNALMODE_WAL         5   /* Use write-ahead logging */

/*
** Flags that make up the mask passed to sqlite3PagerAcquire().
*/
#define PAGER_GET_NOCONTENT     0x01  /* Do not load data from disk */
#define PAGER_GET_READONLY      0x02  /* Read-only page is acceptable */

/*
** Flags for sqlite3PagerSetFlags()
*/
#define PAGER_SYNCHRONOUS_OFF       0x01  /* PRAGMA synchronous=OFF */
#define PAGER_SYNCHRONOUS_NORMAL    0x02  /* PRAGMA synchronous=NORMAL */
#define PAGER_SYNCHRONOUS_FULL      0x03  /* PRAGMA synchronous=FULL */
#define PAGER_SYNCHRONOUS_MASK      0x03  /* Mask for three values above */
#define PAGER_FULLFSYNC             0x04  /* PRAGMA fullfsync=ON */
#define PAGER_CKPT_FULLFSYNC        0x08  /* PRAGMA checkpoint_fullfsync=ON */
#define PAGER_CACHESPILL            0x10  /* PRAGMA cache_spill=ON */
#define PAGER_FLAGS_MASK            0x1c  /* All above except SYNCHRONOUS */

/*
** The remainder of this file contains the declarations of the functions
** that make up the Pager sub-system API. See source code comments for 
** a detailed description of each routine.
*/

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/* Functions used to configure a Pager object. */
void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *);
int sqlite3PagerSetPagesize(Pager*, u32*, int);
int sqlite3PagerMaxPageCount(Pager*, int);
void sqlite3PagerSetCachesize(Pager*, int);
void sqlite3PagerSetMmapLimit(Pager *, sqlite3_int64);
void sqlite3PagerShrink(Pager*);
void sqlite3PagerSetSafetyLevel(Pager*,int,int,int);
int sqlite3PagerLockingMode(Pager *, int);
int sqlite3PagerSetJournalMode(Pager *, int);
int sqlite3PagerGetJournalMode(Pager*);
int sqlite3PagerOkToChangeJournalMode(Pager*);
i64 sqlite3PagerJournalSizeLimit(Pager *, i64);
sqlite3_backup **sqlite3PagerBackupPtr(Pager*);








|







118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/* Functions used to configure a Pager object. */
void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *);
int sqlite3PagerSetPagesize(Pager*, u32*, int);
int sqlite3PagerMaxPageCount(Pager*, int);
void sqlite3PagerSetCachesize(Pager*, int);
void sqlite3PagerSetMmapLimit(Pager *, sqlite3_int64);
void sqlite3PagerShrink(Pager*);
void sqlite3PagerSetFlags(Pager*,unsigned);
int sqlite3PagerLockingMode(Pager *, int);
int sqlite3PagerSetJournalMode(Pager *, int);
int sqlite3PagerGetJournalMode(Pager*);
int sqlite3PagerOkToChangeJournalMode(Pager*);
i64 sqlite3PagerJournalSizeLimit(Pager *, i64);
sqlite3_backup **sqlite3PagerBackupPtr(Pager*);

Changes to src/parse.y.
413
414
415
416
417
418
419

420
421
422
423
424
425
426

select(A) ::= oneselect(X).                      {A = X;}
%ifndef SQLITE_OMIT_COMPOUND_SELECT
select(A) ::= select(X) multiselect_op(Y) oneselect(Z).  {
  if( Z ){
    Z->op = (u8)Y;
    Z->pPrior = X;

  }else{
    sqlite3SelectDelete(pParse->db, X);
  }
  A = Z;
}
%type multiselect_op {int}
multiselect_op(A) ::= UNION(OP).             {A = @OP;}







>







413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

select(A) ::= oneselect(X).                      {A = X;}
%ifndef SQLITE_OMIT_COMPOUND_SELECT
select(A) ::= select(X) multiselect_op(Y) oneselect(Z).  {
  if( Z ){
    Z->op = (u8)Y;
    Z->pPrior = X;
    if( Y!=TK_ALL ) pParse->hasCompound = 1;
  }else{
    sqlite3SelectDelete(pParse->db, X);
  }
  A = Z;
}
%type multiselect_op {int}
multiselect_op(A) ::= UNION(OP).             {A = @OP;}
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
nexprlist(A) ::= expr(Y).
    {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);}


///////////////////////////// The CREATE INDEX command ///////////////////////
//
cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
        ON nm(Y) LP idxlist(Z) RP(E). {
  sqlite3CreateIndex(pParse, &X, &D, 
                     sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
                      &S, &E, SQLITE_SO_ASC, NE);
}

%type uniqueflag {int}
uniqueflag(A) ::= UNIQUE.  {A = OE_Abort;}
uniqueflag(A) ::= .        {A = OE_None;}

%type idxlist {ExprList*}







|


|







1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
nexprlist(A) ::= expr(Y).
    {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);}


///////////////////////////// The CREATE INDEX command ///////////////////////
//
cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
        ON nm(Y) LP idxlist(Z) RP where_opt(W). {
  sqlite3CreateIndex(pParse, &X, &D, 
                     sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
                      &S, W, SQLITE_SO_ASC, NE);
}

%type uniqueflag {int}
uniqueflag(A) ::= UNIQUE.  {A = OE_Abort;}
uniqueflag(A) ::= .        {A = OE_None;}

%type idxlist {ExprList*}
Changes to src/pcache1.c.
761
762
763
764
765
766
767

768
769
770
771
772
773
774
  )){
    goto fetch_out;
  }

  if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
    goto fetch_out;
  }


  /* Step 4. Try to recycle a page. */
  if( pCache->bPurgeable && pGroup->pLruTail && (
         (pCache->nPage+1>=pCache->nMax)
      || pGroup->nCurrentPage>=pGroup->nMaxPage
      || pcache1UnderMemoryPressure(pCache)
  )){







>







761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
  )){
    goto fetch_out;
  }

  if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
    goto fetch_out;
  }
  assert( pCache->nHash>0 && pCache->apHash );

  /* Step 4. Try to recycle a page. */
  if( pCache->bPurgeable && pGroup->pLruTail && (
         (pCache->nPage+1>=pCache->nMax)
      || pGroup->nCurrentPage>=pGroup->nMaxPage
      || pcache1UnderMemoryPressure(pCache)
  )){
Changes to src/pragma.c.
153
154
155
156
157
158
159






























160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

206
207
208
209
210
211
212
    memcpy(pI64, &value, sizeof(value));
  }
  sqlite3VdbeAddOp4(v, OP_Int64, 0, mem, 0, (char*)pI64, P4_INT64);
  sqlite3VdbeSetNumCols(v, 1);
  sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, SQLITE_STATIC);
  sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1);
}































#ifndef SQLITE_OMIT_FLAG_PRAGMAS
/*
** Check to see if zRight and zLeft refer to a pragma that queries
** or changes one of the flags in db->flags.  Return 1 if so and 0 if not.
** Also, implement the pragma.
*/
static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
  static const struct sPragmaType {
    const char *zName;  /* Name of the pragma */
    int mask;           /* Mask for the db->flags value */
  } aPragma[] = {
    { "full_column_names",        SQLITE_FullColNames  },
    { "short_column_names",       SQLITE_ShortColNames },
    { "count_changes",            SQLITE_CountRows     },
    { "empty_result_callbacks",   SQLITE_NullCallback  },
    { "legacy_file_format",       SQLITE_LegacyFileFmt },
    { "fullfsync",                SQLITE_FullFSync     },
    { "checkpoint_fullfsync",     SQLITE_CkptFullFSync },

    { "reverse_unordered_selects", SQLITE_ReverseOrder  },

#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    { "automatic_index",          SQLITE_AutoIndex     },
#endif
#ifdef SQLITE_DEBUG
    { "sql_trace",                SQLITE_SqlTrace      },
    { "vdbe_listing",             SQLITE_VdbeListing   },
    { "vdbe_trace",               SQLITE_VdbeTrace     },
    { "vdbe_addoptrace",          SQLITE_VdbeAddopTrace},
    { "vdbe_debug",    SQLITE_SqlTrace | SQLITE_VdbeListing
                               | SQLITE_VdbeTrace      },
#endif
#ifndef SQLITE_OMIT_CHECK
    { "ignore_check_constraints", SQLITE_IgnoreChecks  },
#endif
    /* The following is VERY experimental */
    { "writable_schema",          SQLITE_WriteSchema|SQLITE_RecoveryMode },

    /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted
    ** flag if there are any active statements. */
    { "read_uncommitted",         SQLITE_ReadUncommitted },
    { "recursive_triggers",       SQLITE_RecTriggers },

    /* This flag may only be set if both foreign-key and trigger support
    ** are present in the build.  */
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
    { "foreign_keys",             SQLITE_ForeignKeys },

#endif
  };
  int i;
  const struct sPragmaType *p;
  for(i=0, p=aPragma; i<ArraySize(aPragma); i++, p++){
    if( sqlite3StrICmp(zLeft, p->zName)==0 ){
      sqlite3 *db = pParse->db;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



















>

>




















|




|
>







153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    memcpy(pI64, &value, sizeof(value));
  }
  sqlite3VdbeAddOp4(v, OP_Int64, 0, mem, 0, (char*)pI64, P4_INT64);
  sqlite3VdbeSetNumCols(v, 1);
  sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, SQLITE_STATIC);
  sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1);
}


/*
** Set the safety_level and pager flags for pager iDb.  Or if iDb<0
** set these values for all pagers.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
static void setAllPagerFlags(sqlite3 *db){
  if( db->autoCommit ){
    Db *pDb = db->aDb;
    int n = db->nDb;
    assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
    assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
    assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
    assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
             ==  PAGER_FLAGS_MASK );
    assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
    while( (n--) > 0 ){
      if( pDb->pBt ){
        sqlite3BtreeSetPagerFlags(pDb->pBt,
                 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
      }
      pDb++;
    }
  }
}
#else
# define setAllPagerFlags(X)  /* no-op */
#endif


#ifndef SQLITE_OMIT_FLAG_PRAGMAS
/*
** Check to see if zRight and zLeft refer to a pragma that queries
** or changes one of the flags in db->flags.  Return 1 if so and 0 if not.
** Also, implement the pragma.
*/
static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
  static const struct sPragmaType {
    const char *zName;  /* Name of the pragma */
    int mask;           /* Mask for the db->flags value */
  } aPragma[] = {
    { "full_column_names",        SQLITE_FullColNames  },
    { "short_column_names",       SQLITE_ShortColNames },
    { "count_changes",            SQLITE_CountRows     },
    { "empty_result_callbacks",   SQLITE_NullCallback  },
    { "legacy_file_format",       SQLITE_LegacyFileFmt },
    { "fullfsync",                SQLITE_FullFSync     },
    { "checkpoint_fullfsync",     SQLITE_CkptFullFSync },
    { "cache_spill",              SQLITE_CacheSpill    },
    { "reverse_unordered_selects", SQLITE_ReverseOrder  },
    { "query_only",               SQLITE_QueryOnly     },
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    { "automatic_index",          SQLITE_AutoIndex     },
#endif
#ifdef SQLITE_DEBUG
    { "sql_trace",                SQLITE_SqlTrace      },
    { "vdbe_listing",             SQLITE_VdbeListing   },
    { "vdbe_trace",               SQLITE_VdbeTrace     },
    { "vdbe_addoptrace",          SQLITE_VdbeAddopTrace},
    { "vdbe_debug",    SQLITE_SqlTrace | SQLITE_VdbeListing
                               | SQLITE_VdbeTrace      },
#endif
#ifndef SQLITE_OMIT_CHECK
    { "ignore_check_constraints", SQLITE_IgnoreChecks  },
#endif
    /* The following is VERY experimental */
    { "writable_schema",          SQLITE_WriteSchema|SQLITE_RecoveryMode },

    /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted
    ** flag if there are any active statements. */
    { "read_uncommitted",         SQLITE_ReadUncommitted },
    { "recursive_triggers",       SQLITE_RecTriggers   },

    /* This flag may only be set if both foreign-key and trigger support
    ** are present in the build.  */
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
    { "foreign_keys",             SQLITE_ForeignKeys   },
    { "defer_foreign_keys",       SQLITE_DeferFKs      },
#endif
  };
  int i;
  const struct sPragmaType *p;
  for(i=0, p=aPragma; i<ArraySize(aPragma); i++, p++){
    if( sqlite3StrICmp(zLeft, p->zName)==0 ){
      sqlite3 *db = pParse->db;
224
225
226
227
228
229
230

231
232
233
234
235
236
237
            mask &= ~(SQLITE_ForeignKeys);
          }

          if( sqlite3GetBoolean(zRight, 0) ){
            db->flags |= mask;
          }else{
            db->flags &= ~mask;

          }

          /* Many of the flag-pragmas modify the code generated by the SQL 
          ** compiler (eg. count_changes). So add an opcode to expire all
          ** compiled SQL statements after modifying a pragma value.
          */
          sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);







>







257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
            mask &= ~(SQLITE_ForeignKeys);
          }

          if( sqlite3GetBoolean(zRight, 0) ){
            db->flags |= mask;
          }else{
            db->flags &= ~mask;
            if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
          }

          /* Many of the flag-pragmas modify the code generated by the SQL 
          ** compiler (eg. count_changes). So add an opcode to expire all
          ** compiled SQL statements after modifying a pragma value.
          */
          sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
  **
  ** Get or set the size limit on rollback journal files.
  */
  if( sqlite3StrICmp(zLeft,"journal_size_limit")==0 ){
    Pager *pPager = sqlite3BtreePager(pDb->pBt);
    i64 iLimit = -2;
    if( zRight ){
      sqlite3Atoi64(zRight, &iLimit, 1000000, SQLITE_UTF8);
      if( iLimit<-1 ) iLimit = -1;
    }
    iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
    returnSingleInt(pParse, "journal_size_limit", iLimit);
  }else

#endif /* SQLITE_OMIT_PAGER_PRAGMAS */







|







657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
  **
  ** Get or set the size limit on rollback journal files.
  */
  if( sqlite3StrICmp(zLeft,"journal_size_limit")==0 ){
    Pager *pPager = sqlite3BtreePager(pDb->pBt);
    i64 iLimit = -2;
    if( zRight ){
      sqlite3Atoi64(zRight, &iLimit, sqlite3Strlen30(zRight), SQLITE_UTF8);
      if( iLimit<-1 ) iLimit = -1;
    }
    iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
    returnSingleInt(pParse, "journal_size_limit", iLimit);
  }else

#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
757
758
759
760
761
762
763

764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

780
781
782
783
784
785
786
  **
  ** This value is advisory.  The underlying VFS is free to memory map
  ** as little or as much as it wants.  Except, if N is set to 0 then the
  ** upper layers will never invoke the xFetch interfaces to the VFS.
  */
  if( sqlite3StrICmp(zLeft,"mmap_size")==0 ){
    sqlite3_int64 sz;

    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( zRight ){
      int ii;
      sqlite3Atoi64(zRight, &sz, 1000, SQLITE_UTF8);
      if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
      if( pId2->n==0 ) db->szMmap = sz;
      for(ii=db->nDb-1; ii>=0; ii--){
        if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
          sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
        }
      }
    }
    sz = -1;
    rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
#if SQLITE_MAX_MMAP_SIZE==0
    sz = 0;

#endif
    if( rc==SQLITE_OK ){
      returnSingleInt(pParse, "mmap_size", sz);
    }else if( rc!=SQLITE_NOTFOUND ){
      pParse->nErr++;
      pParse->rc = rc;
    }







>



|










|

>







791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
  **
  ** This value is advisory.  The underlying VFS is free to memory map
  ** as little or as much as it wants.  Except, if N is set to 0 then the
  ** upper layers will never invoke the xFetch interfaces to the VFS.
  */
  if( sqlite3StrICmp(zLeft,"mmap_size")==0 ){
    sqlite3_int64 sz;
#if SQLITE_MAX_MMAP_SIZE>0
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( zRight ){
      int ii;
      sqlite3Atoi64(zRight, &sz, sqlite3Strlen30(zRight), SQLITE_UTF8);
      if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
      if( pId2->n==0 ) db->szMmap = sz;
      for(ii=db->nDb-1; ii>=0; ii--){
        if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
          sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
        }
      }
    }
    sz = -1;
    rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
#else
    sz = 0;
    rc = SQLITE_OK;
#endif
    if( rc==SQLITE_OK ){
      returnSingleInt(pParse, "mmap_size", sz);
    }else if( rc!=SQLITE_NOTFOUND ){
      pParse->nErr++;
      pParse->rc = rc;
    }
959
960
961
962
963
964
965

966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
      returnSingleInt(pParse, "synchronous", pDb->safety_level-1);
    }else{
      if( !db->autoCommit ){
        sqlite3ErrorMsg(pParse, 
            "Safety level may not be changed inside a transaction");
      }else{
        pDb->safety_level = getSafetyLevel(zRight,0,1)+1;

      }
    }
  }else
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */

#ifndef SQLITE_OMIT_FLAG_PRAGMAS
  if( flagPragma(pParse, zLeft, zRight) ){
    /* The flagPragma() subroutine also generates any necessary code
    ** there is nothing more to do here */
  }else
#endif /* SQLITE_OMIT_FLAG_PRAGMAS */

#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
  /*
  **   PRAGMA table_info(<table>)
  **







>







|
<







995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010

1011
1012
1013
1014
1015
1016
1017
      returnSingleInt(pParse, "synchronous", pDb->safety_level-1);
    }else{
      if( !db->autoCommit ){
        sqlite3ErrorMsg(pParse, 
            "Safety level may not be changed inside a transaction");
      }else{
        pDb->safety_level = getSafetyLevel(zRight,0,1)+1;
        setAllPagerFlags(db);
      }
    }
  }else
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */

#ifndef SQLITE_OMIT_FLAG_PRAGMAS
  if( flagPragma(pParse, zLeft, zRight) ){
    setAllPagerFlags(db);

  }else
#endif /* SQLITE_OMIT_FLAG_PRAGMAS */

#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
  /*
  **   PRAGMA table_info(<table>)
  **
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
          sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt);
          cnt++;
        }
      }

      /* Make sure sufficient number of registers have been allocated */
      if( pParse->nMem < cnt+4 ){
        pParse->nMem = cnt+4;
      }

      /* Do the b-tree integrity checks */
      sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
      sqlite3VdbeChangeP5(v, (u8)i);
      addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2);
      sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
         sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),







<
|
<







1429
1430
1431
1432
1433
1434
1435

1436

1437
1438
1439
1440
1441
1442
1443
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
          sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt);
          cnt++;
        }
      }

      /* Make sure sufficient number of registers have been allocated */

      pParse->nMem = MAX( pParse->nMem, cnt+7 );


      /* Do the b-tree integrity checks */
      sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
      sqlite3VdbeChangeP5(v, (u8)i);
      addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2);
      sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
         sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
1420
1421
1422
1423
1424
1425
1426

1427

1428


1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447

1448
1449
1450
1451
1452
1453
1454

1455
1456
1457



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483

1484
1485
1486
1487
1488
1489
1490
        Index *pIdx;
        int loopTop;

        if( pTab->pIndex==0 ) continue;
        addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);  /* Stop if out of errors */
        sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
        sqlite3VdbeJumpHere(v, addr);

        sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);

        sqlite3VdbeAddOp2(v, OP_Integer, 0, 2);  /* reg(2) will count entries */


        loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0);
        sqlite3VdbeAddOp2(v, OP_AddImm, 2, 1);   /* increment entry count */
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          int jmp2;
          int r1;
          static const VdbeOpList idxErr[] = {
            { OP_AddImm,      1, -1,  0},
            { OP_String8,     0,  3,  0},    /* 1 */
            { OP_Rowid,       1,  4,  0},
            { OP_String8,     0,  5,  0},    /* 3 */
            { OP_String8,     0,  6,  0},    /* 4 */
            { OP_Concat,      4,  3,  3},
            { OP_Concat,      5,  3,  3},
            { OP_Concat,      6,  3,  3},
            { OP_ResultRow,   3,  1,  0},
            { OP_IfPos,       1,  0,  0},    /* 9 */
            { OP_Halt,        0,  0,  0},
          };
          r1 = sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 0);

          jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, j+2, 0, r1, pIdx->nColumn+1);
          addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
          sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC);
          sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC);
          sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_TRANSIENT);
          sqlite3VdbeJumpHere(v, addr+9);
          sqlite3VdbeJumpHere(v, jmp2);

        }
        sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1);
        sqlite3VdbeJumpHere(v, loopTop);



        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          static const VdbeOpList cntIdx[] = {
             { OP_Integer,      0,  3,  0},
             { OP_Rewind,       0,  0,  0},  /* 1 */
             { OP_AddImm,       3,  1,  0},
             { OP_Next,         0,  0,  0},  /* 3 */
             { OP_Eq,           2,  0,  3},  /* 4 */
             { OP_AddImm,       1, -1,  0},
             { OP_String8,      0,  2,  0},  /* 6 */
             { OP_String8,      0,  3,  0},  /* 7 */
             { OP_Concat,       3,  2,  2},
             { OP_ResultRow,    2,  1,  0},
          };
          addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);
          sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
          sqlite3VdbeJumpHere(v, addr);
          addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
          sqlite3VdbeChangeP1(v, addr+1, j+2);
          sqlite3VdbeChangeP2(v, addr+1, addr+4);
          sqlite3VdbeChangeP1(v, addr+3, j+2);
          sqlite3VdbeChangeP2(v, addr+3, addr+2);
          sqlite3VdbeJumpHere(v, addr+4);
          sqlite3VdbeChangeP4(v, addr+6, 
                     "wrong # of entries in index ", P4_STATIC);
          sqlite3VdbeChangeP4(v, addr+7, pIdx->zName, P4_TRANSIENT);
        }

      } 
    }
    addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
    sqlite3VdbeChangeP2(v, addr, -mxErr);
    sqlite3VdbeJumpHere(v, addr+1);
    sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC);
  }else







>

>
|
>
>
|
<

|














|
>







>

|
|
>
>
>

<
<
<
<
<
<
<
<
<
<
<
<
|
|
|
|
|
<
|
|
|
|
<
<

>







1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467

1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500












1501
1502
1503
1504
1505

1506
1507
1508
1509


1510
1511
1512
1513
1514
1515
1516
1517
1518
        Index *pIdx;
        int loopTop;

        if( pTab->pIndex==0 ) continue;
        addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);  /* Stop if out of errors */
        sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
        sqlite3VdbeJumpHere(v, addr);
        sqlite3ExprCacheClear(pParse);
        sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          sqlite3VdbeAddOp2(v, OP_Integer, 0, 7+j); /* index entries counter */
        }
        pParse->nMem = MAX(pParse->nMem, 7+j);
        loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0) + 1;

        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          int jmp2, jmp3;
          int r1;
          static const VdbeOpList idxErr[] = {
            { OP_AddImm,      1, -1,  0},
            { OP_String8,     0,  3,  0},    /* 1 */
            { OP_Rowid,       1,  4,  0},
            { OP_String8,     0,  5,  0},    /* 3 */
            { OP_String8,     0,  6,  0},    /* 4 */
            { OP_Concat,      4,  3,  3},
            { OP_Concat,      5,  3,  3},
            { OP_Concat,      6,  3,  3},
            { OP_ResultRow,   3,  1,  0},
            { OP_IfPos,       1,  0,  0},    /* 9 */
            { OP_Halt,        0,  0,  0},
          };
          r1 = sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 0, &jmp3);
          sqlite3VdbeAddOp2(v, OP_AddImm, 7+j, 1);  /* increment entry count */
          jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, j+2, 0, r1, pIdx->nColumn+1);
          addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
          sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC);
          sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC);
          sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_TRANSIENT);
          sqlite3VdbeJumpHere(v, addr+9);
          sqlite3VdbeJumpHere(v, jmp2);
          sqlite3VdbeResolveLabel(v, jmp3);
        }
        sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop);
        sqlite3VdbeJumpHere(v, loopTop-1);
#ifndef SQLITE_OMIT_BTREECOUNT
        sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, 
                     "wrong # of entries in index ", P4_STATIC);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){












          addr = sqlite3VdbeCurrentAddr(v);
          sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr+2);
          sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
          sqlite3VdbeAddOp2(v, OP_Count, j+2, 3);
          sqlite3VdbeAddOp3(v, OP_Eq, 7+j, addr+8, 3);

          sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pIdx->zName, P4_TRANSIENT);
          sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7);
          sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1);


        }
#endif /* SQLITE_OMIT_BTREECOUNT */
      } 
    }
    addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
    sqlite3VdbeChangeP2(v, addr, -mxErr);
    sqlite3VdbeJumpHere(v, addr+1);
    sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC);
  }else
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
#endif
  }else
#endif

 
  {/* Empty ELSE clause */}

  /*
  ** Reset the safety level, in case the fullfsync flag or synchronous
  ** setting changed.
  */
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
  if( db->autoCommit ){
    sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level,
               (db->flags&SQLITE_FullFSync)!=0,
               (db->flags&SQLITE_CkptFullFSync)!=0);
  }
#endif
pragma_out:
  sqlite3DbFree(db, zLeft);
  sqlite3DbFree(db, zRight);
}

#endif /* SQLITE_OMIT_PRAGMA */







<
<
<
<
<
<
<
<
<
<
<






1834
1835
1836
1837
1838
1839
1840











1841
1842
1843
1844
1845
1846
#endif
  }else
#endif

 
  {/* Empty ELSE clause */}












pragma_out:
  sqlite3DbFree(db, zLeft);
  sqlite3DbFree(db, zRight);
}

#endif /* SQLITE_OMIT_PRAGMA */
Changes to src/prepare.c.
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
      }
    }
  }

  sqlite3VtabUnlockList(db);

  pParse->db = db;
  pParse->nQueryLoop = (double)1;
  if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
    char *zSqlCopy;
    int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
    testcase( nBytes==mxLen );
    testcase( nBytes==mxLen+1 );
    if( nBytes>mxLen ){
      sqlite3Error(db, SQLITE_TOOBIG, "statement too long");







|







588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
      }
    }
  }

  sqlite3VtabUnlockList(db);

  pParse->db = db;
  pParse->nQueryLoop = 0;  /* Logarithmic, so 0 really means 1 */
  if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
    char *zSqlCopy;
    int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
    testcase( nBytes==mxLen );
    testcase( nBytes==mxLen+1 );
    if( nBytes>mxLen ){
      sqlite3Error(db, SQLITE_TOOBIG, "statement too long");
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
      pParse->zTail = &zSql[pParse->zTail-zSqlCopy];
    }else{
      pParse->zTail = &zSql[nBytes];
    }
  }else{
    sqlite3RunParser(pParse, zSql, &zErrMsg);
  }
  assert( 1==(int)pParse->nQueryLoop );

  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc==SQLITE_DONE ) pParse->rc = SQLITE_OK;
  if( pParse->checkSchema ){
    schemaIsValid(pParse);







|







610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
      pParse->zTail = &zSql[pParse->zTail-zSqlCopy];
    }else{
      pParse->zTail = &zSql[nBytes];
    }
  }else{
    sqlite3RunParser(pParse, zSql, &zErrMsg);
  }
  assert( 0==pParse->nQueryLoop );

  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc==SQLITE_DONE ) pParse->rc = SQLITE_OK;
  if( pParse->checkSchema ){
    schemaIsValid(pParse);
805
806
807
808
809
810
811






812
813
814
815
816
817
818
  const char *zTail8 = 0;
  int rc = SQLITE_OK;

  assert( ppStmt );
  *ppStmt = 0;
  if( !sqlite3SafetyCheckOk(db) ){
    return SQLITE_MISUSE_BKPT;






  }
  sqlite3_mutex_enter(db->mutex);
  zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE);
  if( zSql8 ){
    rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, 0, ppStmt, &zTail8);
  }








>
>
>
>
>
>







805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
  const char *zTail8 = 0;
  int rc = SQLITE_OK;

  assert( ppStmt );
  *ppStmt = 0;
  if( !sqlite3SafetyCheckOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
  if( nBytes>=0 ){
    int sz;
    const char *z = (const char*)zSql;
    for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){}
    nBytes = sz;
  }
  sqlite3_mutex_enter(db->mutex);
  zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE);
  if( zSql8 ){
    rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, 0, ppStmt, &zTail8);
  }

Changes to src/printf.c.
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        if( precision<etBUFSIZE-10 ){
          nOut = etBUFSIZE;
          zOut = buf;
        }else{
          nOut = precision + 10;
          zOut = zExtra = sqlite3Malloc( nOut );
          if( zOut==0 ){
            pAccum->mallocFailed = 1;
            return;
          }
        }
        bufpt = &zOut[nOut-1];
        if( xtype==etORDINAL ){
          static const char zOrd[] = "thstndrd";
          int x = (int)(longvalue % 10);







|







355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        if( precision<etBUFSIZE-10 ){
          nOut = etBUFSIZE;
          zOut = buf;
        }else{
          nOut = precision + 10;
          zOut = zExtra = sqlite3Malloc( nOut );
          if( zOut==0 ){
            pAccum->accError = STRACCUM_NOMEM;
            return;
          }
        }
        bufpt = &zOut[nOut-1];
        if( xtype==etORDINAL ){
          static const char zOrd[] = "thstndrd";
          int x = (int)(longvalue % 10);
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
          flag_rtz = flag_altform2;
        }
        if( xtype==etEXP ){
          e2 = 0;
        }else{
          e2 = exp;
        }
        if( e2+precision+width > etBUFSIZE - 15 ){
          bufpt = zExtra = sqlite3Malloc( e2+precision+width+15 );
          if( bufpt==0 ){
            pAccum->mallocFailed = 1;
            return;
          }
        }
        zOut = bufpt;
        nsd = 16 + flag_altform2*10;
        flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
        /* The sign in front of the number */







|
|

|







464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
          flag_rtz = flag_altform2;
        }
        if( xtype==etEXP ){
          e2 = 0;
        }else{
          e2 = exp;
        }
        if( MAX(e2,0)+precision+width > etBUFSIZE - 15 ){
          bufpt = zExtra = sqlite3Malloc( MAX(e2,0)+precision+width+15 );
          if( bufpt==0 ){
            pAccum->accError = STRACCUM_NOMEM;
            return;
          }
        }
        zOut = bufpt;
        nsd = 16 + flag_altform2*10;
        flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
        /* The sign in front of the number */
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
          if( ch==q )  n++;
        }
        needQuote = !isnull && xtype==etSQLESCAPE2;
        n += i + 1 + needQuote*2;
        if( n>etBUFSIZE ){
          bufpt = zExtra = sqlite3Malloc( n );
          if( bufpt==0 ){
            pAccum->mallocFailed = 1;
            return;
          }
        }else{
          bufpt = buf;
        }
        j = 0;
        if( needQuote ) bufpt[j++] = q;







|







602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
          if( ch==q )  n++;
        }
        needQuote = !isnull && xtype==etSQLESCAPE2;
        n += i + 1 + needQuote*2;
        if( n>etBUFSIZE ){
          bufpt = zExtra = sqlite3Malloc( n );
          if( bufpt==0 ){
            pAccum->accError = STRACCUM_NOMEM;
            return;
          }
        }else{
          bufpt = buf;
        }
        j = 0;
        if( needQuote ) bufpt[j++] = q;
680
681
682
683
684
685
686
687
688
689
690
691
692
693

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
} /* End of function */

/*
** Append N bytes of text from z to the StrAccum object.
*/
void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
  assert( z!=0 || N==0 );
  if( p->tooBig | p->mallocFailed ){
    testcase(p->tooBig);
    testcase(p->mallocFailed);
    return;
  }
  assert( p->zText!=0 || p->nChar==0 );
  if( N<0 ){

    N = sqlite3Strlen30(z);
  }
  if( N==0 || NEVER(z==0) ){
    return;
  }
  if( p->nChar+N >= p->nAlloc ){
    char *zNew;
    if( !p->useMalloc ){
      p->tooBig = 1;
      N = p->nAlloc - p->nChar - 1;
      if( N<=0 ){
        return;
      }
    }else{
      char *zOld = (p->zText==p->zBase ? 0 : p->zText);
      i64 szNew = p->nChar;
      szNew += N + 1;
      if( szNew > p->mxAlloc ){
        sqlite3StrAccumReset(p);
        p->tooBig = 1;
        return;
      }else{
        p->nAlloc = (int)szNew;
      }
      if( p->useMalloc==1 ){
        zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
      }else{
        zNew = sqlite3_realloc(zOld, p->nAlloc);
      }
      if( zNew ){
        if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
        p->zText = zNew;
      }else{
        p->mallocFailed = 1;
        sqlite3StrAccumReset(p);
        return;
      }
    }
  }
  assert( p->zText );
  memcpy(&p->zText[p->nChar], z, N);







|
|
|



|
>


<
<
<



|










|













|







680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696



697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
} /* End of function */

/*
** Append N bytes of text from z to the StrAccum object.
*/
void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
  assert( z!=0 || N==0 );
  if( p->accError ){
    testcase(p->accError==STRACCUM_TOOBIG);
    testcase(p->accError==STRACCUM_NOMEM);
    return;
  }
  assert( p->zText!=0 || p->nChar==0 );
  if( N<=0 ){
    if( N==0 || z[0]==0 ) return;
    N = sqlite3Strlen30(z);
  }



  if( p->nChar+N >= p->nAlloc ){
    char *zNew;
    if( !p->useMalloc ){
      p->accError = STRACCUM_TOOBIG;
      N = p->nAlloc - p->nChar - 1;
      if( N<=0 ){
        return;
      }
    }else{
      char *zOld = (p->zText==p->zBase ? 0 : p->zText);
      i64 szNew = p->nChar;
      szNew += N + 1;
      if( szNew > p->mxAlloc ){
        sqlite3StrAccumReset(p);
        p->accError = STRACCUM_TOOBIG;
        return;
      }else{
        p->nAlloc = (int)szNew;
      }
      if( p->useMalloc==1 ){
        zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
      }else{
        zNew = sqlite3_realloc(zOld, p->nAlloc);
      }
      if( zNew ){
        if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
        p->zText = zNew;
      }else{
        p->accError = STRACCUM_NOMEM;
        sqlite3StrAccumReset(p);
        return;
      }
    }
  }
  assert( p->zText );
  memcpy(&p->zText[p->nChar], z, N);
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
        p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
      }else{
        p->zText = sqlite3_malloc(p->nChar+1);
      }
      if( p->zText ){
        memcpy(p->zText, p->zBase, p->nChar+1);
      }else{
        p->mallocFailed = 1;
      }
    }
  }
  return p->zText;
}

/*







|







746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
        p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
      }else{
        p->zText = sqlite3_malloc(p->nChar+1);
      }
      if( p->zText ){
        memcpy(p->zText, p->zBase, p->nChar+1);
      }else{
        p->accError = STRACCUM_NOMEM;
      }
    }
  }
  return p->zText;
}

/*
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){
  p->zText = p->zBase = zBase;
  p->db = 0;
  p->nChar = 0;
  p->nAlloc = n;
  p->mxAlloc = mx;
  p->useMalloc = 1;
  p->tooBig = 0;
  p->mallocFailed = 0;
}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal
** %-conversion extensions.
*/
char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
  char *z;
  char zBase[SQLITE_PRINT_BUF_SIZE];
  StrAccum acc;
  assert( db!=0 );
  sqlite3StrAccumInit(&acc, zBase, sizeof(zBase),
                      db->aLimit[SQLITE_LIMIT_LENGTH]);
  acc.db = db;
  sqlite3VXPrintf(&acc, 1, zFormat, ap);
  z = sqlite3StrAccumFinish(&acc);
  if( acc.mallocFailed ){
    db->mallocFailed = 1;
  }
  return z;
}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal







|
<
















|







777
778
779
780
781
782
783
784

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){
  p->zText = p->zBase = zBase;
  p->db = 0;
  p->nChar = 0;
  p->nAlloc = n;
  p->mxAlloc = mx;
  p->useMalloc = 1;
  p->accError = 0;

}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal
** %-conversion extensions.
*/
char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
  char *z;
  char zBase[SQLITE_PRINT_BUF_SIZE];
  StrAccum acc;
  assert( db!=0 );
  sqlite3StrAccumInit(&acc, zBase, sizeof(zBase),
                      db->aLimit[SQLITE_LIMIT_LENGTH]);
  acc.db = db;
  sqlite3VXPrintf(&acc, 1, zFormat, ap);
  z = sqlite3StrAccumFinish(&acc);
  if( acc.accError==STRACCUM_NOMEM ){
    db->mallocFailed = 1;
  }
  return z;
}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal
Changes to src/random.c.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62




63
64
65
66
67
68
69
static SQLITE_WSD struct sqlite3PrngType {
  unsigned char isInit;          /* True if initialized */
  unsigned char i, j;            /* State variables */
  unsigned char s[256];          /* State variables */
} sqlite3Prng;

/*
** Get a single 8-bit random value from the RC4 PRNG.  The Mutex
** must be held while executing this routine.
**
** Why not just use a library random generator like lrand48() for this?
** Because the OP_NewRowid opcode in the VDBE depends on having a very
** good source of random numbers.  The lrand48() library function may
** well be good enough.  But maybe not.  Or maybe lrand48() has some
** subtle problems on some systems that could cause problems.  It is hard
** to know.  To minimize the risk of problems due to bad lrand48()
** implementations, SQLite uses this random number generator based
** on RC4, which we know works very well.
**
** (Later):  Actually, OP_NewRowid does not depend on a good source of
** randomness any more.  But we will leave this code in all the same.
*/
static u8 randomByte(void){
  unsigned char t;


  /* The "wsdPrng" macro will resolve to the pseudo-random number generator
  ** state vector.  If writable static data is unsupported on the target,
  ** we have to locate the state vector at run-time.  In the more common
  ** case where writable static data is supported, wsdPrng can refer directly
  ** to the "sqlite3Prng" state vector declared above.
  */
#ifdef SQLITE_OMIT_WSD
  struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng);
# define wsdPrng p[0]
#else
# define wsdPrng sqlite3Prng
#endif






  /* Initialize the state of the random number generator once,
  ** the first time this routine is called.  The seed value does
  ** not need to contain a lot of randomness since we are not
  ** trying to do secure encryption or anything like that...
  **
  ** Nothing in this file or anywhere else in SQLite does any kind of







<
<
|
<
<
<
<
<
<
<
<
<
<
<

|

|














>
>
>
>







24
25
26
27
28
29
30


31











32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
static SQLITE_WSD struct sqlite3PrngType {
  unsigned char isInit;          /* True if initialized */
  unsigned char i, j;            /* State variables */
  unsigned char s[256];          /* State variables */
} sqlite3Prng;

/*


** Return N random bytes.











*/
void sqlite3_randomness(int N, void *pBuf){
  unsigned char t;
  unsigned char *zBuf = pBuf;

  /* The "wsdPrng" macro will resolve to the pseudo-random number generator
  ** state vector.  If writable static data is unsupported on the target,
  ** we have to locate the state vector at run-time.  In the more common
  ** case where writable static data is supported, wsdPrng can refer directly
  ** to the "sqlite3Prng" state vector declared above.
  */
#ifdef SQLITE_OMIT_WSD
  struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng);
# define wsdPrng p[0]
#else
# define wsdPrng sqlite3Prng
#endif

#if SQLITE_THREADSAFE
  sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG);
  sqlite3_mutex_enter(mutex);
#endif

  /* Initialize the state of the random number generator once,
  ** the first time this routine is called.  The seed value does
  ** not need to contain a lot of randomness since we are not
  ** trying to do secure encryption or anything like that...
  **
  ** Nothing in this file or anywhere else in SQLite does any kind of
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
      t = wsdPrng.s[wsdPrng.j];
      wsdPrng.s[wsdPrng.j] = wsdPrng.s[i];
      wsdPrng.s[i] = t;
    }
    wsdPrng.isInit = 1;
  }

  /* Generate and return single random byte
  */
  wsdPrng.i++;
  t = wsdPrng.s[wsdPrng.i];
  wsdPrng.j += t;
  wsdPrng.s[wsdPrng.i] = wsdPrng.s[wsdPrng.j];
  wsdPrng.s[wsdPrng.j] = t;
  t += wsdPrng.s[wsdPrng.i];
  return wsdPrng.s[t];
}

/*
** Return N random bytes.
*/
void sqlite3_randomness(int N, void *pBuf){
  unsigned char *zBuf = pBuf;
#if SQLITE_THREADSAFE
  sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG);
#endif
  sqlite3_mutex_enter(mutex);
  while( N-- ){
    *(zBuf++) = randomByte();
  }
  sqlite3_mutex_leave(mutex);
}

#ifndef SQLITE_OMIT_BUILTIN_TEST
/*
** For testing purposes, we sometimes want to preserve the state of







|
<
|
|
|
|
|
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<







75
76
77
78
79
80
81
82

83
84
85
86
87
88
89













90
91
92
93
94
95
96
      t = wsdPrng.s[wsdPrng.j];
      wsdPrng.s[wsdPrng.j] = wsdPrng.s[i];
      wsdPrng.s[i] = t;
    }
    wsdPrng.isInit = 1;
  }

  while( N-- ){

    wsdPrng.i++;
    t = wsdPrng.s[wsdPrng.i];
    wsdPrng.j += t;
    wsdPrng.s[wsdPrng.i] = wsdPrng.s[wsdPrng.j];
    wsdPrng.s[wsdPrng.j] = t;
    t += wsdPrng.s[wsdPrng.i];
    *(zBuf++) = wsdPrng.s[t];













  }
  sqlite3_mutex_leave(mutex);
}

#ifndef SQLITE_OMIT_BUILTIN_TEST
/*
** For testing purposes, we sometimes want to preserve the state of
Changes to src/resolve.c.
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
** TK_AS operator.  The TK_AS operator causes the expression to be
** evaluated just once and then reused for each alias.
**
** The reason for suppressing the TK_AS term when the expression is a simple
** column reference is so that the column reference will be recognized as
** usable by indices within the WHERE clause processing logic. 
**
** Hack:  The TK_AS operator is inhibited if zType[0]=='G'.  This means
** that in a GROUP BY clause, the expression is evaluated twice.  Hence:
**
**     SELECT random()%5 AS x, count(*) FROM tab GROUP BY x
**
** Is equivalent to:
**
**     SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5
**
** The result of random()%5 in the GROUP BY clause is probably different
** from the result in the result-set.  We might fix this someday.  Or
** then again, we might not...

**
** If the reference is followed by a COLLATE operator, then make sure
** the COLLATE operator is preserved.  For example:
**
**     SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase;
**
** Should be transformed into:







|









|
|
>







51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
** TK_AS operator.  The TK_AS operator causes the expression to be
** evaluated just once and then reused for each alias.
**
** The reason for suppressing the TK_AS term when the expression is a simple
** column reference is so that the column reference will be recognized as
** usable by indices within the WHERE clause processing logic. 
**
** The TK_AS operator is inhibited if zType[0]=='G'.  This means
** that in a GROUP BY clause, the expression is evaluated twice.  Hence:
**
**     SELECT random()%5 AS x, count(*) FROM tab GROUP BY x
**
** Is equivalent to:
**
**     SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5
**
** The result of random()%5 in the GROUP BY clause is probably different
** from the result in the result-set.  On the other hand Standard SQL does
** not allow the GROUP BY clause to contain references to result-set columns.
** So this should never come up in well-formed queries.
**
** If the reference is followed by a COLLATE operator, then make sure
** the COLLATE operator is preserved.  For example:
**
**     SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase;
**
** Should be transformed into:
236
237
238
239
240
241
242








243
244
245
246
247

248
249
250
251
252
253
254
  ExprSetIrreducible(pExpr);

  /* Translate the schema name in zDb into a pointer to the corresponding
  ** schema.  If not found, pSchema will remain NULL and nothing will match
  ** resulting in an appropriate error message toward the end of this routine
  */
  if( zDb ){








    for(i=0; i<db->nDb; i++){
      assert( db->aDb[i].zName );
      if( sqlite3StrICmp(db->aDb[i].zName,zDb)==0 ){
        pSchema = db->aDb[i].pSchema;
        break;

      }
    }
  }

  /* Start at the inner-most context and move outward until a match is found */
  while( pNC && cnt==0 ){
    ExprList *pEList;







>
>
>
>
>
>
>
>
|
|
|
|
|
>







237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
  ExprSetIrreducible(pExpr);

  /* Translate the schema name in zDb into a pointer to the corresponding
  ** schema.  If not found, pSchema will remain NULL and nothing will match
  ** resulting in an appropriate error message toward the end of this routine
  */
  if( zDb ){
    testcase( pNC->ncFlags & NC_PartIdx );
    testcase( pNC->ncFlags & NC_IsCheck );
    if( (pNC->ncFlags & (NC_PartIdx|NC_IsCheck))!=0 ){
      /* Silently ignore database qualifiers inside CHECK constraints and partial
      ** indices.  Do not raise errors because that might break legacy and
      ** because it does not hurt anything to just ignore the database name. */
      zDb = 0;
    }else{
      for(i=0; i<db->nDb; i++){
        assert( db->aDb[i].zName );
        if( sqlite3StrICmp(db->aDb[i].zName,zDb)==0 ){
          pSchema = db->aDb[i].pSchema;
          break;
        }
      }
    }
  }

  /* Start at the inner-most context and move outward until a match is found */
  while( pNC && cnt==0 ){
    ExprList *pEList;
383
384
385
386
387
388
389






390
391
392
393
394
395
396
397
398
399
400
    **
    **     SELECT a+b AS x FROM table WHERE x<10;
    **
    ** In cases like this, replace pExpr with a copy of the expression that
    ** forms the result set entry ("a+b" in the example) and return immediately.
    ** Note that the expression in the result set should have already been
    ** resolved by the time the WHERE clause is resolved.






    */
    if( (pEList = pNC->pEList)!=0
     && zTab==0
     && ((pNC->ncFlags & NC_AsMaybe)==0 || cnt==0)
    ){
      for(j=0; j<pEList->nExpr; j++){
        char *zAs = pEList->a[j].zName;
        if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
          Expr *pOrig;
          assert( pExpr->pLeft==0 && pExpr->pRight==0 );
          assert( pExpr->x.pList==0 );







>
>
>
>
>
>



|







393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    **
    **     SELECT a+b AS x FROM table WHERE x<10;
    **
    ** In cases like this, replace pExpr with a copy of the expression that
    ** forms the result set entry ("a+b" in the example) and return immediately.
    ** Note that the expression in the result set should have already been
    ** resolved by the time the WHERE clause is resolved.
    **
    ** The ability to use an output result-set column in the WHERE, GROUP BY,
    ** or HAVING clauses, or as part of a larger expression in the ORDRE BY
    ** clause is not standard SQL.  This is a (goofy) SQLite extension, that
    ** is supported for backwards compatibility only.  TO DO: Issue a warning
    ** on sqlite3_log() whenever the capability is used.
    */
    if( (pEList = pNC->pEList)!=0
     && zTab==0
     && cnt==0
    ){
      for(j=0; j<pEList->nExpr; j++){
        char *zAs = pEList->a[j].zName;
        if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
          Expr *pOrig;
          assert( pExpr->pLeft==0 && pExpr->pRight==0 );
          assert( pExpr->x.pList==0 );
517
518
519
520
521
522
523

































524
525
526
527
528
529
530
      testcase( iCol==BMS-1 );
      pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol);
    }
    ExprSetProperty(p, EP_Resolved);
  }
  return p;
}


































/*
** This routine is callback for sqlite3WalkExpr().
**
** Resolve symbolic names into TK_COLUMN operators for the current
** node in the expression tree.  Return 0 to continue the search down
** the tree or 2 to abort the tree walk.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
      testcase( iCol==BMS-1 );
      pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol);
    }
    ExprSetProperty(p, EP_Resolved);
  }
  return p;
}

/*
** Report an error that an expression is not valid for a partial index WHERE
** clause.
*/
static void notValidPartIdxWhere(
  Parse *pParse,       /* Leave error message here */
  NameContext *pNC,    /* The name context */
  const char *zMsg     /* Type of error */
){
  if( (pNC->ncFlags & NC_PartIdx)!=0 ){
    sqlite3ErrorMsg(pParse, "%s prohibited in partial index WHERE clauses",
                    zMsg);
  }
}

#ifndef SQLITE_OMIT_CHECK
/*
** Report an error that an expression is not valid for a CHECK constraint.
*/
static void notValidCheckConstraint(
  Parse *pParse,       /* Leave error message here */
  NameContext *pNC,    /* The name context */
  const char *zMsg     /* Type of error */
){
  if( (pNC->ncFlags & NC_IsCheck)!=0 ){
    sqlite3ErrorMsg(pParse,"%s prohibited in CHECK constraints", zMsg);
  }
}
#else
# define notValidCheckConstraint(P,N,M)
#endif


/*
** This routine is callback for sqlite3WalkExpr().
**
** Resolve symbolic names into TK_COLUMN operators for the current
** node in the expression tree.  Return 0 to continue the search down
** the tree or 2 to abort the tree walk.
617
618
619
620
621
622
623

624
625
626
627
628
629
630
      int nId;                    /* Number of characters in function name */
      const char *zId;            /* The function name. */
      FuncDef *pDef;              /* Information about the function */
      u8 enc = ENC(pParse->db);   /* The database encoding */

      testcase( pExpr->op==TK_CONST_FUNC );
      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );

      zId = pExpr->u.zToken;
      nId = sqlite3Strlen30(zId);
      pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
      if( pDef==0 ){
        pDef = sqlite3FindFunction(pParse->db, zId, nId, -2, enc, 0);
        if( pDef==0 ){
          no_such_func = 1;







>







666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
      int nId;                    /* Number of characters in function name */
      const char *zId;            /* The function name. */
      FuncDef *pDef;              /* Information about the function */
      u8 enc = ENC(pParse->db);   /* The database encoding */

      testcase( pExpr->op==TK_CONST_FUNC );
      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
      notValidPartIdxWhere(pParse, pNC, "functions");
      zId = pExpr->u.zToken;
      nId = sqlite3Strlen30(zId);
      pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
      if( pDef==0 ){
        pDef = sqlite3FindFunction(pParse->db, zId, nId, -2, enc, 0);
        if( pDef==0 ){
          no_such_func = 1;
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
    case TK_SELECT:
    case TK_EXISTS:  testcase( pExpr->op==TK_EXISTS );
#endif
    case TK_IN: {
      testcase( pExpr->op==TK_IN );
      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        int nRef = pNC->nRef;
#ifndef SQLITE_OMIT_CHECK
        if( (pNC->ncFlags & NC_IsCheck)!=0 ){
          sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
        }
#endif
        sqlite3WalkSelect(pWalker, pExpr->x.pSelect);
        assert( pNC->nRef>=nRef );
        if( nRef!=pNC->nRef ){
          ExprSetProperty(pExpr, EP_VarSelect);
        }
      }
      break;
    }
#ifndef SQLITE_OMIT_CHECK
    case TK_VARIABLE: {
      if( (pNC->ncFlags & NC_IsCheck)!=0 ){
        sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
      }
      break;
    }
#endif
  }
  return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue;
}

/*
** pEList is a list of expressions which are really the result set of the
** a SELECT statement.  pE is a term in an ORDER BY or GROUP BY clause.







<
|
|
<
<








<

|
|
<


<







732
733
734
735
736
737
738

739
740


741
742
743
744
745
746
747
748

749
750
751

752
753

754
755
756
757
758
759
760
    case TK_SELECT:
    case TK_EXISTS:  testcase( pExpr->op==TK_EXISTS );
#endif
    case TK_IN: {
      testcase( pExpr->op==TK_IN );
      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        int nRef = pNC->nRef;

        notValidCheckConstraint(pParse, pNC, "subqueries");
        notValidPartIdxWhere(pParse, pNC, "subqueries");


        sqlite3WalkSelect(pWalker, pExpr->x.pSelect);
        assert( pNC->nRef>=nRef );
        if( nRef!=pNC->nRef ){
          ExprSetProperty(pExpr, EP_VarSelect);
        }
      }
      break;
    }

    case TK_VARIABLE: {
      notValidCheckConstraint(pParse, pNC, "parameters");
      notValidPartIdxWhere(pParse, pNC, "parameters");

      break;
    }

  }
  return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue;
}

/*
** pEList is a list of expressions which are really the result set of the
** a SELECT statement.  pE is a term in an ORDER BY or GROUP BY clause.
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
  if( rc ) return 0;

  /* Try to match the ORDER BY expression against an expression
  ** in the result set.  Return an 1-based index of the matching
  ** result-set entry.
  */
  for(i=0; i<pEList->nExpr; i++){
    if( sqlite3ExprCompare(pEList->a[i].pExpr, pE)<2 ){
      return i+1;
    }
  }

  /* If no match, return 0. */
  return 0;
}







|







837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
  if( rc ) return 0;

  /* Try to match the ORDER BY expression against an expression
  ** in the result set.  Return an 1-based index of the matching
  ** result-set entry.
  */
  for(i=0; i<pEList->nExpr; i++){
    if( sqlite3ExprCompare(pEList->a[i].pExpr, pE, -1)<2 ){
      return i+1;
    }
  }

  /* If no match, return 0. */
  return 0;
}
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
  }
  return 0;
}

/*
** Check every term in the ORDER BY or GROUP BY clause pOrderBy of
** the SELECT statement pSelect.  If any term is reference to a
** result set expression (as determined by the ExprList.a.iCol field)
** then convert that term into a copy of the corresponding result set
** column.
**
** If any errors are detected, add an error message to pParse and
** return non-zero.  Return zero if no errors are seen.
*/
int sqlite3ResolveOrderGroupBy(







|







964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
  }
  return 0;
}

/*
** Check every term in the ORDER BY or GROUP BY clause pOrderBy of
** the SELECT statement pSelect.  If any term is reference to a
** result set expression (as determined by the ExprList.a.iOrderByCol field)
** then convert that term into a copy of the corresponding result set
** column.
**
** If any errors are detected, add an error message to pParse and
** return non-zero.  Return zero if no errors are seen.
*/
int sqlite3ResolveOrderGroupBy(
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
** The Name context of the SELECT statement is pNC.  zType is either
** "ORDER" or "GROUP" depending on which type of clause pOrderBy is.
**
** This routine resolves each term of the clause into an expression.
** If the order-by term is an integer I between 1 and N (where N is the
** number of columns in the result set of the SELECT) then the expression
** in the resolution is a copy of the I-th result-set expression.  If
** the order-by term is an identify that corresponds to the AS-name of
** a result-set expression, then the term resolves to a copy of the
** result-set expression.  Otherwise, the expression is resolved in
** the usual way - using sqlite3ResolveExprNames().
**
** This routine returns the number of errors.  If errors occur, then
** an appropriate error message might be left in pParse.  (OOM errors
** excepted.)







|







1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
** The Name context of the SELECT statement is pNC.  zType is either
** "ORDER" or "GROUP" depending on which type of clause pOrderBy is.
**
** This routine resolves each term of the clause into an expression.
** If the order-by term is an integer I between 1 and N (where N is the
** number of columns in the result set of the SELECT) then the expression
** in the resolution is a copy of the I-th result-set expression.  If
** the order-by term is an identifier that corresponds to the AS-name of
** a result-set expression, then the term resolves to a copy of the
** result-set expression.  Otherwise, the expression is resolved in
** the usual way - using sqlite3ResolveExprNames().
**
** This routine returns the number of errors.  If errors occur, then
** an appropriate error message might be left in pParse.  (OOM errors
** excepted.)
994
995
996
997
998
999
1000


1001
1002
1003
1004
1005
1006
1007
1008
1009

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
  int nResult;                   /* Number of terms in the result set */

  if( pOrderBy==0 ) return 0;
  nResult = pSelect->pEList->nExpr;
  pParse = pNC->pParse;
  for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
    Expr *pE = pItem->pExpr;


    iCol = resolveAsName(pParse, pSelect->pEList, pE);
    if( iCol>0 ){
      /* If an AS-name match is found, mark this ORDER BY column as being
      ** a copy of the iCol-th result-set column.  The subsequent call to
      ** sqlite3ResolveOrderGroupBy() will convert the expression to a
      ** copy of the iCol-th result-set expression. */
      pItem->iOrderByCol = (u16)iCol;
      continue;
    }

    if( sqlite3ExprIsInteger(sqlite3ExprSkipCollate(pE), &iCol) ){
      /* The ORDER BY term is an integer constant.  Again, set the column
      ** number so that sqlite3ResolveOrderGroupBy() will convert the
      ** order-by term to a copy of the result-set expression */
      if( iCol<1 || iCol>0xffff ){
        resolveOutOfRangeError(pParse, zType, i+1, nResult);
        return 1;
      }
      pItem->iOrderByCol = (u16)iCol;
      continue;
    }

    /* Otherwise, treat the ORDER BY term as an ordinary expression */
    pItem->iOrderByCol = 0;
    if( sqlite3ResolveExprNames(pNC, pE) ){
      return 1;
    }
    for(j=0; j<pSelect->pEList->nExpr; j++){
      if( sqlite3ExprCompare(pE, pSelect->pEList->a[j].pExpr)==0 ){
        pItem->iOrderByCol = j+1;
      }
    }
  }
  return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType);
}








>
>
|
|
|
|
|
|
|
|
|
>
|

















|







1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
  int nResult;                   /* Number of terms in the result set */

  if( pOrderBy==0 ) return 0;
  nResult = pSelect->pEList->nExpr;
  pParse = pNC->pParse;
  for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
    Expr *pE = pItem->pExpr;
    Expr *pE2 = sqlite3ExprSkipCollate(pE);
    if( zType[0]!='G' ){
      iCol = resolveAsName(pParse, pSelect->pEList, pE2);
      if( iCol>0 ){
        /* If an AS-name match is found, mark this ORDER BY column as being
        ** a copy of the iCol-th result-set column.  The subsequent call to
        ** sqlite3ResolveOrderGroupBy() will convert the expression to a
        ** copy of the iCol-th result-set expression. */
        pItem->iOrderByCol = (u16)iCol;
        continue;
      }
    }
    if( sqlite3ExprIsInteger(pE2, &iCol) ){
      /* The ORDER BY term is an integer constant.  Again, set the column
      ** number so that sqlite3ResolveOrderGroupBy() will convert the
      ** order-by term to a copy of the result-set expression */
      if( iCol<1 || iCol>0xffff ){
        resolveOutOfRangeError(pParse, zType, i+1, nResult);
        return 1;
      }
      pItem->iOrderByCol = (u16)iCol;
      continue;
    }

    /* Otherwise, treat the ORDER BY term as an ordinary expression */
    pItem->iOrderByCol = 0;
    if( sqlite3ResolveExprNames(pNC, pE) ){
      return 1;
    }
    for(j=0; j<pSelect->pEList->nExpr; j++){
      if( sqlite3ExprCompare(pE, pSelect->pEList->a[j].pExpr, -1)==0 ){
        pItem->iOrderByCol = j+1;
      }
    }
  }
  return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType);
}

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
    /* If a HAVING clause is present, then there must be a GROUP BY clause.
    */
    if( p->pHaving && !pGroupBy ){
      sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
      return WRC_Abort;
    }
  
    /* Add the expression list to the name-context before parsing the
    ** other expressions in the SELECT statement. This is so that
    ** expressions in the WHERE clause (etc.) can refer to expressions by
    ** aliases in the result set.
    **
    ** Minor point: If this is the case, then the expression will be
    ** re-evaluated for each reference to it.
    */
    sNC.pEList = p->pEList;
    sNC.ncFlags |= NC_AsMaybe;
    if( sqlite3ResolveExprNames(&sNC, p->pHaving) ) return WRC_Abort;
    if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort;
    sNC.ncFlags &= ~NC_AsMaybe;

    /* The ORDER BY and GROUP BY clauses may not refer to terms in
    ** outer queries 
    */
    sNC.pNext = 0;
    sNC.ncFlags |= NC_AllowAgg;








|








<


<







1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

1209
1210

1211
1212
1213
1214
1215
1216
1217
    /* If a HAVING clause is present, then there must be a GROUP BY clause.
    */
    if( p->pHaving && !pGroupBy ){
      sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
      return WRC_Abort;
    }
  
    /* Add the output column list to the name-context before parsing the
    ** other expressions in the SELECT statement. This is so that
    ** expressions in the WHERE clause (etc.) can refer to expressions by
    ** aliases in the result set.
    **
    ** Minor point: If this is the case, then the expression will be
    ** re-evaluated for each reference to it.
    */
    sNC.pEList = p->pEList;

    if( sqlite3ResolveExprNames(&sNC, p->pHaving) ) return WRC_Abort;
    if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort;


    /* The ORDER BY and GROUP BY clauses may not refer to terms in
    ** outer queries 
    */
    sNC.pNext = 0;
    sNC.ncFlags |= NC_AllowAgg;

1327
1328
1329
1330
1331
1332
1333










































  memset(&w, 0, sizeof(w));
  w.xExprCallback = resolveExprStep;
  w.xSelectCallback = resolveSelectStep;
  w.pParse = pParse;
  w.u.pNC = pOuterNC;
  sqlite3WalkSelect(&w, p);
}

















































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
  memset(&w, 0, sizeof(w));
  w.xExprCallback = resolveExprStep;
  w.xSelectCallback = resolveSelectStep;
  w.pParse = pParse;
  w.u.pNC = pOuterNC;
  sqlite3WalkSelect(&w, p);
}

/*
** Resolve names in expressions that can only reference a single table:
**
**    *   CHECK constraints
**    *   WHERE clauses on partial indices
**
** The Expr.iTable value for Expr.op==TK_COLUMN nodes of the expression
** is set to -1 and the Expr.iColumn value is set to the column number.
**
** Any errors cause an error message to be set in pParse.
*/
void sqlite3ResolveSelfReference(
  Parse *pParse,      /* Parsing context */
  Table *pTab,        /* The table being referenced */
  int type,           /* NC_IsCheck or NC_PartIdx */
  Expr *pExpr,        /* Expression to resolve.  May be NULL. */
  ExprList *pList     /* Expression list to resolve.  May be NUL. */
){
  SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
  NameContext sNC;                /* Name context for pParse->pNewTable */
  int i;                          /* Loop counter */

  assert( type==NC_IsCheck || type==NC_PartIdx );
  memset(&sNC, 0, sizeof(sNC));
  memset(&sSrc, 0, sizeof(sSrc));
  sSrc.nSrc = 1;
  sSrc.a[0].zName = pTab->zName;
  sSrc.a[0].pTab = pTab;
  sSrc.a[0].iCursor = -1;
  sNC.pParse = pParse;
  sNC.pSrcList = &sSrc;
  sNC.ncFlags = type;
  if( sqlite3ResolveExprNames(&sNC, pExpr) ) return;
  if( pList ){
    for(i=0; i<pList->nExpr; i++){
      if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
        return;
      }
    }
  }
}
Changes to src/select.c.
797
798
799
800
801
802
803



















804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
  ** there is a sorter, in which case the sorter has already limited
  ** the output for us.
  */
  if( pOrderBy==0 && p->iLimit ){
    sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
  }
}




















/*
** Given an expression list, generate a KeyInfo structure that records
** the collating sequence for each expression in that expression list.
**
** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
** KeyInfo structure is appropriate for initializing a virtual index to
** implement that clause.  If the ExprList is the result set of a SELECT
** then the KeyInfo structure is appropriate for initializing a virtual
** index to implement a DISTINCT test.
**
** Space to hold the KeyInfo structure is obtain from malloc.  The calling
** function is responsible for seeing that this structure is eventually
** freed.  Add the KeyInfo structure to the P4 field of an opcode using
** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
*/
static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
  sqlite3 *db = pParse->db;
  int nExpr;
  KeyInfo *pInfo;
  struct ExprList_item *pItem;

  int i;

  nExpr = pList->nExpr;
  pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
  if( pInfo ){
    pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
    pInfo->nField = (u16)nExpr;
    pInfo->enc = ENC(db);
    pInfo->db = db;
    for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
      CollSeq *pColl;
      pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
      if( !pColl ){
        pColl = db->pDfltColl;
      }
      pInfo->aColl[i] = pColl;
      pInfo->aSortOrder[i] = pItem->sortOrder;
    }
  }
  return pInfo;
}








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

















<



>



|

<
<
<
<



<
|
<







797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839

840
841
842
843
844
845
846
847
848




849
850
851

852

853
854
855
856
857
858
859
  ** there is a sorter, in which case the sorter has already limited
  ** the output for us.
  */
  if( pOrderBy==0 && p->iLimit ){
    sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
  }
}

/*
** Allocate a KeyInfo object sufficient for an index of N columns.
**
** Actually, always allocate one extra column for the rowid at the end
** of the index.  So the KeyInfo returned will have space sufficient for
** N+1 columns.
*/
KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N){
  KeyInfo *p = sqlite3DbMallocZero(db, 
                   sizeof(KeyInfo) + (N+1)*(sizeof(CollSeq*)+1));
  if( p ){
    p->aSortOrder = (u8*)&p->aColl[N+1];
    p->nField = (u16)N;
    p->enc = ENC(db);
    p->db = db;
  }
  return p;
}

/*
** Given an expression list, generate a KeyInfo structure that records
** the collating sequence for each expression in that expression list.
**
** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
** KeyInfo structure is appropriate for initializing a virtual index to
** implement that clause.  If the ExprList is the result set of a SELECT
** then the KeyInfo structure is appropriate for initializing a virtual
** index to implement a DISTINCT test.
**
** Space to hold the KeyInfo structure is obtain from malloc.  The calling
** function is responsible for seeing that this structure is eventually
** freed.  Add the KeyInfo structure to the P4 field of an opcode using
** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
*/
static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){

  int nExpr;
  KeyInfo *pInfo;
  struct ExprList_item *pItem;
  sqlite3 *db = pParse->db;
  int i;

  nExpr = pList->nExpr;
  pInfo = sqlite3KeyInfoAlloc(db, nExpr);
  if( pInfo ){




    for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
      CollSeq *pColl;
      pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);

      if( !pColl ) pColl = db->pDfltColl;

      pInfo->aColl[i] = pColl;
      pInfo->aSortOrder[i] = pItem->sortOrder;
    }
  }
  return pInfo;
}

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
    v = sqlite3GetVdbe(pParse);
    if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
    if( sqlite3ExprIsInteger(p->pLimit, &n) ){
      sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
      VdbeComment((v, "LIMIT counter"));
      if( n==0 ){
        sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
      }else{
        if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n;
      }
    }else{
      sqlite3ExprCode(pParse, p->pLimit, iLimit);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
      VdbeComment((v, "LIMIT counter"));
      sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
    }







|
|







1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
    v = sqlite3GetVdbe(pParse);
    if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
    if( sqlite3ExprIsInteger(p->pLimit, &n) ){
      sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
      VdbeComment((v, "LIMIT counter"));
      if( n==0 ){
        sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
      }else if( n>=0 && p->nSelectRow>(u64)n ){
        p->nSelectRow = n;
      }
    }else{
      sqlite3ExprCode(pParse, p->pLimit, iLimit);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
      VdbeComment((v, "LIMIT counter"));
      sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
    }
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
      rc = sqlite3Select(pParse, p, &dest);
      testcase( rc!=SQLITE_OK );
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      p->nSelectRow += pPrior->nSelectRow;
      if( pPrior->pLimit
       && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
       && p->nSelectRow > (double)nLimit 
      ){
        p->nSelectRow = (double)nLimit;
      }
      if( addr ){
        sqlite3VdbeJumpHere(v, addr);
      }
      break;
    }
    case TK_EXCEPT:







|

|







1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
      rc = sqlite3Select(pParse, p, &dest);
      testcase( rc!=SQLITE_OK );
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      p->nSelectRow += pPrior->nSelectRow;
      if( pPrior->pLimit
       && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
       && nLimit>0 && p->nSelectRow > (u64)nLimit 
      ){
        p->nSelectRow = nLimit;
      }
      if( addr ){
        sqlite3VdbeJumpHere(v, addr);
      }
      break;
    }
    case TK_EXCEPT:
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
    KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
    Select *pLoop;                /* For looping through SELECT statements */
    CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
    int nCol;                     /* Number of columns in result set */

    assert( p->pRightmost==p );
    nCol = p->pEList->nExpr;
    pKeyInfo = sqlite3DbMallocZero(db,
                       sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
    if( !pKeyInfo ){
      rc = SQLITE_NOMEM;
      goto multi_select_end;
    }

    pKeyInfo->enc = ENC(db);
    pKeyInfo->nField = (u16)nCol;

    for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
      *apColl = multiSelectCollSeq(pParse, p, i);
      if( 0==*apColl ){
        *apColl = db->pDfltColl;
      }
    }
    pKeyInfo->aSortOrder = (u8*)apColl;

    for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
      for(i=0; i<2; i++){
        int addr = pLoop->addrOpenEphm[i];
        if( addr<0 ){
          /* If [0] is unused then [1] is also unused.  So we can
          ** always safely abort as soon as the first unused slot is found */







|
<




<
<
<
<






<







1951
1952
1953
1954
1955
1956
1957
1958

1959
1960
1961
1962




1963
1964
1965
1966
1967
1968

1969
1970
1971
1972
1973
1974
1975
    KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
    Select *pLoop;                /* For looping through SELECT statements */
    CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
    int nCol;                     /* Number of columns in result set */

    assert( p->pRightmost==p );
    nCol = p->pEList->nExpr;
    pKeyInfo = sqlite3KeyInfoAlloc(db, nCol);

    if( !pKeyInfo ){
      rc = SQLITE_NOMEM;
      goto multi_select_end;
    }




    for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
      *apColl = multiSelectCollSeq(pParse, p, i);
      if( 0==*apColl ){
        *apColl = db->pDfltColl;
      }
    }


    for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
      for(i=0; i<2; i++){
        int addr = pLoop->addrOpenEphm[i];
        if( addr<0 ){
          /* If [0] is unused then [1] is also unused.  So we can
          ** always safely abort as soon as the first unused slot is found */
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
  aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
  if( aPermute ){
    struct ExprList_item *pItem;
    for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
      assert( pItem->iOrderByCol>0  && pItem->iOrderByCol<=p->pEList->nExpr );
      aPermute[i] = pItem->iOrderByCol - 1;
    }
    pKeyMerge =
      sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
    if( pKeyMerge ){
      pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
      pKeyMerge->nField = (u16)nOrderBy;
      pKeyMerge->enc = ENC(db);
      for(i=0; i<nOrderBy; i++){
        CollSeq *pColl;
        Expr *pTerm = pOrderBy->a[i].pExpr;
        if( pTerm->flags & EP_Collate ){
          pColl = sqlite3ExprCollSeq(pParse, pTerm);
        }else{
          pColl = multiSelectCollSeq(pParse, p, aPermute[i]);







|
<

<
<
<







2330
2331
2332
2333
2334
2335
2336
2337

2338



2339
2340
2341
2342
2343
2344
2345
  aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
  if( aPermute ){
    struct ExprList_item *pItem;
    for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
      assert( pItem->iOrderByCol>0  && pItem->iOrderByCol<=p->pEList->nExpr );
      aPermute[i] = pItem->iOrderByCol - 1;
    }
    pKeyMerge = sqlite3KeyInfoAlloc(db, nOrderBy);

    if( pKeyMerge ){



      for(i=0; i<nOrderBy; i++){
        CollSeq *pColl;
        Expr *pTerm = pOrderBy->a[i].pExpr;
        if( pTerm->flags & EP_Collate ){
          pColl = sqlite3ExprCollSeq(pParse, pTerm);
        }else{
          pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
    regPrev = 0;
  }else{
    int nExpr = p->pEList->nExpr;
    assert( nOrderBy>=nExpr || db->mallocFailed );
    regPrev = pParse->nMem+1;
    pParse->nMem += nExpr+1;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
    pKeyDup = sqlite3DbMallocZero(db,
                  sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
    if( pKeyDup ){
      pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
      pKeyDup->nField = (u16)nExpr;
      pKeyDup->enc = ENC(db);
      for(i=0; i<nExpr; i++){
        pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
        pKeyDup->aSortOrder[i] = 0;
      }
    }
  }
 







|
<

<
<
<







2368
2369
2370
2371
2372
2373
2374
2375

2376



2377
2378
2379
2380
2381
2382
2383
    regPrev = 0;
  }else{
    int nExpr = p->pEList->nExpr;
    assert( nOrderBy>=nExpr || db->mallocFailed );
    regPrev = pParse->nMem+1;
    pParse->nMem += nExpr+1;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
    pKeyDup = sqlite3KeyInfoAlloc(db, nExpr);

    if( pKeyDup ){



      for(i=0; i<nExpr; i++){
        pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
        pKeyDup->aSortOrder[i] = 0;
      }
    }
  }
 
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
  pTab = p->pSrc->a[0].pTab;
  pExpr = p->pEList->a[0].pExpr;
  assert( pTab && !pTab->pSelect && pExpr );

  if( IsVirtual(pTab) ) return 0;
  if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
  if( NEVER(pAggInfo->nFunc==0) ) return 0;
  if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
  if( pExpr->flags&EP_Distinct ) return 0;

  return pTab;
}

/*
** If the source-list item passed as an argument was augmented with an







|







3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
  pTab = p->pSrc->a[0].pTab;
  pExpr = p->pEList->a[0].pExpr;
  assert( pTab && !pTab->pSelect && pExpr );

  if( IsVirtual(pTab) ) return 0;
  if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
  if( NEVER(pAggInfo->nFunc==0) ) return 0;
  if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
  if( pExpr->flags&EP_Distinct ) return 0;

  return pTab;
}

/*
** If the source-list item passed as an argument was augmented with an
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645


3646

3647
3648
3649
3650
3651
3652
3653
** If anything goes wrong, an error message is written into pParse.
** The calling function can detect the problem by looking at pParse->nErr
** and/or pParse->db->mallocFailed.
*/
static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
  Walker w;
  memset(&w, 0, sizeof(w));
  w.xSelectCallback = convertCompoundSelectToSubquery;
  w.xExprCallback = exprWalkNoop;
  w.pParse = pParse;


  sqlite3WalkSelect(&w, pSelect);

  w.xSelectCallback = selectExpander;
  sqlite3WalkSelect(&w, pSelect);
}


#ifndef SQLITE_OMIT_SUBQUERY
/*







<


>
>
|
>







3635
3636
3637
3638
3639
3640
3641

3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
** If anything goes wrong, an error message is written into pParse.
** The calling function can detect the problem by looking at pParse->nErr
** and/or pParse->db->mallocFailed.
*/
static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
  Walker w;
  memset(&w, 0, sizeof(w));

  w.xExprCallback = exprWalkNoop;
  w.pParse = pParse;
  if( pParse->hasCompound ){
    w.xSelectCallback = convertCompoundSelectToSubquery;
    sqlite3WalkSelect(&w, pSelect);
  }
  w.xSelectCallback = selectExpander;
  sqlite3WalkSelect(&w, pSelect);
}


#ifndef SQLITE_OMIT_SUBQUERY
/*
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
      regAgg = 0;
    }
    if( pF->iDistinct>=0 ){
      addrNext = sqlite3VdbeMakeLabel(v);
      assert( nArg==1 );
      codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
    }
    if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
      CollSeq *pColl = 0;
      struct ExprList_item *pItem;
      int j;
      assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
      for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
        pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
      }







|







3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
      regAgg = 0;
    }
    if( pF->iDistinct>=0 ){
      addrNext = sqlite3VdbeMakeLabel(v);
      assert( nArg==1 );
      codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
    }
    if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
      CollSeq *pColl = 0;
      struct ExprList_item *pItem;
      int j;
      assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
      for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
        pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
      }
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
#ifndef SQLITE_OMIT_EXPLAIN
static void explainSimpleCount(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being queried */
  Index *pIdx                     /* Index used to optimize scan, or NULL */
){
  if( pParse->explain==2 ){
    char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)",
        pTab->zName, 
        pIdx ? "USING COVERING INDEX " : "",
        pIdx ? pIdx->zName : "",
        pTab->nRowEst
    );
    sqlite3VdbeAddOp4(
        pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
    );
  }
}
#else







|

|
|
<







3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891

3892
3893
3894
3895
3896
3897
3898
#ifndef SQLITE_OMIT_EXPLAIN
static void explainSimpleCount(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being queried */
  Index *pIdx                     /* Index used to optimize scan, or NULL */
){
  if( pParse->explain==2 ){
    char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
        pTab->zName, 
        pIdx ? " USING COVERING INDEX " : "",
        pIdx ? pIdx->zName : ""

    );
    sqlite3VdbeAddOp4(
        pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
    );
  }
}
#else
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
  /* If there is both a GROUP BY and an ORDER BY clause and they are
  ** identical, then disable the ORDER BY clause since the GROUP BY
  ** will cause elements to come out in the correct order.  This is
  ** an optimization - the correct answer should result regardless.
  ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
  ** to disable this optimization for testing purposes.
  */
  if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
         && OptimizationEnabled(db, SQLITE_GroupByOrder) ){
    pOrderBy = 0;
  }

  /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 
  ** if the select-list is the same as the ORDER BY list, then this query
  ** can be rewritten as a GROUP BY. In other words, this:
  **
  **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
  **
  ** is transformed to:
  **
  **     SELECT xyz FROM ... GROUP BY xyz
  **
  ** The second form is preferred as a single index (or temp-table) may be 
  ** used for both the ORDER BY and DISTINCT processing. As originally 
  ** written the query must use a temp-table for at least one of the ORDER 
  ** BY and DISTINCT, and an index or separate temp-table for the other.
  */
  if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 
   && sqlite3ExprListCompare(pOrderBy, p->pEList)==0
  ){
    p->selFlags &= ~SF_Distinct;
    p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
    pGroupBy = p->pGroupBy;
    pOrderBy = 0;
    /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
    ** the sDistinct.isTnct is still set.  Hence, isTnct represents the







|




















|







4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
  /* If there is both a GROUP BY and an ORDER BY clause and they are
  ** identical, then disable the ORDER BY clause since the GROUP BY
  ** will cause elements to come out in the correct order.  This is
  ** an optimization - the correct answer should result regardless.
  ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
  ** to disable this optimization for testing purposes.
  */
  if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy, -1)==0
         && OptimizationEnabled(db, SQLITE_GroupByOrder) ){
    pOrderBy = 0;
  }

  /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 
  ** if the select-list is the same as the ORDER BY list, then this query
  ** can be rewritten as a GROUP BY. In other words, this:
  **
  **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
  **
  ** is transformed to:
  **
  **     SELECT xyz FROM ... GROUP BY xyz
  **
  ** The second form is preferred as a single index (or temp-table) may be 
  ** used for both the ORDER BY and DISTINCT processing. As originally 
  ** written the query must use a temp-table for at least one of the ORDER 
  ** BY and DISTINCT, and an index or separate temp-table for the other.
  */
  if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 
   && sqlite3ExprListCompare(pOrderBy, p->pEList, -1)==0
  ){
    p->selFlags &= ~SF_Distinct;
    p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
    pGroupBy = p->pGroupBy;
    pOrderBy = 0;
    /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
    ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
  if( pDest->eDest==SRT_EphemTab ){
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
  }

  /* Set the limiter.
  */
  iEnd = sqlite3VdbeMakeLabel(v);
  p->nSelectRow = (double)LARGEST_INT64;
  computeLimitRegisters(pParse, p, iEnd);
  if( p->iLimit==0 && addrSortIndex>=0 ){
    sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
    p->selFlags |= SF_UseSorter;
  }

  /* Open a virtual index to use for the distinct set.







|







4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
  if( pDest->eDest==SRT_EphemTab ){
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
  }

  /* Set the limiter.
  */
  iEnd = sqlite3VdbeMakeLabel(v);
  p->nSelectRow = LARGEST_INT64;
  computeLimitRegisters(pParse, p, iEnd);
  if( p->iLimit==0 && addrSortIndex>=0 ){
    sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
    p->selFlags |= SF_UseSorter;
  }

  /* Open a virtual index to use for the distinct set.
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268

4269
4270



4271

4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285

4286
4287
4288
4289
4290
4291
4292
    sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
  }else{
    sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
  }

  if( !isAgg && pGroupBy==0 ){
    /* No aggregate functions and no GROUP BY clause */
    ExprList *pDist = (sDistinct.isTnct ? p->pEList : 0);

    /* Begin the database scan. */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pOrderBy, pDist, 0,0);

    if( pWInfo==0 ) goto select_end;
    if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;



    if( pWInfo->eDistinct ) sDistinct.eTnctType = pWInfo->eDistinct;

    if( pOrderBy && pWInfo->nOBSat==pOrderBy->nExpr ) pOrderBy = 0;

    /* If sorting index that was created by a prior OP_OpenEphemeral 
    ** instruction ended up not being needed, then change the OP_OpenEphemeral
    ** into an OP_Noop.
    */
    if( addrSortIndex>=0 && pOrderBy==0 ){
      sqlite3VdbeChangeToNoop(v, addrSortIndex);
      p->addrOpenEphm[2] = -1;
    }

    /* Use the standard inner loop. */
    selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, &sDistinct, pDest,
                    pWInfo->iContinue, pWInfo->iBreak);


    /* End the database scan loop.
    */
    sqlite3WhereEnd(pWInfo);
  }else{
    /* This case when there exist aggregate functions or a GROUP BY clause
    ** or both */







|


|
>

|
>
>
>
|
>
|












|
>







4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
    sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
  }else{
    sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
  }

  if( !isAgg && pGroupBy==0 ){
    /* No aggregate functions and no GROUP BY clause */
    u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);

    /* Begin the database scan. */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pOrderBy, p->pEList,
                               wctrlFlags, 0);
    if( pWInfo==0 ) goto select_end;
    if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
      p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
    }
    if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
      sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
    }
    if( pOrderBy && sqlite3WhereIsOrdered(pWInfo) ) pOrderBy = 0;

    /* If sorting index that was created by a prior OP_OpenEphemeral 
    ** instruction ended up not being needed, then change the OP_OpenEphemeral
    ** into an OP_Noop.
    */
    if( addrSortIndex>=0 && pOrderBy==0 ){
      sqlite3VdbeChangeToNoop(v, addrSortIndex);
      p->addrOpenEphm[2] = -1;
    }

    /* Use the standard inner loop. */
    selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, &sDistinct, pDest,
                    sqlite3WhereContinueLabel(pWInfo),
                    sqlite3WhereBreakLabel(pWInfo));

    /* End the database scan loop.
    */
    sqlite3WhereEnd(pWInfo);
  }else{
    /* This case when there exist aggregate functions or a GROUP BY clause
    ** or both */
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327

      for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
        pItem->iAlias = 0;
      }
      for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
        pItem->iAlias = 0;
      }
      if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100;
    }else{
      p->nSelectRow = (double)1;
    }

 
    /* Create a label to jump to when we want to abort the query */
    addrEnd = sqlite3VdbeMakeLabel(v);

    /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in







|

|







4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333

      for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
        pItem->iAlias = 0;
      }
      for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
        pItem->iAlias = 0;
      }
      if( p->nSelectRow>100 ) p->nSelectRow = 100;
    }else{
      p->nSelectRow = 1;
    }

 
    /* Create a label to jump to when we want to abort the query */
    addrEnd = sqlite3VdbeMakeLabel(v);

    /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4393
4394
4395
4396
4397
4398
4399
4400

4401
4402
4403
4404
4405
4406
4407
4408
4409

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 0, 0);

      if( pWInfo==0 ) goto select_end;
      if( pWInfo->nOBSat==pGroupBy->nExpr ){
        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenEphemeral table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        groupBySort = 0;
      }else{
        /* Rows are coming out in undetermined order.  We have to push







|
>

|







4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 
                                 WHERE_GROUPBY, 0);
      if( pWInfo==0 ) goto select_end;
      if( sqlite3WhereIsOrdered(pWInfo) ){
        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenEphemeral table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        groupBySort = 0;
      }else{
        /* Rows are coming out in undetermined order.  We have to push
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
        pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
        if( pWInfo==0 ){
          sqlite3ExprListDelete(db, pDel);
          goto select_end;
        }
        updateAccumulator(pParse, &sAggInfo);
        assert( pMinMax==0 || pMinMax->nExpr==1 );
        if( pWInfo->nOBSat>0 ){
          sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
          VdbeComment((v, "%s() by index",
                (flag==WHERE_ORDERBY_MIN?"min":"max")));
        }
        sqlite3WhereEnd(pWInfo);
        finalizeAggFunctions(pParse, &sAggInfo);
      }








|
|







4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
        pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
        if( pWInfo==0 ){
          sqlite3ExprListDelete(db, pDel);
          goto select_end;
        }
        updateAccumulator(pParse, &sAggInfo);
        assert( pMinMax==0 || pMinMax->nExpr==1 );
        if( sqlite3WhereIsOrdered(pWInfo) ){
          sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
          VdbeComment((v, "%s() by index",
                (flag==WHERE_ORDERBY_MIN?"min":"max")));
        }
        sqlite3WhereEnd(pWInfo);
        finalizeAggFunctions(pParse, &sAggInfo);
      }

Changes to src/shell.c.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74





75
76
77
78
79
80
81
# include <editline/editline.h>
#endif
#if defined(HAVE_READLINE) && HAVE_READLINE==1
# include <readline/readline.h>
# include <readline/history.h>
#endif
#if !defined(HAVE_EDITLINE) && (!defined(HAVE_READLINE) || HAVE_READLINE!=1)
# define readline(p) local_getline(p,stdin,0)
# define add_history(X)
# define read_history(X)
# define write_history(X)
# define stifle_history(X)
#endif

#if defined(_WIN32) || defined(WIN32)
# include <io.h>
#define isatty(h) _isatty(h)
#define access(f,m) _access((f),(m))
#undef popen
#define popen(a,b) _popen((a),(b))
#undef pclose
#define pclose(x) _pclose(x)
#else
/* Make sure isatty() has a prototype.
*/
extern int isatty(int);





#endif

#if defined(_WIN32_WCE)
/* Windows CE (arm-wince-mingw32ce-gcc) does not provide isatty()
 * thus we always assume that we have a console. That can be
 * overridden with the -batch command line option.
 */







<











|

|




>
>
>
>
>







49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# include <editline/editline.h>
#endif
#if defined(HAVE_READLINE) && HAVE_READLINE==1
# include <readline/readline.h>
# include <readline/history.h>
#endif
#if !defined(HAVE_EDITLINE) && (!defined(HAVE_READLINE) || HAVE_READLINE!=1)

# define add_history(X)
# define read_history(X)
# define write_history(X)
# define stifle_history(X)
#endif

#if defined(_WIN32) || defined(WIN32)
# include <io.h>
#define isatty(h) _isatty(h)
#define access(f,m) _access((f),(m))
#undef popen
#define popen _popen
#undef pclose
#define pclose _pclose
#else
/* Make sure isatty() has a prototype.
*/
extern int isatty(int);

/* popen and pclose are not C89 functions and so are sometimes omitted from
** the <stdio.h> header */
extern FILE *popen(const char*,const char*);
extern int pclose(FILE*);
#endif

#if defined(_WIN32_WCE)
/* Windows CE (arm-wince-mingw32ce-gcc) does not provide isatty()
 * thus we always assume that we have a console. That can be
 * overridden with the -batch command line option.
 */
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385








386
387
388
389
390
391
392
393
394
395
396
397
398
399


400




401

402
403
404
405
406
407
408

/*
** This routine reads a line of text from FILE in, stores
** the text in memory obtained from malloc() and returns a pointer
** to the text.  NULL is returned at end of file, or if malloc()
** fails.
**
** The interface is like "readline" but no command-line editing
** is done.
*/
static char *local_getline(char *zPrompt, FILE *in, int csvFlag){
  char *zLine;
  int nLine;
  int n;
  int inQuote = 0;

  if( zPrompt && *zPrompt ){
    printf("%s",zPrompt);
    fflush(stdout);
  }
  nLine = 100;
  zLine = malloc( nLine );
  if( zLine==0 ) return 0;
  n = 0;
  while( 1 ){
    if( n+100>nLine ){
      nLine = nLine*2 + 100;
      zLine = realloc(zLine, nLine);
      if( zLine==0 ) return 0;
    }
    if( fgets(&zLine[n], nLine - n, in)==0 ){
      if( n==0 ){
        free(zLine);
        return 0;
      }
      zLine[n] = 0;
      break;
    }
    while( zLine[n] ){
      if( zLine[n]=='"' ) inQuote = !inQuote;
      n++;
    }
    if( n>0 && zLine[n-1]=='\n' && (!inQuote || !csvFlag) ){
      n--;
      if( n>0 && zLine[n-1]=='\r' ) n--;
      zLine[n] = 0;
      break;
    }
  }
  zLine = realloc( zLine, n+1 );
  return zLine;
}

/*
** Retrieve a single line of input text.
**
** zPrior is a string of prior text retrieved.  If not the empty
** string, then issue a continuation prompt.








*/
static char *one_input_line(const char *zPrior, FILE *in){
  char *zPrompt;
  char *zResult;
  if( in!=0 ){
    return local_getline(0, in, 0);
  }
  if( zPrior && zPrior[0] ){
    zPrompt = continuePrompt;
  }else{
    zPrompt = mainPrompt;
  }
  zResult = readline(zPrompt);
#if defined(HAVE_READLINE) && HAVE_READLINE==1


  if( zResult && *zResult ) add_history(zResult);




#endif

  return zResult;
}

struct previous_mode_data {
  int valid;        /* Is there legit data in here? */
  int mode;
  int showHeader;







|
|

|
<
|
|
<

<
<
<
<
<
<
<
<














|
<
<
<
|






<






|
|
>
>
>
>
>
>
>
>

|



|
<
<
<

|
<
<

>
>
|
>
>
>
>

>







332
333
334
335
336
337
338
339
340
341
342

343
344

345








346
347
348
349
350
351
352
353
354
355
356
357
358
359
360



361
362
363
364
365
366
367

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389



390
391


392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

/*
** This routine reads a line of text from FILE in, stores
** the text in memory obtained from malloc() and returns a pointer
** to the text.  NULL is returned at end of file, or if malloc()
** fails.
**
** If zLine is not NULL then it is a malloced buffer returned from
** a previous call to this routine that may be reused.
*/
static char *local_getline(char *zLine, FILE *in){

  int nLine = zLine==0 ? 0 : 100;
  int n = 0;










  while( 1 ){
    if( n+100>nLine ){
      nLine = nLine*2 + 100;
      zLine = realloc(zLine, nLine);
      if( zLine==0 ) return 0;
    }
    if( fgets(&zLine[n], nLine - n, in)==0 ){
      if( n==0 ){
        free(zLine);
        return 0;
      }
      zLine[n] = 0;
      break;
    }
    while( zLine[n] ) n++;



    if( n>0 && zLine[n-1]=='\n' ){
      n--;
      if( n>0 && zLine[n-1]=='\r' ) n--;
      zLine[n] = 0;
      break;
    }
  }

  return zLine;
}

/*
** Retrieve a single line of input text.
**
** If in==0 then read from standard input and prompt before each line.
** If isContinuation is true, then a continuation prompt is appropriate.
** If isContinuation is zero, then the main prompt should be used.
**
** If zPrior is not NULL then it is a buffer from a prior call to this
** routine that can be reused.
**
** The result is stored in space obtained from malloc() and must either
** be freed by the caller or else passed back into this routine via the
** zPrior argument for reuse.
*/
static char *one_input_line(FILE *in, char *zPrior, int isContinuation){
  char *zPrompt;
  char *zResult;
  if( in!=0 ){
    zResult = local_getline(zPrior, in);



  }else{
    zPrompt = isContinuation ? continuePrompt : mainPrompt;


#if defined(HAVE_READLINE) && HAVE_READLINE==1
    free(zPrior);
    zResult = readline(zPrompt);
    if( zResult && *zResult ) add_history(zResult);
#else
    printf("%s", zPrompt);
    fflush(stdout);
    zResult = local_getline(zPrior, stdin);
#endif
  }
  return zResult;
}

struct previous_mode_data {
  int valid;        /* Is there legit data in here? */
  int mode;
  int showHeader;
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
      fputc('t', out);
    }else if( c=='\n' ){
      fputc('\\', out);
      fputc('n', out);
    }else if( c=='\r' ){
      fputc('\\', out);
      fputc('r', out);
    }else if( !isprint(c) ){
      fprintf(out, "\\%03o", c&0xff);
    }else{
      fputc(c, out);
    }
  }
  fputc('"', out);
}







|







550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
      fputc('t', out);
    }else if( c=='\n' ){
      fputc('\\', out);
      fputc('n', out);
    }else if( c=='\r' ){
      fputc('\\', out);
      fputc('r', out);
    }else if( !isprint(c&0xff) ){
      fprintf(out, "\\%03o", c&0xff);
    }else{
      fputc(c, out);
    }
  }
  fputc('"', out);
}
1105
1106
1107
1108
1109
1110
1111


1112
1113
1114
1115
1116
1117
1118
  if( pArg && pArg->out && db && pArg->pStmt ){
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_FULLSCAN_STEP, bReset);
    fprintf(pArg->out, "Fullscan Steps:                      %d\n", iCur);
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_SORT, bReset);
    fprintf(pArg->out, "Sort Operations:                     %d\n", iCur);
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_AUTOINDEX, bReset);
    fprintf(pArg->out, "Autoindex Inserts:                   %d\n", iCur);


  }

  return 0;
}

/*
** Execute a statement or set of statements.  Print 







>
>







1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
  if( pArg && pArg->out && db && pArg->pStmt ){
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_FULLSCAN_STEP, bReset);
    fprintf(pArg->out, "Fullscan Steps:                      %d\n", iCur);
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_SORT, bReset);
    fprintf(pArg->out, "Sort Operations:                     %d\n", iCur);
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_AUTOINDEX, bReset);
    fprintf(pArg->out, "Autoindex Inserts:                   %d\n", iCur);
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_VM_STEP, bReset);
    fprintf(pArg->out, "Virtual Machine Steps:               %d\n", iCur);
  }

  return 0;
}

/*
** Execute a statement or set of statements.  Print 
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203


1204

1205

1206
1207
1208
1209
1210
1211
1212
          void *pData = sqlite3_malloc(3*nCol*sizeof(const char*) + 1);
          if( !pData ){
            rc = SQLITE_NOMEM;
          }else{
            char **azCols = (char **)pData;      /* Names of result columns */
            char **azVals = &azCols[nCol];       /* Results */
            int *aiTypes = (int *)&azVals[nCol]; /* Result types */
            int i;
            assert(sizeof(int) <= sizeof(char *)); 
            /* save off ptrs to column names */
            for(i=0; i<nCol; i++){
              azCols[i] = (char *)sqlite3_column_name(pStmt, i);
            }
            do{
              /* extract the data and data types */
              for(i=0; i<nCol; i++){


                azVals[i] = (char *)sqlite3_column_text(pStmt, i);

                aiTypes[i] = sqlite3_column_type(pStmt, i);

                if( !azVals[i] && (aiTypes[i]!=SQLITE_NULL) ){
                  rc = SQLITE_NOMEM;
                  break; /* from for */
                }
              } /* end for */

              /* if data and types extracted successfully... */







|








>
>
|
>
|
>







1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
          void *pData = sqlite3_malloc(3*nCol*sizeof(const char*) + 1);
          if( !pData ){
            rc = SQLITE_NOMEM;
          }else{
            char **azCols = (char **)pData;      /* Names of result columns */
            char **azVals = &azCols[nCol];       /* Results */
            int *aiTypes = (int *)&azVals[nCol]; /* Result types */
            int i, x;
            assert(sizeof(int) <= sizeof(char *)); 
            /* save off ptrs to column names */
            for(i=0; i<nCol; i++){
              azCols[i] = (char *)sqlite3_column_name(pStmt, i);
            }
            do{
              /* extract the data and data types */
              for(i=0; i<nCol; i++){
                aiTypes[i] = x = sqlite3_column_type(pStmt, i);
                if( x==SQLITE_BLOB && pArg->mode==MODE_Insert ){
                  azVals[i] = "";
                }else{
                  azVals[i] = (char*)sqlite3_column_text(pStmt, i);
                }
                if( !azVals[i] && (aiTypes[i]!=SQLITE_NULL) ){
                  rc = SQLITE_NOMEM;
                  break; /* from for */
                }
              } /* end for */

              /* if data and types extracted successfully... */
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
  if( nArg!=3 ) return 1;
  zTable = azArg[0];
  zType = azArg[1];
  zSql = azArg[2];
  
  if( strcmp(zTable, "sqlite_sequence")==0 ){
    zPrepStmt = "DELETE FROM sqlite_sequence;\n";
  }else if( strcmp(zTable, "sqlite_stat1")==0 ){
    fprintf(p->out, "ANALYZE sqlite_master;\n");
  }else if( strncmp(zTable, "sqlite_", 7)==0 ){
    return 0;
  }else if( strncmp(zSql, "CREATE VIRTUAL TABLE", 20)==0 ){
    char *zIns;
    if( !p->writableSchema ){
      fprintf(p->out, "PRAGMA writable_schema=ON;\n");







|







1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
  if( nArg!=3 ) return 1;
  zTable = azArg[0];
  zType = azArg[1];
  zSql = azArg[2];
  
  if( strcmp(zTable, "sqlite_sequence")==0 ){
    zPrepStmt = "DELETE FROM sqlite_sequence;\n";
  }else if( sqlite3_strglob("sqlite_stat?", zTable)==0 ){
    fprintf(p->out, "ANALYZE sqlite_master;\n");
  }else if( strncmp(zTable, "sqlite_", 7)==0 ){
    return 0;
  }else if( strncmp(zSql, "CREATE VIRTUAL TABLE", 20)==0 ){
    char *zIns;
    if( !p->writableSchema ){
      fprintf(p->out, "PRAGMA writable_schema=ON;\n");
1486
1487
1488
1489
1490
1491
1492

1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507


1508
1509
1510
1511
1512
1513
1514

/*
** Do C-language style dequoting.
**
**    \t    -> tab
**    \n    -> newline
**    \r    -> carriage return

**    \NNN  -> ascii character NNN in octal
**    \\    -> backslash
*/
static void resolve_backslashes(char *z){
  int i, j;
  char c;
  for(i=j=0; (c = z[i])!=0; i++, j++){
    if( c=='\\' ){
      c = z[++i];
      if( c=='n' ){
        c = '\n';
      }else if( c=='t' ){
        c = '\t';
      }else if( c=='r' ){
        c = '\r';


      }else if( c>='0' && c<='7' ){
        c -= '0';
        if( z[i+1]>='0' && z[i+1]<='7' ){
          i++;
          c = (c<<3) + z[i] - '0';
          if( z[i+1]>='0' && z[i+1]<='7' ){
            i++;







>















>
>







1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523

/*
** Do C-language style dequoting.
**
**    \t    -> tab
**    \n    -> newline
**    \r    -> carriage return
**    \"    -> "
**    \NNN  -> ascii character NNN in octal
**    \\    -> backslash
*/
static void resolve_backslashes(char *z){
  int i, j;
  char c;
  for(i=j=0; (c = z[i])!=0; i++, j++){
    if( c=='\\' ){
      c = z[++i];
      if( c=='n' ){
        c = '\n';
      }else if( c=='t' ){
        c = '\t';
      }else if( c=='r' ){
        c = '\r';
      }else if( c=='\\' ){
        c = '\\';
      }else if( c>='0' && c<='7' ){
        c -= '0';
        if( z[i+1]>='0' && z[i+1]<='7' ){
          i++;
          c = (c<<3) + z[i] - '0';
          if( z[i+1]>='0' && z[i+1]<='7' ){
            i++;
1643
1644
1645
1646
1647
1648
1649



































































































1650
1651
1652
1653
1654
1655
1656
** A no-op routine that runs with the ".breakpoint" doc-command.  This is
** a useful spot to set a debugger breakpoint.
*/
static void test_breakpoint(void){
  static int nCall = 0;
  nCall++;
}




































































































/*
** If an input line begins with "." then invoke this routine to
** process that line.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
** A no-op routine that runs with the ".breakpoint" doc-command.  This is
** a useful spot to set a debugger breakpoint.
*/
static void test_breakpoint(void){
  static int nCall = 0;
  nCall++;
}

/*
** An object used to read a CSV file
*/
typedef struct CSVReader CSVReader;
struct CSVReader {
  const char *zFile;  /* Name of the input file */
  FILE *in;           /* Read the CSV text from this input stream */
  char *z;            /* Accumulated text for a field */
  int n;              /* Number of bytes in z */
  int nAlloc;         /* Space allocated for z[] */
  int nLine;          /* Current line number */
  int cTerm;          /* Character that terminated the most recent field */
  int cSeparator;     /* The separator character.  (Usually ",") */
};

/* Append a single byte to z[] */
static void csv_append_char(CSVReader *p, int c){
  if( p->n+1>=p->nAlloc ){
    p->nAlloc += p->nAlloc + 100;
    p->z = sqlite3_realloc(p->z, p->nAlloc);
    if( p->z==0 ){
      fprintf(stderr, "out of memory\n");
      exit(1);
    }
  }
  p->z[p->n++] = (char)c;
}

/* Read a single field of CSV text.  Compatible with rfc4180 and extended
** with the option of having a separator other than ",".
**
**   +  Input comes from p->in.
**   +  Store results in p->z of length p->n.  Space to hold p->z comes
**      from sqlite3_malloc().
**   +  Use p->cSep as the separator.  The default is ",".
**   +  Keep track of the line number in p->nLine.
**   +  Store the character that terminates the field in p->cTerm.  Store
**      EOF on end-of-file.
**   +  Report syntax errors on stderr
*/
static char *csv_read_one_field(CSVReader *p){
  int c, pc;
  int cSep = p->cSeparator;
  p->n = 0;
  c = fgetc(p->in);
  if( c==EOF || seenInterrupt ){
    p->cTerm = EOF;
    return 0;
  }
  if( c=='"' ){
    int startLine = p->nLine;
    int cQuote = c;
    pc = 0;
    while( 1 ){
      c = fgetc(p->in);
      if( c=='\n' ) p->nLine++;
      if( c==cQuote ){
        if( pc==cQuote ){
          pc = 0;
          continue;
        }
      }
      if( (c==cSep && pc==cQuote)
       || (c=='\n' && pc==cQuote)
       || (c=='\n' && pc=='\r' && p->n>=2 && p->z[p->n-2]==cQuote)
       || (c==EOF && pc==cQuote)
      ){
        do{ p->n--; }while( p->z[p->n]!=cQuote );
        p->cTerm = c;
        break;
      }
      if( pc==cQuote && c!='\r' ){
        fprintf(stderr, "%s:%d: unescaped %c character\n",
                p->zFile, p->nLine, cQuote);
      }
      if( c==EOF ){
        fprintf(stderr, "%s:%d: unterminated %c-quoted field\n",
                p->zFile, startLine, cQuote);
        p->cTerm = EOF;
        break;
      }
      csv_append_char(p, c);
      pc = c;
    }
  }else{
    while( c!=EOF && c!=cSep && c!='\n' ){
      csv_append_char(p, c);
      c = fgetc(p->in);
    }
    if( c=='\n' ){
      p->nLine++;
      if( p->n>1 && p->z[p->n-1]=='\r' ) p->n--;
    }
    p->cTerm = c;
  }
  if( p->z ) p->z[p->n] = 0;
  return p->z;
}

/*
** If an input line begins with "." then invoke this routine to
** process that line.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/
1665
1666
1667
1668
1669
1670
1671
1672



1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
  */
  while( zLine[i] && nArg<ArraySize(azArg) ){
    while( IsSpace(zLine[i]) ){ i++; }
    if( zLine[i]==0 ) break;
    if( zLine[i]=='\'' || zLine[i]=='"' ){
      int delim = zLine[i++];
      azArg[nArg++] = &zLine[i];
      while( zLine[i] && zLine[i]!=delim ){ i++; }



      if( zLine[i]==delim ){
        zLine[i++] = 0;
      }
      if( delim=='"' ) resolve_backslashes(azArg[nArg-1]);
    }else{
      azArg[nArg++] = &zLine[i];
      while( zLine[i] && !IsSpace(zLine[i]) ){ i++; }
      if( zLine[i] ) zLine[i++] = 0;
      resolve_backslashes(azArg[nArg-1]);
    }
  }

  /* Process the input line.
  */
  if( nArg==0 ) return 0; /* no tokens, no error */
  n = strlen30(azArg[0]);
  c = azArg[0][0];
  if( c=='b' && n>=3 && strncmp(azArg[0], "backup", n)==0 ){
    const char *zDestFile = 0;
    const char *zDb = 0;
    const char *zKey = 0;
    sqlite3 *pDest;
    sqlite3_backup *pBackup;
    int j;
    for(j=1; j<nArg; j++){
      const char *z = azArg[j];
      if( z[0]=='-' ){
        while( z[0]=='-' ) z++;
        if( strcmp(z,"key")==0 && j<nArg-1 ){
          zKey = azArg[++j];
        }else
        {
          fprintf(stderr, "unknown option: %s\n", azArg[j]);
          return 1;
        }
      }else if( zDestFile==0 ){
        zDestFile = azArg[j];
      }else if( zDb==0 ){







|
>
>
>




















<







|
<
<







1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803

1804
1805
1806
1807
1808
1809
1810
1811


1812
1813
1814
1815
1816
1817
1818
  */
  while( zLine[i] && nArg<ArraySize(azArg) ){
    while( IsSpace(zLine[i]) ){ i++; }
    if( zLine[i]==0 ) break;
    if( zLine[i]=='\'' || zLine[i]=='"' ){
      int delim = zLine[i++];
      azArg[nArg++] = &zLine[i];
      while( zLine[i] && zLine[i]!=delim ){ 
        if( zLine[i]=='\\' && delim=='"' && zLine[i+1]!=0 ) i++;
        i++; 
      }
      if( zLine[i]==delim ){
        zLine[i++] = 0;
      }
      if( delim=='"' ) resolve_backslashes(azArg[nArg-1]);
    }else{
      azArg[nArg++] = &zLine[i];
      while( zLine[i] && !IsSpace(zLine[i]) ){ i++; }
      if( zLine[i] ) zLine[i++] = 0;
      resolve_backslashes(azArg[nArg-1]);
    }
  }

  /* Process the input line.
  */
  if( nArg==0 ) return 0; /* no tokens, no error */
  n = strlen30(azArg[0]);
  c = azArg[0][0];
  if( c=='b' && n>=3 && strncmp(azArg[0], "backup", n)==0 ){
    const char *zDestFile = 0;
    const char *zDb = 0;

    sqlite3 *pDest;
    sqlite3_backup *pBackup;
    int j;
    for(j=1; j<nArg; j++){
      const char *z = azArg[j];
      if( z[0]=='-' ){
        while( z[0]=='-' ) z++;
        /* No options to process at this time */


        {
          fprintf(stderr, "unknown option: %s\n", azArg[j]);
          return 1;
        }
      }else if( zDestFile==0 ){
        zDestFile = azArg[j];
      }else if( zDb==0 ){
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
    if( zDb==0 ) zDb = "main";
    rc = sqlite3_open(zDestFile, &pDest);
    if( rc!=SQLITE_OK ){
      fprintf(stderr, "Error: cannot open \"%s\"\n", zDestFile);
      sqlite3_close(pDest);
      return 1;
    }
#ifdef SQLITE_HAS_CODEC
    sqlite3_key(pDest, zKey, (int)strlen(zKey));
#else
    (void)zKey;
#endif
    open_db(p);
    pBackup = sqlite3_backup_init(pDest, "main", p->db, zDb);
    if( pBackup==0 ){
      fprintf(stderr, "Error: %s\n", sqlite3_errmsg(pDest));
      sqlite3_close(pDest);
      return 1;
    }







<
<
<
<
<







1830
1831
1832
1833
1834
1835
1836





1837
1838
1839
1840
1841
1842
1843
    if( zDb==0 ) zDb = "main";
    rc = sqlite3_open(zDestFile, &pDest);
    if( rc!=SQLITE_OK ){
      fprintf(stderr, "Error: cannot open \"%s\"\n", zDestFile);
      sqlite3_close(pDest);
      return 1;
    }





    open_db(p);
    pBackup = sqlite3_backup_init(pDest, "main", p->db, zDb);
    if( pBackup==0 ){
      fprintf(stderr, "Error: %s\n", sqlite3_errmsg(pDest));
      sqlite3_close(pDest);
      return 1;
    }
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893

1894
1895
1896
1897
1898
1899
1900
1901


1902
1903
1904
1905
1906
1907




















1908
1909
1910

1911
1912
1913
1914



























1915
1916
1917
1918

1919
1920
1921
1922
1923
1924
1925
1926
1927

1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959

1960

1961
1962



1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977


1978

1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001

2002
2003
2004
2005
2006

2007
2008
2009

2010
2011
2012
2013
2014
2015
2016
2017
2018
    if( HAS_TIMER ){
      fprintf(stderr,"%s",zTimerHelp);
    }
  }else

  if( c=='i' && strncmp(azArg[0], "import", n)==0 && nArg==3 ){
    char *zTable = azArg[2];    /* Insert data into this table */
    char *zFile = azArg[1];     /* The file from which to extract data */
    sqlite3_stmt *pStmt = NULL; /* A statement */
    int nCol;                   /* Number of columns in the table */
    int nByte;                  /* Number of bytes in an SQL string */
    int i, j;                   /* Loop counters */

    int nSep;                   /* Number of bytes in p->separator[] */
    char *zSql;                 /* An SQL statement */
    char *zLine;                /* A single line of input from the file */
    char **azCol;               /* zLine[] broken up into columns */
    char *zCommit;              /* How to commit changes */   
    FILE *in;                   /* The input file */
    int lineno = 0;             /* Line number of input file */



    open_db(p);
    nSep = strlen30(p->separator);
    if( nSep==0 ){
      fprintf(stderr, "Error: non-null separator required for import\n");
      return 1;
    }




















    zSql = sqlite3_mprintf("SELECT * FROM %s", zTable);
    if( zSql==0 ){
      fprintf(stderr, "Error: out of memory\n");

      return 1;
    }
    nByte = strlen30(zSql);
    rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);



























    sqlite3_free(zSql);
    if( rc ){
      if (pStmt) sqlite3_finalize(pStmt);
      fprintf(stderr,"Error: %s\n", sqlite3_errmsg(db));

      return 1;
    }
    nCol = sqlite3_column_count(pStmt);
    sqlite3_finalize(pStmt);
    pStmt = 0;
    if( nCol==0 ) return 0; /* no columns, no error */
    zSql = malloc( nByte + 20 + nCol*2 );
    if( zSql==0 ){
      fprintf(stderr, "Error: out of memory\n");

      return 1;
    }
    sqlite3_snprintf(nByte+20, zSql, "INSERT INTO %s VALUES(?", zTable);
    j = strlen30(zSql);
    for(i=1; i<nCol; i++){
      zSql[j++] = ',';
      zSql[j++] = '?';
    }
    zSql[j++] = ')';
    zSql[j] = 0;
    rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
    free(zSql);
    if( rc ){
      fprintf(stderr, "Error: %s\n", sqlite3_errmsg(db));
      if (pStmt) sqlite3_finalize(pStmt);
      return 1;
    }
    in = fopen(zFile, "rb");
    if( in==0 ){
      fprintf(stderr, "Error: cannot open \"%s\"\n", zFile);
      sqlite3_finalize(pStmt);
      return 1;
    }
    azCol = malloc( sizeof(azCol[0])*(nCol+1) );
    if( azCol==0 ){
      fprintf(stderr, "Error: out of memory\n");
      fclose(in);
      sqlite3_finalize(pStmt);
      return 1;
    }
    sqlite3_exec(p->db, "BEGIN", 0, 0, 0);
    zCommit = "COMMIT";

    while( (zLine = local_getline(0, in, 1))!=0 ){

      char *z, c;
      int inQuote = 0;



      lineno++;
      azCol[0] = zLine;
      for(i=0, z=zLine; (c = *z)!=0; z++){
        if( c=='"' ) inQuote = !inQuote;
        if( c=='\n' ) lineno++;
        if( !inQuote && c==p->separator[0] && strncmp(z,p->separator,nSep)==0 ){
          *z = 0;
          i++;
          if( i<nCol ){
            azCol[i] = &z[nSep];
            z += nSep-1;
          }
        }
      } /* end for */
      *z = 0;


      if( i+1!=nCol ){

        fprintf(stderr,
                "Error: %s line %d: expected %d columns of data but found %d\n",
                zFile, lineno, nCol, i+1);
        zCommit = "ROLLBACK";
        free(zLine);
        rc = 1;
        break; /* from while */
      }
      for(i=0; i<nCol; i++){
        if( azCol[i][0]=='"' ){
          int k;
          for(z=azCol[i], j=1, k=0; z[j]; j++){
            if( z[j]=='"' ){ j++; if( z[j]==0 ) break; }
            z[k++] = z[j];
          }
          z[k] = 0;
        }
        sqlite3_bind_text(pStmt, i+1, azCol[i], -1, SQLITE_STATIC);
      }
      sqlite3_step(pStmt);
      rc = sqlite3_reset(pStmt);
      free(zLine);
      if( rc!=SQLITE_OK ){

        fprintf(stderr,"Error: %s\n", sqlite3_errmsg(db));
        zCommit = "ROLLBACK";
        rc = 1;
        break; /* from while */
      }

    } /* end while */
    free(azCol);
    fclose(in);

    sqlite3_finalize(pStmt);
    sqlite3_exec(p->db, zCommit, 0, 0, 0);
  }else

  if( c=='i' && strncmp(azArg[0], "indices", n)==0 && nArg<3 ){
    struct callback_data data;
    char *zErrMsg = 0;
    open_db(p);
    memcpy(&data, p, sizeof(data));







|




>


<
<
|
|
<

>
>






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



>




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




>






|


>


|








|



<
<
<
|
<
<


<
<
<
<
|
<
<
|
<
>
|
>
|
|
>
>
>
|
|
<
<
<
<
<

|
<
<
|
|
<
|
>
>
|
>
|
|
|
<
<
<
<

|
<
<
<
<
<
<
<
<
<
<
|
|
<
|
>
|
<
<
<
|
>
|
|
|
>

|







1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999


2000
2001

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095



2096


2097
2098




2099


2100

2101
2102
2103
2104
2105
2106
2107
2108
2109
2110





2111
2112


2113
2114

2115
2116
2117
2118
2119
2120
2121
2122




2123
2124










2125
2126

2127
2128
2129



2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
    if( HAS_TIMER ){
      fprintf(stderr,"%s",zTimerHelp);
    }
  }else

  if( c=='i' && strncmp(azArg[0], "import", n)==0 && nArg==3 ){
    char *zTable = azArg[2];    /* Insert data into this table */
    char *zFile = azArg[1];     /* Name of file to extra content from */
    sqlite3_stmt *pStmt = NULL; /* A statement */
    int nCol;                   /* Number of columns in the table */
    int nByte;                  /* Number of bytes in an SQL string */
    int i, j;                   /* Loop counters */
    int needCommit;             /* True to COMMIT or ROLLBACK at end */
    int nSep;                   /* Number of bytes in p->separator[] */
    char *zSql;                 /* An SQL statement */


    CSVReader sCsv;             /* Reader context */
    int (*xCloser)(FILE*);      /* Procedure to close th3 connection */


    seenInterrupt = 0;
    memset(&sCsv, 0, sizeof(sCsv));
    open_db(p);
    nSep = strlen30(p->separator);
    if( nSep==0 ){
      fprintf(stderr, "Error: non-null separator required for import\n");
      return 1;
    }
    if( nSep>1 ){
      fprintf(stderr, "Error: multi-character separators not allowed"
                      " for import\n");
      return 1;
    }
    sCsv.zFile = zFile;
    sCsv.nLine = 1;
    if( sCsv.zFile[0]=='|' ){
      sCsv.in = popen(sCsv.zFile+1, "r");
      sCsv.zFile = "<pipe>";
      xCloser = pclose;
    }else{
      sCsv.in = fopen(sCsv.zFile, "rb");
      xCloser = fclose;
    }
    if( sCsv.in==0 ){
      fprintf(stderr, "Error: cannot open \"%s\"\n", zFile);
      return 1;
    }
    sCsv.cSeparator = p->separator[0];
    zSql = sqlite3_mprintf("SELECT * FROM %s", zTable);
    if( zSql==0 ){
      fprintf(stderr, "Error: out of memory\n");
      xCloser(sCsv.in);
      return 1;
    }
    nByte = strlen30(zSql);
    rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
    if( rc && sqlite3_strglob("no such table: *", sqlite3_errmsg(db))==0 ){
      char *zCreate = sqlite3_mprintf("CREATE TABLE %s", zTable);
      char cSep = '(';
      while( csv_read_one_field(&sCsv) ){
        zCreate = sqlite3_mprintf("%z%c\n  \"%s\" TEXT", zCreate, cSep, sCsv.z);
        cSep = ',';
        if( sCsv.cTerm!=sCsv.cSeparator ) break;
      }
      if( cSep=='(' ){
        sqlite3_free(zCreate);
        sqlite3_free(sCsv.z);
        xCloser(sCsv.in);
        fprintf(stderr,"%s: empty file\n", sCsv.zFile);
        return 1;
      }
      zCreate = sqlite3_mprintf("%z\n)", zCreate);
      rc = sqlite3_exec(p->db, zCreate, 0, 0, 0);
      sqlite3_free(zCreate);
      if( rc ){
        fprintf(stderr, "CREATE TABLE %s(...) failed: %s\n", zTable,
                sqlite3_errmsg(db));
        sqlite3_free(sCsv.z);
        xCloser(sCsv.in);
        return 1;
      }
      rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
    }
    sqlite3_free(zSql);
    if( rc ){
      if (pStmt) sqlite3_finalize(pStmt);
      fprintf(stderr,"Error: %s\n", sqlite3_errmsg(db));
      xCloser(sCsv.in);
      return 1;
    }
    nCol = sqlite3_column_count(pStmt);
    sqlite3_finalize(pStmt);
    pStmt = 0;
    if( nCol==0 ) return 0; /* no columns, no error */
    zSql = sqlite3_malloc( nByte*2 + 20 + nCol*2 );
    if( zSql==0 ){
      fprintf(stderr, "Error: out of memory\n");
      xCloser(sCsv.in);
      return 1;
    }
    sqlite3_snprintf(nByte+20, zSql, "INSERT INTO \"%w\" VALUES(?", zTable);
    j = strlen30(zSql);
    for(i=1; i<nCol; i++){
      zSql[j++] = ',';
      zSql[j++] = '?';
    }
    zSql[j++] = ')';
    zSql[j] = 0;
    rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
    sqlite3_free(zSql);
    if( rc ){
      fprintf(stderr, "Error: %s\n", sqlite3_errmsg(db));
      if (pStmt) sqlite3_finalize(pStmt);



      xCloser(sCsv.in);


      return 1;
    }




    needCommit = sqlite3_get_autocommit(db);


    if( needCommit ) sqlite3_exec(db, "BEGIN", 0, 0, 0);

    do{
      int startLine = sCsv.nLine;
      for(i=0; i<nCol; i++){
        char *z = csv_read_one_field(&sCsv);
        if( z==0 && i==0 ) break;
        sqlite3_bind_text(pStmt, i+1, z, -1, SQLITE_TRANSIENT);
        if( i<nCol-1 && sCsv.cTerm!=sCsv.cSeparator ){
          fprintf(stderr, "%s:%d: expected %d columns but found %d - "
                          "filling the rest with NULL\n",
                          sCsv.zFile, startLine, nCol, i+1);





          i++;
          while( i<nCol ){ sqlite3_bind_null(pStmt, i); i++; }


        }
      }

      if( sCsv.cTerm==sCsv.cSeparator ){
        do{
          csv_read_one_field(&sCsv);
          i++;
        }while( sCsv.cTerm==sCsv.cSeparator );
        fprintf(stderr, "%s:%d: expected %d columns but found %d - "
                        "extras ignored\n",
                        sCsv.zFile, startLine, nCol, i);




      }
      if( i>=nCol ){










        sqlite3_step(pStmt);
        rc = sqlite3_reset(pStmt);

        if( rc!=SQLITE_OK ){
          fprintf(stderr, "%s:%d: INSERT failed: %s\n", sCsv.zFile, startLine,
                  sqlite3_errmsg(db));



        }
      }
    }while( sCsv.cTerm!=EOF );

    xCloser(sCsv.in);
    sqlite3_free(sCsv.z);
    sqlite3_finalize(pStmt);
    if( needCommit ) sqlite3_exec(db, "COMMIT", 0, 0, 0);
  }else

  if( c=='i' && strncmp(azArg[0], "indices", n)==0 && nArg<3 ){
    struct callback_data data;
    char *zErrMsg = 0;
    open_db(p);
    memcpy(&data, p, sizeof(data));
2326
2327
2328
2329
2330
2331
2332

2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345

2346

2347
2348
2349
2350

2351
2352
2353
2354
2355
2356
2357
      fprintf(stderr,"Error: querying schema information\n");
      rc = 1;
    }else{
      rc = 0;
    }
  }else


  /* Undocumented commands for internal testing.  Subject to change
  ** without notice. */
  if( c=='s' && n>=10 && strncmp(azArg[0], "selftest-", 9)==0 ){
    if( strncmp(azArg[0]+9, "boolean", n-9)==0 ){
      int i, v;
      for(i=1; i<nArg; i++){
        v = booleanValue(azArg[i]);
        fprintf(p->out, "%s: %d 0x%x\n", azArg[i], v, v);
      }
    }
    if( strncmp(azArg[0]+9, "integer", n-9)==0 ){
      int i; sqlite3_int64 v;
      for(i=1; i<nArg; i++){

        v = integerValue(azArg[i]);

        fprintf(p->out, "%s: %lld 0x%llx\n", azArg[i], v, v);
      }
    }
  }else


  if( c=='s' && strncmp(azArg[0], "separator", n)==0 && nArg==2 ){
    sqlite3_snprintf(sizeof(p->separator), p->separator,
                     "%.*s", (int)sizeof(p->separator)-1, azArg[1]);
  }else

  if( c=='s' && strncmp(azArg[0], "show", n)==0 && nArg==1 ){







>













>

>
|



>







2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
      fprintf(stderr,"Error: querying schema information\n");
      rc = 1;
    }else{
      rc = 0;
    }
  }else

#ifdef SQLITE_DEBUG
  /* Undocumented commands for internal testing.  Subject to change
  ** without notice. */
  if( c=='s' && n>=10 && strncmp(azArg[0], "selftest-", 9)==0 ){
    if( strncmp(azArg[0]+9, "boolean", n-9)==0 ){
      int i, v;
      for(i=1; i<nArg; i++){
        v = booleanValue(azArg[i]);
        fprintf(p->out, "%s: %d 0x%x\n", azArg[i], v, v);
      }
    }
    if( strncmp(azArg[0]+9, "integer", n-9)==0 ){
      int i; sqlite3_int64 v;
      for(i=1; i<nArg; i++){
        char zBuf[200];
        v = integerValue(azArg[i]);
        sqlite3_snprintf(sizeof(zBuf), zBuf, "%s: %lld 0x%llx\n", azArg[i], v, v);
        fprintf(p->out, "%s", zBuf);
      }
    }
  }else
#endif

  if( c=='s' && strncmp(azArg[0], "separator", n)==0 && nArg==2 ){
    sqlite3_snprintf(sizeof(p->separator), p->separator,
                     "%.*s", (int)sizeof(p->separator)-1, azArg[1]);
  }else

  if( c=='s' && strncmp(azArg[0], "show", n)==0 && nArg==1 ){
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
            fprintf(stderr,"Error: testctrl %s takes no options\n", azArg[1]);
          }
          break;

        /* sqlite3_test_control(int, uint) */
        case SQLITE_TESTCTRL_PENDING_BYTE:        
          if( nArg==3 ){
            unsigned int opt = (unsigned int)integerValue(azArg[2]);        
            rc = sqlite3_test_control(testctrl, opt);
            fprintf(p->out, "%d (0x%08x)\n", rc, rc);
          } else {
            fprintf(stderr,"Error: testctrl %s takes a single unsigned"
                           " int option\n", azArg[1]);
          }
          break;







|







2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
            fprintf(stderr,"Error: testctrl %s takes no options\n", azArg[1]);
          }
          break;

        /* sqlite3_test_control(int, uint) */
        case SQLITE_TESTCTRL_PENDING_BYTE:        
          if( nArg==3 ){
            unsigned int opt = (unsigned int)integerValue(azArg[2]);
            rc = sqlite3_test_control(testctrl, opt);
            fprintf(p->out, "%d (0x%08x)\n", rc, rc);
          } else {
            fprintf(stderr,"Error: testctrl %s takes a single unsigned"
                           " int option\n", azArg[1]);
          }
          break;
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
  return rc;
}

/*
** Return TRUE if a semicolon occurs anywhere in the first N characters
** of string z[].
*/
static int _contains_semicolon(const char *z, int N){
  int i;
  for(i=0; i<N; i++){  if( z[i]==';' ) return 1; }
  return 0;
}

/*
** Test to see if a line consists entirely of whitespace.







|







2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
  return rc;
}

/*
** Return TRUE if a semicolon occurs anywhere in the first N characters
** of string z[].
*/
static int line_contains_semicolon(const char *z, int N){
  int i;
  for(i=0; i<N; i++){  if( z[i]==';' ) return 1; }
  return 0;
}

/*
** Test to see if a line consists entirely of whitespace.
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728

2729

2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771


2772
2773
2774
2775






2776
2777
2778

2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
}

/*
** Return TRUE if the line typed in is an SQL command terminator other
** than a semi-colon.  The SQL Server style "go" command is understood
** as is the Oracle "/".
*/
static int _is_command_terminator(const char *zLine){
  while( IsSpace(zLine[0]) ){ zLine++; };
  if( zLine[0]=='/' && _all_whitespace(&zLine[1]) ){
    return 1;  /* Oracle */
  }
  if( ToLower(zLine[0])=='g' && ToLower(zLine[1])=='o'
         && _all_whitespace(&zLine[2]) ){
    return 1;  /* SQL Server */
  }
  return 0;
}

/*
** Return true if zSql is a complete SQL statement.  Return false if it
** ends in the middle of a string literal or C-style comment.
*/
static int _is_complete(char *zSql, int nSql){
  int rc;
  if( zSql==0 ) return 1;
  zSql[nSql] = ';';
  zSql[nSql+1] = 0;
  rc = sqlite3_complete(zSql);
  zSql[nSql] = 0;
  return rc;
}

/*
** Read input from *in and process it.  If *in==0 then input
** is interactive - the user is typing it it.  Otherwise, input
** is coming from a file or device.  A prompt is issued and history
** is saved only if input is interactive.  An interrupt signal will
** cause this routine to exit immediately, unless input is interactive.
**
** Return the number of errors.
*/
static int process_input(struct callback_data *p, FILE *in){
  char *zLine = 0;
  char *zSql = 0;

  int nSql = 0;

  int nSqlPrior = 0;
  char *zErrMsg;
  int rc;
  int errCnt = 0;
  int lineno = 0;
  int startline = 0;

  while( errCnt==0 || !bail_on_error || (in==0 && stdin_is_interactive) ){
    fflush(p->out);
    free(zLine);
    zLine = one_input_line(zSql, in);
    if( zLine==0 ){
      /* End of input */
      if( stdin_is_interactive ) printf("\n");
      break;
    }
    if( seenInterrupt ){
      if( in!=0 ) break;
      seenInterrupt = 0;
    }
    lineno++;
    if( (zSql==0 || zSql[0]==0) && _all_whitespace(zLine) ) continue;
    if( zLine && zLine[0]=='.' && nSql==0 ){
      if( p->echoOn ) printf("%s\n", zLine);
      rc = do_meta_command(zLine, p);
      if( rc==2 ){ /* exit requested */
        break;
      }else if( rc ){
        errCnt++;
      }
      continue;
    }
    if( _is_command_terminator(zLine) && _is_complete(zSql, nSql) ){
      memcpy(zLine,";",2);
    }
    nSqlPrior = nSql;
    if( zSql==0 ){
      int i;
      for(i=0; zLine[i] && IsSpace(zLine[i]); i++){}
      if( zLine[i]!=0 ){
        nSql = strlen30(zLine);
        zSql = malloc( nSql+3 );


        if( zSql==0 ){
          fprintf(stderr, "Error: out of memory\n");
          exit(1);
        }






        memcpy(zSql, zLine, nSql+1);
        startline = lineno;
      }

    }else{
      int len = strlen30(zLine);
      zSql = realloc( zSql, nSql + len + 4 );
      if( zSql==0 ){
        fprintf(stderr,"Error: out of memory\n");
        exit(1);
      }
      zSql[nSql++] = '\n';
      memcpy(&zSql[nSql], zLine, len+1);
      nSql += len;
    }
    if( zSql && _contains_semicolon(&zSql[nSqlPrior], nSql-nSqlPrior)
                && sqlite3_complete(zSql) ){
      p->cnt = 0;
      open_db(p);
      BEGIN_TIMER;
      rc = shell_exec(p->db, zSql, shell_callback, p, &zErrMsg);
      END_TIMER;
      if( rc || zErrMsg ){







|















|



















|
|
>
|
>
|
|
|
|
|
|



<
|










|










|


<
<
<
<
<
|
|
>
>
|
|
|
|
>
>
>
>
>
>
|
|
<
>

<
<
<
<
<
<

|
|

|







2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870

2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895





2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911

2912
2913






2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
}

/*
** Return TRUE if the line typed in is an SQL command terminator other
** than a semi-colon.  The SQL Server style "go" command is understood
** as is the Oracle "/".
*/
static int line_is_command_terminator(const char *zLine){
  while( IsSpace(zLine[0]) ){ zLine++; };
  if( zLine[0]=='/' && _all_whitespace(&zLine[1]) ){
    return 1;  /* Oracle */
  }
  if( ToLower(zLine[0])=='g' && ToLower(zLine[1])=='o'
         && _all_whitespace(&zLine[2]) ){
    return 1;  /* SQL Server */
  }
  return 0;
}

/*
** Return true if zSql is a complete SQL statement.  Return false if it
** ends in the middle of a string literal or C-style comment.
*/
static int line_is_complete(char *zSql, int nSql){
  int rc;
  if( zSql==0 ) return 1;
  zSql[nSql] = ';';
  zSql[nSql+1] = 0;
  rc = sqlite3_complete(zSql);
  zSql[nSql] = 0;
  return rc;
}

/*
** Read input from *in and process it.  If *in==0 then input
** is interactive - the user is typing it it.  Otherwise, input
** is coming from a file or device.  A prompt is issued and history
** is saved only if input is interactive.  An interrupt signal will
** cause this routine to exit immediately, unless input is interactive.
**
** Return the number of errors.
*/
static int process_input(struct callback_data *p, FILE *in){
  char *zLine = 0;          /* A single input line */
  char *zSql = 0;           /* Accumulated SQL text */
  int nLine;                /* Length of current line */
  int nSql = 0;             /* Bytes of zSql[] used */
  int nAlloc = 0;           /* Allocated zSql[] space */
  int nSqlPrior = 0;        /* Bytes of zSql[] used by prior line */
  char *zErrMsg;            /* Error message returned */
  int rc;                   /* Error code */
  int errCnt = 0;           /* Number of errors seen */
  int lineno = 0;           /* Current line number */
  int startline = 0;        /* Line number for start of current input */

  while( errCnt==0 || !bail_on_error || (in==0 && stdin_is_interactive) ){
    fflush(p->out);

    zLine = one_input_line(in, zLine, nSql>0);
    if( zLine==0 ){
      /* End of input */
      if( stdin_is_interactive ) printf("\n");
      break;
    }
    if( seenInterrupt ){
      if( in!=0 ) break;
      seenInterrupt = 0;
    }
    lineno++;
    if( nSql==0 && _all_whitespace(zLine) ) continue;
    if( zLine && zLine[0]=='.' && nSql==0 ){
      if( p->echoOn ) printf("%s\n", zLine);
      rc = do_meta_command(zLine, p);
      if( rc==2 ){ /* exit requested */
        break;
      }else if( rc ){
        errCnt++;
      }
      continue;
    }
    if( line_is_command_terminator(zLine) && line_is_complete(zSql, nSql) ){
      memcpy(zLine,";",2);
    }





    nLine = strlen30(zLine);
    if( nSql+nLine+2>=nAlloc ){
      nAlloc = nSql+nLine+100;
      zSql = realloc(zSql, nAlloc);
      if( zSql==0 ){
        fprintf(stderr, "Error: out of memory\n");
        exit(1);
      }
    }
    nSqlPrior = nSql;
    if( nSql==0 ){
      int i;
      for(i=0; zLine[i] && IsSpace(zLine[i]); i++){}
      assert( nAlloc>0 && zSql!=0 );
      memcpy(zSql, zLine+i, nLine+1-i);
      startline = lineno;

      nSql = nLine-i;
    }else{






      zSql[nSql++] = '\n';
      memcpy(zSql+nSql, zLine, nLine+1);
      nSql += nLine;
    }
    if( nSql && line_contains_semicolon(&zSql[nSqlPrior], nSql-nSqlPrior)
                && sqlite3_complete(zSql) ){
      p->cnt = 0;
      open_db(p);
      BEGIN_TIMER;
      rc = shell_exec(p->db, zSql, shell_callback, p, &zErrMsg);
      END_TIMER;
      if( rc || zErrMsg ){
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
          sqlite3_free(zErrMsg);
          zErrMsg = 0;
        }else{
          fprintf(stderr, "%s %s\n", zPrefix, sqlite3_errmsg(p->db));
        }
        errCnt++;
      }
      free(zSql);
      zSql = 0;
      nSql = 0;
    }else if( zSql && _all_whitespace(zSql) ){
      free(zSql);
      zSql = 0;
      nSql = 0;
    }
  }
  if( zSql ){
    if( !_all_whitespace(zSql) ){
      fprintf(stderr, "Error: incomplete SQL: %s\n", zSql);
    }
    free(zSql);
  }
  free(zLine);
  return errCnt>0;







<
<

|
<
<



|







2935
2936
2937
2938
2939
2940
2941


2942
2943


2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
          sqlite3_free(zErrMsg);
          zErrMsg = 0;
        }else{
          fprintf(stderr, "%s %s\n", zPrefix, sqlite3_errmsg(p->db));
        }
        errCnt++;
      }


      nSql = 0;
    }else if( nSql && _all_whitespace(zSql) ){


      nSql = 0;
    }
  }
  if( nSql ){
    if( !_all_whitespace(zSql) ){
      fprintf(stderr, "Error: incomplete SQL: %s\n", zSql);
    }
    free(zSql);
  }
  free(zLine);
  return errCnt>0;
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
      /* Need to check for batch mode here to so we can avoid printing
      ** informational messages (like from process_sqliterc) before 
      ** we do the actual processing of arguments later in a second pass.
      */
      stdin_is_interactive = 0;
    }else if( strcmp(z,"-heap")==0 ){
#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
      int j, c;
      const char *zSize;
      sqlite3_int64 szHeap;

      zSize = cmdline_option_value(argc, argv, ++i);
      szHeap = integerValue(zSize);
      if( szHeap>0x7fff0000 ) szHeap = 0x7fff0000;
      sqlite3_config(SQLITE_CONFIG_HEAP, malloc((int)szHeap), (int)szHeap, 64);







<







3188
3189
3190
3191
3192
3193
3194

3195
3196
3197
3198
3199
3200
3201
      /* Need to check for batch mode here to so we can avoid printing
      ** informational messages (like from process_sqliterc) before 
      ** we do the actual processing of arguments later in a second pass.
      */
      stdin_is_interactive = 0;
    }else if( strcmp(z,"-heap")==0 ){
#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)

      const char *zSize;
      sqlite3_int64 szHeap;

      zSize = cmdline_option_value(argc, argv, ++i);
      szHeap = integerValue(zSize);
      if( szHeap>0x7fff0000 ) szHeap = 0x7fff0000;
      sqlite3_config(SQLITE_CONFIG_HEAP, malloc((int)szHeap), (int)szHeap, 64);
Changes to src/sqlite.h.in.
469
470
471
472
473
474
475


476
477

478
479
480

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

497
498
499
500
501
502
503
#define SQLITE_IOERR_SHMOPEN           (SQLITE_IOERR | (18<<8))
#define SQLITE_IOERR_SHMSIZE           (SQLITE_IOERR | (19<<8))
#define SQLITE_IOERR_SHMLOCK           (SQLITE_IOERR | (20<<8))
#define SQLITE_IOERR_SHMMAP            (SQLITE_IOERR | (21<<8))
#define SQLITE_IOERR_SEEK              (SQLITE_IOERR | (22<<8))
#define SQLITE_IOERR_DELETE_NOENT      (SQLITE_IOERR | (23<<8))
#define SQLITE_IOERR_MMAP              (SQLITE_IOERR | (24<<8))


#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED |  (1<<8))
#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))

#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))

#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))
#define SQLITE_READONLY_RECOVERY       (SQLITE_READONLY | (1<<8))
#define SQLITE_READONLY_CANTLOCK       (SQLITE_READONLY | (2<<8))
#define SQLITE_READONLY_ROLLBACK       (SQLITE_READONLY | (3<<8))
#define SQLITE_ABORT_ROLLBACK          (SQLITE_ABORT | (2<<8))
#define SQLITE_CONSTRAINT_CHECK        (SQLITE_CONSTRAINT | (1<<8))
#define SQLITE_CONSTRAINT_COMMITHOOK   (SQLITE_CONSTRAINT | (2<<8))
#define SQLITE_CONSTRAINT_FOREIGNKEY   (SQLITE_CONSTRAINT | (3<<8))
#define SQLITE_CONSTRAINT_FUNCTION     (SQLITE_CONSTRAINT | (4<<8))
#define SQLITE_CONSTRAINT_NOTNULL      (SQLITE_CONSTRAINT | (5<<8))
#define SQLITE_CONSTRAINT_PRIMARYKEY   (SQLITE_CONSTRAINT | (6<<8))
#define SQLITE_CONSTRAINT_TRIGGER      (SQLITE_CONSTRAINT | (7<<8))
#define SQLITE_CONSTRAINT_UNIQUE       (SQLITE_CONSTRAINT | (8<<8))
#define SQLITE_CONSTRAINT_VTAB         (SQLITE_CONSTRAINT | (9<<8))
#define SQLITE_NOTICE_RECOVER_WAL      (SQLITE_NOTICE | (1<<8))
#define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8))


/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the [sqlite3_vfs.xOpen] method.







>
>


>



>
















>







469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
#define SQLITE_IOERR_SHMOPEN           (SQLITE_IOERR | (18<<8))
#define SQLITE_IOERR_SHMSIZE           (SQLITE_IOERR | (19<<8))
#define SQLITE_IOERR_SHMLOCK           (SQLITE_IOERR | (20<<8))
#define SQLITE_IOERR_SHMMAP            (SQLITE_IOERR | (21<<8))
#define SQLITE_IOERR_SEEK              (SQLITE_IOERR | (22<<8))
#define SQLITE_IOERR_DELETE_NOENT      (SQLITE_IOERR | (23<<8))
#define SQLITE_IOERR_MMAP              (SQLITE_IOERR | (24<<8))
#define SQLITE_IOERR_GETTEMPPATH       (SQLITE_IOERR | (25<<8))
#define SQLITE_IOERR_CONVPATH          (SQLITE_IOERR | (26<<8))
#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED |  (1<<8))
#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
#define SQLITE_BUSY_SNAPSHOT           (SQLITE_BUSY   |  (2<<8))
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
#define SQLITE_CANTOPEN_CONVPATH       (SQLITE_CANTOPEN | (4<<8))
#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))
#define SQLITE_READONLY_RECOVERY       (SQLITE_READONLY | (1<<8))
#define SQLITE_READONLY_CANTLOCK       (SQLITE_READONLY | (2<<8))
#define SQLITE_READONLY_ROLLBACK       (SQLITE_READONLY | (3<<8))
#define SQLITE_ABORT_ROLLBACK          (SQLITE_ABORT | (2<<8))
#define SQLITE_CONSTRAINT_CHECK        (SQLITE_CONSTRAINT | (1<<8))
#define SQLITE_CONSTRAINT_COMMITHOOK   (SQLITE_CONSTRAINT | (2<<8))
#define SQLITE_CONSTRAINT_FOREIGNKEY   (SQLITE_CONSTRAINT | (3<<8))
#define SQLITE_CONSTRAINT_FUNCTION     (SQLITE_CONSTRAINT | (4<<8))
#define SQLITE_CONSTRAINT_NOTNULL      (SQLITE_CONSTRAINT | (5<<8))
#define SQLITE_CONSTRAINT_PRIMARYKEY   (SQLITE_CONSTRAINT | (6<<8))
#define SQLITE_CONSTRAINT_TRIGGER      (SQLITE_CONSTRAINT | (7<<8))
#define SQLITE_CONSTRAINT_UNIQUE       (SQLITE_CONSTRAINT | (8<<8))
#define SQLITE_CONSTRAINT_VTAB         (SQLITE_CONSTRAINT | (9<<8))
#define SQLITE_NOTICE_RECOVER_WAL      (SQLITE_NOTICE | (1<<8))
#define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8))
#define SQLITE_WARNING_AUTOINDEX       (SQLITE_WARNING | (1<<8))

/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557

2558
2559
2560
2561
2562
2563
2564
** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
** function X to be invoked periodically during long running calls to
** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for
** database connection D.  An example use for this
** interface is to keep a GUI updated during a large query.
**
** ^The parameter P is passed through as the only parameter to the 
** callback function X.  ^The parameter N is the number of 
** [virtual machine instructions] that are evaluated between successive
** invocations of the callback X.

**
** ^Only a single progress handler may be defined at one time per
** [database connection]; setting a new progress handler cancels the
** old one.  ^Setting parameter X to NULL disables the progress handler.
** ^The progress handler is also disabled by setting N to a value less
** than 1.
**







|

|
>







2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
** function X to be invoked periodically during long running calls to
** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for
** database connection D.  An example use for this
** interface is to keep a GUI updated during a large query.
**
** ^The parameter P is passed through as the only parameter to the 
** callback function X.  ^The parameter N is the approximate number of 
** [virtual machine instructions] that are evaluated between successive
** invocations of the callback X.  ^If N is less than one then the progress
** handler is disabled.
**
** ^Only a single progress handler may be defined at one time per
** [database connection]; setting a new progress handler cancels the
** old one.  ^Setting parameter X to NULL disables the progress handler.
** ^The progress handler is also disabled by setting N to a value less
** than 1.
**
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183

4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198

4199

4200
4201

4202

4203



4204
4205



4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
** registered the application defined function.
*/
sqlite3 *sqlite3_context_db_handle(sqlite3_context*);

/*
** CAPI3REF: Function Auxiliary Data
**
** The following two functions may be used by scalar SQL functions to
** associate metadata with argument values. If the same value is passed to
** multiple invocations of the same SQL function during query execution, under
** some circumstances the associated metadata may be preserved. This may
** be used, for example, to add a regular-expression matching scalar
** function. The compiled version of the regular expression is stored as
** metadata associated with the SQL value passed as the regular expression

** pattern.  The compiled regular expression can be reused on multiple
** invocations of the same function so that the original pattern string
** does not need to be recompiled on each invocation.
**
** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata
** associated by the sqlite3_set_auxdata() function with the Nth argument
** value to the application-defined function. ^If no metadata has been ever
** been set for the Nth argument of the function, or if the corresponding
** function parameter has changed since the meta-data was set,
** then sqlite3_get_auxdata() returns a NULL pointer.
**
** ^The sqlite3_set_auxdata() interface saves the metadata
** pointed to by its 3rd parameter as the metadata for the N-th
** argument of the application-defined function.  Subsequent
** calls to sqlite3_get_auxdata() might return this data, if it has

** not been destroyed.

** ^If it is not NULL, SQLite will invoke the destructor
** function given by the 4th parameter to sqlite3_set_auxdata() on

** the metadata when the corresponding function parameter changes

** or when the SQL statement completes, whichever comes first.



**
** SQLite is free to call the destructor and drop metadata on any



** parameter of any function at any time.  ^The only guarantee is that
** the destructor will be called before the metadata is dropped.
**
** ^(In practice, metadata is preserved between function calls for
** expressions that are constant at compile time. This includes literal
** values and [parameters].)^
**
** These routines must be called from the same thread in which
** the SQL function is running.
*/
void *sqlite3_get_auxdata(sqlite3_context*, int N);
void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));








|


|
|
|
|
>
|
|
<



|
<
|
|

|
<
|
|
>
|
>
|
|
>
|
>
|
>
>
>

|
>
>
>
|
|


|
|







4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192

4193
4194
4195
4196

4197
4198
4199
4200

4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
** registered the application defined function.
*/
sqlite3 *sqlite3_context_db_handle(sqlite3_context*);

/*
** CAPI3REF: Function Auxiliary Data
**
** These functions may be used by (non-aggregate) SQL functions to
** associate metadata with argument values. If the same value is passed to
** multiple invocations of the same SQL function during query execution, under
** some circumstances the associated metadata may be preserved.  An example
** of where this might be useful is in a regular-expression matching
** function. The compiled version of the regular expression can be stored as
** metadata associated with the pattern string.  
** Then as long as the pattern string remains the same,
** the compiled regular expression can be reused on multiple
** invocations of the same function.

**
** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata
** associated by the sqlite3_set_auxdata() function with the Nth argument
** value to the application-defined function. ^If there is no metadata

** associated with the function argument, this sqlite3_get_auxdata() interface
** returns a NULL pointer.
**
** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as metadata for the N-th

** argument of the application-defined function.  ^Subsequent
** calls to sqlite3_get_auxdata(C,N) return P from the most recent
** sqlite3_set_auxdata(C,N,P,X) call if the metadata is still valid or
** NULL if the metadata has been discarded.
** ^After each call to sqlite3_set_auxdata(C,N,P,X) where X is not NULL,
** SQLite will invoke the destructor function X with parameter P exactly
** once, when the metadata is discarded.
** SQLite is free to discard the metadata at any time, including: <ul>
** <li> when the corresponding function parameter changes, or
** <li> when [sqlite3_reset()] or [sqlite3_finalize()] is called for the
**      SQL statement, or
** <li> when sqlite3_set_auxdata() is invoked again on the same parameter, or
** <li> during the original sqlite3_set_auxdata() call when a memory 
**      allocation error occurs. </ul>)^
**
** Note the last bullet in particular.  The destructor X in 
** sqlite3_set_auxdata(C,N,P,X) might be called immediately, before the
** sqlite3_set_auxdata() interface even returns.  Hence sqlite3_set_auxdata()
** should be called near the end of the function implementation and the
** function implementation should not make any use of P after
** sqlite3_set_auxdata() has been called.
**
** ^(In practice, metadata is preserved between function calls for
** function parameters that are compile-time constants, including literal
** values and [parameters] and expressions composed from the same.)^
**
** These routines must be called from the same thread in which
** the SQL function is running.
*/
void *sqlite3_get_auxdata(sqlite3_context*, int N);
void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));

5117
5118
5119
5120
5121
5122
5123
5124

5125
5126
5127












5128
5129
5130
5131
5132
5133
5134
** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()],
** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail.
**
** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
** on the list of automatic extensions is a harmless no-op. ^No entry point
** will be called more than once for each database connection that is opened.
**
** See also: [sqlite3_reset_auto_extension()].

*/
int sqlite3_auto_extension(void (*xEntryPoint)(void));













/*
** CAPI3REF: Reset Automatic Extension Loading
**
** ^This interface disables all automatic extensions previously
** registered using [sqlite3_auto_extension()].
*/
void sqlite3_reset_auto_extension(void);







|
>



>
>
>
>
>
>
>
>
>
>
>
>







5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()],
** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail.
**
** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
** on the list of automatic extensions is a harmless no-op. ^No entry point
** will be called more than once for each database connection that is opened.
**
** See also: [sqlite3_reset_auto_extension()]
** and [sqlite3_cancel_auto_extension()]
*/
int sqlite3_auto_extension(void (*xEntryPoint)(void));

/*
** CAPI3REF: Cancel Automatic Extension Loading
**
** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the
** initialization routine X that was registered using a prior call to
** [sqlite3_auto_extension(X)].  ^The [sqlite3_cancel_auto_extension(X)]
** routine returns 1 if initialization routine X was successfully 
** unregistered and it returns 0 if X was not on the list of initialization
** routines.
*/
int sqlite3_cancel_auto_extension(void (*xEntryPoint)(void));

/*
** CAPI3REF: Reset Automatic Extension Loading
**
** ^This interface disables all automatic extensions previously
** registered using [sqlite3_auto_extension()].
*/
void sqlite3_reset_auto_extension(void);
6233
6234
6235
6236
6237
6238
6239






6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251

6252
6253
6254
6255
6256
6257
6258
6259
** wal file in wal mode databases, or the number of pages written to the
** database file in rollback mode databases. Any pages written as part of
** transaction rollback or database recovery operations are not included.
** If an IO or other error occurs while writing a page to disk, the effect
** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The
** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0.
** </dd>






** </dl>
*/
#define SQLITE_DBSTATUS_LOOKASIDE_USED       0
#define SQLITE_DBSTATUS_CACHE_USED           1
#define SQLITE_DBSTATUS_SCHEMA_USED          2
#define SQLITE_DBSTATUS_STMT_USED            3
#define SQLITE_DBSTATUS_LOOKASIDE_HIT        4
#define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE  5
#define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL  6
#define SQLITE_DBSTATUS_CACHE_HIT            7
#define SQLITE_DBSTATUS_CACHE_MISS           8
#define SQLITE_DBSTATUS_CACHE_WRITE          9

#define SQLITE_DBSTATUS_MAX                  9   /* Largest defined DBSTATUS */


/*
** CAPI3REF: Prepared Statement Status
**
** ^(Each prepared statement maintains various
** [SQLITE_STMTSTATUS counters] that measure the number







>
>
>
>
>
>












>
|







6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
** wal file in wal mode databases, or the number of pages written to the
** database file in rollback mode databases. Any pages written as part of
** transaction rollback or database recovery operations are not included.
** If an IO or other error occurs while writing a page to disk, the effect
** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The
** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0.
** </dd>
**
** [[SQLITE_DBSTATUS_DEFERRED_FKS]] ^(<dt>SQLITE_DBSTATUS_DEFERRED_FKS</dt>
** <dd>This parameter returns zero for the current value if and only if
** all foreign key constraints (deferred or immediate) have been
** resolved.)^  ^The highwater mark is always 0.
** </dd>
** </dl>
*/
#define SQLITE_DBSTATUS_LOOKASIDE_USED       0
#define SQLITE_DBSTATUS_CACHE_USED           1
#define SQLITE_DBSTATUS_SCHEMA_USED          2
#define SQLITE_DBSTATUS_STMT_USED            3
#define SQLITE_DBSTATUS_LOOKASIDE_HIT        4
#define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE  5
#define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL  6
#define SQLITE_DBSTATUS_CACHE_HIT            7
#define SQLITE_DBSTATUS_CACHE_MISS           8
#define SQLITE_DBSTATUS_CACHE_WRITE          9
#define SQLITE_DBSTATUS_DEFERRED_FKS        10
#define SQLITE_DBSTATUS_MAX                 10   /* Largest defined DBSTATUS */


/*
** CAPI3REF: Prepared Statement Status
**
** ^(Each prepared statement maintains various
** [SQLITE_STMTSTATUS counters] that measure the number
6299
6300
6301
6302
6303
6304
6305









6306
6307
6308
6309
6310

6311
6312
6313
6314
6315
6316
6317
**
** [[SQLITE_STMTSTATUS_AUTOINDEX]] <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt>
** <dd>^This is the number of rows inserted into transient indices that
** were created automatically in order to help joins run faster.
** A non-zero value in this counter may indicate an opportunity to
** improvement performance by adding permanent indices that do not
** need to be reinitialized each time the statement is run.</dd>









** </dl>
*/
#define SQLITE_STMTSTATUS_FULLSCAN_STEP     1
#define SQLITE_STMTSTATUS_SORT              2
#define SQLITE_STMTSTATUS_AUTOINDEX         3


/*
** CAPI3REF: Custom Page Cache Object
**
** The sqlite3_pcache type is opaque.  It is implemented by
** the pluggable module.  The SQLite core has no knowledge of
** its size or internal structure and never deals with the







>
>
>
>
>
>
>
>
>





>







6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
**
** [[SQLITE_STMTSTATUS_AUTOINDEX]] <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt>
** <dd>^This is the number of rows inserted into transient indices that
** were created automatically in order to help joins run faster.
** A non-zero value in this counter may indicate an opportunity to
** improvement performance by adding permanent indices that do not
** need to be reinitialized each time the statement is run.</dd>
**
** [[SQLITE_STMTSTATUS_VM_STEP]] <dt>SQLITE_STMTSTATUS_VM_STEP</dt>
** <dd>^This is the number of virtual machine operations executed
** by the prepared statement if that number is less than or equal
** to 2147483647.  The number of virtual machine operations can be 
** used as a proxy for the total work done by the prepared statement.
** If the number of virtual machine operations exceeds 2147483647
** then the value returned by this statement status code is undefined.
** </dd>
** </dl>
*/
#define SQLITE_STMTSTATUS_FULLSCAN_STEP     1
#define SQLITE_STMTSTATUS_SORT              2
#define SQLITE_STMTSTATUS_AUTOINDEX         3
#define SQLITE_STMTSTATUS_VM_STEP           4

/*
** CAPI3REF: Custom Page Cache Object
**
** The sqlite3_pcache type is opaque.  It is implemented by
** the pluggable module.  The SQLite core has no knowledge of
** its size or internal structure and never deals with the
7182
7183
7184
7185
7186
7187
7188
7189
#ifdef SQLITE_OMIT_FLOATING_POINT
# undef double
#endif

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif
#endif







|
7226
7227
7228
7229
7230
7231
7232
7233
#ifdef SQLITE_OMIT_FLOATING_POINT
# undef double
#endif

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif
#endif /* _SQLITE3_H_ */
Changes to src/sqlite3ext.h.
470
471
472
473
474
475
476


477
478
479
480
481

482
483
484
#endif /* SQLITE_CORE */

#ifndef SQLITE_CORE
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;


#else
  /* This case when the file is being statically linked into the 
  ** application */
# define SQLITE_EXTENSION_INIT1     /*no-op*/
# define SQLITE_EXTENSION_INIT2(v)  (void)v; /* unused parameter */

#endif

#endif /* _SQLITE3EXT_H_ */







>
>





>



470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
#endif /* SQLITE_CORE */

#ifndef SQLITE_CORE
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;
# define SQLITE_EXTENSION_INIT3     \
    extern const sqlite3_api_routines *sqlite3_api;
#else
  /* This case when the file is being statically linked into the 
  ** application */
# define SQLITE_EXTENSION_INIT1     /*no-op*/
# define SQLITE_EXTENSION_INIT2(v)  (void)v; /* unused parameter */
# define SQLITE_EXTENSION_INIT3     /*no-op*/
#endif

#endif /* _SQLITE3EXT_H_ */
Changes to src/sqliteInt.h.
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
**     SQLITE_MEMDEBUG               // Debugging version of system malloc()
**
** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
** assert() macro is enabled, each call into the Win32 native heap subsystem
** will cause HeapValidate to be called.  If heap validation should fail, an
** assertion will be triggered.
**
** (Historical note:  There used to be several other options, but we've
** pared it down to just these three.)
**
** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
** the default.
*/
#if defined(SQLITE_SYSTEM_MALLOC) \
  + defined(SQLITE_WIN32_MALLOC) \
  + defined(SQLITE_ZERO_MALLOC) \
  + defined(SQLITE_MEMDEBUG)>1







<
<
<







157
158
159
160
161
162
163



164
165
166
167
168
169
170
**     SQLITE_MEMDEBUG               // Debugging version of system malloc()
**
** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
** assert() macro is enabled, each call into the Win32 native heap subsystem
** will cause HeapValidate to be called.  If heap validation should fail, an
** assertion will be triggered.
**



** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
** the default.
*/
#if defined(SQLITE_SYSTEM_MALLOC) \
  + defined(SQLITE_WIN32_MALLOC) \
  + defined(SQLITE_ZERO_MALLOC) \
  + defined(SQLITE_MEMDEBUG)>1
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit
** it.
*/
#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__)
#  define _XOPEN_SOURCE 600
#endif

/*
** The TCL headers are only needed when compiling the TCL bindings.
*/
#if defined(SQLITE_TCL) || defined(TCLSH)
# include <tcl.h>
#endif

/*
** NDEBUG and SQLITE_DEBUG are opposites.  It should always be true that
** defined(NDEBUG)==!defined(SQLITE_DEBUG).  If this is not currently true,
** make it true by defining or undefining NDEBUG.
**
** Setting NDEBUG makes the code smaller and run faster by disabling the
** number assert() statements in the code.  So we want the default action
** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG
** is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
** feature.
*/
#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 
# define NDEBUG 1
#endif







<
<
<
<
<
<
<





|
|







194
195
196
197
198
199
200







201
202
203
204
205
206
207
208
209
210
211
212
213
214
** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit
** it.
*/
#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__)
#  define _XOPEN_SOURCE 600
#endif








/*
** NDEBUG and SQLITE_DEBUG are opposites.  It should always be true that
** defined(NDEBUG)==!defined(SQLITE_DEBUG).  If this is not currently true,
** make it true by defining or undefining NDEBUG.
**
** Setting NDEBUG makes the code smaller and faster by disabling the
** assert() statements in the code.  So we want the default action
** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG
** is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
** feature.
*/
#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 
# define NDEBUG 1
#endif
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
** of SQLite to unexpected behavior - to make the code "self-healing"
** or "ductile" rather than being "brittle" and crashing at the first
** hint of unplanned behavior.
**
** In other words, ALWAYS and NEVER are added for defensive code.
**
** When doing coverage testing ALWAYS and NEVER are hard-coded to
** be true and false so that the unreachable code then specify will
** not be counted as untested code.
*/
#if defined(SQLITE_COVERAGE_TEST)
# define ALWAYS(X)      (1)
# define NEVER(X)       (0)
#elif !defined(NDEBUG)
# define ALWAYS(X)      ((X)?1:(assert(0),0))







|







270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
** of SQLite to unexpected behavior - to make the code "self-healing"
** or "ductile" rather than being "brittle" and crashing at the first
** hint of unplanned behavior.
**
** In other words, ALWAYS and NEVER are added for defensive code.
**
** When doing coverage testing ALWAYS and NEVER are hard-coded to
** be true and false so that the unreachable code they specify will
** not be counted as untested code.
*/
#if defined(SQLITE_COVERAGE_TEST)
# define ALWAYS(X)      (1)
# define NEVER(X)       (0)
#elif !defined(NDEBUG)
# define ALWAYS(X)      ((X)?1:(assert(0),0))
304
305
306
307
308
309
310
311
312

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
** macros to verify that we have tested SQLite for large-file support.
*/
#define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)

/*
** The macro unlikely() is a hint that surrounds a boolean
** expression that is usually false.  Macro likely() surrounds
** a boolean expression that is usually true.  GCC is able to
** use these hints to generate better code, sometimes.

*/
#if defined(__GNUC__) && 0
# define likely(X)    __builtin_expect((X),1)
# define unlikely(X)  __builtin_expect((X),0)
#else
# define likely(X)    !!(X)
# define unlikely(X)  !!(X)
#endif

#include "sqlite3.h"
#include "hash.h"
#include "parse.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>







|
|
>

<
<
<
<
|
|
<







294
295
296
297
298
299
300
301
302
303
304




305
306

307
308
309
310
311
312
313
** macros to verify that we have tested SQLite for large-file support.
*/
#define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)

/*
** The macro unlikely() is a hint that surrounds a boolean
** expression that is usually false.  Macro likely() surrounds
** a boolean expression that is usually true.  These hints could,
** in theory, be used by the compiler to generate better code, but
** currently they are just comments for human readers.
*/




#define likely(X)    (X)
#define unlikely(X)  (X)


#include "sqlite3.h"
#include "hash.h"
#include "parse.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
391
392
393
394
395
396
397






398
399
400
401
402
403
404
** GCC does not define the offsetof() macro so we'll have to do it
** ourselves.
*/
#ifndef offsetof
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
#endif







/*
** Check to see if this machine uses EBCDIC.  (Yes, believe it or
** not, there are still machines out there that use EBCDIC.)
*/
#if 'A' == '\301'
# define SQLITE_EBCDIC 1
#else







>
>
>
>
>
>







377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
** GCC does not define the offsetof() macro so we'll have to do it
** ourselves.
*/
#ifndef offsetof
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
#endif

/*
** Macros to compute minimum and maximum of two numbers.
*/
#define MIN(A,B) ((A)<(B)?(A):(B))
#define MAX(A,B) ((A)>(B)?(A):(B))

/*
** Check to see if this machine uses EBCDIC.  (Yes, believe it or
** not, there are still machines out there that use EBCDIC.)
*/
#if 'A' == '\301'
# define SQLITE_EBCDIC 1
#else
572
573
574
575
576
577
578














579
580
581
582
583
584
585
# define SQLITE_DEFAULT_MMAP_SIZE_xc 1  /* Exclude from ctime.c */
#endif
#if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE
# undef SQLITE_DEFAULT_MMAP_SIZE
# define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE
#endif















/*
** An instance of the following structure is used to store the busy-handler
** callback for a given sqlite handle. 
**
** The sqlite.busyHandler member of the sqlite struct contains the busy
** callback for the database handle. Each pager opened via the sqlite
** handle is passed a pointer to sqlite.busyHandler. The busy-handler







>
>
>
>
>
>
>
>
>
>
>
>
>
>







564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
# define SQLITE_DEFAULT_MMAP_SIZE_xc 1  /* Exclude from ctime.c */
#endif
#if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE
# undef SQLITE_DEFAULT_MMAP_SIZE
# define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE
#endif

/*
** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined.
** Priority is given to SQLITE_ENABLE_STAT4.  If either are defined, also
** define SQLITE_ENABLE_STAT3_OR_STAT4
*/
#ifdef SQLITE_ENABLE_STAT4
# undef SQLITE_ENABLE_STAT3
# define SQLITE_ENABLE_STAT3_OR_STAT4 1
#elif SQLITE_ENABLE_STAT3
# define SQLITE_ENABLE_STAT3_OR_STAT4 1
#elif SQLITE_ENABLE_STAT3_OR_STAT4
# undef SQLITE_ENABLE_STAT3_OR_STAT4
#endif

/*
** An instance of the following structure is used to store the busy-handler
** callback for a given sqlite handle. 
**
** The sqlite.busyHandler member of the sqlite struct contains the busy
** callback for the database handle. Each pager opened via the sqlite
** handle is passed a pointer to sqlite.busyHandler. The busy-handler
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
typedef struct Trigger Trigger;
typedef struct TriggerPrg TriggerPrg;
typedef struct TriggerStep TriggerStep;
typedef struct UnpackedRecord UnpackedRecord;
typedef struct VTable VTable;
typedef struct VtabCtx VtabCtx;
typedef struct Walker Walker;
typedef struct WherePlan WherePlan;
typedef struct WhereInfo WhereInfo;
typedef struct WhereLevel WhereLevel;

/*
** Defer sourcing vdbe.h and btree.h until after the "u8" and 
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
** pointer types (i.e. FuncDef) defined above.
*/
#include "btree.h"







<

<







722
723
724
725
726
727
728

729

730
731
732
733
734
735
736
typedef struct Trigger Trigger;
typedef struct TriggerPrg TriggerPrg;
typedef struct TriggerStep TriggerStep;
typedef struct UnpackedRecord UnpackedRecord;
typedef struct VTable VTable;
typedef struct VtabCtx VtabCtx;
typedef struct Walker Walker;

typedef struct WhereInfo WhereInfo;


/*
** Defer sourcing vdbe.h and btree.h until after the "u8" and 
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
** pointer types (i.e. FuncDef) defined above.
*/
#include "btree.h"
889
890
891
892
893
894
895
896
897

898
899
900
901
902
903
904
905
  int aLimit[SQLITE_N_LIMIT];   /* Limits */
  struct sqlite3InitInfo {      /* Information used during initialization */
    int newTnum;                /* Rootpage of table being initialized */
    u8 iDb;                     /* Which db file is being initialized */
    u8 busy;                    /* TRUE if currently initializing */
    u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
  } init;
  int activeVdbeCnt;            /* Number of VDBEs currently executing */
  int writeVdbeCnt;             /* Number of active VDBEs that are writing */

  int vdbeExecCnt;              /* Number of nested calls to VdbeExec() */
  int nExtension;               /* Number of loaded extensions */
  void **aExtension;            /* Array of shared library handles */
  void (*xTrace)(void*,const char*);        /* Trace function */
  void *pTraceArg;                          /* Argument to the trace function */
  void (*xProfile)(void*,const char*,u64);  /* Profiling function */
  void *pProfileArg;                        /* Argument to profile function */
  void *pCommitArg;                 /* Argument to xCommitCallback() */   







|
|
>
|







893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
  int aLimit[SQLITE_N_LIMIT];   /* Limits */
  struct sqlite3InitInfo {      /* Information used during initialization */
    int newTnum;                /* Rootpage of table being initialized */
    u8 iDb;                     /* Which db file is being initialized */
    u8 busy;                    /* TRUE if currently initializing */
    u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
  } init;
  int nVdbeActive;              /* Number of VDBEs currently running */
  int nVdbeRead;                /* Number of active VDBEs that read or write */
  int nVdbeWrite;               /* Number of active VDBEs that read and write */
  int nVdbeExec;                /* Number of nested calls to VdbeExec() */
  int nExtension;               /* Number of loaded extensions */
  void **aExtension;            /* Array of shared library handles */
  void (*xTrace)(void*,const char*);        /* Trace function */
  void *pTraceArg;                          /* Argument to the trace function */
  void (*xProfile)(void*,const char*,u64);  /* Profiling function */
  void *pProfileArg;                        /* Argument to profile function */
  void *pCommitArg;                 /* Argument to xCommitCallback() */   
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

952
953
954
955
956
957
958
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
                                /* Access authorization function */
  void *pAuthArg;               /* 1st argument to the access auth function */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int (*xProgress)(void *);     /* The progress callback */
  void *pProgressArg;           /* Argument to the progress callback */
  int nProgressOps;             /* Number of opcodes for progress callback */
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
  int nVTrans;                  /* Allocated size of aVTrans */
  Hash aModule;                 /* populated by sqlite3_create_module() */
  VtabCtx *pVtabCtx;            /* Context for active vtab connect/create */
  VTable **aVTrans;             /* Virtual tables with open transactions */
  VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
#endif
  FuncDefHash aFunc;            /* Hash table of connection functions */
  Hash aCollSeq;                /* All collating sequences */
  BusyHandler busyHandler;      /* Busy callback */
  Db aDbStatic[2];              /* Static space for the 2 default backends */
  Savepoint *pSavepoint;        /* List of active savepoints */
  int busyTimeout;              /* Busy handler timeout, in msec */
  int nSavepoint;               /* Number of non-transaction savepoints */
  int nStatement;               /* Number of nested statement-transactions  */
  i64 nDeferredCons;            /* Net deferred constraints this transaction. */

  int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */

#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
  /* The following variables are all protected by the STATIC_MASTER 
  ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 
  **
  ** When X.pUnlockConnection==Y, that means that X is waiting for Y to







|

















>







932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
                                /* Access authorization function */
  void *pAuthArg;               /* 1st argument to the access auth function */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int (*xProgress)(void *);     /* The progress callback */
  void *pProgressArg;           /* Argument to the progress callback */
  unsigned nProgressOps;        /* Number of opcodes for progress callback */
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
  int nVTrans;                  /* Allocated size of aVTrans */
  Hash aModule;                 /* populated by sqlite3_create_module() */
  VtabCtx *pVtabCtx;            /* Context for active vtab connect/create */
  VTable **aVTrans;             /* Virtual tables with open transactions */
  VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
#endif
  FuncDefHash aFunc;            /* Hash table of connection functions */
  Hash aCollSeq;                /* All collating sequences */
  BusyHandler busyHandler;      /* Busy callback */
  Db aDbStatic[2];              /* Static space for the 2 default backends */
  Savepoint *pSavepoint;        /* List of active savepoints */
  int busyTimeout;              /* Busy handler timeout, in msec */
  int nSavepoint;               /* Number of non-transaction savepoints */
  int nStatement;               /* Number of nested statement-transactions  */
  i64 nDeferredCons;            /* Net deferred constraints this transaction. */
  i64 nDeferredImmCons;         /* Net deferred immediate constraints */
  int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */

#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
  /* The following variables are all protected by the STATIC_MASTER 
  ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 
  **
  ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
976
977
978
979
980
981
982



983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006



1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022


1023
1024
1025
1026
1027
1028
1029
#define ENC(db) ((db)->aDb[0].pSchema->enc)

/*
** Possible values for the sqlite3.flags.
*/
#define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
#define SQLITE_InternChanges  0x00000002  /* Uncommitted Hash table changes */



#define SQLITE_FullColNames   0x00000004  /* Show full column names on SELECT */
#define SQLITE_ShortColNames  0x00000008  /* Show short columns names */
#define SQLITE_CountRows      0x00000010  /* Count rows changed by INSERT, */
                                          /*   DELETE, or UPDATE and return */
                                          /*   the count using a callback. */
#define SQLITE_NullCallback   0x00000020  /* Invoke the callback once if the */
                                          /*   result set is empty */
#define SQLITE_SqlTrace       0x00000040  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x00000080  /* Debug listings of VDBE programs */
#define SQLITE_WriteSchema    0x00000100  /* OK to update SQLITE_MASTER */
#define SQLITE_VdbeAddopTrace 0x00000200  /* Trace sqlite3VdbeAddOp() calls */
#define SQLITE_IgnoreChecks   0x00000400  /* Do not enforce check constraints */
#define SQLITE_ReadUncommitted 0x0000800  /* For shared-cache mode */
#define SQLITE_LegacyFileFmt  0x00001000  /* Create new databases in format 1 */
#define SQLITE_FullFSync      0x00002000  /* Use full fsync on the backend */
#define SQLITE_CkptFullFSync  0x00004000  /* Use full fsync for checkpoint */
#define SQLITE_RecoveryMode   0x00008000  /* Ignore schema errors */
#define SQLITE_ReverseOrder   0x00010000  /* Reverse unordered SELECTs */
#define SQLITE_RecTriggers    0x00020000  /* Enable recursive triggers */
#define SQLITE_ForeignKeys    0x00040000  /* Enforce foreign key constraints  */
#define SQLITE_AutoIndex      0x00080000  /* Enable automatic indexes */
#define SQLITE_PreferBuiltin  0x00100000  /* Preference to built-in funcs */
#define SQLITE_LoadExtension  0x00200000  /* Enable load_extension */
#define SQLITE_EnableTrigger  0x00400000  /* True to enable triggers */




/*
** Bits of the sqlite3.dbOptFlags field that are used by the
** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
** selectively disable various optimizations.
*/
#define SQLITE_QueryFlattener 0x0001   /* Query flattening */
#define SQLITE_ColumnCache    0x0002   /* Column cache */
#define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
#define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
#define SQLITE_IdxRealAsInt   0x0010   /* Store REAL as INT in indices */
#define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
#define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
#define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
#define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
#define SQLITE_Transitive     0x0200   /* Transitive constraints */


#define SQLITE_AllOpts        0xffff   /* All optimizations */

/*
** Macros for testing whether or not optimizations are enabled or disabled.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
#define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)







>
>
>
|
|
|


|

|
|
|
|
|
|
|
<
<
|
|
|
|
|
|
|
|
>
>
>
















>
>







982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005


1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
#define ENC(db) ((db)->aDb[0].pSchema->enc)

/*
** Possible values for the sqlite3.flags.
*/
#define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
#define SQLITE_InternChanges  0x00000002  /* Uncommitted Hash table changes */
#define SQLITE_FullFSync      0x00000004  /* Use full fsync on the backend */
#define SQLITE_CkptFullFSync  0x00000008  /* Use full fsync for checkpoint */
#define SQLITE_CacheSpill     0x00000010  /* OK to spill pager cache */
#define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
#define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
#define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
                                          /*   DELETE, or UPDATE and return */
                                          /*   the count using a callback. */
#define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
                                          /*   result set is empty */
#define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
#define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
#define SQLITE_VdbeAddopTrace 0x00001000  /* Trace sqlite3VdbeAddOp() calls */
#define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
#define SQLITE_ReadUncommitted 0x0004000  /* For shared-cache mode */
#define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */


#define SQLITE_RecoveryMode   0x00010000  /* Ignore schema errors */
#define SQLITE_ReverseOrder   0x00020000  /* Reverse unordered SELECTs */
#define SQLITE_RecTriggers    0x00040000  /* Enable recursive triggers */
#define SQLITE_ForeignKeys    0x00080000  /* Enforce foreign key constraints  */
#define SQLITE_AutoIndex      0x00100000  /* Enable automatic indexes */
#define SQLITE_PreferBuiltin  0x00200000  /* Preference to built-in funcs */
#define SQLITE_LoadExtension  0x00400000  /* Enable load_extension */
#define SQLITE_EnableTrigger  0x00800000  /* True to enable triggers */
#define SQLITE_DeferFKs       0x01000000  /* Defer all FK constraints */
#define SQLITE_QueryOnly      0x02000000  /* Disable database changes */


/*
** Bits of the sqlite3.dbOptFlags field that are used by the
** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
** selectively disable various optimizations.
*/
#define SQLITE_QueryFlattener 0x0001   /* Query flattening */
#define SQLITE_ColumnCache    0x0002   /* Column cache */
#define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
#define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
#define SQLITE_IdxRealAsInt   0x0010   /* Store REAL as INT in indices */
#define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
#define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
#define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
#define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
#define SQLITE_Transitive     0x0200   /* Transitive constraints */
#define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
#define SQLITE_Stat3          0x0800   /* Use the SQLITE_STAT3 table */
#define SQLITE_AllOpts        0xffff   /* All optimizations */

/*
** Macros for testing whether or not optimizations are enabled or disabled.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
#define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
** Each SQL function is defined by an instance of the following
** structure.  A pointer to this structure is stored in the sqlite.aFunc
** hash table.  When multiple functions have the same name, the hash table
** points to a linked list of these structures.
*/
struct FuncDef {
  i16 nArg;            /* Number of arguments.  -1 means unlimited */
  u8 iPrefEnc;         /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
  u8 flags;            /* Some combination of SQLITE_FUNC_* */
  void *pUserData;     /* User data parameter */
  FuncDef *pNext;      /* Next function with same name */
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
  void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
  void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
  char *zName;         /* SQL name of the function. */
  FuncDef *pHash;      /* Next with a different name but the same hash */







<
|







1061
1062
1063
1064
1065
1066
1067

1068
1069
1070
1071
1072
1073
1074
1075
** Each SQL function is defined by an instance of the following
** structure.  A pointer to this structure is stored in the sqlite.aFunc
** hash table.  When multiple functions have the same name, the hash table
** points to a linked list of these structures.
*/
struct FuncDef {
  i16 nArg;            /* Number of arguments.  -1 means unlimited */

  u16 funcFlags;       /* Some combination of SQLITE_FUNC_* */
  void *pUserData;     /* User data parameter */
  FuncDef *pNext;      /* Next function with same name */
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
  void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
  void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
  char *zName;         /* SQL name of the function. */
  FuncDef *pHash;      /* Next with a different name but the same hash */
1086
1087
1088
1089
1090
1091
1092

1093
1094
1095
1096


1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
};

/*
** Possible values for FuncDef.flags.  Note that the _LENGTH and _TYPEOF
** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG.  There
** are assert() statements in the code to verify this.
*/

#define SQLITE_FUNC_LIKE     0x01 /* Candidate for the LIKE optimization */
#define SQLITE_FUNC_CASE     0x02 /* Case-sensitive LIKE-type function */
#define SQLITE_FUNC_EPHEM    0x04 /* Ephemeral.  Delete with VDBE */
#define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */


#define SQLITE_FUNC_COUNT    0x10 /* Built-in count(*) aggregate */
#define SQLITE_FUNC_COALESCE 0x20 /* Built-in coalesce() or ifnull() function */
#define SQLITE_FUNC_LENGTH   0x40 /* Built-in length() function */
#define SQLITE_FUNC_TYPEOF   0x80 /* Built-in typeof() function */

/*
** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
** used to create the initializers for the FuncDef structures.
**
**   FUNCTION(zName, nArg, iArg, bNC, xFunc)
**     Used to create a scalar function definition of a function zName 







>
|
|
|
|
>
>
|
|
|
<







1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113

1114
1115
1116
1117
1118
1119
1120
};

/*
** Possible values for FuncDef.flags.  Note that the _LENGTH and _TYPEOF
** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG.  There
** are assert() statements in the code to verify this.
*/
#define SQLITE_FUNC_ENCMASK  0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
#define SQLITE_FUNC_LIKE     0x004 /* Candidate for the LIKE optimization */
#define SQLITE_FUNC_CASE     0x008 /* Case-sensitive LIKE-type function */
#define SQLITE_FUNC_EPHEM    0x010 /* Ephemeral.  Delete with VDBE */
#define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */
#define SQLITE_FUNC_LENGTH   0x040 /* Built-in length() function */
#define SQLITE_FUNC_TYPEOF   0x080 /* Built-in typeof() function */
#define SQLITE_FUNC_COUNT    0x100 /* Built-in count(*) aggregate */
#define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */
#define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */


/*
** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
** used to create the initializers for the FuncDef structures.
**
**   FUNCTION(zName, nArg, iArg, bNC, xFunc)
**     Used to create a scalar function definition of a function zName 
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

1151
1152
1153
1154
1155
1156
1157
**     that accepts nArg arguments and is implemented by a call to C 
**     function likeFunc. Argument pArg is cast to a (void *) and made
**     available as the function user-data (sqlite3_user_data()). The
**     FuncDef.flags variable is set to the value passed as the flags
**     parameter.
*/
#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
  {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL), \
   SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
#define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
  {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
   SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
  {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
   pArg, 0, xFunc, 0, 0, #zName, 0, 0}
#define LIKEFUNC(zName, nArg, arg, flags) \
  {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
  {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \
   SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}

/*
** All current savepoints are stored in a linked list starting at
** sqlite3.pSavepoint. The first element in the list is the most recently
** opened savepoint. Savepoints are added to the list by the vdbe
** OP_Savepoint instruction.
*/
struct Savepoint {
  char *zName;                        /* Savepoint name (nul-terminated) */
  i64 nDeferredCons;                  /* Number of deferred fk violations */

  Savepoint *pNext;                   /* Parent savepoint (if any) */
};

/*
** The following are used as the second parameter to sqlite3Savepoint(),
** and as the P1 argument to the OP_Savepoint instruction.
*/







|


|


|


|

|











>







1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
**     that accepts nArg arguments and is implemented by a call to C 
**     function likeFunc. Argument pArg is cast to a (void *) and made
**     available as the function user-data (sqlite3_user_data()). The
**     FuncDef.flags variable is set to the value passed as the flags
**     parameter.
*/
#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
  {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
   SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
#define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
  {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
   SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
  {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
   pArg, 0, xFunc, 0, 0, #zName, 0, 0}
#define LIKEFUNC(zName, nArg, arg, flags) \
  {nArg, SQLITE_UTF8|flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
  {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
   SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}

/*
** All current savepoints are stored in a linked list starting at
** sqlite3.pSavepoint. The first element in the list is the most recently
** opened savepoint. Savepoints are added to the list by the vdbe
** OP_Savepoint instruction.
*/
struct Savepoint {
  char *zName;                        /* Savepoint name (nul-terminated) */
  i64 nDeferredCons;                  /* Number of deferred fk violations */
  i64 nDeferredImmCons;               /* Number of deferred imm fk. */
  Savepoint *pNext;                   /* Parent savepoint (if any) */
};

/*
** The following are used as the second parameter to sqlite3Savepoint(),
** and as the P1 argument to the OP_Savepoint instruction.
*/
1462
1463
1464
1465
1466
1467
1468




1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
#define OE_Default  99  /* Do whatever the default action is */


/*
** An instance of the following structure is passed as the first
** argument to sqlite3VdbeKeyCompare and is used to control the 
** comparison of the two index keys.




*/
struct KeyInfo {
  sqlite3 *db;        /* The database connection */
  u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
  u16 nField;         /* Number of entries in aColl[] */
  u8 *aSortOrder;     /* Sort order for each column.  May be NULL */
  CollSeq *aColl[1];  /* Collating sequence for each term of the key */
};

/*
** An instance of the following structure holds information about a
** single index record that has already been parsed out into individual
** values.







>
>
>
>




|
|







1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
#define OE_Default  99  /* Do whatever the default action is */


/*
** An instance of the following structure is passed as the first
** argument to sqlite3VdbeKeyCompare and is used to control the 
** comparison of the two index keys.
**
** Note that aSortOrder[] and aColl[] have nField+1 slots.  There
** are nField slots for the columns of an index then one extra slot
** for the rowid at the end.
*/
struct KeyInfo {
  sqlite3 *db;        /* The database connection */
  u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
  u16 nField;         /* Maximum index for aColl[] and aSortOrder[] */
  u8 *aSortOrder;     /* Sort order for each column. */
  CollSeq *aColl[1];  /* Collating sequence for each term of the key */
};

/*
** An instance of the following structure holds information about a
** single index record that has already been parsed out into individual
** values.
1536
1537
1538
1539
1540
1541
1542

1543
1544
1545
1546
1547

1548
1549

1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
  tRowcnt *aiRowEst;       /* From ANALYZE: Est. rows selected by each column */
  Table *pTable;           /* The SQL table being indexed */
  char *zColAff;           /* String defining the affinity of each column */
  Index *pNext;            /* The next index associated with the same table */
  Schema *pSchema;         /* Schema containing this index */
  u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
  char **azColl;           /* Array of collation sequence names for index */

  int tnum;                /* DB Page containing root of this index */
  u16 nColumn;             /* Number of columns in table used by this index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  unsigned autoIndex:2;    /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
  unsigned bUnordered:1;   /* Use this index for == or IN queries only */

#ifdef SQLITE_ENABLE_STAT3
  int nSample;             /* Number of elements in aSample[] */

  tRowcnt avgEq;           /* Average nEq value for key values not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
#endif
};

/*
** Each sample stored in the sqlite_stat3 table is represented in memory 
** using a structure of this type.  See documentation at the top of the
** analyze.c source file for additional information.
*/
struct IndexSample {
  union {
    char *z;        /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
    double r;       /* Value if eType is SQLITE_FLOAT */
    i64 i;          /* Value if eType is SQLITE_INTEGER */
  } u;
  u8 eType;         /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
  int nByte;        /* Size in byte of text or blob. */
  tRowcnt nEq;      /* Est. number of rows where the key equals this sample */
  tRowcnt nLt;      /* Est. number of rows where key is less than this sample */
  tRowcnt nDLt;     /* Est. number of distinct keys less than this sample */
};

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and







>





>
|

>
|










<
<
<
|
<
|
<
|
|
|







1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581



1582

1583

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
  tRowcnt *aiRowEst;       /* From ANALYZE: Est. rows selected by each column */
  Table *pTable;           /* The SQL table being indexed */
  char *zColAff;           /* String defining the affinity of each column */
  Index *pNext;            /* The next index associated with the same table */
  Schema *pSchema;         /* Schema containing this index */
  u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
  char **azColl;           /* Array of collation sequence names for index */
  Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
  int tnum;                /* DB Page containing root of this index */
  u16 nColumn;             /* Number of columns in table used by this index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  unsigned autoIndex:2;    /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
  unsigned bUnordered:1;   /* Use this index for == or IN queries only */
  unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  int nSample;             /* Number of elements in aSample[] */
  int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
  tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
#endif
};

/*
** Each sample stored in the sqlite_stat3 table is represented in memory 
** using a structure of this type.  See documentation at the top of the
** analyze.c source file for additional information.
*/
struct IndexSample {



  void *p;          /* Pointer to sampled record */

  int n;            /* Size of record in bytes */

  tRowcnt *anEq;    /* Est. number of rows where the key equals this sample */
  tRowcnt *anLt;    /* Est. number of rows where key is less than this sample */
  tRowcnt *anDLt;   /* Est. number of distinct keys less than this sample */
};

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1886
1887
1888
1889
1890
1891
1892





1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
typedef u64 Bitmask;

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  ((int)(sizeof(Bitmask)*8))






/*
** The following structure describes the FROM clause of a SELECT statement.
** Each table or subquery in the FROM clause is a separate element of
** the SrcList.a[] array.
**
** With the addition of multiple database support, the following structure
** can also be used to describe a particular table such as the table that
** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
** such a table must be a simple name: ID.  But in SQLite, the table can
** now be identified by a database name, a dot, then the table name: ID.ID.
**
** The jointype starts out showing the join type between the current table
** and the next table on the list.  The parser builds the list this way.
** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
** jointype expresses the join between the table and the previous table.
**
** In the colUsed field, the high-order bit (bit 63) is set if the table
** contains more than 63 columns and the 64-th or later column is used.
*/
struct SrcList {
  i16 nSrc;        /* Number of tables or subqueries in the FROM clause */
  i16 nAlloc;      /* Number of entries allocated in a[] below */
  struct SrcList_item {
    Schema *pSchema;  /* Schema to which this item is fixed */
    char *zDatabase;  /* Name of database holding this table */
    char *zName;      /* Name of the table */
    char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
    Table *pTab;      /* An SQL table corresponding to zName */
    Select *pSelect;  /* A SELECT statement used in place of a table name */







>
>
>
>
>




















|
|







1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
typedef u64 Bitmask;

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  ((int)(sizeof(Bitmask)*8))

/*
** A bit in a Bitmask
*/
#define MASKBIT(n)   (((Bitmask)1)<<(n))

/*
** The following structure describes the FROM clause of a SELECT statement.
** Each table or subquery in the FROM clause is a separate element of
** the SrcList.a[] array.
**
** With the addition of multiple database support, the following structure
** can also be used to describe a particular table such as the table that
** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
** such a table must be a simple name: ID.  But in SQLite, the table can
** now be identified by a database name, a dot, then the table name: ID.ID.
**
** The jointype starts out showing the join type between the current table
** and the next table on the list.  The parser builds the list this way.
** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
** jointype expresses the join between the table and the previous table.
**
** In the colUsed field, the high-order bit (bit 63) is set if the table
** contains more than 63 columns and the 64-th or later column is used.
*/
struct SrcList {
  u8 nSrc;        /* Number of tables or subqueries in the FROM clause */
  u8 nAlloc;      /* Number of entries allocated in a[] below */
  struct SrcList_item {
    Schema *pSchema;  /* Schema to which this item is fixed */
    char *zDatabase;  /* Name of database holding this table */
    char *zName;      /* Name of the table */
    char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
    Table *pTab;      /* An SQL table corresponding to zName */
    Select *pSelect;  /* A SELECT statement used in place of a table name */
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037



2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
#define JT_NATURAL   0x0004    /* True for a "natural" join */
#define JT_LEFT      0x0008    /* Left outer join */
#define JT_RIGHT     0x0010    /* Right outer join */
#define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
#define JT_ERROR     0x0040    /* unknown or unsupported join type */


/*
** A WherePlan object holds information that describes a lookup
** strategy.
**
** This object is intended to be opaque outside of the where.c module.
** It is included here only so that that compiler will know how big it
** is.  None of the fields in this object should be used outside of
** the where.c module.
**
** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true.
** pTerm is only used when wsFlags&WHERE_MULTI_OR is true.  And pVtabIdx
** is only used when wsFlags&WHERE_VIRTUALTABLE is true.  It is never the
** case that more than one of these conditions is true.
*/
struct WherePlan {
  u32 wsFlags;                   /* WHERE_* flags that describe the strategy */
  u16 nEq;                       /* Number of == constraints */
  u16 nOBSat;                    /* Number of ORDER BY terms satisfied */
  double nRow;                   /* Estimated number of rows (for EQP) */
  union {
    Index *pIdx;                   /* Index when WHERE_INDEXED is true */
    struct WhereTerm *pTerm;       /* WHERE clause term for OR-search */
    sqlite3_index_info *pVtabIdx;  /* Virtual table index to use */
  } u;
};

/*
** For each nested loop in a WHERE clause implementation, the WhereInfo
** structure contains a single instance of this structure.  This structure
** is intended to be private to the where.c module and should not be
** access or modified by other modules.
**
** The pIdxInfo field is used to help pick the best index on a
** virtual table.  The pIdxInfo pointer contains indexing
** information for the i-th table in the FROM clause before reordering.
** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
** All other information in the i-th WhereLevel object for the i-th table
** after FROM clause ordering.
*/
struct WhereLevel {
  WherePlan plan;       /* query plan for this element of the FROM clause */
  int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
  int iTabCur;          /* The VDBE cursor used to access the table */
  int iIdxCur;          /* The VDBE cursor used to access pIdx */
  int addrBrk;          /* Jump here to break out of the loop */
  int addrNxt;          /* Jump here to start the next IN combination */
  int addrCont;         /* Jump here to continue with the next loop cycle */
  int addrFirst;        /* First instruction of interior of the loop */
  u8 iFrom;             /* Which entry in the FROM clause */
  u8 op, p5;            /* Opcode and P5 of the opcode that ends the loop */
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on plan.wsFlags */
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {
        int iCur;              /* The VDBE cursor used by this IN operator */
        int addrInTop;         /* Top of the IN loop */
        u8 eEndLoopOp;         /* IN Loop terminator. OP_Next or OP_Prev */
      } *aInLoop;           /* Information about each nested IN operator */
    } in;                 /* Used when plan.wsFlags&WHERE_IN_ABLE */
    Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
  } u;
  double rOptCost;      /* "Optimal" cost for this level */

  /* The following field is really not part of the current level.  But
  ** we need a place to cache virtual table index information for each
  ** virtual table in the FROM clause and the WhereLevel structure is
  ** a convenient place since there is one WhereLevel for each FROM clause
  ** element.
  */
  sqlite3_index_info *pIdxInfo;  /* Index info for n-th source table */
};

/*
** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
** and the WhereInfo.wctrlFlags member.
*/
#define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
#define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
#define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
#define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
#define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
#define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
#define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
#define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
#define WHERE_AND_ONLY         0x0080 /* Don't use indices for OR terms */




/*
** The WHERE clause processing routine has two halves.  The
** first part does the start of the WHERE loop and the second
** half does the tail of the WHERE loop.  An instance of
** this structure is returned by the first half and passed
** into the second half to give some continuity.
*/
struct WhereInfo {
  Parse *pParse;            /* Parsing and code generating context */
  SrcList *pTabList;        /* List of tables in the join */
  u16 nOBSat;               /* Number of ORDER BY terms satisfied by indices */
  u16 wctrlFlags;           /* Flags originally passed to sqlite3WhereBegin() */
  u8 okOnePass;             /* Ok to use one-pass algorithm for UPDATE/DELETE */
  u8 untestedTerms;         /* Not all WHERE terms resolved by outer loop */
  u8 eDistinct;             /* One of the WHERE_DISTINCT_* values below */
  int iTop;                 /* The very beginning of the WHERE loop */
  int iContinue;            /* Jump here to continue with next record */
  int iBreak;               /* Jump here to break out of the loop */
  int nLevel;               /* Number of nested loop */
  struct WhereClause *pWC;  /* Decomposition of the WHERE clause */
  double savedNQueryLoop;   /* pParse->nQueryLoop outside the WHERE loop */
  double nRowOut;           /* Estimated number of output rows */
  WhereLevel a[1];          /* Information about each nest loop in WHERE */
};

/* Allowed values for WhereInfo.eDistinct and DistinctCtx.eTnctType */
#define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
#define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
#define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
#define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */

/*
** A NameContext defines a context in which to resolve table and column







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<













>
>
>

<
<
<
<
|
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1966
1967
1968
1969
1970
1971
1972









































































1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989




1990

1991



















1992
1993
1994
1995
1996
1997
1998
#define JT_NATURAL   0x0004    /* True for a "natural" join */
#define JT_LEFT      0x0008    /* Left outer join */
#define JT_RIGHT     0x0010    /* Right outer join */
#define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
#define JT_ERROR     0x0040    /* unknown or unsupported join type */











































































/*
** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
** and the WhereInfo.wctrlFlags member.
*/
#define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
#define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
#define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
#define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
#define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
#define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
#define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
#define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
#define WHERE_AND_ONLY         0x0080 /* Don't use indices for OR terms */
#define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
#define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
#define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */





/* Allowed return values from sqlite3WhereIsDistinct()

*/



















#define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
#define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
#define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
#define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */

/*
** A NameContext defines a context in which to resolve table and column
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
** NameContext in the parent query.  Thus the process of scanning the
** NameContext list corresponds to searching through successively outer
** subqueries looking for a match.
*/
struct NameContext {
  Parse *pParse;       /* The parser */
  SrcList *pSrcList;   /* One or more tables used to resolve names */
  ExprList *pEList;    /* Optional list of named expressions */
  AggInfo *pAggInfo;   /* Information about aggregates at this level */
  NameContext *pNext;  /* Next outer name context.  NULL for outermost */
  int nRef;            /* Number of names resolved by this context */
  int nErr;            /* Number of errors encountered while resolving names */
  u8 ncFlags;          /* Zero or more NC_* flags defined below */
};

/*
** Allowed values for the NameContext, ncFlags field.
*/
#define NC_AllowAgg  0x01    /* Aggregate functions are allowed here */
#define NC_HasAgg    0x02    /* One or more aggregate functions seen */
#define NC_IsCheck   0x04    /* True if resolving names in a CHECK constraint */
#define NC_InAggFunc 0x08    /* True if analyzing arguments to an agg func */
#define NC_AsMaybe   0x10    /* Resolve to AS terms of the result set only
                             ** if no other resolution is available */

/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
**
** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
** If there is a LIMIT clause, the parser sets nLimit to the value of the







|














|
<







2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036

2037
2038
2039
2040
2041
2042
2043
** NameContext in the parent query.  Thus the process of scanning the
** NameContext list corresponds to searching through successively outer
** subqueries looking for a match.
*/
struct NameContext {
  Parse *pParse;       /* The parser */
  SrcList *pSrcList;   /* One or more tables used to resolve names */
  ExprList *pEList;    /* Optional list of result-set columns */
  AggInfo *pAggInfo;   /* Information about aggregates at this level */
  NameContext *pNext;  /* Next outer name context.  NULL for outermost */
  int nRef;            /* Number of names resolved by this context */
  int nErr;            /* Number of errors encountered while resolving names */
  u8 ncFlags;          /* Zero or more NC_* flags defined below */
};

/*
** Allowed values for the NameContext, ncFlags field.
*/
#define NC_AllowAgg  0x01    /* Aggregate functions are allowed here */
#define NC_HasAgg    0x02    /* One or more aggregate functions seen */
#define NC_IsCheck   0x04    /* True if resolving names in a CHECK constraint */
#define NC_InAggFunc 0x08    /* True if analyzing arguments to an agg func */
#define NC_PartIdx   0x10    /* True if resolving a partial index WHERE */


/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
**
** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
** If there is a LIMIT clause, the parser sets nLimit to the value of the
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
*/
struct Select {
  ExprList *pEList;      /* The fields of the result */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  u16 selFlags;          /* Various SF_* values */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
  int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
  double nSelectRow;     /* Estimated number of result rows */
  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
  Select *pPrior;        /* Prior select in a compound select statement */
  Select *pNext;         /* Next select to the left in a compound */







|







2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
*/
struct Select {
  ExprList *pEList;      /* The fields of the result */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  u16 selFlags;          /* Various SF_* values */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
  int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
  u64 nSelectRow;        /* Estimated number of result rows */
  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
  Select *pPrior;        /* Prior select in a compound select statement */
  Select *pNext;         /* Next select to the left in a compound */
2158
2159
2160
2161
2162
2163
2164

2165
2166
2167
2168
2169
2170
2171
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
#define SF_UseSorter       0x0040  /* Sort using a sorter */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
#define SF_Materialize     0x0100  /* Force materialization of views */
#define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */



/*
** The results of a select can be distributed in several ways.  The
** "SRT" prefix means "SELECT Result Type".
*/
#define SRT_Union        1  /* Store result as keys in an index */







>







2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
#define SF_UseSorter       0x0040  /* Sort using a sorter */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
#define SF_Materialize     0x0100  /* Force materialization of views */
#define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */
#define SF_MaybeConvert    0x0400  /* Need convertCompoundSelectToSubquery() */


/*
** The results of a select can be distributed in several ways.  The
** "SRT" prefix means "SELECT Result Type".
*/
#define SRT_Union        1  /* Store result as keys in an index */
2279
2280
2281
2282
2283
2284
2285

2286
2287
2288
2289
2290
2291
2292
2293
2294

2295
2296
2297
2298
2299
2300
2301
  u8 nested;           /* Number of nested calls to the parser/code generator */
  u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
  u8 nTempInUse;       /* Number of aTempReg[] currently checked out */
  u8 nColCache;        /* Number of entries in aColCache[] */
  u8 iColCache;        /* Next entry in aColCache[] to replace */
  u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
  u8 mayAbort;         /* True if statement may throw an ABORT exception */

  int aTempReg[8];     /* Holding area for temporary registers */
  int nRangeReg;       /* Size of the temporary register block */
  int iRangeReg;       /* First register in temporary register block */
  int nErr;            /* Number of errors seen */
  int nTab;            /* Number of previously allocated VDBE cursors */
  int nMem;            /* Number of memory cells used so far */
  int nSet;            /* Number of sets used so far */
  int nOnce;           /* Number of OP_Once instructions so far */
  int ckBase;          /* Base register of data during check constraints */

  int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
  int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
  struct yColCache {
    int iTable;           /* Table cursor number */
    int iColumn;          /* Table column number */
    u8 tempReg;           /* iReg is a temp register that needs to be freed */
    int iLevel;           /* Nesting level */







>









>







2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
  u8 nested;           /* Number of nested calls to the parser/code generator */
  u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
  u8 nTempInUse;       /* Number of aTempReg[] currently checked out */
  u8 nColCache;        /* Number of entries in aColCache[] */
  u8 iColCache;        /* Next entry in aColCache[] to replace */
  u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
  u8 mayAbort;         /* True if statement may throw an ABORT exception */
  u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
  int aTempReg[8];     /* Holding area for temporary registers */
  int nRangeReg;       /* Size of the temporary register block */
  int iRangeReg;       /* First register in temporary register block */
  int nErr;            /* Number of errors seen */
  int nTab;            /* Number of previously allocated VDBE cursors */
  int nMem;            /* Number of memory cells used so far */
  int nSet;            /* Number of sets used so far */
  int nOnce;           /* Number of OP_Once instructions so far */
  int ckBase;          /* Base register of data during check constraints */
  int iPartIdxTab;     /* Table corresponding to a partial index */
  int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
  int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
  struct yColCache {
    int iTable;           /* Table cursor number */
    int iColumn;          /* Table column number */
    u8 tempReg;           /* iReg is a temp register that needs to be freed */
    int iLevel;           /* Nesting level */
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
  TableLock *aTableLock; /* Required table locks for shared-cache mode */
#endif
  AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */

  /* Information used while coding trigger programs. */
  Parse *pToplevel;    /* Parse structure for main program (or NULL) */
  Table *pTriggerTab;  /* Table triggers are being coded for */
  double nQueryLoop;   /* Estimated number of iterations of a query */
  u32 oldmask;         /* Mask of old.* columns referenced */
  u32 newmask;         /* Mask of new.* columns referenced */
  u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
  u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
  u8 disableTriggers;  /* True to disable triggers */

  /* Above is constant between recursions.  Below is reset before and after







|







2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
  TableLock *aTableLock; /* Required table locks for shared-cache mode */
#endif
  AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */

  /* Information used while coding trigger programs. */
  Parse *pToplevel;    /* Parse structure for main program (or NULL) */
  Table *pTriggerTab;  /* Table triggers are being coded for */
  u32 nQueryLoop;      /* Est number of iterations of a query (10*log2(N)) */
  u32 oldmask;         /* Mask of old.* columns referenced */
  u32 newmask;         /* Mask of new.* columns referenced */
  u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
  u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
  u8 disableTriggers;  /* True to disable triggers */

  /* Above is constant between recursions.  Below is reset before and after
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513


2514
2515
2516
2517
2518
2519
2520
struct StrAccum {
  sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
  char *zBase;         /* A base allocation.  Not from malloc. */
  char *zText;         /* The string collected so far */
  int  nChar;          /* Length of the string so far */
  int  nAlloc;         /* Amount of space allocated in zText */
  int  mxAlloc;        /* Maximum allowed string length */
  u8   mallocFailed;   /* Becomes true if any memory allocation fails */
  u8   useMalloc;      /* 0: none,  1: sqlite3DbMalloc,  2: sqlite3_malloc */
  u8   tooBig;         /* Becomes true if string size exceeds limits */
};



/*
** A pointer to this structure is used to communicate information
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
*/
typedef struct {
  sqlite3 *db;        /* The database being initialized */







<

|

>
>







2432
2433
2434
2435
2436
2437
2438

2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
struct StrAccum {
  sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
  char *zBase;         /* A base allocation.  Not from malloc. */
  char *zText;         /* The string collected so far */
  int  nChar;          /* Length of the string so far */
  int  nAlloc;         /* Amount of space allocated in zText */
  int  mxAlloc;        /* Maximum allowed string length */

  u8   useMalloc;      /* 0: none,  1: sqlite3DbMalloc,  2: sqlite3_malloc */
  u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
};
#define STRACCUM_NOMEM   1
#define STRACCUM_TOOBIG  2

/*
** A pointer to this structure is used to communicate information
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
*/
typedef struct {
  sqlite3 *db;        /* The database being initialized */
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891






2892
2893
2894
2895
2896
2897
2898
void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
void sqlite3SrcListShiftJoinType(SrcList*);
void sqlite3SrcListAssignCursors(Parse*, SrcList*);
void sqlite3IdListDelete(sqlite3*, IdList*);
void sqlite3SrcListDelete(sqlite3*, SrcList*);
Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
                        Token*, int, int);
void sqlite3DropIndex(Parse*, SrcList*, int);
int sqlite3Select(Parse*, Select*, SelectDest*);
Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
                         Expr*,ExprList*,u16,Expr*,Expr*);
void sqlite3SelectDelete(sqlite3*, Select*);
Table *sqlite3SrcListLookup(Parse*, SrcList*);
int sqlite3IsReadOnly(Parse*, Table*, int);
void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
#endif
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
void sqlite3WhereEnd(WhereInfo*);






int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
void sqlite3ExprCodeMove(Parse*, int, int, int);
void sqlite3ExprCacheStore(Parse*, int, int, int);
void sqlite3ExprCachePush(Parse*);
void sqlite3ExprCachePop(Parse*, int);
void sqlite3ExprCacheRemove(Parse*, int, int);







|















>
>
>
>
>
>







2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
void sqlite3SrcListShiftJoinType(SrcList*);
void sqlite3SrcListAssignCursors(Parse*, SrcList*);
void sqlite3IdListDelete(sqlite3*, IdList*);
void sqlite3SrcListDelete(sqlite3*, SrcList*);
Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
                          Expr*, int, int);
void sqlite3DropIndex(Parse*, SrcList*, int);
int sqlite3Select(Parse*, Select*, SelectDest*);
Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
                         Expr*,ExprList*,u16,Expr*,Expr*);
void sqlite3SelectDelete(sqlite3*, Select*);
Table *sqlite3SrcListLookup(Parse*, SrcList*);
int sqlite3IsReadOnly(Parse*, Table*, int);
void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
#endif
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
void sqlite3WhereEnd(WhereInfo*);
u64 sqlite3WhereOutputRowCount(WhereInfo*);
int sqlite3WhereIsDistinct(WhereInfo*);
int sqlite3WhereIsOrdered(WhereInfo*);
int sqlite3WhereContinueLabel(WhereInfo*);
int sqlite3WhereBreakLabel(WhereInfo*);
int sqlite3WhereOkOnePass(WhereInfo*);
int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
void sqlite3ExprCodeMove(Parse*, int, int, int);
void sqlite3ExprCacheStore(Parse*, int, int, int);
void sqlite3ExprCachePush(Parse*);
void sqlite3ExprCachePop(Parse*, int);
void sqlite3ExprCacheRemove(Parse*, int, int);
2911
2912
2913
2914
2915
2916
2917
2918
2919

2920
2921
2922
2923
2924
2925
2926
Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *);
Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
void sqlite3Vacuum(Parse*);
int sqlite3RunVacuum(char**, sqlite3*);
char *sqlite3NameFromToken(sqlite3*, Token*);
int sqlite3ExprCompare(Expr*, Expr*);
int sqlite3ExprListCompare(ExprList*, ExprList*);

void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
int sqlite3FunctionUsesThisSrc(Expr*, SrcList*);
Vdbe *sqlite3GetVdbe(Parse*);
void sqlite3PrngSaveState(void);
void sqlite3PrngRestoreState(void);
void sqlite3PrngResetState(void);







|
|
>







2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *);
Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
void sqlite3Vacuum(Parse*);
int sqlite3RunVacuum(char**, sqlite3*);
char *sqlite3NameFromToken(sqlite3*, Token*);
int sqlite3ExprCompare(Expr*, Expr*, int);
int sqlite3ExprListCompare(ExprList*, ExprList*, int);
int sqlite3ExprImpliesExpr(Expr*, Expr*, int);
void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
int sqlite3FunctionUsesThisSrc(Expr*, SrcList*);
Vdbe *sqlite3GetVdbe(Parse*);
void sqlite3PrngSaveState(void);
void sqlite3PrngRestoreState(void);
void sqlite3PrngResetState(void);
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
int sqlite3ExprIsInteger(Expr*, int*);
int sqlite3ExprCanBeNull(const Expr*);
void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int);
int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
int sqlite3IsRowid(const char*);
void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int);
void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
                                     int*,int,int,int,int,int*);
void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
void sqlite3BeginWriteOperation(Parse*, int, int);
void sqlite3MultiWrite(Parse*);
void sqlite3MayAbort(Parse*);







|







2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
int sqlite3ExprIsInteger(Expr*, int*);
int sqlite3ExprCanBeNull(const Expr*);
void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int);
int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
int sqlite3IsRowid(const char*);
void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int);
void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*);
void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
                                     int*,int,int,int,int,int*);
void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
void sqlite3BeginWriteOperation(Parse*, int, int);
void sqlite3MultiWrite(Parse*);
void sqlite3MayAbort(Parse*);
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
const void *sqlite3ValueText(sqlite3_value*, u8);
int sqlite3ValueBytes(sqlite3_value*, u8);
void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 
                        void(*)(void*));
void sqlite3ValueFree(sqlite3_value*);
sqlite3_value *sqlite3ValueNew(sqlite3 *);
char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
#ifdef SQLITE_ENABLE_STAT3
char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *);
#endif
int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
extern const unsigned char sqlite3OpcodeProperty[];
extern const unsigned char sqlite3UpperToLower[];
extern const unsigned char sqlite3CtypeMap[];
extern const Token sqlite3IntTokens[];







<
<
<







3051
3052
3053
3054
3055
3056
3057



3058
3059
3060
3061
3062
3063
3064
const void *sqlite3ValueText(sqlite3_value*, u8);
int sqlite3ValueBytes(sqlite3_value*, u8);
void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 
                        void(*)(void*));
void sqlite3ValueFree(sqlite3_value*);
sqlite3_value *sqlite3ValueNew(sqlite3 *);
char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);



int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
extern const unsigned char sqlite3OpcodeProperty[];
extern const unsigned char sqlite3UpperToLower[];
extern const unsigned char sqlite3CtypeMap[];
extern const Token sqlite3IntTokens[];
3142
3143
3144
3145
3146
3147
3148

3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167

3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186






3187
3188
3189
3190
3191
3192
3193
void sqlite3NestedParse(Parse*, const char*, ...);
void sqlite3ExpirePreparedStatements(sqlite3*);
int sqlite3CodeSubselect(Parse *, Expr *, int, int);
void sqlite3SelectPrep(Parse*, Select*, NameContext*);
int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
int sqlite3ResolveExprNames(NameContext*, Expr*);
void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);

int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
void sqlite3AlterFinishAddColumn(Parse *, Token *);
void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
char sqlite3AffinityType(const char*);
void sqlite3Analyze(Parse*, Token*, Token*);
int sqlite3InvokeBusyHandler(BusyHandler*);
int sqlite3FindDb(sqlite3*, Token*);
int sqlite3FindDbName(sqlite3 *, const char *);
int sqlite3AnalysisLoad(sqlite3*,int iDB);
void sqlite3DeleteIndexSamples(sqlite3*,Index*);
void sqlite3DefaultRowEst(Index*);
void sqlite3RegisterLikeFunctions(sqlite3*, int);
int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
void sqlite3MinimumFileFormat(Parse*, int, int);
void sqlite3SchemaClear(void *);
Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
int sqlite3SchemaToIndex(sqlite3 *db, Schema *);

KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 
  void (*)(sqlite3_context*,int,sqlite3_value **),
  void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
  FuncDestructor *pDestructor
);
int sqlite3ApiExit(sqlite3 *db, int);
int sqlite3OpenTempDatabase(Parse *);

void sqlite3StrAccumInit(StrAccum*, char*, int, int);
void sqlite3StrAccumAppend(StrAccum*,const char*,int);
void sqlite3AppendSpace(StrAccum*,int);
char *sqlite3StrAccumFinish(StrAccum*);
void sqlite3StrAccumReset(StrAccum*);
void sqlite3SelectDestInit(SelectDest*,int,int);
Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);

void sqlite3BackupRestart(sqlite3_backup *);
void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);







/*
** The interface to the LEMON-generated parser
*/
void *sqlite3ParserAlloc(void*(*)(size_t));
void sqlite3ParserFree(void*, void(*)(void*));
void sqlite3Parser(void*, int, Token, Parse*);







>



















>



















>
>
>
>
>
>







3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
void sqlite3NestedParse(Parse*, const char*, ...);
void sqlite3ExpirePreparedStatements(sqlite3*);
int sqlite3CodeSubselect(Parse *, Expr *, int, int);
void sqlite3SelectPrep(Parse*, Select*, NameContext*);
int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
int sqlite3ResolveExprNames(NameContext*, Expr*);
void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
void sqlite3AlterFinishAddColumn(Parse *, Token *);
void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
char sqlite3AffinityType(const char*);
void sqlite3Analyze(Parse*, Token*, Token*);
int sqlite3InvokeBusyHandler(BusyHandler*);
int sqlite3FindDb(sqlite3*, Token*);
int sqlite3FindDbName(sqlite3 *, const char *);
int sqlite3AnalysisLoad(sqlite3*,int iDB);
void sqlite3DeleteIndexSamples(sqlite3*,Index*);
void sqlite3DefaultRowEst(Index*);
void sqlite3RegisterLikeFunctions(sqlite3*, int);
int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
void sqlite3MinimumFileFormat(Parse*, int, int);
void sqlite3SchemaClear(void *);
Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int);
KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 
  void (*)(sqlite3_context*,int,sqlite3_value **),
  void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
  FuncDestructor *pDestructor
);
int sqlite3ApiExit(sqlite3 *db, int);
int sqlite3OpenTempDatabase(Parse *);

void sqlite3StrAccumInit(StrAccum*, char*, int, int);
void sqlite3StrAccumAppend(StrAccum*,const char*,int);
void sqlite3AppendSpace(StrAccum*,int);
char *sqlite3StrAccumFinish(StrAccum*);
void sqlite3StrAccumReset(StrAccum*);
void sqlite3SelectDestInit(SelectDest*,int,int);
Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);

void sqlite3BackupRestart(sqlite3_backup *);
void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
void sqlite3AnalyzeFunctions(void);
int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*);
void sqlite3Stat4ProbeFree(UnpackedRecord*);
#endif

/*
** The interface to the LEMON-generated parser
*/
void *sqlite3ParserAlloc(void*(*)(size_t));
void sqlite3ParserFree(void*, void(*)(void*));
void sqlite3Parser(void*, int, Token, Parse*);
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235

3236
3237
3238
3239
3240
3241
3242
#  define sqlite3VtabUnlock(X)
#  define sqlite3VtabUnlockList(X)
#  define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
#  define sqlite3GetVTable(X,Y)  ((VTable*)0)
#else
   void sqlite3VtabClear(sqlite3 *db, Table*);
   void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
   int sqlite3VtabSync(sqlite3 *db, char **);
   int sqlite3VtabRollback(sqlite3 *db);
   int sqlite3VtabCommit(sqlite3 *db);
   void sqlite3VtabLock(VTable *);
   void sqlite3VtabUnlock(VTable *);
   void sqlite3VtabUnlockList(sqlite3*);
   int sqlite3VtabSavepoint(sqlite3 *, int, int);

   VTable *sqlite3GetVTable(sqlite3*, Table*);
#  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
#endif
void sqlite3VtabMakeWritable(Parse*,Table*);
void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
void sqlite3VtabFinishParse(Parse*, Token*);
void sqlite3VtabArgInit(Parse*);







|






>







3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
#  define sqlite3VtabUnlock(X)
#  define sqlite3VtabUnlockList(X)
#  define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
#  define sqlite3GetVTable(X,Y)  ((VTable*)0)
#else
   void sqlite3VtabClear(sqlite3 *db, Table*);
   void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
   int sqlite3VtabSync(sqlite3 *db, Vdbe*);
   int sqlite3VtabRollback(sqlite3 *db);
   int sqlite3VtabCommit(sqlite3 *db);
   void sqlite3VtabLock(VTable *);
   void sqlite3VtabUnlock(VTable *);
   void sqlite3VtabUnlockList(sqlite3*);
   int sqlite3VtabSavepoint(sqlite3 *, int, int);
   void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*);
   VTable *sqlite3GetVTable(sqlite3*, Table*);
#  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
#endif
void sqlite3VtabMakeWritable(Parse*,Table*);
void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
void sqlite3VtabFinishParse(Parse*, Token*);
void sqlite3VtabArgInit(Parse*);
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
** key functionality is available. If OMIT_TRIGGER is defined but
** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
** this case foreign keys are parsed, but no other functionality is 
** provided (enforcement of FK constraints requires the triggers sub-system).
*/
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
  void sqlite3FkCheck(Parse*, Table*, int, int);
  void sqlite3FkDropTable(Parse*, SrcList *, Table*);
  void sqlite3FkActions(Parse*, Table*, ExprList*, int);
  int sqlite3FkRequired(Parse*, Table*, int*, int);
  u32 sqlite3FkOldmask(Parse*, Table*);
  FKey *sqlite3FkReferences(Table *);
#else
  #define sqlite3FkActions(a,b,c,d)
  #define sqlite3FkCheck(a,b,c,d)
  #define sqlite3FkDropTable(a,b,c)
  #define sqlite3FkOldmask(a,b)      0
  #define sqlite3FkRequired(a,b,c,d) 0
#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
  void sqlite3FkDelete(sqlite3 *, Table*);
  int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
#else
  #define sqlite3FkDelete(a,b)
  #define sqlite3FkLocateIndex(a,b,c,d,e)







|

|




|


|
|







3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
** key functionality is available. If OMIT_TRIGGER is defined but
** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
** this case foreign keys are parsed, but no other functionality is 
** provided (enforcement of FK constraints requires the triggers sub-system).
*/
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
  void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
  void sqlite3FkDropTable(Parse*, SrcList *, Table*);
  void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
  int sqlite3FkRequired(Parse*, Table*, int*, int);
  u32 sqlite3FkOldmask(Parse*, Table*);
  FKey *sqlite3FkReferences(Table *);
#else
  #define sqlite3FkActions(a,b,c,d,e,f)
  #define sqlite3FkCheck(a,b,c,d)
  #define sqlite3FkDropTable(a,b,c)
  #define sqlite3FkOldmask(a,b)          0
  #define sqlite3FkRequired(a,b,c,d,e,f) 0
#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
  void sqlite3FkDelete(sqlite3 *, Table*);
  int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
#else
  #define sqlite3FkDelete(a,b)
  #define sqlite3FkLocateIndex(a,b,c,d,e)
Changes to src/status.c.
238
239
240
241
242
243
244










245
246
247
248
249
250
251
          sqlite3PagerCacheStat(pPager, op, resetFlag, &nRet);
        }
      }
      *pHighwater = 0;
      *pCurrent = nRet;
      break;
    }











    default: {
      rc = SQLITE_ERROR;
    }
  }
  sqlite3_mutex_leave(db->mutex);
  return rc;







>
>
>
>
>
>
>
>
>
>







238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
          sqlite3PagerCacheStat(pPager, op, resetFlag, &nRet);
        }
      }
      *pHighwater = 0;
      *pCurrent = nRet;
      break;
    }

    /* Set *pCurrent to non-zero if there are unresolved deferred foreign
    ** key constraints.  Set *pCurrent to zero if all foreign key constraints
    ** have been satisfied.  The *pHighwater is always set to zero.
    */
    case SQLITE_DBSTATUS_DEFERRED_FKS: {
      *pHighwater = 0;
      *pCurrent = db->nDeferredImmCons>0 || db->nDeferredCons>0;
      break;
    }

    default: {
      rc = SQLITE_ERROR;
    }
  }
  sqlite3_mutex_leave(db->mutex);
  return rc;
Changes to src/tclsqlite.c.
37
38
39
40
41
42
43












44
45
46
47
48
49
50
# include <stdlib.h>
# include <string.h>
# include <assert.h>
  typedef unsigned char u8;
#endif
#include <ctype.h>













/*
 * Windows needs to know which symbols to export.  Unix does not.
 * BUILD_sqlite should be undefined for Unix.
 */
#ifdef BUILD_sqlite
#undef TCL_STORAGE_CLASS
#define TCL_STORAGE_CLASS DLLEXPORT







>
>
>
>
>
>
>
>
>
>
>
>







37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# include <stdlib.h>
# include <string.h>
# include <assert.h>
  typedef unsigned char u8;
#endif
#include <ctype.h>

/* Used to get the current process ID */
#if !defined(_WIN32)
# include <unistd.h>
# define GETPID getpid
#elif !defined(_WIN32_WCE)
# ifndef SQLITE_AMALGAMATION
#  define WIN32_LEAN_AND_MEAN
#  include <windows.h>
# endif
# define GETPID (int)GetCurrentProcessId
#endif

/*
 * Windows needs to know which symbols to export.  Unix does not.
 * BUILD_sqlite should be undefined for Unix.
 */
#ifdef BUILD_sqlite
#undef TCL_STORAGE_CLASS
#define TCL_STORAGE_CLASS DLLEXPORT
3742
3743
3744
3745
3746
3747
3748
3749









3750
3751
3752
3753
3754
3755
3756
  }
#endif
}

#define TCLSH_MAIN main   /* Needed to fake out mktclapp */
int TCLSH_MAIN(int argc, char **argv){
  Tcl_Interp *interp;
  









  /* Call sqlite3_shutdown() once before doing anything else. This is to
  ** test that sqlite3_shutdown() can be safely called by a process before
  ** sqlite3_initialize() is. */
  sqlite3_shutdown();

  Tcl_FindExecutable(argv[0]);
  interp = Tcl_CreateInterp();







|
>
>
>
>
>
>
>
>
>







3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
  }
#endif
}

#define TCLSH_MAIN main   /* Needed to fake out mktclapp */
int TCLSH_MAIN(int argc, char **argv){
  Tcl_Interp *interp;

#if !defined(_WIN32_WCE)
  if( getenv("BREAK") ){
    fprintf(stderr,
        "attach debugger to process %d and press any key to continue.\n",
        GETPID());
    fgetc(stdin);
  }
#endif

  /* Call sqlite3_shutdown() once before doing anything else. This is to
  ** test that sqlite3_shutdown() can be safely called by a process before
  ** sqlite3_initialize() is. */
  sqlite3_shutdown();

  Tcl_FindExecutable(argv[0]);
  interp = Tcl_CreateInterp();
Changes to src/test1.c.
2214
2215
2216
2217
2218
2219
2220

2221
2222
2223
2224
2225
2226
2227
  static const struct {
    const char *zName;
    int op;
  } aOp[] = {
    { "SQLITE_STMTSTATUS_FULLSCAN_STEP",   SQLITE_STMTSTATUS_FULLSCAN_STEP   },
    { "SQLITE_STMTSTATUS_SORT",            SQLITE_STMTSTATUS_SORT            },
    { "SQLITE_STMTSTATUS_AUTOINDEX",       SQLITE_STMTSTATUS_AUTOINDEX       },

  };
  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 1, objv, "STMT PARAMETER RESETFLAG");
    return TCL_ERROR;
  }
  if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR;
  zOpName = Tcl_GetString(objv[2]);







>







2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
  static const struct {
    const char *zName;
    int op;
  } aOp[] = {
    { "SQLITE_STMTSTATUS_FULLSCAN_STEP",   SQLITE_STMTSTATUS_FULLSCAN_STEP   },
    { "SQLITE_STMTSTATUS_SORT",            SQLITE_STMTSTATUS_SORT            },
    { "SQLITE_STMTSTATUS_AUTOINDEX",       SQLITE_STMTSTATUS_AUTOINDEX       },
    { "SQLITE_STMTSTATUS_VM_STEP",         SQLITE_STMTSTATUS_VM_STEP         },
  };
  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 1, objv, "STMT PARAMETER RESETFLAG");
    return TCL_ERROR;
  }
  if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR;
  zOpName = Tcl_GetString(objv[2]);
5929
5930
5931
5932
5933
5934
5935











































































































































5936
5937
5938
5939
5940
5941
5942
    Tcl_AppendResult(interp, "wait failed: ", zBuf, (char*)0);
    CloseHandle(ev);
    return TCL_ERROR;
  }
  CloseHandle(ev);
  return TCL_OK;
}











































































































































#endif


/*
**      optimization_control DB OPT BOOLEAN
**
** Enable or disable query optimizations using the sqlite3_test_control()







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
    Tcl_AppendResult(interp, "wait failed: ", zBuf, (char*)0);
    CloseHandle(ev);
    return TCL_ERROR;
  }
  CloseHandle(ev);
  return TCL_OK;
}

/*
**      exists_win32_path PATH
**
** Returns non-zero if the specified path exists, whose fully qualified name
** may exceed 260 characters if it is prefixed with "\\?\".
*/
static int win32_exists_path(
  void *clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "PATH");
    return TCL_ERROR;
  }
  Tcl_SetObjResult(interp, Tcl_NewBooleanObj(
      GetFileAttributesW( Tcl_GetUnicode(objv[1]))!=INVALID_FILE_ATTRIBUTES ));
  return TCL_OK;
}

/*
**      find_win32_file PATTERN
**
** Returns a list of entries in a directory that match the specified pattern,
** whose fully qualified name may exceed 248 characters if it is prefixed with
** "\\?\".
*/
static int win32_find_file(
  void *clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  HANDLE hFindFile = INVALID_HANDLE_VALUE;
  WIN32_FIND_DATAW findData;
  Tcl_Obj *listObj;
  DWORD lastErrno;
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "PATTERN");
    return TCL_ERROR;
  }
  hFindFile = FindFirstFileW(Tcl_GetUnicode(objv[1]), &findData);
  if( hFindFile==INVALID_HANDLE_VALUE ){
    Tcl_SetObjResult(interp, Tcl_NewWideIntObj(GetLastError()));
    return TCL_ERROR;
  }
  listObj = Tcl_NewObj();
  Tcl_IncrRefCount(listObj);
  do {
    Tcl_ListObjAppendElement(interp, listObj, Tcl_NewUnicodeObj(
        findData.cFileName, -1));
    Tcl_ListObjAppendElement(interp, listObj, Tcl_NewWideIntObj(
        findData.dwFileAttributes));
  } while( FindNextFileW(hFindFile, &findData) );
  lastErrno = GetLastError();
  if( lastErrno!=NO_ERROR && lastErrno!=ERROR_NO_MORE_FILES ){
    FindClose(hFindFile);
    Tcl_DecrRefCount(listObj);
    Tcl_SetObjResult(interp, Tcl_NewWideIntObj(GetLastError()));
    return TCL_ERROR;
  }
  FindClose(hFindFile);
  Tcl_SetObjResult(interp, listObj);
  return TCL_OK;
}

/*
**      delete_win32_file FILENAME
**
** Deletes the specified file, whose fully qualified name may exceed 260
** characters if it is prefixed with "\\?\".
*/
static int win32_delete_file(
  void *clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "FILENAME");
    return TCL_ERROR;
  }
  if( !DeleteFileW(Tcl_GetUnicode(objv[1])) ){
    Tcl_SetObjResult(interp, Tcl_NewWideIntObj(GetLastError()));
    return TCL_ERROR;
  }
  Tcl_ResetResult(interp);
  return TCL_OK;
}

/*
**      make_win32_dir DIRECTORY
**
** Creates the specified directory, whose fully qualified name may exceed 248
** characters if it is prefixed with "\\?\".
*/
static int win32_mkdir(
  void *clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DIRECTORY");
    return TCL_ERROR;
  }
  if( !CreateDirectoryW(Tcl_GetUnicode(objv[1]), NULL) ){
    Tcl_SetObjResult(interp, Tcl_NewWideIntObj(GetLastError()));
    return TCL_ERROR;
  }
  Tcl_ResetResult(interp);
  return TCL_OK;
}

/*
**      remove_win32_dir DIRECTORY
**
** Removes the specified directory, whose fully qualified name may exceed 248
** characters if it is prefixed with "\\?\".
*/
static int win32_rmdir(
  void *clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DIRECTORY");
    return TCL_ERROR;
  }
  if( !RemoveDirectoryW(Tcl_GetUnicode(objv[1])) ){
    Tcl_SetObjResult(interp, Tcl_NewWideIntObj(GetLastError()));
    return TCL_ERROR;
  }
  Tcl_ResetResult(interp);
  return TCL_OK;
}
#endif


/*
**      optimization_control DB OPT BOOLEAN
**
** Enable or disable query optimizations using the sqlite3_test_control()
5954
5955
5956
5957
5958
5959
5960
5961

5962
5963
5964
5965
5966
5967
5968
5969




5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
  const char *zOpt;
  int onoff;
  int mask = 0;
  static const struct {
    const char *zOptName;
    int mask;
  } aOpt[] = {
    { "all",              SQLITE_AllOpts        },

    { "query-flattener",  SQLITE_QueryFlattener },
    { "column-cache",     SQLITE_ColumnCache    },
    { "groupby-order",    SQLITE_GroupByOrder   },
    { "factor-constants", SQLITE_FactorOutConst },
    { "real-as-int",      SQLITE_IdxRealAsInt   },
    { "distinct-opt",     SQLITE_DistinctOpt    },
    { "cover-idx-scan",   SQLITE_CoverIdxScan   },
    { "order-by-idx-join",SQLITE_OrderByIdxJoin },




  };

  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB OPT BOOLEAN");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  if( Tcl_GetBooleanFromObj(interp, objv[3], &onoff) ) return TCL_ERROR;
  zOpt = Tcl_GetString(objv[2]);
  for(i=0; i<sizeof(aOpt)/sizeof(aOpt[0]); i++){
    if( strcmp(zOpt, aOpt[i].zOptName)==0 ){
      mask = aOpt[i].mask;
      break;
    }
  }
  if( onoff ) mask = ~mask;
  if( i>=sizeof(aOpt)/sizeof(aOpt[0]) ){
    Tcl_AppendResult(interp, "unknown optimization - should be one of:",
                     (char*)0);
    for(i=0; i<sizeof(aOpt)/sizeof(aOpt[0]); i++){
      Tcl_AppendResult(interp, " ", aOpt[i].zOptName);
    }
    return TCL_ERROR;
  }
  sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, db, mask);
  return TCL_OK;
}








|
>
|
|
|
|
|
|
|
|
>
>
>
>




















|







6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
  const char *zOpt;
  int onoff;
  int mask = 0;
  static const struct {
    const char *zOptName;
    int mask;
  } aOpt[] = {
    { "all",                 SQLITE_AllOpts        },
    { "none",                0                     },
    { "query-flattener",     SQLITE_QueryFlattener },
    { "column-cache",        SQLITE_ColumnCache    },
    { "groupby-order",       SQLITE_GroupByOrder   },
    { "factor-constants",    SQLITE_FactorOutConst },
    { "real-as-int",         SQLITE_IdxRealAsInt   },
    { "distinct-opt",        SQLITE_DistinctOpt    },
    { "cover-idx-scan",      SQLITE_CoverIdxScan   },
    { "order-by-idx-join",   SQLITE_OrderByIdxJoin },
    { "transitive",          SQLITE_Transitive     },
    { "subquery-coroutine",  SQLITE_SubqCoroutine  },
    { "omit-noop-join",      SQLITE_OmitNoopJoin   },
    { "stat3",               SQLITE_Stat3          },
  };

  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB OPT BOOLEAN");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  if( Tcl_GetBooleanFromObj(interp, objv[3], &onoff) ) return TCL_ERROR;
  zOpt = Tcl_GetString(objv[2]);
  for(i=0; i<sizeof(aOpt)/sizeof(aOpt[0]); i++){
    if( strcmp(zOpt, aOpt[i].zOptName)==0 ){
      mask = aOpt[i].mask;
      break;
    }
  }
  if( onoff ) mask = ~mask;
  if( i>=sizeof(aOpt)/sizeof(aOpt[0]) ){
    Tcl_AppendResult(interp, "unknown optimization - should be one of:",
                     (char*)0);
    for(i=0; i<sizeof(aOpt)/sizeof(aOpt[0]); i++){
      Tcl_AppendResult(interp, " ", aOpt[i].zOptName, (char*)0);
    }
    return TCL_ERROR;
  }
  sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, db, mask);
  return TCL_OK;
}

6183
6184
6185
6186
6187
6188
6189





6190
6191
6192
6193
6194
6195
6196

     { "save_prng_state",               save_prng_state,    0 },
     { "restore_prng_state",            restore_prng_state, 0 },
     { "reset_prng_state",              reset_prng_state,   0 },
     { "optimization_control",          optimization_control,0},
#if SQLITE_OS_WIN
     { "lock_win32_file",               win32_file_lock,    0 },





#endif
     { "tcl_objproc",                   runAsObjProc,       0 },

     /* sqlite3_column_*() API */
     { "sqlite3_column_count",          test_column_count  ,0 },
     { "sqlite3_data_count",            test_data_count    ,0 },
     { "sqlite3_column_type",           test_column_type   ,0 },







>
>
>
>
>







6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346

     { "save_prng_state",               save_prng_state,    0 },
     { "restore_prng_state",            restore_prng_state, 0 },
     { "reset_prng_state",              reset_prng_state,   0 },
     { "optimization_control",          optimization_control,0},
#if SQLITE_OS_WIN
     { "lock_win32_file",               win32_file_lock,    0 },
     { "exists_win32_path",             win32_exists_path,  0 },
     { "find_win32_file",               win32_find_file,    0 },
     { "delete_win32_file",             win32_delete_file,  0 },
     { "make_win32_dir",                win32_mkdir,        0 },
     { "remove_win32_dir",              win32_rmdir,        0 },
#endif
     { "tcl_objproc",                   runAsObjProc,       0 },

     /* sqlite3_column_*() API */
     { "sqlite3_column_count",          test_column_count  ,0 },
     { "sqlite3_data_count",            test_data_count    ,0 },
     { "sqlite3_column_type",           test_column_type   ,0 },
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
#endif
#ifdef SQLITE_DEBUG
  extern int sqlite3WhereTrace;
  extern int sqlite3OSTrace;
  extern int sqlite3WalTrace;
#endif
#ifdef SQLITE_TEST
  extern char sqlite3_query_plan[];
  static char *query_plan = sqlite3_query_plan;
#ifdef SQLITE_ENABLE_FTS3
  extern int sqlite3_fts3_enable_parentheses;
#endif
#endif

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0);







<
<







6448
6449
6450
6451
6452
6453
6454


6455
6456
6457
6458
6459
6460
6461
#endif
#ifdef SQLITE_DEBUG
  extern int sqlite3WhereTrace;
  extern int sqlite3OSTrace;
  extern int sqlite3WalTrace;
#endif
#ifdef SQLITE_TEST


#ifdef SQLITE_ENABLE_FTS3
  extern int sqlite3_fts3_enable_parentheses;
#endif
#endif

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0);
6353
6354
6355
6356
6357
6358
6359


6360
6361

6362
6363
6364
6365
6366
6367
6368
      (char*)&pzNeededCollation, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
#endif
#if SQLITE_OS_WIN
  Tcl_LinkVar(interp, "sqlite_os_type",
      (char*)&sqlite3_os_type, TCL_LINK_INT);
#endif
#ifdef SQLITE_TEST


  Tcl_LinkVar(interp, "sqlite_query_plan",
      (char*)&query_plan, TCL_LINK_STRING|TCL_LINK_READ_ONLY);

#endif
#ifdef SQLITE_DEBUG
  Tcl_LinkVar(interp, "sqlite_where_trace",
      (char*)&sqlite3WhereTrace, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_os_trace",
      (char*)&sqlite3OSTrace, TCL_LINK_INT);
#ifndef SQLITE_OMIT_WAL







>
>
|
|
>







6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
      (char*)&pzNeededCollation, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
#endif
#if SQLITE_OS_WIN
  Tcl_LinkVar(interp, "sqlite_os_type",
      (char*)&sqlite3_os_type, TCL_LINK_INT);
#endif
#ifdef SQLITE_TEST
  {
    static const char *query_plan = "*** OBSOLETE VARIABLE ***";
    Tcl_LinkVar(interp, "sqlite_query_plan",
       (char*)&query_plan, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
  }
#endif
#ifdef SQLITE_DEBUG
  Tcl_LinkVar(interp, "sqlite_where_trace",
      (char*)&sqlite3WhereTrace, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_os_trace",
      (char*)&sqlite3OSTrace, TCL_LINK_INT);
#ifndef SQLITE_OMIT_WAL
Changes to src/test_autoext.c.
93
94
95
96
97
98
99
















100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
















116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
















132
133
134
135
136
137
138
  int objc,
  Tcl_Obj *CONST objv[]
){
  int rc = sqlite3_auto_extension((void*)sqr_init);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return SQLITE_OK;
}

















/*
** tclcmd:   sqlite3_auto_extension_cube
**
** Register the "cube" extension to be loaded automatically.
*/
static int autoExtCubeObjCmd(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int rc = sqlite3_auto_extension((void*)cube_init);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return SQLITE_OK;
}

















/*
** tclcmd:   sqlite3_auto_extension_broken
**
** Register the broken extension to be loaded automatically.
*/
static int autoExtBrokenObjCmd(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int rc = sqlite3_auto_extension((void*)broken_init);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return SQLITE_OK;
}

















#endif /* SQLITE_OMIT_LOAD_EXTENSION */


/*
** tclcmd:   sqlite3_reset_auto_extension
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
  int objc,
  Tcl_Obj *CONST objv[]
){
  int rc = sqlite3_auto_extension((void*)sqr_init);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return SQLITE_OK;
}

/*
** tclcmd:   sqlite3_cancel_auto_extension_sqr
**
** Unregister the "sqr" extension.
*/
static int cancelAutoExtSqrObjCmd(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int rc = sqlite3_cancel_auto_extension((void*)sqr_init);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return SQLITE_OK;
}

/*
** tclcmd:   sqlite3_auto_extension_cube
**
** Register the "cube" extension to be loaded automatically.
*/
static int autoExtCubeObjCmd(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int rc = sqlite3_auto_extension((void*)cube_init);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return SQLITE_OK;
}

/*
** tclcmd:   sqlite3_cancel_auto_extension_cube
**
** Unregister the "cube" extension.
*/
static int cancelAutoExtCubeObjCmd(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int rc = sqlite3_cancel_auto_extension((void*)cube_init);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return SQLITE_OK;
}

/*
** tclcmd:   sqlite3_auto_extension_broken
**
** Register the broken extension to be loaded automatically.
*/
static int autoExtBrokenObjCmd(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int rc = sqlite3_auto_extension((void*)broken_init);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return SQLITE_OK;
}

/*
** tclcmd:   sqlite3_cancel_auto_extension_broken
**
** Unregister the broken extension.
*/
static int cancelAutoExtBrokenObjCmd(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int rc = sqlite3_cancel_auto_extension((void*)broken_init);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return SQLITE_OK;
}

#endif /* SQLITE_OMIT_LOAD_EXTENSION */


/*
** tclcmd:   sqlite3_reset_auto_extension
**
156
157
158
159
160
161
162






163
164
165
166
167
#ifndef SQLITE_OMIT_LOAD_EXTENSION
  Tcl_CreateObjCommand(interp, "sqlite3_auto_extension_sqr",
          autoExtSqrObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_auto_extension_cube",
          autoExtCubeObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_auto_extension_broken",
          autoExtBrokenObjCmd, 0, 0);






#endif
  Tcl_CreateObjCommand(interp, "sqlite3_reset_auto_extension",
          resetAutoExtObjCmd, 0, 0);
  return TCL_OK;
}







>
>
>
>
>
>





204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#ifndef SQLITE_OMIT_LOAD_EXTENSION
  Tcl_CreateObjCommand(interp, "sqlite3_auto_extension_sqr",
          autoExtSqrObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_auto_extension_cube",
          autoExtCubeObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_auto_extension_broken",
          autoExtBrokenObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_cancel_auto_extension_sqr",
          cancelAutoExtSqrObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_cancel_auto_extension_cube",
          cancelAutoExtCubeObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_cancel_auto_extension_broken",
          cancelAutoExtBrokenObjCmd, 0, 0);
#endif
  Tcl_CreateObjCommand(interp, "sqlite3_reset_auto_extension",
          resetAutoExtObjCmd, 0, 0);
  return TCL_OK;
}
Changes to src/test_config.c.
454
455
456
457
458
459
460
461





462
463
464
465
466
467
468

#ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
  Tcl_SetVar2(interp, "sqlite_options", "schema_version", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "schema_version", "1", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_ENABLE_STAT3





  Tcl_SetVar2(interp, "sqlite_options", "stat3", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "stat3", "0", TCL_GLOBAL_ONLY);
#endif

#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
#  if defined(__APPLE__)







|
>
>
>
>
>







454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

#ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
  Tcl_SetVar2(interp, "sqlite_options", "schema_version", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "schema_version", "1", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_ENABLE_STAT4
  Tcl_SetVar2(interp, "sqlite_options", "stat4", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "stat4", "0", TCL_GLOBAL_ONLY);
#endif
#if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4)
  Tcl_SetVar2(interp, "sqlite_options", "stat3", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "stat3", "0", TCL_GLOBAL_ONLY);
#endif

#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
#  if defined(__APPLE__)
Changes to src/test_demovfs.c.
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
  int nPathOut,                   /* Size of output buffer in bytes */
  char *zPathOut                  /* Pointer to output buffer */
){
  char zDir[MAXPATHNAME+1];
  if( zPath[0]=='/' ){
    zDir[0] = '\0';
  }else{
    getcwd(zDir, sizeof(zDir));
  }
  zDir[MAXPATHNAME] = '\0';

  sqlite3_snprintf(nPathOut, zPathOut, "%s/%s", zDir, zPath);
  zPathOut[nPathOut-1] = '\0';

  return SQLITE_OK;







|







532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
  int nPathOut,                   /* Size of output buffer in bytes */
  char *zPathOut                  /* Pointer to output buffer */
){
  char zDir[MAXPATHNAME+1];
  if( zPath[0]=='/' ){
    zDir[0] = '\0';
  }else{
    if( getcwd(zDir, sizeof(zDir))==0 ) return SQLITE_IOERR;
  }
  zDir[MAXPATHNAME] = '\0';

  sqlite3_snprintf(nPathOut, zPathOut, "%s/%s", zDir, zPath);
  zPathOut[nPathOut-1] = '\0';

  return SQLITE_OK;
Changes to src/test_fs.c.
191
192
193
194
195
196
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220
221
222
223
224
225
  assert( i==0 || i==1 );
  if( i==0 ){
    sqlite3_result_value(ctx, sqlite3_column_value(pCur->pStmt, 0));
  }else{
    const char *zFile = (const char *)sqlite3_column_text(pCur->pStmt, 1);
    struct stat sbuf;
    int fd;


    fd = open(zFile, O_RDONLY);
    if( fd<0 ) return SQLITE_IOERR;
    fstat(fd, &sbuf);

    if( sbuf.st_size>=pCur->nAlloc ){
      int nNew = sbuf.st_size*2;
      char *zNew;
      if( nNew<1024 ) nNew = 1024;

      zNew = sqlite3Realloc(pCur->zBuf, nNew);
      if( zNew==0 ){
        close(fd);
        return SQLITE_NOMEM;
      }
      pCur->zBuf = zNew;
      pCur->nAlloc = nNew;
    }

    read(fd, pCur->zBuf, sbuf.st_size);
    close(fd);

    pCur->nBuf = sbuf.st_size;
    pCur->zBuf[pCur->nBuf] = '\0';

    sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
  }
  return SQLITE_OK;
}







>



















|

>







191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  assert( i==0 || i==1 );
  if( i==0 ){
    sqlite3_result_value(ctx, sqlite3_column_value(pCur->pStmt, 0));
  }else{
    const char *zFile = (const char *)sqlite3_column_text(pCur->pStmt, 1);
    struct stat sbuf;
    int fd;
    int n;

    fd = open(zFile, O_RDONLY);
    if( fd<0 ) return SQLITE_IOERR;
    fstat(fd, &sbuf);

    if( sbuf.st_size>=pCur->nAlloc ){
      int nNew = sbuf.st_size*2;
      char *zNew;
      if( nNew<1024 ) nNew = 1024;

      zNew = sqlite3Realloc(pCur->zBuf, nNew);
      if( zNew==0 ){
        close(fd);
        return SQLITE_NOMEM;
      }
      pCur->zBuf = zNew;
      pCur->nAlloc = nNew;
    }

    n = (int)read(fd, pCur->zBuf, sbuf.st_size);
    close(fd);
    if( n!=sbuf.st_size ) return SQLITE_ERROR;
    pCur->nBuf = sbuf.st_size;
    pCur->zBuf[pCur->nBuf] = '\0';

    sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
  }
  return SQLITE_OK;
}
Changes to src/test_func.c.
14
15
16
17
18
19
20



21
22
23
24
25
26
27
*/
#include "sqlite3.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>





/*
** Allocate nByte bytes of space using sqlite3_malloc(). If the
** allocation fails, call sqlite3_result_error_nomem() to notify
** the database handle that malloc() has failed.
*/
static void *testContextMalloc(sqlite3_context *context, int nByte){







>
>
>







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
*/
#include "sqlite3.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "sqliteInt.h"
#include "vdbeInt.h"


/*
** Allocate nByte bytes of space using sqlite3_malloc(). If the
** allocation fails, call sqlite3_result_error_nomem() to notify
** the database handle that malloc() has failed.
*/
static void *testContextMalloc(sqlite3_context *context, int nByte){
454
455
456
457
458
459
460













































































































































461
462
463
464
465
466
467
      zOut[14-i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
    }
  }
  zOut[16] = 0;
  sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT);
}















































































































































static int registerTestFunctions(sqlite3 *db){
  static const struct {
     char *zName;
     signed char nArg;
     unsigned char eTextRep; /* 1: UTF-16.  0: UTF-8 */
     void (*xFunc)(sqlite3_context*,int,sqlite3_value **);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
      zOut[14-i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
    }
  }
  zOut[16] = 0;
  sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT);
}

/*
** tclcmd: test_extract(record, field)
**
** This function implements an SQL user-function that accepts a blob
** containing a formatted database record as the first argument. The
** second argument is the index of the field within that record to
** extract and return.
*/
static void test_extract(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3 *db = sqlite3_context_db_handle(context);
  u8 *pRec;
  u8 *pEndHdr;                    /* Points to one byte past record header */
  u8 *pHdr;                       /* Current point in record header */
  u8 *pBody;                      /* Current point in record data */
  u64 nHdr;                       /* Bytes in record header */
  int iIdx;                       /* Required field */
  int iCurrent = 0;               /* Current field */

  assert( argc==2 );
  pRec = (u8*)sqlite3_value_blob(argv[0]);
  iIdx = sqlite3_value_int(argv[1]);

  pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
  pBody = pEndHdr = &pRec[nHdr];

  for(iCurrent=0; pHdr<pEndHdr && iCurrent<=iIdx; iCurrent++){
    u64 iSerialType;
    Mem mem;

    memset(&mem, 0, sizeof(mem));
    mem.db = db;
    mem.enc = ENC(db);
    pHdr += sqlite3GetVarint(pHdr, &iSerialType);
    pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);
    sqlite3VdbeMemStoreType(&mem);

    if( iCurrent==iIdx ){
      sqlite3_result_value(context, &mem);
    }

    sqlite3DbFree(db, mem.zMalloc);
  }
}

/*
** tclcmd: test_decode(record)
**
** This function implements an SQL user-function that accepts a blob
** containing a formatted database record as its only argument. It returns
** a tcl list (type SQLITE_TEXT) containing each of the values stored
** in the record.
*/
static void test_decode(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3 *db = sqlite3_context_db_handle(context);
  u8 *pRec;
  u8 *pEndHdr;                    /* Points to one byte past record header */
  u8 *pHdr;                       /* Current point in record header */
  u8 *pBody;                      /* Current point in record data */
  u64 nHdr;                       /* Bytes in record header */
  Tcl_Obj *pRet;                  /* Return value */

  pRet = Tcl_NewObj();
  Tcl_IncrRefCount(pRet);

  assert( argc==1 );
  pRec = (u8*)sqlite3_value_blob(argv[0]);

  pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
  pBody = pEndHdr = &pRec[nHdr];
  while( pHdr<pEndHdr ){
    Tcl_Obj *pVal = 0;
    u64 iSerialType;
    Mem mem;

    memset(&mem, 0, sizeof(mem));
    mem.db = db;
    mem.enc = ENC(db);
    pHdr += sqlite3GetVarint(pHdr, &iSerialType);
    pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);

    sqlite3VdbeMemStoreType(&mem);
    switch( sqlite3_value_type(&mem) ){
      case SQLITE_TEXT:
        pVal = Tcl_NewStringObj((const char*)sqlite3_value_text(&mem), -1);
        break;

      case SQLITE_BLOB: {
        char hexdigit[] = {
          '0', '1', '2', '3', '4', '5', '6', '7',
          '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
        };
        int n = sqlite3_value_bytes(&mem);
        u8 *z = (u8*)sqlite3_value_blob(&mem);
        int i;
        pVal = Tcl_NewStringObj("x'", -1);
        for(i=0; i<n; i++){
          char hex[3];
          hex[0] = hexdigit[((z[i] >> 4) & 0x0F)];
          hex[1] = hexdigit[(z[i] & 0x0F)];
          hex[2] = '\0';
          Tcl_AppendStringsToObj(pVal, hex, 0);
        }
        Tcl_AppendStringsToObj(pVal, "'", 0);
        break;
      }

      case SQLITE_FLOAT:
        pVal = Tcl_NewDoubleObj(sqlite3_value_double(&mem));
        break;

      case SQLITE_INTEGER:
        pVal = Tcl_NewWideIntObj(sqlite3_value_int64(&mem));
        break;

      case SQLITE_NULL:
        pVal = Tcl_NewStringObj("NULL", -1);
        break;

      default:
        assert( 0 );
    }

    Tcl_ListObjAppendElement(0, pRet, pVal);

    if( mem.zMalloc ){
      sqlite3DbFree(db, mem.zMalloc);
    }
  }

  sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
  Tcl_DecrRefCount(pRet);
}


static int registerTestFunctions(sqlite3 *db){
  static const struct {
     char *zName;
     signed char nArg;
     unsigned char eTextRep; /* 1: UTF-16.  0: UTF-8 */
     void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
478
479
480
481
482
483
484


485
486
487
488
489
490
491
    { "test_auxdata",         -1, SQLITE_UTF8, test_auxdata},
    { "test_error",            1, SQLITE_UTF8, test_error},
    { "test_error",            2, SQLITE_UTF8, test_error},
    { "test_eval",             1, SQLITE_UTF8, test_eval},
    { "test_isolation",        2, SQLITE_UTF8, test_isolation},
    { "test_counter",          1, SQLITE_UTF8, counterFunc},
    { "real2hex",              1, SQLITE_UTF8, real2hex},


  };
  int i;

  for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
    sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
        aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0);
  }







>
>







622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
    { "test_auxdata",         -1, SQLITE_UTF8, test_auxdata},
    { "test_error",            1, SQLITE_UTF8, test_error},
    { "test_error",            2, SQLITE_UTF8, test_error},
    { "test_eval",             1, SQLITE_UTF8, test_eval},
    { "test_isolation",        2, SQLITE_UTF8, test_isolation},
    { "test_counter",          1, SQLITE_UTF8, counterFunc},
    { "real2hex",              1, SQLITE_UTF8, real2hex},
    { "test_decode",           1, SQLITE_UTF8, test_decode},
    { "test_extract",          2, SQLITE_UTF8, test_extract},
  };
  int i;

  for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
    sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
        aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0);
  }
Changes to src/test_intarray.h.
71
72
73
74
75
76
77


78
79
80
81
82
83
84
** The intarray object is automatically destroyed when its corresponding
** virtual table is dropped.  Since the virtual tables are created in the
** TEMP database, they are automatically dropped when the database connection
** closes so the application does not normally need to take any special
** action to free the intarray objects.
*/
#include "sqlite3.h"



/*
** Make sure we can call this stuff from C++.
*/
#ifdef __cplusplus
extern "C" {
#endif







>
>







71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
** The intarray object is automatically destroyed when its corresponding
** virtual table is dropped.  Since the virtual tables are created in the
** TEMP database, they are automatically dropped when the database connection
** closes so the application does not normally need to take any special
** action to free the intarray objects.
*/
#include "sqlite3.h"
#ifndef _INTARRAY_H_
#define _INTARRAY_H_

/*
** Make sure we can call this stuff from C++.
*/
#ifdef __cplusplus
extern "C" {
#endif
119
120
121
122
123
124
125

  sqlite3_int64 *aElements,      /* Content of the intarray */
  void (*xFree)(void*)           /* How to dispose of the intarray when done */
);

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif








>
121
122
123
124
125
126
127
128
  sqlite3_int64 *aElements,      /* Content of the intarray */
  void (*xFree)(void*)           /* How to dispose of the intarray when done */
);

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif
#endif /* _INTARRAY_H_ */
Changes to src/test_malloc.c.
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
static void test_memdebug_callback(int nByte, int nFrame, void **aFrame){
  if( mallocLogEnabled ){
    MallocLog *pLog;
    Tcl_HashEntry *pEntry;
    int isNew;

    int aKey[MALLOC_LOG_KEYINTS];
    int nKey = sizeof(int)*MALLOC_LOG_KEYINTS;

    memset(aKey, 0, nKey);
    if( (sizeof(void*)*nFrame)<nKey ){
      nKey = nFrame*sizeof(void*);
    }
    memcpy(aKey, aFrame, nKey);








|







745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
static void test_memdebug_callback(int nByte, int nFrame, void **aFrame){
  if( mallocLogEnabled ){
    MallocLog *pLog;
    Tcl_HashEntry *pEntry;
    int isNew;

    int aKey[MALLOC_LOG_KEYINTS];
    unsigned int nKey = sizeof(int)*MALLOC_LOG_KEYINTS;

    memset(aKey, 0, nKey);
    if( (sizeof(void*)*nFrame)<nKey ){
      nKey = nFrame*sizeof(void*);
    }
    memcpy(aKey, aFrame, nKey);

1345
1346
1347
1348
1349
1350
1351
1352

1353
1354
1355
1356
1357
1358
1359
    { "SCHEMA_USED",         SQLITE_DBSTATUS_SCHEMA_USED         },
    { "STMT_USED",           SQLITE_DBSTATUS_STMT_USED           },
    { "LOOKASIDE_HIT",       SQLITE_DBSTATUS_LOOKASIDE_HIT       },
    { "LOOKASIDE_MISS_SIZE", SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE },
    { "LOOKASIDE_MISS_FULL", SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL },
    { "CACHE_HIT",           SQLITE_DBSTATUS_CACHE_HIT           },
    { "CACHE_MISS",          SQLITE_DBSTATUS_CACHE_MISS          },
    { "CACHE_WRITE",         SQLITE_DBSTATUS_CACHE_WRITE         }

  };
  Tcl_Obj *pResult;
  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB PARAMETER RESETFLAG");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;







|
>







1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
    { "SCHEMA_USED",         SQLITE_DBSTATUS_SCHEMA_USED         },
    { "STMT_USED",           SQLITE_DBSTATUS_STMT_USED           },
    { "LOOKASIDE_HIT",       SQLITE_DBSTATUS_LOOKASIDE_HIT       },
    { "LOOKASIDE_MISS_SIZE", SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE },
    { "LOOKASIDE_MISS_FULL", SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL },
    { "CACHE_HIT",           SQLITE_DBSTATUS_CACHE_HIT           },
    { "CACHE_MISS",          SQLITE_DBSTATUS_CACHE_MISS          },
    { "CACHE_WRITE",         SQLITE_DBSTATUS_CACHE_WRITE         },
    { "DEFERRED_FKS",        SQLITE_DBSTATUS_DEFERRED_FKS        }
  };
  Tcl_Obj *pResult;
  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB PARAMETER RESETFLAG");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
Changes to src/test_multiplex.h.
92
93
94
95
96
97
98
99
*/
extern int sqlite3_multiplex_shutdown(void);

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif

#endif







|
92
93
94
95
96
97
98
99
*/
extern int sqlite3_multiplex_shutdown(void);

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif

#endif /* _TEST_MULTIPLEX_H */
Changes to src/test_rtree.c.
10
11
12
13
14
15
16

17
18
19
20
21
22
23
**
*************************************************************************
** Code for testing all sorts of SQLite interfaces. This code
** is not included in the SQLite library. 
*/

#include <sqlite3.h>


/* Solely for the UNUSED_PARAMETER() macro. */
#include "sqliteInt.h"

#ifdef SQLITE_ENABLE_RTREE
/* 
** Type used to cache parameter information for the "circle" r-tree geometry







>







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Code for testing all sorts of SQLite interfaces. This code
** is not included in the SQLite library. 
*/

#include <sqlite3.h>
#include <tcl.h>

/* Solely for the UNUSED_PARAMETER() macro. */
#include "sqliteInt.h"

#ifdef SQLITE_ENABLE_RTREE
/* 
** Type used to cache parameter information for the "circle" r-tree geometry
Changes to src/test_schema.c.
340
341
342
343
344
345
346



347
348
349
350
351
352
353
354
}

#else

/*
** Extension load function.
*/



int sqlite3_extension_init(
  sqlite3 *db, 
  char **pzErrMsg, 
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi);
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3_create_module(db, "schema", &schemaModule, 0);







>
>
>
|







340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
}

#else

/*
** Extension load function.
*/
#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_schema_init(
  sqlite3 *db, 
  char **pzErrMsg, 
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi);
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3_create_module(db, "schema", &schemaModule, 0);
Changes to src/test_vfs.c.
24
25
26
27
28
29
30

31
32
33
34
35
36
37
**   -mxpathname INTEGER        (Value for sqlite3_vfs.mxPathname)
**   -iversion   INTEGER        (Value for sqlite3_vfs.iVersion)
*/
#if SQLITE_TEST          /* This file is used for testing only */

#include "sqlite3.h"
#include "sqliteInt.h"


typedef struct Testvfs Testvfs;
typedef struct TestvfsShm TestvfsShm;
typedef struct TestvfsBuffer TestvfsBuffer;
typedef struct TestvfsFile TestvfsFile;
typedef struct TestvfsFd TestvfsFd;








>







24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
**   -mxpathname INTEGER        (Value for sqlite3_vfs.mxPathname)
**   -iversion   INTEGER        (Value for sqlite3_vfs.iVersion)
*/
#if SQLITE_TEST          /* This file is used for testing only */

#include "sqlite3.h"
#include "sqliteInt.h"
#include <tcl.h>

typedef struct Testvfs Testvfs;
typedef struct TestvfsShm TestvfsShm;
typedef struct TestvfsBuffer TestvfsBuffer;
typedef struct TestvfsFile TestvfsFile;
typedef struct TestvfsFd TestvfsFd;

186
187
188
189
190
191
192



193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210


211
212
213
214
215
216
217

static int tvfsShmOpen(sqlite3_file*);
static int tvfsShmLock(sqlite3_file*, int , int, int);
static int tvfsShmMap(sqlite3_file*,int,int,int, void volatile **);
static void tvfsShmBarrier(sqlite3_file*);
static int tvfsShmUnmap(sqlite3_file*, int);




static sqlite3_io_methods tvfs_io_methods = {
  2,                              /* iVersion */
  tvfsClose,                      /* xClose */
  tvfsRead,                       /* xRead */
  tvfsWrite,                      /* xWrite */
  tvfsTruncate,                   /* xTruncate */
  tvfsSync,                       /* xSync */
  tvfsFileSize,                   /* xFileSize */
  tvfsLock,                       /* xLock */
  tvfsUnlock,                     /* xUnlock */
  tvfsCheckReservedLock,          /* xCheckReservedLock */
  tvfsFileControl,                /* xFileControl */
  tvfsSectorSize,                 /* xSectorSize */
  tvfsDeviceCharacteristics,      /* xDeviceCharacteristics */
  tvfsShmMap,                     /* xShmMap */
  tvfsShmLock,                    /* xShmLock */
  tvfsShmBarrier,                 /* xShmBarrier */
  tvfsShmUnmap                    /* xShmUnmap */


};

static int tvfsResultCode(Testvfs *p, int *pRc){
  struct errcode {
    int eCode;
    const char *zCode;
  } aCode[] = {







>
>
>

|















|
>
>







187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

static int tvfsShmOpen(sqlite3_file*);
static int tvfsShmLock(sqlite3_file*, int , int, int);
static int tvfsShmMap(sqlite3_file*,int,int,int, void volatile **);
static void tvfsShmBarrier(sqlite3_file*);
static int tvfsShmUnmap(sqlite3_file*, int);

static int tvfsFetch(sqlite3_file*, sqlite3_int64, int, void**);
static int tvfsUnfetch(sqlite3_file*, sqlite3_int64, void*);

static sqlite3_io_methods tvfs_io_methods = {
  3,                              /* iVersion */
  tvfsClose,                      /* xClose */
  tvfsRead,                       /* xRead */
  tvfsWrite,                      /* xWrite */
  tvfsTruncate,                   /* xTruncate */
  tvfsSync,                       /* xSync */
  tvfsFileSize,                   /* xFileSize */
  tvfsLock,                       /* xLock */
  tvfsUnlock,                     /* xUnlock */
  tvfsCheckReservedLock,          /* xCheckReservedLock */
  tvfsFileControl,                /* xFileControl */
  tvfsSectorSize,                 /* xSectorSize */
  tvfsDeviceCharacteristics,      /* xDeviceCharacteristics */
  tvfsShmMap,                     /* xShmMap */
  tvfsShmLock,                    /* xShmLock */
  tvfsShmBarrier,                 /* xShmBarrier */
  tvfsShmUnmap,                   /* xShmUnmap */
  tvfsFetch,
  tvfsUnfetch
};

static int tvfsResultCode(Testvfs *p, int *pRc){
  struct errcode {
    int eCode;
    const char *zCode;
  } aCode[] = {
614
615
616
617
618
619
620


621

622
623
624
625
626
627
628
      nByte = sizeof(sqlite3_io_methods);
    }else{
      nByte = offsetof(sqlite3_io_methods, xShmMap);
    }

    pMethods = (sqlite3_io_methods *)ckalloc(nByte);
    memcpy(pMethods, &tvfs_io_methods, nByte);


    pMethods->iVersion = pVfs->iVersion;

    if( pVfs->iVersion>1 && ((Testvfs *)pVfs->pAppData)->isNoshm ){
      pMethods->xShmUnmap = 0;
      pMethods->xShmLock = 0;
      pMethods->xShmBarrier = 0;
      pMethods->xShmMap = 0;
    }
    pFile->pMethods = pMethods;







>
>
|
>







620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
      nByte = sizeof(sqlite3_io_methods);
    }else{
      nByte = offsetof(sqlite3_io_methods, xShmMap);
    }

    pMethods = (sqlite3_io_methods *)ckalloc(nByte);
    memcpy(pMethods, &tvfs_io_methods, nByte);
    pMethods->iVersion = pFd->pReal->pMethods->iVersion;
    if( pMethods->iVersion>pVfs->iVersion ){
      pMethods->iVersion = pVfs->iVersion;
    }
    if( pVfs->iVersion>1 && ((Testvfs *)pVfs->pAppData)->isNoshm ){
      pMethods->xShmUnmap = 0;
      pMethods->xShmLock = 0;
      pMethods->xShmBarrier = 0;
      pMethods->xShmMap = 0;
    }
    pFile->pMethods = pMethods;
988
989
990
991
992
993
994















995
996
997
998
999
1000
1001
    }
    ckfree((char *)pBuffer);
  }
  pFd->pShm = 0;

  return rc;
}
















static int testvfs_obj_cmd(
  ClientData cd,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
    }
    ckfree((char *)pBuffer);
  }
  pFd->pShm = 0;

  return rc;
}

static int tvfsFetch(
    sqlite3_file *pFile, 
    sqlite3_int64 iOfst, 
    int iAmt, 
    void **pp
){
  TestvfsFd *pFd = tvfsGetFd(pFile);
  return sqlite3OsFetch(pFd->pReal, iOfst, iAmt, pp);
}

static int tvfsUnfetch(sqlite3_file *pFile, sqlite3_int64 iOfst, void *p){
  TestvfsFd *pFd = tvfsGetFd(pFile);
  return sqlite3OsUnfetch(pFd->pReal, iOfst, p);
}

static int testvfs_obj_cmd(
  ClientData cd,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
static int testvfs_cmd(
  ClientData cd,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  static sqlite3_vfs tvfs_vfs = {
    2,                            /* iVersion */
    0,                            /* szOsFile */
    0,                            /* mxPathname */
    0,                            /* pNext */
    0,                            /* zName */
    0,                            /* pAppData */
    tvfsOpen,                     /* xOpen */
    tvfsDelete,                   /* xDelete */







|







1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
static int testvfs_cmd(
  ClientData cd,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  static sqlite3_vfs tvfs_vfs = {
    3,                            /* iVersion */
    0,                            /* szOsFile */
    0,                            /* mxPathname */
    0,                            /* pNext */
    0,                            /* zName */
    0,                            /* pAppData */
    tvfsOpen,                     /* xOpen */
    tvfsDelete,                   /* xDelete */
1365
1366
1367
1368
1369
1370
1371



1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
    0,                            /* xDlClose */
#endif /* SQLITE_OMIT_LOAD_EXTENSION */
    tvfsRandomness,               /* xRandomness */
    tvfsSleep,                    /* xSleep */
    tvfsCurrentTime,              /* xCurrentTime */
    0,                            /* xGetLastError */
    0,                            /* xCurrentTimeInt64 */



  };

  Testvfs *p;                     /* New object */
  sqlite3_vfs *pVfs;              /* New VFS */
  char *zVfs;
  int nByte;                      /* Bytes of space to allocate at p */

  int i;
  int isNoshm = 0;                /* True if -noshm is passed */
  int isFullshm = 0;              /* True if -fullshm is passed */
  int isDefault = 0;              /* True if -default is passed */
  int szOsFile = 0;               /* Value passed to -szosfile */
  int mxPathname = -1;            /* Value passed to -mxpathname */
  int iVersion = 2;               /* Value passed to -iversion */

  if( objc<2 || 0!=(objc%2) ) goto bad_args;
  for(i=2; i<objc; i += 2){
    int nSwitch;
    char *zSwitch;
    zSwitch = Tcl_GetStringFromObj(objv[i], &nSwitch); 








>
>
>













|







1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
    0,                            /* xDlClose */
#endif /* SQLITE_OMIT_LOAD_EXTENSION */
    tvfsRandomness,               /* xRandomness */
    tvfsSleep,                    /* xSleep */
    tvfsCurrentTime,              /* xCurrentTime */
    0,                            /* xGetLastError */
    0,                            /* xCurrentTimeInt64 */
    0,                            /* xSetSystemCall */
    0,                            /* xGetSystemCall */
    0,                            /* xNextSystemCall */
  };

  Testvfs *p;                     /* New object */
  sqlite3_vfs *pVfs;              /* New VFS */
  char *zVfs;
  int nByte;                      /* Bytes of space to allocate at p */

  int i;
  int isNoshm = 0;                /* True if -noshm is passed */
  int isFullshm = 0;              /* True if -fullshm is passed */
  int isDefault = 0;              /* True if -default is passed */
  int szOsFile = 0;               /* Value passed to -szosfile */
  int mxPathname = -1;            /* Value passed to -mxpathname */
  int iVersion = 3;               /* Value passed to -iversion */

  if( objc<2 || 0!=(objc%2) ) goto bad_args;
  for(i=2; i<objc; i += 2){
    int nSwitch;
    char *zSwitch;
    zSwitch = Tcl_GetStringFromObj(objv[i], &nSwitch); 

Changes to src/tokenize.c.
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
      testcase( z[0]=='\r' );
      for(i=1; sqlite3Isspace(z[i]); i++){}
      *tokenType = TK_SPACE;
      return i;
    }
    case '-': {
      if( z[1]=='-' ){
        /* IMP: R-50417-27976 -- syntax diagram for comments */
        for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
        *tokenType = TK_SPACE;   /* IMP: R-22934-25134 */
        return i;
      }
      *tokenType = TK_MINUS;
      return 1;
    }







<







119
120
121
122
123
124
125

126
127
128
129
130
131
132
      testcase( z[0]=='\r' );
      for(i=1; sqlite3Isspace(z[i]); i++){}
      *tokenType = TK_SPACE;
      return i;
    }
    case '-': {
      if( z[1]=='-' ){

        for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
        *tokenType = TK_SPACE;   /* IMP: R-22934-25134 */
        return i;
      }
      *tokenType = TK_MINUS;
      return 1;
    }
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
      return 1;
    }
    case '/': {
      if( z[1]!='*' || z[2]==0 ){
        *tokenType = TK_SLASH;
        return 1;
      }
      /* IMP: R-50417-27976 -- syntax diagram for comments */
      for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
      if( c ) i++;
      *tokenType = TK_SPACE;   /* IMP: R-22934-25134 */
      return i;
    }
    case '%': {
      *tokenType = TK_REM;







<







151
152
153
154
155
156
157

158
159
160
161
162
163
164
      return 1;
    }
    case '/': {
      if( z[1]!='*' || z[2]==0 ){
        *tokenType = TK_SLASH;
        return 1;
      }

      for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
      if( c ) i++;
      *tokenType = TK_SPACE;   /* IMP: R-22934-25134 */
      return i;
    }
    case '%': {
      *tokenType = TK_REM;
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
  int lastTokenParsed = -1;       /* type of the previous token */
  u8 enableLookaside;             /* Saved value of db->lookaside.bEnabled */
  sqlite3 *db = pParse->db;       /* The database connection */
  int mxSqlLen;                   /* Max length of an SQL string */


  mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
  if( db->activeVdbeCnt==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  i = 0;
  assert( pzErrMsg!=0 );
  pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3Malloc);







|







390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
  int lastTokenParsed = -1;       /* type of the previous token */
  u8 enableLookaside;             /* Saved value of db->lookaside.bEnabled */
  sqlite3 *db = pParse->db;       /* The database connection */
  int mxSqlLen;                   /* Max length of an SQL string */


  mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  i = 0;
  assert( pzErrMsg!=0 );
  pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3Malloc);
Changes to src/update.c.
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
** on register iReg. This is used when an equivalent integer value is 
** stored in place of an 8-byte floating point value in order to save 
** space.
*/
void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i, int iReg){
  assert( pTab!=0 );
  if( !pTab->pSelect ){
    sqlite3_value *pValue;
    u8 enc = ENC(sqlite3VdbeDb(v));
    Column *pCol = &pTab->aCol[i];
    VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
    assert( i<pTab->nCol );
    sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc, 
                         pCol->affinity, &pValue);
    if( pValue ){







|







57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
** on register iReg. This is used when an equivalent integer value is 
** stored in place of an 8-byte floating point value in order to save 
** space.
*/
void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i, int iReg){
  assert( pTab!=0 );
  if( !pTab->pSelect ){
    sqlite3_value *pValue = 0;
    u8 enc = ENC(sqlite3VdbeDb(v));
    Column *pCol = &pTab->aCol[i];
    VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
    assert( i<pTab->nCol );
    sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc, 
                         pCol->affinity, &pValue);
    if( pValue ){
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
  for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
  if( nIdx>0 ){
    aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx );
    if( aRegIdx==0 ) goto update_cleanup;
  }
  for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
    int reg;
    if( hasFK || chngRowid ){
      reg = ++pParse->nMem;
    }else{
      reg = 0;
      for(i=0; i<pIdx->nColumn; i++){
        if( aXRef[pIdx->aiColumn[i]]>=0 ){
          reg = ++pParse->nMem;
          break;







|







242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
  for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
  if( nIdx>0 ){
    aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx );
    if( aRegIdx==0 ) goto update_cleanup;
  }
  for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
    int reg;
    if( hasFK || chngRowid || pIdx->pPartIdxWhere ){
      reg = ++pParse->nMem;
    }else{
      reg = 0;
      for(i=0; i<pIdx->nColumn; i++){
        if( aXRef[pIdx->aiColumn[i]]>=0 ){
          reg = ++pParse->nMem;
          break;
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
  /* Begin the database scan
  */
  sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid);
  pWInfo = sqlite3WhereBegin(
      pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, 0
  );
  if( pWInfo==0 ) goto update_cleanup;
  okOnePass = pWInfo->okOnePass;

  /* Remember the rowid of every item to be updated.
  */
  sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regOldRowid);
  if( !okOnePass ){
    sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid);
  }







|







314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
  /* Begin the database scan
  */
  sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid);
  pWInfo = sqlite3WhereBegin(
      pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, 0
  );
  if( pWInfo==0 ) goto update_cleanup;
  okOnePass = sqlite3WhereOkOnePass(pWInfo);

  /* Remember the rowid of every item to be updated.
  */
  sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regOldRowid);
  if( !okOnePass ){
    sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid);
  }
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

    /* Do constraint checks. */
    sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid,
        aRegIdx, (chngRowid?regOldRowid:0), 1, onError, addr, 0);

    /* Do FK constraint checks. */
    if( hasFK ){
      sqlite3FkCheck(pParse, pTab, regOldRowid, 0);
    }

    /* Delete the index entries associated with the current record.  */
    j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid);
    sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx);
  
    /* If changing the record number, delete the old record.  */
    if( hasFK || chngRowid ){
      sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0);
    }
    sqlite3VdbeJumpHere(v, j1);

    if( hasFK ){
      sqlite3FkCheck(pParse, pTab, 0, regNewRowid);
    }
  
    /* Insert the new index entries and the new record. */
    sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid, aRegIdx, 1, 0, 0);

    /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
    ** handle rows (possibly in other tables) that refer via a foreign key
    ** to the row just updated. */ 
    if( hasFK ){
      sqlite3FkActions(pParse, pTab, pChanges, regOldRowid);
    }
  }

  /* Increment the row counter 
  */
  if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab){
    sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);







|













|









|







484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

    /* Do constraint checks. */
    sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid,
        aRegIdx, (chngRowid?regOldRowid:0), 1, onError, addr, 0);

    /* Do FK constraint checks. */
    if( hasFK ){
      sqlite3FkCheck(pParse, pTab, regOldRowid, 0, aXRef, chngRowid);
    }

    /* Delete the index entries associated with the current record.  */
    j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid);
    sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx);
  
    /* If changing the record number, delete the old record.  */
    if( hasFK || chngRowid ){
      sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0);
    }
    sqlite3VdbeJumpHere(v, j1);

    if( hasFK ){
      sqlite3FkCheck(pParse, pTab, 0, regNewRowid, aXRef, chngRowid);
    }
  
    /* Insert the new index entries and the new record. */
    sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid, aRegIdx, 1, 0, 0);

    /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
    ** handle rows (possibly in other tables) that refer via a foreign key
    ** to the row just updated. */ 
    if( hasFK ){
      sqlite3FkActions(pParse, pTab, pChanges, regOldRowid, aXRef, chngRowid);
    }
  }

  /* Increment the row counter 
  */
  if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab){
    sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
Changes to src/utf.c.
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
  assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
  assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
  assert( (m.flags & MEM_Dyn)!=0 || db->mallocFailed );
  assert( m.z || db->mallocFailed );
  return m.z;
}

/*
** Convert a UTF-8 string to the UTF-16 encoding specified by parameter
** enc. A pointer to the new string is returned, and the value of *pnOut
** is set to the length of the returned string in bytes. The call should
** arrange to call sqlite3DbFree() on the returned pointer when it is
** no longer required.
** 
** If a malloc failure occurs, NULL is returned and the db.mallocFailed
** flag set.
*/
#ifdef SQLITE_ENABLE_STAT3
char *sqlite3Utf8to16(sqlite3 *db, u8 enc, char *z, int n, int *pnOut){
  Mem m;
  memset(&m, 0, sizeof(m));
  m.db = db;
  sqlite3VdbeMemSetStr(&m, z, n, SQLITE_UTF8, SQLITE_STATIC);
  if( sqlite3VdbeMemTranslate(&m, enc) ){
    assert( db->mallocFailed );
    return 0;
  }
  assert( m.z==m.zMalloc );
  *pnOut = m.n;
  return m.z;
}
#endif

/*
** zIn is a UTF-16 encoded unicode string at least nChar characters long.
** Return the number of bytes in the first nChar unicode characters
** in pZ.  nChar must be non-negative.
*/
int sqlite3Utf16ByteLen(const void *zIn, int nChar){
  int c;







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







446
447
448
449
450
451
452


























453
454
455
456
457
458
459
  assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
  assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
  assert( (m.flags & MEM_Dyn)!=0 || db->mallocFailed );
  assert( m.z || db->mallocFailed );
  return m.z;
}



























/*
** zIn is a UTF-16 encoded unicode string at least nChar characters long.
** Return the number of bytes in the first nChar unicode characters
** in pZ.  nChar must be non-negative.
*/
int sqlite3Utf16ByteLen(const void *zIn, int nChar){
  int c;
Changes to src/vacuum.c.
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
  int nRes;               /* Bytes of reserved space at the end of each page */
  int nDb;                /* Number of attached databases */

  if( !db->autoCommit ){
    sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
    return SQLITE_ERROR;
  }
  if( db->activeVdbeCnt>1 ){
    sqlite3SetString(pzErrMsg, db,"cannot VACUUM - SQL statements in progress");
    return SQLITE_ERROR;
  }

  /* Save the current value of the database flags so that it can be 
  ** restored before returning. Then set the writable-schema flag, and
  ** disable CHECK and foreign key constraints.  */







|







107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
  int nRes;               /* Bytes of reserved space at the end of each page */
  int nDb;                /* Number of attached databases */

  if( !db->autoCommit ){
    sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
    return SQLITE_ERROR;
  }
  if( db->nVdbeActive>1 ){
    sqlite3SetString(pzErrMsg, db,"cannot VACUUM - SQL statements in progress");
    return SQLITE_ERROR;
  }

  /* Save the current value of the database flags so that it can be 
  ** restored before returning. Then set the writable-schema flag, and
  ** disable CHECK and foreign key constraints.  */
Changes to src/vdbe.c.
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
  Savepoint *p;
  for(p=db->pSavepoint; p; p=p->pNext) n++;
  assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
  return 1;
}
#endif

/*
** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
** in memory obtained from sqlite3DbMalloc).
*/
static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
  sqlite3 *db = p->db;
  sqlite3DbFree(db, p->zErrMsg);
  p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
  sqlite3_free(pVtab->zErrMsg);
  pVtab->zErrMsg = 0;
}


/*
** Execute as much of a VDBE program as we can then return.
**
** sqlite3VdbeMakeReady() must be called before this routine in order to
** close the program with a final OP_Halt and to set up the callbacks
** and the error message pointer.







<
<
<
<
<
<
<
<
<
<
<
<
<







493
494
495
496
497
498
499













500
501
502
503
504
505
506
  Savepoint *p;
  for(p=db->pSavepoint; p; p=p->pNext) n++;
  assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
  return 1;
}
#endif















/*
** Execute as much of a VDBE program as we can then return.
**
** sqlite3VdbeMakeReady() must be called before this routine in order to
** close the program with a final OP_Halt and to set up the callbacks
** and the error message pointer.
548
549
550
551
552
553
554


555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

581
582
583
584
585
586
587
588








589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

609
610
611
612
613
614
615
  int pc=0;                  /* The program counter */
  Op *aOp = p->aOp;          /* Copy of p->aOp */
  Op *pOp;                   /* Current operation */
  int rc = SQLITE_OK;        /* Value to return */
  sqlite3 *db = p->db;       /* The database */
  u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
  u8 encoding = ENC(db);     /* The database encoding */


#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int checkProgress;         /* True if progress callbacks are enabled */
  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
#endif
  Mem *aMem = p->aMem;       /* Copy of p->aMem */
  Mem *pIn1 = 0;             /* 1st input operand */
  Mem *pIn2 = 0;             /* 2nd input operand */
  Mem *pIn3 = 0;             /* 3rd input operand */
  Mem *pOut = 0;             /* Output operand */
  int iCompare = 0;          /* Result of last OP_Compare operation */
  int *aPermute = 0;         /* Permutation of columns for OP_Compare */
  i64 lastRowid = db->lastRowid;  /* Saved value of the last insert ROWID */
#ifdef VDBE_PROFILE
  u64 start;                 /* CPU clock count at start of opcode */
  int origPc;                /* Program counter at start of opcode */
#endif
  /*** INSERT STACK UNION HERE ***/

  assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
  sqlite3VdbeEnter(p);
  if( p->rc==SQLITE_NOMEM ){
    /* This happens if a malloc() inside a call to sqlite3_column_text() or
    ** sqlite3_column_text16() failed.  */
    goto no_mem;
  }
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );

  p->rc = SQLITE_OK;
  assert( p->explain==0 );
  p->pResultSet = 0;
  db->busyHandler.nBusy = 0;
  CHECK_FOR_INTERRUPT;
  sqlite3VdbeIOTraceSql(p);
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  checkProgress = db->xProgress!=0;








#endif
#ifdef SQLITE_DEBUG
  sqlite3BeginBenignMalloc();
  if( p->pc==0  && (p->db->flags & SQLITE_VdbeListing)!=0 ){
    int i;
    printf("VDBE Program Listing:\n");
    sqlite3VdbePrintSql(p);
    for(i=0; i<p->nOp; i++){
      sqlite3VdbePrintOp(stdout, i, &aOp[i]);
    }
  }
  sqlite3EndBenignMalloc();
#endif
  for(pc=p->pc; rc==SQLITE_OK; pc++){
    assert( pc>=0 && pc<p->nOp );
    if( db->mallocFailed ) goto no_mem;
#ifdef VDBE_PROFILE
    origPc = pc;
    start = sqlite3Hwtime();
#endif

    pOp = &aOp[pc];

    /* Only allow tracing if SQLITE_DEBUG is defined.
    */
#ifdef SQLITE_DEBUG
    if( p->trace ){
      if( pc==0 ){







>
>

<
|






<
















>







|
>
>
>
>
>
>
>
>




















>







535
536
537
538
539
540
541
542
543
544

545
546
547
548
549
550
551

552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
  int pc=0;                  /* The program counter */
  Op *aOp = p->aOp;          /* Copy of p->aOp */
  Op *pOp;                   /* Current operation */
  int rc = SQLITE_OK;        /* Value to return */
  sqlite3 *db = p->db;       /* The database */
  u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
  u8 encoding = ENC(db);     /* The database encoding */
  int iCompare = 0;          /* Result of last OP_Compare operation */
  unsigned nVmStep = 0;      /* Number of virtual machine steps */
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK

  unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
#endif
  Mem *aMem = p->aMem;       /* Copy of p->aMem */
  Mem *pIn1 = 0;             /* 1st input operand */
  Mem *pIn2 = 0;             /* 2nd input operand */
  Mem *pIn3 = 0;             /* 3rd input operand */
  Mem *pOut = 0;             /* Output operand */

  int *aPermute = 0;         /* Permutation of columns for OP_Compare */
  i64 lastRowid = db->lastRowid;  /* Saved value of the last insert ROWID */
#ifdef VDBE_PROFILE
  u64 start;                 /* CPU clock count at start of opcode */
  int origPc;                /* Program counter at start of opcode */
#endif
  /*** INSERT STACK UNION HERE ***/

  assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
  sqlite3VdbeEnter(p);
  if( p->rc==SQLITE_NOMEM ){
    /* This happens if a malloc() inside a call to sqlite3_column_text() or
    ** sqlite3_column_text16() failed.  */
    goto no_mem;
  }
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
  assert( p->bIsReader || p->readOnly!=0 );
  p->rc = SQLITE_OK;
  assert( p->explain==0 );
  p->pResultSet = 0;
  db->busyHandler.nBusy = 0;
  CHECK_FOR_INTERRUPT;
  sqlite3VdbeIOTraceSql(p);
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  if( db->xProgress ){
    assert( 0 < db->nProgressOps );
    nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
    if( nProgressLimit==0 ){
      nProgressLimit = db->nProgressOps;
    }else{
      nProgressLimit %= (unsigned)db->nProgressOps;
    }
  }
#endif
#ifdef SQLITE_DEBUG
  sqlite3BeginBenignMalloc();
  if( p->pc==0  && (p->db->flags & SQLITE_VdbeListing)!=0 ){
    int i;
    printf("VDBE Program Listing:\n");
    sqlite3VdbePrintSql(p);
    for(i=0; i<p->nOp; i++){
      sqlite3VdbePrintOp(stdout, i, &aOp[i]);
    }
  }
  sqlite3EndBenignMalloc();
#endif
  for(pc=p->pc; rc==SQLITE_OK; pc++){
    assert( pc>=0 && pc<p->nOp );
    if( db->mallocFailed ) goto no_mem;
#ifdef VDBE_PROFILE
    origPc = pc;
    start = sqlite3Hwtime();
#endif
    nVmStep++;
    pOp = &aOp[pc];

    /* Only allow tracing if SQLITE_DEBUG is defined.
    */
#ifdef SQLITE_DEBUG
    if( p->trace ){
      if( pc==0 ){
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
      sqlite3_interrupt_count--;
      if( sqlite3_interrupt_count==0 ){
        sqlite3_interrupt(db);
      }
    }
#endif

#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
    /* Call the progress callback if it is configured and the required number
    ** of VDBE ops have been executed (either since this invocation of
    ** sqlite3VdbeExec() or since last time the progress callback was called).
    ** If the progress callback returns non-zero, exit the virtual machine with
    ** a return code SQLITE_ABORT.
    */
    if( checkProgress ){
      if( db->nProgressOps==nProgressOps ){
        int prc;
        prc = db->xProgress(db->pProgressArg);
        if( prc!=0 ){
          rc = SQLITE_INTERRUPT;
          goto vdbe_error_halt;
        }
        nProgressOps = 0;
      }
      nProgressOps++;
    }
#endif

    /* On any opcode with the "out2-prerelease" tag, free any
    ** external allocations out of mem[p2] and set mem[p2] to be
    ** an undefined integer.  Opcodes will either fill in the integer
    ** value or convert mem[p2] to a different type.
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=p->nMem );
      pOut = &aMem[pOp->p2];
      memAboutToChange(p, pOut);
      VdbeMemRelease(pOut);
      pOut->flags = MEM_Int;
    }

    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );
      assert( pOp->p1<=p->nMem );
      assert( memIsValid(&aMem[pOp->p1]) );
      REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
    }
    if( (pOp->opflags & OPFLG_IN2)!=0 ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=p->nMem );
      assert( memIsValid(&aMem[pOp->p2]) );
      REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
    }
    if( (pOp->opflags & OPFLG_IN3)!=0 ){
      assert( pOp->p3>0 );
      assert( pOp->p3<=p->nMem );
      assert( memIsValid(&aMem[pOp->p3]) );
      REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
    }
    if( (pOp->opflags & OPFLG_OUT2)!=0 ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=p->nMem );
      memAboutToChange(p, &aMem[pOp->p2]);
    }
    if( (pOp->opflags & OPFLG_OUT3)!=0 ){
      assert( pOp->p3>0 );
      assert( pOp->p3<=p->nMem );
      memAboutToChange(p, &aMem[pOp->p3]);
    }
#endif
  
    switch( pOp->opcode ){

/*****************************************************************************







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<








|










|





|





|





|




|







626
627
628
629
630
631
632





















633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
      sqlite3_interrupt_count--;
      if( sqlite3_interrupt_count==0 ){
        sqlite3_interrupt(db);
      }
    }
#endif






















    /* On any opcode with the "out2-prerelease" tag, free any
    ** external allocations out of mem[p2] and set mem[p2] to be
    ** an undefined integer.  Opcodes will either fill in the integer
    ** value or convert mem[p2] to a different type.
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=(p->nMem-p->nCursor) );
      pOut = &aMem[pOp->p2];
      memAboutToChange(p, pOut);
      VdbeMemRelease(pOut);
      pOut->flags = MEM_Int;
    }

    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );
      assert( pOp->p1<=(p->nMem-p->nCursor) );
      assert( memIsValid(&aMem[pOp->p1]) );
      REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
    }
    if( (pOp->opflags & OPFLG_IN2)!=0 ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=(p->nMem-p->nCursor) );
      assert( memIsValid(&aMem[pOp->p2]) );
      REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
    }
    if( (pOp->opflags & OPFLG_IN3)!=0 ){
      assert( pOp->p3>0 );
      assert( pOp->p3<=(p->nMem-p->nCursor) );
      assert( memIsValid(&aMem[pOp->p3]) );
      REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
    }
    if( (pOp->opflags & OPFLG_OUT2)!=0 ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=(p->nMem-p->nCursor) );
      memAboutToChange(p, &aMem[pOp->p2]);
    }
    if( (pOp->opflags & OPFLG_OUT3)!=0 ){
      assert( pOp->p3>0 );
      assert( pOp->p3<=(p->nMem-p->nCursor) );
      memAboutToChange(p, &aMem[pOp->p3]);
    }
#endif
  
    switch( pOp->opcode ){

/*****************************************************************************
742
743
744
745
746
747
748













749



















750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
**
** An unconditional jump to address P2.
** The next instruction executed will be 
** the one at index P2 from the beginning of
** the program.
*/
case OP_Goto: {             /* jump */













  CHECK_FOR_INTERRUPT;



















  pc = pOp->p2 - 1;
  break;
}

/* Opcode:  Gosub P1 P2 * * *
**
** Write the current address onto register P1
** and then jump to address P2.
*/
case OP_Gosub: {            /* jump */
  assert( pOp->p1>0 && pOp->p1<=p->nMem );
  pIn1 = &aMem[pOp->p1];
  assert( (pIn1->flags & MEM_Dyn)==0 );
  memAboutToChange(p, pIn1);
  pIn1->flags = MEM_Int;
  pIn1->u.i = pc;
  REGISTER_TRACE(pOp->p1, pIn1);
  pc = pOp->p2 - 1;







>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|









|







718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
**
** An unconditional jump to address P2.
** The next instruction executed will be 
** the one at index P2 from the beginning of
** the program.
*/
case OP_Goto: {             /* jump */
  pc = pOp->p2 - 1;

  /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
  ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
  ** completion.  Check to see if sqlite3_interrupt() has been called
  ** or if the progress callback needs to be invoked. 
  **
  ** This code uses unstructured "goto" statements and does not look clean.
  ** But that is not due to sloppy coding habits. The code is written this
  ** way for performance, to avoid having to run the interrupt and progress
  ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
  ** faster according to "valgrind --tool=cachegrind" */
check_for_interrupt:
  CHECK_FOR_INTERRUPT;
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  /* Call the progress callback if it is configured and the required number
  ** of VDBE ops have been executed (either since this invocation of
  ** sqlite3VdbeExec() or since last time the progress callback was called).
  ** If the progress callback returns non-zero, exit the virtual machine with
  ** a return code SQLITE_ABORT.
  */
  if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
    int prc;
    prc = db->xProgress(db->pProgressArg);
    if( prc!=0 ){
      rc = SQLITE_INTERRUPT;
      goto vdbe_error_halt;
    }
    if( db->xProgress!=0 ){
      nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
    }
  }
#endif
  
  break;
}

/* Opcode:  Gosub P1 P2 * * *
**
** Write the current address onto register P1
** and then jump to address P2.
*/
case OP_Gosub: {            /* jump */
  assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
  pIn1 = &aMem[pOp->p1];
  assert( (pIn1->flags & MEM_Dyn)==0 );
  memAboutToChange(p, pIn1);
  pIn1->flags = MEM_Int;
  pIn1->u.i = pc;
  REGISTER_TRACE(pOp->p1, pIn1);
  pc = pOp->p2 - 1;
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
  }
  rc = sqlite3VdbeHalt(p);
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
  if( rc==SQLITE_BUSY ){
    p->rc = rc = SQLITE_BUSY;
  }else{
    assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
    assert( rc==SQLITE_OK || db->nDeferredCons>0 );
    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
  }
  goto vdbe_return;
}

/* Opcode: Integer P1 P2 * * *
**







|







870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
  }
  rc = sqlite3VdbeHalt(p);
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
  if( rc==SQLITE_BUSY ){
    p->rc = rc = SQLITE_BUSY;
  }else{
    assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
    assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
  }
  goto vdbe_return;
}

/* Opcode: Integer P1 P2 * * *
**
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
** NULL values will not compare equal even if SQLITE_NULLEQ is set on
** OP_Ne or OP_Eq.
*/
case OP_Null: {           /* out2-prerelease */
  int cnt;
  u16 nullFlag;
  cnt = pOp->p3-pOp->p2;
  assert( pOp->p3<=p->nMem );
  pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
  while( cnt>0 ){
    pOut++;
    memAboutToChange(p, pOut);
    VdbeMemRelease(pOut);
    pOut->flags = nullFlag;
    cnt--;







|







973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
** NULL values will not compare equal even if SQLITE_NULLEQ is set on
** OP_Ne or OP_Eq.
*/
case OP_Null: {           /* out2-prerelease */
  int cnt;
  u16 nullFlag;
  cnt = pOp->p3-pOp->p2;
  assert( pOp->p3<=(p->nMem-p->nCursor) );
  pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
  while( cnt>0 ){
    pOut++;
    memAboutToChange(p, pOut);
    VdbeMemRelease(pOut);
    pOut->flags = nullFlag;
    cnt--;
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
  p2 = pOp->p2;
  assert( n>0 && p1>0 && p2>0 );
  assert( p1+n<=p2 || p2+n<=p1 );

  pIn1 = &aMem[p1];
  pOut = &aMem[p2];
  while( n-- ){
    assert( pOut<=&aMem[p->nMem] );
    assert( pIn1<=&aMem[p->nMem] );
    assert( memIsValid(pIn1) );
    memAboutToChange(p, pOut);
    zMalloc = pOut->zMalloc;
    pOut->zMalloc = 0;
    sqlite3VdbeMemMove(pOut, pIn1);
#ifdef SQLITE_DEBUG
    if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){







|
|







1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
  p2 = pOp->p2;
  assert( n>0 && p1>0 && p2>0 );
  assert( p1+n<=p2 || p2+n<=p1 );

  pIn1 = &aMem[p1];
  pOut = &aMem[p2];
  while( n-- ){
    assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
    assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
    assert( memIsValid(pIn1) );
    memAboutToChange(p, pOut);
    zMalloc = pOut->zMalloc;
    pOut->zMalloc = 0;
    sqlite3VdbeMemMove(pOut, pIn1);
#ifdef SQLITE_DEBUG
    if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
** row.
*/
case OP_ResultRow: {
  Mem *pMem;
  int i;
  assert( p->nResColumn==pOp->p2 );
  assert( pOp->p1>0 );
  assert( pOp->p1+pOp->p2<=p->nMem+1 );

  /* If this statement has violated immediate foreign key constraints, do
  ** not return the number of rows modified. And do not RELEASE the statement
  ** transaction. It needs to be rolled back.  */
  if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
    assert( db->flags&SQLITE_CountRows );
    assert( p->usesStmtJournal );







|







1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
** row.
*/
case OP_ResultRow: {
  Mem *pMem;
  int i;
  assert( p->nResColumn==pOp->p2 );
  assert( pOp->p1>0 );
  assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );

  /* If this statement has violated immediate foreign key constraints, do
  ** not return the number of rows modified. And do not RELEASE the statement
  ** transaction. It needs to be rolled back.  */
  if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
    assert( db->flags&SQLITE_CountRows );
    assert( p->usesStmtJournal );
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427


1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466

1467
1468
1469


1470
1471
1472
1473
1474
1475
1476
  sqlite3_context ctx;
  sqlite3_value **apVal;
  int n;

  n = pOp->p5;
  apVal = p->apArg;
  assert( apVal || n==0 );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pOut = &aMem[pOp->p3];
  memAboutToChange(p, pOut);

  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  pArg = &aMem[pOp->p2];
  for(i=0; i<n; i++, pArg++){
    assert( memIsValid(pArg) );
    apVal[i] = pArg;
    Deephemeralize(pArg);
    sqlite3VdbeMemStoreType(pArg);
    REGISTER_TRACE(pOp->p2+i, pArg);
  }

  assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
  if( pOp->p4type==P4_FUNCDEF ){
    ctx.pFunc = pOp->p4.pFunc;
    ctx.pVdbeFunc = 0;
  }else{
    ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
    ctx.pFunc = ctx.pVdbeFunc->pFunc;
  }

  ctx.s.flags = MEM_Null;
  ctx.s.db = db;
  ctx.s.xDel = 0;
  ctx.s.zMalloc = 0;



  /* The output cell may already have a buffer allocated. Move
  ** the pointer to ctx.s so in case the user-function can use
  ** the already allocated buffer instead of allocating a new one.
  */
  sqlite3VdbeMemMove(&ctx.s, pOut);
  MemSetTypeFlag(&ctx.s, MEM_Null);

  ctx.isError = 0;
  if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
    assert( pOp>aOp );
    assert( pOp[-1].p4type==P4_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = pOp[-1].p4.pColl;
  }
  db->lastRowid = lastRowid;
  (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
  lastRowid = db->lastRowid;

  /* If any auxiliary data functions have been called by this user function,
  ** immediately call the destructor for any non-static values.
  */
  if( ctx.pVdbeFunc ){
    sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
    pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
    pOp->p4type = P4_VDBEFUNC;
  }

  if( db->mallocFailed ){
    /* Even though a malloc() has failed, the implementation of the
    ** user function may have called an sqlite3_result_XXX() function
    ** to return a value. The following call releases any resources
    ** associated with such a value.
    */
    sqlite3VdbeMemRelease(&ctx.s);
    goto no_mem;
  }

  /* If the function returned an error, throw an exception */

  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
    rc = ctx.isError;


  }

  /* Copy the result of the function into register P3 */
  sqlite3VdbeChangeEncoding(&ctx.s, encoding);
  sqlite3VdbeMemMove(pOut, &ctx.s);
  if( sqlite3VdbeMemTooBig(pOut) ){
    goto too_big;







|



|










|
<
|
<
<
<
<
<
<




>
>








|
|









<
<
<
<
<
<
<
<
<











>
|
|
|
>
>







1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423

1424






1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449









1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
  sqlite3_context ctx;
  sqlite3_value **apVal;
  int n;

  n = pOp->p5;
  apVal = p->apArg;
  assert( apVal || n==0 );
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pOut = &aMem[pOp->p3];
  memAboutToChange(p, pOut);

  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  pArg = &aMem[pOp->p2];
  for(i=0; i<n; i++, pArg++){
    assert( memIsValid(pArg) );
    apVal[i] = pArg;
    Deephemeralize(pArg);
    sqlite3VdbeMemStoreType(pArg);
    REGISTER_TRACE(pOp->p2+i, pArg);
  }

  assert( pOp->p4type==P4_FUNCDEF );

  ctx.pFunc = pOp->p4.pFunc;






  ctx.s.flags = MEM_Null;
  ctx.s.db = db;
  ctx.s.xDel = 0;
  ctx.s.zMalloc = 0;
  ctx.iOp = pc;
  ctx.pVdbe = p;

  /* The output cell may already have a buffer allocated. Move
  ** the pointer to ctx.s so in case the user-function can use
  ** the already allocated buffer instead of allocating a new one.
  */
  sqlite3VdbeMemMove(&ctx.s, pOut);
  MemSetTypeFlag(&ctx.s, MEM_Null);

  ctx.fErrorOrAux = 0;
  if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
    assert( pOp>aOp );
    assert( pOp[-1].p4type==P4_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = pOp[-1].p4.pColl;
  }
  db->lastRowid = lastRowid;
  (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
  lastRowid = db->lastRowid;










  if( db->mallocFailed ){
    /* Even though a malloc() has failed, the implementation of the
    ** user function may have called an sqlite3_result_XXX() function
    ** to return a value. The following call releases any resources
    ** associated with such a value.
    */
    sqlite3VdbeMemRelease(&ctx.s);
    goto no_mem;
  }

  /* If the function returned an error, throw an exception */
  if( ctx.fErrorOrAux ){
    if( ctx.isError ){
      sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
      rc = ctx.isError;
    }
    sqlite3VdbeDeleteAuxData(p, pc, pOp->p1);
  }

  /* Copy the result of the function into register P3 */
  sqlite3VdbeChangeEncoding(&ctx.s, encoding);
  sqlite3VdbeMemMove(pOut, &ctx.s);
  if( sqlite3VdbeMemTooBig(pOut) ){
    goto too_big;
1834
1835
1836
1837
1838
1839
1840
1841


1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
        res = 1;  /* Results are not equal */
      }
    }else{
      /* SQLITE_NULLEQ is clear and at least one operand is NULL,
      ** then the result is always NULL.
      ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
      */
      if( pOp->p5 & SQLITE_STOREP2 ){


        pOut = &aMem[pOp->p2];
        MemSetTypeFlag(pOut, MEM_Null);
        REGISTER_TRACE(pOp->p2, pOut);
      }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
        pc = pOp->p2-1;
      }
      break;
    }
  }else{
    /* Neither operand is NULL.  Do a comparison. */
    affinity = pOp->p5 & SQLITE_AFF_MASK;
    if( affinity ){







|
>
>



<
<







1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843


1844
1845
1846
1847
1848
1849
1850
        res = 1;  /* Results are not equal */
      }
    }else{
      /* SQLITE_NULLEQ is clear and at least one operand is NULL,
      ** then the result is always NULL.
      ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
      */
      if( pOp->p5 & SQLITE_JUMPIFNULL ){
        pc = pOp->p2-1;
      }else if( pOp->p5 & SQLITE_STOREP2 ){
        pOut = &aMem[pOp->p2];
        MemSetTypeFlag(pOut, MEM_Null);
        REGISTER_TRACE(pOp->p2, pOut);


      }
      break;
    }
  }else{
    /* Neither operand is NULL.  Do a comparison. */
    affinity = pOp->p5 & SQLITE_AFF_MASK;
    if( affinity ){
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
  assert( pKeyInfo!=0 );
  p1 = pOp->p1;
  p2 = pOp->p2;
#if SQLITE_DEBUG
  if( aPermute ){
    int k, mx = 0;
    for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
    assert( p1>0 && p1+mx<=p->nMem+1 );
    assert( p2>0 && p2+mx<=p->nMem+1 );
  }else{
    assert( p1>0 && p1+n<=p->nMem+1 );
    assert( p2>0 && p2+n<=p->nMem+1 );
  }
#endif /* SQLITE_DEBUG */
  for(i=0; i<n; i++){
    idx = aPermute ? aPermute[i] : i;
    assert( memIsValid(&aMem[p1+idx]) );
    assert( memIsValid(&aMem[p2+idx]) );
    REGISTER_TRACE(p1+idx, &aMem[p1+idx]);







|
|

|
|







1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
  assert( pKeyInfo!=0 );
  p1 = pOp->p1;
  p2 = pOp->p2;
#if SQLITE_DEBUG
  if( aPermute ){
    int k, mx = 0;
    for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
    assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
    assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
  }else{
    assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
    assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
  }
#endif /* SQLITE_DEBUG */
  for(i=0; i<n; i++){
    idx = aPermute ? aPermute[i] : i;
    assert( memIsValid(&aMem[p1+idx]) );
    assert( memIsValid(&aMem[p2+idx]) );
    REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207


  p1 = pOp->p1;
  p2 = pOp->p2;
  pC = 0;
  memset(&sMem, 0, sizeof(sMem));
  assert( p1<p->nCursor );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  zRec = 0;

  /* This block sets the variable payloadSize to be the total number of
  ** bytes in the record.
  **







|







2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204


  p1 = pOp->p1;
  p2 = pOp->p2;
  pC = 0;
  memset(&sMem, 0, sizeof(sMem));
  assert( p1<p->nCursor );
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  zRec = 0;

  /* This block sets the variable payloadSize to be the total number of
  ** bytes in the record.
  **
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
  char cAff;               /* A single character of affinity */

  zAffinity = pOp->p4.z;
  assert( zAffinity!=0 );
  assert( zAffinity[pOp->p2]==0 );
  pIn1 = &aMem[pOp->p1];
  while( (cAff = *(zAffinity++))!=0 ){
    assert( pIn1 <= &p->aMem[p->nMem] );
    assert( memIsValid(pIn1) );
    ExpandBlob(pIn1);
    applyAffinity(pIn1, cAff, encoding);
    pIn1++;
  }
  break;
}







|







2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
  char cAff;               /* A single character of affinity */

  zAffinity = pOp->p4.z;
  assert( zAffinity!=0 );
  assert( zAffinity[pOp->p2]==0 );
  pIn1 = &aMem[pOp->p1];
  while( (cAff = *(zAffinity++))!=0 ){
    assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
    assert( memIsValid(pIn1) );
    ExpandBlob(pIn1);
    applyAffinity(pIn1, cAff, encoding);
    pIn1++;
  }
  break;
}
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
  ** of the record to data0.
  */
  nData = 0;         /* Number of bytes of data space */
  nHdr = 0;          /* Number of bytes of header space */
  nZero = 0;         /* Number of zero bytes at the end of the record */
  nField = pOp->p1;
  zAffinity = pOp->p4.z;
  assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
  pData0 = &aMem[nField];
  nField = pOp->p2;
  pLast = &pData0[nField-1];
  file_format = p->minWriteFileFormat;

  /* Identify the output register */
  assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );







|







2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
  ** of the record to data0.
  */
  nData = 0;         /* Number of bytes of data space */
  nHdr = 0;          /* Number of bytes of header space */
  nZero = 0;         /* Number of zero bytes at the end of the record */
  nField = pOp->p1;
  zAffinity = pOp->p4.z;
  assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
  pData0 = &aMem[nField];
  nField = pOp->p2;
  pLast = &pData0[nField-1];
  file_format = p->minWriteFileFormat;

  /* Identify the output register */
  assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
    i += putVarint32(&zNewRecord[i], serial_type);      /* serial type */
  }
  for(pRec=pData0; pRec<=pLast; pRec++){  /* serial data */
    i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
  }
  assert( i==nByte );

  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pOut->n = (int)nByte;
  pOut->flags = MEM_Blob | MEM_Dyn;
  pOut->xDel = 0;
  if( nZero ){
    pOut->u.nZero = nZero;
    pOut->flags |= MEM_Zero;
  }







|







2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
    i += putVarint32(&zNewRecord[i], serial_type);      /* serial type */
  }
  for(pRec=pData0; pRec<=pLast; pRec++){  /* serial data */
    i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
  }
  assert( i==nByte );

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pOut->n = (int)nByte;
  pOut->flags = MEM_Blob | MEM_Dyn;
  pOut->xDel = 0;
  if( nZero ){
    pOut->u.nZero = nZero;
    pOut->flags |= MEM_Zero;
  }
2679
2680
2681
2682
2683
2684
2685

2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
  /* Assert that the p1 parameter is valid. Also that if there is no open
  ** transaction, then there cannot be any savepoints. 
  */
  assert( db->pSavepoint==0 || db->autoCommit==0 );
  assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
  assert( db->pSavepoint || db->isTransactionSavepoint==0 );
  assert( checkSavepointCount(db) );


  if( p1==SAVEPOINT_BEGIN ){
    if( db->writeVdbeCnt>0 ){
      /* A new savepoint cannot be created if there are active write 
      ** statements (i.e. open read/write incremental blob handles).
      */
      sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
        "SQL statements in progress");
      rc = SQLITE_BUSY;
    }else{







>


|







2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
  /* Assert that the p1 parameter is valid. Also that if there is no open
  ** transaction, then there cannot be any savepoints. 
  */
  assert( db->pSavepoint==0 || db->autoCommit==0 );
  assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
  assert( db->pSavepoint || db->isTransactionSavepoint==0 );
  assert( checkSavepointCount(db) );
  assert( p->bIsReader );

  if( p1==SAVEPOINT_BEGIN ){
    if( db->nVdbeWrite>0 ){
      /* A new savepoint cannot be created if there are active write 
      ** statements (i.e. open read/write incremental blob handles).
      */
      sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
        "SQL statements in progress");
      rc = SQLITE_BUSY;
    }else{
2721
2722
2723
2724
2725
2726
2727

2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
          db->nSavepoint++;
        }
    
        /* Link the new savepoint into the database handle's list. */
        pNew->pNext = db->pSavepoint;
        db->pSavepoint = pNew;
        pNew->nDeferredCons = db->nDeferredCons;

      }
    }
  }else{
    iSavepoint = 0;

    /* Find the named savepoint. If there is no such savepoint, then an
    ** an error is returned to the user.  */
    for(
      pSavepoint = db->pSavepoint; 
      pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
      pSavepoint = pSavepoint->pNext
    ){
      iSavepoint++;
    }
    if( !pSavepoint ){
      sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
      rc = SQLITE_ERROR;
    }else if( db->writeVdbeCnt>0 && p1==SAVEPOINT_RELEASE ){
      /* It is not possible to release (commit) a savepoint if there are 
      ** active write statements.
      */
      sqlite3SetString(&p->zErrMsg, db, 
        "cannot release savepoint - SQL statements in progress"
      );
      rc = SQLITE_BUSY;







>

















|







2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
          db->nSavepoint++;
        }
    
        /* Link the new savepoint into the database handle's list. */
        pNew->pNext = db->pSavepoint;
        db->pSavepoint = pNew;
        pNew->nDeferredCons = db->nDeferredCons;
        pNew->nDeferredImmCons = db->nDeferredImmCons;
      }
    }
  }else{
    iSavepoint = 0;

    /* Find the named savepoint. If there is no such savepoint, then an
    ** an error is returned to the user.  */
    for(
      pSavepoint = db->pSavepoint; 
      pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
      pSavepoint = pSavepoint->pNext
    ){
      iSavepoint++;
    }
    if( !pSavepoint ){
      sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
      rc = SQLITE_ERROR;
    }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
      /* It is not possible to release (commit) a savepoint if there are 
      ** active write statements.
      */
      sqlite3SetString(&p->zErrMsg, db, 
        "cannot release savepoint - SQL statements in progress"
      );
      rc = SQLITE_BUSY;
2808
2809
2810
2811
2812
2813
2814

2815
2816
2817
2818
2819
2820
2821
        db->pSavepoint = pSavepoint->pNext;
        sqlite3DbFree(db, pSavepoint);
        if( !isTransaction ){
          db->nSavepoint--;
        }
      }else{
        db->nDeferredCons = pSavepoint->nDeferredCons;

      }

      if( !isTransaction ){
        rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
      }
    }







>







2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
        db->pSavepoint = pSavepoint->pNext;
        sqlite3DbFree(db, pSavepoint);
        if( !isTransaction ){
          db->nSavepoint--;
        }
      }else{
        db->nDeferredCons = pSavepoint->nDeferredCons;
        db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
      }

      if( !isTransaction ){
        rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
      }
    }
2839
2840
2841
2842
2843
2844
2845
2846

2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
  int turnOnAC;

  desiredAutoCommit = pOp->p1;
  iRollback = pOp->p2;
  turnOnAC = desiredAutoCommit && !db->autoCommit;
  assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
  assert( desiredAutoCommit==1 || iRollback==0 );
  assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */


#if 0
  if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
    /* If this instruction implements a ROLLBACK and other VMs are
    ** still running, and a transaction is active, return an error indicating
    ** that the other VMs must complete first. 
    */
    sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
        "SQL statements in progress");
    rc = SQLITE_BUSY;
  }else
#endif
  if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
    /* If this instruction implements a COMMIT and other VMs are writing
    ** return an error indicating that the other VMs must complete first. 
    */
    sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
        "SQL statements in progress");
    rc = SQLITE_BUSY;
  }else if( desiredAutoCommit!=db->autoCommit ){







|
>


|









|







2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
  int turnOnAC;

  desiredAutoCommit = pOp->p1;
  iRollback = pOp->p2;
  turnOnAC = desiredAutoCommit && !db->autoCommit;
  assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
  assert( desiredAutoCommit==1 || iRollback==0 );
  assert( db->nVdbeActive>0 );  /* At least this one VM is active */
  assert( p->bIsReader );

#if 0
  if( turnOnAC && iRollback && db->nVdbeActive>1 ){
    /* If this instruction implements a ROLLBACK and other VMs are
    ** still running, and a transaction is active, return an error indicating
    ** that the other VMs must complete first. 
    */
    sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
        "SQL statements in progress");
    rc = SQLITE_BUSY;
  }else
#endif
  if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
    /* If this instruction implements a COMMIT and other VMs are writing
    ** return an error indicating that the other VMs must complete first. 
    */
    sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
        "SQL statements in progress");
    rc = SQLITE_BUSY;
  }else if( desiredAutoCommit!=db->autoCommit ){
2928
2929
2930
2931
2932
2933
2934


2935
2936




2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968

2969
2970
2971
2972
2973
2974
2975
** will automatically commit when the VDBE halts.
**
** If P2 is zero, then a read-lock is obtained on the database file.
*/
case OP_Transaction: {
  Btree *pBt;



  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );




  pBt = db->aDb[pOp->p1].pBt;

  if( pBt ){
    rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
    if( rc==SQLITE_BUSY ){
      p->pc = pc;
      p->rc = rc = SQLITE_BUSY;
      goto vdbe_return;
    }
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }

    if( pOp->p2 && p->usesStmtJournal 
     && (db->autoCommit==0 || db->activeVdbeCnt>1) 
    ){
      assert( sqlite3BtreeIsInTrans(pBt) );
      if( p->iStatement==0 ){
        assert( db->nStatement>=0 && db->nSavepoint>=0 );
        db->nStatement++; 
        p->iStatement = db->nSavepoint + db->nStatement;
      }

      rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
      if( rc==SQLITE_OK ){
        rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
      }

      /* Store the current value of the database handles deferred constraint
      ** counter. If the statement transaction needs to be rolled back,
      ** the value of this counter needs to be restored too.  */
      p->nStmtDefCons = db->nDeferredCons;

    }
  }
  break;
}

/* Opcode: ReadCookie P1 P2 P3 * *
**







>
>


>
>
>
>














|

















>







2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
** will automatically commit when the VDBE halts.
**
** If P2 is zero, then a read-lock is obtained on the database file.
*/
case OP_Transaction: {
  Btree *pBt;

  assert( p->bIsReader );
  assert( p->readOnly==0 || pOp->p2==0 );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
    rc = SQLITE_READONLY;
    goto abort_due_to_error;
  }
  pBt = db->aDb[pOp->p1].pBt;

  if( pBt ){
    rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
    if( rc==SQLITE_BUSY ){
      p->pc = pc;
      p->rc = rc = SQLITE_BUSY;
      goto vdbe_return;
    }
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }

    if( pOp->p2 && p->usesStmtJournal 
     && (db->autoCommit==0 || db->nVdbeRead>1) 
    ){
      assert( sqlite3BtreeIsInTrans(pBt) );
      if( p->iStatement==0 ){
        assert( db->nStatement>=0 && db->nSavepoint>=0 );
        db->nStatement++; 
        p->iStatement = db->nSavepoint + db->nStatement;
      }

      rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
      if( rc==SQLITE_OK ){
        rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
      }

      /* Store the current value of the database handles deferred constraint
      ** counter. If the statement transaction needs to be rolled back,
      ** the value of this counter needs to be restored too.  */
      p->nStmtDefCons = db->nDeferredCons;
      p->nStmtDefImmCons = db->nDeferredImmCons;
    }
  }
  break;
}

/* Opcode: ReadCookie P1 P2 P3 * *
**
2984
2985
2986
2987
2988
2989
2990

2991
2992
2993
2994
2995
2996
2997
** executing this instruction.
*/
case OP_ReadCookie: {               /* out2-prerelease */
  int iMeta;
  int iDb;
  int iCookie;


  iDb = pOp->p1;
  iCookie = pOp->p3;
  assert( pOp->p3<SQLITE_N_BTREE_META );
  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );
  assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );








>







2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
** executing this instruction.
*/
case OP_ReadCookie: {               /* out2-prerelease */
  int iMeta;
  int iDb;
  int iCookie;

  assert( p->bIsReader );
  iDb = pOp->p1;
  iCookie = pOp->p3;
  assert( pOp->p3<SQLITE_N_BTREE_META );
  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );
  assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );

3011
3012
3013
3014
3015
3016
3017

3018
3019
3020
3021
3022
3023
3024
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {       /* in3 */
  Db *pDb;
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );

  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
  pIn3 = &aMem[pOp->p3];
  sqlite3VdbeMemIntegerify(pIn3);
  /* See note about index shifting on OP_ReadCookie */
  rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);







>







3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {       /* in3 */
  Db *pDb;
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  assert( p->readOnly==0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
  pIn3 = &aMem[pOp->p3];
  sqlite3VdbeMemIntegerify(pIn3);
  /* See note about index shifting on OP_ReadCookie */
  rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3061
3062
3063
3064
3065
3066
3067

3068
3069
3070
3071
3072
3073
3074
  int iMeta;
  int iGen;
  Btree *pBt;

  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );

  pBt = db->aDb[pOp->p1].pBt;
  if( pBt ){
    sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
    iGen = db->aDb[pOp->p1].pSchema->iGeneration;
  }else{
    iGen = iMeta = 0;
  }







>







3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
  int iMeta;
  int iGen;
  Btree *pBt;

  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
  assert( p->bIsReader );
  pBt = db->aDb[pOp->p1].pBt;
  if( pBt ){
    sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
    iGen = db->aDb[pOp->p1].pSchema->iGeneration;
  }else{
    iGen = iMeta = 0;
  }
3156
3157
3158
3159
3160
3161
3162


3163
3164
3165
3166
3167
3168
3169
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;

  assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
  assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );



  if( p->expired ){
    rc = SQLITE_ABORT;
    break;
  }

  nField = 0;







>
>







3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;

  assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
  assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
  assert( p->bIsReader );
  assert( pOp->opcode==OP_OpenRead || p->readOnly==0 );

  if( p->expired ){
    rc = SQLITE_ABORT;
    break;
  }

  nField = 0;
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
      p->minWriteFileFormat = pDb->pSchema->file_format;
    }
  }else{
    wrFlag = 0;
  }
  if( pOp->p5 & OPFLAG_P2ISREG ){
    assert( p2>0 );
    assert( p2<=p->nMem );
    pIn2 = &aMem[p2];
    assert( memIsValid(pIn2) );
    assert( (pIn2->flags & MEM_Int)!=0 );
    sqlite3VdbeMemIntegerify(pIn2);
    p2 = (int)pIn2->u.i;
    /* The p2 value always comes from a prior OP_CreateTable opcode and
    ** that opcode will always set the p2 value to 2 or more or else fail.







|







3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
      p->minWriteFileFormat = pDb->pSchema->file_format;
    }
  }else{
    wrFlag = 0;
  }
  if( pOp->p5 & OPFLAG_P2ISREG ){
    assert( p2>0 );
    assert( p2<=(p->nMem-p->nCursor) );
    pIn2 = &aMem[p2];
    assert( memIsValid(pIn2) );
    assert( (pIn2->flags & MEM_Int)!=0 );
    sqlite3VdbeMemIntegerify(pIn2);
    p2 = (int)pIn2->u.i;
    /* The p2 value always comes from a prior OP_CreateTable opcode and
    ** that opcode will always set the p2 value to 2 or more or else fail.
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
  UnpackedRecord r;                  /* B-Tree index search key */
  i64 R;                             /* Rowid stored in register P3 */

  pIn3 = &aMem[pOp->p3];
  aMx = &aMem[pOp->p4.i];
  /* Assert that the values of parameters P1 and P4 are in range. */
  assert( pOp->p4type==P4_INT32 );
  assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );

  /* Find the index cursor. */
  pCx = p->apCsr[pOp->p1];
  assert( pCx->deferredMoveto==0 );
  pCx->seekResult = 0;
  pCx->cacheStatus = CACHE_STALE;







|







3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
  UnpackedRecord r;                  /* B-Tree index search key */
  i64 R;                             /* Rowid stored in register P3 */

  pIn3 = &aMem[pOp->p3];
  aMx = &aMem[pOp->p4.i];
  /* Assert that the values of parameters P1 and P4 are in range. */
  assert( pOp->p4type==P4_INT32 );
  assert( pOp->p4.i>0 && pOp->p4.i<=(p->nMem-p->nCursor) );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );

  /* Find the index cursor. */
  pCx = p->apCsr[pOp->p1];
  assert( pCx->deferredMoveto==0 );
  pCx->seekResult = 0;
  pCx->cacheStatus = CACHE_STALE;
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
        if( p->pFrame ){
          for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
          /* Assert that P3 is a valid memory cell. */
          assert( pOp->p3<=pFrame->nMem );
          pMem = &pFrame->aMem[pOp->p3];
        }else{
          /* Assert that P3 is a valid memory cell. */
          assert( pOp->p3<=p->nMem );
          pMem = &aMem[pOp->p3];
          memAboutToChange(p, pMem);
        }
        assert( memIsValid(pMem) );

        REGISTER_TRACE(pOp->p3, pMem);
        sqlite3VdbeMemIntegerify(pMem);







|







3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
        if( p->pFrame ){
          for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
          /* Assert that P3 is a valid memory cell. */
          assert( pOp->p3<=pFrame->nMem );
          pMem = &pFrame->aMem[pOp->p3];
        }else{
          /* Assert that P3 is a valid memory cell. */
          assert( pOp->p3<=(p->nMem-p->nCursor) );
          pMem = &aMem[pOp->p3];
          memAboutToChange(p, pMem);
        }
        assert( memIsValid(pMem) );

        REGISTER_TRACE(pOp->p3, pMem);
        sqlite3VdbeMemIntegerify(pMem);
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
    v = pC->movetoTarget;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  }else if( pC->pVtabCursor ){
    pVtab = pC->pVtabCursor->pVtab;
    pModule = pVtab->pModule;
    assert( pModule->xRowid );
    rc = pModule->xRowid(pC->pVtabCursor, &v);
    importVtabErrMsg(p, pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{
    assert( pC->pCursor!=0 );
    rc = sqlite3VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    if( pC->rowidIsValid ){
      v = pC->lastRowid;







|







4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
    v = pC->movetoTarget;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  }else if( pC->pVtabCursor ){
    pVtab = pC->pVtabCursor->pVtab;
    pModule = pVtab->pModule;
    assert( pModule->xRowid );
    rc = pModule->xRowid(pC->pVtabCursor, &v);
    sqlite3VtabImportErrmsg(p, pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{
    assert( pC->pCursor!=0 );
    rc = sqlite3VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    if( pC->rowidIsValid ){
      v = pC->lastRowid;
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
*/
case OP_SorterSort:    /* jump */
case OP_Sort: {        /* jump */
#ifdef SQLITE_TEST
  sqlite3_sort_count++;
  sqlite3_search_count--;
#endif
  p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
  /* Fall through into OP_Rewind */
}
/* Opcode: Rewind P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.







|







4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
*/
case OP_SorterSort:    /* jump */
case OP_Sort: {        /* jump */
#ifdef SQLITE_TEST
  sqlite3_sort_count++;
  sqlite3_search_count--;
#endif
  p->aCounter[SQLITE_STMTSTATUS_SORT]++;
  /* Fall through into OP_Rewind */
}
/* Opcode: Rewind P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
*/
case OP_SorterNext:    /* jump */
case OP_Prev:          /* jump */
case OP_Next: {        /* jump */
  VdbeCursor *pC;
  int res;

  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5<=ArraySize(p->aCounter) );
  pC = p->apCsr[pOp->p1];
  if( pC==0 ){
    break;  /* See ticket #2273 */
  }
  assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
  if( isSorter(pC) ){
    assert( pOp->opcode==OP_SorterNext );
    rc = sqlite3VdbeSorterNext(db, pC, &res);
  }else{
    res = 1;
    assert( pC->deferredMoveto==0 );
    assert( pC->pCursor );
    assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
    assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
    rc = pOp->p4.xAdvance(pC->pCursor, &res);
  }
  pC->nullRow = (u8)res;
  pC->cacheStatus = CACHE_STALE;
  if( res==0 ){
    pc = pOp->p2 - 1;
    if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
#ifdef SQLITE_TEST
    sqlite3_search_count++;
#endif
  }
  pC->rowidIsValid = 0;
  break;
}

/* Opcode: IdxInsert P1 P2 P3 * P5
**
** Register P2 holds an SQL index key made using the
** MakeRecord instructions.  This opcode writes that key
** into the index P1.  Data for the entry is nil.







<

|









|










|





|







4499
4500
4501
4502
4503
4504
4505

4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
*/
case OP_SorterNext:    /* jump */
case OP_Prev:          /* jump */
case OP_Next: {        /* jump */
  VdbeCursor *pC;
  int res;


  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5<ArraySize(p->aCounter) );
  pC = p->apCsr[pOp->p1];
  if( pC==0 ){
    break;  /* See ticket #2273 */
  }
  assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
  if( isSorter(pC) ){
    assert( pOp->opcode==OP_SorterNext );
    rc = sqlite3VdbeSorterNext(db, pC, &res);
  }else{
    /* res = 1; // Always initialized by the xAdvance() call */
    assert( pC->deferredMoveto==0 );
    assert( pC->pCursor );
    assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
    assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
    rc = pOp->p4.xAdvance(pC->pCursor, &res);
  }
  pC->nullRow = (u8)res;
  pC->cacheStatus = CACHE_STALE;
  if( res==0 ){
    pc = pOp->p2 - 1;
    p->aCounter[pOp->p5]++;
#ifdef SQLITE_TEST
    sqlite3_search_count++;
#endif
  }
  pC->rowidIsValid = 0;
  goto check_for_interrupt;
}

/* Opcode: IdxInsert P1 P2 P3 * P5
**
** Register P2 holds an SQL index key made using the
** MakeRecord instructions.  This opcode writes that key
** into the index P1.  Data for the entry is nil.
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
case OP_IdxDelete: {
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
  UnpackedRecord r;

  assert( pOp->p3>0 );
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  if( ALWAYS(pCrsr!=0) ){
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)pOp->p3;







|







4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
case OP_IdxDelete: {
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
  UnpackedRecord r;

  assert( pOp->p3>0 );
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  if( ALWAYS(pCrsr!=0) ){
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)pOp->p3;
4726
4727
4728
4729
4730
4731
4732

4733
4734
4735
4736


4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
*/
case OP_Destroy: {     /* out2-prerelease */
  int iMoved;
  int iCnt;
  Vdbe *pVdbe;
  int iDb;


#ifndef SQLITE_OMIT_VIRTUALTABLE
  iCnt = 0;
  for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
    if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){


      iCnt++;
    }
  }
#else
  iCnt = db->activeVdbeCnt;
#endif
  pOut->flags = MEM_Null;
  if( iCnt>1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    iDb = pOp->p3;







>



|
>
>




|







4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
*/
case OP_Destroy: {     /* out2-prerelease */
  int iMoved;
  int iCnt;
  Vdbe *pVdbe;
  int iDb;

  assert( p->readOnly==0 );
#ifndef SQLITE_OMIT_VIRTUALTABLE
  iCnt = 0;
  for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
    if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader 
     && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 
    ){
      iCnt++;
    }
  }
#else
  iCnt = db->nVdbeRead;
#endif
  pOut->flags = MEM_Null;
  if( iCnt>1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    iDb = pOp->p3;
4781
4782
4783
4784
4785
4786
4787


4788
4789
4790
4791
4792
4793
4794
**
** See also: Destroy
*/
case OP_Clear: {
  int nChange;
 
  nChange = 0;


  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
  );
  if( pOp->p3 ){
    p->nChange += nChange;
    if( pOp->p3>0 ){







>
>







4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
**
** See also: Destroy
*/
case OP_Clear: {
  int nChange;
 
  nChange = 0;
  assert( p->readOnly==0 );
  assert( pOp->p1!=1 );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
  );
  if( pOp->p3 ){
    p->nChange += nChange;
    if( pOp->p3>0 ){
4827
4828
4829
4830
4831
4832
4833

4834
4835
4836
4837
4838
4839
4840
  int pgno;
  int flags;
  Db *pDb;

  pgno = 0;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );

  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){
    /* flags = BTREE_INTKEY; */
    flags = BTREE_INTKEY;
  }else{
    flags = BTREE_BLOBKEY;







>







4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
  int pgno;
  int flags;
  Db *pDb;

  pgno = 0;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  assert( p->readOnly==0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){
    /* flags = BTREE_INTKEY; */
    flags = BTREE_INTKEY;
  }else{
    flags = BTREE_BLOBKEY;
4974
4975
4976
4977
4978
4979
4980
4981

4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
case OP_IntegrityCk: {
  int nRoot;      /* Number of tables to check.  (Number of root pages.) */
  int *aRoot;     /* Array of rootpage numbers for tables to be checked */
  int j;          /* Loop counter */
  int nErr;       /* Number of errors reported */
  char *z;        /* Text of the error report */
  Mem *pnErr;     /* Register keeping track of errors remaining */
  

  nRoot = pOp->p2;
  assert( nRoot>0 );
  aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
  if( aRoot==0 ) goto no_mem;
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pnErr = &aMem[pOp->p3];
  assert( (pnErr->flags & MEM_Int)!=0 );
  assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
  pIn1 = &aMem[pOp->p1];
  for(j=0; j<nRoot; j++){
    aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
  }







|
>




|







4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
case OP_IntegrityCk: {
  int nRoot;      /* Number of tables to check.  (Number of root pages.) */
  int *aRoot;     /* Array of rootpage numbers for tables to be checked */
  int j;          /* Loop counter */
  int nErr;       /* Number of errors reported */
  char *z;        /* Text of the error report */
  Mem *pnErr;     /* Register keeping track of errors remaining */

  assert( p->bIsReader );
  nRoot = pOp->p2;
  assert( nRoot>0 );
  aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
  if( aRoot==0 ) goto no_mem;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pnErr = &aMem[pOp->p3];
  assert( (pnErr->flags & MEM_Int)!=0 );
  assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
  pIn1 = &aMem[pOp->p1];
  for(j=0; j<nRoot; j++){
    aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
  }
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
**
** Extract the smallest value from boolean index P1 and put that value into
** register P3.  Or, if boolean index P1 is initially empty, leave P3
** unchanged and jump to instruction P2.
*/
case OP_RowSetRead: {       /* jump, in1, out3 */
  i64 val;
  CHECK_FOR_INTERRUPT;
  pIn1 = &aMem[pOp->p1];
  if( (pIn1->flags & MEM_RowSet)==0 
   || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
  ){
    /* The boolean index is empty */
    sqlite3VdbeMemSetNull(pIn1);
    pc = pOp->p2 - 1;
  }else{
    /* A value was pulled from the index */
    sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
  }
  break;
}

/* Opcode: RowSetTest P1 P2 P3 P4
**
** Register P3 is assumed to hold a 64-bit integer value. If register P1
** contains a RowSet object and that RowSet object contains
** the value held in P3, jump to register P2. Otherwise, insert the







|











|







5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
**
** Extract the smallest value from boolean index P1 and put that value into
** register P3.  Or, if boolean index P1 is initially empty, leave P3
** unchanged and jump to instruction P2.
*/
case OP_RowSetRead: {       /* jump, in1, out3 */
  i64 val;

  pIn1 = &aMem[pOp->p1];
  if( (pIn1->flags & MEM_RowSet)==0 
   || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
  ){
    /* The boolean index is empty */
    sqlite3VdbeMemSetNull(pIn1);
    pc = pOp->p2 - 1;
  }else{
    /* A value was pulled from the index */
    sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
  }
  goto check_for_interrupt;
}

/* Opcode: RowSetTest P1 P2 P3 P4
**
** Register P3 is assumed to hold a 64-bit integer value. If register P1
** contains a RowSet object and that RowSet object contains
** the value held in P3, jump to register P2. Otherwise, insert the
5261
5262
5263
5264
5265
5266
5267


5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
**
** Increment a "constraint counter" by P2 (P2 may be negative or positive).
** If P1 is non-zero, the database constraint counter is incremented 
** (deferred foreign key constraints). Otherwise, if P1 is zero, the 
** statement counter is incremented (immediate foreign key constraints).
*/
case OP_FkCounter: {


  if( pOp->p1 ){
    db->nDeferredCons += pOp->p2;
  }else{
    p->nFkConstraint += pOp->p2;
  }
  break;
}

/* Opcode: FkIfZero P1 P2 * * *
**
** This opcode tests if a foreign key constraint-counter is currently zero.
** If so, jump to instruction P2. Otherwise, fall through to the next 
** instruction.
**
** If P1 is non-zero, then the jump is taken if the database constraint-counter
** is zero (the one that counts deferred constraint violations). If P1 is
** zero, the jump is taken if the statement constraint-counter is zero
** (immediate foreign key constraint violations).
*/
case OP_FkIfZero: {         /* jump */
  if( pOp->p1 ){
    if( db->nDeferredCons==0 ) pc = pOp->p2-1;
  }else{
    if( p->nFkConstraint==0 ) pc = pOp->p2-1;
  }
  break;
}
#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */

#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Opcode: MemMax P1 P2 * * *







>
>
|




















|

|







5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
**
** Increment a "constraint counter" by P2 (P2 may be negative or positive).
** If P1 is non-zero, the database constraint counter is incremented 
** (deferred foreign key constraints). Otherwise, if P1 is zero, the 
** statement counter is incremented (immediate foreign key constraints).
*/
case OP_FkCounter: {
  if( db->flags & SQLITE_DeferFKs ){
    db->nDeferredImmCons += pOp->p2;
  }else if( pOp->p1 ){
    db->nDeferredCons += pOp->p2;
  }else{
    p->nFkConstraint += pOp->p2;
  }
  break;
}

/* Opcode: FkIfZero P1 P2 * * *
**
** This opcode tests if a foreign key constraint-counter is currently zero.
** If so, jump to instruction P2. Otherwise, fall through to the next 
** instruction.
**
** If P1 is non-zero, then the jump is taken if the database constraint-counter
** is zero (the one that counts deferred constraint violations). If P1 is
** zero, the jump is taken if the statement constraint-counter is zero
** (immediate foreign key constraint violations).
*/
case OP_FkIfZero: {         /* jump */
  if( pOp->p1 ){
    if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
  }else{
    if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
  }
  break;
}
#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */

#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Opcode: MemMax P1 P2 * * *
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
  for(i=0; i<n; i++, pRec++){
    assert( memIsValid(pRec) );
    apVal[i] = pRec;
    memAboutToChange(p, pRec);
    sqlite3VdbeMemStoreType(pRec);
  }
  ctx.pFunc = pOp->p4.pFunc;
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  ctx.pMem = pMem = &aMem[pOp->p3];
  pMem->n++;
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.zMalloc = 0;
  ctx.s.xDel = 0;
  ctx.s.db = db;
  ctx.isError = 0;
  ctx.pColl = 0;
  ctx.skipFlag = 0;
  if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p4type==P4_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = pOp[-1].p4.pColl;
  }
  (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
  if( ctx.isError ){







|










|







5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
  for(i=0; i<n; i++, pRec++){
    assert( memIsValid(pRec) );
    apVal[i] = pRec;
    memAboutToChange(p, pRec);
    sqlite3VdbeMemStoreType(pRec);
  }
  ctx.pFunc = pOp->p4.pFunc;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  ctx.pMem = pMem = &aMem[pOp->p3];
  pMem->n++;
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.zMalloc = 0;
  ctx.s.xDel = 0;
  ctx.s.db = db;
  ctx.isError = 0;
  ctx.pColl = 0;
  ctx.skipFlag = 0;
  if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p4type==P4_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = pOp[-1].p4.pColl;
  }
  (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
  if( ctx.isError ){
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
** argument is not used by this opcode.  It is only there to disambiguate
** functions that can take varying numbers of arguments.  The
** P4 argument is only needed for the degenerate case where
** the step function was not previously called.
*/
case OP_AggFinal: {
  Mem *pMem;
  assert( pOp->p1>0 && pOp->p1<=p->nMem );
  pMem = &aMem[pOp->p1];
  assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
  rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
  if( rc ){
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
  }
  sqlite3VdbeChangeEncoding(pMem, encoding);







|







5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
** argument is not used by this opcode.  It is only there to disambiguate
** functions that can take varying numbers of arguments.  The
** P4 argument is only needed for the degenerate case where
** the step function was not previously called.
*/
case OP_AggFinal: {
  Mem *pMem;
  assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
  pMem = &aMem[pOp->p1];
  assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
  rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
  if( rc ){
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
  }
  sqlite3VdbeChangeEncoding(pMem, encoding);
5480
5481
5482
5483
5484
5485
5486

5487
5488
5489
5490
5491
5492
5493
** mem[P3+2] are initialized to -1.
*/
case OP_Checkpoint: {
  int i;                          /* Loop counter */
  int aRes[3];                    /* Results */
  Mem *pMem;                      /* Write results here */


  aRes[0] = 0;
  aRes[1] = aRes[2] = -1;
  assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
       || pOp->p2==SQLITE_CHECKPOINT_FULL
       || pOp->p2==SQLITE_CHECKPOINT_RESTART
  );
  rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);







>







5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
** mem[P3+2] are initialized to -1.
*/
case OP_Checkpoint: {
  int i;                          /* Loop counter */
  int aRes[3];                    /* Results */
  Mem *pMem;                      /* Write results here */

  assert( p->readOnly==0 );
  aRes[0] = 0;
  aRes[1] = aRes[2] = -1;
  assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
       || pOp->p2==SQLITE_CHECKPOINT_FULL
       || pOp->p2==SQLITE_CHECKPOINT_RESTART
  );
  rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
5529
5530
5531
5532
5533
5534
5535

5536
5537
5538
5539
5540
5541
5542
       || eNew==PAGER_JOURNALMODE_PERSIST 
       || eNew==PAGER_JOURNALMODE_OFF
       || eNew==PAGER_JOURNALMODE_MEMORY
       || eNew==PAGER_JOURNALMODE_WAL
       || eNew==PAGER_JOURNALMODE_QUERY
  );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );


  pBt = db->aDb[pOp->p1].pBt;
  pPager = sqlite3BtreePager(pBt);
  eOld = sqlite3PagerGetJournalMode(pPager);
  if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
  if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;








>







5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
       || eNew==PAGER_JOURNALMODE_PERSIST 
       || eNew==PAGER_JOURNALMODE_OFF
       || eNew==PAGER_JOURNALMODE_MEMORY
       || eNew==PAGER_JOURNALMODE_WAL
       || eNew==PAGER_JOURNALMODE_QUERY
  );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( p->readOnly==0 );

  pBt = db->aDb[pOp->p1].pBt;
  pPager = sqlite3BtreePager(pBt);
  eOld = sqlite3PagerGetJournalMode(pPager);
  if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
  if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;

5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
  ){
    eNew = eOld;
  }

  if( (eNew!=eOld)
   && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
  ){
    if( !db->autoCommit || db->activeVdbeCnt>1 ){
      rc = SQLITE_ERROR;
      sqlite3SetString(&p->zErrMsg, db, 
          "cannot change %s wal mode from within a transaction",
          (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
      );
      break;
    }else{







|







5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
  ){
    eNew = eOld;
  }

  if( (eNew!=eOld)
   && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
  ){
    if( !db->autoCommit || db->nVdbeRead>1 ){
      rc = SQLITE_ERROR;
      sqlite3SetString(&p->zErrMsg, db, 
          "cannot change %s wal mode from within a transaction",
          (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
      );
      break;
    }else{
5611
5612
5613
5614
5615
5616
5617

5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634

5635
5636
5637
5638
5639
5640
5641
/* Opcode: Vacuum * * * * *
**
** Vacuum the entire database.  This opcode will cause other virtual
** machines to be created and run.  It may not be called from within
** a transaction.
*/
case OP_Vacuum: {

  rc = sqlite3RunVacuum(&p->zErrMsg, db);
  break;
}
#endif

#if !defined(SQLITE_OMIT_AUTOVACUUM)
/* Opcode: IncrVacuum P1 P2 * * *
**
** Perform a single step of the incremental vacuum procedure on
** the P1 database. If the vacuum has finished, jump to instruction
** P2. Otherwise, fall through to the next instruction.
*/
case OP_IncrVacuum: {        /* jump */
  Btree *pBt;

  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );

  pBt = db->aDb[pOp->p1].pBt;
  rc = sqlite3BtreeIncrVacuum(pBt);
  if( rc==SQLITE_DONE ){
    pc = pOp->p2 - 1;
    rc = SQLITE_OK;
  }
  break;







>

















>







5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
/* Opcode: Vacuum * * * * *
**
** Vacuum the entire database.  This opcode will cause other virtual
** machines to be created and run.  It may not be called from within
** a transaction.
*/
case OP_Vacuum: {
  assert( p->readOnly==0 );
  rc = sqlite3RunVacuum(&p->zErrMsg, db);
  break;
}
#endif

#if !defined(SQLITE_OMIT_AUTOVACUUM)
/* Opcode: IncrVacuum P1 P2 * * *
**
** Perform a single step of the incremental vacuum procedure on
** the P1 database. If the vacuum has finished, jump to instruction
** P2. Otherwise, fall through to the next instruction.
*/
case OP_IncrVacuum: {        /* jump */
  Btree *pBt;

  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  assert( p->readOnly==0 );
  pBt = db->aDb[pOp->p1].pBt;
  rc = sqlite3BtreeIncrVacuum(pBt);
  if( rc==SQLITE_DONE ){
    pc = pOp->p2 - 1;
    rc = SQLITE_OK;
  }
  break;
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
** within a callback to a virtual table xSync() method. If it is, the error
** code will be set to SQLITE_LOCKED.
*/
case OP_VBegin: {
  VTable *pVTab;
  pVTab = pOp->p4.pVtab;
  rc = sqlite3VtabBegin(db, pVTab);
  if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VCreate P1 * * P4 *
**







|







5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
** within a callback to a virtual table xSync() method. If it is, the error
** code will be set to SQLITE_LOCKED.
*/
case OP_VBegin: {
  VTable *pVTab;
  pVTab = pOp->p4.pVtab;
  rc = sqlite3VtabBegin(db, pVTab);
  if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VCreate P1 * * P4 *
**
5746
5747
5748
5749
5750
5751
5752

5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
*/
case OP_VOpen: {
  VdbeCursor *pCur;
  sqlite3_vtab_cursor *pVtabCursor;
  sqlite3_vtab *pVtab;
  sqlite3_module *pModule;


  pCur = 0;
  pVtabCursor = 0;
  pVtab = pOp->p4.pVtab->pVtab;
  pModule = (sqlite3_module *)pVtab->pModule;
  assert(pVtab && pModule);
  rc = pModule->xOpen(pVtab, &pVtabCursor);
  importVtabErrMsg(p, pVtab);
  if( SQLITE_OK==rc ){
    /* Initialize sqlite3_vtab_cursor base class */
    pVtabCursor->pVtab = pVtab;

    /* Initialize vdbe cursor object */
    pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
    if( pCur ){







>






|







5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
*/
case OP_VOpen: {
  VdbeCursor *pCur;
  sqlite3_vtab_cursor *pVtabCursor;
  sqlite3_vtab *pVtab;
  sqlite3_module *pModule;

  assert( p->bIsReader );
  pCur = 0;
  pVtabCursor = 0;
  pVtab = pOp->p4.pVtab->pVtab;
  pModule = (sqlite3_module *)pVtab->pModule;
  assert(pVtab && pModule);
  rc = pModule->xOpen(pVtab, &pVtabCursor);
  sqlite3VtabImportErrmsg(p, pVtab);
  if( SQLITE_OK==rc ){
    /* Initialize sqlite3_vtab_cursor base class */
    pVtabCursor->pVtab = pVtab;

    /* Initialize vdbe cursor object */
    pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
    if( pCur ){
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
      apArg[i] = &pArgc[i+1];
      sqlite3VdbeMemStoreType(apArg[i]);
    }

    p->inVtabMethod = 1;
    rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
    p->inVtabMethod = 0;
    importVtabErrMsg(p, pVtab);
    if( rc==SQLITE_OK ){
      res = pModule->xEof(pVtabCursor);
    }

    if( res ){
      pc = pOp->p2 - 1;
    }







|







5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
      apArg[i] = &pArgc[i+1];
      sqlite3VdbeMemStoreType(apArg[i]);
    }

    p->inVtabMethod = 1;
    rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
    p->inVtabMethod = 0;
    sqlite3VtabImportErrmsg(p, pVtab);
    if( rc==SQLITE_OK ){
      res = pModule->xEof(pVtabCursor);
    }

    if( res ){
      pc = pOp->p2 - 1;
    }
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  Mem *pDest;
  sqlite3_context sContext;

  VdbeCursor *pCur = p->apCsr[pOp->p1];
  assert( pCur->pVtabCursor );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  if( pCur->nullRow ){
    sqlite3VdbeMemSetNull(pDest);
    break;
  }
  pVtab = pCur->pVtabCursor->pVtab;
  pModule = pVtab->pModule;
  assert( pModule->xColumn );
  memset(&sContext, 0, sizeof(sContext));

  /* The output cell may already have a buffer allocated. Move
  ** the current contents to sContext.s so in case the user-function 
  ** can use the already allocated buffer instead of allocating a 
  ** new one.
  */
  sqlite3VdbeMemMove(&sContext.s, pDest);
  MemSetTypeFlag(&sContext.s, MEM_Null);

  rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
  importVtabErrMsg(p, pVtab);
  if( sContext.isError ){
    rc = sContext.isError;
  }

  /* Copy the result of the function to the P3 register. We
  ** do this regardless of whether or not an error occurred to ensure any
  ** dynamic allocation in sContext.s (a Mem struct) is  released.







|




















|







5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  Mem *pDest;
  sqlite3_context sContext;

  VdbeCursor *pCur = p->apCsr[pOp->p1];
  assert( pCur->pVtabCursor );
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  if( pCur->nullRow ){
    sqlite3VdbeMemSetNull(pDest);
    break;
  }
  pVtab = pCur->pVtabCursor->pVtab;
  pModule = pVtab->pModule;
  assert( pModule->xColumn );
  memset(&sContext, 0, sizeof(sContext));

  /* The output cell may already have a buffer allocated. Move
  ** the current contents to sContext.s so in case the user-function 
  ** can use the already allocated buffer instead of allocating a 
  ** new one.
  */
  sqlite3VdbeMemMove(&sContext.s, pDest);
  MemSetTypeFlag(&sContext.s, MEM_Null);

  rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
  sqlite3VtabImportErrmsg(p, pVtab);
  if( sContext.isError ){
    rc = sContext.isError;
  }

  /* Copy the result of the function to the P3 register. We
  ** do this regardless of whether or not an error occurred to ensure any
  ** dynamic allocation in sContext.s (a Mem struct) is  released.
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968

5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
  ** xNext(). Instead, if an error occurs, true is returned (indicating that 
  ** data is available) and the error code returned when xColumn or
  ** some other method is next invoked on the save virtual table cursor.
  */
  p->inVtabMethod = 1;
  rc = pModule->xNext(pCur->pVtabCursor);
  p->inVtabMethod = 0;
  importVtabErrMsg(p, pVtab);
  if( rc==SQLITE_OK ){
    res = pModule->xEof(pCur->pVtabCursor);
  }

  if( !res ){
    /* If there is data, jump to P2 */
    pc = pOp->p2 - 1;
  }
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VRename P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xRename method. The value
** in register P1 is passed as the zName argument to the xRename method.
*/
case OP_VRename: {
  sqlite3_vtab *pVtab;
  Mem *pName;

  pVtab = pOp->p4.pVtab->pVtab;
  pName = &aMem[pOp->p1];
  assert( pVtab->pModule->xRename );
  assert( memIsValid(pName) );

  REGISTER_TRACE(pOp->p1, pName);
  assert( pName->flags & MEM_Str );
  testcase( pName->enc==SQLITE_UTF8 );
  testcase( pName->enc==SQLITE_UTF16BE );
  testcase( pName->enc==SQLITE_UTF16LE );
  rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
  if( rc==SQLITE_OK ){
    rc = pVtab->pModule->xRename(pVtab, pName->z);
    importVtabErrMsg(p, pVtab);
    p->expired = 0;
  }
  break;
}
#endif

#ifndef SQLITE_OMIT_VIRTUALTABLE







|








|


















>








|







5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
  ** xNext(). Instead, if an error occurs, true is returned (indicating that 
  ** data is available) and the error code returned when xColumn or
  ** some other method is next invoked on the save virtual table cursor.
  */
  p->inVtabMethod = 1;
  rc = pModule->xNext(pCur->pVtabCursor);
  p->inVtabMethod = 0;
  sqlite3VtabImportErrmsg(p, pVtab);
  if( rc==SQLITE_OK ){
    res = pModule->xEof(pCur->pVtabCursor);
  }

  if( !res ){
    /* If there is data, jump to P2 */
    pc = pOp->p2 - 1;
  }
  goto check_for_interrupt;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VRename P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xRename method. The value
** in register P1 is passed as the zName argument to the xRename method.
*/
case OP_VRename: {
  sqlite3_vtab *pVtab;
  Mem *pName;

  pVtab = pOp->p4.pVtab->pVtab;
  pName = &aMem[pOp->p1];
  assert( pVtab->pModule->xRename );
  assert( memIsValid(pName) );
  assert( p->readOnly==0 );
  REGISTER_TRACE(pOp->p1, pName);
  assert( pName->flags & MEM_Str );
  testcase( pName->enc==SQLITE_UTF8 );
  testcase( pName->enc==SQLITE_UTF16BE );
  testcase( pName->enc==SQLITE_UTF16LE );
  rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
  if( rc==SQLITE_OK ){
    rc = pVtab->pModule->xRename(pVtab, pName->z);
    sqlite3VtabImportErrmsg(p, pVtab);
    p->expired = 0;
  }
  break;
}
#endif

#ifndef SQLITE_OMIT_VIRTUALTABLE
6013
6014
6015
6016
6017
6018
6019

6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
  sqlite_int64 rowid;
  Mem **apArg;
  Mem *pX;

  assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback 
       || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
  );

  pVtab = pOp->p4.pVtab->pVtab;
  pModule = (sqlite3_module *)pVtab->pModule;
  nArg = pOp->p2;
  assert( pOp->p4type==P4_VTAB );
  if( ALWAYS(pModule->xUpdate) ){
    u8 vtabOnConflict = db->vtabOnConflict;
    apArg = p->apArg;
    pX = &aMem[pOp->p3];
    for(i=0; i<nArg; i++){
      assert( memIsValid(pX) );
      memAboutToChange(p, pX);
      sqlite3VdbeMemStoreType(pX);
      apArg[i] = pX;
      pX++;
    }
    db->vtabOnConflict = pOp->p5;
    rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
    db->vtabOnConflict = vtabOnConflict;
    importVtabErrMsg(p, pVtab);
    if( rc==SQLITE_OK && pOp->p1 ){
      assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
      db->lastRowid = lastRowid = rowid;
    }
    if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
      if( pOp->p5==OE_Ignore ){
        rc = SQLITE_OK;







>


















|







6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
  sqlite_int64 rowid;
  Mem **apArg;
  Mem *pX;

  assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback 
       || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
  );
  assert( p->readOnly==0 );
  pVtab = pOp->p4.pVtab->pVtab;
  pModule = (sqlite3_module *)pVtab->pModule;
  nArg = pOp->p2;
  assert( pOp->p4type==P4_VTAB );
  if( ALWAYS(pModule->xUpdate) ){
    u8 vtabOnConflict = db->vtabOnConflict;
    apArg = p->apArg;
    pX = &aMem[pOp->p3];
    for(i=0; i<nArg; i++){
      assert( memIsValid(pX) );
      memAboutToChange(p, pX);
      sqlite3VdbeMemStoreType(pX);
      apArg[i] = pX;
      pX++;
    }
    db->vtabOnConflict = pOp->p5;
    rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
    db->vtabOnConflict = vtabOnConflict;
    sqlite3VtabImportErrmsg(p, pVtab);
    if( rc==SQLITE_OK && pOp->p1 ){
      assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
      db->lastRowid = lastRowid = rowid;
    }
    if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
      if( pOp->p5==OE_Ignore ){
        rc = SQLITE_OK;
6196
6197
6198
6199
6200
6201
6202


6203
6204
6205
6206
6207
6208
6209
  }

  /* This is the only way out of this procedure.  We have to
  ** release the mutexes on btrees that were acquired at the
  ** top. */
vdbe_return:
  db->lastRowid = lastRowid;


  sqlite3VdbeLeave(p);
  return rc;

  /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
  ** is encountered.
  */
too_big:







>
>







6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
  }

  /* This is the only way out of this procedure.  We have to
  ** release the mutexes on btrees that were acquired at the
  ** top. */
vdbe_return:
  db->lastRowid = lastRowid;
  testcase( nVmStep>0 );
  p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
  sqlite3VdbeLeave(p);
  return rc;

  /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
  ** is encountered.
  */
too_big:
Changes to src/vdbe.h.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
*/
typedef struct Vdbe Vdbe;

/*
** The names of the following types declared in vdbeInt.h are required
** for the VdbeOp definition.
*/
typedef struct VdbeFunc VdbeFunc;
typedef struct Mem Mem;
typedef struct SubProgram SubProgram;

/*
** A single instruction of the virtual machine has an opcode
** and as many as three operands.  The instruction is recorded
** as an instance of the following structure:







<







26
27
28
29
30
31
32

33
34
35
36
37
38
39
*/
typedef struct Vdbe Vdbe;

/*
** The names of the following types declared in vdbeInt.h are required
** for the VdbeOp definition.
*/

typedef struct Mem Mem;
typedef struct SubProgram SubProgram;

/*
** A single instruction of the virtual machine has an opcode
** and as many as three operands.  The instruction is recorded
** as an instance of the following structure:
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
  union {             /* fourth parameter */
    int i;                 /* Integer value if p4type==P4_INT32 */
    void *p;               /* Generic pointer */
    char *z;               /* Pointer to data for string (char array) types */
    i64 *pI64;             /* Used when p4type is P4_INT64 */
    double *pReal;         /* Used when p4type is P4_REAL */
    FuncDef *pFunc;        /* Used when p4type is P4_FUNCDEF */
    VdbeFunc *pVdbeFunc;   /* Used when p4type is P4_VDBEFUNC */
    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */
    int (*xAdvance)(BtCursor *, int *);







<







49
50
51
52
53
54
55

56
57
58
59
60
61
62
  union {             /* fourth parameter */
    int i;                 /* Integer value if p4type==P4_INT32 */
    void *p;               /* Generic pointer */
    char *z;               /* Pointer to data for string (char array) types */
    i64 *pI64;             /* Used when p4type is P4_INT64 */
    double *pReal;         /* Used when p4type is P4_REAL */
    FuncDef *pFunc;        /* Used when p4type is P4_FUNCDEF */

    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */
    int (*xAdvance)(BtCursor *, int *);
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
*/
#define P4_NOTUSED    0   /* The P4 parameter is not used */
#define P4_DYNAMIC  (-1)  /* Pointer to a string obtained from sqliteMalloc() */
#define P4_STATIC   (-2)  /* Pointer to a static string */
#define P4_COLLSEQ  (-4)  /* P4 is a pointer to a CollSeq structure */
#define P4_FUNCDEF  (-5)  /* P4 is a pointer to a FuncDef structure */
#define P4_KEYINFO  (-6)  /* P4 is a pointer to a KeyInfo structure */
#define P4_VDBEFUNC (-7)  /* P4 is a pointer to a VdbeFunc structure */
#define P4_MEM      (-8)  /* P4 is a pointer to a Mem*    structure */
#define P4_TRANSIENT  0   /* P4 is a pointer to a transient string */
#define P4_VTAB     (-10) /* P4 is a pointer to an sqlite3_vtab structure */
#define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
#define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32    (-14) /* P4 is a 32-bit signed integer */







<







102
103
104
105
106
107
108

109
110
111
112
113
114
115
*/
#define P4_NOTUSED    0   /* The P4 parameter is not used */
#define P4_DYNAMIC  (-1)  /* Pointer to a string obtained from sqliteMalloc() */
#define P4_STATIC   (-2)  /* Pointer to a static string */
#define P4_COLLSEQ  (-4)  /* P4 is a pointer to a CollSeq structure */
#define P4_FUNCDEF  (-5)  /* P4 is a pointer to a FuncDef structure */
#define P4_KEYINFO  (-6)  /* P4 is a pointer to a KeyInfo structure */

#define P4_MEM      (-8)  /* P4 is a pointer to a Mem*    structure */
#define P4_TRANSIENT  0   /* P4 is a pointer to a transient string */
#define P4_VTAB     (-10) /* P4 is a pointer to an sqlite3_vtab structure */
#define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
#define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32    (-14) /* P4 is a 32-bit signed integer */
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
void sqlite3VdbeSetNumCols(Vdbe*,int);
int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
void sqlite3VdbeCountChanges(Vdbe*);
sqlite3 *sqlite3VdbeDb(Vdbe*);
void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int);
void sqlite3VdbeSwap(Vdbe*,Vdbe*);
VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*);
sqlite3_value *sqlite3VdbeGetValue(Vdbe*, int, u8);
void sqlite3VdbeSetVarmask(Vdbe*, int);
#ifndef SQLITE_OMIT_TRACE
  char *sqlite3VdbeExpandSql(Vdbe*, const char*);
#endif

void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);
int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);







|







200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
void sqlite3VdbeSetNumCols(Vdbe*,int);
int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
void sqlite3VdbeCountChanges(Vdbe*);
sqlite3 *sqlite3VdbeDb(Vdbe*);
void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int);
void sqlite3VdbeSwap(Vdbe*,Vdbe*);
VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*);
sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8);
void sqlite3VdbeSetVarmask(Vdbe*, int);
#ifndef SQLITE_OMIT_TRACE
  char *sqlite3VdbeExpandSql(Vdbe*, const char*);
#endif

void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);
int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
Changes to src/vdbeInt.h.
40
41
42
43
44
45
46



47
48
49
50
51
52
53

/* Opaque type used by code in vdbesort.c */
typedef struct VdbeSorter VdbeSorter;

/* Opaque type used by the explainer */
typedef struct Explain Explain;




/*
** A cursor is a pointer into a single BTree within a database file.
** The cursor can seek to a BTree entry with a particular key, or
** loop over all entries of the Btree.  You can also insert new BTree
** entries or retrieve the key or data from the entry that the cursor
** is currently pointing to.
** 







>
>
>







40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

/* Opaque type used by code in vdbesort.c */
typedef struct VdbeSorter VdbeSorter;

/* Opaque type used by the explainer */
typedef struct Explain Explain;

/* Elements of the linked list at Vdbe.pAuxData */
typedef struct AuxData AuxData;

/*
** A cursor is a pointer into a single BTree within a database file.
** The cursor can seek to a BTree entry with a particular key, or
** loop over all entries of the Btree.  You can also insert new BTree
** entries or retrieve the key or data from the entry that the cursor
** is currently pointing to.
** 
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

241
242
243
244
245
246


247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270


271
272

273
274
275
276
277
278
279
** Return true if a memory cell is not marked as invalid.  This macro
** is for use inside assert() statements only.
*/
#ifdef SQLITE_DEBUG
#define memIsValid(M)  ((M)->flags & MEM_Invalid)==0
#endif


/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
** additional information about auxiliary information bound to arguments
** of the function.  This is used to implement the sqlite3_get_auxdata()
** and sqlite3_set_auxdata() APIs.  The "auxdata" is some auxiliary data
** that can be associated with a constant argument to a function.  This
** allows functions such as "regexp" to compile their constant regular
** expression argument once and reused the compiled code for multiple

** invocations.
*/
struct VdbeFunc {
  FuncDef *pFunc;               /* The definition of the function */
  int nAux;                     /* Number of entries allocated for apAux[] */
  struct AuxData {


    void *pAux;                   /* Aux data for the i-th argument */
    void (*xDelete)(void *);      /* Destructor for the aux data */
  } apAux[1];                   /* One slot for each function argument */
};

/*
** The "context" argument for a installable function.  A pointer to an
** instance of this structure is the first argument to the routines used
** implement the SQL functions.
**
** There is a typedef for this structure in sqlite.h.  So all routines,
** even the public interface to SQLite, can use a pointer to this structure.
** But this file is the only place where the internal details of this
** structure are known.
**
** This structure is defined inside of vdbeInt.h because it uses substructures
** (Mem) which are only defined there.
*/
struct sqlite3_context {
  FuncDef *pFunc;       /* Pointer to function information.  MUST BE FIRST */
  VdbeFunc *pVdbeFunc;  /* Auxilary data, if created. */
  Mem s;                /* The return value is stored here */
  Mem *pMem;            /* Memory cell used to store aggregate context */
  CollSeq *pColl;       /* Collating sequence */


  int isError;          /* Error code returned by the function. */
  int skipFlag;         /* Skip skip accumulator loading if true */

};

/*
** An Explain object accumulates indented output which is helpful
** in describing recursive data structures.
*/
struct Explain {







|
|
<
<
|
|
<
<
>
|

<
<
<
|
>
>
|
|
|

















<



>
>

|
>







229
230
231
232
233
234
235
236
237


238
239


240
241
242



243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
** Return true if a memory cell is not marked as invalid.  This macro
** is for use inside assert() statements only.
*/
#ifdef SQLITE_DEBUG
#define memIsValid(M)  ((M)->flags & MEM_Invalid)==0
#endif

/*
** Each auxilliary data pointer stored by a user defined function 


** implementation calling sqlite3_set_auxdata() is stored in an instance
** of this structure. All such structures associated with a single VM


** are stored in a linked list headed at Vdbe.pAuxData. All are destroyed
** when the VM is halted (if not before).
*/



struct AuxData {
  int iOp;                        /* Instruction number of OP_Function opcode */
  int iArg;                       /* Index of function argument. */
  void *pAux;                     /* Aux data pointer */
  void (*xDelete)(void *);        /* Destructor for the aux data */
  AuxData *pNext;                 /* Next element in list */
};

/*
** The "context" argument for a installable function.  A pointer to an
** instance of this structure is the first argument to the routines used
** implement the SQL functions.
**
** There is a typedef for this structure in sqlite.h.  So all routines,
** even the public interface to SQLite, can use a pointer to this structure.
** But this file is the only place where the internal details of this
** structure are known.
**
** This structure is defined inside of vdbeInt.h because it uses substructures
** (Mem) which are only defined there.
*/
struct sqlite3_context {
  FuncDef *pFunc;       /* Pointer to function information.  MUST BE FIRST */

  Mem s;                /* The return value is stored here */
  Mem *pMem;            /* Memory cell used to store aggregate context */
  CollSeq *pColl;       /* Collating sequence */
  Vdbe *pVdbe;          /* The VM that owns this context */
  int iOp;              /* Instruction number of OP_Function */
  int isError;          /* Error code returned by the function. */
  u8 skipFlag;          /* Skip skip accumulator loading if true */
  u8 fErrorOrAux;       /* isError!=0 or pVdbe->pAuxData modified */
};

/*
** An Explain object accumulates indented output which is helpful
** in describing recursive data structures.
*/
struct Explain {
333
334
335
336
337
338
339
340

341
342
343
344
345
346
347
348
349
350
351
352

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

369
370
371
372
373
374
375
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  bft explain:2;          /* True if EXPLAIN present on SQL command */
  bft inVtabMethod:2;     /* See comments above */
  bft changeCntOn:1;      /* True to update the change-counter */
  bft expired:1;          /* True if the VM needs to be recompiled */
  bft runOnlyOnce:1;      /* Automatically expire on reset */
  bft usesStmtJournal:1;  /* True if uses a statement journal */
  bft readOnly:1;         /* True for read-only statements */

  bft isPrepareV2:1;      /* True if prepared with prepare_v2() */
  bft doingRerun:1;       /* True if rerunning after an auto-reprepare */
  int nChange;            /* Number of db changes made since last reset */
  yDbMask btreeMask;      /* Bitmask of db->aDb[] entries referenced */
  yDbMask lockMask;       /* Subset of btreeMask that requires a lock */
  int iStatement;         /* Statement number (or 0 if has not opened stmt) */
  int aCounter[3];        /* Counters used by sqlite3_stmt_status() */
#ifndef SQLITE_OMIT_TRACE
  i64 startTime;          /* Time when query started - used for profiling */
#endif
  i64 nFkConstraint;      /* Number of imm. FK constraints this VM */
  i64 nStmtDefCons;       /* Number of def. constraints when stmt started */

  char *zSql;             /* Text of the SQL statement that generated this */
  void *pFree;            /* Free this when deleting the vdbe */
#ifdef SQLITE_DEBUG
  FILE *trace;            /* Write an execution trace here, if not NULL */
#endif
#ifdef SQLITE_ENABLE_TREE_EXPLAIN
  Explain *pExplain;      /* The explainer */
  char *zExplain;         /* Explanation of data structures */
#endif
  VdbeFrame *pFrame;      /* Parent frame */
  VdbeFrame *pDelFrame;   /* List of frame objects to free on VM reset */
  int nFrame;             /* Number of frames in pFrame list */
  u32 expmask;            /* Binding to these vars invalidates VM */
  SubProgram *pProgram;   /* Linked list of all sub-programs used by VM */
  int nOnceFlag;          /* Size of array aOnceFlag[] */
  u8 *aOnceFlag;          /* Flags for OP_Once */

};

/*
** The following are allowed values for Vdbe.magic
*/
#define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
#define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */







|
>






|





>
















>







334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  bft explain:2;          /* True if EXPLAIN present on SQL command */
  bft inVtabMethod:2;     /* See comments above */
  bft changeCntOn:1;      /* True to update the change-counter */
  bft expired:1;          /* True if the VM needs to be recompiled */
  bft runOnlyOnce:1;      /* Automatically expire on reset */
  bft usesStmtJournal:1;  /* True if uses a statement journal */
  bft readOnly:1;         /* True for statements that do not write */
  bft bIsReader:1;        /* True for statements that read */
  bft isPrepareV2:1;      /* True if prepared with prepare_v2() */
  bft doingRerun:1;       /* True if rerunning after an auto-reprepare */
  int nChange;            /* Number of db changes made since last reset */
  yDbMask btreeMask;      /* Bitmask of db->aDb[] entries referenced */
  yDbMask lockMask;       /* Subset of btreeMask that requires a lock */
  int iStatement;         /* Statement number (or 0 if has not opened stmt) */
  u32 aCounter[5];        /* Counters used by sqlite3_stmt_status() */
#ifndef SQLITE_OMIT_TRACE
  i64 startTime;          /* Time when query started - used for profiling */
#endif
  i64 nFkConstraint;      /* Number of imm. FK constraints this VM */
  i64 nStmtDefCons;       /* Number of def. constraints when stmt started */
  i64 nStmtDefImmCons;    /* Number of def. imm constraints when stmt started */
  char *zSql;             /* Text of the SQL statement that generated this */
  void *pFree;            /* Free this when deleting the vdbe */
#ifdef SQLITE_DEBUG
  FILE *trace;            /* Write an execution trace here, if not NULL */
#endif
#ifdef SQLITE_ENABLE_TREE_EXPLAIN
  Explain *pExplain;      /* The explainer */
  char *zExplain;         /* Explanation of data structures */
#endif
  VdbeFrame *pFrame;      /* Parent frame */
  VdbeFrame *pDelFrame;   /* List of frame objects to free on VM reset */
  int nFrame;             /* Number of frames in pFrame list */
  u32 expmask;            /* Binding to these vars invalidates VM */
  SubProgram *pProgram;   /* Linked list of all sub-programs used by VM */
  int nOnceFlag;          /* Size of array aOnceFlag[] */
  u8 *aOnceFlag;          /* Flags for OP_Once */
  AuxData *pAuxData;      /* Linked list of auxdata allocations */
};

/*
** The following are allowed values for Vdbe.magic
*/
#define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
#define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
void sqlite3VdbePrintOp(FILE*, int, Op*);
#endif
u32 sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
u32 sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);







|







389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
void sqlite3VdbePrintOp(FILE*, int, Op*);
#endif
u32 sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
u32 sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
Changes to src/vdbeapi.c.
207
208
209
210
211
212
213

214
215
216
217
218
219

220
221
222
223
224
225
226
void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
}
void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  pCtx->isError = SQLITE_ERROR;

  sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
}
#ifndef SQLITE_OMIT_UTF16
void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  pCtx->isError = SQLITE_ERROR;

  sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
}
#endif
void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
}







>






>







207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
}
void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  pCtx->isError = SQLITE_ERROR;
  pCtx->fErrorOrAux = 1;
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
}
#ifndef SQLITE_OMIT_UTF16
void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  pCtx->isError = SQLITE_ERROR;
  pCtx->fErrorOrAux = 1;
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
}
#endif
void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
}
276
277
278
279
280
281
282

283
284
285
286
287
288
289
290
291
292

293
294
295
296
297
298
299
300
301

302
303
304
305
306
307
308
}
void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
}
void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
  pCtx->isError = errCode;

  if( pCtx->s.flags & MEM_Null ){
    sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1, 
                         SQLITE_UTF8, SQLITE_STATIC);
  }
}

/* Force an SQLITE_TOOBIG error. */
void sqlite3_result_error_toobig(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  pCtx->isError = SQLITE_TOOBIG;

  sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 
                       SQLITE_UTF8, SQLITE_STATIC);
}

/* An SQLITE_NOMEM error. */
void sqlite3_result_error_nomem(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  sqlite3VdbeMemSetNull(&pCtx->s);
  pCtx->isError = SQLITE_NOMEM;

  pCtx->s.db->mallocFailed = 1;
}

/*
** This function is called after a transaction has been committed. It 
** invokes callbacks registered with sqlite3_wal_hook() as required.
*/







>










>









>







278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
}
void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
}
void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
  pCtx->isError = errCode;
  pCtx->fErrorOrAux = 1;
  if( pCtx->s.flags & MEM_Null ){
    sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1, 
                         SQLITE_UTF8, SQLITE_STATIC);
  }
}

/* Force an SQLITE_TOOBIG error. */
void sqlite3_result_error_toobig(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  pCtx->isError = SQLITE_TOOBIG;
  pCtx->fErrorOrAux = 1;
  sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 
                       SQLITE_UTF8, SQLITE_STATIC);
}

/* An SQLITE_NOMEM error. */
void sqlite3_result_error_nomem(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  sqlite3VdbeMemSetNull(&pCtx->s);
  pCtx->isError = SQLITE_NOMEM;
  pCtx->fErrorOrAux = 1;
  pCtx->s.db->mallocFailed = 1;
}

/*
** This function is called after a transaction has been committed. It 
** invokes callbacks registered with sqlite3_wal_hook() as required.
*/
378
379
380
381
382
383
384
385
386
387
388
389


390
391
392
393
394
395
396
397
398

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    goto end_of_step;
  }
  if( p->pc<0 ){
    /* If there are no other statements currently running, then
    ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
    ** from interrupting a statement that has not yet started.
    */
    if( db->activeVdbeCnt==0 ){
      db->u1.isInterrupted = 0;
    }

    assert( db->writeVdbeCnt>0 || db->autoCommit==0 || db->nDeferredCons==0 );



#ifndef SQLITE_OMIT_TRACE
    if( db->xProfile && !db->init.busy ){
      sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
    }
#endif

    db->activeVdbeCnt++;
    if( p->readOnly==0 ) db->writeVdbeCnt++;

    p->pc = 0;
  }
#ifndef SQLITE_OMIT_EXPLAIN
  if( p->explain ){
    rc = sqlite3VdbeList(p);
  }else
#endif /* SQLITE_OMIT_EXPLAIN */
  {
    db->vdbeExecCnt++;
    rc = sqlite3VdbeExec(p);
    db->vdbeExecCnt--;
  }

#ifndef SQLITE_OMIT_TRACE
  /* Invoke the profile callback if there is one
  */
  if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
    sqlite3_int64 iNow;







|



|
>
>







|
|
>








|

|







383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
    goto end_of_step;
  }
  if( p->pc<0 ){
    /* If there are no other statements currently running, then
    ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
    ** from interrupting a statement that has not yet started.
    */
    if( db->nVdbeActive==0 ){
      db->u1.isInterrupted = 0;
    }

    assert( db->nVdbeWrite>0 || db->autoCommit==0 
        || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
    );

#ifndef SQLITE_OMIT_TRACE
    if( db->xProfile && !db->init.busy ){
      sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
    }
#endif

    db->nVdbeActive++;
    if( p->readOnly==0 ) db->nVdbeWrite++;
    if( p->bIsReader ) db->nVdbeRead++;
    p->pc = 0;
  }
#ifndef SQLITE_OMIT_EXPLAIN
  if( p->explain ){
    rc = sqlite3VdbeList(p);
  }else
#endif /* SQLITE_OMIT_EXPLAIN */
  {
    db->nVdbeExec++;
    rc = sqlite3VdbeExec(p);
    db->nVdbeExec--;
  }

#ifndef SQLITE_OMIT_TRACE
  /* Invoke the profile callback if there is one
  */
  if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
    sqlite3_int64 iNow;
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622










623
624
625
626
627

628
629
630
631
632
633
634
}

/*
** Return the auxilary data pointer, if any, for the iArg'th argument to
** the user-function defined by pCtx.
*/
void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
  VdbeFunc *pVdbeFunc;

  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  pVdbeFunc = pCtx->pVdbeFunc;
  if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
    return 0;
  }
  return pVdbeFunc->apAux[iArg].pAux;

}

/*
** Set the auxilary data pointer and delete function, for the iArg'th
** argument to the user-function defined by pCtx. Any previous value is
** deleted by calling the delete function specified when it was set.
*/
void sqlite3_set_auxdata(
  sqlite3_context *pCtx, 
  int iArg, 
  void *pAux, 
  void (*xDelete)(void*)
){
  struct AuxData *pAuxData;
  VdbeFunc *pVdbeFunc;
  if( iArg<0 ) goto failed;

  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  pVdbeFunc = pCtx->pVdbeFunc;
  if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
    int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
    int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
    pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
    if( !pVdbeFunc ){
      goto failed;
    }
    pCtx->pVdbeFunc = pVdbeFunc;
    memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
    pVdbeFunc->nAux = iArg+1;
    pVdbeFunc->pFunc = pCtx->pFunc;
  }











  pAuxData = &pVdbeFunc->apAux[iArg];
  if( pAuxData->pAux && pAuxData->xDelete ){
    pAuxData->xDelete(pAuxData->pAux);
  }

  pAuxData->pAux = pAux;
  pAuxData->xDelete = xDelete;
  return;

failed:
  if( xDelete ){
    xDelete(pAux);







|


|
|
<

|
>













|
|
<


<
<
<
<
<
<
|
|
<
<
|
|

>
>
>
>
>
>
>
>
>
>
|
<
|


>







585
586
587
588
589
590
591
592
593
594
595
596

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614

615
616






617
618


619
620
621
622
623
624
625
626
627
628
629
630
631
632

633
634
635
636
637
638
639
640
641
642
643
}

/*
** Return the auxilary data pointer, if any, for the iArg'th argument to
** the user-function defined by pCtx.
*/
void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
  AuxData *pAuxData;

  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
    if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;

  }

  return (pAuxData ? pAuxData->pAux : 0);
}

/*
** Set the auxilary data pointer and delete function, for the iArg'th
** argument to the user-function defined by pCtx. Any previous value is
** deleted by calling the delete function specified when it was set.
*/
void sqlite3_set_auxdata(
  sqlite3_context *pCtx, 
  int iArg, 
  void *pAux, 
  void (*xDelete)(void*)
){
  AuxData *pAuxData;
  Vdbe *pVdbe = pCtx->pVdbe;


  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );






  if( iArg<0 ) goto failed;



  for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
    if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
  }
  if( pAuxData==0 ){
    pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
    if( !pAuxData ) goto failed;
    pAuxData->iOp = pCtx->iOp;
    pAuxData->iArg = iArg;
    pAuxData->pNext = pVdbe->pAuxData;
    pVdbe->pAuxData = pAuxData;
    if( pCtx->fErrorOrAux==0 ){
      pCtx->isError = 0;
      pCtx->fErrorOrAux = 1;
    }

  }else if( pAuxData->xDelete ){
    pAuxData->xDelete(pAuxData->pAux);
  }

  pAuxData->pAux = pAux;
  pAuxData->xDelete = xDelete;
  return;

failed:
  if( xDelete ){
    xDelete(pAux);
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
}

/*
** Return the value of a status counter for a prepared statement
*/
int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
  Vdbe *pVdbe = (Vdbe*)pStmt;
  int v = pVdbe->aCounter[op-1];
  if( resetFlag ) pVdbe->aCounter[op-1] = 0;
  return v;
}







|
|
|

1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
}

/*
** Return the value of a status counter for a prepared statement
*/
int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
  Vdbe *pVdbe = (Vdbe*)pStmt;
  u32 v = pVdbe->aCounter[op];
  if( resetFlag ) pVdbe->aCounter[op] = 0;
  return (int)v;
}
Changes to src/vdbeaux.c.
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
** Resolve label "x" to be the address of the next instruction to
** be inserted.  The parameter "x" must have been obtained from
** a prior call to sqlite3VdbeMakeLabel().
*/
void sqlite3VdbeResolveLabel(Vdbe *p, int x){
  int j = -1-x;
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( j>=0 && j<p->nLabel );
  if( p->aLabel ){
    p->aLabel[j] = p->nOp;
  }
}

/*
** Mark the VDBE as one that can only be run one time.
*/







|
|







246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
** Resolve label "x" to be the address of the next instruction to
** be inserted.  The parameter "x" must have been obtained from
** a prior call to sqlite3VdbeMakeLabel().
*/
void sqlite3VdbeResolveLabel(Vdbe *p, int x){
  int j = -1-x;
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( j<p->nLabel );
  if( j>=0 && p->aLabel ){
    p->aLabel[j] = p->nOp;
  }
}

/*
** Mark the VDBE as one that can only be run one time.
*/
399
400
401
402
403
404
405

406
407
408


409
410

411


412













413



414
415
416


417
418
419
420
421
422


423

424
425
426


427
428
429

430
431


432
433
434
435
436
437
438
439
440

441
442
443
444
445
446
447
*/
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
  int i;
  int nMaxArgs = *pMaxFuncArgs;
  Op *pOp;
  int *aLabel = p->aLabel;
  p->readOnly = 1;

  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    u8 opcode = pOp->opcode;



    pOp->opflags = sqlite3OpcodeProperty[opcode];
    if( opcode==OP_Function || opcode==OP_AggStep ){

      if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;


    }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){













      p->readOnly = 0;



#ifndef SQLITE_OMIT_VIRTUALTABLE
    }else if( opcode==OP_VUpdate ){
      if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;


    }else if( opcode==OP_VFilter ){
      int n;
      assert( p->nOp - i >= 3 );
      assert( pOp[-1].opcode==OP_Integer );
      n = pOp[-1].p1;
      if( n>nMaxArgs ) nMaxArgs = n;


#endif

    }else if( opcode==OP_Next || opcode==OP_SorterNext ){
      pOp->p4.xAdvance = sqlite3BtreeNext;
      pOp->p4type = P4_ADVANCE;


    }else if( opcode==OP_Prev ){
      pOp->p4.xAdvance = sqlite3BtreePrevious;
      pOp->p4type = P4_ADVANCE;

    }



    if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
      assert( -1-pOp->p2<p->nLabel );
      pOp->p2 = aLabel[-1-pOp->p2];
    }
  }
  sqlite3DbFree(p->db, p->aLabel);
  p->aLabel = 0;

  *pMaxFuncArgs = nMaxArgs;

}

/*
** Return the address of the next instruction to be inserted.
*/
int sqlite3VdbeCurrentAddr(Vdbe *p){
  assert( p->magic==VDBE_MAGIC_INIT );







>



>
>
|
|
>
|
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>

|
|
>
>
|
|
|
|
|
|
>
>

>
|
|
|
>
>
|
|
|
>
|
|
>
>







<

>







399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

471
472
473
474
475
476
477
478
479
*/
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
  int i;
  int nMaxArgs = *pMaxFuncArgs;
  Op *pOp;
  int *aLabel = p->aLabel;
  p->readOnly = 1;
  p->bIsReader = 0;
  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    u8 opcode = pOp->opcode;

    /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
    ** cases from this switch! */
    switch( opcode ){
      case OP_Function:
      case OP_AggStep: {
        if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
        break;
      }
      case OP_Transaction: {
        if( pOp->p2!=0 ) p->readOnly = 0;
        /* fall thru */
      }
      case OP_AutoCommit:
      case OP_Savepoint: {
        p->bIsReader = 1;
        break;
      }
#ifndef SQLITE_OMIT_WAL
      case OP_Checkpoint:
#endif
      case OP_Vacuum:
      case OP_JournalMode: {
        p->readOnly = 0;
        p->bIsReader = 1;
        break;
      }
#ifndef SQLITE_OMIT_VIRTUALTABLE
      case OP_VUpdate: {
        if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
        break;
      }
      case OP_VFilter: {
        int n;
        assert( p->nOp - i >= 3 );
        assert( pOp[-1].opcode==OP_Integer );
        n = pOp[-1].p1;
        if( n>nMaxArgs ) nMaxArgs = n;
        break;
      }
#endif
      case OP_Next:
      case OP_SorterNext: {
        pOp->p4.xAdvance = sqlite3BtreeNext;
        pOp->p4type = P4_ADVANCE;
        break;
      }
      case OP_Prev: {
        pOp->p4.xAdvance = sqlite3BtreePrevious;
        pOp->p4type = P4_ADVANCE;
        break;
      }
    }

    pOp->opflags = sqlite3OpcodeProperty[opcode];
    if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
      assert( -1-pOp->p2<p->nLabel );
      pOp->p2 = aLabel[-1-pOp->p2];
    }
  }
  sqlite3DbFree(p->db, p->aLabel);
  p->aLabel = 0;

  *pMaxFuncArgs = nMaxArgs;
  assert( p->bIsReader!=0 || p->btreeMask==0 );
}

/*
** Return the address of the next instruction to be inserted.
*/
int sqlite3VdbeCurrentAddr(Vdbe *p){
  assert( p->magic==VDBE_MAGIC_INIT );
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
}

/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
void sqlite3VdbeJumpHere(Vdbe *p, int addr){
  assert( addr>=0 || p->db->mallocFailed );
  if( addr>=0 ) sqlite3VdbeChangeP2(p, addr, p->nOp);
}


/*
** If the input FuncDef structure is ephemeral, then free it.  If
** the FuncDef is not ephermal, then do nothing.
*/
static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
  if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
    sqlite3DbFree(db, pDef);
  }
}

static void vdbeFreeOpArray(sqlite3 *, Op *, int);

/*







<
|








|







591
592
593
594
595
596
597

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
}

/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
void sqlite3VdbeJumpHere(Vdbe *p, int addr){

  if( ALWAYS(addr>=0) ) sqlite3VdbeChangeP2(p, addr, p->nOp);
}


/*
** If the input FuncDef structure is ephemeral, then free it.  If
** the FuncDef is not ephermal, then do nothing.
*/
static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
  if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
    sqlite3DbFree(db, pDef);
  }
}

static void vdbeFreeOpArray(sqlite3 *, Op *, int);

/*
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        sqlite3DbFree(db, p4);
        break;
      }
      case P4_MPRINTF: {
        if( db->pnBytesFreed==0 ) sqlite3_free(p4);
        break;
      }
      case P4_VDBEFUNC: {
        VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
        freeEphemeralFunction(db, pVdbeFunc->pFunc);
        if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
        sqlite3DbFree(db, pVdbeFunc);
        break;
      }
      case P4_FUNCDEF: {
        freeEphemeralFunction(db, (FuncDef*)p4);
        break;
      }
      case P4_MEM: {
        if( db->pnBytesFreed==0 ){
          sqlite3ValueFree((sqlite3_value*)p4);







<
<
<
<
<
<
<







627
628
629
630
631
632
633







634
635
636
637
638
639
640
        sqlite3DbFree(db, p4);
        break;
      }
      case P4_MPRINTF: {
        if( db->pnBytesFreed==0 ) sqlite3_free(p4);
        break;
      }







      case P4_FUNCDEF: {
        freeEphemeralFunction(db, (FuncDef*)p4);
        break;
      }
      case P4_MEM: {
        if( db->pnBytesFreed==0 ){
          sqlite3ValueFree((sqlite3_value*)p4);
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
    ** that was cast to a (const char *). */
    pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
    pOp->p4type = P4_INT32;
  }else if( zP4==0 ){
    pOp->p4.p = 0;
    pOp->p4type = P4_NOTUSED;
  }else if( n==P4_KEYINFO ){
    KeyInfo *pKeyInfo;
    int nField, nByte;

    nField = ((KeyInfo*)zP4)->nField;
    nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
    pKeyInfo = sqlite3DbMallocRaw(0, nByte);
    pOp->p4.pKeyInfo = pKeyInfo;
    if( pKeyInfo ){
      u8 *aSortOrder;
      memcpy((char*)pKeyInfo, zP4, nByte - nField);
      aSortOrder = pKeyInfo->aSortOrder;
      assert( aSortOrder!=0 );
      pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
      memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
      pOp->p4type = P4_KEYINFO;
    }else{
      p->db->mallocFailed = 1;
      pOp->p4type = P4_NOTUSED;
    }
  }else if( n==P4_KEYINFO_HANDOFF ){
    pOp->p4.p = (void*)zP4;







|
<

|
<
<
|
|
<
|
|
<
<
<







745
746
747
748
749
750
751
752

753
754


755
756

757
758



759
760
761
762
763
764
765
    ** that was cast to a (const char *). */
    pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
    pOp->p4type = P4_INT32;
  }else if( zP4==0 ){
    pOp->p4.p = 0;
    pOp->p4type = P4_NOTUSED;
  }else if( n==P4_KEYINFO ){
    KeyInfo *pOrig, *pNew;


    pOrig = (KeyInfo*)zP4;


    pOp->p4.pKeyInfo = pNew = sqlite3KeyInfoAlloc(db, pOrig->nField);
    if( pNew ){

      memcpy(pNew->aColl, pOrig->aColl, pOrig->nField*sizeof(pNew->aColl[0]));
      memcpy(pNew->aSortOrder, pOrig->aSortOrder, pOrig->nField);



      pOp->p4type = P4_KEYINFO;
    }else{
      p->db->mallocFailed = 1;
      pOp->p4type = P4_NOTUSED;
    }
  }else if( n==P4_KEYINFO_HANDOFF ){
    pOp->p4.p = (void*)zP4;
1632
1633
1634
1635
1636
1637
1638




1639
1640
1641
1642
1643
1644
1645
    releaseMemArray(&p->aMem[1], p->nMem);
  }
  while( p->pDelFrame ){
    VdbeFrame *pDel = p->pDelFrame;
    p->pDelFrame = pDel->pParent;
    sqlite3VdbeFrameDelete(pDel);
  }




}

/*
** Clean up the VM after execution.
**
** This routine will automatically close any cursors, lists, and/or
** sorters that were left open.  It also deletes the values of







>
>
>
>







1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
    releaseMemArray(&p->aMem[1], p->nMem);
  }
  while( p->pDelFrame ){
    VdbeFrame *pDel = p->pDelFrame;
    p->pDelFrame = pDel->pParent;
    sqlite3VdbeFrameDelete(pDel);
  }

  /* Delete any auxdata allocations made by the VM */
  sqlite3VdbeDeleteAuxData(p, -1, 0);
  assert( p->pAuxData==0 );
}

/*
** Clean up the VM after execution.
**
** This routine will automatically close any cursors, lists, and/or
** sorters that were left open.  It also deletes the values of
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754

  /* Before doing anything else, call the xSync() callback for any
  ** virtual module tables written in this transaction. This has to
  ** be done before determining whether a master journal file is 
  ** required, as an xSync() callback may add an attached database
  ** to the transaction.
  */
  rc = sqlite3VtabSync(db, &p->zErrMsg);

  /* This loop determines (a) if the commit hook should be invoked and
  ** (b) how many database files have open write transactions, not 
  ** including the temp database. (b) is important because if more than 
  ** one database file has an open write transaction, a master journal
  ** file is required for an atomic commit.
  */ 







|







1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775

  /* Before doing anything else, call the xSync() callback for any
  ** virtual module tables written in this transaction. This has to
  ** be done before determining whether a master journal file is 
  ** required, as an xSync() callback may add an attached database
  ** to the transaction.
  */
  rc = sqlite3VtabSync(db, p);

  /* This loop determines (a) if the commit hook should be invoked and
  ** (b) how many database files have open write transactions, not 
  ** including the temp database. (b) is important because if more than 
  ** one database file has an open write transaction, a master journal
  ** file is required for an atomic commit.
  */ 
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978

1979
1980
1981
1982
1983

1984
1985
1986
1987
1988

1989
1990
1991
1992
1993
1994
1995
  }
#endif

  return rc;
}

/* 
** This routine checks that the sqlite3.activeVdbeCnt count variable
** matches the number of vdbe's in the list sqlite3.pVdbe that are
** currently active. An assertion fails if the two counts do not match.
** This is an internal self-check only - it is not an essential processing
** step.
**
** This is a no-op if NDEBUG is defined.
*/
#ifndef NDEBUG
static void checkActiveVdbeCnt(sqlite3 *db){
  Vdbe *p;
  int cnt = 0;
  int nWrite = 0;

  p = db->pVdbe;
  while( p ){
    if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
      cnt++;
      if( p->readOnly==0 ) nWrite++;

    }
    p = p->pNext;
  }
  assert( cnt==db->activeVdbeCnt );
  assert( nWrite==db->writeVdbeCnt );

}
#else
#define checkActiveVdbeCnt(x)
#endif

/*
** If the Vdbe passed as the first argument opened a statement-transaction,







|












>





>



|
|
>







1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
  }
#endif

  return rc;
}

/* 
** This routine checks that the sqlite3.nVdbeActive count variable
** matches the number of vdbe's in the list sqlite3.pVdbe that are
** currently active. An assertion fails if the two counts do not match.
** This is an internal self-check only - it is not an essential processing
** step.
**
** This is a no-op if NDEBUG is defined.
*/
#ifndef NDEBUG
static void checkActiveVdbeCnt(sqlite3 *db){
  Vdbe *p;
  int cnt = 0;
  int nWrite = 0;
  int nRead = 0;
  p = db->pVdbe;
  while( p ){
    if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
      cnt++;
      if( p->readOnly==0 ) nWrite++;
      if( p->bIsReader ) nRead++;
    }
    p = p->pNext;
  }
  assert( cnt==db->nVdbeActive );
  assert( nWrite==db->nVdbeWrite );
  assert( nRead==db->nVdbeRead );
}
#else
#define checkActiveVdbeCnt(x)
#endif

/*
** If the Vdbe passed as the first argument opened a statement-transaction,
2046
2047
2048
2049
2050
2051
2052

2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070

2071

2072
2073
2074
2075
2076
2077
2078
    }

    /* If the statement transaction is being rolled back, also restore the 
    ** database handles deferred constraint counter to the value it had when 
    ** the statement transaction was opened.  */
    if( eOp==SAVEPOINT_ROLLBACK ){
      db->nDeferredCons = p->nStmtDefCons;

    }
  }
  return rc;
}

/*
** This function is called when a transaction opened by the database 
** handle associated with the VM passed as an argument is about to be 
** committed. If there are outstanding deferred foreign key constraint
** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
**
** If there are outstanding FK violations and this function returns 
** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
** and write an error message to it. Then return SQLITE_ERROR.
*/
#ifndef SQLITE_OMIT_FOREIGN_KEY
int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
  sqlite3 *db = p->db;

  if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){

    p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
    p->errorAction = OE_Abort;
    sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
    return SQLITE_ERROR;
  }
  return SQLITE_OK;
}







>


















>
|
>







2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
    }

    /* If the statement transaction is being rolled back, also restore the 
    ** database handles deferred constraint counter to the value it had when 
    ** the statement transaction was opened.  */
    if( eOp==SAVEPOINT_ROLLBACK ){
      db->nDeferredCons = p->nStmtDefCons;
      db->nDeferredImmCons = p->nStmtDefImmCons;
    }
  }
  return rc;
}

/*
** This function is called when a transaction opened by the database 
** handle associated with the VM passed as an argument is about to be 
** committed. If there are outstanding deferred foreign key constraint
** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
**
** If there are outstanding FK violations and this function returns 
** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
** and write an error message to it. Then return SQLITE_ERROR.
*/
#ifndef SQLITE_OMIT_FOREIGN_KEY
int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
  sqlite3 *db = p->db;
  if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 
   || (!deferred && p->nFkConstraint>0) 
  ){
    p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
    p->errorAction = OE_Abort;
    sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
    return SQLITE_ERROR;
  }
  return SQLITE_OK;
}
2117
2118
2119
2120
2121
2122
2123
2124

2125
2126
2127
2128
2129
2130
2131
2132
  if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
  closeAllCursors(p);
  if( p->magic!=VDBE_MAGIC_RUN ){
    return SQLITE_OK;
  }
  checkActiveVdbeCnt(db);

  /* No commit or rollback needed if the program never started */

  if( p->pc>=0 ){
    int mrc;   /* Primary error code from p->rc */
    int eStatementOp = 0;
    int isSpecialError;            /* Set to true if a 'special' error */

    /* Lock all btrees used by the statement */
    sqlite3VdbeEnter(p);








|
>
|







2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
  if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
  closeAllCursors(p);
  if( p->magic!=VDBE_MAGIC_RUN ){
    return SQLITE_OK;
  }
  checkActiveVdbeCnt(db);

  /* No commit or rollback needed if the program never started or if the
  ** SQL statement does not read or write a database file.  */
  if( p->pc>=0 && p->bIsReader ){
    int mrc;   /* Primary error code from p->rc */
    int eStatementOp = 0;
    int isSpecialError;            /* Set to true if a 'special' error */

    /* Lock all btrees used by the statement */
    sqlite3VdbeEnter(p);

2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
    ** VM, then we do either a commit or rollback of the current transaction. 
    **
    ** Note: This block also runs if one of the special errors handled 
    ** above has occurred. 
    */
    if( !sqlite3VtabInSync(db) 
     && db->autoCommit 
     && db->writeVdbeCnt==(p->readOnly==0) 
    ){
      if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
        rc = sqlite3VdbeCheckFk(p, 1);
        if( rc!=SQLITE_OK ){
          if( NEVER(p->readOnly) ){
            sqlite3VdbeLeave(p);
            return SQLITE_ERROR;







|







2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
    ** VM, then we do either a commit or rollback of the current transaction. 
    **
    ** Note: This block also runs if one of the special errors handled 
    ** above has occurred. 
    */
    if( !sqlite3VtabInSync(db) 
     && db->autoCommit 
     && db->nVdbeWrite==(p->readOnly==0) 
    ){
      if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
        rc = sqlite3VdbeCheckFk(p, 1);
        if( rc!=SQLITE_OK ){
          if( NEVER(p->readOnly) ){
            sqlite3VdbeLeave(p);
            return SQLITE_ERROR;
2196
2197
2198
2199
2200
2201
2202


2203
2204
2205
2206
2207
2208
2209
          sqlite3VdbeLeave(p);
          return SQLITE_BUSY;
        }else if( rc!=SQLITE_OK ){
          p->rc = rc;
          sqlite3RollbackAll(db, SQLITE_OK);
        }else{
          db->nDeferredCons = 0;


          sqlite3CommitInternalChanges(db);
        }
      }else{
        sqlite3RollbackAll(db, SQLITE_OK);
      }
      db->nStatement = 0;
    }else if( eStatementOp==0 ){







>
>







2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
          sqlite3VdbeLeave(p);
          return SQLITE_BUSY;
        }else if( rc!=SQLITE_OK ){
          p->rc = rc;
          sqlite3RollbackAll(db, SQLITE_OK);
        }else{
          db->nDeferredCons = 0;
          db->nDeferredImmCons = 0;
          db->flags &= ~SQLITE_DeferFKs;
          sqlite3CommitInternalChanges(db);
        }
      }else{
        sqlite3RollbackAll(db, SQLITE_OK);
      }
      db->nStatement = 0;
    }else if( eStatementOp==0 ){
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262


2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286

    /* Release the locks */
    sqlite3VdbeLeave(p);
  }

  /* We have successfully halted and closed the VM.  Record this fact. */
  if( p->pc>=0 ){
    db->activeVdbeCnt--;
    if( !p->readOnly ){
      db->writeVdbeCnt--;
    }


    assert( db->activeVdbeCnt>=db->writeVdbeCnt );
  }
  p->magic = VDBE_MAGIC_HALT;
  checkActiveVdbeCnt(db);
  if( p->db->mallocFailed ){
    p->rc = SQLITE_NOMEM;
  }

  /* If the auto-commit flag is set to true, then any locks that were held
  ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 
  ** to invoke any required unlock-notify callbacks.
  */
  if( db->autoCommit ){
    sqlite3ConnectionUnlocked(db);
  }

  assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
  return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
}


/*
** Each VDBE holds the result of the most recent sqlite3_step() call
** in p->rc.  This routine sets that result back to SQLITE_OK.







|
|
|
<
>
>
|















|







2282
2283
2284
2285
2286
2287
2288
2289
2290
2291

2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317

    /* Release the locks */
    sqlite3VdbeLeave(p);
  }

  /* We have successfully halted and closed the VM.  Record this fact. */
  if( p->pc>=0 ){
    db->nVdbeActive--;
    if( !p->readOnly ) db->nVdbeWrite--;
    if( p->bIsReader ) db->nVdbeRead--;

    assert( db->nVdbeActive>=db->nVdbeRead );
    assert( db->nVdbeRead>=db->nVdbeWrite );
    assert( db->nVdbeWrite>=0 );
  }
  p->magic = VDBE_MAGIC_HALT;
  checkActiveVdbeCnt(db);
  if( p->db->mallocFailed ){
    p->rc = SQLITE_NOMEM;
  }

  /* If the auto-commit flag is set to true, then any locks that were held
  ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 
  ** to invoke any required unlock-notify callbacks.
  */
  if( db->autoCommit ){
    sqlite3ConnectionUnlocked(db);
  }

  assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
  return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
}


/*
** Each VDBE holds the result of the most recent sqlite3_step() call
** in p->rc.  This routine sets that result back to SQLITE_OK.
2420
2421
2422
2423
2424
2425
2426
2427











2428
2429
2430

2431
2432
2433
2434

2435
2436


2437
2438
2439
2440



2441
2442
2443
2444
2445
2446
2447
    assert( (rc & p->db->errMask)==rc );
  }
  sqlite3VdbeDelete(p);
  return rc;
}

/*
** Call the destructor for each auxdata entry in pVdbeFunc for which











** the corresponding bit in mask is clear.  Auxdata entries beyond 31
** are always destroyed.  To destroy all auxdata entries, call this
** routine with mask==0.

*/
void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
  int i;
  for(i=0; i<pVdbeFunc->nAux; i++){

    struct AuxData *pAux = &pVdbeFunc->apAux[i];
    if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){


      if( pAux->xDelete ){
        pAux->xDelete(pAux->pAux);
      }
      pAux->pAux = 0;



    }
  }
}

/*
** Free all memory associated with the Vdbe passed as the second argument,
** except for object itself, which is preserved.







|
>
>
>
>
>
>
>
>
>
>
>
|
<
<
>

|
<
|
>
|
|
>
>



|
>
>
>







2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470


2471
2472
2473

2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
    assert( (rc & p->db->errMask)==rc );
  }
  sqlite3VdbeDelete(p);
  return rc;
}

/*
** If parameter iOp is less than zero, then invoke the destructor for
** all auxiliary data pointers currently cached by the VM passed as
** the first argument.
**
** Or, if iOp is greater than or equal to zero, then the destructor is
** only invoked for those auxiliary data pointers created by the user 
** function invoked by the OP_Function opcode at instruction iOp of 
** VM pVdbe, and only then if:
**
**    * the associated function parameter is the 32nd or later (counting
**      from left to right), or
**
**    * the corresponding bit in argument mask is clear (where the first


**      function parameter corrsponds to bit 0 etc.).
*/
void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){

  AuxData **pp = &pVdbe->pAuxData;
  while( *pp ){
    AuxData *pAux = *pp;
    if( (iOp<0)
     || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & ((u32)1<<pAux->iArg))))
    ){
      if( pAux->xDelete ){
        pAux->xDelete(pAux->pAux);
      }
      *pp = pAux->pNext;
      sqlite3DbFree(pVdbe->db, pAux);
    }else{
      pp= &pAux->pNext;
    }
  }
}

/*
** Free all memory associated with the Vdbe passed as the second argument,
** except for object itself, which is preserved.
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
** equal, then the keys are considered to be equal and
** the parts beyond the common prefix are ignored.
*/
int sqlite3VdbeRecordCompare(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2        /* Right key */
){
  int d1;            /* Offset into aKey[] of next data element */
  u32 idx1;          /* Offset into aKey[] of next header element */
  u32 szHdr1;        /* Number of bytes in header */
  int i = 0;
  int nField;
  int rc = 0;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  KeyInfo *pKeyInfo;
  Mem mem1;

  pKeyInfo = pPKey2->pKeyInfo;
  mem1.enc = pKeyInfo->enc;







|



<







2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008

3009
3010
3011
3012
3013
3014
3015
** equal, then the keys are considered to be equal and
** the parts beyond the common prefix are ignored.
*/
int sqlite3VdbeRecordCompare(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2        /* Right key */
){
  u32 d1;            /* Offset into aKey[] of next data element */
  u32 idx1;          /* Offset into aKey[] of next header element */
  u32 szHdr1;        /* Number of bytes in header */
  int i = 0;

  int rc = 0;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  KeyInfo *pKeyInfo;
  Mem mem1;

  pKeyInfo = pPKey2->pKeyInfo;
  mem1.enc = pKeyInfo->enc;
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992








2993



2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
  ** impact, since this routine is a very high runner.  And so, we choose
  ** to ignore the compiler warnings and leave this variable uninitialized.
  */
  /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
  
  idx1 = getVarint32(aKey1, szHdr1);
  d1 = szHdr1;
  nField = pKeyInfo->nField;
  assert( pKeyInfo->aSortOrder!=0 );
  while( idx1<szHdr1 && i<pPKey2->nField ){
    u32 serial_type1;

    /* Read the serial types for the next element in each key. */
    idx1 += getVarint32( aKey1+idx1, serial_type1 );








    if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;




    /* Extract the values to be compared.
    */
    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);

    /* Do the comparison
    */
    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
                           i<nField ? pKeyInfo->aColl[i] : 0);
    if( rc!=0 ){
      assert( mem1.zMalloc==0 );  /* See comment below */

      /* Invert the result if we are using DESC sort order. */
      if( i<nField && pKeyInfo->aSortOrder[i] ){
        rc = -rc;
      }
    
      /* If the PREFIX_SEARCH flag is set and all fields except the final
      ** rowid field were equal, then clear the PREFIX_SEARCH flag and set 
      ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
      ** This is used by the OP_IsUnique opcode.







|






>
>
>
>
>
>
>
>
|
>
>
>







|
<




|







3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057

3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
  ** impact, since this routine is a very high runner.  And so, we choose
  ** to ignore the compiler warnings and leave this variable uninitialized.
  */
  /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
  
  idx1 = getVarint32(aKey1, szHdr1);
  d1 = szHdr1;
  assert( pKeyInfo->nField+1>=pPKey2->nField );
  assert( pKeyInfo->aSortOrder!=0 );
  while( idx1<szHdr1 && i<pPKey2->nField ){
    u32 serial_type1;

    /* Read the serial types for the next element in each key. */
    idx1 += getVarint32( aKey1+idx1, serial_type1 );

    /* Verify that there is enough key space remaining to avoid
    ** a buffer overread.  The "d1+serial_type1+2" subexpression will
    ** always be greater than or equal to the amount of required key space.
    ** Use that approximation to avoid the more expensive call to
    ** sqlite3VdbeSerialTypeLen() in the common case.
    */
    if( d1+serial_type1+2>(u32)nKey1
     && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 
    ){
      break;
    }

    /* Extract the values to be compared.
    */
    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);

    /* Do the comparison
    */
    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);

    if( rc!=0 ){
      assert( mem1.zMalloc==0 );  /* See comment below */

      /* Invert the result if we are using DESC sort order. */
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;
      }
    
      /* If the PREFIX_SEARCH flag is set and all fields except the final
      ** rowid field were equal, then clear the PREFIX_SEARCH flag and set 
      ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
      ** This is used by the OP_IsUnique opcode.
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
** Return a pointer to an sqlite3_value structure containing the value bound
** parameter iVar of VM v. Except, if the value is an SQL NULL, return 
** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
** constants) to the value before returning it.
**
** The returned value must be freed by the caller using sqlite3ValueFree().
*/
sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){
  assert( iVar>0 );
  if( v ){
    Mem *pMem = &v->aVar[iVar-1];
    if( 0==(pMem->flags & MEM_Null) ){
      sqlite3_value *pRet = sqlite3ValueNew(v->db);
      if( pRet ){
        sqlite3VdbeMemCopy((Mem *)pRet, pMem);







|







3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
** Return a pointer to an sqlite3_value structure containing the value bound
** parameter iVar of VM v. Except, if the value is an SQL NULL, return 
** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
** constants) to the value before returning it.
**
** The returned value must be freed by the caller using sqlite3ValueFree().
*/
sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
  assert( iVar>0 );
  if( v ){
    Mem *pMem = &v->aVar[iVar-1];
    if( 0==(pMem->flags & MEM_Null) ){
      sqlite3_value *pRet = sqlite3ValueNew(v->db);
      if( pRet ){
        sqlite3VdbeMemCopy((Mem *)pRet, pMem);
3245
3246
3247
3248
3249
3250
3251















  assert( iVar>0 );
  if( iVar>32 ){
    v->expmask = 0xffffffff;
  }else{
    v->expmask |= ((u32)1 << (iVar-1));
  }
}






















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
  assert( iVar>0 );
  if( iVar>32 ){
    v->expmask = 0xffffffff;
  }else{
    v->expmask |= ((u32)1 << (iVar-1));
  }
}

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
** in memory obtained from sqlite3DbMalloc).
*/
void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
  sqlite3 *db = p->db;
  sqlite3DbFree(db, p->zErrMsg);
  p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
  sqlite3_free(pVtab->zErrMsg);
  pVtab->zErrMsg = 0;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
Changes to src/vdbemem.c.
795
796
797
798
799
800
801

802
803
804
805
806
807
808
809
810


811
812
813
814
815


816
817
818

819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
  }

  /* If one value is a number and the other is not, the number is less.
  ** If both are numbers, compare as reals if one is a real, or as integers
  ** if both values are integers.
  */
  if( combined_flags&(MEM_Int|MEM_Real) ){

    if( !(f1&(MEM_Int|MEM_Real)) ){
      return 1;
    }
    if( !(f2&(MEM_Int|MEM_Real)) ){
      return -1;
    }
    if( (f1 & f2 & MEM_Int)==0 ){
      double r1, r2;
      if( (f1&MEM_Real)==0 ){


        r1 = (double)pMem1->u.i;
      }else{
        r1 = pMem1->r;
      }
      if( (f2&MEM_Real)==0 ){


        r2 = (double)pMem2->u.i;
      }else{
        r2 = pMem2->r;

      }
      if( r1<r2 ) return -1;
      if( r1>r2 ) return 1;
      return 0;
    }else{
      assert( f1&MEM_Int );
      assert( f2&MEM_Int );
      if( pMem1->u.i < pMem2->u.i ) return -1;
      if( pMem1->u.i > pMem2->u.i ) return 1;
      return 0;
    }
  }

  /* If one value is a string and the other is a blob, the string is less.
  ** If both are strings, compare using the collating functions.
  */
  if( combined_flags&MEM_Str ){
    if( (f1 & MEM_Str)==0 ){







>
|
|
<
|
|

<
<
|
>
>
|
|
|
|
|
>
>
|
|
<
>
|
|
|
|
<
<
<
<
<
<
<







795
796
797
798
799
800
801
802
803
804

805
806
807


808
809
810
811
812
813
814
815
816
817
818
819

820
821
822
823
824







825
826
827
828
829
830
831
  }

  /* If one value is a number and the other is not, the number is less.
  ** If both are numbers, compare as reals if one is a real, or as integers
  ** if both values are integers.
  */
  if( combined_flags&(MEM_Int|MEM_Real) ){
    double r1, r2;
    if( (f1 & f2 & MEM_Int)!=0 ){
      if( pMem1->u.i < pMem2->u.i ) return -1;

      if( pMem1->u.i > pMem2->u.i ) return 1;
      return 0;
    }


    if( (f1&MEM_Real)!=0 ){
      r1 = pMem1->r;
    }else if( (f1&MEM_Int)!=0 ){
      r1 = (double)pMem1->u.i;
    }else{
      return 1;
    }
    if( (f2&MEM_Real)!=0 ){
      r2 = pMem2->r;
    }else if( (f2&MEM_Int)!=0 ){
      r2 = (double)pMem2->u.i;
    }else{

      return -1;
    }
    if( r1<r2 ) return -1;
    if( r1>r2 ) return 1;
    return 0;







  }

  /* If one value is a string and the other is a blob, the string is less.
  ** If both are strings, compare using the collating functions.
  */
  if( combined_flags&MEM_Str ){
    if( (f1 & MEM_Str)==0 ){
1002
1003
1004
1005
1006
1007
1008









1009




1010










1011





1012






















1013






1014


1015
1016





1017
1018
1019
1020
1021
1022
1023

1024
1025
1026
1027
1028
1029

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080


1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119


1120

1121

1122
1123
1124























































































































































































1125
1126
1127
1128
1129
1130
1131
    p->type = SQLITE_NULL;
    p->db = db;
  }
  return p;
}

/*









** Create a new sqlite3_value object, containing the value of pExpr.




**










** This only works for very simple expressions that consist of one constant





** token (i.e. "5", "5.1", "'a string'"). If the expression can






















** be converted directly into a value, then the value is allocated and






** a pointer written to *ppVal. The caller is responsible for deallocating


** the value by passing it to sqlite3ValueFree() later on. If the expression
** cannot be converted to a value, then *ppVal is set to NULL.





*/
int sqlite3ValueFromExpr(
  sqlite3 *db,              /* The database connection */
  Expr *pExpr,              /* The expression to evaluate */
  u8 enc,                   /* Encoding to use */
  u8 affinity,              /* Affinity to use */
  sqlite3_value **ppVal     /* Write the new value here */

){
  int op;
  char *zVal = 0;
  sqlite3_value *pVal = 0;
  int negInt = 1;
  const char *zNeg = "";


  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;

  /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT3.
  ** The ifdef here is to enable us to achieve 100% branch test coverage even
  ** when SQLITE_ENABLE_STAT3 is omitted.
  */
#ifdef SQLITE_ENABLE_STAT3
  if( op==TK_REGISTER ) op = pExpr->op2;
#else
  if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
#endif

  /* Handle negative integers in a single step.  This is needed in the
  ** case when the value is -9223372036854775808.
  */
  if( op==TK_UMINUS
   && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
    pExpr = pExpr->pLeft;
    op = pExpr->op;
    negInt = -1;
    zNeg = "-";
  }

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    pVal = sqlite3ValueNew(db);
    if( pVal==0 ) goto no_mem;
    if( ExprHasProperty(pExpr, EP_IntValue) ){
      sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
    }else{
      zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
      if( zVal==0 ) goto no_mem;
      sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
      if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT;
    }
    if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
      sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
    }else{
      sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
    }
    if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
    if( enc!=SQLITE_UTF8 ){
      sqlite3VdbeChangeEncoding(pVal, enc);
    }
  }else if( op==TK_UMINUS ) {
    /* This branch happens for multiple negative signs.  Ex: -(-5) */
    if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){


      sqlite3VdbeMemNumerify(pVal);
      if( pVal->u.i==SMALLEST_INT64 ){
        pVal->flags &= MEM_Int;
        pVal->flags |= MEM_Real;
        pVal->r = (double)LARGEST_INT64;
      }else{
        pVal->u.i = -pVal->u.i;
      }
      pVal->r = -pVal->r;
      sqlite3ValueApplyAffinity(pVal, affinity, enc);
    }
  }else if( op==TK_NULL ){
    pVal = sqlite3ValueNew(db);
    if( pVal==0 ) goto no_mem;
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL
  else if( op==TK_BLOB ){
    int nVal;
    assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
    assert( pExpr->u.zToken[1]=='\'' );
    pVal = sqlite3ValueNew(db);
    if( !pVal ) goto no_mem;
    zVal = &pExpr->u.zToken[2];
    nVal = sqlite3Strlen30(zVal)-1;
    assert( zVal[nVal]=='\'' );
    sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
                         0, SQLITE_DYNAMIC);
  }
#endif

  if( pVal ){
    sqlite3VdbeMemStoreType(pVal);
  }
  *ppVal = pVal;
  return SQLITE_OK;

no_mem:
  db->mallocFailed = 1;
  sqlite3DbFree(db, zVal);


  sqlite3ValueFree(pVal);

  *ppVal = 0;

  return SQLITE_NOMEM;
}
























































































































































































/*
** Change the string value of an sqlite3_value object
*/
void sqlite3ValueSetStr(
  sqlite3_value *v,     /* Value to be set */
  int n,                /* Length of string z */
  const void *z,        /* Text of the new string */







>
>
>
>
>
>
>
>
>
|
>
>
>
>

>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
|
>
>
|
|
>
>
>
>
>

|
|
|
|
|
|
>






>







|

|

|

















|
















|



|
>
>












|







|













|




>
>
|
>
|
>



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
    p->type = SQLITE_NULL;
    p->db = db;
  }
  return p;
}

/*
** Context object passed by sqlite3Stat4ProbeSetValue() through to 
** valueNew(). See comments above valueNew() for details.
*/
struct ValueNewStat4Ctx {
  Parse *pParse;
  Index *pIdx;
  UnpackedRecord **ppRec;
  int iVal;
};

/*
** Allocate and return a pointer to a new sqlite3_value object. If
** the second argument to this function is NULL, the object is allocated
** by calling sqlite3ValueNew().
**
** Otherwise, if the second argument is non-zero, then this function is 
** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
** already been allocated, allocate the UnpackedRecord structure that 
** that function will return to its caller here. Then return a pointer 
** an sqlite3_value within the UnpackedRecord.a[] array.
*/
static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( p ){
    UnpackedRecord *pRec = p->ppRec[0];

    if( pRec==0 ){
      Index *pIdx = p->pIdx;      /* Index being probed */
      int nByte;                  /* Bytes of space to allocate */
      int i;                      /* Counter variable */
      int nCol = pIdx->nColumn+1; /* Number of index columns including rowid */
  
      nByte = sizeof(Mem) * nCol + sizeof(UnpackedRecord);
      pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
      if( pRec ){
        pRec->pKeyInfo = sqlite3IndexKeyinfo(p->pParse, pIdx);
        if( pRec->pKeyInfo ){
          assert( pRec->pKeyInfo->nField+1==nCol );
          pRec->pKeyInfo->enc = ENC(db);
          pRec->flags = UNPACKED_PREFIX_MATCH;
          pRec->aMem = (Mem *)&pRec[1];
          for(i=0; i<nCol; i++){
            pRec->aMem[i].flags = MEM_Null;
            pRec->aMem[i].type = SQLITE_NULL;
            pRec->aMem[i].db = db;
          }
        }else{
          sqlite3DbFree(db, pRec);
          pRec = 0;
        }
      }
      if( pRec==0 ) return 0;
      p->ppRec[0] = pRec;
    }
  
    pRec->nField = p->iVal+1;
    return &pRec->aMem[p->iVal];
  }
#endif
  return sqlite3ValueNew(db);
}

/*
** Extract a value from the supplied expression in the manner described
** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
** using valueNew().
**
** If pCtx is NULL and an error occurs after the sqlite3_value object
** has been allocated, it is freed before returning. Or, if pCtx is not
** NULL, it is assumed that the caller will free any allocated object
** in all cases.
*/
int valueFromExpr(
  sqlite3 *db,                    /* The database connection */
  Expr *pExpr,                    /* The expression to evaluate */
  u8 enc,                         /* Encoding to use */
  u8 affinity,                    /* Affinity to use */
  sqlite3_value **ppVal,          /* Write the new value here */
  struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
){
  int op;
  char *zVal = 0;
  sqlite3_value *pVal = 0;
  int negInt = 1;
  const char *zNeg = "";
  int rc = SQLITE_OK;

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;

  /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT4.
  ** The ifdef here is to enable us to achieve 100% branch test coverage even
  ** when SQLITE_ENABLE_STAT4 is omitted.
  */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( op==TK_REGISTER ) op = pExpr->op2;
#else
  if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
#endif

  /* Handle negative integers in a single step.  This is needed in the
  ** case when the value is -9223372036854775808.
  */
  if( op==TK_UMINUS
   && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
    pExpr = pExpr->pLeft;
    op = pExpr->op;
    negInt = -1;
    zNeg = "-";
  }

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    pVal = valueNew(db, pCtx);
    if( pVal==0 ) goto no_mem;
    if( ExprHasProperty(pExpr, EP_IntValue) ){
      sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
    }else{
      zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
      if( zVal==0 ) goto no_mem;
      sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
      if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT;
    }
    if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
      sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
    }else{
      sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
    }
    if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
    if( enc!=SQLITE_UTF8 ){
      rc = sqlite3VdbeChangeEncoding(pVal, enc);
    }
  }else if( op==TK_UMINUS ) {
    /* This branch happens for multiple negative signs.  Ex: -(-5) */
    if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) 
     && pVal!=0
    ){
      sqlite3VdbeMemNumerify(pVal);
      if( pVal->u.i==SMALLEST_INT64 ){
        pVal->flags &= MEM_Int;
        pVal->flags |= MEM_Real;
        pVal->r = (double)LARGEST_INT64;
      }else{
        pVal->u.i = -pVal->u.i;
      }
      pVal->r = -pVal->r;
      sqlite3ValueApplyAffinity(pVal, affinity, enc);
    }
  }else if( op==TK_NULL ){
    pVal = valueNew(db, pCtx);
    if( pVal==0 ) goto no_mem;
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL
  else if( op==TK_BLOB ){
    int nVal;
    assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
    assert( pExpr->u.zToken[1]=='\'' );
    pVal = valueNew(db, pCtx);
    if( !pVal ) goto no_mem;
    zVal = &pExpr->u.zToken[2];
    nVal = sqlite3Strlen30(zVal)-1;
    assert( zVal[nVal]=='\'' );
    sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
                         0, SQLITE_DYNAMIC);
  }
#endif

  if( pVal ){
    sqlite3VdbeMemStoreType(pVal);
  }
  *ppVal = pVal;
  return rc;

no_mem:
  db->mallocFailed = 1;
  sqlite3DbFree(db, zVal);
  assert( *ppVal==0 );
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( pCtx==0 ) sqlite3ValueFree(pVal);
#else
  assert( pCtx==0 ); sqlite3ValueFree(pVal);
#endif
  return SQLITE_NOMEM;
}

/*
** Create a new sqlite3_value object, containing the value of pExpr.
**
** This only works for very simple expressions that consist of one constant
** token (i.e. "5", "5.1", "'a string'"). If the expression can
** be converted directly into a value, then the value is allocated and
** a pointer written to *ppVal. The caller is responsible for deallocating
** the value by passing it to sqlite3ValueFree() later on. If the expression
** cannot be converted to a value, then *ppVal is set to NULL.
*/
int sqlite3ValueFromExpr(
  sqlite3 *db,              /* The database connection */
  Expr *pExpr,              /* The expression to evaluate */
  u8 enc,                   /* Encoding to use */
  u8 affinity,              /* Affinity to use */
  sqlite3_value **ppVal     /* Write the new value here */
){
  return valueFromExpr(db, pExpr, enc, affinity, ppVal, 0);
}

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** The implementation of the sqlite_record() function. This function accepts
** a single argument of any type. The return value is a formatted database 
** record (a blob) containing the argument value.
**
** This is used to convert the value stored in the 'sample' column of the
** sqlite_stat3 table to the record format SQLite uses internally.
*/
static void recordFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  const int file_format = 1;
  int iSerial;                    /* Serial type */
  int nSerial;                    /* Bytes of space for iSerial as varint */
  int nVal;                       /* Bytes of space required for argv[0] */
  int nRet;
  sqlite3 *db;
  u8 *aRet;

  iSerial = sqlite3VdbeSerialType(argv[0], file_format);
  nSerial = sqlite3VarintLen(iSerial);
  nVal = sqlite3VdbeSerialTypeLen(iSerial);
  db = sqlite3_context_db_handle(context);

  nRet = 1 + nSerial + nVal;
  aRet = sqlite3DbMallocRaw(db, nRet);
  if( aRet==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    aRet[0] = nSerial+1;
    sqlite3PutVarint(&aRet[1], iSerial);
    sqlite3VdbeSerialPut(&aRet[1+nSerial], nVal, argv[0], file_format);
    sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
    sqlite3DbFree(db, aRet);
  }
}

/*
** Register built-in functions used to help read ANALYZE data.
*/
void sqlite3AnalyzeFunctions(void){
  static SQLITE_WSD FuncDef aAnalyzeTableFuncs[] = {
    FUNCTION(sqlite_record,   1, 0, 0, recordFunc),
  };
  int i;
  FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
  FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAnalyzeTableFuncs);
  for(i=0; i<ArraySize(aAnalyzeTableFuncs); i++){
    sqlite3FuncDefInsert(pHash, &aFunc[i]);
  }
}

/*
** This function is used to allocate and populate UnpackedRecord 
** structures intended to be compared against sample index keys stored 
** in the sqlite_stat4 table.
**
** A single call to this function attempts to populates field iVal (leftmost 
** is 0 etc.) of the unpacked record with a value extracted from expression
** pExpr. Extraction of values is possible if:
**
**  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
**
**  * The expression is a bound variable, and this is a reprepare, or
**
**  * The sqlite3ValueFromExpr() function is able to extract a value 
**    from the expression (i.e. the expression is a literal value).
**
** If a value can be extracted, the affinity passed as the 5th argument
** is applied to it before it is copied into the UnpackedRecord. Output
** parameter *pbOk is set to true if a value is extracted, or false 
** otherwise.
**
** When this function is called, *ppRec must either point to an object
** allocated by an earlier call to this function, or must be NULL. If it
** is NULL and a value can be successfully extracted, a new UnpackedRecord
** is allocated (and *ppRec set to point to it) before returning.
**
** Unless an error is encountered, SQLITE_OK is returned. It is not an
** error if a value cannot be extracted from pExpr. If an error does
** occur, an SQLite error code is returned.
*/
int sqlite3Stat4ProbeSetValue(
  Parse *pParse,                  /* Parse context */
  Index *pIdx,                    /* Index being probed */
  UnpackedRecord **ppRec,         /* IN/OUT: Probe record */
  Expr *pExpr,                    /* The expression to extract a value from */
  u8 affinity,                    /* Affinity to use */
  int iVal,                       /* Array element to populate */
  int *pbOk                       /* OUT: True if value was extracted */
){
  int rc = SQLITE_OK;
  sqlite3_value *pVal = 0;
  sqlite3 *db = pParse->db;


  struct ValueNewStat4Ctx alloc;
  alloc.pParse = pParse;
  alloc.pIdx = pIdx;
  alloc.ppRec = ppRec;
  alloc.iVal = iVal;

  /* Skip over any TK_COLLATE nodes */
  pExpr = sqlite3ExprSkipCollate(pExpr);

  if( !pExpr ){
    pVal = valueNew(db, &alloc);
    if( pVal ){
      sqlite3VdbeMemSetNull((Mem*)pVal);
      *pbOk = 1;
    }
  }else if( pExpr->op==TK_VARIABLE
        || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
  ){
    Vdbe *v;
    int iBindVar = pExpr->iColumn;
    sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
    if( (v = pParse->pReprepare)!=0 ){
      pVal = valueNew(db, &alloc);
      if( pVal ){
        rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
        if( rc==SQLITE_OK ){
          sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
        }
        pVal->db = pParse->db;
        *pbOk = 1;
        sqlite3VdbeMemStoreType((Mem*)pVal);
      }
    }else{
      *pbOk = 0;
    }
  }else{
    rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, &alloc);
    *pbOk = (pVal!=0);
  }

  assert( pVal==0 || pVal->db==db );
  return rc;
}

/*
** Unless it is NULL, the argument must be an UnpackedRecord object returned
** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
** the object.
*/
void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
  if( pRec ){
    int i;
    int nCol = pRec->pKeyInfo->nField+1;
    Mem *aMem = pRec->aMem;
    sqlite3 *db = aMem[0].db;
    for(i=0; i<nCol; i++){
      sqlite3DbFree(db, aMem[i].zMalloc);
    }
    sqlite3DbFree(db, pRec->pKeyInfo);
    sqlite3DbFree(db, pRec);
  }
}
#endif /* ifdef SQLITE_ENABLE_STAT4 */

/*
** Change the string value of an sqlite3_value object
*/
void sqlite3ValueSetStr(
  sqlite3_value *v,     /* Value to be set */
  int n,                /* Length of string z */
  const void *z,        /* Text of the new string */
Changes to src/vdbetrace.c.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    zSql += n;
  }
  return nTotal;
}

/*
** This function returns a pointer to a nul-terminated string in memory
** obtained from sqlite3DbMalloc(). If sqlite3.vdbeExecCnt is 1, then the
** string contains a copy of zRawSql but with host parameters expanded to 
** their current bindings. Or, if sqlite3.vdbeExecCnt is greater than 1, 
** then the returned string holds a copy of zRawSql with "-- " prepended
** to each line of text.
**
** If the SQLITE_TRACE_SIZE_LIMIT macro is defined to an integer, then
** then long strings and blobs are truncated to that many bytes.  This
** can be used to prevent unreasonably large trace strings when dealing
** with large (multi-megabyte) strings and blobs.







|

|







43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    zSql += n;
  }
  return nTotal;
}

/*
** This function returns a pointer to a nul-terminated string in memory
** obtained from sqlite3DbMalloc(). If sqlite3.nVdbeExec is 1, then the
** string contains a copy of zRawSql but with host parameters expanded to 
** their current bindings. Or, if sqlite3.nVdbeExec is greater than 1, 
** then the returned string holds a copy of zRawSql with "-- " prepended
** to each line of text.
**
** If the SQLITE_TRACE_SIZE_LIMIT macro is defined to an integer, then
** then long strings and blobs are truncated to that many bytes.  This
** can be used to prevent unreasonably large trace strings when dealing
** with large (multi-megabyte) strings and blobs.
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
  StrAccum out;            /* Accumulate the output here */
  char zBase[100];         /* Initial working space */

  db = p->db;
  sqlite3StrAccumInit(&out, zBase, sizeof(zBase), 
                      db->aLimit[SQLITE_LIMIT_LENGTH]);
  out.db = db;
  if( db->vdbeExecCnt>1 ){
    while( *zRawSql ){
      const char *zStart = zRawSql;
      while( *(zRawSql++)!='\n' && *zRawSql );
      sqlite3StrAccumAppend(&out, "-- ", 3);
      sqlite3StrAccumAppend(&out, zStart, (int)(zRawSql-zStart));
    }
  }else{







|







83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
  StrAccum out;            /* Accumulate the output here */
  char zBase[100];         /* Initial working space */

  db = p->db;
  sqlite3StrAccumInit(&out, zBase, sizeof(zBase), 
                      db->aLimit[SQLITE_LIMIT_LENGTH]);
  out.db = db;
  if( db->nVdbeExec>1 ){
    while( *zRawSql ){
      const char *zStart = zRawSql;
      while( *(zRawSql++)!='\n' && *zRawSql );
      sqlite3StrAccumAppend(&out, "-- ", 3);
      sqlite3StrAccumAppend(&out, zStart, (int)(zRawSql-zStart));
    }
  }else{
Changes to src/vtab.c.
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
}

/*
** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
** array. Return the error code for the first error that occurs, or
** SQLITE_OK if all xSync operations are successful.
**
** Set *pzErrmsg to point to a buffer that should be released using 
** sqlite3DbFree() containing an error message, if one is available.
*/
int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){
  int i;
  int rc = SQLITE_OK;
  VTable **aVTrans = db->aVTrans;

  db->aVTrans = 0;
  for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
    int (*x)(sqlite3_vtab *);
    sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
    if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
      rc = x(pVtab);
      sqlite3DbFree(db, *pzErrmsg);
      *pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
      sqlite3_free(pVtab->zErrMsg);
    }
  }
  db->aVTrans = aVTrans;
  return rc;
}

/*







<
|

|










|
<
<







806
807
808
809
810
811
812

813
814
815
816
817
818
819
820
821
822
823
824
825
826


827
828
829
830
831
832
833
}

/*
** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
** array. Return the error code for the first error that occurs, or
** SQLITE_OK if all xSync operations are successful.
**

** If an error message is available, leave it in p->zErrMsg.
*/
int sqlite3VtabSync(sqlite3 *db, Vdbe *p){
  int i;
  int rc = SQLITE_OK;
  VTable **aVTrans = db->aVTrans;

  db->aVTrans = 0;
  for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
    int (*x)(sqlite3_vtab *);
    sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
    if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
      rc = x(pVtab);
      sqlite3VtabImportErrmsg(p, pVtab);


    }
  }
  db->aVTrans = aVTrans;
  return rc;
}

/*
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
    return pDef;
  }
  *pNew = *pDef;
  pNew->zName = (char *)&pNew[1];
  memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
  pNew->xFunc = xFunc;
  pNew->pUserData = pArg;
  pNew->flags |= SQLITE_FUNC_EPHEM;
  return pNew;
}

/*
** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
** array so that an OP_VBegin will get generated for it.  Add pTab to the
** array if it is missing.  If pTab is already in the array, this routine







|







1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
    return pDef;
  }
  *pNew = *pDef;
  pNew->zName = (char *)&pNew[1];
  memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
  pNew->xFunc = xFunc;
  pNew->pUserData = pArg;
  pNew->funcFlags |= SQLITE_FUNC_EPHEM;
  return pNew;
}

/*
** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
** array so that an OP_VBegin will get generated for it.  Add pTab to the
** array if it is missing.  If pTab is already in the array, this routine
Changes to src/wal.c.
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
  /* If another connection has written to the database file since the
  ** time the read transaction on this connection was started, then
  ** the write is disallowed.
  */
  if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
    walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    pWal->writeLock = 0;
    rc = SQLITE_BUSY;
  }

  return rc;
}

/*
** End a write transaction.  The commit has already been done.  This







|







2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
  /* If another connection has written to the database file since the
  ** time the read transaction on this connection was started, then
  ** the write is disallowed.
  */
  if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
    walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    pWal->writeLock = 0;
    rc = SQLITE_BUSY_SNAPSHOT;
  }

  return rc;
}

/*
** End a write transaction.  The commit has already been done.  This
Changes to src/where.c.
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40

41







































































































































































42
43
44
45
46
47
48
** Trace output macros
*/
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
/***/ int sqlite3WhereTrace = 0;
#endif
#if defined(SQLITE_DEBUG) \
    && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE))

# define WHERETRACE(X)  if(sqlite3WhereTrace) sqlite3DebugPrintf X
#else
# define WHERETRACE(X)
#endif

/* Forward reference
*/
typedef struct WhereClause WhereClause;
typedef struct WhereMaskSet WhereMaskSet;
typedef struct WhereOrInfo WhereOrInfo;
typedef struct WhereAndInfo WhereAndInfo;

typedef struct WhereCost WhereCost;








































































































































































/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
** clause subexpression is separated from the others by AND operators,
** usually, or sometimes subexpressions separated by OR.
**







>
|

|


|





>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
** Trace output macros
*/
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
/***/ int sqlite3WhereTrace = 0;
#endif
#if defined(SQLITE_DEBUG) \
    && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE))
# define WHERETRACE(K,X)  if(sqlite3WhereTrace&(K)) sqlite3DebugPrintf X
# define WHERETRACE_ENABLED 1
#else
# define WHERETRACE(K,X)
#endif

/* Forward references
*/
typedef struct WhereClause WhereClause;
typedef struct WhereMaskSet WhereMaskSet;
typedef struct WhereOrInfo WhereOrInfo;
typedef struct WhereAndInfo WhereAndInfo;
typedef struct WhereLevel WhereLevel;
typedef struct WhereLoop WhereLoop;
typedef struct WherePath WherePath;
typedef struct WhereTerm WhereTerm;
typedef struct WhereLoopBuilder WhereLoopBuilder;
typedef struct WhereScan WhereScan;
typedef struct WhereOrCost WhereOrCost;
typedef struct WhereOrSet WhereOrSet;

/*
** Cost X is tracked as 10*log2(X) stored in a 16-bit integer.  The
** maximum cost for ordinary tables is 64*(2**63) which becomes 6900.
** (Virtual tables can return a larger cost, but let's assume they do not.)
** So all costs can be stored in a 16-bit unsigned integer without risk
** of overflow.
**
** Costs are estimates, so no effort is made to compute 10*log2(X) exactly.
** Instead, a close estimate is used.  Any value of X<=1 is stored as 0.
** X=2 is 10.  X=3 is 16.  X=1000 is 99. etc.
**
** The tool/wherecosttest.c source file implements a command-line program
** that will convert WhereCosts to integers, convert integers to WhereCosts
** and do addition and multiplication on WhereCost values.  The wherecosttest
** command-line program is a useful utility to have around when working with
** this module.
*/
typedef unsigned short int WhereCost;

/*
** This object contains information needed to implement a single nested
** loop in WHERE clause.
**
** Contrast this object with WhereLoop.  This object describes the
** implementation of the loop.  WhereLoop describes the algorithm.
** This object contains a pointer to the WhereLoop algorithm as one of
** its elements.
**
** The WhereInfo object contains a single instance of this object for
** each term in the FROM clause (which is to say, for each of the
** nested loops as implemented).  The order of WhereLevel objects determines
** the loop nested order, with WhereInfo.a[0] being the outer loop and
** WhereInfo.a[WhereInfo.nLevel-1] being the inner loop.
*/
struct WhereLevel {
  int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
  int iTabCur;          /* The VDBE cursor used to access the table */
  int iIdxCur;          /* The VDBE cursor used to access pIdx */
  int addrBrk;          /* Jump here to break out of the loop */
  int addrNxt;          /* Jump here to start the next IN combination */
  int addrCont;         /* Jump here to continue with the next loop cycle */
  int addrFirst;        /* First instruction of interior of the loop */
  int addrBody;         /* Beginning of the body of this loop */
  u8 iFrom;             /* Which entry in the FROM clause */
  u8 op, p5;            /* Opcode and P5 of the opcode that ends the loop */
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on pWLoop->wsFlags */
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {
        int iCur;              /* The VDBE cursor used by this IN operator */
        int addrInTop;         /* Top of the IN loop */
        u8 eEndLoopOp;         /* IN Loop terminator. OP_Next or OP_Prev */
      } *aInLoop;           /* Information about each nested IN operator */
    } in;                 /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */
    Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
  } u;
  struct WhereLoop *pWLoop;  /* The selected WhereLoop object */
  Bitmask notReady;          /* FROM entries not usable at this level */
};

/*
** Each instance of this object represents an algorithm for evaluating one
** term of a join.  Every term of the FROM clause will have at least
** one corresponding WhereLoop object (unless INDEXED BY constraints
** prevent a query solution - which is an error) and many terms of the
** FROM clause will have multiple WhereLoop objects, each describing a
** potential way of implementing that FROM-clause term, together with
** dependencies and cost estimates for using the chosen algorithm.
**
** Query planning consists of building up a collection of these WhereLoop
** objects, then computing a particular sequence of WhereLoop objects, with
** one WhereLoop object per FROM clause term, that satisfy all dependencies
** and that minimize the overall cost.
*/
struct WhereLoop {
  Bitmask prereq;       /* Bitmask of other loops that must run first */
  Bitmask maskSelf;     /* Bitmask identifying table iTab */
#ifdef SQLITE_DEBUG
  char cId;             /* Symbolic ID of this loop for debugging use */
#endif
  u8 iTab;              /* Position in FROM clause of table for this loop */
  u8 iSortIdx;          /* Sorting index number.  0==None */
  WhereCost rSetup;     /* One-time setup cost (ex: create transient index) */
  WhereCost rRun;       /* Cost of running each loop */
  WhereCost nOut;       /* Estimated number of output rows */
  union {
    struct {               /* Information for internal btree tables */
      int nEq;               /* Number of equality constraints */
      Index *pIndex;         /* Index used, or NULL */
    } btree;
    struct {               /* Information for virtual tables */
      int idxNum;            /* Index number */
      u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
      u8 isOrdered;          /* True if satisfies ORDER BY */
      u16 omitMask;          /* Terms that may be omitted */
      char *idxStr;          /* Index identifier string */
    } vtab;
  } u;
  u32 wsFlags;          /* WHERE_* flags describing the plan */
  u16 nLTerm;           /* Number of entries in aLTerm[] */
  /**** whereLoopXfer() copies fields above ***********************/
# define WHERE_LOOP_XFER_SZ offsetof(WhereLoop,nLSlot)
  u16 nLSlot;           /* Number of slots allocated for aLTerm[] */
  WhereTerm **aLTerm;   /* WhereTerms used */
  WhereLoop *pNextLoop; /* Next WhereLoop object in the WhereClause */
  WhereTerm *aLTermSpace[4];  /* Initial aLTerm[] space */
};

/* This object holds the prerequisites and the cost of running a
** subquery on one operand of an OR operator in the WHERE clause.
** See WhereOrSet for additional information 
*/
struct WhereOrCost {
  Bitmask prereq;     /* Prerequisites */
  WhereCost rRun;     /* Cost of running this subquery */
  WhereCost nOut;     /* Number of outputs for this subquery */
};

/* The WhereOrSet object holds a set of possible WhereOrCosts that
** correspond to the subquery(s) of OR-clause processing.  Only the
** best N_OR_COST elements are retained.
*/
#define N_OR_COST 3
struct WhereOrSet {
  u16 n;                      /* Number of valid a[] entries */
  WhereOrCost a[N_OR_COST];   /* Set of best costs */
};


/* Forward declaration of methods */
static int whereLoopResize(sqlite3*, WhereLoop*, int);

/*
** Each instance of this object holds a sequence of WhereLoop objects
** that implement some or all of a query plan.
**
** Think of each WhereLoop object as a node in a graph with arcs
** showing dependencies and costs for travelling between nodes.  (That is
** not a completely accurate description because WhereLoop costs are a
** vector, not a scalar, and because dependencies are many-to-one, not
** one-to-one as are graph nodes.  But it is a useful visualization aid.)
** Then a WherePath object is a path through the graph that visits some
** or all of the WhereLoop objects once.
**
** The "solver" works by creating the N best WherePath objects of length
** 1.  Then using those as a basis to compute the N best WherePath objects
** of length 2.  And so forth until the length of WherePaths equals the
** number of nodes in the FROM clause.  The best (lowest cost) WherePath
** at the end is the choosen query plan.
*/
struct WherePath {
  Bitmask maskLoop;     /* Bitmask of all WhereLoop objects in this path */
  Bitmask revLoop;      /* aLoop[]s that should be reversed for ORDER BY */
  WhereCost nRow;       /* Estimated number of rows generated by this path */
  WhereCost rCost;      /* Total cost of this path */
  u8 isOrdered;         /* True if this path satisfies ORDER BY */
  u8 isOrderedValid;    /* True if the isOrdered field is valid */
  WhereLoop **aLoop;    /* Array of WhereLoop objects implementing this path */
};

/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
** clause subexpression is separated from the others by AND operators,
** usually, or sometimes subexpressions separated by OR.
**
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
** use of a bitmask encoding for the operator allows us to search
** quickly for terms that match any of several different operators.
**
** A WhereTerm might also be two or more subterms connected by OR:
**
**         (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
**
** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
** and the WhereTerm.u.pOrInfo field points to auxiliary information that
** is collected about the
**
** If a term in the WHERE clause does not match either of the two previous
** categories, then eOperator==0.  The WhereTerm.pExpr field is still set
** to the original subexpression content and wtFlags is set up appropriately
** but no other fields in the WhereTerm object are meaningful.
**
** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,







|

|







231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
** use of a bitmask encoding for the operator allows us to search
** quickly for terms that match any of several different operators.
**
** A WhereTerm might also be two or more subterms connected by OR:
**
**         (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
**
** In this second case, wtFlag has the TERM_ORINFO bit set and eOperator==WO_OR
** and the WhereTerm.u.pOrInfo field points to auxiliary information that
** is collected about the OR clause.
**
** If a term in the WHERE clause does not match either of the two previous
** categories, then eOperator==0.  The WhereTerm.pExpr field is still set
** to the original subexpression content and wtFlags is set up appropriately
** but no other fields in the WhereTerm object are meaningful.
**
** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
** bits in the Bitmask.  So, in the example above, the cursor numbers
** would be mapped into integers 0 through 7.
**
** The number of terms in a join is limited by the number of bits
** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite
** is only able to process joins with 64 or fewer tables.
*/
typedef struct WhereTerm WhereTerm;
struct WhereTerm {
  Expr *pExpr;            /* Pointer to the subexpression that is this term */
  int iParent;            /* Disable pWC->a[iParent] when this term disabled */
  int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
  union {
    int leftColumn;         /* Column number of X in "X <op> <expr>" */
    WhereOrInfo *pOrInfo;   /* Extra information if (eOperator & WO_OR)!=0 */







<







256
257
258
259
260
261
262

263
264
265
266
267
268
269
** bits in the Bitmask.  So, in the example above, the cursor numbers
** would be mapped into integers 0 through 7.
**
** The number of terms in a join is limited by the number of bits
** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite
** is only able to process joins with 64 or fewer tables.
*/

struct WhereTerm {
  Expr *pExpr;            /* Pointer to the subexpression that is this term */
  int iParent;            /* Disable pWC->a[iParent] when this term disabled */
  int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
  union {
    int leftColumn;         /* Column number of X in "X <op> <expr>" */
    WhereOrInfo *pOrInfo;   /* Extra information if (eOperator & WO_OR)!=0 */
115
116
117
118
119
120
121
122
123
124
125
126
















127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
#define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
#define TERM_CODED      0x04   /* This term is already coded */
#define TERM_COPIED     0x08   /* Has a child */
#define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */
#define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
#define TERM_OR_OK      0x40   /* Used during OR-clause processing */
#ifdef SQLITE_ENABLE_STAT3
#  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
#else
#  define TERM_VNULL    0x00   /* Disabled if not using stat3 */
#endif

















/*
** An instance of the following structure holds all information about a
** WHERE clause.  Mostly this is a container for one or more WhereTerms.
**
** Explanation of pOuter:  For a WHERE clause of the form
**
**           a AND ((b AND c) OR (d AND e)) AND f
**
** There are separate WhereClause objects for the whole clause and for
** the subclauses "(b AND c)" and "(d AND e)".  The pOuter field of the
** subclauses points to the WhereClause object for the whole clause.
*/
struct WhereClause {
  Parse *pParse;           /* The parser context */
  WhereMaskSet *pMaskSet;  /* Mapping of table cursor numbers to bitmasks */
  WhereClause *pOuter;     /* Outer conjunction */
  u8 op;                   /* Split operator.  TK_AND or TK_OR */
  u16 wctrlFlags;          /* Might include WHERE_AND_ONLY */
  int nTerm;               /* Number of terms */
  int nSlot;               /* Number of entries in a[] */
  WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
#if defined(SQLITE_SMALL_STACK)
  WhereTerm aStatic[1];    /* Initial static space for a[] */
#else
  WhereTerm aStatic[8];    /* Initial static space for a[] */







|




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>














|
<


<







283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

326
327

328
329
330
331
332
333
334
#define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
#define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
#define TERM_CODED      0x04   /* This term is already coded */
#define TERM_COPIED     0x08   /* Has a child */
#define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */
#define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
#define TERM_OR_OK      0x40   /* Used during OR-clause processing */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
#  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
#else
#  define TERM_VNULL    0x00   /* Disabled if not using stat3 */
#endif

/*
** An instance of the WhereScan object is used as an iterator for locating
** terms in the WHERE clause that are useful to the query planner.
*/
struct WhereScan {
  WhereClause *pOrigWC;      /* Original, innermost WhereClause */
  WhereClause *pWC;          /* WhereClause currently being scanned */
  char *zCollName;           /* Required collating sequence, if not NULL */
  char idxaff;               /* Must match this affinity, if zCollName!=NULL */
  unsigned char nEquiv;      /* Number of entries in aEquiv[] */
  unsigned char iEquiv;      /* Next unused slot in aEquiv[] */
  u32 opMask;                /* Acceptable operators */
  int k;                     /* Resume scanning at this->pWC->a[this->k] */
  int aEquiv[22];            /* Cursor,Column pairs for equivalence classes */
};

/*
** An instance of the following structure holds all information about a
** WHERE clause.  Mostly this is a container for one or more WhereTerms.
**
** Explanation of pOuter:  For a WHERE clause of the form
**
**           a AND ((b AND c) OR (d AND e)) AND f
**
** There are separate WhereClause objects for the whole clause and for
** the subclauses "(b AND c)" and "(d AND e)".  The pOuter field of the
** subclauses points to the WhereClause object for the whole clause.
*/
struct WhereClause {
  WhereInfo *pWInfo;       /* WHERE clause processing context */

  WhereClause *pOuter;     /* Outer conjunction */
  u8 op;                   /* Split operator.  TK_AND or TK_OR */

  int nTerm;               /* Number of terms */
  int nSlot;               /* Number of entries in a[] */
  WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
#if defined(SQLITE_SMALL_STACK)
  WhereTerm aStatic[1];    /* Initial static space for a[] */
#else
  WhereTerm aStatic[8];    /* Initial static space for a[] */
198
199
200
201
202
203
204



205










206









207
208


209





210







211



212
213
214
215

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
























254
255

256
257
258
259
260
261
262

263







264

265
266




267
268
269
270
271






272

273
274
275
276
277
278
279
280
281

282


283
284
285
286
287
288

289


290
291
292





293





294
295
296
297
298






299





300


301







302





303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
*/
struct WhereMaskSet {
  int n;                        /* Number of assigned cursor values */
  int ix[BMS];                  /* Cursor assigned to each bit */
};

/*



** A WhereCost object records a lookup strategy and the estimated










** cost of pursuing that strategy.









*/
struct WhereCost {


  WherePlan plan;    /* The lookup strategy */





  double rCost;      /* Overall cost of pursuing this search strategy */







  Bitmask used;      /* Bitmask of cursors used by this plan */



};

/*
** Bitmasks for the operators that indices are able to exploit.  An

** OR-ed combination of these values can be used when searching for
** terms in the where clause.
*/
#define WO_IN     0x001
#define WO_EQ     0x002
#define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
#define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
#define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
#define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
#define WO_MATCH  0x040
#define WO_ISNULL 0x080
#define WO_OR     0x100       /* Two or more OR-connected terms */
#define WO_AND    0x200       /* Two or more AND-connected terms */
#define WO_EQUIV  0x400       /* Of the form A==B, both columns */
#define WO_NOOP   0x800       /* This term does not restrict search space */

#define WO_ALL    0xfff       /* Mask of all possible WO_* values */
#define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */

/*
** Value for wsFlags returned by bestIndex() and stored in
** WhereLevel.wsFlags.  These flags determine which search
** strategies are appropriate.
**
** The least significant 12 bits is reserved as a mask for WO_ values above.
** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
** But if the table is the right table of a left join, WhereLevel.wsFlags
** is set to WO_IN|WO_EQ.  The WhereLevel.wsFlags field can then be used as
** the "op" parameter to findTerm when we are resolving equality constraints.
** ISNULL constraints will then not be used on the right table of a left
** join.  Tickets #2177 and #2189.
*/
#define WHERE_ROWID_EQ     0x00001000  /* rowid=EXPR or rowid IN (...) */
#define WHERE_ROWID_RANGE  0x00002000  /* rowid<EXPR and/or rowid>EXPR */
#define WHERE_COLUMN_EQ    0x00010000  /* x=EXPR or x IN (...) or x IS NULL */
#define WHERE_COLUMN_RANGE 0x00020000  /* x<EXPR and/or x>EXPR */
#define WHERE_COLUMN_IN    0x00040000  /* x IN (...) */
#define WHERE_COLUMN_NULL  0x00080000  /* x IS NULL */
























#define WHERE_INDEXED      0x000f0000  /* Anything that uses an index */
#define WHERE_NOT_FULLSCAN 0x100f3000  /* Does not do a full table scan */

#define WHERE_IN_ABLE      0x080f1000  /* Able to support an IN operator */
#define WHERE_TOP_LIMIT    0x00100000  /* x<EXPR or x<=EXPR constraint */
#define WHERE_BTM_LIMIT    0x00200000  /* x>EXPR or x>=EXPR constraint */
#define WHERE_BOTH_LIMIT   0x00300000  /* Both x>EXPR and x<EXPR */
#define WHERE_IDX_ONLY     0x00400000  /* Use index only - omit table */
#define WHERE_ORDERED      0x00800000  /* Output will appear in correct order */
#define WHERE_REVERSE      0x01000000  /* Scan in reverse order */

#define WHERE_UNIQUE       0x02000000  /* Selects no more than one row */







#define WHERE_ALL_UNIQUE   0x04000000  /* This and all prior have one row */

#define WHERE_OB_UNIQUE    0x00004000  /* Values in ORDER BY columns are 
                                       ** different for every output row */




#define WHERE_VIRTUALTABLE 0x08000000  /* Use virtual-table processing */
#define WHERE_MULTI_OR     0x10000000  /* OR using multiple indices */
#define WHERE_TEMP_INDEX   0x20000000  /* Uses an ephemeral index */
#define WHERE_DISTINCT     0x40000000  /* Correct order for DISTINCT */
#define WHERE_COVER_SCAN   0x80000000  /* Full scan of a covering index */








/*
** This module contains many separate subroutines that work together to
** find the best indices to use for accessing a particular table in a query.
** An instance of the following structure holds context information about the
** index search so that it can be more easily passed between the various
** routines.
*/
typedef struct WhereBestIdx WhereBestIdx;
struct WhereBestIdx {

  Parse *pParse;                  /* Parser context */


  WhereClause *pWC;               /* The WHERE clause */
  struct SrcList_item *pSrc;      /* The FROM clause term to search */
  Bitmask notReady;               /* Mask of cursors not available */
  Bitmask notValid;               /* Cursors not available for any purpose */
  ExprList *pOrderBy;             /* The ORDER BY clause */
  ExprList *pDistinct;            /* The select-list if query is DISTINCT */

  sqlite3_index_info **ppIdxInfo; /* Index information passed to xBestIndex */


  int i, n;                       /* Which loop is being coded; # of loops */
  WhereLevel *aLevel;             /* Info about outer loops */
  WhereCost cost;                 /* Lowest cost query plan */





};






/*
** Return TRUE if the probe cost is less than the baseline cost
*/
static int compareCost(const WhereCost *pProbe, const WhereCost *pBaseline){






  if( pProbe->rCost<pBaseline->rCost ) return 1;





  if( pProbe->rCost>pBaseline->rCost ) return 0;


  if( pProbe->plan.nOBSat>pBaseline->plan.nOBSat ) return 1;







  if( pProbe->plan.nRow<pBaseline->plan.nRow ) return 1;





  return 0;
}

/*
** Initialize a preallocated WhereClause structure.
*/
static void whereClauseInit(
  WhereClause *pWC,        /* The WhereClause to be initialized */
  Parse *pParse,           /* The parsing context */
  WhereMaskSet *pMaskSet,  /* Mapping from table cursor numbers to bitmasks */
  u16 wctrlFlags           /* Might include WHERE_AND_ONLY */
){
  pWC->pParse = pParse;
  pWC->pMaskSet = pMaskSet;
  pWC->pOuter = 0;
  pWC->nTerm = 0;
  pWC->nSlot = ArraySize(pWC->aStatic);
  pWC->a = pWC->aStatic;
  pWC->wctrlFlags = wctrlFlags;
}

/* Forward reference */
static void whereClauseClear(WhereClause*);

/*
** Deallocate all memory associated with a WhereOrInfo object.







>
>
>
|
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>

|
>
>
|
>
>
>
>
>
|
>
>
>
>
>
>
>
|
>
>
>



|
>

|


















|
|
<
<
<
|
<
<
<
<
<

<
<
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
|
<
|
|
|
|
|
>
|
>
>
>
>
>
>
>
|
>
|
|
>
>
>
>
|
<
<
<
<
>
>
>
>
>
>
|
>

<
|
<
<
|

|
|
>
|
>
>
|
<
<
<
|
<
>
|
>
>
|
|
|
>
>
>
>
>
|
>
>
>
>
>
|
<
<

|
>
>
>
>
>
>
|
>
>
>
>
>
|
>
>
|
>
>
>
>
>
>
>
|
>
>
>
>
>
|







|
<
<

|
<




<







380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459



460





461


462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516




517
518
519
520
521
522
523
524
525

526


527
528
529
530
531
532
533
534
535



536

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555


556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595


596
597

598
599
600
601

602
603
604
605
606
607
608
*/
struct WhereMaskSet {
  int n;                        /* Number of assigned cursor values */
  int ix[BMS];                  /* Cursor assigned to each bit */
};

/*
** This object is a convenience wrapper holding all information needed
** to construct WhereLoop objects for a particular query.
*/
struct WhereLoopBuilder {
  WhereInfo *pWInfo;        /* Information about this WHERE */
  WhereClause *pWC;         /* WHERE clause terms */
  ExprList *pOrderBy;       /* ORDER BY clause */
  WhereLoop *pNew;          /* Template WhereLoop */
  WhereOrSet *pOrSet;       /* Record best loops here, if not NULL */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  UnpackedRecord *pRec;     /* Probe for stat4 (if required) */
  int nRecValid;            /* Number of valid fields currently in pRec */
#endif
};

/*
** The WHERE clause processing routine has two halves.  The
** first part does the start of the WHERE loop and the second
** half does the tail of the WHERE loop.  An instance of
** this structure is returned by the first half and passed
** into the second half to give some continuity.
**
** An instance of this object holds the complete state of the query
** planner.
*/
struct WhereInfo {
  Parse *pParse;            /* Parsing and code generating context */
  SrcList *pTabList;        /* List of tables in the join */
  ExprList *pOrderBy;       /* The ORDER BY clause or NULL */
  ExprList *pResultSet;     /* Result set. DISTINCT operates on these */
  WhereLoop *pLoops;        /* List of all WhereLoop objects */
  Bitmask revMask;          /* Mask of ORDER BY terms that need reversing */
  WhereCost nRowOut;        /* Estimated number of output rows */
  u16 wctrlFlags;           /* Flags originally passed to sqlite3WhereBegin() */
  u8 bOBSat;                /* ORDER BY satisfied by indices */
  u8 okOnePass;             /* Ok to use one-pass algorithm for UPDATE/DELETE */
  u8 untestedTerms;         /* Not all WHERE terms resolved by outer loop */
  u8 eDistinct;             /* One of the WHERE_DISTINCT_* values below */
  u8 nLevel;                /* Number of nested loop */
  int iTop;                 /* The very beginning of the WHERE loop */
  int iContinue;            /* Jump here to continue with next record */
  int iBreak;               /* Jump here to break out of the loop */
  int savedNQueryLoop;      /* pParse->nQueryLoop outside the WHERE loop */
  WhereMaskSet sMaskSet;    /* Map cursor numbers to bitmasks */
  WhereClause sWC;          /* Decomposition of the WHERE clause */
  WhereLevel a[1];          /* Information about each nest loop in WHERE */
};

/*
** Bitmasks for the operators on WhereTerm objects.  These are all
** operators that are of interest to the query planner.  An
** OR-ed combination of these values can be used when searching for
** particular WhereTerms within a WhereClause.
*/
#define WO_IN     0x001
#define WO_EQ     0x002
#define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
#define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
#define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
#define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
#define WO_MATCH  0x040
#define WO_ISNULL 0x080
#define WO_OR     0x100       /* Two or more OR-connected terms */
#define WO_AND    0x200       /* Two or more AND-connected terms */
#define WO_EQUIV  0x400       /* Of the form A==B, both columns */
#define WO_NOOP   0x800       /* This term does not restrict search space */

#define WO_ALL    0xfff       /* Mask of all possible WO_* values */
#define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */

/*
** These are definitions of bits in the WhereLoop.wsFlags field.
** The particular combination of bits in each WhereLoop help to



** determine the algorithm that WhereLoop represents.





*/


#define WHERE_COLUMN_EQ    0x00000001  /* x=EXPR */
#define WHERE_COLUMN_RANGE 0x00000002  /* x<EXPR and/or x>EXPR */
#define WHERE_COLUMN_IN    0x00000004  /* x IN (...) */
#define WHERE_COLUMN_NULL  0x00000008  /* x IS NULL */
#define WHERE_CONSTRAINT   0x0000000f  /* Any of the WHERE_COLUMN_xxx values */
#define WHERE_TOP_LIMIT    0x00000010  /* x<EXPR or x<=EXPR constraint */
#define WHERE_BTM_LIMIT    0x00000020  /* x>EXPR or x>=EXPR constraint */
#define WHERE_BOTH_LIMIT   0x00000030  /* Both x>EXPR and x<EXPR */
#define WHERE_IDX_ONLY     0x00000040  /* Use index only - omit table */
#define WHERE_IPK          0x00000100  /* x is the INTEGER PRIMARY KEY */
#define WHERE_INDEXED      0x00000200  /* WhereLoop.u.btree.pIndex is valid */
#define WHERE_VIRTUALTABLE 0x00000400  /* WhereLoop.u.vtab is valid */
#define WHERE_IN_ABLE      0x00000800  /* Able to support an IN operator */
#define WHERE_ONEROW       0x00001000  /* Selects no more than one row */
#define WHERE_MULTI_OR     0x00002000  /* OR using multiple indices */
#define WHERE_AUTO_INDEX   0x00004000  /* Uses an ephemeral index */


/* Convert a WhereCost value (10 times log2(X)) into its integer value X.
** A rough approximation is used.  The value returned is not exact.
*/
static u64 whereCostToInt(WhereCost x){
  u64 n;
  if( x<10 ) return 1;
  n = x%10;
  x /= 10;
  if( n>=5 ) n -= 2;
  else if( n>=1 ) n -= 1;
  if( x>=3 ) return (n+8)<<(x-3);
  return (n+8)>>(3-x);
}


/*
** Return the estimated number of output rows from a WHERE clause
*/
u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
  return whereCostToInt(pWInfo->nRowOut);
}

/*
** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
** WHERE clause returns outputs for DISTINCT processing.
*/
int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
  return pWInfo->eDistinct;
}

/*
** Return TRUE if the WHERE clause returns rows in ORDER BY order.
** Return FALSE if the output needs to be sorted.
*/
int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
  return pWInfo->bOBSat!=0;
}





/*
** Return the VDBE address or label to jump to in order to continue
** immediately with the next row of a WHERE clause.
*/
int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
  return pWInfo->iContinue;
}

/*

** Return the VDBE address or label to jump to in order to break


** out of a WHERE loop.
*/
int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
  return pWInfo->iBreak;
}

/*
** Return TRUE if an UPDATE or DELETE statement can operate directly on
** the rowids returned by a WHERE clause.  Return FALSE if doing an



** UPDATE or DELETE might change subsequent WHERE clause results.

*/
int sqlite3WhereOkOnePass(WhereInfo *pWInfo){
  return pWInfo->okOnePass;
}

/*
** Move the content of pSrc into pDest
*/
static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
  pDest->n = pSrc->n;
  memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
}

/*
** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
**
** The new entry might overwrite an existing entry, or it might be
** appended, or it might be discarded.  Do whatever is the right thing
** so that pSet keeps the N_OR_COST best entries seen so far.


*/
static int whereOrInsert(
  WhereOrSet *pSet,      /* The WhereOrSet to be updated */
  Bitmask prereq,        /* Prerequisites of the new entry */
  WhereCost rRun,        /* Run-cost of the new entry */
  WhereCost nOut         /* Number of outputs for the new entry */
){
  u16 i;
  WhereOrCost *p;
  for(i=pSet->n, p=pSet->a; i>0; i--, p++){
    if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
      goto whereOrInsert_done;
    }
    if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
      return 0;
    }
  }
  if( pSet->n<N_OR_COST ){
    p = &pSet->a[pSet->n++];
    p->nOut = nOut;
  }else{
    p = pSet->a;
    for(i=1; i<pSet->n; i++){
      if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
    }
    if( p->rRun<=rRun ) return 0;
  }
whereOrInsert_done:
  p->prereq = prereq;
  p->rRun = rRun;
  if( p->nOut>nOut ) p->nOut = nOut;
  return 1;
}

/*
** Initialize a preallocated WhereClause structure.
*/
static void whereClauseInit(
  WhereClause *pWC,        /* The WhereClause to be initialized */
  WhereInfo *pWInfo        /* The WHERE processing context */


){
  pWC->pWInfo = pWInfo;

  pWC->pOuter = 0;
  pWC->nTerm = 0;
  pWC->nSlot = ArraySize(pWC->aStatic);
  pWC->a = pWC->aStatic;

}

/* Forward reference */
static void whereClauseClear(WhereClause*);

/*
** Deallocate all memory associated with a WhereOrInfo object.
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*
** Deallocate a WhereClause structure.  The WhereClause structure
** itself is not freed.  This routine is the inverse of whereClauseInit().
*/
static void whereClauseClear(WhereClause *pWC){
  int i;
  WhereTerm *a;
  sqlite3 *db = pWC->pParse->db;
  for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
    if( a->wtFlags & TERM_DYNAMIC ){
      sqlite3ExprDelete(db, a->pExpr);
    }
    if( a->wtFlags & TERM_ORINFO ){
      whereOrInfoDelete(db, a->u.pOrInfo);
    }else if( a->wtFlags & TERM_ANDINFO ){







|







623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
/*
** Deallocate a WhereClause structure.  The WhereClause structure
** itself is not freed.  This routine is the inverse of whereClauseInit().
*/
static void whereClauseClear(WhereClause *pWC){
  int i;
  WhereTerm *a;
  sqlite3 *db = pWC->pWInfo->pParse->db;
  for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
    if( a->wtFlags & TERM_DYNAMIC ){
      sqlite3ExprDelete(db, a->pExpr);
    }
    if( a->wtFlags & TERM_ORINFO ){
      whereOrInfoDelete(db, a->u.pOrInfo);
    }else if( a->wtFlags & TERM_ANDINFO ){
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
** WhereTerms.  All pointers to WhereTerms should be invalidated after
** calling this routine.  Such pointers may be reinitialized by referencing
** the pWC->a[] array.
*/
static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
  WhereTerm *pTerm;
  int idx;
  testcase( wtFlags & TERM_VIRTUAL );  /* EV: R-00211-15100 */
  if( pWC->nTerm>=pWC->nSlot ){
    WhereTerm *pOld = pWC->a;
    sqlite3 *db = pWC->pParse->db;
    pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
    if( pWC->a==0 ){
      if( wtFlags & TERM_DYNAMIC ){
        sqlite3ExprDelete(db, p);
      }
      pWC->a = pOld;
      return 0;







|


|







661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
** WhereTerms.  All pointers to WhereTerms should be invalidated after
** calling this routine.  Such pointers may be reinitialized by referencing
** the pWC->a[] array.
*/
static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
  WhereTerm *pTerm;
  int idx;
  testcase( wtFlags & TERM_VIRTUAL );
  if( pWC->nTerm>=pWC->nSlot ){
    WhereTerm *pOld = pWC->a;
    sqlite3 *db = pWC->pWInfo->pParse->db;
    pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
    if( pWC->a==0 ){
      if( wtFlags & TERM_DYNAMIC ){
        sqlite3ExprDelete(db, p);
      }
      pWC->a = pOld;
      return 0;
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
** The original WHERE clause in pExpr is unaltered.  All this routine
** does is make slot[] entries point to substructure within pExpr.
**
** In the previous sentence and in the diagram, "slot[]" refers to
** the WhereClause.a[] array.  The slot[] array grows as needed to contain
** all terms of the WHERE clause.
*/
static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
  pWC->op = (u8)op;
  if( pExpr==0 ) return;
  if( pExpr->op!=op ){
    whereClauseInsert(pWC, pExpr, 0);
  }else{
    whereSplit(pWC, pExpr->pLeft, op);
    whereSplit(pWC, pExpr->pRight, op);
  }
}

/*
** Initialize an expression mask set (a WhereMaskSet object)
*/
#define initMaskSet(P)  memset(P, 0, sizeof(*P))

/*
** Return the bitmask for the given cursor number.  Return 0 if
** iCursor is not in the set.
*/
static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
  int i;
  assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
  for(i=0; i<pMaskSet->n; i++){
    if( pMaskSet->ix[i]==iCursor ){
      return ((Bitmask)1)<<i;
    }
  }
  return 0;
}

/*
** Create a new mask for cursor iCursor.
**
** There is one cursor per table in the FROM clause.  The number of
** tables in the FROM clause is limited by a test early in the
** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
** array will never overflow.
*/
static void createMask(WhereMaskSet *pMaskSet, int iCursor){
  assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
  pMaskSet->ix[pMaskSet->n++] = iCursor;
}

/*
** This routine walks (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree.
**
** In order for this routine to work, the calling function must have
** previously invoked sqlite3ResolveExprNames() on the expression.  See
** the header comment on that routine for additional information.
** The sqlite3ResolveExprNames() routines looks for column names and
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
** the VDBE cursor number of the table.  This routine just has to
** translate the cursor numbers into bitmask values and OR all
** the bitmasks together.
*/
static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
  Bitmask mask = 0;
  if( p==0 ) return 0;
  if( p->op==TK_COLUMN ){







|
|










|

|










|



















|


<
<
<
<
<
<
<
<
<







704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758









759
760
761
762
763
764
765
** The original WHERE clause in pExpr is unaltered.  All this routine
** does is make slot[] entries point to substructure within pExpr.
**
** In the previous sentence and in the diagram, "slot[]" refers to
** the WhereClause.a[] array.  The slot[] array grows as needed to contain
** all terms of the WHERE clause.
*/
static void whereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
  pWC->op = op;
  if( pExpr==0 ) return;
  if( pExpr->op!=op ){
    whereClauseInsert(pWC, pExpr, 0);
  }else{
    whereSplit(pWC, pExpr->pLeft, op);
    whereSplit(pWC, pExpr->pRight, op);
  }
}

/*
** Initialize a WhereMaskSet object
*/
#define initMaskSet(P)  (P)->n=0

/*
** Return the bitmask for the given cursor number.  Return 0 if
** iCursor is not in the set.
*/
static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
  int i;
  assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
  for(i=0; i<pMaskSet->n; i++){
    if( pMaskSet->ix[i]==iCursor ){
      return MASKBIT(i);
    }
  }
  return 0;
}

/*
** Create a new mask for cursor iCursor.
**
** There is one cursor per table in the FROM clause.  The number of
** tables in the FROM clause is limited by a test early in the
** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
** array will never overflow.
*/
static void createMask(WhereMaskSet *pMaskSet, int iCursor){
  assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
  pMaskSet->ix[pMaskSet->n++] = iCursor;
}

/*
** These routines walk (recursively) an expression tree and generate
** a bitmask indicating which tables are used in that expression
** tree.









*/
static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
  Bitmask mask = 0;
  if( p==0 ) return 0;
  if( p->op==TK_COLUMN ){
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
  }
  return mask;
}

/*
** Return TRUE if the given operator is one of the operators that is
** allowed for an indexable WHERE clause term.  The allowed operators are
** "=", "<", ">", "<=", ">=", and "IN".
**
** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
** of one of the following forms: column = expression column > expression
** column >= expression column < expression column <= expression
** expression = column expression > column expression >= column
** expression < column expression <= column column IN
** (expression-list) column IN (subquery) column IS NULL
*/
static int allowedOp(int op){
  assert( TK_GT>TK_EQ && TK_GT<TK_GE );
  assert( TK_LT>TK_EQ && TK_LT<TK_GE );
  assert( TK_LE>TK_EQ && TK_LE<TK_GE );
  assert( TK_GE==TK_EQ+4 );
  return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
}

/*
** Swap two objects of type TYPE.
*/
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}

/*
** Commute a comparison operator.  Expressions of the form "X op Y"
** are converted into "Y op X".
**
** If left/right precedence rules come into play when determining the
** collating
** side of the comparison, it remains associated with the same side after
** the commutation. So "Y collate NOCASE op X" becomes 
** "X op Y". This is because any collation sequence on
** the left hand side of a comparison overrides any collation sequence 
** attached to the right. For the same reason the EP_Collate flag
** is not commuted.
*/
static void exprCommute(Parse *pParse, Expr *pExpr){
  u16 expRight = (pExpr->pRight->flags & EP_Collate);
  u16 expLeft = (pExpr->pLeft->flags & EP_Collate);







|
<
<
<
<
<
<
<



















|
|
|
<







805
806
807
808
809
810
811
812







813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

835
836
837
838
839
840
841
  }
  return mask;
}

/*
** Return TRUE if the given operator is one of the operators that is
** allowed for an indexable WHERE clause term.  The allowed operators are
** "=", "<", ">", "<=", ">=", "IN", and "IS NULL"







*/
static int allowedOp(int op){
  assert( TK_GT>TK_EQ && TK_GT<TK_GE );
  assert( TK_LT>TK_EQ && TK_LT<TK_GE );
  assert( TK_LE>TK_EQ && TK_LE<TK_GE );
  assert( TK_GE==TK_EQ+4 );
  return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
}

/*
** Swap two objects of type TYPE.
*/
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}

/*
** Commute a comparison operator.  Expressions of the form "X op Y"
** are converted into "Y op X".
**
** If left/right precedence rules come into play when determining the
** collating sequence, then COLLATE operators are adjusted to ensure
** that the collating sequence does not change.  For example:
** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on

** the left hand side of a comparison overrides any collation sequence 
** attached to the right. For the same reason the EP_Collate flag
** is not commuted.
*/
static void exprCommute(Parse *pParse, Expr *pExpr){
  u16 expRight = (pExpr->pRight->flags & EP_Collate);
  u16 expLeft = (pExpr->pLeft->flags & EP_Collate);
620
621
622
623
624
625
626




























































































































627
628
629
630
631
632
633
  assert( op!=TK_EQ || c==WO_EQ );
  assert( op!=TK_LT || c==WO_LT );
  assert( op!=TK_LE || c==WO_LE );
  assert( op!=TK_GT || c==WO_GT );
  assert( op!=TK_GE || c==WO_GE );
  return c;
}





























































































































/*
** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
** where X is a reference to the iColumn of table iCur and <op> is one of
** the WO_xx operator codes specified by the op parameter.
** Return a pointer to the term.  Return 0 if not found.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
  assert( op!=TK_EQ || c==WO_EQ );
  assert( op!=TK_LT || c==WO_LT );
  assert( op!=TK_LE || c==WO_LE );
  assert( op!=TK_GT || c==WO_GT );
  assert( op!=TK_GE || c==WO_GE );
  return c;
}

/*
** Advance to the next WhereTerm that matches according to the criteria
** established when the pScan object was initialized by whereScanInit().
** Return NULL if there are no more matching WhereTerms.
*/
static WhereTerm *whereScanNext(WhereScan *pScan){
  int iCur;            /* The cursor on the LHS of the term */
  int iColumn;         /* The column on the LHS of the term.  -1 for IPK */
  Expr *pX;            /* An expression being tested */
  WhereClause *pWC;    /* Shorthand for pScan->pWC */
  WhereTerm *pTerm;    /* The term being tested */
  int k = pScan->k;    /* Where to start scanning */

  while( pScan->iEquiv<=pScan->nEquiv ){
    iCur = pScan->aEquiv[pScan->iEquiv-2];
    iColumn = pScan->aEquiv[pScan->iEquiv-1];
    while( (pWC = pScan->pWC)!=0 ){
      for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
        if( pTerm->leftCursor==iCur && pTerm->u.leftColumn==iColumn ){
          if( (pTerm->eOperator & WO_EQUIV)!=0
           && pScan->nEquiv<ArraySize(pScan->aEquiv)
          ){
            int j;
            pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight);
            assert( pX->op==TK_COLUMN );
            for(j=0; j<pScan->nEquiv; j+=2){
              if( pScan->aEquiv[j]==pX->iTable
               && pScan->aEquiv[j+1]==pX->iColumn ){
                  break;
              }
            }
            if( j==pScan->nEquiv ){
              pScan->aEquiv[j] = pX->iTable;
              pScan->aEquiv[j+1] = pX->iColumn;
              pScan->nEquiv += 2;
            }
          }
          if( (pTerm->eOperator & pScan->opMask)!=0 ){
            /* Verify the affinity and collating sequence match */
            if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
              CollSeq *pColl;
              Parse *pParse = pWC->pWInfo->pParse;
              pX = pTerm->pExpr;
              if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
                continue;
              }
              assert(pX->pLeft);
              pColl = sqlite3BinaryCompareCollSeq(pParse,
                                                  pX->pLeft, pX->pRight);
              if( pColl==0 ) pColl = pParse->db->pDfltColl;
              if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
                continue;
              }
            }
            if( (pTerm->eOperator & WO_EQ)!=0
             && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
             && pX->iTable==pScan->aEquiv[0]
             && pX->iColumn==pScan->aEquiv[1]
            ){
              continue;
            }
            pScan->k = k+1;
            return pTerm;
          }
        }
      }
      pScan->pWC = pScan->pWC->pOuter;
      k = 0;
    }
    pScan->pWC = pScan->pOrigWC;
    k = 0;
    pScan->iEquiv += 2;
  }
  return 0;
}

/*
** Initialize a WHERE clause scanner object.  Return a pointer to the
** first match.  Return NULL if there are no matches.
**
** The scanner will be searching the WHERE clause pWC.  It will look
** for terms of the form "X <op> <expr>" where X is column iColumn of table
** iCur.  The <op> must be one of the operators described by opMask.
**
** If the search is for X and the WHERE clause contains terms of the
** form X=Y then this routine might also return terms of the form
** "Y <op> <expr>".  The number of levels of transitivity is limited,
** but is enough to handle most commonly occurring SQL statements.
**
** If X is not the INTEGER PRIMARY KEY then X must be compatible with
** index pIdx.
*/
static WhereTerm *whereScanInit(
  WhereScan *pScan,       /* The WhereScan object being initialized */
  WhereClause *pWC,       /* The WHERE clause to be scanned */
  int iCur,               /* Cursor to scan for */
  int iColumn,            /* Column to scan for */
  u32 opMask,             /* Operator(s) to scan for */
  Index *pIdx             /* Must be compatible with this index */
){
  int j;

  /* memset(pScan, 0, sizeof(*pScan)); */
  pScan->pOrigWC = pWC;
  pScan->pWC = pWC;
  if( pIdx && iColumn>=0 ){
    pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
    for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
      if( NEVER(j>=pIdx->nColumn) ) return 0;
    }
    pScan->zCollName = pIdx->azColl[j];
  }else{
    pScan->idxaff = 0;
    pScan->zCollName = 0;
  }
  pScan->opMask = opMask;
  pScan->k = 0;
  pScan->aEquiv[0] = iCur;
  pScan->aEquiv[1] = iColumn;
  pScan->nEquiv = 2;
  pScan->iEquiv = 2;
  return whereScanNext(pScan);
}

/*
** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
** where X is a reference to the iColumn of table iCur and <op> is one of
** the WO_xx operator codes specified by the op parameter.
** Return a pointer to the term.  Return 0 if not found.
**
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
  WhereClause *pWC,     /* The WHERE clause to be searched */
  int iCur,             /* Cursor number of LHS */
  int iColumn,          /* Column number of LHS */
  Bitmask notReady,     /* RHS must not overlap with this mask */
  u32 op,               /* Mask of WO_xx values describing operator */
  Index *pIdx           /* Must be compatible with this index, if not NULL */
){
  WhereTerm *pTerm;            /* Term being examined as possible result */
  WhereTerm *pResult = 0;      /* The answer to return */
  WhereClause *pWCOrig = pWC;  /* Original pWC value */
  int j, k;                    /* Loop counters */
  Expr *pX;                /* Pointer to an expression */
  Parse *pParse;           /* Parsing context */
  int iOrigCol = iColumn;  /* Original value of iColumn */
  int nEquiv = 2;          /* Number of entires in aEquiv[] */
  int iEquiv = 2;          /* Number of entries of aEquiv[] processed so far */
  int aEquiv[22];          /* iCur,iColumn and up to 10 other equivalents */

  assert( iCur>=0 );
  aEquiv[0] = iCur;
  aEquiv[1] = iColumn;
  for(;;){
    for(pWC=pWCOrig; pWC; pWC=pWC->pOuter){
      for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
        if( pTerm->leftCursor==iCur
          && pTerm->u.leftColumn==iColumn
        ){
          if( (pTerm->prereqRight & notReady)==0
           && (pTerm->eOperator & op & WO_ALL)!=0
          ){
            if( iOrigCol>=0 && pIdx && (pTerm->eOperator & WO_ISNULL)==0 ){
              CollSeq *pColl;
              char idxaff;
      
              pX = pTerm->pExpr;
              pParse = pWC->pParse;
              idxaff = pIdx->pTable->aCol[iOrigCol].affinity;
              if( !sqlite3IndexAffinityOk(pX, idxaff) ){
                continue;
              }
      
              /* Figure out the collation sequence required from an index for
              ** it to be useful for optimising expression pX. Store this
              ** value in variable pColl.
              */
              assert(pX->pLeft);
              pColl = sqlite3BinaryCompareCollSeq(pParse,pX->pLeft,pX->pRight);
              if( pColl==0 ) pColl = pParse->db->pDfltColl;
      
              for(j=0; pIdx->aiColumn[j]!=iOrigCol; j++){
                if( NEVER(j>=pIdx->nColumn) ) return 0;
              }
              if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ){
                continue;
              }
            }
            if( pTerm->prereqRight==0 && (pTerm->eOperator&WO_EQ)!=0 ){
              pResult = pTerm;
              goto findTerm_success;
            }else if( pResult==0 ){
              pResult = pTerm;
            }
          }
          if( (pTerm->eOperator & WO_EQUIV)!=0
           && nEquiv<ArraySize(aEquiv)
          ){
            pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight);
            assert( pX->op==TK_COLUMN );
            for(j=0; j<nEquiv; j+=2){
              if( aEquiv[j]==pX->iTable && aEquiv[j+1]==pX->iColumn ) break;
            }
            if( j==nEquiv ){
              aEquiv[j] = pX->iTable;
              aEquiv[j+1] = pX->iColumn;
              nEquiv += 2;
            }
          }
        }
      }
    }
    if( iEquiv>=nEquiv ) break;
    iCur = aEquiv[iEquiv++];
    iColumn = aEquiv[iEquiv++];
  }
findTerm_success:
  return pResult;
}

/* Forward reference */
static void exprAnalyze(SrcList*, WhereClause*, int);

/*
** Call exprAnalyze on all terms in a WHERE clause.  
**
**
*/
static void exprAnalyzeAll(
  SrcList *pTabList,       /* the FROM clause */
  WhereClause *pWC         /* the WHERE clause to be analyzed */
){
  int i;
  for(i=pWC->nTerm-1; i>=0; i--){







|
|
|
<
<
<
<
<
<
<

<
<
|
<
<
<
<
<
|
|
<
<
<
<
<
|
<
<
<
<
<
<
|
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
|
<
|
<
<
<
<
<
<
<
<
<
<
|
<
<
|
<
<
<
<
<
<
<
<
<








<
<







1039
1040
1041
1042
1043
1044
1045
1046
1047
1048







1049


1050





1051
1052





1053






1054







1055










1056

1057










1058


1059









1060
1061
1062
1063
1064
1065
1066
1067


1068
1069
1070
1071
1072
1073
1074
  WhereClause *pWC,     /* The WHERE clause to be searched */
  int iCur,             /* Cursor number of LHS */
  int iColumn,          /* Column number of LHS */
  Bitmask notReady,     /* RHS must not overlap with this mask */
  u32 op,               /* Mask of WO_xx values describing operator */
  Index *pIdx           /* Must be compatible with this index, if not NULL */
){
  WhereTerm *pResult = 0;
  WhereTerm *p;
  WhereScan scan;










  p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);





  while( p ){
    if( (p->prereqRight & notReady)==0 ){





      if( p->prereqRight==0 && (p->eOperator&WO_EQ)!=0 ){






        return p;







      }










      if( pResult==0 ) pResult = p;

    }










    p = whereScanNext(&scan);


  }









  return pResult;
}

/* Forward reference */
static void exprAnalyze(SrcList*, WhereClause*, int);

/*
** Call exprAnalyze on all terms in a WHERE clause.  


*/
static void exprAnalyzeAll(
  SrcList *pTabList,       /* the FROM clause */
  WhereClause *pWC         /* the WHERE clause to be analyzed */
){
  int i;
  for(i=pWC->nTerm-1; i>=0; i--){
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
  op = pRight->op;
  if( op==TK_REGISTER ){
    op = pRight->op2;
  }
  if( op==TK_VARIABLE ){
    Vdbe *pReprepare = pParse->pReprepare;
    int iCol = pRight->iColumn;
    pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE);
    if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
      z = (char *)sqlite3_value_text(pVal);
    }
    sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
    assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
  }else if( op==TK_STRING ){
    z = pRight->u.zToken;







|







1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
  op = pRight->op;
  if( op==TK_REGISTER ){
    op = pRight->op2;
  }
  if( op==TK_VARIABLE ){
    Vdbe *pReprepare = pParse->pReprepare;
    int iCol = pRight->iColumn;
    pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_NONE);
    if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
      z = (char *)sqlite3_value_text(pVal);
    }
    sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
    assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
  }else if( op==TK_STRING ){
    z = pRight->u.zToken;
885
886
887
888
889
890
891

892
893

894
895
896
897
898
899
900
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** If the pBase expression originated in the ON or USING clause of
** a join, then transfer the appropriate markings over to derived.
*/
static void transferJoinMarkings(Expr *pDerived, Expr *pBase){

  pDerived->flags |= pBase->flags & EP_FromJoin;
  pDerived->iRightJoinTable = pBase->iRightJoinTable;

}

#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
/*
** Analyze a term that consists of two or more OR-connected
** subterms.  So in:
**







>
|
|
>







1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** If the pBase expression originated in the ON or USING clause of
** a join, then transfer the appropriate markings over to derived.
*/
static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
  if( pDerived ){
    pDerived->flags |= pBase->flags & EP_FromJoin;
    pDerived->iRightJoinTable = pBase->iRightJoinTable;
  }
}

#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
/*
** Analyze a term that consists of two or more OR-connected
** subterms.  So in:
**
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
** subsubterms at least one of which is indexable.  Indexable AND 
** subterms have their eOperator set to WO_AND and they have
** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
**
** From another point of view, "indexable" means that the subterm could
** potentially be used with an index if an appropriate index exists.
** This analysis does not consider whether or not the index exists; that
** is something the bestIndex() routine will determine.  This analysis
** only looks at whether subterms appropriate for indexing exist.
**
** All examples A through E above all satisfy case 2.  But if a term
** also statisfies case 1 (such as B) we know that the optimizer will
** always prefer case 1, so in that case we pretend that case 2 is not
** satisfied.
**
** It might be the case that multiple tables are indexable.  For example,
** (E) above is indexable on tables P, Q, and R.
**







|
|

|







1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
** subsubterms at least one of which is indexable.  Indexable AND 
** subterms have their eOperator set to WO_AND and they have
** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
**
** From another point of view, "indexable" means that the subterm could
** potentially be used with an index if an appropriate index exists.
** This analysis does not consider whether or not the index exists; that
** is decided elsewhere.  This analysis only looks at whether subterms
** appropriate for indexing exist.
**
** All examples A through E above satisfy case 2.  But if a term
** also statisfies case 1 (such as B) we know that the optimizer will
** always prefer case 1, so in that case we pretend that case 2 is not
** satisfied.
**
** It might be the case that multiple tables are indexable.  For example,
** (E) above is indexable on tables P, Q, and R.
**
971
972
973
974
975
976
977

978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
** zero.  This term is not useful for search.
*/
static void exprAnalyzeOrTerm(
  SrcList *pSrc,            /* the FROM clause */
  WhereClause *pWC,         /* the complete WHERE clause */
  int idxTerm               /* Index of the OR-term to be analyzed */
){

  Parse *pParse = pWC->pParse;            /* Parser context */
  sqlite3 *db = pParse->db;               /* Database connection */
  WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
  Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
  WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
  int i;                                  /* Loop counters */
  WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
  WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
  WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
  Bitmask chngToIN;         /* Tables that might satisfy case 1 */
  Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */

  /*
  ** Break the OR clause into its separate subterms.  The subterms are
  ** stored in a WhereClause structure containing within the WhereOrInfo
  ** object that is attached to the original OR clause term.
  */
  assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
  assert( pExpr->op==TK_OR );
  pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
  if( pOrInfo==0 ) return;
  pTerm->wtFlags |= TERM_ORINFO;
  pOrWc = &pOrInfo->wc;
  whereClauseInit(pOrWc, pWC->pParse, pMaskSet, pWC->wctrlFlags);
  whereSplit(pOrWc, pExpr, TK_OR);
  exprAnalyzeAll(pSrc, pOrWc);
  if( db->mallocFailed ) return;
  assert( pOrWc->nTerm>=2 );

  /*
  ** Compute the set of tables that might satisfy cases 1 or 2.







>
|



<


















|







1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
** zero.  This term is not useful for search.
*/
static void exprAnalyzeOrTerm(
  SrcList *pSrc,            /* the FROM clause */
  WhereClause *pWC,         /* the complete WHERE clause */
  int idxTerm               /* Index of the OR-term to be analyzed */
){
  WhereInfo *pWInfo = pWC->pWInfo;        /* WHERE clause processing context */
  Parse *pParse = pWInfo->pParse;         /* Parser context */
  sqlite3 *db = pParse->db;               /* Database connection */
  WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
  Expr *pExpr = pTerm->pExpr;             /* The expression of the term */

  int i;                                  /* Loop counters */
  WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
  WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
  WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
  Bitmask chngToIN;         /* Tables that might satisfy case 1 */
  Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */

  /*
  ** Break the OR clause into its separate subterms.  The subterms are
  ** stored in a WhereClause structure containing within the WhereOrInfo
  ** object that is attached to the original OR clause term.
  */
  assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
  assert( pExpr->op==TK_OR );
  pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
  if( pOrInfo==0 ) return;
  pTerm->wtFlags |= TERM_ORINFO;
  pOrWc = &pOrInfo->wc;
  whereClauseInit(pOrWc, pWInfo);
  whereSplit(pOrWc, pExpr, TK_OR);
  exprAnalyzeAll(pSrc, pOrWc);
  if( db->mallocFailed ) return;
  assert( pOrWc->nTerm>=2 );

  /*
  ** Compute the set of tables that might satisfy cases 1 or 2.
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
        WhereTerm *pAndTerm;
        int j;
        Bitmask b = 0;
        pOrTerm->u.pAndInfo = pAndInfo;
        pOrTerm->wtFlags |= TERM_ANDINFO;
        pOrTerm->eOperator = WO_AND;
        pAndWC = &pAndInfo->wc;
        whereClauseInit(pAndWC, pWC->pParse, pMaskSet, pWC->wctrlFlags);
        whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
        exprAnalyzeAll(pSrc, pAndWC);
        pAndWC->pOuter = pWC;
        testcase( db->mallocFailed );
        if( !db->mallocFailed ){
          for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
            assert( pAndTerm->pExpr );
            if( allowedOp(pAndTerm->pExpr->op) ){
              b |= getMask(pMaskSet, pAndTerm->leftCursor);
            }
          }
        }
        indexable &= b;
      }
    }else if( pOrTerm->wtFlags & TERM_COPIED ){
      /* Skip this term for now.  We revisit it when we process the
      ** corresponding TERM_VIRTUAL term */
    }else{
      Bitmask b;
      b = getMask(pMaskSet, pOrTerm->leftCursor);
      if( pOrTerm->wtFlags & TERM_VIRTUAL ){
        WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
        b |= getMask(pMaskSet, pOther->leftCursor);
      }
      indexable &= b;
      if( (pOrTerm->eOperator & WO_EQ)==0 ){
        chngToIN = 0;
      }else{
        chngToIN &= b;
      }







|








|










|


|







1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
        WhereTerm *pAndTerm;
        int j;
        Bitmask b = 0;
        pOrTerm->u.pAndInfo = pAndInfo;
        pOrTerm->wtFlags |= TERM_ANDINFO;
        pOrTerm->eOperator = WO_AND;
        pAndWC = &pAndInfo->wc;
        whereClauseInit(pAndWC, pWC->pWInfo);
        whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
        exprAnalyzeAll(pSrc, pAndWC);
        pAndWC->pOuter = pWC;
        testcase( db->mallocFailed );
        if( !db->mallocFailed ){
          for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
            assert( pAndTerm->pExpr );
            if( allowedOp(pAndTerm->pExpr->op) ){
              b |= getMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
            }
          }
        }
        indexable &= b;
      }
    }else if( pOrTerm->wtFlags & TERM_COPIED ){
      /* Skip this term for now.  We revisit it when we process the
      ** corresponding TERM_VIRTUAL term */
    }else{
      Bitmask b;
      b = getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
      if( pOrTerm->wtFlags & TERM_VIRTUAL ){
        WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
        b |= getMask(&pWInfo->sMaskSet, pOther->leftCursor);
      }
      indexable &= b;
      if( (pOrTerm->eOperator & WO_EQ)==0 ){
        chngToIN = 0;
      }else{
        chngToIN &= b;
      }
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
        pOrTerm->wtFlags &= ~TERM_OR_OK;
        if( pOrTerm->leftCursor==iCursor ){
          /* This is the 2-bit case and we are on the second iteration and
          ** current term is from the first iteration.  So skip this term. */
          assert( j==1 );
          continue;
        }
        if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
          /* This term must be of the form t1.a==t2.b where t2 is in the
          ** chngToIN set but t1 is not.  This term will be either preceeded
          ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term 
          ** and use its inversion. */
          testcase( pOrTerm->wtFlags & TERM_COPIED );
          testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
          assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
          continue;
        }
        iColumn = pOrTerm->u.leftColumn;
        iCursor = pOrTerm->leftCursor;
        break;
      }
      if( i<0 ){
        /* No candidate table+column was found.  This can only occur
        ** on the second iteration */
        assert( j==1 );
        assert( IsPowerOfTwo(chngToIN) );
        assert( chngToIN==getMask(pMaskSet, iCursor) );
        break;
      }
      testcase( j==1 );

      /* We have found a candidate table and column.  Check to see if that
      ** table and column is common to every term in the OR clause */
      okToChngToIN = 1;







|


















|







1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
        pOrTerm->wtFlags &= ~TERM_OR_OK;
        if( pOrTerm->leftCursor==iCursor ){
          /* This is the 2-bit case and we are on the second iteration and
          ** current term is from the first iteration.  So skip this term. */
          assert( j==1 );
          continue;
        }
        if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){
          /* This term must be of the form t1.a==t2.b where t2 is in the
          ** chngToIN set but t1 is not.  This term will be either preceeded
          ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term 
          ** and use its inversion. */
          testcase( pOrTerm->wtFlags & TERM_COPIED );
          testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
          assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
          continue;
        }
        iColumn = pOrTerm->u.leftColumn;
        iCursor = pOrTerm->leftCursor;
        break;
      }
      if( i<0 ){
        /* No candidate table+column was found.  This can only occur
        ** on the second iteration */
        assert( j==1 );
        assert( IsPowerOfTwo(chngToIN) );
        assert( chngToIN==getMask(&pWInfo->sMaskSet, iCursor) );
        break;
      }
      testcase( j==1 );

      /* We have found a candidate table and column.  Check to see if that
      ** table and column is common to every term in the OR clause */
      okToChngToIN = 1;
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
        }
      }
    }

    /* At this point, okToChngToIN is true if original pTerm satisfies
    ** case 1.  In that case, construct a new virtual term that is 
    ** pTerm converted into an IN operator.
    **
    ** EV: R-00211-15100
    */
    if( okToChngToIN ){
      Expr *pDup;            /* A transient duplicate expression */
      ExprList *pList = 0;   /* The RHS of the IN operator */
      Expr *pLeft = 0;       /* The LHS of the IN operator */
      Expr *pNew;            /* The complete IN operator */

      for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
        if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
        assert( pOrTerm->eOperator & WO_EQ );
        assert( pOrTerm->leftCursor==iCursor );
        assert( pOrTerm->u.leftColumn==iColumn );
        pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
        pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
        pLeft = pOrTerm->pExpr->pLeft;
      }
      assert( pLeft!=0 );
      pDup = sqlite3ExprDup(db, pLeft, 0);
      pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
      if( pNew ){
        int idxNew;







<
<













|







1481
1482
1483
1484
1485
1486
1487


1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
        }
      }
    }

    /* At this point, okToChngToIN is true if original pTerm satisfies
    ** case 1.  In that case, construct a new virtual term that is 
    ** pTerm converted into an IN operator.


    */
    if( okToChngToIN ){
      Expr *pDup;            /* A transient duplicate expression */
      ExprList *pList = 0;   /* The RHS of the IN operator */
      Expr *pLeft = 0;       /* The LHS of the IN operator */
      Expr *pNew;            /* The complete IN operator */

      for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
        if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
        assert( pOrTerm->eOperator & WO_EQ );
        assert( pOrTerm->leftCursor==iCursor );
        assert( pOrTerm->u.leftColumn==iColumn );
        pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
        pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
        pLeft = pOrTerm->pExpr->pLeft;
      }
      assert( pLeft!=0 );
      pDup = sqlite3ExprDup(db, pLeft, 0);
      pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
      if( pNew ){
        int idxNew;
1222
1223
1224
1225
1226
1227
1228

1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
** and the copy has idxParent set to the index of the original term.
*/
static void exprAnalyze(
  SrcList *pSrc,            /* the FROM clause */
  WhereClause *pWC,         /* the WHERE clause */
  int idxTerm               /* Index of the term to be analyzed */
){

  WhereTerm *pTerm;                /* The term to be analyzed */
  WhereMaskSet *pMaskSet;          /* Set of table index masks */
  Expr *pExpr;                     /* The expression to be analyzed */
  Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
  Bitmask prereqAll;               /* Prerequesites of pExpr */
  Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
  Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
  int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
  int noCase = 0;                  /* LIKE/GLOB distinguishes case */
  int op;                          /* Top-level operator.  pExpr->op */
  Parse *pParse = pWC->pParse;     /* Parsing context */
  sqlite3 *db = pParse->db;        /* Database connection */

  if( db->mallocFailed ){
    return;
  }
  pTerm = &pWC->a[idxTerm];
  pMaskSet = pWC->pMaskSet;
  pExpr = pTerm->pExpr;
  assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
  prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
  op = pExpr->op;
  if( op==TK_IN ){
    assert( pExpr->pRight==0 );
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){







>










|






|







1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
** and the copy has idxParent set to the index of the original term.
*/
static void exprAnalyze(
  SrcList *pSrc,            /* the FROM clause */
  WhereClause *pWC,         /* the WHERE clause */
  int idxTerm               /* Index of the term to be analyzed */
){
  WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
  WhereTerm *pTerm;                /* The term to be analyzed */
  WhereMaskSet *pMaskSet;          /* Set of table index masks */
  Expr *pExpr;                     /* The expression to be analyzed */
  Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
  Bitmask prereqAll;               /* Prerequesites of pExpr */
  Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
  Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
  int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
  int noCase = 0;                  /* LIKE/GLOB distinguishes case */
  int op;                          /* Top-level operator.  pExpr->op */
  Parse *pParse = pWInfo->pParse;  /* Parsing context */
  sqlite3 *db = pParse->db;        /* Database connection */

  if( db->mallocFailed ){
    return;
  }
  pTerm = &pWC->a[idxTerm];
  pMaskSet = &pWInfo->sMaskSet;
  pExpr = pTerm->pExpr;
  assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
  prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
  op = pExpr->op;
  if( op==TK_IN ){
    assert( pExpr->pRight==0 );
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1344
1345
1346
1347
1348
1349
1350

1351
1352
1353
1354
1355
1356
1357
    assert( pList->nExpr==2 );
    for(i=0; i<2; i++){
      Expr *pNewExpr;
      int idxNew;
      pNewExpr = sqlite3PExpr(pParse, ops[i], 
                             sqlite3ExprDup(db, pExpr->pLeft, 0),
                             sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);

      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      testcase( idxNew==0 );
      exprAnalyze(pSrc, pWC, idxNew);
      pTerm = &pWC->a[idxTerm];
      pWC->a[idxNew].iParent = idxTerm;
    }
    pTerm->nChild = 2;







>







1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
    assert( pList->nExpr==2 );
    for(i=0; i<2; i++){
      Expr *pNewExpr;
      int idxNew;
      pNewExpr = sqlite3PExpr(pParse, ops[i], 
                             sqlite3ExprDup(db, pExpr->pLeft, 0),
                             sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
      transferJoinMarkings(pNewExpr, pExpr);
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      testcase( idxNew==0 );
      exprAnalyze(pSrc, pWC, idxNew);
      pTerm = &pWC->a[idxTerm];
      pWC->a[idxNew].iParent = idxTerm;
    }
    pTerm->nChild = 2;
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419

1420
1421
1422
1423
1424
1425
1426

1427
1428
1429
1430
1431
1432
1433
      if( noCase ){
        /* The point is to increment the last character before the first
        ** wildcard.  But if we increment '@', that will push it into the
        ** alphabetic range where case conversions will mess up the 
        ** inequality.  To avoid this, make sure to also run the full
        ** LIKE on all candidate expressions by clearing the isComplete flag
        */
        if( c=='A'-1 ) isComplete = 0;   /* EV: R-64339-08207 */


        c = sqlite3UpperToLower[c];
      }
      *pC = c + 1;
    }
    sCollSeqName.z = noCase ? "NOCASE" : "BINARY";
    sCollSeqName.n = 6;
    pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
    pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 
           sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName),
           pStr1, 0);

    idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
    testcase( idxNew1==0 );
    exprAnalyze(pSrc, pWC, idxNew1);
    pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
    pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
           sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName),
           pStr2, 0);

    idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
    testcase( idxNew2==0 );
    exprAnalyze(pSrc, pWC, idxNew2);
    pTerm = &pWC->a[idxTerm];
    if( isComplete ){
      pWC->a[idxNew1].iParent = idxTerm;
      pWC->a[idxNew2].iParent = idxTerm;







|
<
<










>







>







1723
1724
1725
1726
1727
1728
1729
1730


1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
      if( noCase ){
        /* The point is to increment the last character before the first
        ** wildcard.  But if we increment '@', that will push it into the
        ** alphabetic range where case conversions will mess up the 
        ** inequality.  To avoid this, make sure to also run the full
        ** LIKE on all candidate expressions by clearing the isComplete flag
        */
        if( c=='A'-1 ) isComplete = 0;


        c = sqlite3UpperToLower[c];
      }
      *pC = c + 1;
    }
    sCollSeqName.z = noCase ? "NOCASE" : "BINARY";
    sCollSeqName.n = 6;
    pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
    pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 
           sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName),
           pStr1, 0);
    transferJoinMarkings(pNewExpr1, pExpr);
    idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
    testcase( idxNew1==0 );
    exprAnalyze(pSrc, pWC, idxNew1);
    pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
    pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
           sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName),
           pStr2, 0);
    transferJoinMarkings(pNewExpr2, pExpr);
    idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
    testcase( idxNew2==0 );
    exprAnalyze(pSrc, pWC, idxNew2);
    pTerm = &pWC->a[idxTerm];
    if( isComplete ){
      pWC->a[idxNew1].iParent = idxTerm;
      pWC->a[idxNew2].iParent = idxTerm;
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489

1490
1491
1492
1493
1494
1495
1496
      pTerm->nChild = 1;
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef SQLITE_ENABLE_STAT3
  /* When sqlite_stat3 histogram data is available an operator of the
  ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
  ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
  ** virtual term of that form.
  **
  ** Note that the virtual term must be tagged with TERM_VNULL.  This
  ** TERM_VNULL tag will suppress the not-null check at the beginning
  ** of the loop.  Without the TERM_VNULL flag, the not-null check at
  ** the start of the loop will prevent any results from being returned.
  */
  if( pExpr->op==TK_NOTNULL
   && pExpr->pLeft->op==TK_COLUMN
   && pExpr->pLeft->iColumn>=0

  ){
    Expr *pNewExpr;
    Expr *pLeft = pExpr->pLeft;
    int idxNew;
    WhereTerm *pNewTerm;

    pNewExpr = sqlite3PExpr(pParse, TK_GT,







|













>







1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
      pTerm->nChild = 1;
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  /* When sqlite_stat3 histogram data is available an operator of the
  ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
  ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
  ** virtual term of that form.
  **
  ** Note that the virtual term must be tagged with TERM_VNULL.  This
  ** TERM_VNULL tag will suppress the not-null check at the beginning
  ** of the loop.  Without the TERM_VNULL flag, the not-null check at
  ** the start of the loop will prevent any results from being returned.
  */
  if( pExpr->op==TK_NOTNULL
   && pExpr->pLeft->op==TK_COLUMN
   && pExpr->pLeft->iColumn>=0
   && OptimizationEnabled(db, SQLITE_Stat3)
  ){
    Expr *pNewExpr;
    Expr *pLeft = pExpr->pLeft;
    int idxNew;
    WhereTerm *pNewTerm;

    pNewExpr = sqlite3PExpr(pParse, TK_GT,
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
      pNewTerm->iParent = idxTerm;
      pTerm = &pWC->a[idxTerm];
      pTerm->nChild = 1;
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_ENABLE_STAT */

  /* Prevent ON clause terms of a LEFT JOIN from being used to drive
  ** an index for tables to the left of the join.
  */
  pTerm->prereqRight |= extraRight;
}

/*
** This function searches the expression list passed as the second argument
** for an expression of type TK_COLUMN that refers to the same column and
** uses the same collation sequence as the iCol'th column of index pIdx.
** Argument iBase is the cursor number used for the table that pIdx refers
** to.
**
** If such an expression is found, its index in pList->a[] is returned. If
** no expression is found, -1 is returned.
*/
static int findIndexCol(
  Parse *pParse,                  /* Parse context */
  ExprList *pList,                /* Expression list to search */







|








|
<
|
<
<







1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848

1849


1850
1851
1852
1853
1854
1855
1856
      pNewTerm->iParent = idxTerm;
      pTerm = &pWC->a[idxTerm];
      pTerm->nChild = 1;
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

  /* Prevent ON clause terms of a LEFT JOIN from being used to drive
  ** an index for tables to the left of the join.
  */
  pTerm->prereqRight |= extraRight;
}

/*
** This function searches pList for a entry that matches the iCol-th column

** of index pIdx.


**
** If such an expression is found, its index in pList->a[] is returned. If
** no expression is found, -1 is returned.
*/
static int findIndexCol(
  Parse *pParse,                  /* Parse context */
  ExprList *pList,                /* Expression list to search */
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
        return i;
      }
    }
  }

  return -1;
}

/*
** This routine determines if pIdx can be used to assist in processing a
** DISTINCT qualifier. In other words, it tests whether or not using this
** index for the outer loop guarantees that rows with equal values for
** all expressions in the pDistinct list are delivered grouped together.
**
** For example, the query 
**
**   SELECT DISTINCT a, b, c FROM tbl WHERE a = ?
**
** can benefit from any index on columns "b" and "c".
*/
static int isDistinctIndex(
  Parse *pParse,                  /* Parsing context */
  WhereClause *pWC,               /* The WHERE clause */
  Index *pIdx,                    /* The index being considered */
  int base,                       /* Cursor number for the table pIdx is on */
  ExprList *pDistinct,            /* The DISTINCT expressions */
  int nEqCol                      /* Number of index columns with == */
){
  Bitmask mask = 0;               /* Mask of unaccounted for pDistinct exprs */
  int i;                          /* Iterator variable */

  assert( pDistinct!=0 );
  if( pIdx->zName==0 || pDistinct->nExpr>=BMS ) return 0;
  testcase( pDistinct->nExpr==BMS-1 );

  /* Loop through all the expressions in the distinct list. If any of them
  ** are not simple column references, return early. Otherwise, test if the
  ** WHERE clause contains a "col=X" clause. If it does, the expression
  ** can be ignored. If it does not, and the column does not belong to the
  ** same table as index pIdx, return early. Finally, if there is no
  ** matching "col=X" expression and the column is on the same table as pIdx,
  ** set the corresponding bit in variable mask.
  */
  for(i=0; i<pDistinct->nExpr; i++){
    WhereTerm *pTerm;
    Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
    if( p->op!=TK_COLUMN ) return 0;
    pTerm = findTerm(pWC, p->iTable, p->iColumn, ~(Bitmask)0, WO_EQ, 0);
    if( pTerm ){
      Expr *pX = pTerm->pExpr;
      CollSeq *p1 = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
      CollSeq *p2 = sqlite3ExprCollSeq(pParse, p);
      if( p1==p2 ) continue;
    }
    if( p->iTable!=base ) return 0;
    mask |= (((Bitmask)1) << i);
  }

  for(i=nEqCol; mask && i<pIdx->nColumn; i++){
    int iExpr = findIndexCol(pParse, pDistinct, base, pIdx, i);
    if( iExpr<0 ) break;
    mask &= ~(((Bitmask)1) << iExpr);
  }

  return (mask==0);
}


/*
** Return true if the DISTINCT expression-list passed as the third argument
** is redundant. A DISTINCT list is redundant if the database contains a
** UNIQUE index that guarantees that the result of the query will be distinct
** anyway.
*/
static int isDistinctRedundant(
  Parse *pParse,
  SrcList *pTabList,
  WhereClause *pWC,
  ExprList *pDistinct
){
  Table *pTab;
  Index *pIdx;
  int i;                          
  int iBase;

  /* If there is more than one table or sub-select in the FROM clause of









<
|
<
<
|
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
<


|
|
|
|







1872
1873
1874
1875
1876
1877
1878
1879
1880

1881


1882

1883






















































1884
1885

1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
        return i;
      }
    }
  }

  return -1;
}

/*

** Return true if the DISTINCT expression-list passed as the third argument


** is redundant.

**






















































** A DISTINCT list is redundant if the database contains some subset of
** columns that are unique and non-null.

*/
static int isDistinctRedundant(
  Parse *pParse,            /* Parsing context */
  SrcList *pTabList,        /* The FROM clause */
  WhereClause *pWC,         /* The WHERE clause */
  ExprList *pDistinct       /* The result set that needs to be DISTINCT */
){
  Table *pTab;
  Index *pIdx;
  int i;                          
  int iBase;

  /* If there is more than one table or sub-select in the FROM clause of
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
























1689


1690
1691
1692

1693


1694

1695
1696

1697
1698















1699









1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
      return 1;
    }
  }

  return 0;
}

/*
** Prepare a crude estimate of the logarithm of the input value.
** The results need not be exact.  This is only used for estimating
** the total cost of performing operations with O(logN) or O(NlogN)
























** complexity.  Because N is just a guess, it is no great tragedy if


** logN is a little off.
*/
static double estLog(double N){

  double logN = 1;


  double x = 10;

  while( N>x ){
    logN += 1;

    x *= 10;
  }















  return logN;









}

/*
** Two routines for printing the content of an sqlite3_index_info
** structure.  Used for testing and debugging only.  If neither
** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
** are no-ops.
*/
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
  int i;
  if( !sqlite3WhereTrace ) return;
  for(i=0; i<p->nConstraint; i++){
    sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
       i,
       p->aConstraint[i].iColumn,







|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
|

|
>
|
>
>
|
>
|
|
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>








|







1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
      return 1;
    }
  }

  return 0;
}

/* 
** Find (an approximate) sum of two WhereCosts.  This computation is
** not a simple "+" operator because WhereCost is stored as a logarithmic
** value.
** 
*/
static WhereCost whereCostAdd(WhereCost a, WhereCost b){
  static const unsigned char x[] = {
     10, 10,                         /* 0,1 */
      9, 9,                          /* 2,3 */
      8, 8,                          /* 4,5 */
      7, 7, 7,                       /* 6,7,8 */
      6, 6, 6,                       /* 9,10,11 */
      5, 5, 5,                       /* 12-14 */
      4, 4, 4, 4,                    /* 15-18 */
      3, 3, 3, 3, 3, 3,              /* 19-24 */
      2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
  };
  if( a>=b ){
    if( a>b+49 ) return a;
    if( a>b+31 ) return a+1;
    return a+x[a-b];
  }else{
    if( b>a+49 ) return b;
    if( b>a+31 ) return b+1;
    return b+x[b-a];
  }
}

/*
** Convert an integer into a WhereCost.  In other words, compute a
** good approximatation for 10*log2(x).
*/
static WhereCost whereCost(tRowcnt x){
  static WhereCost a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
  WhereCost y = 40;
  if( x<8 ){
    if( x<2 ) return 0;
    while( x<8 ){  y -= 10; x <<= 1; }
  }else{
    while( x>255 ){ y += 40; x >>= 4; }
    while( x>15 ){  y += 10; x >>= 1; }
  }
  return a[x&7] + y - 10;
}

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Convert a double (as received from xBestIndex of a virtual table)
** into a WhereCost.  In other words, compute an approximation for
** 10*log2(x).
*/
static WhereCost whereCostFromDouble(double x){
  u64 a;
  WhereCost e;
  assert( sizeof(x)==8 && sizeof(a)==8 );
  if( x<=1 ) return 0;
  if( x<=2000000000 ) return whereCost((tRowcnt)x);
  memcpy(&a, &x, 8);
  e = (a>>52) - 1022;
  return e*10;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** Estimate the logarithm of the input value to base 2.
*/
static WhereCost estLog(WhereCost N){
  WhereCost x = whereCost(N);
  return x>33 ? x - 33 : 0;
}

/*
** Two routines for printing the content of an sqlite3_index_info
** structure.  Used for testing and debugging only.  If neither
** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
** are no-ops.
*/
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
  int i;
  if( !sqlite3WhereTrace ) return;
  for(i=0; i<p->nConstraint; i++){
    sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
       i,
       p->aConstraint[i].iColumn,
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861

1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
  sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
}
#else
#define TRACE_IDX_INPUTS(A)
#define TRACE_IDX_OUTPUTS(A)
#endif

/* 
** Required because bestIndex() is called by bestOrClauseIndex() 
*/
static void bestIndex(WhereBestIdx*);

/*
** This routine attempts to find an scanning strategy that can be used 
** to optimize an 'OR' expression that is part of a WHERE clause. 
**
** The table associated with FROM clause term pSrc may be either a
** regular B-Tree table or a virtual table.
*/
static void bestOrClauseIndex(WhereBestIdx *p){
#ifndef SQLITE_OMIT_OR_OPTIMIZATION
  WhereClause *pWC = p->pWC;           /* The WHERE clause */
  struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */
  const int iCur = pSrc->iCursor;      /* The cursor of the table  */
  const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur);  /* Bitmask for pSrc */
  WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm];        /* End of pWC->a[] */
  WhereTerm *pTerm;                    /* A single term of the WHERE clause */

  /* The OR-clause optimization is disallowed if the INDEXED BY or
  ** NOT INDEXED clauses are used or if the WHERE_AND_ONLY bit is set. */
  if( pSrc->notIndexed || pSrc->pIndex!=0 ){
    return;
  }
  if( pWC->wctrlFlags & WHERE_AND_ONLY ){
    return;
  }

  /* Search the WHERE clause terms for a usable WO_OR term. */
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( (pTerm->eOperator & WO_OR)!=0
     && ((pTerm->prereqAll & ~maskSrc) & p->notReady)==0
     && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 
    ){
      WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
      WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
      WhereTerm *pOrTerm;
      int flags = WHERE_MULTI_OR;
      double rTotal = 0;
      double nRow = 0;
      Bitmask used = 0;
      WhereBestIdx sBOI;

      sBOI = *p;
      sBOI.pOrderBy = 0;
      sBOI.pDistinct = 0;
      sBOI.ppIdxInfo = 0;
      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 
          (pOrTerm - pOrWC->a), (pTerm - pWC->a)
        ));
        if( (pOrTerm->eOperator& WO_AND)!=0 ){
          sBOI.pWC = &pOrTerm->u.pAndInfo->wc;
          bestIndex(&sBOI);
        }else if( pOrTerm->leftCursor==iCur ){
          WhereClause tempWC;
          tempWC.pParse = pWC->pParse;
          tempWC.pMaskSet = pWC->pMaskSet;
          tempWC.pOuter = pWC;
          tempWC.op = TK_AND;
          tempWC.a = pOrTerm;
          tempWC.wctrlFlags = 0;
          tempWC.nTerm = 1;
          sBOI.pWC = &tempWC;
          bestIndex(&sBOI);
        }else{
          continue;
        }
        rTotal += sBOI.cost.rCost;
        nRow += sBOI.cost.plan.nRow;
        used |= sBOI.cost.used;
        if( rTotal>=p->cost.rCost ) break;
      }

      /* If there is an ORDER BY clause, increase the scan cost to account 
      ** for the cost of the sort. */
      if( p->pOrderBy!=0 ){
        WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
                    rTotal, rTotal+nRow*estLog(nRow)));
        rTotal += nRow*estLog(nRow);
      }

      /* If the cost of scanning using this OR term for optimization is
      ** less than the current cost stored in pCost, replace the contents
      ** of pCost. */
      WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
      if( rTotal<p->cost.rCost ){
        p->cost.rCost = rTotal;
        p->cost.used = used;
        p->cost.plan.nRow = nRow;
        p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0;
        p->cost.plan.wsFlags = flags;
        p->cost.plan.u.pTerm = pTerm;
      }
    }
  }
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
}

#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** Return TRUE if the WHERE clause term pTerm is of a form where it
** could be used with an index to access pSrc, assuming an appropriate
** index existed.
*/
static int termCanDriveIndex(
  WhereTerm *pTerm,              /* WHERE clause term to check */
  struct SrcList_item *pSrc,     /* Table we are trying to access */
  Bitmask notReady               /* Tables in outer loops of the join */
){
  char aff;
  if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
  if( (pTerm->eOperator & WO_EQ)==0 ) return 0;
  if( (pTerm->prereqRight & notReady)!=0 ) return 0;

  aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
  if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
  return 1;
}
#endif

#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** If the query plan for pSrc specified in pCost is a full table scan
** and indexing is allows (if there is no NOT INDEXED clause) and it
** possible to construct a transient index that would perform better
** than a full table scan even when the cost of constructing the index
** is taken into account, then alter the query plan to use the
** transient index.
*/
static void bestAutomaticIndex(WhereBestIdx *p){
  Parse *pParse = p->pParse;            /* The parsing context */
  WhereClause *pWC = p->pWC;            /* The WHERE clause */
  struct SrcList_item *pSrc = p->pSrc;  /* The FROM clause term to search */
  double nTableRow;                     /* Rows in the input table */
  double logN;                          /* log(nTableRow) */
  double costTempIdx;         /* per-query cost of the transient index */
  WhereTerm *pTerm;           /* A single term of the WHERE clause */
  WhereTerm *pWCEnd;          /* End of pWC->a[] */
  Table *pTable;              /* Table tht might be indexed */

  if( pParse->nQueryLoop<=(double)1 ){
    /* There is no point in building an automatic index for a single scan */
    return;
  }
  if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
    /* Automatic indices are disabled at run-time */
    return;
  }
  if( (p->cost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0
   && (p->cost.plan.wsFlags & WHERE_COVER_SCAN)==0
  ){
    /* We already have some kind of index in use for this query. */
    return;
  }
  if( pSrc->viaCoroutine ){
    /* Cannot index a co-routine */
    return;
  }
  if( pSrc->notIndexed ){
    /* The NOT INDEXED clause appears in the SQL. */
    return;
  }
  if( pSrc->isCorrelated ){
    /* The source is a correlated sub-query. No point in indexing it. */
    return;
  }

  assert( pParse->nQueryLoop >= (double)1 );
  pTable = pSrc->pTab;
  nTableRow = pTable->nRowEst;
  logN = estLog(nTableRow);
  costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
  if( costTempIdx>=p->cost.rCost ){
    /* The cost of creating the transient table would be greater than
    ** doing the full table scan */
    return;
  }

  /* Search for any equality comparison term */
  pWCEnd = &pWC->a[pWC->nTerm];
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( termCanDriveIndex(pTerm, pSrc, p->notReady) ){
      WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n",
                    p->cost.rCost, costTempIdx));
      p->cost.rCost = costTempIdx;
      p->cost.plan.nRow = logN + 1;
      p->cost.plan.wsFlags = WHERE_TEMP_INDEX;
      p->cost.used = pTerm->prereqRight;
      break;
    }
  }
}
#else
# define bestAutomaticIndex(A)  /* no-op */
#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */


#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** Generate code to construct the Index object for an automatic index
** and to set up the WhereLevel object pLevel so that the code generator
** makes use of the automatic index.
*/







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<















>






<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







2056
2057
2058
2059
2060
2061
2062





































































































2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084












































































2085
2086
2087
2088
2089
2090
2091
  sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
}
#else
#define TRACE_IDX_INPUTS(A)
#define TRACE_IDX_OUTPUTS(A)
#endif






































































































#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** Return TRUE if the WHERE clause term pTerm is of a form where it
** could be used with an index to access pSrc, assuming an appropriate
** index existed.
*/
static int termCanDriveIndex(
  WhereTerm *pTerm,              /* WHERE clause term to check */
  struct SrcList_item *pSrc,     /* Table we are trying to access */
  Bitmask notReady               /* Tables in outer loops of the join */
){
  char aff;
  if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
  if( (pTerm->eOperator & WO_EQ)==0 ) return 0;
  if( (pTerm->prereqRight & notReady)!=0 ) return 0;
  if( pTerm->u.leftColumn<0 ) return 0;
  aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
  if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
  return 1;
}
#endif














































































#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** Generate code to construct the Index object for an automatic index
** and to set up the WhereLevel object pLevel so that the code generator
** makes use of the automatic index.
*/
1966
1967
1968
1969
1970
1971
1972

1973
1974

1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986

1987
1988
1989
1990
1991
1992
1993






1994

1995
1996
1997
1998
1999
2000
2001


2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042


2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075

2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106

2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
  KeyInfo *pKeyinfo;          /* Key information for the index */   
  int addrTop;                /* Top of the index fill loop */
  int regRecord;              /* Register holding an index record */
  int n;                      /* Column counter */
  int i;                      /* Loop counter */
  int mxBitCol;               /* Maximum column in pSrc->colUsed */
  CollSeq *pColl;             /* Collating sequence to on a column */

  Bitmask idxCols;            /* Bitmap of columns used for indexing */
  Bitmask extraCols;          /* Bitmap of additional columns */


  /* Generate code to skip over the creation and initialization of the
  ** transient index on 2nd and subsequent iterations of the loop. */
  v = pParse->pVdbe;
  assert( v!=0 );
  addrInit = sqlite3CodeOnce(pParse);

  /* Count the number of columns that will be added to the index
  ** and used to match WHERE clause constraints */
  nColumn = 0;
  pTable = pSrc->pTab;
  pWCEnd = &pWC->a[pWC->nTerm];

  idxCols = 0;
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( termCanDriveIndex(pTerm, pSrc, notReady) ){
      int iCol = pTerm->u.leftColumn;
      Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
      testcase( iCol==BMS );
      testcase( iCol==BMS-1 );






      if( (idxCols & cMask)==0 ){

        nColumn++;
        idxCols |= cMask;
      }
    }
  }
  assert( nColumn>0 );
  pLevel->plan.nEq = nColumn;



  /* Count the number of additional columns needed to create a
  ** covering index.  A "covering index" is an index that contains all
  ** columns that are needed by the query.  With a covering index, the
  ** original table never needs to be accessed.  Automatic indices must
  ** be a covering index because the index will not be updated if the
  ** original table changes and the index and table cannot both be used
  ** if they go out of sync.
  */
  extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1)));
  mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
  testcase( pTable->nCol==BMS-1 );
  testcase( pTable->nCol==BMS-2 );
  for(i=0; i<mxBitCol; i++){
    if( extraCols & (((Bitmask)1)<<i) ) nColumn++;
  }
  if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
    nColumn += pTable->nCol - BMS + 1;
  }
  pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ;

  /* Construct the Index object to describe this index */
  nByte = sizeof(Index);
  nByte += nColumn*sizeof(int);     /* Index.aiColumn */
  nByte += nColumn*sizeof(char*);   /* Index.azColl */
  nByte += nColumn;                 /* Index.aSortOrder */
  pIdx = sqlite3DbMallocZero(pParse->db, nByte);
  if( pIdx==0 ) return;
  pLevel->plan.u.pIdx = pIdx;
  pIdx->azColl = (char**)&pIdx[1];
  pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
  pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
  pIdx->zName = "auto-index";
  pIdx->nColumn = nColumn;
  pIdx->pTable = pTable;
  n = 0;
  idxCols = 0;
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( termCanDriveIndex(pTerm, pSrc, notReady) ){
      int iCol = pTerm->u.leftColumn;
      Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;


      if( (idxCols & cMask)==0 ){
        Expr *pX = pTerm->pExpr;
        idxCols |= cMask;
        pIdx->aiColumn[n] = pTerm->u.leftColumn;
        pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
        pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY";
        n++;
      }
    }
  }
  assert( (u32)n==pLevel->plan.nEq );

  /* Add additional columns needed to make the automatic index into
  ** a covering index */
  for(i=0; i<mxBitCol; i++){
    if( extraCols & (((Bitmask)1)<<i) ){
      pIdx->aiColumn[n] = i;
      pIdx->azColl[n] = "BINARY";
      n++;
    }
  }
  if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
    for(i=BMS-1; i<pTable->nCol; i++){
      pIdx->aiColumn[n] = i;
      pIdx->azColl[n] = "BINARY";
      n++;
    }
  }
  assert( n==nColumn );

  /* Create the automatic index */
  pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
  assert( pLevel->iIdxCur>=0 );

  sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
                    (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
  VdbeComment((v, "for %s", pTable->zName));

  /* Fill the automatic index with content */
  addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
  regRecord = sqlite3GetTempReg(pParse);
  sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1);
  sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
  sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
  sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
  sqlite3VdbeJumpHere(v, addrTop);
  sqlite3ReleaseTempReg(pParse, regRecord);
  
  /* Jump here when skipping the initialization */
  sqlite3VdbeJumpHere(v, addrInit);
}
#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Allocate and populate an sqlite3_index_info structure. It is the 
** responsibility of the caller to eventually release the structure
** by passing the pointer returned by this function to sqlite3_free().
*/
static sqlite3_index_info *allocateIndexInfo(WhereBestIdx *p){
  Parse *pParse = p->pParse; 
  WhereClause *pWC = p->pWC;
  struct SrcList_item *pSrc = p->pSrc;
  ExprList *pOrderBy = p->pOrderBy;

  int i, j;
  int nTerm;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_orderby *pIdxOrderBy;
  struct sqlite3_index_constraint_usage *pUsage;
  WhereTerm *pTerm;
  int nOrderBy;
  sqlite3_index_info *pIdxInfo;

  WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));

  /* Count the number of possible WHERE clause constraints referring
  ** to this virtual table */
  for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
    testcase( pTerm->eOperator & WO_IN );
    testcase( pTerm->eOperator & WO_ISNULL );







>


>












>




|


>
>
>
>
>
>

>
|





|
>
>









|




|

|


|








|











|
>
>










|




|





|











>







|


















|
|
|
|
|
>









<
<







2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272


2273
2274
2275
2276
2277
2278
2279
  KeyInfo *pKeyinfo;          /* Key information for the index */   
  int addrTop;                /* Top of the index fill loop */
  int regRecord;              /* Register holding an index record */
  int n;                      /* Column counter */
  int i;                      /* Loop counter */
  int mxBitCol;               /* Maximum column in pSrc->colUsed */
  CollSeq *pColl;             /* Collating sequence to on a column */
  WhereLoop *pLoop;           /* The Loop object */
  Bitmask idxCols;            /* Bitmap of columns used for indexing */
  Bitmask extraCols;          /* Bitmap of additional columns */
  u8 sentWarning = 0;         /* True if a warnning has been issued */

  /* Generate code to skip over the creation and initialization of the
  ** transient index on 2nd and subsequent iterations of the loop. */
  v = pParse->pVdbe;
  assert( v!=0 );
  addrInit = sqlite3CodeOnce(pParse);

  /* Count the number of columns that will be added to the index
  ** and used to match WHERE clause constraints */
  nColumn = 0;
  pTable = pSrc->pTab;
  pWCEnd = &pWC->a[pWC->nTerm];
  pLoop = pLevel->pWLoop;
  idxCols = 0;
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( termCanDriveIndex(pTerm, pSrc, notReady) ){
      int iCol = pTerm->u.leftColumn;
      Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
      testcase( iCol==BMS );
      testcase( iCol==BMS-1 );
      if( !sentWarning ){
        sqlite3_log(SQLITE_WARNING_AUTOINDEX,
            "automatic index on %s(%s)", pTable->zName,
            pTable->aCol[iCol].zName);
        sentWarning = 1;
      }
      if( (idxCols & cMask)==0 ){
        if( whereLoopResize(pParse->db, pLoop, nColumn+1) ) return;
        pLoop->aLTerm[nColumn++] = pTerm;
        idxCols |= cMask;
      }
    }
  }
  assert( nColumn>0 );
  pLoop->u.btree.nEq = pLoop->nLTerm = nColumn;
  pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
                     | WHERE_AUTO_INDEX;

  /* Count the number of additional columns needed to create a
  ** covering index.  A "covering index" is an index that contains all
  ** columns that are needed by the query.  With a covering index, the
  ** original table never needs to be accessed.  Automatic indices must
  ** be a covering index because the index will not be updated if the
  ** original table changes and the index and table cannot both be used
  ** if they go out of sync.
  */
  extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
  mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
  testcase( pTable->nCol==BMS-1 );
  testcase( pTable->nCol==BMS-2 );
  for(i=0; i<mxBitCol; i++){
    if( extraCols & MASKBIT(i) ) nColumn++;
  }
  if( pSrc->colUsed & MASKBIT(BMS-1) ){
    nColumn += pTable->nCol - BMS + 1;
  }
  pLoop->wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY;

  /* Construct the Index object to describe this index */
  nByte = sizeof(Index);
  nByte += nColumn*sizeof(int);     /* Index.aiColumn */
  nByte += nColumn*sizeof(char*);   /* Index.azColl */
  nByte += nColumn;                 /* Index.aSortOrder */
  pIdx = sqlite3DbMallocZero(pParse->db, nByte);
  if( pIdx==0 ) return;
  pLoop->u.btree.pIndex = pIdx;
  pIdx->azColl = (char**)&pIdx[1];
  pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
  pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
  pIdx->zName = "auto-index";
  pIdx->nColumn = nColumn;
  pIdx->pTable = pTable;
  n = 0;
  idxCols = 0;
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( termCanDriveIndex(pTerm, pSrc, notReady) ){
      int iCol = pTerm->u.leftColumn;
      Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
      testcase( iCol==BMS-1 );
      testcase( iCol==BMS );
      if( (idxCols & cMask)==0 ){
        Expr *pX = pTerm->pExpr;
        idxCols |= cMask;
        pIdx->aiColumn[n] = pTerm->u.leftColumn;
        pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
        pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY";
        n++;
      }
    }
  }
  assert( (u32)n==pLoop->u.btree.nEq );

  /* Add additional columns needed to make the automatic index into
  ** a covering index */
  for(i=0; i<mxBitCol; i++){
    if( extraCols & MASKBIT(i) ){
      pIdx->aiColumn[n] = i;
      pIdx->azColl[n] = "BINARY";
      n++;
    }
  }
  if( pSrc->colUsed & MASKBIT(BMS-1) ){
    for(i=BMS-1; i<pTable->nCol; i++){
      pIdx->aiColumn[n] = i;
      pIdx->azColl[n] = "BINARY";
      n++;
    }
  }
  assert( n==nColumn );

  /* Create the automatic index */
  pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
  assert( pLevel->iIdxCur>=0 );
  pLevel->iIdxCur = pParse->nTab++;
  sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
                    (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
  VdbeComment((v, "for %s", pTable->zName));

  /* Fill the automatic index with content */
  addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
  regRecord = sqlite3GetTempReg(pParse);
  sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1, 0);
  sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
  sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
  sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
  sqlite3VdbeJumpHere(v, addrTop);
  sqlite3ReleaseTempReg(pParse, regRecord);
  
  /* Jump here when skipping the initialization */
  sqlite3VdbeJumpHere(v, addrInit);
}
#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Allocate and populate an sqlite3_index_info structure. It is the 
** responsibility of the caller to eventually release the structure
** by passing the pointer returned by this function to sqlite3_free().
*/
static sqlite3_index_info *allocateIndexInfo(
  Parse *pParse,
  WhereClause *pWC,
  struct SrcList_item *pSrc,
  ExprList *pOrderBy
){
  int i, j;
  int nTerm;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_orderby *pIdxOrderBy;
  struct sqlite3_index_constraint_usage *pUsage;
  WhereTerm *pTerm;
  int nOrderBy;
  sqlite3_index_info *pIdxInfo;



  /* Count the number of possible WHERE clause constraints referring
  ** to this virtual table */
  for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
    testcase( pTerm->eOperator & WO_IN );
    testcase( pTerm->eOperator & WO_ISNULL );
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
  /* Allocate the sqlite3_index_info structure
  */
  pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
                           + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
                           + sizeof(*pIdxOrderBy)*nOrderBy );
  if( pIdxInfo==0 ){
    sqlite3ErrorMsg(pParse, "out of memory");
    /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    return 0;
  }

  /* Initialize the structure.  The sqlite3_index_info structure contains
  ** many fields that are declared "const" to prevent xBestIndex from
  ** changing them.  We have to do some funky casting in order to
  ** initialize those fields.







<







2301
2302
2303
2304
2305
2306
2307

2308
2309
2310
2311
2312
2313
2314
  /* Allocate the sqlite3_index_info structure
  */
  pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
                           + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
                           + sizeof(*pIdxOrderBy)*nOrderBy );
  if( pIdxInfo==0 ){
    sqlite3ErrorMsg(pParse, "out of memory");

    return 0;
  }

  /* Initialize the structure.  The sqlite3_index_info structure contains
  ** many fields that are declared "const" to prevent xBestIndex from
  ** changing them.  We have to do some funky casting in order to
  ** initialize those fields.
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232

  return pIdxInfo;
}

/*
** The table object reference passed as the second argument to this function
** must represent a virtual table. This function invokes the xBestIndex()
** method of the virtual table with the sqlite3_index_info pointer passed
** as the argument.
**
** If an error occurs, pParse is populated with an error message and a
** non-zero value is returned. Otherwise, 0 is returned and the output
** part of the sqlite3_index_info structure is left populated.
**
** Whether or not an error is returned, it is the responsibility of the
** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
** that this is required.
*/
static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
  sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
  int i;
  int rc;

  WHERETRACE(("xBestIndex for %s\n", pTab->zName));
  TRACE_IDX_INPUTS(p);
  rc = pVtab->pModule->xBestIndex(pVtab, p);
  TRACE_IDX_OUTPUTS(p);

  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ){
      pParse->db->mallocFailed = 1;







|
|














<







2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378

2379
2380
2381
2382
2383
2384
2385

  return pIdxInfo;
}

/*
** The table object reference passed as the second argument to this function
** must represent a virtual table. This function invokes the xBestIndex()
** method of the virtual table with the sqlite3_index_info object that
** comes in as the 3rd argument to this function.
**
** If an error occurs, pParse is populated with an error message and a
** non-zero value is returned. Otherwise, 0 is returned and the output
** part of the sqlite3_index_info structure is left populated.
**
** Whether or not an error is returned, it is the responsibility of the
** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
** that this is required.
*/
static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
  sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
  int i;
  int rc;


  TRACE_IDX_INPUTS(p);
  rc = pVtab->pModule->xBestIndex(pVtab, p);
  TRACE_IDX_OUTPUTS(p);

  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ){
      pParse->db->mallocFailed = 1;
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473

2474
2475
2476
2477


2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500

2501
2502
2503
2504
2505
2506
2507
2508
2509


2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528

2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560

2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680

2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695

2696
2697


2698
2699







2700

















2701
2702
2703



2704
2705













2706

2707
2708
2709

2710

2711
2712
2713
2714

2715
2716
2717


2718

2719
2720
2721

2722

2723
2724
2725
2726

2727
2728
2729


2730

2731
2732

2733
2734

2735




2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746

2747
2748


2749




2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777


2778
2779
2780

2781


2782
2783

2784


2785


2786


2787
2788
2789

2790





2791


2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825


2826
2827
2828
2829
2830
2831
2832
2833
2834
2835

2836

2837
2838
2839
2840
2841

2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748

3749
3750
3751
3752
3753
3754
3755
      sqlite3ErrorMsg(pParse, 
          "table %s: xBestIndex returned an invalid plan", pTab->zName);
    }
  }

  return pParse->nErr;
}


/*
** Compute the best index for a virtual table.
**
** The best index is computed by the xBestIndex method of the virtual
** table module.  This routine is really just a wrapper that sets up
** the sqlite3_index_info structure that is used to communicate with
** xBestIndex.
**
** In a join, this routine might be called multiple times for the
** same virtual table.  The sqlite3_index_info structure is created
** and initialized on the first invocation and reused on all subsequent
** invocations.  The sqlite3_index_info structure is also used when
** code is generated to access the virtual table.  The whereInfoDelete() 
** routine takes care of freeing the sqlite3_index_info structure after
** everybody has finished with it.
*/
static void bestVirtualIndex(WhereBestIdx *p){
  Parse *pParse = p->pParse;      /* The parsing context */
  WhereClause *pWC = p->pWC;      /* The WHERE clause */
  struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */
  Table *pTab = pSrc->pTab;
  sqlite3_index_info *pIdxInfo;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_constraint_usage *pUsage;
  WhereTerm *pTerm;
  int i, j;
  int nOrderBy;
  int bAllowIN;                   /* Allow IN optimizations */
  double rCost;

  /* Make sure wsFlags is initialized to some sane value. Otherwise, if the 
  ** malloc in allocateIndexInfo() fails and this function returns leaving
  ** wsFlags in an uninitialized state, the caller may behave unpredictably.
  */
  memset(&p->cost, 0, sizeof(p->cost));
  p->cost.plan.wsFlags = WHERE_VIRTUALTABLE;

  /* If the sqlite3_index_info structure has not been previously
  ** allocated and initialized, then allocate and initialize it now.
  */
  pIdxInfo = *p->ppIdxInfo;
  if( pIdxInfo==0 ){
    *p->ppIdxInfo = pIdxInfo = allocateIndexInfo(p);
  }
  if( pIdxInfo==0 ){
    return;
  }

  /* At this point, the sqlite3_index_info structure that pIdxInfo points
  ** to will have been initialized, either during the current invocation or
  ** during some prior invocation.  Now we just have to customize the
  ** details of pIdxInfo for the current invocation and pass it to
  ** xBestIndex.
  */

  /* The module name must be defined. Also, by this point there must
  ** be a pointer to an sqlite3_vtab structure. Otherwise
  ** sqlite3ViewGetColumnNames() would have picked up the error. 
  */
  assert( pTab->azModuleArg && pTab->azModuleArg[0] );
  assert( sqlite3GetVTable(pParse->db, pTab) );

  /* Try once or twice.  On the first attempt, allow IN optimizations.
  ** If an IN optimization is accepted by the virtual table xBestIndex
  ** method, but the  pInfo->aConstrainUsage.omit flag is not set, then
  ** the query will not work because it might allow duplicate rows in
  ** output.  In that case, run the xBestIndex method a second time
  ** without the IN constraints.  Usually this loop only runs once.
  ** The loop will exit using a "break" statement.
  */
  for(bAllowIN=1; 1; bAllowIN--){
    assert( bAllowIN==0 || bAllowIN==1 );

    /* Set the aConstraint[].usable fields and initialize all 
    ** output variables to zero.
    **
    ** aConstraint[].usable is true for constraints where the right-hand
    ** side contains only references to tables to the left of the current
    ** table.  In other words, if the constraint is of the form:
    **
    **           column = expr
    **
    ** and we are evaluating a join, then the constraint on column is 
    ** only valid if all tables referenced in expr occur to the left
    ** of the table containing column.
    **
    ** The aConstraints[] array contains entries for all constraints
    ** on the current table.  That way we only have to compute it once
    ** even though we might try to pick the best index multiple times.
    ** For each attempt at picking an index, the order of tables in the
    ** join might be different so we have to recompute the usable flag
    ** each time.
    */
    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
    pUsage = pIdxInfo->aConstraintUsage;
    for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
      j = pIdxCons->iTermOffset;
      pTerm = &pWC->a[j];
      if( (pTerm->prereqRight&p->notReady)==0
       && (bAllowIN || (pTerm->eOperator & WO_IN)==0)
      ){
        pIdxCons->usable = 1;
      }else{
        pIdxCons->usable = 0;
      }
    }
    memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
    if( pIdxInfo->needToFreeIdxStr ){
      sqlite3_free(pIdxInfo->idxStr);
    }
    pIdxInfo->idxStr = 0;
    pIdxInfo->idxNum = 0;
    pIdxInfo->needToFreeIdxStr = 0;
    pIdxInfo->orderByConsumed = 0;
    /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
    pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
    nOrderBy = pIdxInfo->nOrderBy;
    if( !p->pOrderBy ){
      pIdxInfo->nOrderBy = 0;
    }
  
    if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
      return;
    }
  
    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
    for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
      if( pUsage[i].argvIndex>0 ){
        j = pIdxCons->iTermOffset;
        pTerm = &pWC->a[j];
        p->cost.used |= pTerm->prereqRight;
        if( (pTerm->eOperator & WO_IN)!=0 ){
          if( pUsage[i].omit==0 ){
            /* Do not attempt to use an IN constraint if the virtual table
            ** says that the equivalent EQ constraint cannot be safely omitted.
            ** If we do attempt to use such a constraint, some rows might be
            ** repeated in the output. */
            break;
          }
          /* A virtual table that is constrained by an IN clause may not
          ** consume the ORDER BY clause because (1) the order of IN terms
          ** is not necessarily related to the order of output terms and
          ** (2) Multiple outputs from a single IN value will not merge
          ** together.  */
          pIdxInfo->orderByConsumed = 0;
        }
      }
    }
    if( i>=pIdxInfo->nConstraint ) break;
  }

  /* The orderByConsumed signal is only valid if all outer loops collectively
  ** generate just a single row of output.
  */
  if( pIdxInfo->orderByConsumed ){
    for(i=0; i<p->i; i++){
      if( (p->aLevel[i].plan.wsFlags & WHERE_UNIQUE)==0 ){
        pIdxInfo->orderByConsumed = 0;
      }
    }
  }
  
  /* If there is an ORDER BY clause, and the selected virtual table index
  ** does not satisfy it, increase the cost of the scan accordingly. This
  ** matches the processing for non-virtual tables in bestBtreeIndex().
  */
  rCost = pIdxInfo->estimatedCost;
  if( p->pOrderBy && pIdxInfo->orderByConsumed==0 ){
    rCost += estLog(rCost)*rCost;
  }

  /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
  ** inital value of lowestCost in this loop. If it is, then the
  ** (cost<lowestCost) test below will never be true.
  ** 
  ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT 
  ** is defined.
  */
  if( (SQLITE_BIG_DBL/((double)2))<rCost ){
    p->cost.rCost = (SQLITE_BIG_DBL/((double)2));
  }else{
    p->cost.rCost = rCost;
  }
  p->cost.plan.u.pVtabIdx = pIdxInfo;
  if( pIdxInfo->orderByConsumed ){
    p->cost.plan.wsFlags |= WHERE_ORDERED;
    p->cost.plan.nOBSat = nOrderBy;
  }else{
    p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0;
  }
  p->cost.plan.nEq = 0;
  pIdxInfo->nOrderBy = nOrderBy;

  /* Try to find a more efficient access pattern by using multiple indexes
  ** to optimize an OR expression within the WHERE clause. 
  */
  bestOrClauseIndex(p);
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef SQLITE_ENABLE_STAT3
/*
** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:
**
**    aStat[0]      Est. number of rows less than pVal
**    aStat[1]      Est. number of rows equal to pVal
**
** Return SQLITE_OK on success.
*/
static int whereKeyStats(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  sqlite3_value *pVal,        /* Value to consider */
  int roundUp,                /* Round up if true.  Round down if false */
  tRowcnt *aStat              /* OUT: stats written here */
){
  tRowcnt n;
  IndexSample *aSample;
  int i, eType;
  int isEq = 0;

  i64 v;
  double r, rS;

  assert( roundUp==0 || roundUp==1 );


  assert( pIdx->nSample>0 );
  if( pVal==0 ) return SQLITE_ERROR;
  n = pIdx->aiRowEst[0];
  aSample = pIdx->aSample;
  eType = sqlite3_value_type(pVal);

  if( eType==SQLITE_INTEGER ){
    v = sqlite3_value_int64(pVal);
    r = (i64)v;
    for(i=0; i<pIdx->nSample; i++){
      if( aSample[i].eType==SQLITE_NULL ) continue;
      if( aSample[i].eType>=SQLITE_TEXT ) break;
      if( aSample[i].eType==SQLITE_INTEGER ){
        if( aSample[i].u.i>=v ){
          isEq = aSample[i].u.i==v;
          break;
        }
      }else{
        assert( aSample[i].eType==SQLITE_FLOAT );
        if( aSample[i].u.r>=r ){
          isEq = aSample[i].u.r==r;
          break;
        }

      }
    }
  }else if( eType==SQLITE_FLOAT ){
    r = sqlite3_value_double(pVal);
    for(i=0; i<pIdx->nSample; i++){
      if( aSample[i].eType==SQLITE_NULL ) continue;
      if( aSample[i].eType>=SQLITE_TEXT ) break;
      if( aSample[i].eType==SQLITE_FLOAT ){
        rS = aSample[i].u.r;


      }else{
        rS = aSample[i].u.i;
      }
      if( rS>=r ){
        isEq = rS==r;
        break;
      }
    }
  }else if( eType==SQLITE_NULL ){
    i = 0;
    if( aSample[0].eType==SQLITE_NULL ) isEq = 1;
  }else{
    assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
    for(i=0; i<pIdx->nSample; i++){
      if( aSample[i].eType==SQLITE_TEXT || aSample[i].eType==SQLITE_BLOB ){
        break;
      }
    }
    if( i<pIdx->nSample ){      

      sqlite3 *db = pParse->db;
      CollSeq *pColl;
      const u8 *z;
      if( eType==SQLITE_BLOB ){
        z = (const u8 *)sqlite3_value_blob(pVal);
        pColl = db->pDfltColl;
        assert( pColl->enc==SQLITE_UTF8 );
      }else{
        pColl = sqlite3GetCollSeq(pParse, SQLITE_UTF8, 0, *pIdx->azColl);
        if( pColl==0 ){
          return SQLITE_ERROR;
        }
        z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
        if( !z ){
          return SQLITE_NOMEM;
        }
        assert( z && pColl && pColl->xCmp );
      }
      n = sqlite3ValueBytes(pVal, pColl->enc);
  
      for(; i<pIdx->nSample; i++){
        int c;
        int eSampletype = aSample[i].eType;
        if( eSampletype<eType ) continue;
        if( eSampletype!=eType ) break;
#ifndef SQLITE_OMIT_UTF16
        if( pColl->enc!=SQLITE_UTF8 ){
          int nSample;
          char *zSample = sqlite3Utf8to16(
              db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
          );
          if( !zSample ){

            assert( db->mallocFailed );
            return SQLITE_NOMEM;
          }
          c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
          sqlite3DbFree(db, zSample);
        }else
#endif
        {
          c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
        }
        if( c>=0 ){
          if( c==0 ) isEq = 1;
          break;
        }
      }
    }
  }

  /* At this point, aSample[i] is the first sample that is greater than
  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
  ** than pVal.  If aSample[i]==pVal, then isEq==1.
  */
  if( isEq ){
    assert( i<pIdx->nSample );
    aStat[0] = aSample[i].nLt;
    aStat[1] = aSample[i].nEq;
  }else{
    tRowcnt iLower, iUpper, iGap;
    if( i==0 ){
      iLower = 0;
      iUpper = aSample[0].nLt;
    }else{
      iUpper = i>=pIdx->nSample ? n : aSample[i].nLt;
      iLower = aSample[i-1].nEq + aSample[i-1].nLt;
    }
    aStat[1] = pIdx->avgEq;
    if( iLower>=iUpper ){
      iGap = 0;
    }else{
      iGap = iUpper - iLower;
    }
    if( roundUp ){
      iGap = (iGap*2)/3;
    }else{
      iGap = iGap/3;
    }
    aStat[0] = iLower + iGap;
  }
  return SQLITE_OK;
}
#endif /* SQLITE_ENABLE_STAT3 */

/*
** If expression pExpr represents a literal value, set *pp to point to
** an sqlite3_value structure containing the same value, with affinity
** aff applied to it, before returning. It is the responsibility of the 
** caller to eventually release this structure by passing it to 
** sqlite3ValueFree().
**
** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
** is an SQL variable that currently has a non-NULL value bound to it,
** create an sqlite3_value structure containing this value, again with
** affinity aff applied to it, instead.
**
** If neither of the above apply, set *pp to NULL.
**
** If an error occurs, return an error code. Otherwise, SQLITE_OK.
*/
#ifdef SQLITE_ENABLE_STAT3
static int valueFromExpr(
  Parse *pParse, 
  Expr *pExpr, 
  u8 aff, 
  sqlite3_value **pp
){
  if( pExpr->op==TK_VARIABLE
   || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
  ){
    int iVar = pExpr->iColumn;
    sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
    *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
    return SQLITE_OK;
  }
  return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
}
#endif

/*
** This function is used to estimate the number of rows that will be visited
** by scanning an index for a range of values. The range may have an upper
** bound, a lower bound, or both. The WHERE clause terms that set the upper
** and lower bounds are represented by pLower and pUpper respectively. For
** example, assuming that index p is on t1(a):
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**                    |_____|   |_____|
**                       |         |
**                     pLower    pUpper
**
** If either of the upper or lower bound is not present, then NULL is passed in
** place of the corresponding WhereTerm.
**
** The nEq parameter is passed the index of the index column subject to the
** range constraint. Or, equivalently, the number of equality constraints
** optimized by the proposed index scan. For example, assuming index p is
** on t1(a, b), and the SQL query is:
**
**   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
**
** then nEq should be passed the value 1 (as the range restricted column,
** b, is the second left-most column of the index). Or, if the query is:
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**
** then nEq should be passed 0.
**
** The returned value is an integer divisor to reduce the estimated
** search space.  A return value of 1 means that range constraints are
** no help at all.  A return value of 2 means range constraints are
** expected to reduce the search space by half.  And so forth...

**
** In the absence of sqlite_stat3 ANALYZE data, each range inequality
** reduces the search space by a factor of 4.  Hence a single constraint (x>?)
** results in a return of 4 and a range constraint (x>? AND x<?) results
** in a return of 16.
*/
static int whereRangeScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index containing the range-compared column; "x" */
  int nEq,             /* index into p->aCol[] of the range-compared column */
  WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
  WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
  double *pRangeDiv   /* OUT: Reduce search space by this divisor */
){
  int rc = SQLITE_OK;


#ifdef SQLITE_ENABLE_STAT3



  if( nEq==0 && p->nSample ){







    sqlite3_value *pRangeVal;

















    tRowcnt iLower = 0;
    tRowcnt iUpper = p->aiRowEst[0];
    tRowcnt a[2];



    u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;














    if( pLower ){

      Expr *pExpr = pLower->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 );

      if( rc==SQLITE_OK

       && whereKeyStats(pParse, p, pRangeVal, 0, a)==SQLITE_OK
      ){
        iLower = a[0];
        if( (pLower->eOperator & WO_GT)!=0 ) iLower += a[1];

      }
      sqlite3ValueFree(pRangeVal);
    }


    if( rc==SQLITE_OK && pUpper ){

      Expr *pExpr = pUpper->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 );

      if( rc==SQLITE_OK

       && whereKeyStats(pParse, p, pRangeVal, 1, a)==SQLITE_OK
      ){
        iUpper = a[0];
        if( (pUpper->eOperator & WO_LE)!=0 ) iUpper += a[1];

      }
      sqlite3ValueFree(pRangeVal);
    }


    if( rc==SQLITE_OK ){

      if( iUpper<=iLower ){
        *pRangeDiv = (double)p->aiRowEst[0];

      }else{
        *pRangeDiv = (double)p->aiRowEst[0]/(double)(iUpper - iLower);

      }




      WHERETRACE(("range scan regions: %u..%u  div=%g\n",
                  (u32)iLower, (u32)iUpper, *pRangeDiv));
      return SQLITE_OK;
    }
  }
#else
  UNUSED_PARAMETER(pParse);
  UNUSED_PARAMETER(p);
  UNUSED_PARAMETER(nEq);
#endif
  assert( pLower || pUpper );

  *pRangeDiv = (double)1;
  if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *pRangeDiv *= (double)4;


  if( pUpper ) *pRangeDiv *= (double)4;




  return rc;
}

#ifdef SQLITE_ENABLE_STAT3
/*
** Estimate the number of rows that will be returned based on
** an equality constraint x=VALUE and where that VALUE occurs in
** the histogram data.  This only works when x is the left-most
** column of an index and sqlite_stat3 histogram data is available
** for that index.  When pExpr==NULL that means the constraint is
** "x IS NULL" instead of "x=VALUE".
**
** Write the estimated row count into *pnRow and return SQLITE_OK. 
** If unable to make an estimate, leave *pnRow unchanged and return
** non-zero.
**
** This routine can fail if it is unable to load a collating sequence
** required for string comparison, or if unable to allocate memory
** for a UTF conversion required for comparison.  The error is stored
** in the pParse structure.
*/
static int whereEqualScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index whose left-most column is pTerm */
  Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
  double *pnRow        /* Write the revised row estimate here */
){
  sqlite3_value *pRhs = 0;  /* VALUE on right-hand side of pTerm */


  u8 aff;                   /* Column affinity */
  int rc;                   /* Subfunction return code */
  tRowcnt a[2];             /* Statistics */




  assert( p->aSample!=0 );
  assert( p->nSample>0 );

  aff = p->pTable->aCol[p->aiColumn[0]].affinity;


  if( pExpr ){


    rc = valueFromExpr(pParse, pExpr, aff, &pRhs);


    if( rc ) goto whereEqualScanEst_cancel;
  }else{
    pRhs = sqlite3ValueNew(pParse->db);

  }





  if( pRhs==0 ) return SQLITE_NOTFOUND;


  rc = whereKeyStats(pParse, p, pRhs, 0, a);
  if( rc==SQLITE_OK ){
    WHERETRACE(("equality scan regions: %d\n", (int)a[1]));
    *pnRow = a[1];
  }
whereEqualScanEst_cancel:
  sqlite3ValueFree(pRhs);
  return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT3) */

#ifdef SQLITE_ENABLE_STAT3
/*
** Estimate the number of rows that will be returned based on
** an IN constraint where the right-hand side of the IN operator
** is a list of values.  Example:
**
**        WHERE x IN (1,2,3,4)
**
** Write the estimated row count into *pnRow and return SQLITE_OK. 
** If unable to make an estimate, leave *pnRow unchanged and return
** non-zero.
**
** This routine can fail if it is unable to load a collating sequence
** required for string comparison, or if unable to allocate memory
** for a UTF conversion required for comparison.  The error is stored
** in the pParse structure.
*/
static int whereInScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index whose left-most column is pTerm */
  ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
  double *pnRow        /* Write the revised row estimate here */
){


  int rc = SQLITE_OK;         /* Subfunction return code */
  double nEst;                /* Number of rows for a single term */
  double nRowEst = (double)0; /* New estimate of the number of rows */
  int i;                      /* Loop counter */

  assert( p->aSample!=0 );
  for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
    nEst = p->aiRowEst[0];
    rc = whereEqualScanEst(pParse, p, pList->a[i].pExpr, &nEst);
    nRowEst += nEst;

  }

  if( rc==SQLITE_OK ){
    if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
    *pnRow = nRowEst;
    WHERETRACE(("IN row estimate: est=%g\n", nRowEst));
  }

  return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT3) */

/*
** Check to see if column iCol of the table with cursor iTab will appear
** in sorted order according to the current query plan.
**
** Return values:
**
**    0   iCol is not ordered
**    1   iCol has only a single value
**    2   iCol is in ASC order
**    3   iCol is in DESC order
*/
static int isOrderedColumn(
  WhereBestIdx *p,
  int iTab,
  int iCol
){
  int i, j;
  WhereLevel *pLevel = &p->aLevel[p->i-1];
  Index *pIdx;
  u8 sortOrder;
  for(i=p->i-1; i>=0; i--, pLevel--){
    if( pLevel->iTabCur!=iTab ) continue;
    if( (pLevel->plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){
      return 1;
    }
    assert( (pLevel->plan.wsFlags & WHERE_ORDERED)!=0 );
    if( (pIdx = pLevel->plan.u.pIdx)!=0 ){
      if( iCol<0 ){
        sortOrder = 0;
        testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 );
      }else{
        int n = pIdx->nColumn;
        for(j=0; j<n; j++){
          if( iCol==pIdx->aiColumn[j] ) break;
        }
        if( j>=n ) return 0;
        sortOrder = pIdx->aSortOrder[j];
        testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 );
      }
    }else{
      if( iCol!=(-1) ) return 0;
      sortOrder = 0;
      testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 );
    }
    if( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ){
      assert( sortOrder==0 || sortOrder==1 );
      testcase( sortOrder==1 );
      sortOrder = 1 - sortOrder;
    }
    return sortOrder+2;
  }
  return 0;
}

/*
** This routine decides if pIdx can be used to satisfy the ORDER BY
** clause, either in whole or in part.  The return value is the 
** cumulative number of terms in the ORDER BY clause that are satisfied
** by the index pIdx and other indices in outer loops.
**
** The table being queried has a cursor number of "base".  pIdx is the
** index that is postulated for use to access the table.
**
** The *pbRev value is set to 0 order 1 depending on whether or not
** pIdx should be run in the forward order or in reverse order.
*/
static int isSortingIndex(
  WhereBestIdx *p,    /* Best index search context */
  Index *pIdx,        /* The index we are testing */
  int base,           /* Cursor number for the table to be sorted */
  int *pbRev,         /* Set to 1 for reverse-order scan of pIdx */
  int *pbObUnique     /* ORDER BY column values will different in every row */
){
  int i;                        /* Number of pIdx terms used */
  int j;                        /* Number of ORDER BY terms satisfied */
  int sortOrder = 2;            /* 0: forward.  1: backward.  2: unknown */
  int nTerm;                    /* Number of ORDER BY terms */
  struct ExprList_item *pOBItem;/* A term of the ORDER BY clause */
  Table *pTab = pIdx->pTable;   /* Table that owns index pIdx */
  ExprList *pOrderBy;           /* The ORDER BY clause */
  Parse *pParse = p->pParse;    /* Parser context */
  sqlite3 *db = pParse->db;     /* Database connection */
  int nPriorSat;                /* ORDER BY terms satisfied by outer loops */
  int seenRowid = 0;            /* True if an ORDER BY rowid term is seen */
  int uniqueNotNull;            /* pIdx is UNIQUE with all terms are NOT NULL */
  int outerObUnique;            /* Outer loops generate different values in
                                ** every row for the ORDER BY columns */

  if( p->i==0 ){
    nPriorSat = 0;
    outerObUnique = 1;
  }else{
    u32 wsFlags = p->aLevel[p->i-1].plan.wsFlags;
    nPriorSat = p->aLevel[p->i-1].plan.nOBSat;
    if( (wsFlags & WHERE_ORDERED)==0 ){
      /* This loop cannot be ordered unless the next outer loop is
      ** also ordered */
      return nPriorSat;
    }
    if( OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ){
      /* Only look at the outer-most loop if the OrderByIdxJoin
      ** optimization is disabled */
      return nPriorSat;
    }
    testcase( wsFlags & WHERE_OB_UNIQUE );
    testcase( wsFlags & WHERE_ALL_UNIQUE );
    outerObUnique = (wsFlags & (WHERE_OB_UNIQUE|WHERE_ALL_UNIQUE))!=0;
  }
  pOrderBy = p->pOrderBy;
  assert( pOrderBy!=0 );
  if( pIdx->bUnordered ){
    /* Hash indices (indicated by the "unordered" tag on sqlite_stat1) cannot
    ** be used for sorting */
    return nPriorSat;
  }
  nTerm = pOrderBy->nExpr;
  uniqueNotNull = pIdx->onError!=OE_None;
  assert( nTerm>0 );

  /* Argument pIdx must either point to a 'real' named index structure, 
  ** or an index structure allocated on the stack by bestBtreeIndex() to
  ** represent the rowid index that is part of every table.  */
  assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );

  /* Match terms of the ORDER BY clause against columns of
  ** the index.
  **
  ** Note that indices have pIdx->nColumn regular columns plus
  ** one additional column containing the rowid.  The rowid column
  ** of the index is also allowed to match against the ORDER BY
  ** clause.
  */
  j = nPriorSat;
  for(i=0,pOBItem=&pOrderBy->a[j]; j<nTerm && i<=pIdx->nColumn; i++){
    Expr *pOBExpr;          /* The expression of the ORDER BY pOBItem */
    CollSeq *pColl;         /* The collating sequence of pOBExpr */
    int termSortOrder;      /* Sort order for this term */
    int iColumn;            /* The i-th column of the index.  -1 for rowid */
    int iSortOrder;         /* 1 for DESC, 0 for ASC on the i-th index term */
    int isEq;               /* Subject to an == or IS NULL constraint */
    int isMatch;            /* ORDER BY term matches the index term */
    const char *zColl;      /* Name of collating sequence for i-th index term */
    WhereTerm *pConstraint; /* A constraint in the WHERE clause */

    /* If the next term of the ORDER BY clause refers to anything other than
    ** a column in the "base" table, then this index will not be of any
    ** further use in handling the ORDER BY. */
    pOBExpr = sqlite3ExprSkipCollate(pOBItem->pExpr);
    if( pOBExpr->op!=TK_COLUMN || pOBExpr->iTable!=base ){
      break;
    }

    /* Find column number and collating sequence for the next entry
    ** in the index */
    if( pIdx->zName && i<pIdx->nColumn ){
      iColumn = pIdx->aiColumn[i];
      if( iColumn==pIdx->pTable->iPKey ){
        iColumn = -1;
      }
      iSortOrder = pIdx->aSortOrder[i];
      zColl = pIdx->azColl[i];
      assert( zColl!=0 );
    }else{
      iColumn = -1;
      iSortOrder = 0;
      zColl = 0;
    }

    /* Check to see if the column number and collating sequence of the
    ** index match the column number and collating sequence of the ORDER BY
    ** clause entry.  Set isMatch to 1 if they both match. */
    if( pOBExpr->iColumn==iColumn ){
      if( zColl ){
        pColl = sqlite3ExprCollSeq(pParse, pOBItem->pExpr);
        if( !pColl ) pColl = db->pDfltColl;
        isMatch = sqlite3StrICmp(pColl->zName, zColl)==0;
      }else{
        isMatch = 1;
      }
    }else{
      isMatch = 0;
    }

    /* termSortOrder is 0 or 1 for whether or not the access loop should
    ** run forward or backwards (respectively) in order to satisfy this 
    ** term of the ORDER BY clause. */
    assert( pOBItem->sortOrder==0 || pOBItem->sortOrder==1 );
    assert( iSortOrder==0 || iSortOrder==1 );
    termSortOrder = iSortOrder ^ pOBItem->sortOrder;

    /* If X is the column in the index and ORDER BY clause, check to see
    ** if there are any X= or X IS NULL constraints in the WHERE clause. */
    pConstraint = findTerm(p->pWC, base, iColumn, p->notReady,
                           WO_EQ|WO_ISNULL|WO_IN, pIdx);
    if( pConstraint==0 ){
      isEq = 0;
    }else if( (pConstraint->eOperator & WO_IN)!=0 ){
      isEq = 0;
    }else if( (pConstraint->eOperator & WO_ISNULL)!=0 ){
      uniqueNotNull = 0;
      isEq = 1;  /* "X IS NULL" means X has only a single value */
    }else if( pConstraint->prereqRight==0 ){
      isEq = 1;  /* Constraint "X=constant" means X has only a single value */
    }else{
      Expr *pRight = pConstraint->pExpr->pRight;
      if( pRight->op==TK_COLUMN ){
        WHERETRACE(("       .. isOrderedColumn(tab=%d,col=%d)",
                    pRight->iTable, pRight->iColumn));
        isEq = isOrderedColumn(p, pRight->iTable, pRight->iColumn);
        WHERETRACE((" -> isEq=%d\n", isEq));

        /* If the constraint is of the form X=Y where Y is an ordered value
        ** in an outer loop, then make sure the sort order of Y matches the
        ** sort order required for X. */
        if( isMatch && isEq>=2 && isEq!=pOBItem->sortOrder+2 ){
          testcase( isEq==2 );
          testcase( isEq==3 );
          break;
        }
      }else{
        isEq = 0;  /* "X=expr" places no ordering constraints on X */
      }
    }
    if( !isMatch ){
      if( isEq==0 ){
        break;
      }else{
        continue;
      }
    }else if( isEq!=1 ){
      if( sortOrder==2 ){
        sortOrder = termSortOrder;
      }else if( termSortOrder!=sortOrder ){
        break;
      }
    }
    j++;
    pOBItem++;
    if( iColumn<0 ){
      seenRowid = 1;
      break;
    }else if( pTab->aCol[iColumn].notNull==0 && isEq!=1 ){
      testcase( isEq==0 );
      testcase( isEq==2 );
      testcase( isEq==3 );
      uniqueNotNull = 0;
    }
  }
  if( seenRowid ){
    uniqueNotNull = 1;
  }else if( uniqueNotNull==0 || i<pIdx->nColumn ){
    uniqueNotNull = 0;
  }

  /* If we have not found at least one ORDER BY term that matches the
  ** index, then show no progress. */
  if( pOBItem==&pOrderBy->a[nPriorSat] ) return nPriorSat;

  /* Either the outer queries must generate rows where there are no two
  ** rows with the same values in all ORDER BY columns, or else this
  ** loop must generate just a single row of output.  Example:  Suppose
  ** the outer loops generate A=1 and A=1, and this loop generates B=3
  ** and B=4.  Then without the following test, ORDER BY A,B would 
  ** generate the wrong order output: 1,3 1,4 1,3 1,4
  */
  if( outerObUnique==0 && uniqueNotNull==0 ) return nPriorSat;
  *pbObUnique = uniqueNotNull;

  /* Return the necessary scan order back to the caller */
  *pbRev = sortOrder & 1;

  /* If there was an "ORDER BY rowid" term that matched, or it is only
  ** possible for a single row from this table to match, then skip over
  ** any additional ORDER BY terms dealing with this table.
  */
  if( uniqueNotNull ){
    /* Advance j over additional ORDER BY terms associated with base */
    WhereMaskSet *pMS = p->pWC->pMaskSet;
    Bitmask m = ~getMask(pMS, base);
    while( j<nTerm && (exprTableUsage(pMS, pOrderBy->a[j].pExpr)&m)==0 ){
      j++;
    }
  }
  return j;
}

/*
** Find the best query plan for accessing a particular table.  Write the
** best query plan and its cost into the p->cost.
**
** The lowest cost plan wins.  The cost is an estimate of the amount of
** CPU and disk I/O needed to process the requested result.
** Factors that influence cost include:
**
**    *  The estimated number of rows that will be retrieved.  (The
**       fewer the better.)
**
**    *  Whether or not sorting must occur.
**
**    *  Whether or not there must be separate lookups in the
**       index and in the main table.
**
** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
** the SQL statement, then this function only considers plans using the 
** named index. If no such plan is found, then the returned cost is
** SQLITE_BIG_DBL. If a plan is found that uses the named index, 
** then the cost is calculated in the usual way.
**
** If a NOT INDEXED clause was attached to the table 
** in the SELECT statement, then no indexes are considered. However, the 
** selected plan may still take advantage of the built-in rowid primary key
** index.
*/
static void bestBtreeIndex(WhereBestIdx *p){
  Parse *pParse = p->pParse;  /* The parsing context */
  WhereClause *pWC = p->pWC;  /* The WHERE clause */
  struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */
  int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
  Index *pProbe;              /* An index we are evaluating */
  Index *pIdx;                /* Copy of pProbe, or zero for IPK index */
  int eqTermMask;             /* Current mask of valid equality operators */
  int idxEqTermMask;          /* Index mask of valid equality operators */
  Index sPk;                  /* A fake index object for the primary key */
  tRowcnt aiRowEstPk[2];      /* The aiRowEst[] value for the sPk index */
  int aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
  int wsFlagMask;             /* Allowed flags in p->cost.plan.wsFlag */
  int nPriorSat;              /* ORDER BY terms satisfied by outer loops */
  int nOrderBy;               /* Number of ORDER BY terms */
  char bSortInit;             /* Initializer for bSort in inner loop */
  char bDistInit;             /* Initializer for bDist in inner loop */


  /* Initialize the cost to a worst-case value */
  memset(&p->cost, 0, sizeof(p->cost));
  p->cost.rCost = SQLITE_BIG_DBL;

  /* If the pSrc table is the right table of a LEFT JOIN then we may not
  ** use an index to satisfy IS NULL constraints on that table.  This is
  ** because columns might end up being NULL if the table does not match -
  ** a circumstance which the index cannot help us discover.  Ticket #2177.
  */
  if( pSrc->jointype & JT_LEFT ){
    idxEqTermMask = WO_EQ|WO_IN;
  }else{
    idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
  }

  if( pSrc->pIndex ){
    /* An INDEXED BY clause specifies a particular index to use */
    pIdx = pProbe = pSrc->pIndex;
    wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
    eqTermMask = idxEqTermMask;
  }else{
    /* There is no INDEXED BY clause.  Create a fake Index object in local
    ** variable sPk to represent the rowid primary key index.  Make this
    ** fake index the first in a chain of Index objects with all of the real
    ** indices to follow */
    Index *pFirst;                  /* First of real indices on the table */
    memset(&sPk, 0, sizeof(Index));
    sPk.nColumn = 1;
    sPk.aiColumn = &aiColumnPk;
    sPk.aiRowEst = aiRowEstPk;
    sPk.onError = OE_Replace;
    sPk.pTable = pSrc->pTab;
    aiRowEstPk[0] = pSrc->pTab->nRowEst;
    aiRowEstPk[1] = 1;
    pFirst = pSrc->pTab->pIndex;
    if( pSrc->notIndexed==0 ){
      /* The real indices of the table are only considered if the
      ** NOT INDEXED qualifier is omitted from the FROM clause */
      sPk.pNext = pFirst;
    }
    pProbe = &sPk;
    wsFlagMask = ~(
        WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
    );
    eqTermMask = WO_EQ|WO_IN;
    pIdx = 0;
  }

  nOrderBy = p->pOrderBy ? p->pOrderBy->nExpr : 0;
  if( p->i ){
    nPriorSat = p->aLevel[p->i-1].plan.nOBSat;
    bSortInit = nPriorSat<nOrderBy;
    bDistInit = 0;
  }else{
    nPriorSat = 0;
    bSortInit = nOrderBy>0;
    bDistInit = p->pDistinct!=0;
  }

  /* Loop over all indices looking for the best one to use
  */
  for(; pProbe; pIdx=pProbe=pProbe->pNext){
    const tRowcnt * const aiRowEst = pProbe->aiRowEst;
    WhereCost pc;               /* Cost of using pProbe */
    double log10N = (double)1;  /* base-10 logarithm of nRow (inexact) */

    /* The following variables are populated based on the properties of
    ** index being evaluated. They are then used to determine the expected
    ** cost and number of rows returned.
    **
    **  pc.plan.nEq: 
    **    Number of equality terms that can be implemented using the index.
    **    In other words, the number of initial fields in the index that
    **    are used in == or IN or NOT NULL constraints of the WHERE clause.
    **
    **  nInMul:  
    **    The "in-multiplier". This is an estimate of how many seek operations 
    **    SQLite must perform on the index in question. For example, if the 
    **    WHERE clause is:
    **
    **      WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
    **
    **    SQLite must perform 9 lookups on an index on (a, b), so nInMul is 
    **    set to 9. Given the same schema and either of the following WHERE 
    **    clauses:
    **
    **      WHERE a =  1
    **      WHERE a >= 2
    **
    **    nInMul is set to 1.
    **
    **    If there exists a WHERE term of the form "x IN (SELECT ...)", then 
    **    the sub-select is assumed to return 25 rows for the purposes of 
    **    determining nInMul.
    **
    **  bInEst:  
    **    Set to true if there was at least one "x IN (SELECT ...)" term used 
    **    in determining the value of nInMul.  Note that the RHS of the
    **    IN operator must be a SELECT, not a value list, for this variable
    **    to be true.
    **
    **  rangeDiv:
    **    An estimate of a divisor by which to reduce the search space due
    **    to inequality constraints.  In the absence of sqlite_stat3 ANALYZE
    **    data, a single inequality reduces the search space to 1/4rd its
    **    original size (rangeDiv==4).  Two inequalities reduce the search
    **    space to 1/16th of its original size (rangeDiv==16).
    **
    **  bSort:   
    **    Boolean. True if there is an ORDER BY clause that will require an 
    **    external sort (i.e. scanning the index being evaluated will not 
    **    correctly order records).
    **
    **  bDist:
    **    Boolean. True if there is a DISTINCT clause that will require an 
    **    external btree.
    **
    **  bLookup: 
    **    Boolean. True if a table lookup is required for each index entry
    **    visited.  In other words, true if this is not a covering index.
    **    This is always false for the rowid primary key index of a table.
    **    For other indexes, it is true unless all the columns of the table
    **    used by the SELECT statement are present in the index (such an
    **    index is sometimes described as a covering index).
    **    For example, given the index on (a, b), the second of the following 
    **    two queries requires table b-tree lookups in order to find the value
    **    of column c, but the first does not because columns a and b are
    **    both available in the index.
    **
    **             SELECT a, b    FROM tbl WHERE a = 1;
    **             SELECT a, b, c FROM tbl WHERE a = 1;
    */
    int bInEst = 0;               /* True if "x IN (SELECT...)" seen */
    int nInMul = 1;               /* Number of distinct equalities to lookup */
    double rangeDiv = (double)1;  /* Estimated reduction in search space */
    int nBound = 0;               /* Number of range constraints seen */
    char bSort = bSortInit;       /* True if external sort required */
    char bDist = bDistInit;       /* True if index cannot help with DISTINCT */
    char bLookup = 0;             /* True if not a covering index */
    WhereTerm *pTerm;             /* A single term of the WHERE clause */
#ifdef SQLITE_ENABLE_STAT3
    WhereTerm *pFirstTerm = 0;    /* First term matching the index */
#endif

    WHERETRACE((
      "   %s(%s):\n",
      pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk")
    ));
    memset(&pc, 0, sizeof(pc));
    pc.plan.nOBSat = nPriorSat;

    /* Determine the values of pc.plan.nEq and nInMul */
    for(pc.plan.nEq=0; pc.plan.nEq<pProbe->nColumn; pc.plan.nEq++){
      int j = pProbe->aiColumn[pc.plan.nEq];
      pTerm = findTerm(pWC, iCur, j, p->notReady, eqTermMask, pIdx);
      if( pTerm==0 ) break;
      pc.plan.wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
      testcase( pTerm->pWC!=pWC );
      if( pTerm->eOperator & WO_IN ){
        Expr *pExpr = pTerm->pExpr;
        pc.plan.wsFlags |= WHERE_COLUMN_IN;
        if( ExprHasProperty(pExpr, EP_xIsSelect) ){
          /* "x IN (SELECT ...)":  Assume the SELECT returns 25 rows */
          nInMul *= 25;
          bInEst = 1;
        }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
          /* "x IN (value, value, ...)" */
          nInMul *= pExpr->x.pList->nExpr;
        }
      }else if( pTerm->eOperator & WO_ISNULL ){
        pc.plan.wsFlags |= WHERE_COLUMN_NULL;
      }
#ifdef SQLITE_ENABLE_STAT3
      if( pc.plan.nEq==0 && pProbe->aSample ) pFirstTerm = pTerm;
#endif
      pc.used |= pTerm->prereqRight;
    }
 
    /* If the index being considered is UNIQUE, and there is an equality 
    ** constraint for all columns in the index, then this search will find
    ** at most a single row. In this case set the WHERE_UNIQUE flag to 
    ** indicate this to the caller.
    **
    ** Otherwise, if the search may find more than one row, test to see if
    ** there is a range constraint on indexed column (pc.plan.nEq+1) that
    ** can be optimized using the index. 
    */
    if( pc.plan.nEq==pProbe->nColumn && pProbe->onError!=OE_None ){
      testcase( pc.plan.wsFlags & WHERE_COLUMN_IN );
      testcase( pc.plan.wsFlags & WHERE_COLUMN_NULL );
      if( (pc.plan.wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
        pc.plan.wsFlags |= WHERE_UNIQUE;
        if( p->i==0 || (p->aLevel[p->i-1].plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){
          pc.plan.wsFlags |= WHERE_ALL_UNIQUE;
        }
      }
    }else if( pProbe->bUnordered==0 ){
      int j;
      j = (pc.plan.nEq==pProbe->nColumn ? -1 : pProbe->aiColumn[pc.plan.nEq]);
      if( findTerm(pWC, iCur, j, p->notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
        WhereTerm *pTop, *pBtm;
        pTop = findTerm(pWC, iCur, j, p->notReady, WO_LT|WO_LE, pIdx);
        pBtm = findTerm(pWC, iCur, j, p->notReady, WO_GT|WO_GE, pIdx);
        whereRangeScanEst(pParse, pProbe, pc.plan.nEq, pBtm, pTop, &rangeDiv);
        if( pTop ){
          nBound = 1;
          pc.plan.wsFlags |= WHERE_TOP_LIMIT;
          pc.used |= pTop->prereqRight;
          testcase( pTop->pWC!=pWC );
        }
        if( pBtm ){
          nBound++;
          pc.plan.wsFlags |= WHERE_BTM_LIMIT;
          pc.used |= pBtm->prereqRight;
          testcase( pBtm->pWC!=pWC );
        }
        pc.plan.wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
      }
    }

    /* If there is an ORDER BY clause and the index being considered will
    ** naturally scan rows in the required order, set the appropriate flags
    ** in pc.plan.wsFlags. Otherwise, if there is an ORDER BY clause but
    ** the index will scan rows in a different order, set the bSort
    ** variable.  */
    if( bSort && (pSrc->jointype & JT_LEFT)==0 ){
      int bRev = 2;
      int bObUnique = 0;
      WHERETRACE(("      --> before isSortIndex: nPriorSat=%d\n",nPriorSat));
      pc.plan.nOBSat = isSortingIndex(p, pProbe, iCur, &bRev, &bObUnique);
      WHERETRACE(("      --> after  isSortIndex: bRev=%d bObU=%d nOBSat=%d\n",
                  bRev, bObUnique, pc.plan.nOBSat));
      if( nPriorSat<pc.plan.nOBSat || (pc.plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){
        pc.plan.wsFlags |= WHERE_ORDERED;
        if( bObUnique ) pc.plan.wsFlags |= WHERE_OB_UNIQUE;
      }
      if( nOrderBy==pc.plan.nOBSat ){
        bSort = 0;
        pc.plan.wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE;
      }
      if( bRev & 1 ) pc.plan.wsFlags |= WHERE_REVERSE;
    }

    /* If there is a DISTINCT qualifier and this index will scan rows in
    ** order of the DISTINCT expressions, clear bDist and set the appropriate
    ** flags in pc.plan.wsFlags. */
    if( bDist
     && isDistinctIndex(pParse, pWC, pProbe, iCur, p->pDistinct, pc.plan.nEq)
     && (pc.plan.wsFlags & WHERE_COLUMN_IN)==0
    ){
      bDist = 0;
      pc.plan.wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_DISTINCT;
    }

    /* If currently calculating the cost of using an index (not the IPK
    ** index), determine if all required column data may be obtained without 
    ** using the main table (i.e. if the index is a covering
    ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
    ** pc.plan.wsFlags. Otherwise, set the bLookup variable to true.  */
    if( pIdx ){
      Bitmask m = pSrc->colUsed;
      int j;
      for(j=0; j<pIdx->nColumn; j++){
        int x = pIdx->aiColumn[j];
        if( x<BMS-1 ){
          m &= ~(((Bitmask)1)<<x);
        }
      }
      if( m==0 ){
        pc.plan.wsFlags |= WHERE_IDX_ONLY;
      }else{
        bLookup = 1;
      }
    }

    /*
    ** Estimate the number of rows of output.  For an "x IN (SELECT...)"
    ** constraint, do not let the estimate exceed half the rows in the table.
    */
    pc.plan.nRow = (double)(aiRowEst[pc.plan.nEq] * nInMul);
    if( bInEst && pc.plan.nRow*2>aiRowEst[0] ){
      pc.plan.nRow = aiRowEst[0]/2;
      nInMul = (int)(pc.plan.nRow / aiRowEst[pc.plan.nEq]);
    }

#ifdef SQLITE_ENABLE_STAT3
    /* If the constraint is of the form x=VALUE or x IN (E1,E2,...)
    ** and we do not think that values of x are unique and if histogram
    ** data is available for column x, then it might be possible
    ** to get a better estimate on the number of rows based on
    ** VALUE and how common that value is according to the histogram.
    */
    if( pc.plan.nRow>(double)1 && pc.plan.nEq==1
     && pFirstTerm!=0 && aiRowEst[1]>1 ){
      assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 );
      if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
        testcase( pFirstTerm->eOperator & WO_EQ );
        testcase( pFirstTerm->eOperator & WO_EQUIV );
        testcase( pFirstTerm->eOperator & WO_ISNULL );
        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight,
                          &pc.plan.nRow);
      }else if( bInEst==0 ){
        assert( pFirstTerm->eOperator & WO_IN );
        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList,
                       &pc.plan.nRow);
      }
    }
#endif /* SQLITE_ENABLE_STAT3 */

    /* Adjust the number of output rows and downward to reflect rows
    ** that are excluded by range constraints.
    */
    pc.plan.nRow = pc.plan.nRow/rangeDiv;
    if( pc.plan.nRow<1 ) pc.plan.nRow = 1;

    /* Experiments run on real SQLite databases show that the time needed
    ** to do a binary search to locate a row in a table or index is roughly
    ** log10(N) times the time to move from one row to the next row within
    ** a table or index.  The actual times can vary, with the size of
    ** records being an important factor.  Both moves and searches are
    ** slower with larger records, presumably because fewer records fit
    ** on one page and hence more pages have to be fetched.
    **
    ** The ANALYZE command and the sqlite_stat1 and sqlite_stat3 tables do
    ** not give us data on the relative sizes of table and index records.
    ** So this computation assumes table records are about twice as big
    ** as index records
    */
    if( (pc.plan.wsFlags&~(WHERE_REVERSE|WHERE_ORDERED|WHERE_OB_UNIQUE))
                                                              ==WHERE_IDX_ONLY
     && (pWC->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
     && sqlite3GlobalConfig.bUseCis
     && OptimizationEnabled(pParse->db, SQLITE_CoverIdxScan)
    ){
      /* This index is not useful for indexing, but it is a covering index.
      ** A full-scan of the index might be a little faster than a full-scan
      ** of the table, so give this case a cost slightly less than a table
      ** scan. */
      pc.rCost = aiRowEst[0]*3 + pProbe->nColumn;
      pc.plan.wsFlags |= WHERE_COVER_SCAN|WHERE_COLUMN_RANGE;
    }else if( (pc.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
      /* The cost of a full table scan is a number of move operations equal
      ** to the number of rows in the table.
      **
      ** We add an additional 4x penalty to full table scans.  This causes
      ** the cost function to err on the side of choosing an index over
      ** choosing a full scan.  This 4x full-scan penalty is an arguable
      ** decision and one which we expect to revisit in the future.  But
      ** it seems to be working well enough at the moment.
      */
      pc.rCost = aiRowEst[0]*4;
      pc.plan.wsFlags &= ~WHERE_IDX_ONLY;
      if( pIdx ){
        pc.plan.wsFlags &= ~WHERE_ORDERED;
        pc.plan.nOBSat = nPriorSat;
      }
    }else{
      log10N = estLog(aiRowEst[0]);
      pc.rCost = pc.plan.nRow;
      if( pIdx ){
        if( bLookup ){
          /* For an index lookup followed by a table lookup:
          **    nInMul index searches to find the start of each index range
          **  + nRow steps through the index
          **  + nRow table searches to lookup the table entry using the rowid
          */
          pc.rCost += (nInMul + pc.plan.nRow)*log10N;
        }else{
          /* For a covering index:
          **     nInMul index searches to find the initial entry 
          **   + nRow steps through the index
          */
          pc.rCost += nInMul*log10N;
        }
      }else{
        /* For a rowid primary key lookup:
        **    nInMult table searches to find the initial entry for each range
        **  + nRow steps through the table
        */
        pc.rCost += nInMul*log10N;
      }
    }

    /* Add in the estimated cost of sorting the result.  Actual experimental
    ** measurements of sorting performance in SQLite show that sorting time
    ** adds C*N*log10(N) to the cost, where N is the number of rows to be 
    ** sorted and C is a factor between 1.95 and 4.3.  We will split the
    ** difference and select C of 3.0.
    */
    if( bSort ){
      double m = estLog(pc.plan.nRow*(nOrderBy - pc.plan.nOBSat)/nOrderBy);
      m *= (double)(pc.plan.nOBSat ? 2 : 3);
      pc.rCost += pc.plan.nRow*m;
    }
    if( bDist ){
      pc.rCost += pc.plan.nRow*estLog(pc.plan.nRow)*3;
    }

    /**** Cost of using this index has now been computed ****/

    /* If there are additional constraints on this table that cannot
    ** be used with the current index, but which might lower the number
    ** of output rows, adjust the nRow value accordingly.  This only 
    ** matters if the current index is the least costly, so do not bother
    ** with this step if we already know this index will not be chosen.
    ** Also, never reduce the output row count below 2 using this step.
    **
    ** It is critical that the notValid mask be used here instead of
    ** the notReady mask.  When computing an "optimal" index, the notReady
    ** mask will only have one bit set - the bit for the current table.
    ** The notValid mask, on the other hand, always has all bits set for
    ** tables that are not in outer loops.  If notReady is used here instead
    ** of notValid, then a optimal index that depends on inner joins loops
    ** might be selected even when there exists an optimal index that has
    ** no such dependency.
    */
    if( pc.plan.nRow>2 && pc.rCost<=p->cost.rCost ){
      int k;                       /* Loop counter */
      int nSkipEq = pc.plan.nEq;   /* Number of == constraints to skip */
      int nSkipRange = nBound;     /* Number of < constraints to skip */
      Bitmask thisTab;             /* Bitmap for pSrc */

      thisTab = getMask(pWC->pMaskSet, iCur);
      for(pTerm=pWC->a, k=pWC->nTerm; pc.plan.nRow>2 && k; k--, pTerm++){
        if( pTerm->wtFlags & TERM_VIRTUAL ) continue;
        if( (pTerm->prereqAll & p->notValid)!=thisTab ) continue;
        if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){
          if( nSkipEq ){
            /* Ignore the first pc.plan.nEq equality matches since the index
            ** has already accounted for these */
            nSkipEq--;
          }else{
            /* Assume each additional equality match reduces the result
            ** set size by a factor of 10 */
            pc.plan.nRow /= 10;
          }
        }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){
          if( nSkipRange ){
            /* Ignore the first nSkipRange range constraints since the index
            ** has already accounted for these */
            nSkipRange--;
          }else{
            /* Assume each additional range constraint reduces the result
            ** set size by a factor of 3.  Indexed range constraints reduce
            ** the search space by a larger factor: 4.  We make indexed range
            ** more selective intentionally because of the subjective 
            ** observation that indexed range constraints really are more
            ** selective in practice, on average. */
            pc.plan.nRow /= 3;
          }
        }else if( (pTerm->eOperator & WO_NOOP)==0 ){
          /* Any other expression lowers the output row count by half */
          pc.plan.nRow /= 2;
        }
      }
      if( pc.plan.nRow<2 ) pc.plan.nRow = 2;
    }


    WHERETRACE((
      "      nEq=%d nInMul=%d rangeDiv=%d bSort=%d bLookup=%d wsFlags=0x%08x\n"
      "      notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f\n"
      "      used=0x%llx nOBSat=%d\n",
      pc.plan.nEq, nInMul, (int)rangeDiv, bSort, bLookup, pc.plan.wsFlags,
      p->notReady, log10N, pc.plan.nRow, pc.rCost, pc.used,
      pc.plan.nOBSat
    ));

    /* If this index is the best we have seen so far, then record this
    ** index and its cost in the p->cost structure.
    */
    if( (!pIdx || pc.plan.wsFlags) && compareCost(&pc, &p->cost) ){
      p->cost = pc;
      p->cost.plan.wsFlags &= wsFlagMask;
      p->cost.plan.u.pIdx = pIdx;
    }

    /* If there was an INDEXED BY clause, then only that one index is
    ** considered. */
    if( pSrc->pIndex ) break;

    /* Reset masks for the next index in the loop */
    wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
    eqTermMask = idxEqTermMask;
  }

  /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
  ** is set, then reverse the order that the index will be scanned
  ** in. This is used for application testing, to help find cases
  ** where application behavior depends on the (undefined) order that
  ** SQLite outputs rows in in the absence of an ORDER BY clause.  */
  if( !p->pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
    p->cost.plan.wsFlags |= WHERE_REVERSE;
  }

  assert( p->pOrderBy || (p->cost.plan.wsFlags&WHERE_ORDERED)==0 );
  assert( p->cost.plan.u.pIdx==0 || (p->cost.plan.wsFlags&WHERE_ROWID_EQ)==0 );
  assert( pSrc->pIndex==0 
       || p->cost.plan.u.pIdx==0 
       || p->cost.plan.u.pIdx==pSrc->pIndex 
  );

  WHERETRACE(("   best index is %s cost=%.1f\n",
         p->cost.plan.u.pIdx ? p->cost.plan.u.pIdx->zName : "ipk",
         p->cost.rCost));
  
  bestOrClauseIndex(p);
  bestAutomaticIndex(p);
  p->cost.plan.wsFlags |= eqTermMask;
}

/*
** Find the query plan for accessing table pSrc->pTab. Write the
** best query plan and its cost into the WhereCost object supplied 
** as the last parameter. This function may calculate the cost of
** both real and virtual table scans.
**
** This function does not take ORDER BY or DISTINCT into account.  Nor
** does it remember the virtual table query plan.  All it does is compute
** the cost while determining if an OR optimization is applicable.  The
** details will be reconsidered later if the optimization is found to be
** applicable.
*/
static void bestIndex(WhereBestIdx *p){
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( IsVirtual(p->pSrc->pTab) ){
    sqlite3_index_info *pIdxInfo = 0;
    p->ppIdxInfo = &pIdxInfo;
    bestVirtualIndex(p);
    assert( pIdxInfo!=0 || p->pParse->db->mallocFailed );
    if( pIdxInfo && pIdxInfo->needToFreeIdxStr ){
      sqlite3_free(pIdxInfo->idxStr);
    }
    sqlite3DbFree(p->pParse->db, pIdxInfo);
  }else
#endif
  {
    bestBtreeIndex(p);
  }
}

/*
** Disable a term in the WHERE clause.  Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
**
** Consider the term t2.z='ok' in the following queries:
**
**   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
**   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
**   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
**
** The t2.z='ok' is disabled in the in (2) because it originates
** in the ON clause.  The term is disabled in (3) because it is not part
** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
**
** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are
** completely satisfied by indices.
**
** Disabling a term causes that term to not be tested in the inner loop
** of the join.  Disabling is an optimization.  When terms are satisfied
** by indices, we disable them to prevent redundant tests in the inner
** loop.  We would get the correct results if nothing were ever disabled,
** but joins might run a little slower.  The trick is to disable as much
** as we can without disabling too much.  If we disabled in (1), we'd get
** the wrong answer.  See ticket #813.
*/
static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
  if( pTerm
      && (pTerm->wtFlags & TERM_CODED)==0
      && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))

  ){
    pTerm->wtFlags |= TERM_CODED;
    if( pTerm->iParent>=0 ){
      WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
      if( (--pOther->nChild)==0 ){
        disableTerm(pLevel, pOther);
      }







|

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|









|


|



<
|
|
|
>
|
|

|
>
>

<
<
|
<
|
<
<
|
<
|
<
<
|
|
<
<
|
<
<
|
<
|
>
|
<
|
<
<
<
<
<
<
>
>
|
<
<
|
<
<
<
<
<
<
<
<
<
|
<
<
<
<
|
>
|
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
|
|
<
<
<
<
<
<
|
<
|
|
|
>
|
<
|
<
<
<
|
<
<
<
<
<
<
<
<
<
<



|

|
<
|
|




|

|
|

|












<

|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
















|
|
|
|



|
|



|

|
|
|
|
>
|
|
|
|
|



<
|


|


>

|
>
>

|
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
>
>
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>

>

<

>
|
>
|
<
<
|
>

<

>
>
|
>

<

>
|
>
|
<
<
|
>

<

>
>

>
|
<
>

<
>

>
>
>
>
|
|





<
|


>
|
|
>
>
|
>
>
>
>



|



















|

|

|
>
>



>

>
>


>
|
>
>
|
>
>
|
>
>
|
<
|
>

>
>
>
>
>
|
>
>
|
<
|
|
|
<
<


|

|


















|

|

>
>
|
|
|
|




|

>

>



|

>


<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
















<
<
<












>







2397
2398
2399
2400
2401
2402
2403
2404
2405





























2406










































































































































































2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423

2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434


2435

2436


2437

2438


2439
2440


2441


2442

2443
2444
2445

2446






2447
2448
2449


2450









2451




2452
2453
2454






2455











2456
2457






2458

2459
2460
2461
2462
2463

2464



2465










2466
2467
2468
2469
2470
2471

2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495

2496
2497



































2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540

2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602

2603
2604
2605
2606
2607


2608
2609
2610

2611
2612
2613
2614
2615
2616

2617
2618
2619
2620
2621


2622
2623
2624

2625
2626
2627
2628
2629
2630

2631
2632

2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708

2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720

2721
2722
2723


2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773

































































































































































































































































































































































































































































































































































































































































2774








































































































































































































































2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790



2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
      sqlite3ErrorMsg(pParse, 
          "table %s: xBestIndex returned an invalid plan", pTab->zName);
    }
  }

  return pParse->nErr;
}
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */









































































































































































































#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:
**
**    aStat[0]      Est. number of rows less than pVal
**    aStat[1]      Est. number of rows equal to pVal
**
** Return SQLITE_OK on success.
*/
static void whereKeyStats(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  UnpackedRecord *pRec,       /* Vector of values to consider */
  int roundUp,                /* Round up if true.  Round down if false */
  tRowcnt *aStat              /* OUT: stats written here */
){

  IndexSample *aSample = pIdx->aSample;
  int iCol;                   /* Index of required stats in anEq[] etc. */
  int iMin = 0;               /* Smallest sample not yet tested */
  int i = pIdx->nSample;      /* Smallest sample larger than or equal to pRec */
  int iTest;                  /* Next sample to test */
  int res;                    /* Result of comparison operation */

  assert( pRec!=0 || pParse->db->mallocFailed );
  if( pRec==0 ) return;
  iCol = pRec->nField - 1;
  assert( pIdx->nSample>0 );


  assert( pRec->nField>0 && iCol<pIdx->nSampleCol );

  do{


    iTest = (iMin+i)/2;

    res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec);


    if( res<0 ){
      iMin = iTest+1;


    }else{


      i = iTest;

    }
  }while( res && iMin<i );


#ifdef SQLITE_DEBUG






  /* The following assert statements check that the binary search code
  ** above found the right answer. This block serves no purpose other
  ** than to invoke the asserts.  */


  if( res==0 ){









    /* If (res==0) is true, then sample $i must be equal to pRec */




    assert( i<pIdx->nSample );
    assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
         || pParse->db->mallocFailed );






  }else{











    /* Otherwise, pRec must be smaller than sample $i and larger than
    ** sample ($i-1).  */






    assert( i==pIdx->nSample 

         || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
         || pParse->db->mallocFailed );
    assert( i==0
         || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
         || pParse->db->mallocFailed );

  }



#endif /* ifdef SQLITE_DEBUG */











  /* At this point, aSample[i] is the first sample that is greater than
  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
  ** than pVal.  If aSample[i]==pVal, then res==0.
  */
  if( res==0 ){

    aStat[0] = aSample[i].anLt[iCol];
    aStat[1] = aSample[i].anEq[iCol];
  }else{
    tRowcnt iLower, iUpper, iGap;
    if( i==0 ){
      iLower = 0;
      iUpper = aSample[0].anLt[iCol];
    }else{
      iUpper = i>=pIdx->nSample ? pIdx->aiRowEst[0] : aSample[i].anLt[iCol];
      iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol];
    }
    aStat[1] = (pIdx->nColumn>iCol ? pIdx->aAvgEq[iCol] : 1);
    if( iLower>=iUpper ){
      iGap = 0;
    }else{
      iGap = iUpper - iLower;
    }
    if( roundUp ){
      iGap = (iGap*2)/3;
    }else{
      iGap = iGap/3;
    }
    aStat[0] = iLower + iGap;
  }

}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */




































/*
** This function is used to estimate the number of rows that will be visited
** by scanning an index for a range of values. The range may have an upper
** bound, a lower bound, or both. The WHERE clause terms that set the upper
** and lower bounds are represented by pLower and pUpper respectively. For
** example, assuming that index p is on t1(a):
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**                    |_____|   |_____|
**                       |         |
**                     pLower    pUpper
**
** If either of the upper or lower bound is not present, then NULL is passed in
** place of the corresponding WhereTerm.
**
** The value in (pBuilder->pNew->u.btree.nEq) is the index of the index
** column subject to the range constraint. Or, equivalently, the number of
** equality constraints optimized by the proposed index scan. For example,
** assuming index p is on t1(a, b), and the SQL query is:
**
**   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
**
** then nEq is set to 1 (as the range restricted column, b, is the second 
** left-most column of the index). Or, if the query is:
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**
** then nEq is set to 0.
**
** When this function is called, *pnOut is set to the whereCost() of the
** number of rows that the index scan is expected to visit without 
** considering the range constraints. If nEq is 0, this is the number of 
** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
** to account for the range contraints pLower and pUpper.
** 
** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
** used, each range inequality reduces the search space by a factor of 4. 
** Hence a pair of constraints (x>? AND x<?) reduces the expected number of
** rows visited by a factor of 16.
*/
static int whereRangeScanEst(
  Parse *pParse,       /* Parsing & code generating context */

  WhereLoopBuilder *pBuilder,
  WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
  WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
  WhereCost *pnOut     /* IN/OUT: Number of rows visited */
){
  int rc = SQLITE_OK;
  int nOut = (int)*pnOut;

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  Index *p = pBuilder->pNew->u.btree.pIndex;
  int nEq = pBuilder->pNew->u.btree.nEq;

  if( p->nSample>0
   && nEq==pBuilder->nRecValid
   && nEq<p->nSampleCol
   && OptimizationEnabled(pParse->db, SQLITE_Stat3) 
  ){
    UnpackedRecord *pRec = pBuilder->pRec;
    tRowcnt a[2];
    u8 aff;

    /* Variable iLower will be set to the estimate of the number of rows in 
    ** the index that are less than the lower bound of the range query. The
    ** lower bound being the concatenation of $P and $L, where $P is the
    ** key-prefix formed by the nEq values matched against the nEq left-most
    ** columns of the index, and $L is the value in pLower.
    **
    ** Or, if pLower is NULL or $L cannot be extracted from it (because it
    ** is not a simple variable or literal value), the lower bound of the
    ** range is $P. Due to a quirk in the way whereKeyStats() works, even
    ** if $L is available, whereKeyStats() is called for both ($P) and 
    ** ($P:$L) and the larger of the two returned values used.
    **
    ** Similarly, iUpper is to be set to the estimate of the number of rows
    ** less than the upper bound of the range query. Where the upper bound
    ** is either ($P) or ($P:$U). Again, even if $U is available, both values
    ** of iUpper are requested of whereKeyStats() and the smaller used.
    */
    tRowcnt iLower;
    tRowcnt iUpper;

    if( nEq==p->nColumn ){
      aff = SQLITE_AFF_INTEGER;
    }else{
      aff = p->pTable->aCol[p->aiColumn[nEq]].affinity;
    }
    /* Determine iLower and iUpper using ($P) only. */
    if( nEq==0 ){
      iLower = 0;
      iUpper = p->aiRowEst[0];
    }else{
      /* Note: this call could be optimized away - since the same values must 
      ** have been requested when testing key $P in whereEqualScanEst().  */
      whereKeyStats(pParse, p, pRec, 0, a);
      iLower = a[0];
      iUpper = a[0] + a[1];
    }

    /* If possible, improve on the iLower estimate using ($P:$L). */
    if( pLower ){
      int bOk;                    /* True if value is extracted from pExpr */
      Expr *pExpr = pLower->pExpr->pRight;

      assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 );
      rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
      if( rc==SQLITE_OK && bOk ){
        tRowcnt iNew;
        whereKeyStats(pParse, p, pRec, 0, a);


        iNew = a[0] + ((pLower->eOperator & WO_GT) ? a[1] : 0);
        if( iNew>iLower ) iLower = iNew;
      }

    }

    /* If possible, improve on the iUpper estimate using ($P:$U). */
    if( pUpper ){
      int bOk;                    /* True if value is extracted from pExpr */
      Expr *pExpr = pUpper->pExpr->pRight;

      assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
      rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
      if( rc==SQLITE_OK && bOk ){
        tRowcnt iNew;
        whereKeyStats(pParse, p, pRec, 1, a);


        iNew = a[0] + ((pUpper->eOperator & WO_LE) ? a[1] : 0);
        if( iNew<iUpper ) iUpper = iNew;
      }

    }

    pBuilder->pRec = pRec;
    if( rc==SQLITE_OK ){
      WhereCost nNew;
      if( iUpper>iLower ){

        nNew = whereCost(iUpper - iLower);
      }else{

        nNew = 10;        assert( 10==whereCost(2) );
      }
      if( nNew<nOut ){
        nOut = nNew;
      }
      *pnOut = (WhereCost)nOut;
      WHERETRACE(0x100, ("range scan regions: %u..%u  est=%d\n",
                         (u32)iLower, (u32)iUpper, nOut));
      return SQLITE_OK;
    }
  }
#else
  UNUSED_PARAMETER(pParse);

  UNUSED_PARAMETER(pBuilder);
#endif
  assert( pLower || pUpper );
  /* TUNING:  Each inequality constraint reduces the search space 4-fold.
  ** A BETWEEN operator, therefore, reduces the search space 16-fold */
  if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ){
    nOut -= 20;        assert( 20==whereCost(4) );
  }
  if( pUpper ){
    nOut -= 20;        assert( 20==whereCost(4) );
  }
  if( nOut<10 ) nOut = 10;
  *pnOut = (WhereCost)nOut;
  return rc;
}

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the number of rows that will be returned based on
** an equality constraint x=VALUE and where that VALUE occurs in
** the histogram data.  This only works when x is the left-most
** column of an index and sqlite_stat3 histogram data is available
** for that index.  When pExpr==NULL that means the constraint is
** "x IS NULL" instead of "x=VALUE".
**
** Write the estimated row count into *pnRow and return SQLITE_OK. 
** If unable to make an estimate, leave *pnRow unchanged and return
** non-zero.
**
** This routine can fail if it is unable to load a collating sequence
** required for string comparison, or if unable to allocate memory
** for a UTF conversion required for comparison.  The error is stored
** in the pParse structure.
*/
static int whereEqualScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  WhereLoopBuilder *pBuilder,
  Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
  tRowcnt *pnRow       /* Write the revised row estimate here */
){
  Index *p = pBuilder->pNew->u.btree.pIndex;
  int nEq = pBuilder->pNew->u.btree.nEq;
  UnpackedRecord *pRec = pBuilder->pRec;
  u8 aff;                   /* Column affinity */
  int rc;                   /* Subfunction return code */
  tRowcnt a[2];             /* Statistics */
  int bOk;

  assert( nEq>=1 );
  assert( nEq<=(p->nColumn+1) );
  assert( p->aSample!=0 );
  assert( p->nSample>0 );
  assert( pBuilder->nRecValid<nEq );

  /* If values are not available for all fields of the index to the left
  ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
  if( pBuilder->nRecValid<(nEq-1) ){
    return SQLITE_NOTFOUND;
  }

  /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
  ** below would return the same value.  */
  if( nEq>p->nColumn ){

    *pnRow = 1;
    return SQLITE_OK;
  }

  aff = p->pTable->aCol[p->aiColumn[nEq-1]].affinity;
  rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk);
  pBuilder->pRec = pRec;
  if( rc!=SQLITE_OK ) return rc;
  if( bOk==0 ) return SQLITE_NOTFOUND;
  pBuilder->nRecValid = nEq;

  whereKeyStats(pParse, p, pRec, 0, a);

  WHERETRACE(0x100,("equality scan regions: %d\n", (int)a[1]));
  *pnRow = a[1];
  


  return rc;
}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the number of rows that will be returned based on
** an IN constraint where the right-hand side of the IN operator
** is a list of values.  Example:
**
**        WHERE x IN (1,2,3,4)
**
** Write the estimated row count into *pnRow and return SQLITE_OK. 
** If unable to make an estimate, leave *pnRow unchanged and return
** non-zero.
**
** This routine can fail if it is unable to load a collating sequence
** required for string comparison, or if unable to allocate memory
** for a UTF conversion required for comparison.  The error is stored
** in the pParse structure.
*/
static int whereInScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  WhereLoopBuilder *pBuilder,
  ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
  tRowcnt *pnRow       /* Write the revised row estimate here */
){
  Index *p = pBuilder->pNew->u.btree.pIndex;
  int nRecValid = pBuilder->nRecValid;
  int rc = SQLITE_OK;     /* Subfunction return code */
  tRowcnt nEst;           /* Number of rows for a single term */
  tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
  int i;                  /* Loop counter */

  assert( p->aSample!=0 );
  for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
    nEst = p->aiRowEst[0];
    rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
    nRowEst += nEst;
    pBuilder->nRecValid = nRecValid;
  }

  if( rc==SQLITE_OK ){
    if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
    *pnRow = nRowEst;
    WHERETRACE(0x100,("IN row estimate: est=%g\n", nRowEst));
  }
  assert( pBuilder->nRecValid==nRecValid );
  return rc;
}

































































































































































































































































































































































































































































































































































































































































#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */









































































































































































































































/*
** Disable a term in the WHERE clause.  Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
**
** Consider the term t2.z='ok' in the following queries:
**
**   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
**   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
**   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
**
** The t2.z='ok' is disabled in the in (2) because it originates
** in the ON clause.  The term is disabled in (3) because it is not part
** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
**



** Disabling a term causes that term to not be tested in the inner loop
** of the join.  Disabling is an optimization.  When terms are satisfied
** by indices, we disable them to prevent redundant tests in the inner
** loop.  We would get the correct results if nothing were ever disabled,
** but joins might run a little slower.  The trick is to disable as much
** as we can without disabling too much.  If we disabled in (1), we'd get
** the wrong answer.  See ticket #813.
*/
static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
  if( pTerm
      && (pTerm->wtFlags & TERM_CODED)==0
      && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
      && (pLevel->notReady & pTerm->prereqAll)==0
  ){
    pTerm->wtFlags |= TERM_CODED;
    if( pTerm->iParent>=0 ){
      WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
      if( (--pOther->nChild)==0 ){
        disableTerm(pLevel, pOther);
      }
3809
3810
3811
3812
3813
3814
3815

3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835

3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853

3854
3855
3856
3857
3858
3859
3860
** this routine sets up a loop that will iterate over all values of X.
*/
static int codeEqualityTerm(
  Parse *pParse,      /* The parsing context */
  WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
  WhereLevel *pLevel, /* The level of the FROM clause we are working on */
  int iEq,            /* Index of the equality term within this level */

  int iTarget         /* Attempt to leave results in this register */
){
  Expr *pX = pTerm->pExpr;
  Vdbe *v = pParse->pVdbe;
  int iReg;                  /* Register holding results */

  assert( iTarget>0 );
  if( pX->op==TK_EQ ){
    iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
  }else if( pX->op==TK_ISNULL ){
    iReg = iTarget;
    sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
#ifndef SQLITE_OMIT_SUBQUERY
  }else{
    int eType;
    int iTab;
    struct InLoop *pIn;
    u8 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;

    if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 

      && pLevel->plan.u.pIdx->aSortOrder[iEq]
    ){
      testcase( iEq==0 );
      testcase( iEq==pLevel->plan.u.pIdx->nColumn-1 );
      testcase( iEq>0 && iEq+1<pLevel->plan.u.pIdx->nColumn );
      testcase( bRev );
      bRev = !bRev;
    }
    assert( pX->op==TK_IN );
    iReg = iTarget;
    eType = sqlite3FindInIndex(pParse, pX, 0);
    if( eType==IN_INDEX_INDEX_DESC ){
      testcase( bRev );
      bRev = !bRev;
    }
    iTab = pX->iTable;
    sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
    assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );

    if( pLevel->u.in.nIn==0 ){
      pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
    }
    pLevel->u.in.nIn++;
    pLevel->u.in.aInLoop =
       sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
                              sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);







>

















|

|
>
|


<
<












|
>







2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895


2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
** this routine sets up a loop that will iterate over all values of X.
*/
static int codeEqualityTerm(
  Parse *pParse,      /* The parsing context */
  WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
  WhereLevel *pLevel, /* The level of the FROM clause we are working on */
  int iEq,            /* Index of the equality term within this level */
  int bRev,           /* True for reverse-order IN operations */
  int iTarget         /* Attempt to leave results in this register */
){
  Expr *pX = pTerm->pExpr;
  Vdbe *v = pParse->pVdbe;
  int iReg;                  /* Register holding results */

  assert( iTarget>0 );
  if( pX->op==TK_EQ ){
    iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
  }else if( pX->op==TK_ISNULL ){
    iReg = iTarget;
    sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
#ifndef SQLITE_OMIT_SUBQUERY
  }else{
    int eType;
    int iTab;
    struct InLoop *pIn;
    WhereLoop *pLoop = pLevel->pWLoop;

    if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
      && pLoop->u.btree.pIndex!=0
      && pLoop->u.btree.pIndex->aSortOrder[iEq]
    ){
      testcase( iEq==0 );


      testcase( bRev );
      bRev = !bRev;
    }
    assert( pX->op==TK_IN );
    iReg = iTarget;
    eType = sqlite3FindInIndex(pParse, pX, 0);
    if( eType==IN_INDEX_INDEX_DESC ){
      testcase( bRev );
      bRev = !bRev;
    }
    iTab = pX->iTable;
    sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
    assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
    pLoop->wsFlags |= WHERE_IN_ABLE;
    if( pLevel->u.in.nIn==0 ){
      pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
    }
    pLevel->u.in.nIn++;
    pLevel->u.in.aInLoop =
       sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
                              sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932

3933
3934
3935
3936
3937
3938

3939

3940

3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
** no conversion should be attempted before using a t2.b value as part of
** a key to search the index. Hence the first byte in the returned affinity
** string in this example would be set to SQLITE_AFF_NONE.
*/
static int codeAllEqualityTerms(
  Parse *pParse,        /* Parsing context */
  WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
  WhereClause *pWC,     /* The WHERE clause */
  Bitmask notReady,     /* Which parts of FROM have not yet been coded */
  int nExtraReg,        /* Number of extra registers to allocate */
  char **pzAff          /* OUT: Set to point to affinity string */
){
  int nEq = pLevel->plan.nEq;   /* The number of == or IN constraints to code */
  Vdbe *v = pParse->pVdbe;      /* The vm under construction */
  Index *pIdx;                  /* The index being used for this loop */
  int iCur = pLevel->iTabCur;   /* The cursor of the table */
  WhereTerm *pTerm;             /* A single constraint term */

  int j;                        /* Loop counter */
  int regBase;                  /* Base register */
  int nReg;                     /* Number of registers to allocate */
  char *zAff;                   /* Affinity string to return */

  /* This module is only called on query plans that use an index. */

  assert( pLevel->plan.wsFlags & WHERE_INDEXED );

  pIdx = pLevel->plan.u.pIdx;


  /* Figure out how many memory cells we will need then allocate them.
  */
  regBase = pParse->nMem + 1;
  nReg = pLevel->plan.nEq + nExtraReg;
  pParse->nMem += nReg;

  zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
  if( !zAff ){
    pParse->db->mallocFailed = 1;
  }

  /* Evaluate the equality constraints
  */
  assert( pIdx->nColumn>=nEq );
  for(j=0; j<nEq; j++){
    int r1;
    int k = pIdx->aiColumn[j];
    pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
    if( pTerm==0 ) break;
    /* The following true for indices with redundant columns. 
    ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
    testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, regBase+j);
    if( r1!=regBase+j ){
      if( nReg==1 ){
        sqlite3ReleaseTempReg(pParse, regBase);
        regBase = r1;
      }else{
        sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
      }







|
<



|


<

>






>
|
>
|
>




|









|


<
|
|



|
|







2972
2973
2974
2975
2976
2977
2978
2979

2980
2981
2982
2983
2984
2985

2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015

3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
** no conversion should be attempted before using a t2.b value as part of
** a key to search the index. Hence the first byte in the returned affinity
** string in this example would be set to SQLITE_AFF_NONE.
*/
static int codeAllEqualityTerms(
  Parse *pParse,        /* Parsing context */
  WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
  int bRev,             /* Reverse the order of IN operators */

  int nExtraReg,        /* Number of extra registers to allocate */
  char **pzAff          /* OUT: Set to point to affinity string */
){
  int nEq;                      /* The number of == or IN constraints to code */
  Vdbe *v = pParse->pVdbe;      /* The vm under construction */
  Index *pIdx;                  /* The index being used for this loop */

  WhereTerm *pTerm;             /* A single constraint term */
  WhereLoop *pLoop;             /* The WhereLoop object */
  int j;                        /* Loop counter */
  int regBase;                  /* Base register */
  int nReg;                     /* Number of registers to allocate */
  char *zAff;                   /* Affinity string to return */

  /* This module is only called on query plans that use an index. */
  pLoop = pLevel->pWLoop;
  assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
  nEq = pLoop->u.btree.nEq;
  pIdx = pLoop->u.btree.pIndex;
  assert( pIdx!=0 );

  /* Figure out how many memory cells we will need then allocate them.
  */
  regBase = pParse->nMem + 1;
  nReg = pLoop->u.btree.nEq + nExtraReg;
  pParse->nMem += nReg;

  zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
  if( !zAff ){
    pParse->db->mallocFailed = 1;
  }

  /* Evaluate the equality constraints
  */
  assert( zAff==0 || (int)strlen(zAff)>=nEq );
  for(j=0; j<nEq; j++){
    int r1;

    pTerm = pLoop->aLTerm[j];
    assert( pTerm!=0 );
    /* The following true for indices with redundant columns. 
    ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
    testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL );
    r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
    if( r1!=regBase+j ){
      if( nReg==1 ){
        sqlite3ReleaseTempReg(pParse, regBase);
        regBase = r1;
      }else{
        sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
      }
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048

4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
**
**   "a=? AND b>?"
**
** The returned pointer points to memory obtained from sqlite3DbMalloc().
** It is the responsibility of the caller to free the buffer when it is
** no longer required.
*/
static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){
  WherePlan *pPlan = &pLevel->plan;
  Index *pIndex = pPlan->u.pIdx;
  int nEq = pPlan->nEq;
  int i, j;
  Column *aCol = pTab->aCol;
  int *aiColumn = pIndex->aiColumn;
  StrAccum txt;

  if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
    return 0;
  }
  sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
  txt.db = db;
  sqlite3StrAccumAppend(&txt, " (", 2);
  for(i=0; i<nEq; i++){

    explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "=");
  }

  j = i;
  if( pPlan->wsFlags&WHERE_BTM_LIMIT ){
    char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
    explainAppendTerm(&txt, i++, z, ">");
  }
  if( pPlan->wsFlags&WHERE_TOP_LIMIT ){
    char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
    explainAppendTerm(&txt, i, z, "<");
  }
  sqlite3StrAccumAppend(&txt, ")", 1);
  return sqlite3StrAccumFinish(&txt);
}








|
<
|
|





|






>
|



|



|







3083
3084
3085
3086
3087
3088
3089
3090

3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
**
**   "a=? AND b>?"
**
** The returned pointer points to memory obtained from sqlite3DbMalloc().
** It is the responsibility of the caller to free the buffer when it is
** no longer required.
*/
static char *explainIndexRange(sqlite3 *db, WhereLoop *pLoop, Table *pTab){

  Index *pIndex = pLoop->u.btree.pIndex;
  int nEq = pLoop->u.btree.nEq;
  int i, j;
  Column *aCol = pTab->aCol;
  int *aiColumn = pIndex->aiColumn;
  StrAccum txt;

  if( nEq==0 && (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
    return 0;
  }
  sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
  txt.db = db;
  sqlite3StrAccumAppend(&txt, " (", 2);
  for(i=0; i<nEq; i++){
    char *z = (i==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[i]].zName;
    explainAppendTerm(&txt, i, z, "=");
  }

  j = i;
  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
    char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
    explainAppendTerm(&txt, i++, z, ">");
  }
  if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
    char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
    explainAppendTerm(&txt, i, z, "<");
  }
  sqlite3StrAccumAppend(&txt, ")", 1);
  return sqlite3StrAccumFinish(&txt);
}

4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087


4088


4089
4090
4091
4092

4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105


4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165

4166
4167
4168

4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179

4180

4181
4182

4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
  SrcList *pTabList,              /* Table list this loop refers to */
  WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
  int iLevel,                     /* Value for "level" column of output */
  int iFrom,                      /* Value for "from" column of output */
  u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
){
  if( pParse->explain==2 ){
    u32 flags = pLevel->plan.wsFlags;
    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */
    char *zMsg;                   /* Text to add to EQP output */
    sqlite3_int64 nRow;           /* Expected number of rows visited by scan */
    int iId = pParse->iSelectId;  /* Select id (left-most output column) */
    int isSearch;                 /* True for a SEARCH. False for SCAN. */





    if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;

    isSearch = (pLevel->plan.nEq>0)
             || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0

             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN");
    if( pItem->pSelect ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId);
    }else{
      zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName);
    }

    if( pItem->zAlias ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
    }
    if( (flags & WHERE_INDEXED)!=0 ){


      char *zWhere = explainIndexRange(db, pLevel, pItem->pTab);
      zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg, 
          ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""),
          ((flags & WHERE_IDX_ONLY)?"COVERING ":""),
          ((flags & WHERE_TEMP_INDEX)?"":" "),
          ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName),
          zWhere
      );
      sqlite3DbFree(db, zWhere);
    }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);

      if( flags&WHERE_ROWID_EQ ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg);
      }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg);
      }else if( flags&WHERE_BTM_LIMIT ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg);
      }else if( flags&WHERE_TOP_LIMIT ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg);
      }
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
      sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
      zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
                  pVtabIdx->idxNum, pVtabIdx->idxStr);
    }
#endif
    if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){
      testcase( wctrlFlags & WHERE_ORDERBY_MIN );
      nRow = 1;
    }else{
      nRow = (sqlite3_int64)pLevel->plan.nRow;
    }
    zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow);
    sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
  }
}
#else
# define explainOneScan(u,v,w,x,y,z)
#endif /* SQLITE_OMIT_EXPLAIN */


/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
static Bitmask codeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
  int iLevel,          /* Which level of pWInfo->a[] should be coded */
  u16 wctrlFlags,      /* One of the WHERE_* flags defined in sqliteInt.h */
  Bitmask notReady     /* Which tables are currently available */
){
  int j, k;            /* Loop counters */
  int iCur;            /* The VDBE cursor for the table */
  int addrNxt;         /* Where to jump to continue with the next IN case */
  int omitTable;       /* True if we use the index only */
  int bRev;            /* True if we need to scan in reverse order */
  WhereLevel *pLevel;  /* The where level to be coded */

  WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
  WhereTerm *pTerm;               /* A WHERE clause term */
  Parse *pParse;                  /* Parsing context */

  Vdbe *v;                        /* The prepared stmt under constructions */
  struct SrcList_item *pTabItem;  /* FROM clause term being coded */
  int addrBrk;                    /* Jump here to break out of the loop */
  int addrCont;                   /* Jump here to continue with next cycle */
  int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
  int iReleaseReg = 0;      /* Temp register to free before returning */
  Bitmask newNotReady;      /* Return value */

  pParse = pWInfo->pParse;
  v = pParse->pVdbe;
  pWC = pWInfo->pWC;

  pLevel = &pWInfo->a[iLevel];

  pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
  iCur = pTabItem->iCursor;

  bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
  omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 
           && (wctrlFlags & WHERE_FORCE_TABLE)==0;
  VdbeNoopComment((v, "Begin Join Loop %d", iLevel));

  /* Create labels for the "break" and "continue" instructions
  ** for the current loop.  Jump to addrBrk to break out of a loop.
  ** Jump to cont to go immediately to the next iteration of the
  ** loop.
  **







<




<


>
>

>
>


<
|
>
|











|
>
>
|
|
|
|
|
|
|
<

|


|





|





<

|


<
<
<
<
<
<
|















<








>



>






<



|
>

>


>
|
|
|







3130
3131
3132
3133
3134
3135
3136

3137
3138
3139
3140

3141
3142
3143
3144
3145
3146
3147
3148
3149

3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173

3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189

3190
3191
3192
3193






3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209

3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228

3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
  SrcList *pTabList,              /* Table list this loop refers to */
  WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
  int iLevel,                     /* Value for "level" column of output */
  int iFrom,                      /* Value for "from" column of output */
  u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
){
  if( pParse->explain==2 ){

    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */
    char *zMsg;                   /* Text to add to EQP output */

    int iId = pParse->iSelectId;  /* Select id (left-most output column) */
    int isSearch;                 /* True for a SEARCH. False for SCAN. */
    WhereLoop *pLoop;             /* The controlling WhereLoop object */
    u32 flags;                    /* Flags that describe this loop */

    pLoop = pLevel->pWLoop;
    flags = pLoop->wsFlags;
    if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;


    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN");
    if( pItem->pSelect ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId);
    }else{
      zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName);
    }

    if( pItem->zAlias ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
    }
    if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0
     && ALWAYS(pLoop->u.btree.pIndex!=0)
    ){
      char *zWhere = explainIndexRange(db, pLoop, pItem->pTab);
      zMsg = sqlite3MAppendf(db, zMsg,
               ((flags & WHERE_AUTO_INDEX) ? 
                   "%s USING AUTOMATIC %sINDEX%.0s%s" :
                   "%s USING %sINDEX %s%s"), 
               zMsg, ((flags & WHERE_IDX_ONLY) ? "COVERING " : ""),
               pLoop->u.btree.pIndex->zName, zWhere);

      sqlite3DbFree(db, zWhere);
    }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);

      if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg);
      }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg);
      }else if( flags&WHERE_BTM_LIMIT ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg);
      }else if( ALWAYS(flags&WHERE_TOP_LIMIT) ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg);
      }
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    else if( (flags & WHERE_VIRTUALTABLE)!=0 ){

      zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
                  pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
    }
#endif






    zMsg = sqlite3MAppendf(db, zMsg, "%s", zMsg);
    sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
  }
}
#else
# define explainOneScan(u,v,w,x,y,z)
#endif /* SQLITE_OMIT_EXPLAIN */


/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
static Bitmask codeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
  int iLevel,          /* Which level of pWInfo->a[] should be coded */

  Bitmask notReady     /* Which tables are currently available */
){
  int j, k;            /* Loop counters */
  int iCur;            /* The VDBE cursor for the table */
  int addrNxt;         /* Where to jump to continue with the next IN case */
  int omitTable;       /* True if we use the index only */
  int bRev;            /* True if we need to scan in reverse order */
  WhereLevel *pLevel;  /* The where level to be coded */
  WhereLoop *pLoop;    /* The WhereLoop object being coded */
  WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
  WhereTerm *pTerm;               /* A WHERE clause term */
  Parse *pParse;                  /* Parsing context */
  sqlite3 *db;                    /* Database connection */
  Vdbe *v;                        /* The prepared stmt under constructions */
  struct SrcList_item *pTabItem;  /* FROM clause term being coded */
  int addrBrk;                    /* Jump here to break out of the loop */
  int addrCont;                   /* Jump here to continue with next cycle */
  int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
  int iReleaseReg = 0;      /* Temp register to free before returning */


  pParse = pWInfo->pParse;
  v = pParse->pVdbe;
  pWC = &pWInfo->sWC;
  db = pParse->db;
  pLevel = &pWInfo->a[iLevel];
  pLoop = pLevel->pWLoop;
  pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
  iCur = pTabItem->iCursor;
  pLevel->notReady = notReady & ~getMask(&pWInfo->sMaskSet, iCur);
  bRev = (pWInfo->revMask>>iLevel)&1;
  omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 
           && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0;
  VdbeNoopComment((v, "Begin Join Loop %d", iLevel));

  /* Create labels for the "break" and "continue" instructions
  ** for the current loop.  Jump to addrBrk to break out of a loop.
  ** Jump to cont to go immediately to the next iteration of the
  ** loop.
  **
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242

4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256

4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273


4274
4275
4276
4277
4278

4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293


4294
4295
4296
4297
4298
4299
4300
4301

4302

4303

4304
4305
4306
4307
4308
4309
4310
    pLevel->p2 =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
    VdbeComment((v, "next row of co-routine %s", pTabItem->pTab->zName));
    sqlite3VdbeAddOp2(v, OP_If, regYield+1, addrBrk);
    pLevel->op = OP_Goto;
  }else

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if(  (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
    /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
    **          to access the data.
    */
    int iReg;   /* P3 Value for OP_VFilter */
    int addrNotFound;
    sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
    int nConstraint = pVtabIdx->nConstraint;
    struct sqlite3_index_constraint_usage *aUsage =
                                                pVtabIdx->aConstraintUsage;
    const struct sqlite3_index_constraint *aConstraint =
                                                pVtabIdx->aConstraint;

    sqlite3ExprCachePush(pParse);
    iReg = sqlite3GetTempRange(pParse, nConstraint+2);
    addrNotFound = pLevel->addrBrk;
    for(j=1; j<=nConstraint; j++){
      for(k=0; k<nConstraint; k++){
        if( aUsage[k].argvIndex==j ){
          int iTarget = iReg+j+1;
          pTerm = &pWC->a[aConstraint[k].iTermOffset];

          if( pTerm->eOperator & WO_IN ){
            codeEqualityTerm(pParse, pTerm, pLevel, k, iTarget);
            addrNotFound = pLevel->addrNxt;
          }else{
            sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
          }
          break;
        }
      }
      if( k==nConstraint ) break;
    }
    sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
    sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
    sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pVtabIdx->idxStr,

                      pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
    pVtabIdx->needToFreeIdxStr = 0;
    for(j=0; j<nConstraint; j++){
      if( aUsage[j].omit ){
        int iTerm = aConstraint[j].iTermOffset;
        disableTerm(pLevel, &pWC->a[iTerm]);
      }
    }
    pLevel->op = OP_VNext;
    pLevel->p1 = iCur;
    pLevel->p2 = sqlite3VdbeCurrentAddr(v);
    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
    sqlite3ExprCachePop(pParse, 1);
  }else
#endif /* SQLITE_OMIT_VIRTUALTABLE */

  if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){


    /* Case 1:  We can directly reference a single row using an
    **          equality comparison against the ROWID field.  Or
    **          we reference multiple rows using a "rowid IN (...)"
    **          construct.
    */

    iReleaseReg = sqlite3GetTempReg(pParse);
    pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
    assert( pTerm!=0 );
    assert( pTerm->pExpr!=0 );
    assert( omitTable==0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, iReleaseReg);
    addrNxt = pLevel->addrNxt;
    sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
    sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
    sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
    sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
    VdbeComment((v, "pk"));
    pLevel->op = OP_Noop;
  }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){


    /* Case 2:  We have an inequality comparison against the ROWID field.
    */
    int testOp = OP_Noop;
    int start;
    int memEndValue = 0;
    WhereTerm *pStart, *pEnd;

    assert( omitTable==0 );

    pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);

    pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);

    if( bRev ){
      pTerm = pStart;
      pStart = pEnd;
      pEnd = pTerm;
    }
    if( pStart ){
      Expr *pX;             /* The expression that defines the start bound */







|
|




<
|
<
<
<
<




|
<
<
|
|
>
|
|
|
|
|
|
<
|
<
<
<
|
|
|
>
|
|
|
|
<
|










|
>
>
|




>

|



|
|







|
>
>
|







>
|
>
|
>







3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283

3284




3285
3286
3287
3288
3289


3290
3291
3292
3293
3294
3295
3296
3297
3298

3299



3300
3301
3302
3303
3304
3305
3306
3307

3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
    pLevel->p2 =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
    VdbeComment((v, "next row of co-routine %s", pTabItem->pTab->zName));
    sqlite3VdbeAddOp2(v, OP_If, regYield+1, addrBrk);
    pLevel->op = OP_Goto;
  }else

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
    /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
    **          to access the data.
    */
    int iReg;   /* P3 Value for OP_VFilter */
    int addrNotFound;

    int nConstraint = pLoop->nLTerm;





    sqlite3ExprCachePush(pParse);
    iReg = sqlite3GetTempRange(pParse, nConstraint+2);
    addrNotFound = pLevel->addrBrk;
    for(j=0; j<nConstraint; j++){


      int iTarget = iReg+j+2;
      pTerm = pLoop->aLTerm[j];
      if( pTerm==0 ) continue;
      if( pTerm->eOperator & WO_IN ){
        codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
        addrNotFound = pLevel->addrNxt;
      }else{
        sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
      }

    }



    sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
    sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
    sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
                      pLoop->u.vtab.idxStr,
                      pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
    pLoop->u.vtab.needFree = 0;
    for(j=0; j<nConstraint && j<16; j++){
      if( (pLoop->u.vtab.omitMask>>j)&1 ){

        disableTerm(pLevel, pLoop->aLTerm[j]);
      }
    }
    pLevel->op = OP_VNext;
    pLevel->p1 = iCur;
    pLevel->p2 = sqlite3VdbeCurrentAddr(v);
    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
    sqlite3ExprCachePop(pParse, 1);
  }else
#endif /* SQLITE_OMIT_VIRTUALTABLE */

  if( (pLoop->wsFlags & WHERE_IPK)!=0
   && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
  ){
    /* Case 2:  We can directly reference a single row using an
    **          equality comparison against the ROWID field.  Or
    **          we reference multiple rows using a "rowid IN (...)"
    **          construct.
    */
    assert( pLoop->u.btree.nEq==1 );
    iReleaseReg = sqlite3GetTempReg(pParse);
    pTerm = pLoop->aLTerm[0];
    assert( pTerm!=0 );
    assert( pTerm->pExpr!=0 );
    assert( omitTable==0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL );
    iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
    addrNxt = pLevel->addrNxt;
    sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
    sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
    sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
    sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
    VdbeComment((v, "pk"));
    pLevel->op = OP_Noop;
  }else if( (pLoop->wsFlags & WHERE_IPK)!=0
         && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
  ){
    /* Case 3:  We have an inequality comparison against the ROWID field.
    */
    int testOp = OP_Noop;
    int start;
    int memEndValue = 0;
    WhereTerm *pStart, *pEnd;

    assert( omitTable==0 );
    j = 0;
    pStart = pEnd = 0;
    if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
    if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
    assert( pStart!=0 || pEnd!=0 );
    if( bRev ){
      pTerm = pStart;
      pStart = pEnd;
      pEnd = pTerm;
    }
    if( pStart ){
      Expr *pX;             /* The expression that defines the start bound */
4319
4320
4321
4322
4323
4324
4325

4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342

4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
           /* TK_LT */  OP_SeekLt,
           /* TK_GE */  OP_SeekGe
      };
      assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
      assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
      assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */


      testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
      pX = pStart->pExpr;
      assert( pX!=0 );
      assert( pStart->leftCursor==iCur );
      r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
      sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
      VdbeComment((v, "pk"));
      sqlite3ExprCacheAffinityChange(pParse, r1, 1);
      sqlite3ReleaseTempReg(pParse, rTemp);
      disableTerm(pLevel, pStart);
    }else{
      sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
    }
    if( pEnd ){
      Expr *pX;
      pX = pEnd->pExpr;
      assert( pX!=0 );

      assert( pEnd->leftCursor==iCur );
      testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
      memEndValue = ++pParse->nMem;
      sqlite3ExprCode(pParse, pX->pRight, memEndValue);
      if( pX->op==TK_LT || pX->op==TK_GT ){
        testOp = bRev ? OP_Le : OP_Ge;
      }else{
        testOp = bRev ? OP_Lt : OP_Gt;
      }
      disableTerm(pLevel, pEnd);
    }
    start = sqlite3VdbeCurrentAddr(v);
    pLevel->op = bRev ? OP_Prev : OP_Next;
    pLevel->p1 = iCur;
    pLevel->p2 = start;
    if( pStart==0 && pEnd==0 ){
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }else{
      assert( pLevel->p5==0 );
    }
    if( testOp!=OP_Noop ){
      iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
      sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
      sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
      sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
    }
  }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
    /* Case 3: A scan using an index.
    **
    **         The WHERE clause may contain zero or more equality 
    **         terms ("==" or "IN" operators) that refer to the N
    **         left-most columns of the index. It may also contain
    **         inequality constraints (>, <, >= or <=) on the indexed
    **         column that immediately follows the N equalities. Only 
    **         the right-most column can be an inequality - the rest must







>
|


|













>
|
|













<
<
<
|
<







|
|







3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413



3414

3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
           /* TK_LT */  OP_SeekLt,
           /* TK_GE */  OP_SeekGe
      };
      assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
      assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
      assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */

      assert( (pStart->wtFlags & TERM_VNULL)==0 );
      testcase( pStart->wtFlags & TERM_VIRTUAL );
      pX = pStart->pExpr;
      assert( pX!=0 );
      testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
      r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
      sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
      VdbeComment((v, "pk"));
      sqlite3ExprCacheAffinityChange(pParse, r1, 1);
      sqlite3ReleaseTempReg(pParse, rTemp);
      disableTerm(pLevel, pStart);
    }else{
      sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
    }
    if( pEnd ){
      Expr *pX;
      pX = pEnd->pExpr;
      assert( pX!=0 );
      assert( (pEnd->wtFlags & TERM_VNULL)==0 );
      testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
      testcase( pEnd->wtFlags & TERM_VIRTUAL );
      memEndValue = ++pParse->nMem;
      sqlite3ExprCode(pParse, pX->pRight, memEndValue);
      if( pX->op==TK_LT || pX->op==TK_GT ){
        testOp = bRev ? OP_Le : OP_Ge;
      }else{
        testOp = bRev ? OP_Lt : OP_Gt;
      }
      disableTerm(pLevel, pEnd);
    }
    start = sqlite3VdbeCurrentAddr(v);
    pLevel->op = bRev ? OP_Prev : OP_Next;
    pLevel->p1 = iCur;
    pLevel->p2 = start;



    assert( pLevel->p5==0 );

    if( testOp!=OP_Noop ){
      iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
      sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
      sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
      sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
    }
  }else if( pLoop->wsFlags & WHERE_INDEXED ){
    /* Case 4: A scan using an index.
    **
    **         The WHERE clause may contain zero or more equality 
    **         terms ("==" or "IN" operators) that refer to the N
    **         left-most columns of the index. It may also contain
    **         inequality constraints (>, <, >= or <=) on the indexed
    **         column that immediately follows the N equalities. Only 
    **         the right-most column can be an inequality - the rest must
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458

4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
      OP_SeekLe            /* 7: (start_constraints  &&  startEq &&  bRev) */
    };
    static const u8 aEndOp[] = {
      OP_Noop,             /* 0: (!end_constraints) */
      OP_IdxGE,            /* 1: (end_constraints && !bRev) */
      OP_IdxLT             /* 2: (end_constraints && bRev) */
    };
    int nEq = pLevel->plan.nEq;  /* Number of == or IN terms */
    int isMinQuery = 0;          /* If this is an optimized SELECT min(x).. */
    int regBase;                 /* Base register holding constraint values */
    int r1;                      /* Temp register */
    WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
    WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
    int startEq;                 /* True if range start uses ==, >= or <= */
    int endEq;                   /* True if range end uses ==, >= or <= */
    int start_constraints;       /* Start of range is constrained */
    int nConstraint;             /* Number of constraint terms */
    Index *pIdx;                 /* The index we will be using */
    int iIdxCur;                 /* The VDBE cursor for the index */
    int nExtraReg = 0;           /* Number of extra registers needed */
    int op;                      /* Instruction opcode */
    char *zStartAff;             /* Affinity for start of range constraint */
    char *zEndAff;               /* Affinity for end of range constraint */

    pIdx = pLevel->plan.u.pIdx;
    iIdxCur = pLevel->iIdxCur;
    k = (nEq==pIdx->nColumn ? -1 : pIdx->aiColumn[nEq]);

    /* If this loop satisfies a sort order (pOrderBy) request that 
    ** was passed to this function to implement a "SELECT min(x) ..." 
    ** query, then the caller will only allow the loop to run for
    ** a single iteration. This means that the first row returned
    ** should not have a NULL value stored in 'x'. If column 'x' is
    ** the first one after the nEq equality constraints in the index,
    ** this requires some special handling.
    */
    if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
     && (pLevel->plan.wsFlags&WHERE_ORDERED)
     && (pIdx->nColumn>nEq)
    ){
      /* assert( pOrderBy->nExpr==1 ); */
      /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
      isMinQuery = 1;
      nExtraReg = 1;
    }

    /* Find any inequality constraint terms for the start and end 
    ** of the range. 
    */

    if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
      pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
      nExtraReg = 1;
    }
    if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
      pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
      nExtraReg = 1;
    }

    /* Generate code to evaluate all constraint terms using == or IN
    ** and store the values of those terms in an array of registers
    ** starting at regBase.
    */
    regBase = codeAllEqualityTerms(
        pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff
    );
    zEndAff = sqlite3DbStrDup(pParse->db, zStartAff);
    addrNxt = pLevel->addrNxt;

    /* If we are doing a reverse order scan on an ascending index, or
    ** a forward order scan on a descending index, interchange the 
    ** start and end terms (pRangeStart and pRangeEnd).
    */
    if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
     || (bRev && pIdx->nColumn==nEq)
    ){
      SWAP(WhereTerm *, pRangeEnd, pRangeStart);
    }

    testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
    testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
    testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
    testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
    startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
    endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
    start_constraints = pRangeStart || nEq>0;

    /* Seek the index cursor to the start of the range. */
    nConstraint = nEq;
    if( pRangeStart ){







|
|















|

<









|
|











>
|
|


|
|







|
<
<
|












|
|
|
|







3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487

3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524


3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
      OP_SeekLe            /* 7: (start_constraints  &&  startEq &&  bRev) */
    };
    static const u8 aEndOp[] = {
      OP_Noop,             /* 0: (!end_constraints) */
      OP_IdxGE,            /* 1: (end_constraints && !bRev) */
      OP_IdxLT             /* 2: (end_constraints && bRev) */
    };
    int nEq = pLoop->u.btree.nEq;  /* Number of == or IN terms */
    int isMinQuery = 0;            /* If this is an optimized SELECT min(x).. */
    int regBase;                 /* Base register holding constraint values */
    int r1;                      /* Temp register */
    WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
    WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
    int startEq;                 /* True if range start uses ==, >= or <= */
    int endEq;                   /* True if range end uses ==, >= or <= */
    int start_constraints;       /* Start of range is constrained */
    int nConstraint;             /* Number of constraint terms */
    Index *pIdx;                 /* The index we will be using */
    int iIdxCur;                 /* The VDBE cursor for the index */
    int nExtraReg = 0;           /* Number of extra registers needed */
    int op;                      /* Instruction opcode */
    char *zStartAff;             /* Affinity for start of range constraint */
    char *zEndAff;               /* Affinity for end of range constraint */

    pIdx = pLoop->u.btree.pIndex;
    iIdxCur = pLevel->iIdxCur;


    /* If this loop satisfies a sort order (pOrderBy) request that 
    ** was passed to this function to implement a "SELECT min(x) ..." 
    ** query, then the caller will only allow the loop to run for
    ** a single iteration. This means that the first row returned
    ** should not have a NULL value stored in 'x'. If column 'x' is
    ** the first one after the nEq equality constraints in the index,
    ** this requires some special handling.
    */
    if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
     && (pWInfo->bOBSat!=0)
     && (pIdx->nColumn>nEq)
    ){
      /* assert( pOrderBy->nExpr==1 ); */
      /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
      isMinQuery = 1;
      nExtraReg = 1;
    }

    /* Find any inequality constraint terms for the start and end 
    ** of the range. 
    */
    j = nEq;
    if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
      pRangeStart = pLoop->aLTerm[j++];
      nExtraReg = 1;
    }
    if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
      pRangeEnd = pLoop->aLTerm[j++];
      nExtraReg = 1;
    }

    /* Generate code to evaluate all constraint terms using == or IN
    ** and store the values of those terms in an array of registers
    ** starting at regBase.
    */
    regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);


    zEndAff = sqlite3DbStrDup(db, zStartAff);
    addrNxt = pLevel->addrNxt;

    /* If we are doing a reverse order scan on an ascending index, or
    ** a forward order scan on a descending index, interchange the 
    ** start and end terms (pRangeStart and pRangeEnd).
    */
    if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
     || (bRev && pIdx->nColumn==nEq)
    ){
      SWAP(WhereTerm *, pRangeEnd, pRangeStart);
    }

    testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
    testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
    testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
    testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
    startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
    endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
    start_constraints = pRangeStart || nEq>0;

    /* Seek the index cursor to the start of the range. */
    nConstraint = nEq;
    if( pRangeStart ){
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
          zStartAff[nEq] = SQLITE_AFF_NONE;
        }
        if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
          zStartAff[nEq] = SQLITE_AFF_NONE;
        }
      }  
      nConstraint++;
      testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    }else if( isMinQuery ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
      nConstraint++;
      startEq = 0;
      start_constraints = 1;
    }
    codeApplyAffinity(pParse, regBase, nConstraint, zStartAff);







|







3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
          zStartAff[nEq] = SQLITE_AFF_NONE;
        }
        if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
          zStartAff[nEq] = SQLITE_AFF_NONE;
        }
      }  
      nConstraint++;
      testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
    }else if( isMinQuery ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
      nConstraint++;
      startEq = 0;
      start_constraints = 1;
    }
    codeApplyAffinity(pParse, regBase, nConstraint, zStartAff);
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
        }
        if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){
          zEndAff[nEq] = SQLITE_AFF_NONE;
        }
      }  
      codeApplyAffinity(pParse, regBase, nEq+1, zEndAff);
      nConstraint++;
      testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    }
    sqlite3DbFree(pParse->db, zStartAff);
    sqlite3DbFree(pParse->db, zEndAff);

    /* Top of the loop body */
    pLevel->p2 = sqlite3VdbeCurrentAddr(v);

    /* Check if the index cursor is past the end of the range. */
    op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
    testcase( op==OP_Noop );
    testcase( op==OP_IdxGE );
    testcase( op==OP_IdxLT );
    if( op!=OP_Noop ){
      sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
      sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
    }

    /* If there are inequality constraints, check that the value
    ** of the table column that the inequality contrains is not NULL.
    ** If it is, jump to the next iteration of the loop.
    */
    r1 = sqlite3GetTempReg(pParse);
    testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
    testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
    if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
      sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
    }
    sqlite3ReleaseTempReg(pParse, r1);

    /* Seek the table cursor, if required */
    disableTerm(pLevel, pRangeStart);
    disableTerm(pLevel, pRangeEnd);
    if( !omitTable ){
      iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
      sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
      sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
    }

    /* Record the instruction used to terminate the loop. Disable 
    ** WHERE clause terms made redundant by the index range scan.
    */
    if( pLevel->plan.wsFlags & WHERE_UNIQUE ){
      pLevel->op = OP_Noop;
    }else if( bRev ){
      pLevel->op = OP_Prev;
    }else{
      pLevel->op = OP_Next;
    }
    pLevel->p1 = iIdxCur;
    if( pLevel->plan.wsFlags & WHERE_COVER_SCAN ){
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }else{
      assert( pLevel->p5==0 );
    }
  }else

#ifndef SQLITE_OMIT_OR_OPTIMIZATION
  if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
    /* Case 4:  Two or more separately indexed terms connected by OR
    **
    ** Example:
    **
    **   CREATE TABLE t1(a,b,c,d);
    **   CREATE INDEX i1 ON t1(a);
    **   CREATE INDEX i2 ON t1(b);
    **   CREATE INDEX i3 ON t1(c);







|

|
|



















|
|
|


















|







|







|
|







3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
        }
        if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){
          zEndAff[nEq] = SQLITE_AFF_NONE;
        }
      }  
      codeApplyAffinity(pParse, regBase, nEq+1, zEndAff);
      nConstraint++;
      testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
    }
    sqlite3DbFree(db, zStartAff);
    sqlite3DbFree(db, zEndAff);

    /* Top of the loop body */
    pLevel->p2 = sqlite3VdbeCurrentAddr(v);

    /* Check if the index cursor is past the end of the range. */
    op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
    testcase( op==OP_Noop );
    testcase( op==OP_IdxGE );
    testcase( op==OP_IdxLT );
    if( op!=OP_Noop ){
      sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
      sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
    }

    /* If there are inequality constraints, check that the value
    ** of the table column that the inequality contrains is not NULL.
    ** If it is, jump to the next iteration of the loop.
    */
    r1 = sqlite3GetTempReg(pParse);
    testcase( pLoop->wsFlags & WHERE_BTM_LIMIT );
    testcase( pLoop->wsFlags & WHERE_TOP_LIMIT );
    if( (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
      sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
    }
    sqlite3ReleaseTempReg(pParse, r1);

    /* Seek the table cursor, if required */
    disableTerm(pLevel, pRangeStart);
    disableTerm(pLevel, pRangeEnd);
    if( !omitTable ){
      iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
      sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
      sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
    }

    /* Record the instruction used to terminate the loop. Disable 
    ** WHERE clause terms made redundant by the index range scan.
    */
    if( pLoop->wsFlags & WHERE_ONEROW ){
      pLevel->op = OP_Noop;
    }else if( bRev ){
      pLevel->op = OP_Prev;
    }else{
      pLevel->op = OP_Next;
    }
    pLevel->p1 = iIdxCur;
    if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }else{
      assert( pLevel->p5==0 );
    }
  }else

#ifndef SQLITE_OMIT_OR_OPTIMIZATION
  if( pLoop->wsFlags & WHERE_MULTI_OR ){
    /* Case 5:  Two or more separately indexed terms connected by OR
    **
    ** Example:
    **
    **   CREATE TABLE t1(a,b,c,d);
    **   CREATE INDEX i1 ON t1(a);
    **   CREATE INDEX i2 ON t1(b);
    **   CREATE INDEX i3 ON t1(c);
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
    int regRowid = 0;                         /* Register holding rowid */
    int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;                            /* Loop counter */
    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
   
    pTerm = pLevel->plan.u.pTerm;
    assert( pTerm!=0 );
    assert( pTerm->eOperator & WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
    pOrWc = &pTerm->u.pOrInfo->wc;
    pLevel->op = OP_Return;
    pLevel->p1 = regReturn;

    /* Set up a new SrcList in pOrTab containing the table being scanned
    ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
    ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
    */
    if( pWInfo->nLevel>1 ){
      int nNotReady;                 /* The number of notReady tables */
      struct SrcList_item *origSrc;     /* Original list of tables */
      nNotReady = pWInfo->nLevel - iLevel - 1;
      pOrTab = sqlite3StackAllocRaw(pParse->db,
                            sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
      if( pOrTab==0 ) return notReady;
      pOrTab->nAlloc = (i16)(nNotReady + 1);
      pOrTab->nSrc = pOrTab->nAlloc;
      memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
      origSrc = pWInfo->pTabList->a;
      for(k=1; k<=nNotReady; k++){
        memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
      }
    }else{







|















|


|







3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
    int regRowid = 0;                         /* Register holding rowid */
    int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;                            /* Loop counter */
    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
   
    pTerm = pLoop->aLTerm[0];
    assert( pTerm!=0 );
    assert( pTerm->eOperator & WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
    pOrWc = &pTerm->u.pOrInfo->wc;
    pLevel->op = OP_Return;
    pLevel->p1 = regReturn;

    /* Set up a new SrcList in pOrTab containing the table being scanned
    ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
    ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
    */
    if( pWInfo->nLevel>1 ){
      int nNotReady;                 /* The number of notReady tables */
      struct SrcList_item *origSrc;     /* Original list of tables */
      nNotReady = pWInfo->nLevel - iLevel - 1;
      pOrTab = sqlite3StackAllocRaw(db,
                            sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
      if( pOrTab==0 ) return notReady;
      pOrTab->nAlloc = (u8)(nNotReady + 1);
      pOrTab->nSrc = pOrTab->nAlloc;
      memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
      origSrc = pWInfo->pTabList->a;
      for(k=1; k<=nNotReady; k++){
        memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
      }
    }else{
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
    ** immediately following the OP_Return at the bottom of the loop. This
    ** is required in a few obscure LEFT JOIN cases where control jumps
    ** over the top of the loop into the body of it. In this case the 
    ** correct response for the end-of-loop code (the OP_Return) is to 
    ** fall through to the next instruction, just as an OP_Next does if
    ** called on an uninitialized cursor.
    */
    if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
      regRowset = ++pParse->nMem;
      regRowid = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
    }
    iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);

    /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y







|







3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
    ** immediately following the OP_Return at the bottom of the loop. This
    ** is required in a few obscure LEFT JOIN cases where control jumps
    ** over the top of the loop into the body of it. In this case the 
    ** correct response for the end-of-loop code (the OP_Return) is to 
    ** fall through to the next instruction, just as an OP_Next does if
    ** called on an uninitialized cursor.
    */
    if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
      regRowset = ++pParse->nMem;
      regRowid = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
    }
    iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);

    /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
4731
4732
4733
4734
4735
4736
4737

4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
    ** is not contained in the ON clause of a LEFT JOIN.
    ** See ticket http://www.sqlite.org/src/info/f2369304e4
    */
    if( pWC->nTerm>1 ){
      int iTerm;
      for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
        Expr *pExpr = pWC->a[iTerm].pExpr;

        if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
        if( pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_ORINFO) ) continue;
        if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
        pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
        pAndExpr = sqlite3ExprAnd(pParse->db, pAndExpr, pExpr);
      }
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
      }
    }

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
        WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr;
        if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
          pAndExpr->pLeft = pOrExpr;
          pOrExpr = pAndExpr;
        }
        /* Loop through table entries that match term pOrTerm. */
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                        WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
                        WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY, iCovCur);
        assert( pSubWInfo || pParse->nErr || pParse->db->mallocFailed );
        if( pSubWInfo ){
          WhereLevel *pLvl;
          explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );
          if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
            int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
            int r;
            r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 
                                         regRowid, 0);
            sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
                                 sqlite3VdbeCurrentAddr(v)+2, r, iSet);
          }







>

|

|
|



















|

|



|







3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
    ** is not contained in the ON clause of a LEFT JOIN.
    ** See ticket http://www.sqlite.org/src/info/f2369304e4
    */
    if( pWC->nTerm>1 ){
      int iTerm;
      for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
        Expr *pExpr = pWC->a[iTerm].pExpr;
        if( &pWC->a[iTerm] == pTerm ) continue;
        if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
        if( pWC->a[iTerm].wtFlags & (TERM_ORINFO) ) continue;
        if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
        pExpr = sqlite3ExprDup(db, pExpr, 0);
        pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
      }
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
      }
    }

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
        WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr;
        if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
          pAndExpr->pLeft = pOrExpr;
          pOrExpr = pAndExpr;
        }
        /* Loop through table entries that match term pOrTerm. */
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                        WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
                        WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY, iCovCur);
        assert( pSubWInfo || pParse->nErr || db->mallocFailed );
        if( pSubWInfo ){
          WhereLoop *pSubLoop;
          explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );
          if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
            int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
            int r;
            r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 
                                         regRowid, 0);
            sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
                                 sqlite3VdbeCurrentAddr(v)+2, r, iSet);
          }
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
          ** If the call to sqlite3WhereBegin() above resulted in a scan that
          ** uses an index, and this is either the first OR-connected term
          ** processed or the index is the same as that used by all previous
          ** terms, set pCov to the candidate covering index. Otherwise, set 
          ** pCov to NULL to indicate that no candidate covering index will 
          ** be available.
          */
          pLvl = &pSubWInfo->a[0];
          if( (pLvl->plan.wsFlags & WHERE_INDEXED)!=0
           && (pLvl->plan.wsFlags & WHERE_TEMP_INDEX)==0
           && (ii==0 || pLvl->plan.u.pIdx==pCov)
          ){
            assert( pLvl->iIdxCur==iCovCur );
            pCov = pLvl->plan.u.pIdx;
          }else{
            pCov = 0;
          }

          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
      }
    }
    pLevel->u.pCovidx = pCov;
    if( pCov ) pLevel->iIdxCur = iCovCur;
    if( pAndExpr ){
      pAndExpr->pLeft = 0;
      sqlite3ExprDelete(pParse->db, pAndExpr);
    }
    sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
    sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
    sqlite3VdbeResolveLabel(v, iLoopBody);

    if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
    if( !untestedTerms ) disableTerm(pLevel, pTerm);
  }else
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */

  {
    /* Case 5:  There is no usable index.  We must do a complete
    **          scan of the entire table.
    */
    static const u8 aStep[] = { OP_Next, OP_Prev };
    static const u8 aStart[] = { OP_Rewind, OP_Last };
    assert( bRev==0 || bRev==1 );
    assert( omitTable==0 );
    pLevel->op = aStep[bRev];
    pLevel->p1 = iCur;
    pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
    pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
  }
  newNotReady = notReady & ~getMask(pWC->pMaskSet, iCur);

  /* Insert code to test every subexpression that can be completely
  ** computed using the current set of tables.
  **
  ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
  ** the use of indices become tests that are evaluated against each row of
  ** the relevant input tables.
  */
  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
    Expr *pE;
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */
    testcase( pTerm->wtFlags & TERM_CODED );
    if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
    if( (pTerm->prereqAll & newNotReady)!=0 ){
      testcase( pWInfo->untestedTerms==0
               && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
      pWInfo->untestedTerms = 1;
      continue;
    }
    pE = pTerm->pExpr;
    assert( pE!=0 );







|
|
|
|

|
|













|





|





|





<





<



<
<
<
<



|


|







3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885

3886
3887
3888
3889
3890

3891
3892
3893




3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
          ** If the call to sqlite3WhereBegin() above resulted in a scan that
          ** uses an index, and this is either the first OR-connected term
          ** processed or the index is the same as that used by all previous
          ** terms, set pCov to the candidate covering index. Otherwise, set 
          ** pCov to NULL to indicate that no candidate covering index will 
          ** be available.
          */
          pSubLoop = pSubWInfo->a[0].pWLoop;
          assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
          if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
           && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
          ){
            assert( pSubWInfo->a[0].iIdxCur==iCovCur );
            pCov = pSubLoop->u.btree.pIndex;
          }else{
            pCov = 0;
          }

          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
      }
    }
    pLevel->u.pCovidx = pCov;
    if( pCov ) pLevel->iIdxCur = iCovCur;
    if( pAndExpr ){
      pAndExpr->pLeft = 0;
      sqlite3ExprDelete(db, pAndExpr);
    }
    sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
    sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
    sqlite3VdbeResolveLabel(v, iLoopBody);

    if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
    if( !untestedTerms ) disableTerm(pLevel, pTerm);
  }else
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */

  {
    /* Case 6:  There is no usable index.  We must do a complete
    **          scan of the entire table.
    */
    static const u8 aStep[] = { OP_Next, OP_Prev };
    static const u8 aStart[] = { OP_Rewind, OP_Last };
    assert( bRev==0 || bRev==1 );

    pLevel->op = aStep[bRev];
    pLevel->p1 = iCur;
    pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
    pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
  }


  /* Insert code to test every subexpression that can be completely
  ** computed using the current set of tables.




  */
  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
    Expr *pE;
    testcase( pTerm->wtFlags & TERM_VIRTUAL );
    testcase( pTerm->wtFlags & TERM_CODED );
    if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
    if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
      testcase( pWInfo->untestedTerms==0
               && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
      pWInfo->untestedTerms = 1;
      continue;
    }
    pE = pTerm->pExpr;
    assert( pE!=0 );
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884

4885
4886
4887
4888
4889
4890


4891


4892
4893
4894


4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921


































































4922


4923
4924







4925




4926










4927
4928


4929
4930








4931


4932
4933
4934








4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































4964
4965
4966
4967
4968
4969
4970
  **
  ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
  ** and we are coding the t1 loop and the t2 loop has not yet coded,
  ** then we cannot use the "t1.a=t2.b" constraint, but we can code
  ** the implied "t1.a=123" constraint.
  */
  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
    Expr *pE;
    WhereTerm *pAlt;
    Expr sEq;
    if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
    if( pTerm->eOperator!=(WO_EQUIV|WO_EQ) ) continue;
    if( pTerm->leftCursor!=iCur ) continue;

    pE = pTerm->pExpr;
    assert( !ExprHasProperty(pE, EP_FromJoin) );
    assert( (pTerm->prereqRight & newNotReady)!=0 );
    pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0);
    if( pAlt==0 ) continue;
    if( pAlt->wtFlags & (TERM_CODED) ) continue;


    VdbeNoopComment((v, "begin transitive constraint"));


    sEq = *pAlt->pExpr;
    sEq.pLeft = pE->pLeft;
    sqlite3ExprIfFalse(pParse, &sEq, addrCont, SQLITE_JUMPIFNULL);


  }

  /* For a LEFT OUTER JOIN, generate code that will record the fact that
  ** at least one row of the right table has matched the left table.  
  */
  if( pLevel->iLeftJoin ){
    pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
    VdbeComment((v, "record LEFT JOIN hit"));
    sqlite3ExprCacheClear(pParse);
    for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
      testcase( pTerm->wtFlags & TERM_VIRTUAL );  /* IMP: R-30575-11662 */
      testcase( pTerm->wtFlags & TERM_CODED );
      if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
      if( (pTerm->prereqAll & newNotReady)!=0 ){
        assert( pWInfo->untestedTerms );
        continue;
      }
      assert( pTerm->pExpr );
      sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
      pTerm->wtFlags |= TERM_CODED;
    }
  }
  sqlite3ReleaseTempReg(pParse, iReleaseReg);

  return newNotReady;
}





































































#if defined(SQLITE_TEST)
/*







** The following variable holds a text description of query plan generated




** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin










** overwrites the previous.  This information is used for testing and
** analysis only.


*/
char sqlite3_query_plan[BMS*2*40];  /* Text of the join */








static int nQPlan = 0;              /* Next free slow in _query_plan[] */



#endif /* SQLITE_TEST */










/*
** Free a WhereInfo structure
*/
static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
  if( ALWAYS(pWInfo) ){
    int i;
    for(i=0; i<pWInfo->nLevel; i++){
      sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
      if( pInfo ){
        /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
        if( pInfo->needToFreeIdxStr ){
          sqlite3_free(pInfo->idxStr);
        }
        sqlite3DbFree(db, pInfo);
      }
      if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){
        Index *pIdx = pWInfo->a[i].plan.u.pIdx;
        if( pIdx ){
          sqlite3DbFree(db, pIdx->zColAff);
          sqlite3DbFree(db, pIdx);
        }
      }
    }
    whereClauseClear(pWInfo->pWC);
    sqlite3DbFree(db, pWInfo);
  }
}

















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































/*
** Generate the beginning of the loop used for WHERE clause processing.
** The return value is a pointer to an opaque structure that contains
** information needed to terminate the loop.  Later, the calling routine
** should invoke sqlite3WhereEnd() with the return value of this function
** in order to complete the WHERE clause processing.







|

<



>


|



>
>

>
>
|
|
|
>
>











|


|










|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
|

>
>
>
>
>
>
>
|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
|
<
>
>

|
>
>
>
>
>
>
>
>
|
>
>
|
|
|
>
>
>
>
>
>
>
>






<
|
|
<
<
<
<
<
<
<
|
|
<
<
|
|
<
<
<




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3917
3918
3919
3920
3921
3922
3923
3924
3925

3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067

4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099

4100
4101







4102
4103


4104
4105



4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
  **
  ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
  ** and we are coding the t1 loop and the t2 loop has not yet coded,
  ** then we cannot use the "t1.a=t2.b" constraint, but we can code
  ** the implied "t1.a=123" constraint.
  */
  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
    Expr *pE, *pEAlt;
    WhereTerm *pAlt;

    if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
    if( pTerm->eOperator!=(WO_EQUIV|WO_EQ) ) continue;
    if( pTerm->leftCursor!=iCur ) continue;
    if( pLevel->iLeftJoin ) continue;
    pE = pTerm->pExpr;
    assert( !ExprHasProperty(pE, EP_FromJoin) );
    assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
    pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0);
    if( pAlt==0 ) continue;
    if( pAlt->wtFlags & (TERM_CODED) ) continue;
    testcase( pAlt->eOperator & WO_EQ );
    testcase( pAlt->eOperator & WO_IN );
    VdbeNoopComment((v, "begin transitive constraint"));
    pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt));
    if( pEAlt ){
      *pEAlt = *pAlt->pExpr;
      pEAlt->pLeft = pE->pLeft;
      sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL);
      sqlite3StackFree(db, pEAlt);
    }
  }

  /* For a LEFT OUTER JOIN, generate code that will record the fact that
  ** at least one row of the right table has matched the left table.  
  */
  if( pLevel->iLeftJoin ){
    pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
    VdbeComment((v, "record LEFT JOIN hit"));
    sqlite3ExprCacheClear(pParse);
    for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
      testcase( pTerm->wtFlags & TERM_VIRTUAL );
      testcase( pTerm->wtFlags & TERM_CODED );
      if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
      if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
        assert( pWInfo->untestedTerms );
        continue;
      }
      assert( pTerm->pExpr );
      sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
      pTerm->wtFlags |= TERM_CODED;
    }
  }
  sqlite3ReleaseTempReg(pParse, iReleaseReg);

  return pLevel->notReady;
}

#ifdef WHERETRACE_ENABLED
/*
** Print a WhereLoop object for debugging purposes
*/
static void whereLoopPrint(WhereLoop *p, SrcList *pTabList){
  int nb = 1+(pTabList->nSrc+7)/8;
  struct SrcList_item *pItem = pTabList->a + p->iTab;
  Table *pTab = pItem->pTab;
  sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
                     p->iTab, nb, p->maskSelf, nb, p->prereq);
  sqlite3DebugPrintf(" %12s",
                     pItem->zAlias ? pItem->zAlias : pTab->zName);
  if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
    if( p->u.btree.pIndex ){
      const char *zName = p->u.btree.pIndex->zName;
      if( zName==0 ) zName = "ipk";
      if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
        int i = sqlite3Strlen30(zName) - 1;
        while( zName[i]!='_' ) i--;
        zName += i;
      }
      sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
    }else{
      sqlite3DebugPrintf("%20s","");
    }
  }else{
    char *z;
    if( p->u.vtab.idxStr ){
      z = sqlite3_mprintf("(%d,\"%s\",%x)",
                p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
    }else{
      z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
    }
    sqlite3DebugPrintf(" %-19s", z);
    sqlite3_free(z);
  }
  sqlite3DebugPrintf(" f %04x N %d", p->wsFlags, p->nLTerm);
  sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
}
#endif

/*
** Convert bulk memory into a valid WhereLoop that can be passed
** to whereLoopClear harmlessly.
*/
static void whereLoopInit(WhereLoop *p){
  p->aLTerm = p->aLTermSpace;
  p->nLTerm = 0;
  p->nLSlot = ArraySize(p->aLTermSpace);
  p->wsFlags = 0;
}

/*
** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
*/
static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
  if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
    if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
      sqlite3_free(p->u.vtab.idxStr);
      p->u.vtab.needFree = 0;
      p->u.vtab.idxStr = 0;
    }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
      sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
      sqlite3DbFree(db, p->u.btree.pIndex);
      p->u.btree.pIndex = 0;
    }
  }
}

/*
** Deallocate internal memory used by a WhereLoop object
*/
static void whereLoopClear(sqlite3 *db, WhereLoop *p){
  if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
  whereLoopClearUnion(db, p);
  whereLoopInit(p);
}

/*
** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
*/
static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
  WhereTerm **paNew;
  if( p->nLSlot>=n ) return SQLITE_OK;
  n = (n+7)&~7;
  paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n);
  if( paNew==0 ) return SQLITE_NOMEM;
  memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
  if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
  p->aLTerm = paNew;
  p->nLSlot = n;
  return SQLITE_OK;
}


/*
** Transfer content from the second pLoop into the first.
*/
static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
  whereLoopClearUnion(db, pTo);
  if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
    memset(&pTo->u, 0, sizeof(pTo->u));
    return SQLITE_NOMEM;
  }
  memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
  memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
  if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
    pFrom->u.vtab.needFree = 0;
  }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
    pFrom->u.btree.pIndex = 0;
  }
  return SQLITE_OK;
}

/*
** Delete a WhereLoop object
*/
static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
  whereLoopClear(db, p);
  sqlite3DbFree(db, p);
}

/*
** Free a WhereInfo structure
*/
static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
  if( ALWAYS(pWInfo) ){

    whereClauseClear(&pWInfo->sWC);
    while( pWInfo->pLoops ){







      WhereLoop *p = pWInfo->pLoops;
      pWInfo->pLoops = p->pNextLoop;


      whereLoopDelete(db, p);
    }



    sqlite3DbFree(db, pWInfo);
  }
}

/*
** Insert or replace a WhereLoop entry using the template supplied.
**
** An existing WhereLoop entry might be overwritten if the new template
** is better and has fewer dependencies.  Or the template will be ignored
** and no insert will occur if an existing WhereLoop is faster and has
** fewer dependencies than the template.  Otherwise a new WhereLoop is
** added based on the template.
**
** If pBuilder->pOrSet is not NULL then we only care about only the
** prerequisites and rRun and nOut costs of the N best loops.  That
** information is gathered in the pBuilder->pOrSet object.  This special
** processing mode is used only for OR clause processing.
**
** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
** still might overwrite similar loops with the new template if the
** template is better.  Loops may be overwritten if the following 
** conditions are met:
**
**    (1)  They have the same iTab.
**    (2)  They have the same iSortIdx.
**    (3)  The template has same or fewer dependencies than the current loop
**    (4)  The template has the same or lower cost than the current loop
**    (5)  The template uses more terms of the same index but has no additional
**         dependencies          
*/
static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
  WhereLoop **ppPrev, *p, *pNext = 0;
  WhereInfo *pWInfo = pBuilder->pWInfo;
  sqlite3 *db = pWInfo->pParse->db;

  /* If pBuilder->pOrSet is defined, then only keep track of the costs
  ** and prereqs.
  */
  if( pBuilder->pOrSet!=0 ){
#if WHERETRACE_ENABLED
    u16 n = pBuilder->pOrSet->n;
    int x =
#endif
    whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
                                    pTemplate->nOut);
#if WHERETRACE_ENABLED
    if( sqlite3WhereTrace & 0x8 ){
      sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
      whereLoopPrint(pTemplate, pWInfo->pTabList);
    }
#endif
    return SQLITE_OK;
  }

  /* Search for an existing WhereLoop to overwrite, or which takes
  ** priority over pTemplate.
  */
  for(ppPrev=&pWInfo->pLoops, p=*ppPrev; p; ppPrev=&p->pNextLoop, p=*ppPrev){
    if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
      /* If either the iTab or iSortIdx values for two WhereLoop are different
      ** then those WhereLoops need to be considered separately.  Neither is
      ** a candidate to replace the other. */
      continue;
    }
    /* In the current implementation, the rSetup value is either zero
    ** or the cost of building an automatic index (NlogN) and the NlogN
    ** is the same for compatible WhereLoops. */
    assert( p->rSetup==0 || pTemplate->rSetup==0 
                 || p->rSetup==pTemplate->rSetup );

    /* whereLoopAddBtree() always generates and inserts the automatic index
    ** case first.  Hence compatible candidate WhereLoops never have a larger
    ** rSetup. Call this SETUP-INVARIANT */
    assert( p->rSetup>=pTemplate->rSetup );

    if( (p->prereq & pTemplate->prereq)==p->prereq
     && p->rSetup<=pTemplate->rSetup
     && p->rRun<=pTemplate->rRun
     && p->nOut<=pTemplate->nOut
    ){
      /* This branch taken when p is equal or better than pTemplate in 
      ** all of (1) dependencies (2) setup-cost, (3) run-cost, and
      ** (4) number of output rows. */
      assert( p->rSetup==pTemplate->rSetup );
      if( p->prereq==pTemplate->prereq
       && p->nLTerm<pTemplate->nLTerm
       && (p->wsFlags & WHERE_INDEXED)!=0
       && (pTemplate->wsFlags & WHERE_INDEXED)!=0
       && p->u.btree.pIndex==pTemplate->u.btree.pIndex
      ){
        /* Overwrite an existing WhereLoop with an similar one that uses
        ** more terms of the index */
        pNext = p->pNextLoop;
        break;
      }else{
        /* pTemplate is not helpful.
        ** Return without changing or adding anything */
        goto whereLoopInsert_noop;
      }
    }
    if( (p->prereq & pTemplate->prereq)==pTemplate->prereq
     && p->rRun>=pTemplate->rRun
     && p->nOut>=pTemplate->nOut
     && ALWAYS(p->rSetup>=pTemplate->rSetup) /* See SETUP-INVARIANT above */
    ){
      /* Overwrite an existing WhereLoop with a better one: one that is
      ** better at one of (1) dependencies, (2) setup-cost, (3) run-cost
      ** or (4) number of output rows, and is no worse in any of those
      ** categories. */
      pNext = p->pNextLoop;
      break;
    }
  }

  /* If we reach this point it means that either p[] should be overwritten
  ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
  ** WhereLoop and insert it.
  */
#if WHERETRACE_ENABLED
  if( sqlite3WhereTrace & 0x8 ){
    if( p!=0 ){
      sqlite3DebugPrintf("ins-del:  ");
      whereLoopPrint(p, pWInfo->pTabList);
    }
    sqlite3DebugPrintf("ins-new:  ");
    whereLoopPrint(pTemplate, pWInfo->pTabList);
  }
#endif
  if( p==0 ){
    p = sqlite3DbMallocRaw(db, sizeof(WhereLoop));
    if( p==0 ) return SQLITE_NOMEM;
    whereLoopInit(p);
  }
  whereLoopXfer(db, p, pTemplate);
  p->pNextLoop = pNext;
  *ppPrev = p;
  if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
    Index *pIndex = p->u.btree.pIndex;
    if( pIndex && pIndex->tnum==0 ){
      p->u.btree.pIndex = 0;
    }
  }
  return SQLITE_OK;

  /* Jump here if the insert is a no-op */
whereLoopInsert_noop:
#if WHERETRACE_ENABLED
  if( sqlite3WhereTrace & 0x8 ){
    sqlite3DebugPrintf("ins-noop: ");
    whereLoopPrint(pTemplate, pWInfo->pTabList);
  }
#endif
  return SQLITE_OK;  
}

/*
** We have so far matched pBuilder->pNew->u.btree.nEq terms of the index pIndex.
** Try to match one more.
**
** If pProbe->tnum==0, that means pIndex is a fake index used for the
** INTEGER PRIMARY KEY.
*/
static int whereLoopAddBtreeIndex(
  WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
  struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
  Index *pProbe,                  /* An index on pSrc */
  WhereCost nInMul                /* log(Number of iterations due to IN) */
){
  WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
  Parse *pParse = pWInfo->pParse;        /* Parsing context */
  sqlite3 *db = pParse->db;       /* Database connection malloc context */
  WhereLoop *pNew;                /* Template WhereLoop under construction */
  WhereTerm *pTerm;               /* A WhereTerm under consideration */
  int opMask;                     /* Valid operators for constraints */
  WhereScan scan;                 /* Iterator for WHERE terms */
  Bitmask saved_prereq;           /* Original value of pNew->prereq */
  u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
  int saved_nEq;                  /* Original value of pNew->u.btree.nEq */
  u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
  WhereCost saved_nOut;           /* Original value of pNew->nOut */
  int iCol;                       /* Index of the column in the table */
  int rc = SQLITE_OK;             /* Return code */
  WhereCost nRowEst;              /* Estimated index selectivity */
  WhereCost rLogSize;             /* Logarithm of table size */
  WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */

  pNew = pBuilder->pNew;
  if( db->mallocFailed ) return SQLITE_NOMEM;

  assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
  assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
  if( pNew->wsFlags & WHERE_BTM_LIMIT ){
    opMask = WO_LT|WO_LE;
  }else if( pProbe->tnum<=0 || (pSrc->jointype & JT_LEFT)!=0 ){
    opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE;
  }else{
    opMask = WO_EQ|WO_IN|WO_ISNULL|WO_GT|WO_GE|WO_LT|WO_LE;
  }
  if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);

  assert( pNew->u.btree.nEq<=pProbe->nColumn );
  if( pNew->u.btree.nEq < pProbe->nColumn ){
    iCol = pProbe->aiColumn[pNew->u.btree.nEq];
    nRowEst = whereCost(pProbe->aiRowEst[pNew->u.btree.nEq+1]);
    if( nRowEst==0 && pProbe->onError==OE_None ) nRowEst = 1;
  }else{
    iCol = -1;
    nRowEst = 0;
  }
  pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol,
                        opMask, pProbe);
  saved_nEq = pNew->u.btree.nEq;
  saved_nLTerm = pNew->nLTerm;
  saved_wsFlags = pNew->wsFlags;
  saved_prereq = pNew->prereq;
  saved_nOut = pNew->nOut;
  pNew->rSetup = 0;
  rLogSize = estLog(whereCost(pProbe->aiRowEst[0]));
  for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
    int nIn = 0;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    int nRecValid = pBuilder->nRecValid;
#endif
    if( (pTerm->eOperator==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
     && (iCol<0 || pSrc->pTab->aCol[iCol].notNull)
    ){
      continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
    }
    if( pTerm->prereqRight & pNew->maskSelf ) continue;

    assert( pNew->nOut==saved_nOut );

    pNew->wsFlags = saved_wsFlags;
    pNew->u.btree.nEq = saved_nEq;
    pNew->nLTerm = saved_nLTerm;
    if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
    pNew->aLTerm[pNew->nLTerm++] = pTerm;
    pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
    pNew->rRun = rLogSize; /* Baseline cost is log2(N).  Adjustments below */
    if( pTerm->eOperator & WO_IN ){
      Expr *pExpr = pTerm->pExpr;
      pNew->wsFlags |= WHERE_COLUMN_IN;
      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
        nIn = 46;  assert( 46==whereCost(25) );
      }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
        /* "x IN (value, value, ...)" */
        nIn = whereCost(pExpr->x.pList->nExpr);
      }
      pNew->rRun += nIn;
      pNew->u.btree.nEq++;
      pNew->nOut = nRowEst + nInMul + nIn;
    }else if( pTerm->eOperator & (WO_EQ) ){
      assert( (pNew->wsFlags & (WHERE_COLUMN_NULL|WHERE_COLUMN_IN))!=0
                  || nInMul==0 );
      pNew->wsFlags |= WHERE_COLUMN_EQ;
      if( iCol<0  
       || (pProbe->onError!=OE_None && nInMul==0
           && pNew->u.btree.nEq==pProbe->nColumn-1)
      ){
        assert( (pNew->wsFlags & WHERE_COLUMN_IN)==0 || iCol<0 );
        pNew->wsFlags |= WHERE_ONEROW;
      }
      pNew->u.btree.nEq++;
      pNew->nOut = nRowEst + nInMul;
    }else if( pTerm->eOperator & (WO_ISNULL) ){
      pNew->wsFlags |= WHERE_COLUMN_NULL;
      pNew->u.btree.nEq++;
      /* TUNING: IS NULL selects 2 rows */
      nIn = 10;  assert( 10==whereCost(2) );
      pNew->nOut = nRowEst + nInMul + nIn;
    }else if( pTerm->eOperator & (WO_GT|WO_GE) ){
      testcase( pTerm->eOperator & WO_GT );
      testcase( pTerm->eOperator & WO_GE );
      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
      pBtm = pTerm;
      pTop = 0;
    }else{
      assert( pTerm->eOperator & (WO_LT|WO_LE) );
      testcase( pTerm->eOperator & WO_LT );
      testcase( pTerm->eOperator & WO_LE );
      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
      pTop = pTerm;
      pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
                     pNew->aLTerm[pNew->nLTerm-2] : 0;
    }
    if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
      /* Adjust nOut and rRun for STAT3 range values */
      assert( pNew->nOut==saved_nOut );
      whereRangeScanEst(pParse, pBuilder, pBtm, pTop, &pNew->nOut);
    }
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    if( nInMul==0 
     && pProbe->nSample 
     && pNew->u.btree.nEq<=pProbe->nSampleCol
     && OptimizationEnabled(db, SQLITE_Stat3) 
    ){
      Expr *pExpr = pTerm->pExpr;
      tRowcnt nOut = 0;
      if( (pTerm->eOperator & (WO_EQ|WO_ISNULL))!=0 ){
        testcase( pTerm->eOperator & WO_EQ );
        testcase( pTerm->eOperator & WO_ISNULL );
        rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
      }else if( (pTerm->eOperator & WO_IN)
             &&  !ExprHasProperty(pExpr, EP_xIsSelect)  ){
        rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
      }
      assert( nOut==0 || rc==SQLITE_OK );
      if( nOut ){
        nOut = whereCost(nOut);
        pNew->nOut = MIN(nOut, saved_nOut);
      }
    }
#endif
    if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
      /* Each row involves a step of the index, then a binary search of
      ** the main table */
      pNew->rRun =  whereCostAdd(pNew->rRun, rLogSize>27 ? rLogSize-17 : 10);
    }
    /* Step cost for each output row */
    pNew->rRun = whereCostAdd(pNew->rRun, pNew->nOut);
    /* TBD: Adjust nOut for additional constraints */
    rc = whereLoopInsert(pBuilder, pNew);
    if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
     && pNew->u.btree.nEq<(pProbe->nColumn + (pProbe->zName!=0))
    ){
      whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
    }
    pNew->nOut = saved_nOut;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    pBuilder->nRecValid = nRecValid;
#endif
  }
  pNew->prereq = saved_prereq;
  pNew->u.btree.nEq = saved_nEq;
  pNew->wsFlags = saved_wsFlags;
  pNew->nOut = saved_nOut;
  pNew->nLTerm = saved_nLTerm;
  return rc;
}

/*
** Return True if it is possible that pIndex might be useful in
** implementing the ORDER BY clause in pBuilder.
**
** Return False if pBuilder does not contain an ORDER BY clause or
** if there is no way for pIndex to be useful in implementing that
** ORDER BY clause.
*/
static int indexMightHelpWithOrderBy(
  WhereLoopBuilder *pBuilder,
  Index *pIndex,
  int iCursor
){
  ExprList *pOB;
  int ii, jj;

  if( pIndex->bUnordered ) return 0;
  if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
  for(ii=0; ii<pOB->nExpr; ii++){
    Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
    if( pExpr->op!=TK_COLUMN ) return 0;
    if( pExpr->iTable==iCursor ){
      for(jj=0; jj<pIndex->nColumn; jj++){
        if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
      }
    }
  }
  return 0;
}

/*
** Return a bitmask where 1s indicate that the corresponding column of
** the table is used by an index.  Only the first 63 columns are considered.
*/
static Bitmask columnsInIndex(Index *pIdx){
  Bitmask m = 0;
  int j;
  for(j=pIdx->nColumn-1; j>=0; j--){
    int x = pIdx->aiColumn[j];
    assert( x>=0 );
    testcase( x==BMS-1 );
    testcase( x==BMS-2 );
    if( x<BMS-1 ) m |= MASKBIT(x);
  }
  return m;
}

/* Check to see if a partial index with pPartIndexWhere can be used
** in the current query.  Return true if it can be and false if not.
*/
static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
  int i;
  WhereTerm *pTerm;
  for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    if( sqlite3ExprImpliesExpr(pTerm->pExpr, pWhere, iTab) ) return 1;
  }
  return 0;
}

/*
** Add all WhereLoop objects for a single table of the join where the table
** is idenfied by pBuilder->pNew->iTab.  That table is guaranteed to be
** a b-tree table, not a virtual table.
*/
static int whereLoopAddBtree(
  WhereLoopBuilder *pBuilder, /* WHERE clause information */
  Bitmask mExtra              /* Extra prerequesites for using this table */
){
  WhereInfo *pWInfo;          /* WHERE analysis context */
  Index *pProbe;              /* An index we are evaluating */
  Index sPk;                  /* A fake index object for the primary key */
  tRowcnt aiRowEstPk[2];      /* The aiRowEst[] value for the sPk index */
  int aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
  SrcList *pTabList;          /* The FROM clause */
  struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
  WhereLoop *pNew;            /* Template WhereLoop object */
  int rc = SQLITE_OK;         /* Return code */
  int iSortIdx = 1;           /* Index number */
  int b;                      /* A boolean value */
  WhereCost rSize;            /* number of rows in the table */
  WhereCost rLogSize;         /* Logarithm of the number of rows in the table */
  WhereClause *pWC;           /* The parsed WHERE clause */
  
  pNew = pBuilder->pNew;
  pWInfo = pBuilder->pWInfo;
  pTabList = pWInfo->pTabList;
  pSrc = pTabList->a + pNew->iTab;
  pWC = pBuilder->pWC;
  assert( !IsVirtual(pSrc->pTab) );

  if( pSrc->pIndex ){
    /* An INDEXED BY clause specifies a particular index to use */
    pProbe = pSrc->pIndex;
  }else{
    /* There is no INDEXED BY clause.  Create a fake Index object in local
    ** variable sPk to represent the rowid primary key index.  Make this
    ** fake index the first in a chain of Index objects with all of the real
    ** indices to follow */
    Index *pFirst;                  /* First of real indices on the table */
    memset(&sPk, 0, sizeof(Index));
    sPk.nColumn = 1;
    sPk.aiColumn = &aiColumnPk;
    sPk.aiRowEst = aiRowEstPk;
    sPk.onError = OE_Replace;
    sPk.pTable = pSrc->pTab;
    aiRowEstPk[0] = pSrc->pTab->nRowEst;
    aiRowEstPk[1] = 1;
    pFirst = pSrc->pTab->pIndex;
    if( pSrc->notIndexed==0 ){
      /* The real indices of the table are only considered if the
      ** NOT INDEXED qualifier is omitted from the FROM clause */
      sPk.pNext = pFirst;
    }
    pProbe = &sPk;
  }
  rSize = whereCost(pSrc->pTab->nRowEst);
  rLogSize = estLog(rSize);

#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
  /* Automatic indexes */
  if( !pBuilder->pOrSet
   && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
   && pSrc->pIndex==0
   && !pSrc->viaCoroutine
   && !pSrc->notIndexed
   && !pSrc->isCorrelated
  ){
    /* Generate auto-index WhereLoops */
    WhereTerm *pTerm;
    WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
    for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
      if( pTerm->prereqRight & pNew->maskSelf ) continue;
      if( termCanDriveIndex(pTerm, pSrc, 0) ){
        pNew->u.btree.nEq = 1;
        pNew->u.btree.pIndex = 0;
        pNew->nLTerm = 1;
        pNew->aLTerm[0] = pTerm;
        /* TUNING: One-time cost for computing the automatic index is
        ** approximately 7*N*log2(N) where N is the number of rows in
        ** the table being indexed. */
        pNew->rSetup = rLogSize + rSize + 28;  assert( 28==whereCost(7) );
        /* TUNING: Each index lookup yields 20 rows in the table.  This
        ** is more than the usual guess of 10 rows, since we have no way
        ** of knowning how selective the index will ultimately be.  It would
        ** not be unreasonable to make this value much larger. */
        pNew->nOut = 43;  assert( 43==whereCost(20) );
        pNew->rRun = whereCostAdd(rLogSize,pNew->nOut);
        pNew->wsFlags = WHERE_AUTO_INDEX;
        pNew->prereq = mExtra | pTerm->prereqRight;
        rc = whereLoopInsert(pBuilder, pNew);
      }
    }
  }
#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */

  /* Loop over all indices
  */
  for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){
    if( pProbe->pPartIdxWhere!=0
     && !whereUsablePartialIndex(pNew->iTab, pWC, pProbe->pPartIdxWhere) ){
      continue;  /* Partial index inappropriate for this query */
    }
    pNew->u.btree.nEq = 0;
    pNew->nLTerm = 0;
    pNew->iSortIdx = 0;
    pNew->rSetup = 0;
    pNew->prereq = mExtra;
    pNew->nOut = rSize;
    pNew->u.btree.pIndex = pProbe;
    b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
    /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
    assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
    if( pProbe->tnum<=0 ){
      /* Integer primary key index */
      pNew->wsFlags = WHERE_IPK;

      /* Full table scan */
      pNew->iSortIdx = b ? iSortIdx : 0;
      /* TUNING: Cost of full table scan is 3*(N + log2(N)).
      **  +  The extra 3 factor is to encourage the use of indexed lookups
      **     over full scans.  A smaller constant 2 is used for covering
      **     index scans so that a covering index scan will be favored over
      **     a table scan. */
      pNew->rRun = whereCostAdd(rSize,rLogSize) + 16;
      rc = whereLoopInsert(pBuilder, pNew);
      if( rc ) break;
    }else{
      Bitmask m = pSrc->colUsed & ~columnsInIndex(pProbe);
      pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;

      /* Full scan via index */
      if( b
       || ( m==0
         && pProbe->bUnordered==0
         && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
         && sqlite3GlobalConfig.bUseCis
         && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
          )
      ){
        pNew->iSortIdx = b ? iSortIdx : 0;
        if( m==0 ){
          /* TUNING: Cost of a covering index scan is 2*(N + log2(N)).
          **  +  The extra 2 factor is to encourage the use of indexed lookups
          **     over index scans.  A table scan uses a factor of 3 so that
          **     index scans are favored over table scans.
          **  +  If this covering index might also help satisfy the ORDER BY
          **     clause, then the cost is fudged down slightly so that this
          **     index is favored above other indices that have no hope of
          **     helping with the ORDER BY. */
          pNew->rRun = 10 + whereCostAdd(rSize,rLogSize) - b;
        }else{
          assert( b!=0 ); 
          /* TUNING: Cost of scanning a non-covering index is (N+1)*log2(N)
          ** which we will simplify to just N*log2(N) */
          pNew->rRun = rSize + rLogSize;
        }
        rc = whereLoopInsert(pBuilder, pNew);
        if( rc ) break;
      }
    }

    rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    sqlite3Stat4ProbeFree(pBuilder->pRec);
    pBuilder->nRecValid = 0;
    pBuilder->pRec = 0;
#endif

    /* If there was an INDEXED BY clause, then only that one index is
    ** considered. */
    if( pSrc->pIndex ) break;
  }
  return rc;
}

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Add all WhereLoop objects for a table of the join identified by
** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
*/
static int whereLoopAddVirtual(
  WhereLoopBuilder *pBuilder   /* WHERE clause information */
){
  WhereInfo *pWInfo;           /* WHERE analysis context */
  Parse *pParse;               /* The parsing context */
  WhereClause *pWC;            /* The WHERE clause */
  struct SrcList_item *pSrc;   /* The FROM clause term to search */
  Table *pTab;
  sqlite3 *db;
  sqlite3_index_info *pIdxInfo;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_constraint_usage *pUsage;
  WhereTerm *pTerm;
  int i, j;
  int iTerm, mxTerm;
  int nConstraint;
  int seenIn = 0;              /* True if an IN operator is seen */
  int seenVar = 0;             /* True if a non-constant constraint is seen */
  int iPhase;                  /* 0: const w/o IN, 1: const, 2: no IN,  2: IN */
  WhereLoop *pNew;
  int rc = SQLITE_OK;

  pWInfo = pBuilder->pWInfo;
  pParse = pWInfo->pParse;
  db = pParse->db;
  pWC = pBuilder->pWC;
  pNew = pBuilder->pNew;
  pSrc = &pWInfo->pTabList->a[pNew->iTab];
  pTab = pSrc->pTab;
  assert( IsVirtual(pTab) );
  pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pBuilder->pOrderBy);
  if( pIdxInfo==0 ) return SQLITE_NOMEM;
  pNew->prereq = 0;
  pNew->rSetup = 0;
  pNew->wsFlags = WHERE_VIRTUALTABLE;
  pNew->nLTerm = 0;
  pNew->u.vtab.needFree = 0;
  pUsage = pIdxInfo->aConstraintUsage;
  nConstraint = pIdxInfo->nConstraint;
  if( whereLoopResize(db, pNew, nConstraint) ){
    sqlite3DbFree(db, pIdxInfo);
    return SQLITE_NOMEM;
  }

  for(iPhase=0; iPhase<=3; iPhase++){
    if( !seenIn && (iPhase&1)!=0 ){
      iPhase++;
      if( iPhase>3 ) break;
    }
    if( !seenVar && iPhase>1 ) break;
    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
    for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
      j = pIdxCons->iTermOffset;
      pTerm = &pWC->a[j];
      switch( iPhase ){
        case 0:    /* Constants without IN operator */
          pIdxCons->usable = 0;
          if( (pTerm->eOperator & WO_IN)!=0 ){
            seenIn = 1;
          }
          if( pTerm->prereqRight!=0 ){
            seenVar = 1;
          }else if( (pTerm->eOperator & WO_IN)==0 ){
            pIdxCons->usable = 1;
          }
          break;
        case 1:    /* Constants with IN operators */
          assert( seenIn );
          pIdxCons->usable = (pTerm->prereqRight==0);
          break;
        case 2:    /* Variables without IN */
          assert( seenVar );
          pIdxCons->usable = (pTerm->eOperator & WO_IN)==0;
          break;
        default:   /* Variables with IN */
          assert( seenVar && seenIn );
          pIdxCons->usable = 1;
          break;
      }
    }
    memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
    if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
    pIdxInfo->idxStr = 0;
    pIdxInfo->idxNum = 0;
    pIdxInfo->needToFreeIdxStr = 0;
    pIdxInfo->orderByConsumed = 0;
    pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
    rc = vtabBestIndex(pParse, pTab, pIdxInfo);
    if( rc ) goto whereLoopAddVtab_exit;
    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
    pNew->prereq = 0;
    mxTerm = -1;
    assert( pNew->nLSlot>=nConstraint );
    for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
    pNew->u.vtab.omitMask = 0;
    for(i=0; i<nConstraint; i++, pIdxCons++){
      if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
        j = pIdxCons->iTermOffset;
        if( iTerm>=nConstraint
         || j<0
         || j>=pWC->nTerm
         || pNew->aLTerm[iTerm]!=0
        ){
          rc = SQLITE_ERROR;
          sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName);
          goto whereLoopAddVtab_exit;
        }
        testcase( iTerm==nConstraint-1 );
        testcase( j==0 );
        testcase( j==pWC->nTerm-1 );
        pTerm = &pWC->a[j];
        pNew->prereq |= pTerm->prereqRight;
        assert( iTerm<pNew->nLSlot );
        pNew->aLTerm[iTerm] = pTerm;
        if( iTerm>mxTerm ) mxTerm = iTerm;
        testcase( iTerm==15 );
        testcase( iTerm==16 );
        if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
        if( (pTerm->eOperator & WO_IN)!=0 ){
          if( pUsage[i].omit==0 ){
            /* Do not attempt to use an IN constraint if the virtual table
            ** says that the equivalent EQ constraint cannot be safely omitted.
            ** If we do attempt to use such a constraint, some rows might be
            ** repeated in the output. */
            break;
          }
          /* A virtual table that is constrained by an IN clause may not
          ** consume the ORDER BY clause because (1) the order of IN terms
          ** is not necessarily related to the order of output terms and
          ** (2) Multiple outputs from a single IN value will not merge
          ** together.  */
          pIdxInfo->orderByConsumed = 0;
        }
      }
    }
    if( i>=nConstraint ){
      pNew->nLTerm = mxTerm+1;
      assert( pNew->nLTerm<=pNew->nLSlot );
      pNew->u.vtab.idxNum = pIdxInfo->idxNum;
      pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
      pIdxInfo->needToFreeIdxStr = 0;
      pNew->u.vtab.idxStr = pIdxInfo->idxStr;
      pNew->u.vtab.isOrdered = (u8)((pIdxInfo->nOrderBy!=0)
                                     && pIdxInfo->orderByConsumed);
      pNew->rSetup = 0;
      pNew->rRun = whereCostFromDouble(pIdxInfo->estimatedCost);
      /* TUNING: Every virtual table query returns 25 rows */
      pNew->nOut = 46;  assert( 46==whereCost(25) );
      whereLoopInsert(pBuilder, pNew);
      if( pNew->u.vtab.needFree ){
        sqlite3_free(pNew->u.vtab.idxStr);
        pNew->u.vtab.needFree = 0;
      }
    }
  }  

whereLoopAddVtab_exit:
  if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
  sqlite3DbFree(db, pIdxInfo);
  return rc;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** Add WhereLoop entries to handle OR terms.  This works for either
** btrees or virtual tables.
*/
static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){
  WhereInfo *pWInfo = pBuilder->pWInfo;
  WhereClause *pWC;
  WhereLoop *pNew;
  WhereTerm *pTerm, *pWCEnd;
  int rc = SQLITE_OK;
  int iCur;
  WhereClause tempWC;
  WhereLoopBuilder sSubBuild;
  WhereOrSet sSum, sCur, sPrev;
  struct SrcList_item *pItem;
  
  pWC = pBuilder->pWC;
  if( pWInfo->wctrlFlags & WHERE_AND_ONLY ) return SQLITE_OK;
  pWCEnd = pWC->a + pWC->nTerm;
  pNew = pBuilder->pNew;
  memset(&sSum, 0, sizeof(sSum));

  for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
    if( (pTerm->eOperator & WO_OR)!=0
     && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 
    ){
      WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
      WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
      WhereTerm *pOrTerm;
      int once = 1;
      int i, j;
    
      pItem = pWInfo->pTabList->a + pNew->iTab;
      iCur = pItem->iCursor;
      sSubBuild = *pBuilder;
      sSubBuild.pOrderBy = 0;
      sSubBuild.pOrSet = &sCur;

      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        if( (pOrTerm->eOperator & WO_AND)!=0 ){
          sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
        }else if( pOrTerm->leftCursor==iCur ){
          tempWC.pWInfo = pWC->pWInfo;
          tempWC.pOuter = pWC;
          tempWC.op = TK_AND;
          tempWC.nTerm = 1;
          tempWC.a = pOrTerm;
          sSubBuild.pWC = &tempWC;
        }else{
          continue;
        }
        sCur.n = 0;
#ifndef SQLITE_OMIT_VIRTUALTABLE
        if( IsVirtual(pItem->pTab) ){
          rc = whereLoopAddVirtual(&sSubBuild);
          for(i=0; i<sCur.n; i++) sCur.a[i].prereq |= mExtra;
        }else
#endif
        {
          rc = whereLoopAddBtree(&sSubBuild, mExtra);
        }
        assert( rc==SQLITE_OK || sCur.n==0 );
        if( sCur.n==0 ){
          sSum.n = 0;
          break;
        }else if( once ){
          whereOrMove(&sSum, &sCur);
          once = 0;
        }else{
          whereOrMove(&sPrev, &sSum);
          sSum.n = 0;
          for(i=0; i<sPrev.n; i++){
            for(j=0; j<sCur.n; j++){
              whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
                            whereCostAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
                            whereCostAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
            }
          }
        }
      }
      pNew->nLTerm = 1;
      pNew->aLTerm[0] = pTerm;
      pNew->wsFlags = WHERE_MULTI_OR;
      pNew->rSetup = 0;
      pNew->iSortIdx = 0;
      memset(&pNew->u, 0, sizeof(pNew->u));
      for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
        /* TUNING: Multiple by 3.5 for the secondary table lookup */
        pNew->rRun = sSum.a[i].rRun + 18;
        pNew->nOut = sSum.a[i].nOut;
        pNew->prereq = sSum.a[i].prereq;
        rc = whereLoopInsert(pBuilder, pNew);
      }
    }
  }
  return rc;
}

/*
** Add all WhereLoop objects for all tables 
*/
static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
  WhereInfo *pWInfo = pBuilder->pWInfo;
  Bitmask mExtra = 0;
  Bitmask mPrior = 0;
  int iTab;
  SrcList *pTabList = pWInfo->pTabList;
  struct SrcList_item *pItem;
  sqlite3 *db = pWInfo->pParse->db;
  int nTabList = pWInfo->nLevel;
  int rc = SQLITE_OK;
  u8 priorJoinType = 0;
  WhereLoop *pNew;

  /* Loop over the tables in the join, from left to right */
  pNew = pBuilder->pNew;
  whereLoopInit(pNew);
  for(iTab=0, pItem=pTabList->a; iTab<nTabList; iTab++, pItem++){
    pNew->iTab = iTab;
    pNew->maskSelf = getMask(&pWInfo->sMaskSet, pItem->iCursor);
    if( ((pItem->jointype|priorJoinType) & (JT_LEFT|JT_CROSS))!=0 ){
      mExtra = mPrior;
    }
    priorJoinType = pItem->jointype;
    if( IsVirtual(pItem->pTab) ){
      rc = whereLoopAddVirtual(pBuilder);
    }else{
      rc = whereLoopAddBtree(pBuilder, mExtra);
    }
    if( rc==SQLITE_OK ){
      rc = whereLoopAddOr(pBuilder, mExtra);
    }
    mPrior |= pNew->maskSelf;
    if( rc || db->mallocFailed ) break;
  }
  whereLoopClear(db, pNew);
  return rc;
}

/*
** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
** parameters) to see if it outputs rows in the requested ORDER BY
** (or GROUP BY) without requiring a separate sort operation.  Return:
** 
**    0:  ORDER BY is not satisfied.  Sorting required
**    1:  ORDER BY is satisfied.      Omit sorting
**   -1:  Unknown at this time
**
** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
** strict.  With GROUP BY and DISTINCT the only requirement is that
** equivalent rows appear immediately adjacent to one another.  GROUP BY
** and DISTINT do not require rows to appear in any particular order as long
** as equivelent rows are grouped together.  Thus for GROUP BY and DISTINCT
** the pOrderBy terms can be matched in any order.  With ORDER BY, the 
** pOrderBy terms must be matched in strict left-to-right order.
*/
static int wherePathSatisfiesOrderBy(
  WhereInfo *pWInfo,    /* The WHERE clause */
  ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
  WherePath *pPath,     /* The WherePath to check */
  u16 wctrlFlags,       /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */
  u16 nLoop,            /* Number of entries in pPath->aLoop[] */
  WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
  Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
){
  u8 revSet;            /* True if rev is known */
  u8 rev;               /* Composite sort order */
  u8 revIdx;            /* Index sort order */
  u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
  u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
  u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
  u16 nColumn;          /* Number of columns in pIndex */
  u16 nOrderBy;         /* Number terms in the ORDER BY clause */
  int iLoop;            /* Index of WhereLoop in pPath being processed */
  int i, j;             /* Loop counters */
  int iCur;             /* Cursor number for current WhereLoop */
  int iColumn;          /* A column number within table iCur */
  WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
  WhereTerm *pTerm;     /* A single term of the WHERE clause */
  Expr *pOBExpr;        /* An expression from the ORDER BY clause */
  CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
  Index *pIndex;        /* The index associated with pLoop */
  sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
  Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
  Bitmask obDone;       /* Mask of all ORDER BY terms */
  Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
  Bitmask ready;              /* Mask of inner loops */

  /*
  ** We say the WhereLoop is "one-row" if it generates no more than one
  ** row of output.  A WhereLoop is one-row if all of the following are true:
  **  (a) All index columns match with WHERE_COLUMN_EQ.
  **  (b) The index is unique
  ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
  ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
  **
  ** We say the WhereLoop is "order-distinct" if the set of columns from
  ** that WhereLoop that are in the ORDER BY clause are different for every
  ** row of the WhereLoop.  Every one-row WhereLoop is automatically
  ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
  ** is not order-distinct. To be order-distinct is not quite the same as being
  ** UNIQUE since a UNIQUE column or index can have multiple rows that 
  ** are NULL and NULL values are equivalent for the purpose of order-distinct.
  ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
  **
  ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
  ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
  ** automatically order-distinct.
  */

  assert( pOrderBy!=0 );

  /* Sortability of virtual tables is determined by the xBestIndex method
  ** of the virtual table itself */
  if( pLast->wsFlags & WHERE_VIRTUALTABLE ){
    testcase( nLoop>0 );  /* True when outer loops are one-row and match 
                          ** no ORDER BY terms */
    return pLast->u.vtab.isOrdered;
  }
  if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;

  nOrderBy = pOrderBy->nExpr;
  testcase( nOrderBy==BMS-1 );
  if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
  isOrderDistinct = 1;
  obDone = MASKBIT(nOrderBy)-1;
  orderDistinctMask = 0;
  ready = 0;
  for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
    if( iLoop>0 ) ready |= pLoop->maskSelf;
    pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast;
    assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
    iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;

    /* Mark off any ORDER BY term X that is a column in the table of
    ** the current loop for which there is term in the WHERE
    ** clause of the form X IS NULL or X=? that reference only outer
    ** loops.
    */
    for(i=0; i<nOrderBy; i++){
      if( MASKBIT(i) & obSat ) continue;
      pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
      if( pOBExpr->op!=TK_COLUMN ) continue;
      if( pOBExpr->iTable!=iCur ) continue;
      pTerm = findTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
                       ~ready, WO_EQ|WO_ISNULL, 0);
      if( pTerm==0 ) continue;
      if( (pTerm->eOperator&WO_EQ)!=0 && pOBExpr->iColumn>=0 ){
        const char *z1, *z2;
        pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
        if( !pColl ) pColl = db->pDfltColl;
        z1 = pColl->zName;
        pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr);
        if( !pColl ) pColl = db->pDfltColl;
        z2 = pColl->zName;
        if( sqlite3StrICmp(z1, z2)!=0 ) continue;
      }
      obSat |= MASKBIT(i);
    }

    if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
      if( pLoop->wsFlags & WHERE_IPK ){
        pIndex = 0;
        nColumn = 0;
      }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
        return 0;
      }else{
        nColumn = pIndex->nColumn;
        isOrderDistinct = pIndex->onError!=OE_None;
      }

      /* Loop through all columns of the index and deal with the ones
      ** that are not constrained by == or IN.
      */
      rev = revSet = 0;
      distinctColumns = 0;
      for(j=0; j<=nColumn; j++){
        u8 bOnce;   /* True to run the ORDER BY search loop */

        /* Skip over == and IS NULL terms */
        if( j<pLoop->u.btree.nEq
         && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0
        ){
          if( i & WO_ISNULL ){
            testcase( isOrderDistinct );
            isOrderDistinct = 0;
          }
          continue;  
        }

        /* Get the column number in the table (iColumn) and sort order
        ** (revIdx) for the j-th column of the index.
        */
        if( j<nColumn ){
          /* Normal index columns */
          iColumn = pIndex->aiColumn[j];
          revIdx = pIndex->aSortOrder[j];
          if( iColumn==pIndex->pTable->iPKey ) iColumn = -1;
        }else{
          /* The ROWID column at the end */
          assert( j==nColumn );
          iColumn = -1;
          revIdx = 0;
        }

        /* An unconstrained column that might be NULL means that this
        ** WhereLoop is not well-ordered 
        */
        if( isOrderDistinct
         && iColumn>=0
         && j>=pLoop->u.btree.nEq
         && pIndex->pTable->aCol[iColumn].notNull==0
        ){
          isOrderDistinct = 0;
        }

        /* Find the ORDER BY term that corresponds to the j-th column
        ** of the index and and mark that ORDER BY term off 
        */
        bOnce = 1;
        isMatch = 0;
        for(i=0; bOnce && i<nOrderBy; i++){
          if( MASKBIT(i) & obSat ) continue;
          pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
          testcase( wctrlFlags & WHERE_GROUPBY );
          testcase( wctrlFlags & WHERE_DISTINCTBY );
          if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
          if( pOBExpr->op!=TK_COLUMN ) continue;
          if( pOBExpr->iTable!=iCur ) continue;
          if( pOBExpr->iColumn!=iColumn ) continue;
          if( iColumn>=0 ){
            pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
            if( !pColl ) pColl = db->pDfltColl;
            if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
          }
          isMatch = 1;
          break;
        }
        if( isMatch ){
          if( iColumn<0 ){
            testcase( distinctColumns==0 );
            distinctColumns = 1;
          }
          obSat |= MASKBIT(i);
          if( (pWInfo->wctrlFlags & WHERE_GROUPBY)==0 ){
            /* Make sure the sort order is compatible in an ORDER BY clause.
            ** Sort order is irrelevant for a GROUP BY clause. */
            if( revSet ){
              if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) return 0;
            }else{
              rev = revIdx ^ pOrderBy->a[i].sortOrder;
              if( rev ) *pRevMask |= MASKBIT(iLoop);
              revSet = 1;
            }
          }
        }else{
          /* No match found */
          if( j==0 || j<nColumn ){
            testcase( isOrderDistinct!=0 );
            isOrderDistinct = 0;
          }
          break;
        }
      } /* end Loop over all index columns */
      if( distinctColumns ){
        testcase( isOrderDistinct==0 );
        isOrderDistinct = 1;
      }
    } /* end-if not one-row */

    /* Mark off any other ORDER BY terms that reference pLoop */
    if( isOrderDistinct ){
      orderDistinctMask |= pLoop->maskSelf;
      for(i=0; i<nOrderBy; i++){
        Expr *p;
        if( MASKBIT(i) & obSat ) continue;
        p = pOrderBy->a[i].pExpr;
        if( (exprTableUsage(&pWInfo->sMaskSet, p)&~orderDistinctMask)==0 ){
          obSat |= MASKBIT(i);
        }
      }
    }
  } /* End the loop over all WhereLoops from outer-most down to inner-most */
  if( obSat==obDone ) return 1;
  if( !isOrderDistinct ) return 0;
  return -1;
}

#ifdef WHERETRACE_ENABLED
/* For debugging use only: */
static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
  static char zName[65];
  int i;
  for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
  if( pLast ) zName[i++] = pLast->cId;
  zName[i] = 0;
  return zName;
}
#endif


/*
** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
** attempts to find the lowest cost path that visits each WhereLoop
** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
**
** Assume that the total number of output rows that will need to be sorted
** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
** costs if nRowEst==0.
**
** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
** error occurs.
*/
static int wherePathSolver(WhereInfo *pWInfo, WhereCost nRowEst){
  int mxChoice;             /* Maximum number of simultaneous paths tracked */
  int nLoop;                /* Number of terms in the join */
  Parse *pParse;            /* Parsing context */
  sqlite3 *db;              /* The database connection */
  int iLoop;                /* Loop counter over the terms of the join */
  int ii, jj;               /* Loop counters */
  WhereCost rCost;             /* Cost of a path */
  WhereCost mxCost = 0;        /* Maximum cost of a set of paths */
  WhereCost rSortCost;         /* Cost to do a sort */
  int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
  WherePath *aFrom;         /* All nFrom paths at the previous level */
  WherePath *aTo;           /* The nTo best paths at the current level */
  WherePath *pFrom;         /* An element of aFrom[] that we are working on */
  WherePath *pTo;           /* An element of aTo[] that we are working on */
  WhereLoop *pWLoop;        /* One of the WhereLoop objects */
  WhereLoop **pX;           /* Used to divy up the pSpace memory */
  char *pSpace;             /* Temporary memory used by this routine */

  pParse = pWInfo->pParse;
  db = pParse->db;
  nLoop = pWInfo->nLevel;
  /* TUNING: For simple queries, only the best path is tracked.
  ** For 2-way joins, the 5 best paths are followed.
  ** For joins of 3 or more tables, track the 10 best paths */
  mxChoice = (nLoop==1) ? 1 : (nLoop==2 ? 5 : 10);
  assert( nLoop<=pWInfo->pTabList->nSrc );
  WHERETRACE(0x002, ("---- begin solver\n"));

  /* Allocate and initialize space for aTo and aFrom */
  ii = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
  pSpace = sqlite3DbMallocRaw(db, ii);
  if( pSpace==0 ) return SQLITE_NOMEM;
  aTo = (WherePath*)pSpace;
  aFrom = aTo+mxChoice;
  memset(aFrom, 0, sizeof(aFrom[0]));
  pX = (WhereLoop**)(aFrom+mxChoice);
  for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
    pFrom->aLoop = pX;
  }

  /* Seed the search with a single WherePath containing zero WhereLoops.
  **
  ** TUNING: Do not let the number of iterations go above 25.  If the cost
  ** of computing an automatic index is not paid back within the first 25
  ** rows, then do not use the automatic index. */
  aFrom[0].nRow = MIN(pParse->nQueryLoop, 46);  assert( 46==whereCost(25) );
  nFrom = 1;

  /* Precompute the cost of sorting the final result set, if the caller
  ** to sqlite3WhereBegin() was concerned about sorting */
  rSortCost = 0;
  if( pWInfo->pOrderBy==0 || nRowEst==0 ){
    aFrom[0].isOrderedValid = 1;
  }else{
    /* TUNING: Estimated cost of sorting is N*log2(N) where N is the
    ** number of output rows. */
    rSortCost = nRowEst + estLog(nRowEst);
    WHERETRACE(0x002,("---- sort cost=%-3d\n", rSortCost));
  }

  /* Compute successively longer WherePaths using the previous generation
  ** of WherePaths as the basis for the next.  Keep track of the mxChoice
  ** best paths at each generation */
  for(iLoop=0; iLoop<nLoop; iLoop++){
    nTo = 0;
    for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
      for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
        Bitmask maskNew;
        Bitmask revMask = 0;
        u8 isOrderedValid = pFrom->isOrderedValid;
        u8 isOrdered = pFrom->isOrdered;
        if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
        if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
        /* At this point, pWLoop is a candidate to be the next loop. 
        ** Compute its cost */
        rCost = whereCostAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
        rCost = whereCostAdd(rCost, pFrom->rCost);
        maskNew = pFrom->maskLoop | pWLoop->maskSelf;
        if( !isOrderedValid ){
          switch( wherePathSatisfiesOrderBy(pWInfo,
                       pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
                       iLoop, pWLoop, &revMask) ){
            case 1:  /* Yes.  pFrom+pWLoop does satisfy the ORDER BY clause */
              isOrdered = 1;
              isOrderedValid = 1;
              break;
            case 0:  /* No.  pFrom+pWLoop will require a separate sort */
              isOrdered = 0;
              isOrderedValid = 1;
              rCost = whereCostAdd(rCost, rSortCost);
              break;
            default: /* Cannot tell yet.  Try again on the next iteration */
              break;
          }
        }else{
          revMask = pFrom->revLoop;
        }
        /* Check to see if pWLoop should be added to the mxChoice best so far */
        for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
          if( pTo->maskLoop==maskNew && pTo->isOrderedValid==isOrderedValid ){
            testcase( jj==nTo-1 );
            break;
          }
        }
        if( jj>=nTo ){
          if( nTo>=mxChoice && rCost>=mxCost ){
#ifdef WHERETRACE_ENABLED
            if( sqlite3WhereTrace&0x4 ){
              sqlite3DebugPrintf("Skip   %s cost=%3d order=%c\n",
                  wherePathName(pFrom, iLoop, pWLoop), rCost,
                  isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
            }
#endif
            continue;
          }
          /* Add a new Path to the aTo[] set */
          if( nTo<mxChoice ){
            /* Increase the size of the aTo set by one */
            jj = nTo++;
          }else{
            /* New path replaces the prior worst to keep count below mxChoice */
            for(jj=nTo-1; aTo[jj].rCost<mxCost; jj--){ assert(jj>0); }
          }
          pTo = &aTo[jj];
#ifdef WHERETRACE_ENABLED
          if( sqlite3WhereTrace&0x4 ){
            sqlite3DebugPrintf("New    %s cost=%-3d order=%c\n",
                wherePathName(pFrom, iLoop, pWLoop), rCost,
                isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
          }
#endif
        }else{
          if( pTo->rCost<=rCost ){
#ifdef WHERETRACE_ENABLED
            if( sqlite3WhereTrace&0x4 ){
              sqlite3DebugPrintf(
                  "Skip   %s cost=%-3d order=%c",
                  wherePathName(pFrom, iLoop, pWLoop), rCost,
                  isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
              sqlite3DebugPrintf("   vs %s cost=%-3d order=%c\n",
                  wherePathName(pTo, iLoop+1, 0), pTo->rCost,
                  pTo->isOrderedValid ? (pTo->isOrdered ? 'Y' : 'N') : '?');
            }
#endif
            testcase( pTo->rCost==rCost );
            continue;
          }
          testcase( pTo->rCost==rCost+1 );
          /* A new and better score for a previously created equivalent path */
#ifdef WHERETRACE_ENABLED
          if( sqlite3WhereTrace&0x4 ){
            sqlite3DebugPrintf(
                "Update %s cost=%-3d order=%c",
                wherePathName(pFrom, iLoop, pWLoop), rCost,
                isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
            sqlite3DebugPrintf("  was %s cost=%-3d order=%c\n",
                wherePathName(pTo, iLoop+1, 0), pTo->rCost,
                pTo->isOrderedValid ? (pTo->isOrdered ? 'Y' : 'N') : '?');
          }
#endif
        }
        /* pWLoop is a winner.  Add it to the set of best so far */
        pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
        pTo->revLoop = revMask;
        pTo->nRow = pFrom->nRow + pWLoop->nOut;
        pTo->rCost = rCost;
        pTo->isOrderedValid = isOrderedValid;
        pTo->isOrdered = isOrdered;
        memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
        pTo->aLoop[iLoop] = pWLoop;
        if( nTo>=mxChoice ){
          mxCost = aTo[0].rCost;
          for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
            if( pTo->rCost>mxCost ) mxCost = pTo->rCost;
          }
        }
      }
    }

#ifdef WHERETRACE_ENABLED
    if( sqlite3WhereTrace>=2 ){
      sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
      for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
        sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
           wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
           pTo->isOrderedValid ? (pTo->isOrdered ? 'Y' : 'N') : '?');
        if( pTo->isOrderedValid && pTo->isOrdered ){
          sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
        }else{
          sqlite3DebugPrintf("\n");
        }
      }
    }
#endif

    /* Swap the roles of aFrom and aTo for the next generation */
    pFrom = aTo;
    aTo = aFrom;
    aFrom = pFrom;
    nFrom = nTo;
  }

  if( nFrom==0 ){
    sqlite3ErrorMsg(pParse, "no query solution");
    sqlite3DbFree(db, pSpace);
    return SQLITE_ERROR;
  }
  
  /* Find the lowest cost path.  pFrom will be left pointing to that path */
  pFrom = aFrom;
  assert( nFrom==1 );
#if 0 /* The following is needed if nFrom is ever more than 1 */
  for(ii=1; ii<nFrom; ii++){
    if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
  }
#endif
  assert( pWInfo->nLevel==nLoop );
  /* Load the lowest cost path into pWInfo */
  for(iLoop=0; iLoop<nLoop; iLoop++){
    WhereLevel *pLevel = pWInfo->a + iLoop;
    pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
    pLevel->iFrom = pWLoop->iTab;
    pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
  }
  if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
   && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
   && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
   && nRowEst
  ){
    Bitmask notUsed;
    int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
                 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
    if( rc==1 ) pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
  }
  if( pFrom->isOrdered ){
    if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
      pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
    }else{
      pWInfo->bOBSat = 1;
      pWInfo->revMask = pFrom->revLoop;
    }
  }
  pWInfo->nRowOut = pFrom->nRow;

  /* Free temporary memory and return success */
  sqlite3DbFree(db, pSpace);
  return SQLITE_OK;
}

/*
** Most queries use only a single table (they are not joins) and have
** simple == constraints against indexed fields.  This routine attempts
** to plan those simple cases using much less ceremony than the
** general-purpose query planner, and thereby yield faster sqlite3_prepare()
** times for the common case.
**
** Return non-zero on success, if this query can be handled by this
** no-frills query planner.  Return zero if this query needs the 
** general-purpose query planner.
*/
static int whereShortCut(WhereLoopBuilder *pBuilder){
  WhereInfo *pWInfo;
  struct SrcList_item *pItem;
  WhereClause *pWC;
  WhereTerm *pTerm;
  WhereLoop *pLoop;
  int iCur;
  int j;
  Table *pTab;
  Index *pIdx;
  
  pWInfo = pBuilder->pWInfo;
  if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0;
  assert( pWInfo->pTabList->nSrc>=1 );
  pItem = pWInfo->pTabList->a;
  pTab = pItem->pTab;
  if( IsVirtual(pTab) ) return 0;
  if( pItem->zIndex ) return 0;
  iCur = pItem->iCursor;
  pWC = &pWInfo->sWC;
  pLoop = pBuilder->pNew;
  pLoop->wsFlags = 0;
  pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0);
  if( pTerm ){
    pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
    pLoop->aLTerm[0] = pTerm;
    pLoop->nLTerm = 1;
    pLoop->u.btree.nEq = 1;
    /* TUNING: Cost of a rowid lookup is 10 */
    pLoop->rRun = 33;  /* 33==whereCost(10) */
  }else{
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      assert( pLoop->aLTermSpace==pLoop->aLTerm );
      assert( ArraySize(pLoop->aLTermSpace)==4 );
      if( pIdx->onError==OE_None 
       || pIdx->pPartIdxWhere!=0 
       || pIdx->nColumn>ArraySize(pLoop->aLTermSpace) 
      ) continue;
      for(j=0; j<pIdx->nColumn; j++){
        pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx);
        if( pTerm==0 ) break;
        pLoop->aLTerm[j] = pTerm;
      }
      if( j!=pIdx->nColumn ) continue;
      pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
      if( (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
        pLoop->wsFlags |= WHERE_IDX_ONLY;
      }
      pLoop->nLTerm = j;
      pLoop->u.btree.nEq = j;
      pLoop->u.btree.pIndex = pIdx;
      /* TUNING: Cost of a unique index lookup is 15 */
      pLoop->rRun = 39;  /* 39==whereCost(15) */
      break;
    }
  }
  if( pLoop->wsFlags ){
    pLoop->nOut = (WhereCost)1;
    pWInfo->a[0].pWLoop = pLoop;
    pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur);
    pWInfo->a[0].iTabCur = iCur;
    pWInfo->nRowOut = 1;
    if( pWInfo->pOrderBy ) pWInfo->bOBSat =  1;
    if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
    }
#ifdef SQLITE_DEBUG
    pLoop->cId = '0';
#endif
    return 1;
  }
  return 0;
}

/*
** Generate the beginning of the loop used for WHERE clause processing.
** The return value is a pointer to an opaque structure that contains
** information needed to terminate the loop.  Later, the calling routine
** should invoke sqlite3WhereEnd() with the return value of this function
** in order to complete the WHERE clause processing.
5033
5034
5035
5036
5037
5038
5039
5040

5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073

5074
5075
5076

5077

5078





5079
5080
5081
5082
5083
5084
5085
**        move the row2 cursor to a null row
**        goto start
**      fi
**    end
**
** ORDER BY CLAUSE PROCESSING
**
** pOrderBy is a pointer to the ORDER BY clause of a SELECT statement,

** if there is one.  If there is no ORDER BY clause or if this routine
** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
**
** If an index can be used so that the natural output order of the table
** scan is correct for the ORDER BY clause, then that index is used and
** the returned WhereInfo.nOBSat field is set to pOrderBy->nExpr.  This
** is an optimization that prevents an unnecessary sort of the result set
** if an index appropriate for the ORDER BY clause already exists.
**
** If the where clause loops cannot be arranged to provide the correct
** output order, then WhereInfo.nOBSat is 0.
*/
WhereInfo *sqlite3WhereBegin(
  Parse *pParse,        /* The parser context */
  SrcList *pTabList,    /* A list of all tables to be scanned */
  Expr *pWhere,         /* The WHERE clause */
  ExprList *pOrderBy,   /* An ORDER BY clause, or NULL */
  ExprList *pDistinct,  /* The select-list for DISTINCT queries - or NULL */
  u16 wctrlFlags,       /* One of the WHERE_* flags defined in sqliteInt.h */
  int iIdxCur           /* If WHERE_ONETABLE_ONLY is set, index cursor number */
){
  int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
  int nTabList;              /* Number of elements in pTabList */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
  Bitmask notReady;          /* Cursors that are not yet positioned */
  WhereBestIdx sWBI;         /* Best index search context */
  WhereMaskSet *pMaskSet;    /* The expression mask set */
  WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
  int iFrom;                 /* First unused FROM clause element */
  int andFlags;              /* AND-ed combination of all pWC->a[].wtFlags */
  int ii;                    /* Loop counter */
  sqlite3 *db;               /* Database connection */



  /* Variable initialization */

  memset(&sWBI, 0, sizeof(sWBI));

  sWBI.pParse = pParse;






  /* The number of tables in the FROM clause is limited by the number of
  ** bits in a Bitmask 
  */
  testcase( pTabList->nSrc==BMS );
  if( pTabList->nSrc>BMS ){
    sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);







|
>


<
<
<
<
<
<
<
<
<



|


|








|


|
<


>



>
|
>
|
>
>
>
>
>







5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676









5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695

5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
**        move the row2 cursor to a null row
**        goto start
**      fi
**    end
**
** ORDER BY CLAUSE PROCESSING
**
** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
** if there is one.  If there is no ORDER BY clause or if this routine
** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.









*/
WhereInfo *sqlite3WhereBegin(
  Parse *pParse,        /* The parser context */
  SrcList *pTabList,    /* FROM clause: A list of all tables to be scanned */
  Expr *pWhere,         /* The WHERE clause */
  ExprList *pOrderBy,   /* An ORDER BY clause, or NULL */
  ExprList *pResultSet, /* Result set of the query */
  u16 wctrlFlags,       /* One of the WHERE_* flags defined in sqliteInt.h */
  int iIdxCur           /* If WHERE_ONETABLE_ONLY is set, index cursor number */
){
  int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
  int nTabList;              /* Number of elements in pTabList */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
  Bitmask notReady;          /* Cursors that are not yet positioned */
  WhereLoopBuilder sWLB;     /* The WhereLoop builder */
  WhereMaskSet *pMaskSet;    /* The expression mask set */
  WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
  WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */

  int ii;                    /* Loop counter */
  sqlite3 *db;               /* Database connection */
  int rc;                    /* Return code */


  /* Variable initialization */
  db = pParse->db;
  memset(&sWLB, 0, sizeof(sWLB));
  sWLB.pOrderBy = pOrderBy;

  /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
  ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
  if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
    wctrlFlags &= ~WHERE_WANT_DISTINCT;
  }

  /* The number of tables in the FROM clause is limited by the number of
  ** bits in a Bitmask 
  */
  testcase( pTabList->nSrc==BMS );
  if( pTabList->nSrc>BMS ){
    sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117


5118
5119
5120
5121
5122
5123
5124
5125
5126


5127


5128
5129
5130
5131
5132
5133
5134
5135

5136
5137
5138
5139
5140
5141
5142
5143









5144
5145
5146
5147
5148
5149
5150
  /* Allocate and initialize the WhereInfo structure that will become the
  ** return value. A single allocation is used to store the WhereInfo
  ** struct, the contents of WhereInfo.a[], the WhereClause structure
  ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
  ** field (type Bitmask) it must be aligned on an 8-byte boundary on
  ** some architectures. Hence the ROUND8() below.
  */
  db = pParse->db;
  nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
  pWInfo = sqlite3DbMallocZero(db, 
      nByteWInfo + 
      sizeof(WhereClause) +
      sizeof(WhereMaskSet)
  );
  if( db->mallocFailed ){
    sqlite3DbFree(db, pWInfo);
    pWInfo = 0;
    goto whereBeginError;
  }
  pWInfo->nLevel = nTabList;
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;


  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
  pWInfo->pWC = sWBI.pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
  pWInfo->wctrlFlags = wctrlFlags;
  pWInfo->savedNQueryLoop = pParse->nQueryLoop;
  pMaskSet = (WhereMaskSet*)&sWBI.pWC[1];
  sWBI.aLevel = pWInfo->a;

  /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
  ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */


  if( OptimizationDisabled(db, SQLITE_DistinctOpt) ) pDistinct = 0;



  /* Split the WHERE clause into separate subexpressions where each
  ** subexpression is separated by an AND operator.
  */
  initMaskSet(pMaskSet);
  whereClauseInit(sWBI.pWC, pParse, pMaskSet, wctrlFlags);
  sqlite3ExprCodeConstants(pParse, pWhere);
  whereSplit(sWBI.pWC, pWhere, TK_AND);   /* IMP: R-15842-53296 */

    
  /* Special case: a WHERE clause that is constant.  Evaluate the
  ** expression and either jump over all of the code or fall thru.
  */
  if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
    sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
    pWhere = 0;
  }










  /* Assign a bit from the bitmask to every term in the FROM clause.
  **
  ** When assigning bitmask values to FROM clause cursors, it must be
  ** the case that if X is the bitmask for the N-th FROM clause term then
  ** the bitmask for all FROM clause terms to the left of the N-th term
  ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use







<

|
<
<
<
<








>
>

<


|
|
|
<
|
>
>
|
>
>





|

|
>








>
>
>
>
>
>
>
>
>







5728
5729
5730
5731
5732
5733
5734

5735
5736




5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747

5748
5749
5750
5751
5752

5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
  /* Allocate and initialize the WhereInfo structure that will become the
  ** return value. A single allocation is used to store the WhereInfo
  ** struct, the contents of WhereInfo.a[], the WhereClause structure
  ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
  ** field (type Bitmask) it must be aligned on an 8-byte boundary on
  ** some architectures. Hence the ROUND8() below.
  */

  nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
  pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop));




  if( db->mallocFailed ){
    sqlite3DbFree(db, pWInfo);
    pWInfo = 0;
    goto whereBeginError;
  }
  pWInfo->nLevel = nTabList;
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->pOrderBy = pOrderBy;
  pWInfo->pResultSet = pResultSet;
  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);

  pWInfo->wctrlFlags = wctrlFlags;
  pWInfo->savedNQueryLoop = pParse->nQueryLoop;
  pMaskSet = &pWInfo->sMaskSet;
  sWLB.pWInfo = pWInfo;
  sWLB.pWC = &pWInfo->sWC;

  sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
  assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
  whereLoopInit(sWLB.pNew);
#ifdef SQLITE_DEBUG
  sWLB.pNew->cId = '*';
#endif

  /* Split the WHERE clause into separate subexpressions where each
  ** subexpression is separated by an AND operator.
  */
  initMaskSet(pMaskSet);
  whereClauseInit(&pWInfo->sWC, pWInfo);
  sqlite3ExprCodeConstants(pParse, pWhere);
  whereSplit(&pWInfo->sWC, pWhere, TK_AND);
  sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
    
  /* Special case: a WHERE clause that is constant.  Evaluate the
  ** expression and either jump over all of the code or fall thru.
  */
  if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
    sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
    pWhere = 0;
  }

  /* Special case: No FROM clause
  */
  if( nTabList==0 ){
    if( pOrderBy ) pWInfo->bOBSat = 1;
    if( wctrlFlags & WHERE_WANT_DISTINCT ){
      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
    }
  }

  /* Assign a bit from the bitmask to every term in the FROM clause.
  **
  ** When assigning bitmask values to FROM clause cursors, it must be
  ** the case that if X is the bitmask for the N-th FROM clause term then
  ** the bitmask for all FROM clause terms to the left of the N-th term
  ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190


5191



5192
5193

5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205

5206
5207
5208
5209
5210


5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224




5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246

5247
5248
5249
5250


5251
5252
5253


5254
5255
5256

5257
5258
5259

5260
5261



5262
5263
5264
5265
5266
5267
5268

5269
5270
5271

5272




5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288



5289
5290




5291











5292
5293
5294
5295
5296
5297
5298
5299
5300




5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469

5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488

5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525

5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591

5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626

5627
5628
5629
5630
5631
5632
5633
5634

5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684

5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699

5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721


5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
#endif

  /* Analyze all of the subexpressions.  Note that exprAnalyze() might
  ** add new virtual terms onto the end of the WHERE clause.  We do not
  ** want to analyze these virtual terms, so start analyzing at the end
  ** and work forward so that the added virtual terms are never processed.
  */
  exprAnalyzeAll(pTabList, sWBI.pWC);
  if( db->mallocFailed ){
    goto whereBeginError;
  }

  /* Check if the DISTINCT qualifier, if there is one, is redundant. 
  ** If it is, then set pDistinct to NULL and WhereInfo.eDistinct to
  ** WHERE_DISTINCT_UNIQUE to tell the caller to ignore the DISTINCT.
  */
  if( pDistinct && isDistinctRedundant(pParse, pTabList, sWBI.pWC, pDistinct) ){
    pDistinct = 0;


    pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;



  }


  /* Chose the best index to use for each table in the FROM clause.
  **
  ** This loop fills in the following fields:
  **
  **   pWInfo->a[].pIdx      The index to use for this level of the loop.
  **   pWInfo->a[].wsFlags   WHERE_xxx flags associated with pIdx
  **   pWInfo->a[].nEq       The number of == and IN constraints
  **   pWInfo->a[].iFrom     Which term of the FROM clause is being coded
  **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
  **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
  **   pWInfo->a[].pTerm     When wsFlags==WO_OR, the OR-clause term
  **

  ** This loop also figures out the nesting order of tables in the FROM
  ** clause.
  */
  sWBI.notValid = ~(Bitmask)0;
  sWBI.pOrderBy = pOrderBy;


  sWBI.n = nTabList;
  sWBI.pDistinct = pDistinct;
  andFlags = ~0;
  WHERETRACE(("*** Optimizer Start ***\n"));
  for(sWBI.i=iFrom=0, pLevel=pWInfo->a; sWBI.i<nTabList; sWBI.i++, pLevel++){
    WhereCost bestPlan;         /* Most efficient plan seen so far */
    Index *pIdx;                /* Index for FROM table at pTabItem */
    int j;                      /* For looping over FROM tables */
    int bestJ = -1;             /* The value of j */
    Bitmask m;                  /* Bitmask value for j or bestJ */
    int isOptimal;              /* Iterator for optimal/non-optimal search */
    int ckOptimal;              /* Do the optimal scan check */
    int nUnconstrained;         /* Number tables without INDEXED BY */
    Bitmask notIndexed;         /* Mask of tables that cannot use an index */





    memset(&bestPlan, 0, sizeof(bestPlan));
    bestPlan.rCost = SQLITE_BIG_DBL;
    WHERETRACE(("*** Begin search for loop %d ***\n", sWBI.i));

    /* Loop through the remaining entries in the FROM clause to find the
    ** next nested loop. The loop tests all FROM clause entries
    ** either once or twice. 
    **
    ** The first test is always performed if there are two or more entries
    ** remaining and never performed if there is only one FROM clause entry
    ** to choose from.  The first test looks for an "optimal" scan.  In
    ** this context an optimal scan is one that uses the same strategy
    ** for the given FROM clause entry as would be selected if the entry
    ** were used as the innermost nested loop.  In other words, a table
    ** is chosen such that the cost of running that table cannot be reduced
    ** by waiting for other tables to run first.  This "optimal" test works
    ** by first assuming that the FROM clause is on the inner loop and finding
    ** its query plan, then checking to see if that query plan uses any
    ** other FROM clause terms that are sWBI.notValid.  If no notValid terms
    ** are used then the "optimal" query plan works.
    **

    ** Note that the WhereCost.nRow parameter for an optimal scan might
    ** not be as small as it would be if the table really were the innermost
    ** join.  The nRow value can be reduced by WHERE clause constraints
    ** that do not use indices.  But this nRow reduction only happens if the


    ** table really is the innermost join.  
    **
    ** The second loop iteration is only performed if no optimal scan


    ** strategies were found by the first iteration. This second iteration
    ** is used to search for the lowest cost scan overall.
    **

    ** Without the optimal scan step (the first iteration) a suboptimal
    ** plan might be chosen for queries like this:
    **   

    **   CREATE TABLE t1(a, b); 
    **   CREATE TABLE t2(c, d);



    **   SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
    **
    ** The best strategy is to iterate through table t1 first. However it
    ** is not possible to determine this with a simple greedy algorithm.
    ** Since the cost of a linear scan through table t2 is the same 
    ** as the cost of a linear scan through table t1, a simple greedy 
    ** algorithm may choose to use t2 for the outer loop, which is a much

    ** costlier approach.
    */
    nUnconstrained = 0;

    notIndexed = 0;





    /* The optimal scan check only occurs if there are two or more tables
    ** available to be reordered */
    if( iFrom==nTabList-1 ){
      ckOptimal = 0;  /* Common case of just one table in the FROM clause */
    }else{
      ckOptimal = -1;
      for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){
        m = getMask(pMaskSet, sWBI.pSrc->iCursor);
        if( (m & sWBI.notValid)==0 ){
          if( j==iFrom ) iFrom++;
          continue;
        }
        if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ) break;
        if( ++ckOptimal ) break;
        if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break;



      }
    }




    assert( ckOptimal==0 || ckOptimal==1 );












    for(isOptimal=ckOptimal; isOptimal>=0 && bestJ<0; isOptimal--){
      for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){
        if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ){
          /* This break and one like it in the ckOptimal computation loop
          ** above prevent table reordering across LEFT and CROSS JOINs.
          ** The LEFT JOIN case is necessary for correctness.  The prohibition
          ** against reordering across a CROSS JOIN is an SQLite feature that
          ** allows the developer to control table reordering */




          break;
        }
        m = getMask(pMaskSet, sWBI.pSrc->iCursor);
        if( (m & sWBI.notValid)==0 ){
          assert( j>iFrom );
          continue;
        }
        sWBI.notReady = (isOptimal ? m : sWBI.notValid);
        if( sWBI.pSrc->pIndex==0 ) nUnconstrained++;
  
        WHERETRACE(("   === trying table %d (%s) with isOptimal=%d ===\n",
                    j, sWBI.pSrc->pTab->zName, isOptimal));
        assert( sWBI.pSrc->pTab );
#ifndef SQLITE_OMIT_VIRTUALTABLE
        if( IsVirtual(sWBI.pSrc->pTab) ){
          sWBI.ppIdxInfo = &pWInfo->a[j].pIdxInfo;
          bestVirtualIndex(&sWBI);
        }else 
#endif
        {
          bestBtreeIndex(&sWBI);
        }
        assert( isOptimal || (sWBI.cost.used&sWBI.notValid)==0 );

        /* If an INDEXED BY clause is present, then the plan must use that
        ** index if it uses any index at all */
        assert( sWBI.pSrc->pIndex==0 
                  || (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
                  || sWBI.cost.plan.u.pIdx==sWBI.pSrc->pIndex );

        if( isOptimal && (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
          notIndexed |= m;
        }
        if( isOptimal ){
          pWInfo->a[j].rOptCost = sWBI.cost.rCost;
        }else if( ckOptimal ){
          /* If two or more tables have nearly the same outer loop cost, but
          ** very different inner loop (optimal) cost, we want to choose
          ** for the outer loop that table which benefits the least from
          ** being in the inner loop.  The following code scales the 
          ** outer loop cost estimate to accomplish that. */
          WHERETRACE(("   scaling cost from %.1f to %.1f\n",
                      sWBI.cost.rCost,
                      sWBI.cost.rCost/pWInfo->a[j].rOptCost));
          sWBI.cost.rCost /= pWInfo->a[j].rOptCost;
        }

        /* Conditions under which this table becomes the best so far:
        **
        **   (1) The table must not depend on other tables that have not
        **       yet run.  (In other words, it must not depend on tables
        **       in inner loops.)
        **
        **   (2) (This rule was removed on 2012-11-09.  The scaling of the
        **       cost using the optimal scan cost made this rule obsolete.)
        **
        **   (3) All tables have an INDEXED BY clause or this table lacks an
        **       INDEXED BY clause or this table uses the specific
        **       index specified by its INDEXED BY clause.  This rule ensures
        **       that a best-so-far is always selected even if an impossible
        **       combination of INDEXED BY clauses are given.  The error
        **       will be detected and relayed back to the application later.
        **       The NEVER() comes about because rule (2) above prevents
        **       An indexable full-table-scan from reaching rule (3).
        **
        **   (4) The plan cost must be lower than prior plans, where "cost"
        **       is defined by the compareCost() function above. 
        */
        if( (sWBI.cost.used&sWBI.notValid)==0                    /* (1) */
            && (nUnconstrained==0 || sWBI.pSrc->pIndex==0        /* (3) */
                || NEVER((sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0))
            && (bestJ<0 || compareCost(&sWBI.cost, &bestPlan))   /* (4) */
        ){
          WHERETRACE(("   === table %d (%s) is best so far\n"
                      "       cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=%08x\n",
                      j, sWBI.pSrc->pTab->zName,
                      sWBI.cost.rCost, sWBI.cost.plan.nRow,
                      sWBI.cost.plan.nOBSat, sWBI.cost.plan.wsFlags));
          bestPlan = sWBI.cost;
          bestJ = j;
        }

        /* In a join like "w JOIN x LEFT JOIN y JOIN z"  make sure that
        ** table y (and not table z) is always the next inner loop inside
        ** of table x. */
        if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break;
      }
    }
    assert( bestJ>=0 );
    assert( sWBI.notValid & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
    assert( bestJ==iFrom || (pTabList->a[iFrom].jointype & JT_LEFT)==0 );
    testcase( bestJ>iFrom && (pTabList->a[iFrom].jointype & JT_CROSS)!=0 );
    testcase( bestJ>iFrom && bestJ<nTabList-1
                          && (pTabList->a[bestJ+1].jointype & JT_LEFT)!=0 );
    WHERETRACE(("*** Optimizer selects table %d (%s) for loop %d with:\n"
                "    cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=0x%08x\n",
                bestJ, pTabList->a[bestJ].pTab->zName,
                pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow,
                bestPlan.plan.nOBSat, bestPlan.plan.wsFlags));
    if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){
      assert( pWInfo->eDistinct==0 );
      pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
    }
    andFlags &= bestPlan.plan.wsFlags;
    pLevel->plan = bestPlan.plan;
    pLevel->iTabCur = pTabList->a[bestJ].iCursor;
    testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
    testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
    if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
      if( (wctrlFlags & WHERE_ONETABLE_ONLY) 
       && (bestPlan.plan.wsFlags & WHERE_TEMP_INDEX)==0 
      ){
        pLevel->iIdxCur = iIdxCur;
      }else{
        pLevel->iIdxCur = pParse->nTab++;
      }
    }else{
      pLevel->iIdxCur = -1;
    }
    sWBI.notValid &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
    pLevel->iFrom = (u8)bestJ;
    if( bestPlan.plan.nRow>=(double)1 ){
      pParse->nQueryLoop *= bestPlan.plan.nRow;
    }

    /* Check that if the table scanned by this loop iteration had an
    ** INDEXED BY clause attached to it, that the named index is being
    ** used for the scan. If not, then query compilation has failed.
    ** Return an error.
    */
    pIdx = pTabList->a[bestJ].pIndex;
    if( pIdx ){
      if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
        sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
        goto whereBeginError;
      }else{
        /* If an INDEXED BY clause is used, the bestIndex() function is
        ** guaranteed to find the index specified in the INDEXED BY clause
        ** if it find an index at all. */
        assert( bestPlan.plan.u.pIdx==pIdx );
      }
    }
  }
  WHERETRACE(("*** Optimizer Finished ***\n"));
  if( pParse->nErr || db->mallocFailed ){
    goto whereBeginError;
  }
  if( nTabList ){
    pLevel--;
    pWInfo->nOBSat = pLevel->plan.nOBSat;
  }else{
    pWInfo->nOBSat = 0;
  }

  /* If the total query only selects a single row, then the ORDER BY
  ** clause is irrelevant.
  */
  if( (andFlags & WHERE_UNIQUE)!=0 && pOrderBy ){
    assert( nTabList==0 || (pLevel->plan.wsFlags & WHERE_ALL_UNIQUE)!=0 );
    pWInfo->nOBSat = pOrderBy->nExpr;
  }

  /* If the caller is an UPDATE or DELETE statement that is requesting
  ** to use a one-pass algorithm, determine if this is appropriate.
  ** The one-pass algorithm only works if the WHERE clause constraints
  ** the statement to update a single row.
  */
  assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
  if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){

    pWInfo->okOnePass = 1;
    pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
  }

  /* Open all tables in the pTabList and any indices selected for
  ** searching those tables.
  */
  sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
  notReady = ~(Bitmask)0;
  pWInfo->nRowOut = (double)1;
  for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
    Table *pTab;     /* Table to open */
    int iDb;         /* Index of database containing table/index */
    struct SrcList_item *pTabItem;

    pTabItem = &pTabList->a[pLevel->iFrom];
    pTab = pTabItem->pTab;
    pWInfo->nRowOut *= pLevel->plan.nRow;
    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);

    if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
      /* Do nothing */
    }else
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      int iCur = pTabItem->iCursor;
      sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
    }else if( IsVirtual(pTab) ){
      /* noop */
    }else
#endif
    if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
         && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
      int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
      sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
      testcase( pTab->nCol==BMS-1 );
      testcase( pTab->nCol==BMS );
      if( !pWInfo->okOnePass && pTab->nCol<BMS ){
        Bitmask b = pTabItem->colUsed;
        int n = 0;
        for(; b; b=b>>1, n++){}
        sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 
                            SQLITE_INT_TO_PTR(n), P4_INT32);
        assert( n<=pTab->nCol );
      }
    }else{
      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
    }
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
      constructAutomaticIndex(pParse, sWBI.pWC, pTabItem, notReady, pLevel);
    }else
#endif
    if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
      Index *pIx = pLevel->plan.u.pIdx;
      KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);

      int iIndexCur = pLevel->iIdxCur;
      assert( pIx->pSchema==pTab->pSchema );
      assert( iIndexCur>=0 );
      sqlite3VdbeAddOp4(v, OP_OpenRead, iIndexCur, pIx->tnum, iDb,
                        (char*)pKey, P4_KEYINFO_HANDOFF);
      VdbeComment((v, "%s", pIx->zName));
    }
    sqlite3CodeVerifySchema(pParse, iDb);
    notReady &= ~getMask(sWBI.pWC->pMaskSet, pTabItem->iCursor);
  }
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
  if( db->mallocFailed ) goto whereBeginError;

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(ii=0; ii<nTabList; ii++){
    pLevel = &pWInfo->a[ii];
    explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags);
    notReady = codeOneLoopStart(pWInfo, ii, wctrlFlags, notReady);
    pWInfo->iContinue = pLevel->addrCont;
  }

#ifdef SQLITE_TEST  /* For testing and debugging use only */
  /* Record in the query plan information about the current table
  ** and the index used to access it (if any).  If the table itself
  ** is not used, its name is just '{}'.  If no index is used
  ** the index is listed as "{}".  If the primary key is used the
  ** index name is '*'.
  */
  for(ii=0; ii<nTabList; ii++){
    char *z;
    int n;
    int w;
    struct SrcList_item *pTabItem;

    pLevel = &pWInfo->a[ii];
    w = pLevel->plan.wsFlags;
    pTabItem = &pTabList->a[pLevel->iFrom];
    z = pTabItem->zAlias;
    if( z==0 ) z = pTabItem->pTab->zName;
    n = sqlite3Strlen30(z);
    if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
      if( (w & WHERE_IDX_ONLY)!=0 && (w & WHERE_COVER_SCAN)==0 ){
        memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
        nQPlan += 2;
      }else{
        memcpy(&sqlite3_query_plan[nQPlan], z, n);
        nQPlan += n;
      }
      sqlite3_query_plan[nQPlan++] = ' ';
    }
    testcase( w & WHERE_ROWID_EQ );
    testcase( w & WHERE_ROWID_RANGE );
    if( w & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
      memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
      nQPlan += 2;
    }else if( (w & WHERE_INDEXED)!=0 && (w & WHERE_COVER_SCAN)==0 ){
      n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
      if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
        memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
        nQPlan += n;
        sqlite3_query_plan[nQPlan++] = ' ';
      }

    }else{
      memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
      nQPlan += 3;
    }
  }
  while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
    sqlite3_query_plan[--nQPlan] = 0;
  }
  sqlite3_query_plan[nQPlan] = 0;
  nQPlan = 0;
#endif /* SQLITE_TEST // Testing and debugging use only */

  /* Record the continuation address in the WhereInfo structure.  Then
  ** clean up and return.
  */
  return pWInfo;

  /* Jump here if malloc fails */
whereBeginError:
  if( pWInfo ){
    pParse->nQueryLoop = pWInfo->savedNQueryLoop;
    whereInfoFree(db, pWInfo);
  }
  return 0;
}

/*
** Generate the end of the WHERE loop.  See comments on 
** sqlite3WhereBegin() for additional information.
*/
void sqlite3WhereEnd(WhereInfo *pWInfo){
  Parse *pParse = pWInfo->pParse;
  Vdbe *v = pParse->pVdbe;
  int i;
  WhereLevel *pLevel;

  SrcList *pTabList = pWInfo->pTabList;
  sqlite3 *db = pParse->db;

  /* Generate loop termination code.
  */
  sqlite3ExprCacheClear(pParse);
  for(i=pWInfo->nLevel-1; i>=0; i--){
    pLevel = &pWInfo->a[i];

    sqlite3VdbeResolveLabel(v, pLevel->addrCont);
    if( pLevel->op!=OP_Noop ){
      sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
      sqlite3VdbeChangeP5(v, pLevel->p5);
    }
    if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
        sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
        sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
      }
      sqlite3DbFree(db, pLevel->u.in.aInLoop);
    }
    sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
    if( pLevel->iLeftJoin ){
      int addr;
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
      assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
           || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
      if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
      }
      if( pLevel->iIdxCur>=0 ){
        sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
      }
      if( pLevel->op==OP_Return ){
        sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
      }else{
        sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
      }
      sqlite3VdbeJumpHere(v, addr);
    }
  }

  /* The "break" point is here, just past the end of the outer loop.
  ** Set it.
  */
  sqlite3VdbeResolveLabel(v, pWInfo->iBreak);

  /* Close all of the cursors that were opened by sqlite3WhereBegin.
  */
  assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
  for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
    Index *pIdx = 0;
    struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
    Table *pTab = pTabItem->pTab;
    assert( pTab!=0 );

    if( (pTab->tabFlags & TF_Ephemeral)==0
     && pTab->pSelect==0
     && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
    ){
      int ws = pLevel->plan.wsFlags;
      if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
      }
      if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){
        sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
      }
    }

    /* If this scan uses an index, make code substitutions to read data
    ** from the index in preference to the table. Sometimes, this means

    ** the table need never be read from. This is a performance boost,
    ** as the vdbe level waits until the table is read before actually
    ** seeking the table cursor to the record corresponding to the current
    ** position in the index.
    ** 
    ** Calls to the code generator in between sqlite3WhereBegin and
    ** sqlite3WhereEnd will have created code that references the table
    ** directly.  This loop scans all that code looking for opcodes
    ** that reference the table and converts them into opcodes that
    ** reference the index.
    */
    if( pLevel->plan.wsFlags & WHERE_INDEXED ){
      pIdx = pLevel->plan.u.pIdx;
    }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
      pIdx = pLevel->u.pCovidx;
    }
    if( pIdx && !db->mallocFailed){
      int k, j, last;
      VdbeOp *pOp;

      pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
      last = sqlite3VdbeCurrentAddr(v);


      for(k=pWInfo->iTop; k<last; k++, pOp++){
        if( pOp->p1!=pLevel->iTabCur ) continue;
        if( pOp->opcode==OP_Column ){
          for(j=0; j<pIdx->nColumn; j++){
            if( pOp->p2==pIdx->aiColumn[j] ){
              pOp->p2 = j;
              pOp->p1 = pLevel->iIdxCur;
              break;
            }
          }
          assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
               || j<pIdx->nColumn );
        }else if( pOp->opcode==OP_Rowid ){
          pOp->p1 = pLevel->iIdxCur;
          pOp->opcode = OP_IdxRowid;
        }
      }
    }
  }







|




|
|
|

|
|
>
>
|
>
>
>
|
|
>
|
<
<
<
<
|
|
<
<
|
|
<
>
|
|
<
<
|
>
>
|
|
<
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
|
<
<
<
|
<
|
<
<
<
<
<
<
<
<
<
<
<
|
|
|
<
>
|
|
<
<
>
>
|
<
<
>
>
|
|
<
>
|
|
<
>
|
|
>
>
>
|
<
<
<
|
|
<
>
|
<
<
>
|
>
>
>
>
|
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
>
>
>
|
|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
|
<
<
|
<
<
<
<
|
>
>
>
>


<
<
<
<
|
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<







|
>

|





<

<







<

>




|







|



|
|











<
<
<
<
<
|
|

>
|







|











<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
|
|
<
|
<
|
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
|
<
<
<
|
<
|
<
>
|
<
<
|
|
<
<
<
<
<
<
|
<
<
<




















>








>





|














|
|
|


|


















|





>




|



|




|
|
>
|
<
<
<







|
|
|


|



<

>
>
|









<
|







5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841




5842
5843


5844
5845

5846
5847
5848


5849
5850
5851
5852
5853

5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869



5870

5871











5872
5873
5874

5875
5876
5877


5878
5879
5880


5881
5882
5883
5884

5885
5886
5887

5888
5889
5890
5891
5892
5893
5894



5895
5896

5897
5898


5899
5900
5901
5902
5903
5904
5905











5906



5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928


5929




5930
5931
5932
5933
5934
5935
5936




5937


5938













5939





5940
















5941


































5942




5943
























































5944









5945







5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961

5962

5963
5964
5965
5966
5967
5968
5969

5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000





6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024




6025












6026
6027

6028

6029








6030






6031



6032

6033

6034
6035


6036
6037






6038



6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136



6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152

6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165

6166
6167
6168
6169
6170
6171
6172
6173
#endif

  /* Analyze all of the subexpressions.  Note that exprAnalyze() might
  ** add new virtual terms onto the end of the WHERE clause.  We do not
  ** want to analyze these virtual terms, so start analyzing at the end
  ** and work forward so that the added virtual terms are never processed.
  */
  exprAnalyzeAll(pTabList, &pWInfo->sWC);
  if( db->mallocFailed ){
    goto whereBeginError;
  }

  /* If the ORDER BY (or GROUP BY) clause contains references to general
  ** expressions, then we won't be able to satisfy it using indices, so
  ** go ahead and disable it now.
  */
  if( pOrderBy && (wctrlFlags & WHERE_WANT_DISTINCT)!=0 ){
    for(ii=0; ii<pOrderBy->nExpr; ii++){
      Expr *pExpr = sqlite3ExprSkipCollate(pOrderBy->a[ii].pExpr);
      if( pExpr->op!=TK_COLUMN ){
        pWInfo->pOrderBy = pOrderBy = 0;
        break;
      }else if( pExpr->iColumn<0 ){
        break;
      }
    }
  }





  if( wctrlFlags & WHERE_WANT_DISTINCT ){
    if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){


      /* The DISTINCT marking is pointless.  Ignore it. */
      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;

    }else if( pOrderBy==0 ){
      /* Try to ORDER BY the result set to make distinct processing easier */
      pWInfo->wctrlFlags |= WHERE_DISTINCTBY;


      pWInfo->pOrderBy = pResultSet;
    }
  }

  /* Construct the WhereLoop objects */

  WHERETRACE(0xffff,("*** Optimizer Start ***\n"));
  if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
    rc = whereLoopAddAll(&sWLB);
    if( rc ) goto whereBeginError;
  
    /* Display all of the WhereLoop objects if wheretrace is enabled */
#ifdef WHERETRACE_ENABLED
    if( sqlite3WhereTrace ){
      WhereLoop *p;
      int i;
      static char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
                                       "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
      for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
        p->cId = zLabel[i%sizeof(zLabel)];
        whereLoopPrint(p, pTabList);
      }



    }

#endif











  
    wherePathSolver(pWInfo, 0);
    if( db->mallocFailed ) goto whereBeginError;

    if( pWInfo->pOrderBy ){
       wherePathSolver(pWInfo, pWInfo->nRowOut+1);
       if( db->mallocFailed ) goto whereBeginError;


    }
  }
  if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){


     pWInfo->revMask = (Bitmask)(-1);
  }
  if( pParse->nErr || NEVER(db->mallocFailed) ){
    goto whereBeginError;

  }
#ifdef WHERETRACE_ENABLED
  if( sqlite3WhereTrace ){

    int ii;
    sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
    if( pWInfo->bOBSat ){
      sqlite3DebugPrintf(" ORDERBY=0x%llx", pWInfo->revMask);
    }
    switch( pWInfo->eDistinct ){
      case WHERE_DISTINCT_UNIQUE: {



        sqlite3DebugPrintf("  DISTINCT=unique");
        break;

      }
      case WHERE_DISTINCT_ORDERED: {


        sqlite3DebugPrintf("  DISTINCT=ordered");
        break;
      }
      case WHERE_DISTINCT_UNORDERED: {
        sqlite3DebugPrintf("  DISTINCT=unordered");
        break;
      }











    }



    sqlite3DebugPrintf("\n");
    for(ii=0; ii<pWInfo->nLevel; ii++){
      whereLoopPrint(pWInfo->a[ii].pWLoop, pTabList);
    }
  }
#endif
  /* Attempt to omit tables from the join that do not effect the result */
  if( pWInfo->nLevel>=2
   && pResultSet!=0
   && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
  ){
    Bitmask tabUsed = exprListTableUsage(pMaskSet, pResultSet);
    if( sWLB.pOrderBy ) tabUsed |= exprListTableUsage(pMaskSet, sWLB.pOrderBy);
    while( pWInfo->nLevel>=2 ){
      WhereTerm *pTerm, *pEnd;
      pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop;
      if( (pWInfo->pTabList->a[pLoop->iTab].jointype & JT_LEFT)==0 ) break;
      if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
       && (pLoop->wsFlags & WHERE_ONEROW)==0
      ){
        break;
      }


      if( (tabUsed & pLoop->maskSelf)!=0 ) break;




      pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
      for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
        if( (pTerm->prereqAll & pLoop->maskSelf)!=0
         && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
        ){
          break;
        }




      }


      if( pTerm<pEnd ) break;













      WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));





      pWInfo->nLevel--;
















      nTabList--;


































    }




  }
























































  WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));









  pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;








  /* If the caller is an UPDATE or DELETE statement that is requesting
  ** to use a one-pass algorithm, determine if this is appropriate.
  ** The one-pass algorithm only works if the WHERE clause constraints
  ** the statement to update a single row.
  */
  assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
  if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 
   && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){
    pWInfo->okOnePass = 1;
    pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY;
  }

  /* Open all tables in the pTabList and any indices selected for
  ** searching those tables.
  */

  notReady = ~(Bitmask)0;

  for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
    Table *pTab;     /* Table to open */
    int iDb;         /* Index of database containing table/index */
    struct SrcList_item *pTabItem;

    pTabItem = &pTabList->a[pLevel->iFrom];
    pTab = pTabItem->pTab;

    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
    pLoop = pLevel->pWLoop;
    if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
      /* Do nothing */
    }else
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      int iCur = pTabItem->iCursor;
      sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
    }else if( IsVirtual(pTab) ){
      /* noop */
    }else
#endif
    if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
         && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
      int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
      sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
      testcase( !pWInfo->okOnePass && pTab->nCol==BMS-1 );
      testcase( !pWInfo->okOnePass && pTab->nCol==BMS );
      if( !pWInfo->okOnePass && pTab->nCol<BMS ){
        Bitmask b = pTabItem->colUsed;
        int n = 0;
        for(; b; b=b>>1, n++){}
        sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 
                            SQLITE_INT_TO_PTR(n), P4_INT32);
        assert( n<=pTab->nCol );
      }
    }else{
      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
    }





    if( pLoop->wsFlags & WHERE_INDEXED ){
      Index *pIx = pLoop->u.btree.pIndex;
      KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
      /* FIXME:  As an optimization use pTabItem->iCursor if WHERE_IDX_ONLY */
      int iIndexCur = pLevel->iIdxCur = iIdxCur ? iIdxCur : pParse->nTab++;
      assert( pIx->pSchema==pTab->pSchema );
      assert( iIndexCur>=0 );
      sqlite3VdbeAddOp4(v, OP_OpenRead, iIndexCur, pIx->tnum, iDb,
                        (char*)pKey, P4_KEYINFO_HANDOFF);
      VdbeComment((v, "%s", pIx->zName));
    }
    sqlite3CodeVerifySchema(pParse, iDb);
    notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor);
  }
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
  if( db->mallocFailed ) goto whereBeginError;

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(ii=0; ii<nTabList; ii++){
    pLevel = &pWInfo->a[ii];




#ifndef SQLITE_OMIT_AUTOMATIC_INDEX












    if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
      constructAutomaticIndex(pParse, &pWInfo->sWC,

                &pTabList->a[pLevel->iFrom], notReady, pLevel);

      if( db->mallocFailed ) goto whereBeginError;








    }






#endif



    explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags);

    pLevel->addrBody = sqlite3VdbeCurrentAddr(v);

    notReady = codeOneLoopStart(pWInfo, ii, notReady);
    pWInfo->iContinue = pLevel->addrCont;


  }







  /* Done. */



  return pWInfo;

  /* Jump here if malloc fails */
whereBeginError:
  if( pWInfo ){
    pParse->nQueryLoop = pWInfo->savedNQueryLoop;
    whereInfoFree(db, pWInfo);
  }
  return 0;
}

/*
** Generate the end of the WHERE loop.  See comments on 
** sqlite3WhereBegin() for additional information.
*/
void sqlite3WhereEnd(WhereInfo *pWInfo){
  Parse *pParse = pWInfo->pParse;
  Vdbe *v = pParse->pVdbe;
  int i;
  WhereLevel *pLevel;
  WhereLoop *pLoop;
  SrcList *pTabList = pWInfo->pTabList;
  sqlite3 *db = pParse->db;

  /* Generate loop termination code.
  */
  sqlite3ExprCacheClear(pParse);
  for(i=pWInfo->nLevel-1; i>=0; i--){
    pLevel = &pWInfo->a[i];
    pLoop = pLevel->pWLoop;
    sqlite3VdbeResolveLabel(v, pLevel->addrCont);
    if( pLevel->op!=OP_Noop ){
      sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
      sqlite3VdbeChangeP5(v, pLevel->p5);
    }
    if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
        sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
        sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
      }
      sqlite3DbFree(db, pLevel->u.in.aInLoop);
    }
    sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
    if( pLevel->iLeftJoin ){
      int addr;
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
      assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
           || (pLoop->wsFlags & WHERE_INDEXED)!=0 );
      if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
      }
      if( pLoop->wsFlags & WHERE_INDEXED ){
        sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
      }
      if( pLevel->op==OP_Return ){
        sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
      }else{
        sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
      }
      sqlite3VdbeJumpHere(v, addr);
    }
  }

  /* The "break" point is here, just past the end of the outer loop.
  ** Set it.
  */
  sqlite3VdbeResolveLabel(v, pWInfo->iBreak);

  /* Close all of the cursors that were opened by sqlite3WhereBegin.
  */
  assert( pWInfo->nLevel<=pTabList->nSrc );
  for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
    Index *pIdx = 0;
    struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
    Table *pTab = pTabItem->pTab;
    assert( pTab!=0 );
    pLoop = pLevel->pWLoop;
    if( (pTab->tabFlags & TF_Ephemeral)==0
     && pTab->pSelect==0
     && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
    ){
      int ws = pLoop->wsFlags;
      if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
      }
      if( (ws & WHERE_INDEXED)!=0 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 ){
        sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
      }
    }

    /* If this scan uses an index, make VDBE code substitutions to read data
    ** from the index instead of from the table where possible.  In some cases
    ** this optimization prevents the table from ever being read, which can
    ** yield a significant performance boost.



    ** 
    ** Calls to the code generator in between sqlite3WhereBegin and
    ** sqlite3WhereEnd will have created code that references the table
    ** directly.  This loop scans all that code looking for opcodes
    ** that reference the table and converts them into opcodes that
    ** reference the index.
    */
    if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
      pIdx = pLoop->u.btree.pIndex;
    }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
      pIdx = pLevel->u.pCovidx;
    }
    if( pIdx && !db->mallocFailed ){
      int k, j, last;
      VdbeOp *pOp;


      last = sqlite3VdbeCurrentAddr(v);
      k = pLevel->addrBody;
      pOp = sqlite3VdbeGetOp(v, k);
      for(; k<last; k++, pOp++){
        if( pOp->p1!=pLevel->iTabCur ) continue;
        if( pOp->opcode==OP_Column ){
          for(j=0; j<pIdx->nColumn; j++){
            if( pOp->p2==pIdx->aiColumn[j] ){
              pOp->p2 = j;
              pOp->p1 = pLevel->iIdxCur;
              break;
            }
          }

          assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || j<pIdx->nColumn );
        }else if( pOp->opcode==OP_Rowid ){
          pOp->p1 = pLevel->iIdxCur;
          pOp->opcode = OP_IdxRowid;
        }
      }
    }
  }
Changes to test/all.test.
44
45
46
47
48
49
50
51
52
if {$::tcl_platform(platform)=="unix"} {
  ifcapable !default_autovacuum {
    run_test_suite autovacuum_crash
  }
}

finish_test









<
<
44
45
46
47
48
49
50


if {$::tcl_platform(platform)=="unix"} {
  ifcapable !default_autovacuum {
    run_test_suite autovacuum_crash
  }
}

finish_test


Changes to test/alter.test.
843
844
845
846
847
848
849
850

851
852
853
854
855
856
857

#-------------------------------------------------------------------------
# Test that it is not possible to use ALTER TABLE on any system table.
#
set system_table_list {1 sqlite_master}
catchsql ANALYZE
ifcapable analyze { lappend system_table_list 2 sqlite_stat1 }
ifcapable stat3   { lappend system_table_list 4 sqlite_stat3 }


foreach {tn tbl} $system_table_list {
  do_test alter-15.$tn.1 {
    catchsql "ALTER TABLE $tbl RENAME TO xyz"
  } [list 1 "table $tbl may not be altered"]

  do_test alter-15.$tn.2 {







|
>







843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858

#-------------------------------------------------------------------------
# Test that it is not possible to use ALTER TABLE on any system table.
#
set system_table_list {1 sqlite_master}
catchsql ANALYZE
ifcapable analyze { lappend system_table_list 2 sqlite_stat1 }
ifcapable stat3   { lappend system_table_list 3 sqlite_stat3 }
ifcapable stat4   { lappend system_table_list 4 sqlite_stat4 }

foreach {tn tbl} $system_table_list {
  do_test alter-15.$tn.1 {
    catchsql "ALTER TABLE $tbl RENAME TO xyz"
  } [list 1 "table $tbl may not be altered"]

  do_test alter-15.$tn.2 {
Changes to test/alter4.test.
137
138
139
140
141
142
143





144
145
146
147
148
149
150
      alter table v1 add column d;
    }
  } {1 {Cannot add a column to a view}}
}
do_test alter4-2.6 {
  catchsql {
    alter table t1 add column d DEFAULT CURRENT_TIME;





  }
} {1 {Cannot add a column with non-constant default}}
do_test alter4-2.99 {
  execsql {
    DROP TABLE t1;
  }
} {}







>
>
>
>
>







137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
      alter table v1 add column d;
    }
  } {1 {Cannot add a column to a view}}
}
do_test alter4-2.6 {
  catchsql {
    alter table t1 add column d DEFAULT CURRENT_TIME;
  }
} {1 {Cannot add a column with non-constant default}}
do_test alter4-2.7 {
  catchsql {
    alter table t1 add column d default (-+1);
  }
} {1 {Cannot add a column with non-constant default}}
do_test alter4-2.99 {
  execsql {
    DROP TABLE t1;
  }
} {}
Changes to test/analyze.test.
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

310
311
312
313
314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
  sqlite3 db test.db
  execsql {
    SELECT * FROM t4 WHERE x=1234;
  }
} {}

# Verify that DROP TABLE and DROP INDEX remove entries from the 
# sqlite_stat1 and sqlite_stat3 tables.
#
do_test analyze-5.0 {
  execsql {
    DELETE FROM t3;
    DELETE FROM t4;
    INSERT INTO t3 VALUES(1,2,3,4);
    INSERT INTO t3 VALUES(5,6,7,8);
    INSERT INTO t3 SELECT a+8, b+8, c+8, d+8 FROM t3;
    INSERT INTO t3 SELECT a+16, b+16, c+16, d+16 FROM t3;
    INSERT INTO t3 SELECT a+32, b+32, c+32, d+32 FROM t3;
    INSERT INTO t3 SELECT a+64, b+64, c+64, d+64 FROM t3;
    INSERT INTO t4 SELECT a, b, c FROM t3;
    ANALYZE;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t3i1 t3i2 t3i3 t4i1 t4i2 t3 t4}
ifcapable stat3 {

  do_test analyze-5.1 {
    execsql {
      SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1;
      SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1;
    }

  } {t3i1 t3i2 t3i3 t4i1 t4i2 t3 t4}
}
do_test analyze-5.2 {
  execsql {
    DROP INDEX t3i2;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t3i1 t3i3 t4i1 t4i2 t3 t4}
ifcapable stat3 {
  do_test analyze-5.3 {
    execsql {
      SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1;
      SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1;
    }

  } {t3i1 t3i3 t4i1 t4i2 t3 t4}
}
do_test analyze-5.4 {
  execsql {
    DROP TABLE t3;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t4i1 t4i2 t4}
ifcapable stat3 {
  do_test analyze-5.5 {
    execsql {
      SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1;
      SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1;
    }

  } {t4i1 t4i2 t4}
}

# This test corrupts the database file so it must be the last test
# in the series.
#
do_test analyze-99.1 {
  execsql {
    PRAGMA writable_schema=on;
    UPDATE sqlite_master SET sql='nonsense' WHERE name='sqlite_stat1';
  }
  db close
  catch { sqlite3 db test.db }
  catchsql {
    ANALYZE
  }
} {1 {malformed database schema (sqlite_stat1) - near "nonsense": syntax error}}


finish_test







|

















|
>

|
|
|
<
>









|

|
|
|
<
>









|

|
|
|
<
>


















<

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

364
  sqlite3 db test.db
  execsql {
    SELECT * FROM t4 WHERE x=1234;
  }
} {}

# Verify that DROP TABLE and DROP INDEX remove entries from the 
# sqlite_stat1, sqlite_stat3 and sqlite_stat4 tables.
#
do_test analyze-5.0 {
  execsql {
    DELETE FROM t3;
    DELETE FROM t4;
    INSERT INTO t3 VALUES(1,2,3,4);
    INSERT INTO t3 VALUES(5,6,7,8);
    INSERT INTO t3 SELECT a+8, b+8, c+8, d+8 FROM t3;
    INSERT INTO t3 SELECT a+16, b+16, c+16, d+16 FROM t3;
    INSERT INTO t3 SELECT a+32, b+32, c+32, d+32 FROM t3;
    INSERT INTO t3 SELECT a+64, b+64, c+64, d+64 FROM t3;
    INSERT INTO t4 SELECT a, b, c FROM t3;
    ANALYZE;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t3i1 t3i2 t3i3 t4i1 t4i2 t3 t4}
ifcapable stat4||stat3 {
  ifcapable stat4 {set stat sqlite_stat4} else {set stat sqlite_stat3}
  do_test analyze-5.1 {
    execsql "
      SELECT DISTINCT idx FROM $stat ORDER BY 1;
      SELECT DISTINCT tbl FROM $stat ORDER BY 1;

    "
  } {t3i1 t3i2 t3i3 t4i1 t4i2 t3 t4}
}
do_test analyze-5.2 {
  execsql {
    DROP INDEX t3i2;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t3i1 t3i3 t4i1 t4i2 t3 t4}
ifcapable stat4||stat3 {
  do_test analyze-5.3 {
    execsql "
      SELECT DISTINCT idx FROM $stat ORDER BY 1;
      SELECT DISTINCT tbl FROM $stat ORDER BY 1;

    "
  } {t3i1 t3i3 t4i1 t4i2 t3 t4}
}
do_test analyze-5.4 {
  execsql {
    DROP TABLE t3;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t4i1 t4i2 t4}
ifcapable stat4||stat3 {
  do_test analyze-5.5 {
    execsql "
      SELECT DISTINCT idx FROM $stat ORDER BY 1;
      SELECT DISTINCT tbl FROM $stat ORDER BY 1;

    "
  } {t4i1 t4i2 t4}
}

# This test corrupts the database file so it must be the last test
# in the series.
#
do_test analyze-99.1 {
  execsql {
    PRAGMA writable_schema=on;
    UPDATE sqlite_master SET sql='nonsense' WHERE name='sqlite_stat1';
  }
  db close
  catch { sqlite3 db test.db }
  catchsql {
    ANALYZE
  }
} {1 {malformed database schema (sqlite_stat1) - near "nonsense": syntax error}}


finish_test
Changes to test/analyze3.test.
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# implements tests for range and LIKE constraints that use bound variables
# instead of literal constant arguments.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}

#----------------------------------------------------------------------
# Test Organization:
#







|







13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# implements tests for range and LIKE constraints that use bound variables
# instead of literal constant arguments.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat4&&!stat3 {
  finish_test
  return
}

#----------------------------------------------------------------------
# Test Organization:
#
39
40
41
42
43
44
45


46
47
48
49
50
51
52
#
# analyze3-4.*: Test that SQL or authorization callback errors occuring
#               within sqlite3Reprepare() are handled correctly.
#
# analyze3-5.*: Check that the query plans of applicable statements are
#               invalidated if the values of SQL parameter are modified
#               using the clear_bindings() or transfer_bindings() APIs.


#

proc getvar {varname} { uplevel #0 set $varname }
db function var getvar

proc eqp {sql {db db}} {
  uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db







>
>







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#
# analyze3-4.*: Test that SQL or authorization callback errors occuring
#               within sqlite3Reprepare() are handled correctly.
#
# analyze3-5.*: Check that the query plans of applicable statements are
#               invalidated if the values of SQL parameter are modified
#               using the clear_bindings() or transfer_bindings() APIs.
# 
# analyze3-6.*: Test that the problem fixed by commit [127a5b776d] is fixed.
#

proc getvar {varname} { uplevel #0 set $varname }
db function var getvar

proc eqp {sql {db db}} {
  uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db
89
90
91
92
93
94
95






96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
  for {set i 0} {$i < 1000} {incr i} {
    execsql { INSERT INTO t1 VALUES($i+100, $i) }
  }
  execsql {
    COMMIT;
    ANALYZE;
  }






} {}

do_eqp_test analyze3-1.1.2 {
  SELECT sum(y) FROM t1 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?) (~179 rows)}}
do_eqp_test analyze3-1.1.3 {
  SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?) (~959 rows)}}

do_test analyze3-1.1.4 {
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.1.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]







>
>
>
>
>
>
|



|


|







91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
  for {set i 0} {$i < 1000} {incr i} {
    execsql { INSERT INTO t1 VALUES($i+100, $i) }
  }
  execsql {
    COMMIT;
    ANALYZE;
  }

  ifcapable stat4 {
    execsql { SELECT count(*)>0 FROM sqlite_stat4; }
  } else {
    execsql { SELECT count(*)>0 FROM sqlite_stat3; }
  }
} {1}

do_eqp_test analyze3-1.1.2 {
  SELECT sum(y) FROM t1 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
do_eqp_test analyze3-1.1.3 {
  SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}

do_test analyze3-1.1.4 {
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.1.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
      CREATE INDEX i2 ON t2(x);
    COMMIT;
    ANALYZE;
  }
} {}
do_eqp_test analyze3-1.2.2 {
  SELECT sum(y) FROM t2 WHERE x>1 AND x<2
} {0 0 0 {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?) (~196 rows)}}
do_eqp_test analyze3-1.2.3 {
  SELECT sum(y) FROM t2 WHERE x>0 AND x<99
} {0 0 0 {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?) (~968 rows)}}
do_test analyze3-1.2.4 {
  sf_execsql { SELECT sum(y) FROM t2 WHERE x>12 AND x<20 }
} {161 0 4760}
do_test analyze3-1.2.5 {
  set l [string range "12" 0 end]
  set u [string range "20" 0 end]
  sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u}







|


|







150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
      CREATE INDEX i2 ON t2(x);
    COMMIT;
    ANALYZE;
  }
} {}
do_eqp_test analyze3-1.2.2 {
  SELECT sum(y) FROM t2 WHERE x>1 AND x<2
} {0 0 0 {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?)}}
do_eqp_test analyze3-1.2.3 {
  SELECT sum(y) FROM t2 WHERE x>0 AND x<99
} {0 0 0 {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?)}}
do_test analyze3-1.2.4 {
  sf_execsql { SELECT sum(y) FROM t2 WHERE x>12 AND x<20 }
} {161 0 4760}
do_test analyze3-1.2.5 {
  set l [string range "12" 0 end]
  set u [string range "20" 0 end]
  sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u}
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
      CREATE INDEX i3 ON t3(x);
    COMMIT;
    ANALYZE;
  }
} {}
do_eqp_test analyze3-1.3.2 {
  SELECT sum(y) FROM t3 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?) (~156 rows)}}
do_eqp_test analyze3-1.3.3 {
  SELECT sum(y) FROM t3 WHERE x>0 AND x<1100
} {0 0 0 {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?) (~989 rows)}}

do_test analyze3-1.3.4 {
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.3.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]







|


|







197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
      CREATE INDEX i3 ON t3(x);
    COMMIT;
    ANALYZE;
  }
} {}
do_eqp_test analyze3-1.3.2 {
  SELECT sum(y) FROM t3 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?)}}
do_eqp_test analyze3-1.3.3 {
  SELECT sum(y) FROM t3 WHERE x>0 AND x<1100
} {0 0 0 {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?)}}

do_test analyze3-1.3.4 {
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.3.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    append t [lindex {a b c d e f g h i j} [expr ($i%10)]]
    execsql { INSERT INTO t1 VALUES($i, $t) }
  }
  execsql COMMIT
} {}
do_eqp_test analyze3-2.2 {
  SELECT count(a) FROM t1 WHERE b LIKE 'a%'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?) (~31250 rows)}}
do_eqp_test analyze3-2.3 {
  SELECT count(a) FROM t1 WHERE b LIKE '%a'
} {0 0 0 {SCAN TABLE t1 (~500000 rows)}}

do_test analyze3-2.4 {
  sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE 'a%' }
} {101 0 100}
do_test analyze3-2.5 {
  sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE '%a' }
} {999 999 100}







|


|







252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    append t [lindex {a b c d e f g h i j} [expr ($i%10)]]
    execsql { INSERT INTO t1 VALUES($i, $t) }
  }
  execsql COMMIT
} {}
do_eqp_test analyze3-2.2 {
  SELECT count(a) FROM t1 WHERE b LIKE 'a%'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?)}}
do_eqp_test analyze3-2.3 {
  SELECT count(a) FROM t1 WHERE b LIKE '%a'
} {0 0 0 {SCAN TABLE t1}}

do_test analyze3-2.4 {
  sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE 'a%' }
} {101 0 100}
do_test analyze3-2.5 {
  sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE '%a' }
} {999 999 100}
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
  }
  for {set i 0} {$i < 100} {incr i} {
    execsql { INSERT INTO t1 VALUES($i, $i, $i) }
  }
  execsql COMMIT
  execsql ANALYZE
} {}

do_test analyze3-3.2.1 {
  set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE b>?" -1 dummy]
  sqlite3_expired $S
} {0}
do_test analyze3-3.2.2 {
  sqlite3_bind_text $S 1 "abc" 3
  sqlite3_expired $S
} {1}
do_test analyze3-3.2.4 {
  sqlite3_finalize $S
} {SQLITE_OK}

do_test analyze3-3.2.5 {
  set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE b=?" -1 dummy]
  sqlite3_expired $S
} {0}
do_test analyze3-3.2.6 {
  sqlite3_bind_text $S 1 "abc" 3
  sqlite3_expired $S
} {0}
do_test analyze3-3.2.7 {
  sqlite3_finalize $S
} {SQLITE_OK}

do_test analyze3-3.4.1 {
  set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE a=? AND b>?" -1 dummy]
  sqlite3_expired $S







<



















|







314
315
316
317
318
319
320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
  }
  for {set i 0} {$i < 100} {incr i} {
    execsql { INSERT INTO t1 VALUES($i, $i, $i) }
  }
  execsql COMMIT
  execsql ANALYZE
} {}

do_test analyze3-3.2.1 {
  set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE b>?" -1 dummy]
  sqlite3_expired $S
} {0}
do_test analyze3-3.2.2 {
  sqlite3_bind_text $S 1 "abc" 3
  sqlite3_expired $S
} {1}
do_test analyze3-3.2.4 {
  sqlite3_finalize $S
} {SQLITE_OK}

do_test analyze3-3.2.5 {
  set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE b=?" -1 dummy]
  sqlite3_expired $S
} {0}
do_test analyze3-3.2.6 {
  sqlite3_bind_text $S 1 "abc" 3
  sqlite3_expired $S
} {1}
do_test analyze3-3.2.7 {
  sqlite3_finalize $S
} {SQLITE_OK}

do_test analyze3-3.4.1 {
  set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE a=? AND b>?" -1 dummy]
  sqlite3_expired $S
607
608
609
610
611
612
613
614

























615
  }
  concat [sqlite3_reset $S1] $R
} {SQLITE_OK aaa abb acc}
do_test analyze3-5.1.3 {
  sqlite3_finalize $S2
  sqlite3_finalize $S1
} {SQLITE_OK}


























finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
  }
  concat [sqlite3_reset $S1] $R
} {SQLITE_OK aaa abb acc}
do_test analyze3-5.1.3 {
  sqlite3_finalize $S2
  sqlite3_finalize $S1
} {SQLITE_OK}

#-------------------------------------------------------------------------

do_test analyze3-6.1 {
  execsql { DROP TABLE IF EXISTS t1 }
  execsql BEGIN
  execsql { CREATE TABLE t1(a, b, c) }
  for {set i 0} {$i < 1000} {incr i} {
    execsql "INSERT INTO t1 VALUES([expr $i/100], 'x', [expr $i/10])"
  }
  execsql {
    CREATE INDEX i1 ON t1(a, b);
    CREATE INDEX i2 ON t1(c);
  }
  execsql COMMIT
  execsql ANALYZE
} {}

do_eqp_test analyze3-6-3 {
  SELECT * FROM t1 WHERE a = 5 AND c = 13;
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (c=?)}}

do_eqp_test analyze3-6-2 {
  SELECT * FROM t1 WHERE a = 5 AND b > 'w' AND c = 13;
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (c=?)}}

finish_test
Changes to test/analyze4.test.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    INSERT INTO t1 SELECT a+32, b FROM t1;
    INSERT INTO t1 SELECT a+64, b FROM t1;
    ANALYZE;
  }

  # Should choose the t1a index since it is more specific than t1b.
  db eval {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=5 AND b IS NULL}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}

# Verify that the t1b index shows that it does not narrow down the
# search any at all.
#
do_test analyze4-1.1 {
  db eval {
    SELECT idx, stat FROM sqlite_stat1 WHERE tbl='t1' ORDER BY idx;







|







34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    INSERT INTO t1 SELECT a+32, b FROM t1;
    INSERT INTO t1 SELECT a+64, b FROM t1;
    ANALYZE;
  }

  # Should choose the t1a index since it is more specific than t1b.
  db eval {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=5 AND b IS NULL}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}

# Verify that the t1b index shows that it does not narrow down the
# search any at all.
#
do_test analyze4-1.1 {
  db eval {
    SELECT idx, stat FROM sqlite_stat1 WHERE tbl='t1' ORDER BY idx;
Changes to test/analyze5.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30











31
32
33
34
35
36
37
# 2011 January 19
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements tests for SQLite library.  The focus of the tests
# in this file is the use of the sqlite_stat3 histogram data on tables
# with many repeated values and only a few distinct values.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}

set testprefix analyze5

proc eqp {sql {db db}} {
  uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db
}












unset -nocomplain i t u v w x y z
do_test analyze5-1.0 {
  db eval {CREATE TABLE t1(t,u,v TEXT COLLATE nocase,w,x,y,z)}
  for {set i 0} {$i < 1000} {incr i} {
    set y [expr {$i>=25 && $i<=50}]
    set z [expr {($i>=400) + ($i>=700) + ($i>=875)}]
    set x $z












|






|










>
>
>
>
>
>
>
>
>
>
>







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# 2011 January 19
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements tests for SQLite library.  The focus of the tests
# in this file is the use of the sqlite_stat4 histogram data on tables
# with many repeated values and only a few distinct values.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat4&&!stat3 {
  finish_test
  return
}

set testprefix analyze5

proc eqp {sql {db db}} {
  uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db
}

proc alpha {blob} {
  set ret ""
  foreach c [split $blob {}] {
    if {[string is alpha $c]} {append ret $c}
  }
  return $ret
}
db func alpha alpha

db func lindex lindex

unset -nocomplain i t u v w x y z
do_test analyze5-1.0 {
  db eval {CREATE TABLE t1(t,u,v TEXT COLLATE nocase,w,x,y,z)}
  for {set i 0} {$i < 1000} {incr i} {
    set y [expr {$i>=25 && $i<=50}]
    set z [expr {($i>=400) + ($i>=700) + ($i>=875)}]
    set x $z
51
52
53
54
55
56
57








58

59
60
61
62


63
64






65

66




67
68

69
70
71
72
73
74
75
    CREATE INDEX t1u ON t1(u);  -- text
    CREATE INDEX t1v ON t1(v);  -- mixed case text
    CREATE INDEX t1w ON t1(w);  -- integers 0, 1, 2 and a few NULLs
    CREATE INDEX t1x ON t1(x);  -- integers 1, 2, 3 and many NULLs
    CREATE INDEX t1y ON t1(y);  -- integers 0 and very few 1s
    CREATE INDEX t1z ON t1(z);  -- integers 0, 1, 2, and 3
    ANALYZE;








    SELECT sample FROM sqlite_stat3 WHERE idx='t1u' ORDER BY nlt;

  }
} {alpha bravo charlie delta}

do_test analyze5-1.1 {


  db eval {SELECT DISTINCT lower(sample) FROM sqlite_stat3 WHERE idx='t1v'
             ORDER BY 1}






} {alpha bravo charlie delta}

do_test analyze5-1.2 {




  db eval {SELECT idx, count(*) FROM sqlite_stat3 GROUP BY 1 ORDER BY 1}
} {t1t 4 t1u 4 t1v 4 t1w 4 t1x 4 t1y 2 t1z 4}


# Verify that range queries generate the correct row count estimates
#
foreach {testid where index rows} {
    1  {z>=0 AND z<=0}       t1z  400
    2  {z>=1 AND z<=1}       t1z  300
    3  {z>=2 AND z<=2}       t1z  175







>
>
>
>
>
>
>
>
|
>




>
>
|
|
>
>
>
>
>
>

>
|
>
>
>
>
|
|
>







62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    CREATE INDEX t1u ON t1(u);  -- text
    CREATE INDEX t1v ON t1(v);  -- mixed case text
    CREATE INDEX t1w ON t1(w);  -- integers 0, 1, 2 and a few NULLs
    CREATE INDEX t1x ON t1(x);  -- integers 1, 2, 3 and many NULLs
    CREATE INDEX t1y ON t1(y);  -- integers 0 and very few 1s
    CREATE INDEX t1z ON t1(z);  -- integers 0, 1, 2, and 3
    ANALYZE;
  }
  ifcapable stat4 {
    db eval {
      SELECT DISTINCT lindex(test_decode(sample),0) 
        FROM sqlite_stat4 WHERE idx='t1u' ORDER BY nlt;
    }
  } else {
    db eval {
      SELECT sample FROM sqlite_stat3 WHERE idx='t1u' ORDER BY nlt;
    }
  }
} {alpha bravo charlie delta}

do_test analyze5-1.1 {
  ifcapable stat4 {
    db eval {
      SELECT DISTINCT lower(lindex(test_decode(sample), 0)) 
        FROM sqlite_stat4 WHERE idx='t1v' ORDER BY 1
    }
  } else {
    db eval {
      SELECT lower(sample) FROM sqlite_stat3 WHERE idx='t1v' ORDER BY 1
    }
  }
} {alpha bravo charlie delta}
ifcapable stat4 {
  do_test analyze5-1.2 {
    db eval {SELECT idx, count(*) FROM sqlite_stat4 GROUP BY 1 ORDER BY 1}
  } {t1t 8 t1u 8 t1v 8 t1w 8 t1x 8 t1y 9 t1z 8}
} else {
  do_test analyze5-1.2 {
    db eval {SELECT idx, count(*) FROM sqlite_stat3 GROUP BY 1 ORDER BY 1}
  } {t1t 4 t1u 4 t1v 4 t1w 4 t1x 4 t1y 2 t1z 4}
}

# Verify that range queries generate the correct row count estimates
#
foreach {testid where index rows} {
    1  {z>=0 AND z<=0}       t1z  400
    2  {z>=1 AND z<=1}       t1z  300
    3  {z>=2 AND z<=2}       t1z  175
152
153
154
155
156
157
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
  301  {y=1}                 t1y   26
  302  {y=0.1}               t1y    1

  400  {x IS NULL}           t1x  400

} {
  # Verify that the expected index is used with the expected row count

  do_test analyze5-1.${testid}a {
    set x [lindex [eqp "SELECT * FROM t1 WHERE $where"] 3]
    set idx {}
    regexp {INDEX (t1.) } $x all idx
    regexp {~([0-9]+) rows} $x all nrow
    list $idx $nrow
  } [list $index $rows]

  # Verify that the same result is achieved regardless of whether or not
  # the index is used
  do_test analyze5-1.${testid}b {
    set w2 [string map {y +y z +z} $where]
    set a1 [db eval "SELECT rowid FROM t1 NOT INDEXED WHERE $w2\
                     ORDER BY +rowid"]







>
|
|
|
|
|
|
|







186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
  301  {y=1}                 t1y   26
  302  {y=0.1}               t1y    1

  400  {x IS NULL}           t1x  400

} {
  # Verify that the expected index is used with the expected row count
  # No longer valid due to an EXPLAIN QUERY PLAN output format change
  # do_test analyze5-1.${testid}a {
  #   set x [lindex [eqp "SELECT * FROM t1 WHERE $where"] 3]
  #   set idx {}
  #   regexp {INDEX (t1.) } $x all idx
  #   regexp {~([0-9]+) rows} $x all nrow
  #   list $idx $nrow
  # } [list $index $rows]

  # Verify that the same result is achieved regardless of whether or not
  # the index is used
  do_test analyze5-1.${testid}b {
    set w2 [string map {y +y z +z} $where]
    set a1 [db eval "SELECT rowid FROM t1 NOT INDEXED WHERE $w2\
                     ORDER BY +rowid"]
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
  503  {x=1}                               t1x   1
  504  {x IS NOT NULL}                     t1x   2
  505  {+x IS NOT NULL}                     {} 500
  506  {upper(x) IS NOT NULL}               {} 500

} {
  # Verify that the expected index is used with the expected row count
if {$testid==50299} {breakpoint; set sqlite_where_trace 1}
  do_test analyze5-1.${testid}a {
    set x [lindex [eqp "SELECT * FROM t1 WHERE $where"] 3]
    set idx {}
    regexp {INDEX (t1.) } $x all idx
    regexp {~([0-9]+) rows} $x all nrow
    list $idx $nrow
  } [list $index $rows]
if {$testid==50299} exit

  # Verify that the same result is achieved regardless of whether or not
  # the index is used
  do_test analyze5-1.${testid}b {
    set w2 [string map {y +y z +z} $where]
    set a1 [db eval "SELECT rowid FROM t1 NOT INDEXED WHERE $w2\
                     ORDER BY +rowid"]







|
|
|
|
|
|
|
|
<







233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
  503  {x=1}                               t1x   1
  504  {x IS NOT NULL}                     t1x   2
  505  {+x IS NOT NULL}                     {} 500
  506  {upper(x) IS NOT NULL}               {} 500

} {
  # Verify that the expected index is used with the expected row count
  # No longer valid due to an EXPLAIN QUERY PLAN format change
  # do_test analyze5-1.${testid}a {
  #   set x [lindex [eqp "SELECT * FROM t1 WHERE $where"] 3]
  #   set idx {}
  #   regexp {INDEX (t1.) } $x all idx
  #   regexp {~([0-9]+) rows} $x all nrow
  #   list $idx $nrow
  # } [list $index $rows]


  # Verify that the same result is achieved regardless of whether or not
  # the index is used
  do_test analyze5-1.${testid}b {
    set w2 [string map {y +y z +z} $where]
    set a1 [db eval "SELECT rowid FROM t1 NOT INDEXED WHERE $w2\
                     ORDER BY +rowid"]
Changes to test/analyze6.test.
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# in this file a corner-case query planner optimization involving the
# join order of two tables of different sizes.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}

set testprefix analyze6

proc eqp {sql {db db}} {







|







13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# in this file a corner-case query planner optimization involving the
# join order of two tables of different sizes.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat4&&!stat3 {
  finish_test
  return
}

set testprefix analyze6

proc eqp {sql {db db}} {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# The lowest cost plan is to scan CAT and for each integer there, do a single
# lookup of the first corresponding entry in EV then read off the equal values
# in EV.  (Prior to the 2011-03-04 enhancement to where.c, this query would
# have used EV for the outer loop instead of CAT - which was about 3x slower.)
#
do_test analyze6-1.1 {
  eqp {SELECT count(*) FROM ev, cat WHERE x=y}
} {0 0 1 {SCAN TABLE cat USING COVERING INDEX catx (~16 rows)} 0 1 0 {SEARCH TABLE ev USING COVERING INDEX evy (y=?) (~32 rows)}}

# The same plan is chosen regardless of the order of the tables in the
# FROM clause.
#
do_test analyze6-1.2 {
  eqp {SELECT count(*) FROM cat, ev WHERE x=y}
} {0 0 0 {SCAN TABLE cat USING COVERING INDEX catx (~16 rows)} 0 1 1 {SEARCH TABLE ev USING COVERING INDEX evy (y=?) (~32 rows)}}


# Ticket [83ea97620bd3101645138b7b0e71c12c5498fe3d] 2011-03-30
# If ANALYZE is run on an empty table, make sure indices are used
# on the table.
#
do_test analyze6-2.1 {
  execsql {
    CREATE TABLE t201(x INTEGER PRIMARY KEY, y UNIQUE, z);
    CREATE INDEX t201z ON t201(z);
    ANALYZE;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?) (~10 rows)}}
do_test analyze6-2.2 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?) (~1 rows)}}
do_test analyze6-2.3 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze6-2.4 {
  execsql {
    INSERT INTO t201 VALUES(1,2,3);
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?) (~10 rows)}}
do_test analyze6-2.5 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?) (~1 rows)}}
do_test analyze6-2.6 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze6-2.7 {
  execsql {
    INSERT INTO t201 VALUES(4,5,7);
    INSERT INTO t201 SELECT x+100, y+100, z+100 FROM t201;
    INSERT INTO t201 SELECT x+200, y+200, z+200 FROM t201;
    INSERT INTO t201 SELECT x+400, y+400, z+400 FROM t201;
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?) (~10 rows)}}
do_test analyze6-2.8 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?) (~1 rows)}}
do_test analyze6-2.9 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}

finish_test







|






|













|


|


|






|


|


|









|


|


|


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# The lowest cost plan is to scan CAT and for each integer there, do a single
# lookup of the first corresponding entry in EV then read off the equal values
# in EV.  (Prior to the 2011-03-04 enhancement to where.c, this query would
# have used EV for the outer loop instead of CAT - which was about 3x slower.)
#
do_test analyze6-1.1 {
  eqp {SELECT count(*) FROM ev, cat WHERE x=y}
} {0 0 1 {SCAN TABLE cat USING COVERING INDEX catx} 0 1 0 {SEARCH TABLE ev USING COVERING INDEX evy (y=?)}}

# The same plan is chosen regardless of the order of the tables in the
# FROM clause.
#
do_test analyze6-1.2 {
  eqp {SELECT count(*) FROM cat, ev WHERE x=y}
} {0 0 0 {SCAN TABLE cat USING COVERING INDEX catx} 0 1 1 {SEARCH TABLE ev USING COVERING INDEX evy (y=?)}}


# Ticket [83ea97620bd3101645138b7b0e71c12c5498fe3d] 2011-03-30
# If ANALYZE is run on an empty table, make sure indices are used
# on the table.
#
do_test analyze6-2.1 {
  execsql {
    CREATE TABLE t201(x INTEGER PRIMARY KEY, y UNIQUE, z);
    CREATE INDEX t201z ON t201(z);
    ANALYZE;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?)}}
do_test analyze6-2.2 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
do_test analyze6-2.3 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)}}
do_test analyze6-2.4 {
  execsql {
    INSERT INTO t201 VALUES(1,2,3);
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?)}}
do_test analyze6-2.5 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
do_test analyze6-2.6 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)}}
do_test analyze6-2.7 {
  execsql {
    INSERT INTO t201 VALUES(4,5,7);
    INSERT INTO t201 SELECT x+100, y+100, z+100 FROM t201;
    INSERT INTO t201 SELECT x+200, y+200, z+200 FROM t201;
    INSERT INTO t201 SELECT x+400, y+400, z+400 FROM t201;
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?)}}
do_test analyze6-2.8 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
do_test analyze6-2.9 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)}}

finish_test
Changes to test/analyze7.test.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

101
102
103
104
105
106
107
108
109
110
111
112
113
    CREATE INDEX t1b ON t1(b);
    CREATE INDEX t1cd ON t1(c,d);
    CREATE VIRTUAL TABLE nums USING wholenumber;
    INSERT INTO t1 SELECT value, value, value/100, value FROM nums
                    WHERE value BETWEEN 1 AND 256;
    EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;
  }
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~10 rows)}}
do_test analyze7-1.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~10 rows)}}
do_test analyze7-1.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?) (~10 rows)}}

# Run an analyze on one of the three indices.  Verify that this
# effects the row-count estimate on the one query that uses that
# one index.
#
do_test analyze7-2.0 {
  execsql {ANALYZE t1a;}
  db cache flush
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test analyze7-2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~10 rows)}}
do_test analyze7-2.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?) (~10 rows)}}

# Verify that since the query planner now things that t1a is more
# selective than t1b, it prefers to use t1a.
#
do_test analyze7-2.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}

# Run an analysis on another of the three indices.  Verify  that this
# new analysis works and does not disrupt the previous analysis.
#
do_test analyze7-3.0 {
  execsql {ANALYZE t1cd;}
  db cache flush;
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test analyze7-3.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~10 rows)}}
do_test analyze7-3.2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=?;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?) (~86 rows)}}
ifcapable stat3 {
  # If ENABLE_STAT3 is defined, SQLite comes up with a different estimated
  # row count for (c=2) than it does for (c=?).
  do_test analyze7-3.2.2 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?) (~57 rows)}}
} else {
  # If ENABLE_STAT3 is not defined, the expected row count for (c=2) is the
  # same as that for (c=?).
  do_test analyze7-3.2.3 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?) (~86 rows)}}
}
do_test analyze7-3.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}

ifcapable {!stat3} {
  do_test analyze7-3.4 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND b=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~2 rows)}}
  do_test analyze7-3.5 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND c=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
}
do_test analyze7-3.6 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND d=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=? AND d=?) (~1 rows)}}

finish_test







|


|


|









|


|


|






|








|


|


|
|
|



|

|



|



|
>
|


|


|



|


33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    CREATE INDEX t1b ON t1(b);
    CREATE INDEX t1cd ON t1(c,d);
    CREATE VIRTUAL TABLE nums USING wholenumber;
    INSERT INTO t1 SELECT value, value, value/100, value FROM nums
                    WHERE value BETWEEN 1 AND 256;
    EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;
  }
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test analyze7-1.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test analyze7-1.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}

# Run an analyze on one of the three indices.  Verify that this
# effects the row-count estimate on the one query that uses that
# one index.
#
do_test analyze7-2.0 {
  execsql {ANALYZE t1a;}
  db cache flush
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test analyze7-2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test analyze7-2.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}

# Verify that since the query planner now things that t1a is more
# selective than t1b, it prefers to use t1a.
#
do_test analyze7-2.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}

# Run an analysis on another of the three indices.  Verify  that this
# new analysis works and does not disrupt the previous analysis.
#
do_test analyze7-3.0 {
  execsql {ANALYZE t1cd;}
  db cache flush;
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test analyze7-3.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test analyze7-3.2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=?;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
ifcapable stat4||stat3 {
  # If ENABLE_STAT4 is defined, SQLite comes up with a different estimated
  # row count for (c=2) than it does for (c=?).
  do_test analyze7-3.2.2 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
} else {
  # If ENABLE_STAT4 is not defined, the expected row count for (c=2) is the
  # same as that for (c=?).
  do_test analyze7-3.2.3 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
}
do_test analyze7-3.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}

ifcapable {!stat4 && !stat3} {
  do_test analyze7-3.4 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND b=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
  do_test analyze7-3.5 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND c=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
}
do_test analyze7-3.6 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND d=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=? AND d=?)}}

finish_test
Changes to test/analyze8.test.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# This file implements tests for SQLite library.  The focus of the tests
# in this file is testing the capabilities of sqlite_stat3.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}

set testprefix analyze8

proc eqp {sql {db db}} {







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# This file implements tests for SQLite library.  The focus of the tests
# in this file is testing the capabilities of sqlite_stat3.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat4&&!stat3 {
  finish_test
  return
}

set testprefix analyze8

proc eqp {sql {db db}} {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87












88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# with a==100.  And so for those cases, choose the t1b index.
#
# Buf ro a==99 and a==101, there are far fewer rows so choose
# the t1a index.
#
do_test 1.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~2 rows)}}
do_test 1.2 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test 1.3 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test 1.4 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~2 rows)}}
do_test 1.5 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test 1.6 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test 2.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b BETWEEN 50 AND 54}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?) (~2 rows)}}

# There are many more values of c between 0 and 100000 than there are
# between 800000 and 900000.  So t1c is more selective for the latter
# range.
#












do_test 3.1 {
  eqp {SELECT * FROM t1 WHERE b BETWEEN 50 AND 54 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?) (~6 rows)}}
do_test 3.2 {
  eqp {SELECT * FROM t1
       WHERE b BETWEEN 50 AND 54 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?) (~4 rows)}}
do_test 3.3 {
  eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~63 rows)}}
do_test 3.4 {
  eqp {SELECT * FROM t1
       WHERE a=100 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?) (~2 rows)}}

finish_test







|


|


|


|


|


|


|




|
>
>
>
>
>
>
>
>
>
>
>
>


|



|


|



|


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# with a==100.  And so for those cases, choose the t1b index.
#
# Buf ro a==99 and a==101, there are far fewer rows so choose
# the t1a index.
#
do_test 1.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test 1.2 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 1.3 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 1.4 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test 1.5 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 1.6 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 2.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b BETWEEN 50 AND 54}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

# There are many more values of c between 0 and 100000 than there are
# between 800000 and 900000.  So t1c is more selective for the latter
# range.
# 
# Test 3.2 is a little unstable. It depends on the planner estimating
# that (b BETWEEN 50 AND 54) will match more rows than (c BETWEEN
# 800000 AND 900000). Which is a pretty close call (50 vs. 32), so
# the planner could get it wrong with an unlucky set of samples. This
# case happens to work, but others ("b BETWEEN 40 AND 44" for example) 
# will fail.
#
do_execsql_test 3.0 {
  SELECT count(*) FROM t1 WHERE b BETWEEN 50 AND 54;
  SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 100000;
  SELECT count(*) FROM t1 WHERE c BETWEEN 800000 AND 900000;
} {50 376 32}
do_test 3.1 {
  eqp {SELECT * FROM t1 WHERE b BETWEEN 50 AND 54 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}
do_test 3.2 {
  eqp {SELECT * FROM t1
       WHERE b BETWEEN 50 AND 54 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}
do_test 3.3 {
  eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 3.4 {
  eqp {SELECT * FROM t1
       WHERE a=100 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}

finish_test
Added test/analyze9.test.
















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
# 2013 August 3
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains automated tests used to verify that the sqlite_stat4
# functionality is working.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix analyze9

ifcapable !stat4 {
  finish_test
  return
}

proc s {blob} {
  set ret ""
  binary scan $blob c* bytes
  foreach b $bytes {
    set t [binary format c $b]
    if {[string is print $t]} {
      append ret $t
    } else {
      append ret .
    }
  }
  return $ret
}
db function s s

do_execsql_test 1.0 {
  CREATE TABLE t1(a TEXT, b TEXT); 
  INSERT INTO t1 VALUES('(0)', '(0)');
  INSERT INTO t1 VALUES('(1)', '(1)');
  INSERT INTO t1 VALUES('(2)', '(2)');
  INSERT INTO t1 VALUES('(3)', '(3)');
  INSERT INTO t1 VALUES('(4)', '(4)');
  CREATE INDEX i1 ON t1(a, b);
} {}


do_execsql_test 1.1 {
  ANALYZE;
} {}

do_execsql_test 1.2 {
  SELECT tbl,idx,nEq,nLt,nDLt,test_decode(sample) FROM sqlite_stat4;
} {
  t1 i1 {1 1 1} {0 0 0} {0 0 0} {(0) (0) 1}
  t1 i1 {1 1 1} {1 1 1} {1 1 1} {(1) (1) 2}
  t1 i1 {1 1 1} {2 2 2} {2 2 2} {(2) (2) 3}
  t1 i1 {1 1 1} {3 3 3} {3 3 3} {(3) (3) 4}
  t1 i1 {1 1 1} {4 4 4} {4 4 4} {(4) (4) 5}
}

if {[permutation] != "utf16"} {
  do_execsql_test 1.3 {
    SELECT tbl,idx,nEq,nLt,nDLt,s(sample) FROM sqlite_stat4;
  } {
    t1 i1 {1 1 1} {0 0 0} {0 0 0} ....(0)(0)
    t1 i1 {1 1 1} {1 1 1} {1 1 1} ....(1)(1).
    t1 i1 {1 1 1} {2 2 2} {2 2 2} ....(2)(2).
    t1 i1 {1 1 1} {3 3 3} {3 3 3} ....(3)(3).
    t1 i1 {1 1 1} {4 4 4} {4 4 4} ....(4)(4).
  }
}


#-------------------------------------------------------------------------
# This is really just to test SQL user function "test_decode".
#
reset_db
do_execsql_test 2.1 {
  CREATE TABLE t1(a, b, c);
  INSERT INTO t1 VALUES('some text', 14, NULL);
  INSERT INTO t1 VALUES(22.0, NULL, x'656667');
  CREATE INDEX i1 ON t1(a, b, c);
  ANALYZE;
  SELECT test_decode(sample) FROM sqlite_stat4;
} {
  {22.0 NULL x'656667' 2} 
  {{some text} 14 NULL 1}
}

#-------------------------------------------------------------------------
# 
reset_db
do_execsql_test 3.1 {
  CREATE TABLE t2(a, b);
  CREATE INDEX i2 ON t2(a, b);
  BEGIN;
}

do_test 3.2 {
  for {set i 0} {$i < 1000} {incr i} {
    set a [expr $i / 10]
    set b [expr int(rand() * 15.0)]
    execsql { INSERT INTO t2 VALUES($a, $b) }
  }
  execsql COMMIT
} {}

db func lindex lindex

# Each value of "a" occurs exactly 10 times in the table.
#
do_execsql_test 3.3.1 {
  SELECT count(*) FROM t2 GROUP BY a;
} [lrange [string repeat "10 " 100] 0 99]

# The first element in the "nEq" list of all samples should therefore be 10.
#
do_execsql_test 3.3.2 {
  ANALYZE;
  SELECT lindex(nEq, 0) FROM sqlite_stat4;
} [lrange [string repeat "10 " 100] 0 23]

#-------------------------------------------------------------------------
# 
do_execsql_test 3.4 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c);
  INSERT INTO t1 VALUES(1, 1, 'one-a');
  INSERT INTO t1 VALUES(11, 1, 'one-b');
  INSERT INTO t1 VALUES(21, 1, 'one-c');
  INSERT INTO t1 VALUES(31, 1, 'one-d');
  INSERT INTO t1 VALUES(41, 1, 'one-e');
  INSERT INTO t1 VALUES(51, 1, 'one-f');
  INSERT INTO t1 VALUES(61, 1, 'one-g');
  INSERT INTO t1 VALUES(71, 1, 'one-h');
  INSERT INTO t1 VALUES(81, 1, 'one-i');
  INSERT INTO t1 VALUES(91, 1, 'one-j');
  INSERT INTO t1 SELECT a+1,2,'two' || substr(c,4) FROM t1;
  INSERT INTO t1 SELECT a+2,3,'three'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';
  INSERT INTO t1 SELECT a+3,4,'four'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';
  INSERT INTO t1 SELECT a+4,5,'five'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';
  INSERT INTO t1 SELECT a+5,6,'six'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';	
  CREATE INDEX t1b ON t1(b);
  ANALYZE;
  SELECT c FROM t1 WHERE b=3 AND a BETWEEN 30 AND 60;
} {three-d three-e three-f}


#-------------------------------------------------------------------------
# These tests verify that the sample selection for stat4 appears to be 
# working as designed.
#

reset_db
db func lindex lindex
db func lrange lrange

do_execsql_test 4.0 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(a, b, c);
  CREATE INDEX i1 ON t1(c, b, a);
}


proc insert_filler_rows_n {iStart args} {
  set A(-ncopy) 1
  set A(-nval) 1

  foreach {k v} $args {
    if {[info exists A($k)]==0} { error "no such option: $k" }
    set A($k) $v
  }
  if {[llength $args] % 2} {
    error "option requires an argument: [lindex $args end]"
  }

  for {set i 0} {$i < $A(-nval)} {incr i} {
    set iVal [expr $iStart+$i]
    for {set j 0} {$j < $A(-ncopy)} {incr j} {
      execsql { INSERT INTO t1 VALUES($iVal, $iVal, $iVal) }
    }
  }
}

do_test 4.1 {
  execsql { BEGIN }
  insert_filler_rows_n  0  -ncopy 10 -nval 19
  insert_filler_rows_n 20  -ncopy  1 -nval 100

  execsql {
    INSERT INTO t1(c, b, a) VALUES(200, 1, 'a');
    INSERT INTO t1(c, b, a) VALUES(200, 1, 'b');
    INSERT INTO t1(c, b, a) VALUES(200, 1, 'c');

    INSERT INTO t1(c, b, a) VALUES(200, 2, 'e');
    INSERT INTO t1(c, b, a) VALUES(200, 2, 'f');

    INSERT INTO t1(c, b, a) VALUES(201, 3, 'g');
    INSERT INTO t1(c, b, a) VALUES(201, 4, 'h');

    ANALYZE;
    SELECT count(*) FROM sqlite_stat4;
    SELECT count(*) FROM t1;
  }
} {24 297}

do_execsql_test 4.2 {
  SELECT 
    neq,
    lrange(nlt, 0, 2),
    lrange(ndlt, 0, 2),
    lrange(test_decode(sample), 0, 2)
    FROM sqlite_stat4
  ORDER BY rowid LIMIT 16;
} {
  {10 10 10 1} {0 0 0} {0 0 0} {0 0 0}
  {10 10 10 1} {10 10 10} {1 1 1} {1 1 1}
  {10 10 10 1} {20 20 20} {2 2 2} {2 2 2}
  {10 10 10 1} {30 30 30} {3 3 3} {3 3 3}
  {10 10 10 1} {40 40 40} {4 4 4} {4 4 4}
  {10 10 10 1} {50 50 50} {5 5 5} {5 5 5}
  {10 10 10 1} {60 60 60} {6 6 6} {6 6 6}
  {10 10 10 1} {70 70 70} {7 7 7} {7 7 7}
  {10 10 10 1} {80 80 80} {8 8 8} {8 8 8}
  {10 10 10 1} {90 90 90} {9 9 9} {9 9 9}
  {10 10 10 1} {100 100 100} {10 10 10} {10 10 10}
  {10 10 10 1} {110 110 110} {11 11 11} {11 11 11}
  {10 10 10 1} {120 120 120} {12 12 12} {12 12 12}
  {10 10 10 1} {130 130 130} {13 13 13} {13 13 13}
  {10 10 10 1} {140 140 140} {14 14 14} {14 14 14}
  {10 10 10 1} {150 150 150} {15 15 15} {15 15 15}
}

do_execsql_test 4.3 {
  SELECT 
    neq,
    lrange(nlt, 0, 2),
    lrange(ndlt, 0, 2),
    lrange(test_decode(sample), 0, 1)
    FROM sqlite_stat4
  ORDER BY rowid DESC LIMIT 2;
} {
  {2 1 1 1} {295 296 296} {120 122 125} {201 4} 
  {5 3 1 1} {290 290 290} {119 119 119} {200 1}
}

do_execsql_test 4.4 { SELECT count(DISTINCT c) FROM t1 WHERE c<201 } 120
do_execsql_test 4.5 { SELECT count(DISTINCT c) FROM t1 WHERE c<200 } 119

# Check that the perioidic samples are present.
do_execsql_test 4.6 {
  SELECT count(*) FROM sqlite_stat4
  WHERE lindex(test_decode(sample), 3) IN 
    ('34', '68', '102', '136', '170', '204', '238', '272')
} {8}

reset_db
do_test 4.7 {
  execsql { 
    BEGIN;
    CREATE TABLE t1(o,t INTEGER PRIMARY KEY);
    CREATE INDEX i1 ON t1(o);
  }
  for {set i 0} {$i<10000} {incr i [expr (($i<1000)?1:10)]} {
    execsql { INSERT INTO t1 VALUES('x', $i) }
  }
  execsql {
    COMMIT;
    ANALYZE;
    SELECT count(*) FROM sqlite_stat4;
  }
} {8}
do_execsql_test 4.8 {
  SELECT test_decode(sample) FROM sqlite_stat4;
} {
  {x 211} {x 423} {x 635} {x 847} 
  {x 1590} {x 3710} {x 5830} {x 7950}
}


#-------------------------------------------------------------------------
# The following would cause a crash at one point.
#
reset_db
do_execsql_test 5.1 {
  PRAGMA encoding = 'utf-16';
  CREATE TABLE t0(v);
  ANALYZE;
}

#-------------------------------------------------------------------------
# This was also crashing (corrupt sqlite_stat4 table).
#
reset_db
do_execsql_test 6.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
  CREATE INDEX i2 ON t1(b);
  INSERT INTO t1 VALUES(1, 1);
  INSERT INTO t1 VALUES(2, 2);
  INSERT INTO t1 VALUES(3, 3);
  INSERT INTO t1 VALUES(4, 4);
  INSERT INTO t1 VALUES(5, 5);
  ANALYZE;
  PRAGMA writable_schema = 1;
  CREATE TEMP TABLE x1 AS
    SELECT tbl,idx,neq,nlt,ndlt,sample FROM sqlite_stat4
    ORDER BY (rowid%5), rowid;
  DELETE FROM sqlite_stat4;
  INSERT INTO sqlite_stat4 SELECT * FROM x1;
  PRAGMA writable_schema = 0;
  ANALYZE sqlite_master;
}
do_execsql_test 6.2 {
  SELECT * FROM t1 WHERE a = 'abc';
}

#-------------------------------------------------------------------------
# The following tests experiment with adding corrupted records to the
# 'sample' column of the sqlite_stat4 table.
#
reset_db
sqlite3_db_config_lookaside db 0 0 0

do_execsql_test 7.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a, b);
  INSERT INTO t1 VALUES(1, 1);
  INSERT INTO t1 VALUES(2, 2);
  INSERT INTO t1 VALUES(3, 3);
  INSERT INTO t1 VALUES(4, 4);
  INSERT INTO t1 VALUES(5, 5);
  ANALYZE;
  UPDATE sqlite_stat4 SET sample = X'' WHERE rowid = 1;
  ANALYZE sqlite_master;
}

do_execsql_test 7.2 {
  UPDATE sqlite_stat4 SET sample = X'FFFF';
  ANALYZE sqlite_master;
  SELECT * FROM t1 WHERE a = 1;
} {1 1}

do_execsql_test 7.3 {
  ANALYZE;
  UPDATE sqlite_stat4 SET neq = '0 0 0';
  ANALYZE sqlite_master;
  SELECT * FROM t1 WHERE a = 1;
} {1 1}

do_execsql_test 7.4 {
  ANALYZE;
  UPDATE sqlite_stat4 SET ndlt = '0 0 0';
  ANALYZE sqlite_master;
  SELECT * FROM t1 WHERE a = 3;
} {3 3}

do_execsql_test 7.5 {
  ANALYZE;
  UPDATE sqlite_stat4 SET nlt = '0 0 0';
  ANALYZE sqlite_master;
  SELECT * FROM t1 WHERE a = 5;
} {5 5}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 8.1 {
  CREATE TABLE t1(x TEXT);
  CREATE INDEX i1 ON t1(x);
  INSERT INTO t1 VALUES('1');
  INSERT INTO t1 VALUES('2');
  INSERT INTO t1 VALUES('3');
  INSERT INTO t1 VALUES('4');
  ANALYZE;
}
do_execsql_test 8.2 {
  SELECT * FROM t1 WHERE x = 3;
} {3}

#-------------------------------------------------------------------------
# Check that the bug fixed by [91733bc485] really is fixed.
#
reset_db
do_execsql_test 9.1 {
  CREATE TABLE t1(a, b, c, d, e);
  CREATE INDEX i1 ON t1(a, b, c, d);
  CREATE INDEX i2 ON t1(e);
}
do_test 9.2 {
  execsql BEGIN;
  for {set i 0} {$i < 100} {incr i} {
    execsql "INSERT INTO t1 VALUES('x', 'y', 'z', $i, [expr $i/2])"
  }
  for {set i 0} {$i < 20} {incr i} {
    execsql "INSERT INTO t1 VALUES('x', 'y', 'z', 101, $i)"
  }
  for {set i 102} {$i < 200} {incr i} {
    execsql "INSERT INTO t1 VALUES('x', 'y', 'z', $i, [expr $i/2])"
  }
  execsql COMMIT
  execsql ANALYZE
} {}

do_eqp_test 9.3.1 {
  SELECT * FROM t1 WHERE a='x' AND b='y' AND c='z' AND d=101 AND e=5;
} {/t1 USING INDEX i2/}
do_eqp_test 9.3.2 {
  SELECT * FROM t1 WHERE a='x' AND b='y' AND c='z' AND d=99 AND e=5;
} {/t1 USING INDEX i1/}

set value_d [expr 101]
do_eqp_test 9.4.1 {
  SELECT * FROM t1 WHERE a='x' AND b='y' AND c='z' AND d=$value_d AND e=5
} {/t1 USING INDEX i2/}
set value_d [expr 99]
do_eqp_test 9.4.2 {
  SELECT * FROM t1 WHERE a='x' AND b='y' AND c='z' AND d=$value_d AND e=5
} {/t1 USING INDEX i1/}

#-------------------------------------------------------------------------
# Check that the planner takes stat4 data into account when considering
# "IS NULL" and "IS NOT NULL" constraints.
#
do_execsql_test 10.1.1 {
  DROP TABLE IF EXISTS t3;
  CREATE TABLE t3(a, b);
  CREATE INDEX t3a ON t3(a);
  CREATE INDEX t3b ON t3(b);
}
do_test 10.1.2 {
  for {set i 1} {$i < 100} {incr i} {
    if {$i>90} { set a $i } else { set a NULL }
    set b [expr $i % 5]
    execsql "INSERT INTO t3 VALUES($a, $b)"
  }
  execsql ANALYZE
} {}
do_eqp_test 10.1.3 {
  SELECT * FROM t3 WHERE a IS NULL AND b = 2
} {/t3 USING INDEX t3b/}
do_eqp_test 10.1.4 {
  SELECT * FROM t3 WHERE a IS NOT NULL AND b = 2
} {/t3 USING INDEX t3a/}

do_execsql_test 10.2.1 {
  DROP TABLE IF EXISTS t3;
  CREATE TABLE t3(x, a, b);
  CREATE INDEX t3a ON t3(x, a);
  CREATE INDEX t3b ON t3(x, b);
}
do_test 10.2.2 {
  for {set i 1} {$i < 100} {incr i} {
    if {$i>90} { set a $i } else { set a NULL }
    set b [expr $i % 5]
    execsql "INSERT INTO t3 VALUES('xyz', $a, $b)"
  }
  execsql ANALYZE
} {}
do_eqp_test 10.2.3 {
  SELECT * FROM t3 WHERE x = 'xyz' AND a IS NULL AND b = 2
} {/t3 USING INDEX t3b/}
do_eqp_test 10.2.4 {
  SELECT * FROM t3 WHERE x = 'xyz' AND a IS NOT NULL AND b = 2
} {/t3 USING INDEX t3a/}

#-------------------------------------------------------------------------
# Check that stat4 data is used correctly with non-default collation
# sequences.
#
foreach {tn schema} {
  1 {
    CREATE TABLE t4(a COLLATE nocase, b);
    CREATE INDEX t4a ON t4(a);
    CREATE INDEX t4b ON t4(b);
  }
  2 {
    CREATE TABLE t4(a, b);
    CREATE INDEX t4a ON t4(a COLLATE nocase);
    CREATE INDEX t4b ON t4(b);
  }
} {
  drop_all_tables
  do_test 11.$tn.1 { execsql $schema } {}

  do_test 11.$tn.2 {
    for {set i 0} {$i < 100} {incr i} {
      if { ($i % 10)==0 } { set a ABC } else { set a DEF }
      set b [expr $i % 5]
        execsql { INSERT INTO t4 VALUES($a, $b) }
    }
    execsql ANALYZE
  } {}

  do_eqp_test 11.$tn.3 {
    SELECT * FROM t4 WHERE a = 'def' AND b = 3;
  } {/t4 USING INDEX t4b/}

  if {$tn==1} {
    set sql "SELECT * FROM t4 WHERE a = 'abc' AND b = 3;"
    do_eqp_test 11.$tn.4 $sql {/t4 USING INDEX t4a/}
  } else {

    set sql "SELECT * FROM t4 WHERE a = 'abc' COLLATE nocase AND b = 3;"
    do_eqp_test 11.$tn.5 $sql {/t4 USING INDEX t4a/}

    set sql "SELECT * FROM t4 WHERE a COLLATE nocase = 'abc' AND b = 3;"
    do_eqp_test 11.$tn.6 $sql {/t4 USING INDEX t4a/}
  }
}

foreach {tn schema} {
  1 {
    CREATE TABLE t4(x, a COLLATE nocase, b);
    CREATE INDEX t4a ON t4(x, a);
    CREATE INDEX t4b ON t4(x, b);
  }
  2 {
    CREATE TABLE t4(x, a, b);
    CREATE INDEX t4a ON t4(x, a COLLATE nocase);
    CREATE INDEX t4b ON t4(x, b);
  }
} {
  drop_all_tables
  do_test 12.$tn.1 { execsql $schema } {}

  do_test 12.$tn.2 {
    for {set i 0} {$i < 100} {incr i} {
      if { ($i % 10)==0 } { set a ABC } else { set a DEF }
      set b [expr $i % 5]
        execsql { INSERT INTO t4 VALUES(X'abcdef', $a, $b) }
    }
    execsql ANALYZE
  } {}

  do_eqp_test 12.$tn.3 {
    SELECT * FROM t4 WHERE x=X'abcdef' AND a = 'def' AND b = 3;
  } {/t4 USING INDEX t4b/}

  if {$tn==1} {
    set sql "SELECT * FROM t4 WHERE x=X'abcdef' AND a = 'abc' AND b = 3;"
    do_eqp_test 12.$tn.4 $sql {/t4 USING INDEX t4a/}
  } else {
    set sql {
      SELECT * FROM t4 WHERE x=X'abcdef' AND a = 'abc' COLLATE nocase AND b = 3
    }
    do_eqp_test 12.$tn.5 $sql {/t4 USING INDEX t4a/}
    set sql {
      SELECT * FROM t4 WHERE x=X'abcdef' AND a COLLATE nocase = 'abc' AND b = 3
    }
    do_eqp_test 12.$tn.6 $sql {/t4 USING INDEX t4a/}
  }
}

#-------------------------------------------------------------------------
# Check that affinities are taken into account when using stat4 data to
# estimate the number of rows scanned by a rowid constraint.
#
drop_all_tables
do_test 13.1 {
  execsql {
    CREATE TABLE t1(a, b, c);
    CREATE INDEX i1 ON t1(a);
    CREATE INDEX i2 ON t1(b, c);
  }
  for {set i 0} {$i<100} {incr i} {
    if {$i %2} {set a abc} else {set a def}
    execsql { INSERT INTO t1(rowid, a, b, c) VALUES($i, $a, $i, $i) }
  }
  execsql ANALYZE
} {}
do_eqp_test 13.2.1 {
  SELECT * FROM t1 WHERE a='abc' AND rowid<15 AND b<20
} {/SEARCH TABLE t1 USING INDEX i1/}
do_eqp_test 13.2.2 {
  SELECT * FROM t1 WHERE a='abc' AND rowid<'15' AND b<20
} {/SEARCH TABLE t1 USING INDEX i1/}
do_eqp_test 13.3.1 {
  SELECT * FROM t1 WHERE a='abc' AND rowid<100 AND b<20
} {/SEARCH TABLE t1 USING INDEX i2/}
do_eqp_test 13.3.2 {
  SELECT * FROM t1 WHERE a='abc' AND rowid<'100' AND b<20
} {/SEARCH TABLE t1 USING INDEX i2/}

#-------------------------------------------------------------------------
# Check also that affinities are taken into account when using stat4 data 
# to estimate the number of rows scanned by any other constraint on a 
# column other than the leftmost.
#
drop_all_tables
do_test 14.1 {
  execsql { CREATE TABLE t1(a, b INTEGER, c) }
  for {set i 0} {$i<100} {incr i} {
    set c [expr $i % 3]
    execsql { INSERT INTO t1 VALUES('ott', $i, $c) }
  }
  execsql {
    CREATE INDEX i1 ON t1(a, b);
    CREATE INDEX i2 ON t1(c);
    ANALYZE;
  }
} {}
do_eqp_test 13.2.1 {
  SELECT * FROM t1 WHERE a='ott' AND b<10 AND c=1
} {/SEARCH TABLE t1 USING INDEX i1/}
do_eqp_test 13.2.2 {
  SELECT * FROM t1 WHERE a='ott' AND b<'10' AND c=1
} {/SEARCH TABLE t1 USING INDEX i1/}

#-------------------------------------------------------------------------
# By default, 16 non-periodic samples are collected for the stat4 table.
# The following tests attempt to verify that the most common keys are
# being collected.
#
proc check_stat4 {tn} {
  db eval ANALYZE
  db eval {SELECT a, b, c, d FROM t1} {
    incr k($a)
    incr k([list $a $b])
    incr k([list $a $b $c])
    if { [info exists k([list $a $b $c $d])]==0 } { incr nRow }
    incr k([list $a $b $c $d])
  }

  set L [list]
  foreach key [array names k] {
    lappend L [list $k($key) $key]
  }

  set nSample $nRow
  if {$nSample>16} {set nSample 16}

  set nThreshold [lindex [lsort -decr -integer -index 0 $L] [expr $nSample-1] 0]
  foreach key [array names k] {
    if {$k($key)>$nThreshold} {
      set expect($key) 1
    }
    if {$k($key)==$nThreshold} {
      set possible($key) 1
    }
  }


  set nPossible [expr $nSample - [llength [array names expect]]]

  #puts "EXPECT: [array names expect]"
  #puts "POSSIBLE($nPossible/[array size possible]): [array names possible]"
  #puts "HAVE: [db eval {SELECT test_decode(sample) FROM sqlite_stat4 WHERE idx='i1'}]"

  db eval {SELECT test_decode(sample) AS s FROM sqlite_stat4 WHERE idx='i1'} {
    set seen 0
    for {set i 0} {$i<4} {incr i} {
      unset -nocomplain expect([lrange $s 0 $i])
      if {[info exists possible([lrange $s 0 $i])]} {
        set seen 1
        unset -nocomplain possible([lrange $s 0 $i])
      }
    }
    if {$seen} {incr nPossible -1}
  }
  if {$nPossible<0} {set nPossible 0}

  set res [list [llength [array names expect]] $nPossible]
  uplevel [list do_test $tn [list set {} $res] {0 0}]
}

drop_all_tables
do_test 14.1.1 {
  execsql {
    CREATE TABLE t1(a,b,c,d);
    CREATE INDEX i1 ON t1(a,b,c,d);
  }
  for {set i 0} {$i < 160} {incr i} {
    execsql { INSERT INTO t1 VALUES($i,$i,$i,$i) }
    if {($i % 10)==0} { execsql { INSERT INTO t1 VALUES($i,$i,$i,$i) } }
  }
} {}
check_stat4 14.1.2

do_test 14.2.1 {
  execsql { DELETE FROM t1 }
  for {set i 0} {$i < 1600} {incr i} {
    execsql { INSERT INTO t1 VALUES($i/10,$i/17,$i/27,$i/37) }
  }
} {}
check_stat4 14.2.2

do_test 14.3.1 {
  for {set i 0} {$i < 10} {incr i} {
    execsql { INSERT INTO t1 VALUES($i*50,$i*50,$i*50,$i*50) }
    execsql { INSERT INTO t1 VALUES($i*50,$i*50,$i*50,$i*50) }
    execsql { INSERT INTO t1 VALUES($i*50,$i*50,$i*50,$i*50) }
    execsql { INSERT INTO t1 VALUES($i*50,$i*50,$i*50,$i*50) }
    execsql { INSERT INTO t1 VALUES($i*50,$i*50,$i*50,$i*50) }
    execsql { INSERT INTO t1 VALUES($i*50,$i*50,$i*50,$i*50) }
    execsql { INSERT INTO t1 VALUES($i*50,$i*50,$i*50,$i*50) }
    execsql { INSERT INTO t1 VALUES($i*50,$i*50,$i*50,$i*50) }
    execsql { INSERT INTO t1 VALUES($i*50,$i*50,$i*50,$i*50) }
    execsql { INSERT INTO t1 VALUES($i*50,$i*50,$i*50,$i*50) }
  }
} {}
check_stat4 14.3.2

do_test 14.4.1 {
  execsql {DELETE FROM t1}
  for {set i 1} {$i < 160} {incr i} {
    set b [expr $i % 10]
    if {$b==0 || $b==2} {set b 1}
    execsql { INSERT INTO t1 VALUES($i/10,$b,$i,$i) }
  }
} {}
check_stat4 14.4.2
db func lrange lrange
db func lindex lindex
do_execsql_test 14.4.3 {
  SELECT lrange(test_decode(sample), 0, 1) AS s FROM sqlite_stat4
  WHERE lindex(s, 1)=='1' ORDER BY rowid
} {
  {0 1} {1 1} {2 1} {3 1} 
  {4 1} {5 1} {6 1} {7 1} 
  {8 1} {9 1} {10 1} {11 1} 
  {12 1} {13 1} {14 1} {15 1}
}

#-------------------------------------------------------------------------
# Test that nothing untoward happens if the stat4 table contains entries
# for indexes that do not exist. Or NULL values in the idx column.
# Or NULL values in any of the other columns.
#
drop_all_tables
do_execsql_test 15.1 {
  CREATE TABLE x1(a, b, UNIQUE(a, b));
  INSERT INTO x1 VALUES(1, 2);
  INSERT INTO x1 VALUES(3, 4);
  INSERT INTO x1 VALUES(5, 6);
  ANALYZE;
  INSERT INTO sqlite_stat4 VALUES(NULL, NULL, NULL, NULL, NULL, NULL);
}
db close
sqlite3 db test.db
do_execsql_test 15.2 { SELECT * FROM x1 } {1 2 3 4 5 6}

do_execsql_test 15.3 {
  INSERT INTO sqlite_stat4 VALUES(42, 42, 42, 42, 42, 42);
}
db close
sqlite3 db test.db
do_execsql_test 15.4 { SELECT * FROM x1 } {1 2 3 4 5 6}

do_execsql_test 15.5 {
  UPDATE sqlite_stat1 SET stat = NULL;
}
db close
sqlite3 db test.db
do_execsql_test 15.6 { SELECT * FROM x1 } {1 2 3 4 5 6}

do_execsql_test 15.7 {
  ANALYZE;
  UPDATE sqlite_stat1 SET tbl = 'no such tbl';
}
db close
sqlite3 db test.db
do_execsql_test 15.8 { SELECT * FROM x1 } {1 2 3 4 5 6}

do_execsql_test 15.9 {
  ANALYZE;
  UPDATE sqlite_stat4 SET neq = NULL, nlt=NULL, ndlt=NULL;
}
db close
sqlite3 db test.db
do_execsql_test 15.10 { SELECT * FROM x1 } {1 2 3 4 5 6}

# This is just for coverage....
do_execsql_test 15.11 {
  ANALYZE;
  UPDATE sqlite_stat1 SET stat = stat || ' unordered';
}
db close
sqlite3 db test.db
do_execsql_test 15.12 { SELECT * FROM x1 } {1 2 3 4 5 6}

#-------------------------------------------------------------------------
# Test that allocations used for sqlite_stat4 samples are included in
# the quantity returned by SQLITE_DBSTATUS_SCHEMA_USED.
#
set one [string repeat x 1000]
set two [string repeat x 2000]
do_test 16.1 {
  reset_db
  execsql {
    CREATE TABLE t1(a, UNIQUE(a));
    INSERT INTO t1 VALUES($one);
    ANALYZE;
  }
  set nByte [lindex [sqlite3_db_status db SCHEMA_USED 0] 1]

  reset_db
  execsql {
    CREATE TABLE t1(a, UNIQUE(a));
    INSERT INTO t1 VALUES($two);
    ANALYZE;
  }
  set nByte2 [lindex [sqlite3_db_status db SCHEMA_USED 0] 1]

  expr {$nByte2 > $nByte+900 && $nByte2 < $nByte+1050}
} {1}

#-------------------------------------------------------------------------
# Test that stat4 data may be used with partial indexes.
#
do_test 17.1 {
  reset_db
  execsql {
    CREATE TABLE t1(a, b, c, d);
    CREATE INDEX i1 ON t1(a, b) WHERE d IS NOT NULL;
    INSERT INTO t1 VALUES(-1, -1, -1, NULL);
    INSERT INTO t1 SELECT 2*a,2*b,2*c,d FROM t1;
    INSERT INTO t1 SELECT 2*a,2*b,2*c,d FROM t1;
    INSERT INTO t1 SELECT 2*a,2*b,2*c,d FROM t1;
    INSERT INTO t1 SELECT 2*a,2*b,2*c,d FROM t1;
    INSERT INTO t1 SELECT 2*a,2*b,2*c,d FROM t1;
    INSERT INTO t1 SELECT 2*a,2*b,2*c,d FROM t1;
  }

  for {set i 0} {$i < 32} {incr i} {
    if {$i<8} {set b 0} else { set b $i }
    execsql { INSERT INTO t1 VALUES($i%2, $b, $i/2, 'abc') }
  }
  execsql {ANALYZE main.t1}
} {}

do_catchsql_test 17.1.2 {
  ANALYZE temp.t1;
} {1 {no such table: temp.t1}}

do_eqp_test 17.2 {
  SELECT * FROM t1 WHERE d IS NOT NULL AND a=0 AND b=10 AND c=10;
} {/USING INDEX i1/}
do_eqp_test 17.3 {
  SELECT * FROM t1 WHERE d IS NOT NULL AND a=0 AND b=0 AND c=10;
} {/USING INDEX i1/}

do_execsql_test 17.4 {
  CREATE INDEX i2 ON t1(c);
  ANALYZE main.i2;
}
do_eqp_test 17.5 {
  SELECT * FROM t1 WHERE d IS NOT NULL AND a=0 AND b=10 AND c=10;
} {/USING INDEX i1/}
do_eqp_test 17.6 {
  SELECT * FROM t1 WHERE d IS NOT NULL AND a=0 AND b=0 AND c=10;
} {/USING INDEX i2/}

#-------------------------------------------------------------------------
#
do_test 18.1 {
  reset_db
  execsql {
    CREATE TABLE t1(a, b);
    CREATE INDEX i1 ON t1(a, b);
  }
  for {set i 0} {$i < 9} {incr i} {
    execsql {
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
    }
  }
  execsql ANALYZE
  execsql { SELECT count(*) FROM sqlite_stat4 }
} {9}

#-------------------------------------------------------------------------
# For coverage.
#
ifcapable view {
  do_test 19.1 {
    reset_db 
    execsql {
      CREATE TABLE t1(x, y);
      CREATE INDEX i1 ON t1(x, y);
      CREATE VIEW v1 AS SELECT * FROM t1;
      ANALYZE;
    }
  } {}
}
ifcapable auth {
  proc authproc {op args} {
    if {$op == "SQLITE_ANALYZE"} { return "SQLITE_DENY" }
    return "SQLITE_OK"
  }
  do_test 19.2 {
    reset_db 
    db auth authproc
    execsql {
      CREATE TABLE t1(x, y);
      CREATE VIEW v1 AS SELECT * FROM t1;
    }
    catchsql ANALYZE
  } {1 {not authorized}}
}

#-------------------------------------------------------------------------
#
reset_db
proc r {args} { expr rand() }
db func r r
db func lrange lrange
do_test 20.1 {
  execsql {
    CREATE TABLE t1(a,b,c,d);
    CREATE INDEX i1 ON t1(a,b,c,d);
  }
  for {set i 0} {$i < 16} {incr i} {
    execsql {
      INSERT INTO t1 VALUES($i, r(), r(), r());
      INSERT INTO t1 VALUES($i, $i,  r(), r());
      INSERT INTO t1 VALUES($i, $i,  $i,  r());
      INSERT INTO t1 VALUES($i, $i,  $i,  $i);
      INSERT INTO t1 VALUES($i, $i,  $i,  $i);
      INSERT INTO t1 VALUES($i, $i,  $i,  r());
      INSERT INTO t1 VALUES($i, $i,  r(), r());
      INSERT INTO t1 VALUES($i, r(), r(), r());
    }
  }
} {}
do_execsql_test 20.2 { ANALYZE }
for {set i 0} {$i<16} {incr i} {
    set val "$i $i $i $i"
    do_execsql_test 20.3.$i {
      SELECT count(*) FROM sqlite_stat4 
      WHERE lrange(test_decode(sample), 0, 3)=$val
    } {1}
}

finish_test
Added test/analyzeA.test.














































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# 2013 August 3
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains automated tests used to verify that the current build
# (which must be either ENABLE_STAT3 or ENABLE_STAT4) works with both stat3
# and stat4 data.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix analyzeA

ifcapable !stat4&&!stat3 {
  finish_test
  return
}

# Populate the stat3 table according to the current contents of the db
#
proc populate_stat3 {{bDropTable 1}} {
  # Open a second connection on database "test.db" and run ANALYZE. If this
  # is an ENABLE_STAT3 build, this is all that is required to create and
  # populate the sqlite_stat3 table. 
  # 
  sqlite3 db2 test.db
  execsql { ANALYZE }

  # Now, if this is an ENABLE_STAT4 build, create and populate the 
  # sqlite_stat3 table based on the stat4 data gathered by the ANALYZE
  # above. Then drop the sqlite_stat4 table.
  #
  ifcapable stat4 {
    db2 func lindex lindex
    execsql {
      PRAGMA writable_schema = on;
      CREATE TABLE sqlite_stat3(tbl,idx,neq,nlt,ndlt,sample);
      INSERT INTO sqlite_stat3 
      SELECT DISTINCT tbl, idx, 
        lindex(neq,0), lindex(nlt,0), lindex(ndlt,0), test_extract(sample, 0)
      FROM sqlite_stat4;
    } db2
    if {$bDropTable} { execsql {DROP TABLE sqlite_stat4} db2 }
    execsql { PRAGMA writable_schema = off }
  }

  # Modify the database schema cookie to ensure that the other connection
  # reloads the schema.
  #
  execsql {
    CREATE TABLE obscure_tbl_nm(x);
    DROP TABLE obscure_tbl_nm;
  } db2
  db2 close
}

# Populate the stat4 table according to the current contents of the db
#
proc populate_stat4 {{bDropTable 1}} {
  sqlite3 db2 test.db
  execsql { ANALYZE }

  ifcapable stat3 {
    execsql {
      PRAGMA writable_schema = on;
      CREATE TABLE sqlite_stat4(tbl,idx,neq,nlt,ndlt,sample);
      INSERT INTO sqlite_stat4 
      SELECT tbl, idx, neq, nlt, ndlt, sqlite_record(sample) 
      FROM sqlite_stat3;
    } db2
    if {$bDropTable} { execsql {DROP TABLE sqlite_stat3} db2 }
    execsql { PRAGMA writable_schema = off }
  }
 
  # Modify the database schema cookie to ensure that the other connection
  # reloads the schema.
  #
  execsql {
    CREATE TABLE obscure_tbl_nm(x);
    DROP TABLE obscure_tbl_nm;
  } db2
  db2 close
}

# Populate the stat4 table according to the current contents of the db.
# Leave deceptive data in the stat3 table. This data should be ignored
# in favour of that from the stat4 table.
#
proc populate_both {} {
  ifcapable stat4 { populate_stat3 0 }
  ifcapable stat3 { populate_stat4 0 }

  sqlite3 db2 test.db
  execsql {
    PRAGMA writable_schema = on;
    UPDATE sqlite_stat3 SET idx = 
      CASE idx WHEN 't1b' THEN 't1c' ELSE 't1b'
    END;
    PRAGMA writable_schema = off;
    CREATE TABLE obscure_tbl_nm(x);
    DROP TABLE obscure_tbl_nm;
  } db2
  db2 close
}

foreach {tn analyze_cmd} {
  1 populate_stat4 
  2 populate_stat3
  3 populate_both
} {
  reset_db
  do_test 1.$tn.1 {
    execsql { CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c) }
    for {set i 0} {$i < 100} {incr i} {
      set c [expr int(pow(1.1,$i)/100)]
      set b [expr 125 - int(pow(1.1,99-$i))/100]
      execsql {INSERT INTO t1 VALUES($i, $b, $c)}
    }
  } {}

  execsql { CREATE INDEX t1b ON t1(b) }
  execsql { CREATE INDEX t1c ON t1(c) }
  $analyze_cmd

  do_execsql_test 1.$tn.2.1 { SELECT count(*) FROM t1 WHERE b=31 } 1
  do_execsql_test 1.$tn.2.2 { SELECT count(*) FROM t1 WHERE c=0  } 49
  do_execsql_test 1.$tn.2.3 { SELECT count(*) FROM t1 WHERE b=125  } 49
  do_execsql_test 1.$tn.2.4 { SELECT count(*) FROM t1 WHERE c=16  } 1

  do_eqp_test 1.$tn.2.5 {
    SELECT * FROM t1 WHERE b = 31 AND c = 0;
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
  do_eqp_test 1.$tn.2.6 {
    SELECT * FROM t1 WHERE b = 125 AND c = 16;
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c=?)}}

  do_execsql_test 1.$tn.3.1 { 
    SELECT count(*) FROM t1 WHERE b BETWEEN 0 AND 50
  } {6}
  do_execsql_test 1.$tn.3.2 { 
    SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 50
  } {90}
  do_execsql_test 1.$tn.3.3 { 
    SELECT count(*) FROM t1 WHERE b BETWEEN 75 AND 125
  } {90}
  do_execsql_test 1.$tn.3.4 { 
    SELECT count(*) FROM t1 WHERE c BETWEEN 75 AND 125
  } {6}

  do_eqp_test 1.$tn.3.5 {
    SELECT * FROM t1 WHERE b BETWEEN 0 AND 50 AND c BETWEEN 0 AND 50
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

  do_eqp_test 1.$tn.3.6 {
    SELECT * FROM t1 WHERE b BETWEEN 75 AND 125 AND c BETWEEN 75 AND 125
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}
}

finish_test

Added test/analyzeB.test.






















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
# 2013 August 3
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains automated tests used to verify that the sqlite_stat3
# functionality is working. The tests in this file are based on a subset
# of the sqlite_stat4 tests in analyze9.test.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix analyzeB

ifcapable !stat3 {
  finish_test
  return
}

do_execsql_test 1.0 {
  CREATE TABLE t1(a TEXT, b TEXT); 
  INSERT INTO t1 VALUES('(0)', '(0)');
  INSERT INTO t1 VALUES('(1)', '(1)');
  INSERT INTO t1 VALUES('(2)', '(2)');
  INSERT INTO t1 VALUES('(3)', '(3)');
  INSERT INTO t1 VALUES('(4)', '(4)');
  CREATE INDEX i1 ON t1(a, b);
} {}


do_execsql_test 1.1 {
  ANALYZE;
} {}

do_execsql_test 1.2 {
  SELECT tbl,idx,nEq,nLt,nDLt,quote(sample) FROM sqlite_stat3;
} {
  t1 i1 1 0 0 '(0)'
  t1 i1 1 1 1 '(1)'
  t1 i1 1 2 2 '(2)'
  t1 i1 1 3 3 '(3)'
  t1 i1 1 4 4 '(4)'
}

if {[permutation] != "utf16"} {
  do_execsql_test 1.3 {
    SELECT tbl,idx,nEq,nLt,nDLt,quote(sample) FROM sqlite_stat3;
  } {
    t1 i1 1 0 0 '(0)'
    t1 i1 1 1 1 '(1)'
    t1 i1 1 2 2 '(2)'
    t1 i1 1 3 3 '(3)'
    t1 i1 1 4 4 '(4)'
  }
}


#-------------------------------------------------------------------------
# This is really just to test SQL user function "test_decode".
#
reset_db
do_execsql_test 2.1 {
  CREATE TABLE t1(a, b, c);
  INSERT INTO t1(a) VALUES('some text');
  INSERT INTO t1(a) VALUES(14);
  INSERT INTO t1(a) VALUES(NULL);
  INSERT INTO t1(a) VALUES(22.0);
  INSERT INTO t1(a) VALUES(x'656667');
  CREATE INDEX i1 ON t1(a, b, c);
  ANALYZE;
  SELECT quote(sample) FROM sqlite_stat3;
} {
  NULL 14 22.0 {'some text'} X'656667' 
}

#-------------------------------------------------------------------------
# 
reset_db
do_execsql_test 3.1 {
  CREATE TABLE t2(a, b);
  CREATE INDEX i2 ON t2(a, b);
  BEGIN;
}

do_test 3.2 {
  for {set i 0} {$i < 1000} {incr i} {
    set a [expr $i / 10]
    set b [expr int(rand() * 15.0)]
    execsql { INSERT INTO t2 VALUES($a, $b) }
  }
  execsql COMMIT
} {}

db func lindex lindex

# Each value of "a" occurs exactly 10 times in the table.
#
do_execsql_test 3.3.1 {
  SELECT count(*) FROM t2 GROUP BY a;
} [lrange [string repeat "10 " 100] 0 99]

# The first element in the "nEq" list of all samples should therefore be 10.
#
do_execsql_test 3.3.2 {
  ANALYZE;
  SELECT nEq FROM sqlite_stat3;
} [lrange [string repeat "10 " 100] 0 23]

#-------------------------------------------------------------------------
# 
do_execsql_test 3.4 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c);
  INSERT INTO t1 VALUES(1, 1, 'one-a');
  INSERT INTO t1 VALUES(11, 1, 'one-b');
  INSERT INTO t1 VALUES(21, 1, 'one-c');
  INSERT INTO t1 VALUES(31, 1, 'one-d');
  INSERT INTO t1 VALUES(41, 1, 'one-e');
  INSERT INTO t1 VALUES(51, 1, 'one-f');
  INSERT INTO t1 VALUES(61, 1, 'one-g');
  INSERT INTO t1 VALUES(71, 1, 'one-h');
  INSERT INTO t1 VALUES(81, 1, 'one-i');
  INSERT INTO t1 VALUES(91, 1, 'one-j');
  INSERT INTO t1 SELECT a+1,2,'two' || substr(c,4) FROM t1;
  INSERT INTO t1 SELECT a+2,3,'three'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';
  INSERT INTO t1 SELECT a+3,4,'four'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';
  INSERT INTO t1 SELECT a+4,5,'five'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';
  INSERT INTO t1 SELECT a+5,6,'six'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';	
  CREATE INDEX t1b ON t1(b);
  ANALYZE;
  SELECT c FROM t1 WHERE b=3 AND a BETWEEN 30 AND 60;
} {three-d three-e three-f}


#-------------------------------------------------------------------------
# These tests verify that the sample selection for stat3 appears to be 
# working as designed.
#

reset_db
db func lindex lindex
db func lrange lrange

do_execsql_test 4.0 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(a, b, c);
  CREATE INDEX i1 ON t1(c, b, a);
}


proc insert_filler_rows_n {iStart args} {
  set A(-ncopy) 1
  set A(-nval) 1

  foreach {k v} $args {
    if {[info exists A($k)]==0} { error "no such option: $k" }
    set A($k) $v
  }
  if {[llength $args] % 2} {
    error "option requires an argument: [lindex $args end]"
  }

  for {set i 0} {$i < $A(-nval)} {incr i} {
    set iVal [expr $iStart+$i]
    for {set j 0} {$j < $A(-ncopy)} {incr j} {
      execsql { INSERT INTO t1 VALUES($iVal, $iVal, $iVal) }
    }
  }
}

do_test 4.1 {
  execsql { BEGIN }
  insert_filler_rows_n  0  -ncopy 10 -nval 19
  insert_filler_rows_n 20  -ncopy  1 -nval 100

  execsql {
    INSERT INTO t1(c, b, a) VALUES(200, 1, 'a');
    INSERT INTO t1(c, b, a) VALUES(200, 1, 'b');
    INSERT INTO t1(c, b, a) VALUES(200, 1, 'c');

    INSERT INTO t1(c, b, a) VALUES(200, 2, 'e');
    INSERT INTO t1(c, b, a) VALUES(200, 2, 'f');

    INSERT INTO t1(c, b, a) VALUES(201, 3, 'g');
    INSERT INTO t1(c, b, a) VALUES(201, 4, 'h');

    ANALYZE;
    SELECT count(*) FROM sqlite_stat3;
    SELECT count(*) FROM t1;
  }
} {24 297}

do_execsql_test 4.2 {
  SELECT neq, nlt, ndlt, sample FROM sqlite_stat3 ORDER BY rowid LIMIT 16;
} {
  10 0 0 0
  10 10 1 1
  10 20 2 2
  10 30 3 3
  10 40 4 4
  10 50 5 5
  10 60 6 6
  10 70 7 7
  10 80 8 8
  10 90 9 9
  10 100 10 10
  10 110 11 11
  10 120 12 12
  10 130 13 13
  10 140 14 14
  10 150 15 15
}

do_execsql_test 4.3 {
  SELECT neq, nlt, ndlt, sample FROM sqlite_stat3
  ORDER BY rowid DESC LIMIT 2;
} {
  2 295 120 201
  5 290 119 200
}

do_execsql_test 4.4 { SELECT count(DISTINCT c) FROM t1 WHERE c<201 } 120
do_execsql_test 4.5 { SELECT count(DISTINCT c) FROM t1 WHERE c<200 } 119

reset_db
do_test 4.7 {
  execsql { 
    BEGIN;
    CREATE TABLE t1(o,t INTEGER PRIMARY KEY);
    CREATE INDEX i1 ON t1(o);
  }
  for {set i 0} {$i<10000} {incr i [expr (($i<1000)?1:10)]} {
    execsql { INSERT INTO t1 VALUES('x', $i) }
  }
  execsql {
    COMMIT;
    ANALYZE;
    SELECT count(*) FROM sqlite_stat3;
  }
} {1}
do_execsql_test 4.8 {
  SELECT sample FROM sqlite_stat3;
} {x}


#-------------------------------------------------------------------------
# The following would cause a crash at one point.
#
reset_db
do_execsql_test 5.1 {
  PRAGMA encoding = 'utf-16';
  CREATE TABLE t0(v);
  ANALYZE;
}

#-------------------------------------------------------------------------
# This was also crashing (corrupt sqlite_stat3 table).
#
reset_db
do_execsql_test 6.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
  CREATE INDEX i2 ON t1(b);
  INSERT INTO t1 VALUES(1, 1);
  INSERT INTO t1 VALUES(2, 2);
  INSERT INTO t1 VALUES(3, 3);
  INSERT INTO t1 VALUES(4, 4);
  INSERT INTO t1 VALUES(5, 5);
  ANALYZE;
  PRAGMA writable_schema = 1;
  CREATE TEMP TABLE x1 AS
    SELECT tbl,idx,neq,nlt,ndlt,sample FROM sqlite_stat3
    ORDER BY (rowid%5), rowid;
  DELETE FROM sqlite_stat3;
  INSERT INTO sqlite_stat3 SELECT * FROM x1;
  PRAGMA writable_schema = 0;
  ANALYZE sqlite_master;
}
do_execsql_test 6.2 {
  SELECT * FROM t1 WHERE a = 'abc';
}

#-------------------------------------------------------------------------
# The following tests experiment with adding corrupted records to the
# 'sample' column of the sqlite_stat3 table.
#
reset_db
sqlite3_db_config_lookaside db 0 0 0

do_execsql_test 7.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a, b);
  INSERT INTO t1 VALUES(1, 1);
  INSERT INTO t1 VALUES(2, 2);
  INSERT INTO t1 VALUES(3, 3);
  INSERT INTO t1 VALUES(4, 4);
  INSERT INTO t1 VALUES(5, 5);
  ANALYZE;
  UPDATE sqlite_stat3 SET sample = X'' WHERE rowid = 1;
  ANALYZE sqlite_master;
}

do_execsql_test 7.2 {
  UPDATE sqlite_stat3 SET sample = X'FFFF';
  ANALYZE sqlite_master;
  SELECT * FROM t1 WHERE a = 1;
} {1 1}

do_execsql_test 7.3 {
  ANALYZE;
  UPDATE sqlite_stat3 SET neq = '0 0 0';
  ANALYZE sqlite_master;
  SELECT * FROM t1 WHERE a = 1;
} {1 1}

do_execsql_test 7.4 {
  ANALYZE;
  UPDATE sqlite_stat3 SET ndlt = '0 0 0';
  ANALYZE sqlite_master;
  SELECT * FROM t1 WHERE a = 3;
} {3 3}

do_execsql_test 7.5 {
  ANALYZE;
  UPDATE sqlite_stat3 SET nlt = '0 0 0';
  ANALYZE sqlite_master;
  SELECT * FROM t1 WHERE a = 5;
} {5 5}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 8.1 {
  CREATE TABLE t1(x TEXT);
  CREATE INDEX i1 ON t1(x);
  INSERT INTO t1 VALUES('1');
  INSERT INTO t1 VALUES('2');
  INSERT INTO t1 VALUES('3');
  INSERT INTO t1 VALUES('4');
  ANALYZE;
}
do_execsql_test 8.2 {
  SELECT * FROM t1 WHERE x = 3;
} {3}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 9.1 {
  CREATE TABLE t1(a, b, c, d, e);
  CREATE INDEX i1 ON t1(a, b, c, d);
  CREATE INDEX i2 ON t1(e);
}
do_test 9.2 {
  execsql BEGIN;
  for {set i 0} {$i < 100} {incr i} {
    execsql "INSERT INTO t1 VALUES('x', 'y', 'z', $i, [expr $i/2])"
  }
  for {set i 0} {$i < 20} {incr i} {
    execsql "INSERT INTO t1 VALUES('x', 'y', 'z', 101, $i)"
  }
  for {set i 102} {$i < 200} {incr i} {
    execsql "INSERT INTO t1 VALUES('x', 'y', 'z', $i, [expr $i/2])"
  }
  execsql COMMIT
  execsql ANALYZE
} {}

do_eqp_test 9.3.1 {
  SELECT * FROM t1 WHERE a='x' AND b='y' AND c='z' AND d=101 AND e=5;
} {/t1 USING INDEX i1/}
do_eqp_test 9.3.2 {
  SELECT * FROM t1 WHERE a='x' AND b='y' AND c='z' AND d=99 AND e=5;
} {/t1 USING INDEX i1/}

set value_d [expr 101]
do_eqp_test 9.4.1 {
  SELECT * FROM t1 WHERE a='x' AND b='y' AND c='z' AND d=$value_d AND e=5
} {/t1 USING INDEX i1/}
set value_d [expr 99]
do_eqp_test 9.4.2 {
  SELECT * FROM t1 WHERE a='x' AND b='y' AND c='z' AND d=$value_d AND e=5
} {/t1 USING INDEX i1/}

#-------------------------------------------------------------------------
# Check that the planner takes stat3 data into account when considering
# "IS NULL" and "IS NOT NULL" constraints.
#
do_execsql_test 10.1.1 {
  DROP TABLE IF EXISTS t3;
  CREATE TABLE t3(a, b);
  CREATE INDEX t3a ON t3(a);
  CREATE INDEX t3b ON t3(b);
}
do_test 10.1.2 {
  for {set i 1} {$i < 100} {incr i} {
    if {$i>90} { set a $i } else { set a NULL }
    set b [expr $i % 5]
    execsql "INSERT INTO t3 VALUES($a, $b)"
  }
  execsql ANALYZE
} {}
do_eqp_test 10.1.3 {
  SELECT * FROM t3 WHERE a IS NULL AND b = 2
} {/t3 USING INDEX t3b/}
do_eqp_test 10.1.4 {
  SELECT * FROM t3 WHERE a IS NOT NULL AND b = 2
} {/t3 USING INDEX t3a/}

#-------------------------------------------------------------------------
# Check that stat3 data is used correctly with non-default collation
# sequences.
#
foreach {tn schema} {
  1 {
    CREATE TABLE t4(a COLLATE nocase, b);
    CREATE INDEX t4a ON t4(a);
    CREATE INDEX t4b ON t4(b);
  }
  2 {
    CREATE TABLE t4(a, b);
    CREATE INDEX t4a ON t4(a COLLATE nocase);
    CREATE INDEX t4b ON t4(b);
  }
} {
  drop_all_tables
  do_test 11.$tn.1 { execsql $schema } {}

  do_test 11.$tn.2 {
    for {set i 0} {$i < 100} {incr i} {
      if { ($i % 10)==0 } { set a ABC } else { set a DEF }
      set b [expr $i % 5]
        execsql { INSERT INTO t4 VALUES($a, $b) }
    }
    execsql ANALYZE
  } {}

  do_eqp_test 11.$tn.3 {
    SELECT * FROM t4 WHERE a = 'def' AND b = 3;
  } {/t4 USING INDEX t4b/}

  if {$tn==1} {
    set sql "SELECT * FROM t4 WHERE a = 'abc' AND b = 3;"
    do_eqp_test 11.$tn.4 $sql {/t4 USING INDEX t4a/}
  } else {

    set sql "SELECT * FROM t4 WHERE a = 'abc' COLLATE nocase AND b = 3;"
    do_eqp_test 11.$tn.5 $sql {/t4 USING INDEX t4a/}

    set sql "SELECT * FROM t4 WHERE a COLLATE nocase = 'abc' AND b = 3;"
    do_eqp_test 11.$tn.6 $sql {/t4 USING INDEX t4a/}
  }
}

#-------------------------------------------------------------------------
# Test that nothing untoward happens if the stat3 table contains entries
# for indexes that do not exist. Or NULL values in the idx column.
# Or NULL values in any of the other columns.
#
drop_all_tables
do_execsql_test 15.1 {
  CREATE TABLE x1(a, b, UNIQUE(a, b));
  INSERT INTO x1 VALUES(1, 2);
  INSERT INTO x1 VALUES(3, 4);
  INSERT INTO x1 VALUES(5, 6);
  ANALYZE;
  INSERT INTO sqlite_stat3 VALUES(NULL, NULL, NULL, NULL, NULL, NULL);
}
db close
sqlite3 db test.db
do_execsql_test 15.2 { SELECT * FROM x1 } {1 2 3 4 5 6}

do_execsql_test 15.3 {
  INSERT INTO sqlite_stat3 VALUES(42, 42, 42, 42, 42, 42);
}
db close
sqlite3 db test.db
do_execsql_test 15.4 { SELECT * FROM x1 } {1 2 3 4 5 6}

do_execsql_test 15.5 {
  UPDATE sqlite_stat1 SET stat = NULL;
}
db close
sqlite3 db test.db
do_execsql_test 15.6 { SELECT * FROM x1 } {1 2 3 4 5 6}

do_execsql_test 15.7 {
  ANALYZE;
  UPDATE sqlite_stat1 SET tbl = 'no such tbl';
}
db close
sqlite3 db test.db
do_execsql_test 15.8 { SELECT * FROM x1 } {1 2 3 4 5 6}

do_execsql_test 15.9 {
  ANALYZE;
  UPDATE sqlite_stat3 SET neq = NULL, nlt=NULL, ndlt=NULL;
}
db close
sqlite3 db test.db
do_execsql_test 15.10 { SELECT * FROM x1 } {1 2 3 4 5 6}

# This is just for coverage....
do_execsql_test 15.11 {
  ANALYZE;
  UPDATE sqlite_stat1 SET stat = stat || ' unordered';
}
db close
sqlite3 db test.db
do_execsql_test 15.12 { SELECT * FROM x1 } {1 2 3 4 5 6}

#-------------------------------------------------------------------------
# Test that allocations used for sqlite_stat3 samples are included in
# the quantity returned by SQLITE_DBSTATUS_SCHEMA_USED.
#
set one [string repeat x 1000]
set two [string repeat x 2000]
do_test 16.1 {
  reset_db
  execsql {
    CREATE TABLE t1(a, UNIQUE(a));
    INSERT INTO t1 VALUES($one);
    ANALYZE;
  }
  set nByte [lindex [sqlite3_db_status db SCHEMA_USED 0] 1]

  reset_db
  execsql {
    CREATE TABLE t1(a, UNIQUE(a));
    INSERT INTO t1 VALUES($two);
    ANALYZE;
  }
  set nByte2 [lindex [sqlite3_db_status db SCHEMA_USED 0] 1]

  expr {$nByte2 > $nByte+950 && $nByte2 < $nByte+1050}
} {1}

#-------------------------------------------------------------------------
# Test that stat3 data may be used with partial indexes.
#
do_test 17.1 {
  reset_db
  execsql {
    CREATE TABLE t1(a, b, c, d);
    CREATE INDEX i1 ON t1(a, b) WHERE d IS NOT NULL;
    INSERT INTO t1 VALUES(-1, -1, -1, NULL);
    INSERT INTO t1 SELECT 2*a,2*b,2*c,d FROM t1;
    INSERT INTO t1 SELECT 2*a,2*b,2*c,d FROM t1;
    INSERT INTO t1 SELECT 2*a,2*b,2*c,d FROM t1;
    INSERT INTO t1 SELECT 2*a,2*b,2*c,d FROM t1;
    INSERT INTO t1 SELECT 2*a,2*b,2*c,d FROM t1;
    INSERT INTO t1 SELECT 2*a,2*b,2*c,d FROM t1;
  }

  for {set i 0} {$i < 32} {incr i} {
    execsql { INSERT INTO t1 VALUES($i%2, $b, $i/2, 'abc') }
  }
  execsql {ANALYZE main.t1}
} {}

do_catchsql_test 17.1.2 {
  ANALYZE temp.t1;
} {1 {no such table: temp.t1}}

do_eqp_test 17.2 {
  SELECT * FROM t1 WHERE d IS NOT NULL AND a=0;
} {/USING INDEX i1/}
do_eqp_test 17.3 {
  SELECT * FROM t1 WHERE d IS NOT NULL AND a=0;
} {/USING INDEX i1/}

do_execsql_test 17.4 {
  CREATE INDEX i2 ON t1(c) WHERE d IS NOT NULL;
  ANALYZE main.i2;
}
do_eqp_test 17.5 {
  SELECT * FROM t1 WHERE d IS NOT NULL AND a=0;
} {/USING INDEX i1/}
do_eqp_test 17.6 {
  SELECT * FROM t1 WHERE d IS NOT NULL AND a=0 AND b=0 AND c=10;
} {/USING INDEX i2/}

#-------------------------------------------------------------------------
#
do_test 18.1 {
  reset_db
  execsql {
    CREATE TABLE t1(a, b);
    CREATE INDEX i1 ON t1(a, b);
  }
  for {set i 0} {$i < 9} {incr i} {
    execsql {
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
      INSERT INTO t1 VALUES($i, 0);
    }
  }
  execsql ANALYZE
  execsql { SELECT count(*) FROM sqlite_stat3 }
} {9}

#-------------------------------------------------------------------------
# For coverage.
#
ifcapable view {
  do_test 19.1 {
    reset_db 
    execsql {
      CREATE TABLE t1(x, y);
      CREATE INDEX i1 ON t1(x, y);
      CREATE VIEW v1 AS SELECT * FROM t1;
      ANALYZE;
    }
  } {}
}
ifcapable auth {
  proc authproc {op args} {
    if {$op == "SQLITE_ANALYZE"} { return "SQLITE_DENY" }
    return "SQLITE_OK"
  }
  do_test 19.2 {
    reset_db 
    db auth authproc
    execsql {
      CREATE TABLE t1(x, y);
      CREATE VIEW v1 AS SELECT * FROM t1;
    }
    catchsql ANALYZE
  } {1 {not authorized}}
}

#-------------------------------------------------------------------------
#
reset_db
proc r {args} { expr rand() }
db func r r
db func lrange lrange
do_test 20.1 {
  execsql {
    CREATE TABLE t1(a,b,c,d);
    CREATE INDEX i1 ON t1(a,b,c,d);
  }
  for {set i 0} {$i < 16} {incr i} {
    execsql {
      INSERT INTO t1 VALUES($i, r(), r(), r());
      INSERT INTO t1 VALUES($i, $i,  r(), r());
      INSERT INTO t1 VALUES($i, $i,  $i,  r());
      INSERT INTO t1 VALUES($i, $i,  $i,  $i);
      INSERT INTO t1 VALUES($i, $i,  $i,  $i);
      INSERT INTO t1 VALUES($i, $i,  $i,  r());
      INSERT INTO t1 VALUES($i, $i,  r(), r());
      INSERT INTO t1 VALUES($i, r(), r(), r());
    }
  }
} {}
do_execsql_test 20.2 { ANALYZE }
for {set i 0} {$i<16} {incr i} {
    set val $i
    do_execsql_test 20.3.$i {
      SELECT count(*) FROM sqlite_stat3 WHERE sample=$val
    } {1}
}

finish_test

Changes to test/async5.test.
62
63
64
65
66
67
68
69
sqlite3async_control halt idle
sqlite3async_start
sqlite3async_wait
sqlite3async_control halt never
sqlite3async_shutdown
set sqlite3async_trace 0
finish_test








<
62
63
64
65
66
67
68

sqlite3async_control halt idle
sqlite3async_start
sqlite3async_wait
sqlite3async_control halt never
sqlite3async_shutdown
set sqlite3async_trace 0
finish_test

Changes to test/auth.test.
2321
2322
2323
2324
2325
2326
2327



2328
2329
2330
2331

2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
    }
    ifcapable view {
      execsql {
        DROP TABLE v1chng;
      }
    }
  }



  ifcapable stat3 {
    set stat3 "sqlite_stat3 "
  } else {
    set stat3 ""

  }
  do_test auth-5.2 {
    execsql {
      SELECT name FROM (
        SELECT * FROM sqlite_master UNION ALL SELECT * FROM sqlite_temp_master)
      WHERE type='table'
      ORDER BY name
    }
  } "sqlite_stat1 ${stat3}t1 t2 t3 t4"
}

# Ticket #3944
#
ifcapable trigger {
  do_test auth-5.3.1 {
    execsql {







>
>
>
|
|
|
|
>








|







2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
    }
    ifcapable view {
      execsql {
        DROP TABLE v1chng;
      }
    }
  }
  ifcapable stat4 {
    set stat4 "sqlite_stat4 "
  } else {
    ifcapable stat3 {
      set stat4 "sqlite_stat3 "
    } else {
      set stat4 ""
    }
  }
  do_test auth-5.2 {
    execsql {
      SELECT name FROM (
        SELECT * FROM sqlite_master UNION ALL SELECT * FROM sqlite_temp_master)
      WHERE type='table'
      ORDER BY name
    }
  } "sqlite_stat1 ${stat4}t1 t2 t3 t4"
}

# Ticket #3944
#
ifcapable trigger {
  do_test auth-5.3.1 {
    execsql {
Changes to test/autoindex1.test.
18
19
20
21
22
23
24








25
26
27
28
29
30
31
# If the library is not compiled with automatic index support then
# skip all tests in this file.
#
ifcapable {!autoindex} {
  finish_test
  return
}









# With automatic index turned off, we do a full scan of the T2 table
do_test autoindex1-100 {
  db eval {
    CREATE TABLE t1(a,b);
    INSERT INTO t1 VALUES(1,11);
    INSERT INTO t1 VALUES(2,22);







>
>
>
>
>
>
>
>







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# If the library is not compiled with automatic index support then
# skip all tests in this file.
#
ifcapable {!autoindex} {
  finish_test
  return
}

# Setup for logging 
db close
sqlite3_shutdown
test_sqlite3_log [list lappend ::log]
set ::log [list]
sqlite3 db test.db


# With automatic index turned off, we do a full scan of the T2 table
do_test autoindex1-100 {
  db eval {
    CREATE TABLE t1(a,b);
    INSERT INTO t1 VALUES(1,11);
    INSERT INTO t1 VALUES(2,22);
56
57
58
59
60
61
62









63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80



81
82
83
84
85
86
87
88
89
90
91
92
93






94
95
96
97
98
99
100
101
102
103
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-111 {
  db status step
} {7}
do_test autoindex1-112 {
  db status autoindex
} {7}










# The same test as above, but this time the T2 query is a subquery rather
# than a join.
do_test autoindex1-200 {
  db eval {
    PRAGMA automatic_index=OFF;
    SELECT b, (SELECT d FROM t2 WHERE c=a) FROM t1;
  }
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-201 {
  db status step
} {35}
do_test autoindex1-202 {
  db status autoindex
} {0}
do_test autoindex1-210 {
  db eval {
    PRAGMA automatic_index=ON;



    SELECT b, (SELECT d FROM t2 WHERE c=a) FROM t1;
  }
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-211 {
  db status step
} {7}
do_test autoindex1-212 {
  db status autoindex
} {7}


# Modify the second table of the join while the join is in progress
#






do_test autoindex1-300 {
  set r {}
  db eval {SELECT b, d FROM t1 JOIN t2 ON (c=a)} {
    lappend r $b $d
    db eval {UPDATE t2 SET d=d+1}
  }
  set r
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-310 {
  db eval {SELECT d FROM t2 ORDER BY d}







>
>
>
>
>
>
>
>
>


















>
>
>













>
>
>
>
>
>


|







64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-111 {
  db status step
} {7}
do_test autoindex1-112 {
  db status autoindex
} {7}
do_test autoindex1-113 {
  set ::log
} {SQLITE_WARNING_AUTOINDEX {automatic index on t2(c)}}

db close
sqlite3_shutdown
test_sqlite3_log
sqlite3_initialize
sqlite3 db test.db

# The same test as above, but this time the T2 query is a subquery rather
# than a join.
do_test autoindex1-200 {
  db eval {
    PRAGMA automatic_index=OFF;
    SELECT b, (SELECT d FROM t2 WHERE c=a) FROM t1;
  }
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-201 {
  db status step
} {35}
do_test autoindex1-202 {
  db status autoindex
} {0}
do_test autoindex1-210 {
  db eval {
    PRAGMA automatic_index=ON;
    ANALYZE;
    UPDATE sqlite_stat1 SET stat='10000' WHERE tbl='t1';
    ANALYZE sqlite_master;
    SELECT b, (SELECT d FROM t2 WHERE c=a) FROM t1;
  }
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-211 {
  db status step
} {7}
do_test autoindex1-212 {
  db status autoindex
} {7}


# Modify the second table of the join while the join is in progress
#
do_execsql_test autoindex1-299 {
  UPDATE sqlite_stat1 SET stat='10000' WHERE tbl='t2';
  ANALYZE sqlite_master;
  EXPLAIN QUERY PLAN
  SELECT b, d FROM t1 CROSS JOIN t2 ON (c=a);
} {/AUTOMATIC COVERING INDEX/}
do_test autoindex1-300 {
  set r {}
  db eval {SELECT b, d FROM t1 CROSS JOIN t2 ON (c=a)} {
    lappend r $b $d
    db eval {UPDATE t2 SET d=d+1}
  }
  set r
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-310 {
  db eval {SELECT d FROM t2 ORDER BY d}
139
140
141
142
143
144
145



146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Ticket [8011086c85c6c404014c947fcf3eb9f42b184a0d] from 2010-07-08
# Make sure automatic indices are not created for the RHS of an IN expression
# that is not a correlated subquery.
#
do_execsql_test autoindex1-500 {
  CREATE TABLE t501(a INTEGER PRIMARY KEY, b);
  CREATE TABLE t502(x INTEGER PRIMARY KEY, y);



  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=?);
} {
  0 0 0 {SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?) (~25 rows)} 
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t502 (~100000 rows)}
}
do_execsql_test autoindex1-501 {
  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {
  0 0 0 {SCAN TABLE t501 (~500000 rows)} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SEARCH TABLE t502 USING AUTOMATIC COVERING INDEX (y=?) (~7 rows)}
}
do_execsql_test autoindex1-502 {
  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a=123
     AND t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {
  0 0 0 {SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t502 (~100000 rows)}
}


# The following code checks a performance regression reported on the
# mailing list on 2010-10-19.  The problem is that the nRowEst field
# of ephermeral tables was not being initialized correctly and so no
# automatic index was being created for the emphemeral table when it was







>
>
>




|

|






|

|







|

|







165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Ticket [8011086c85c6c404014c947fcf3eb9f42b184a0d] from 2010-07-08
# Make sure automatic indices are not created for the RHS of an IN expression
# that is not a correlated subquery.
#
do_execsql_test autoindex1-500 {
  CREATE TABLE t501(a INTEGER PRIMARY KEY, b);
  CREATE TABLE t502(x INTEGER PRIMARY KEY, y);
  INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t501',null,'1000000');
  INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t502',null,'1000');
  ANALYZE sqlite_master;
  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=?);
} {
  0 0 0 {SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t502}
}
do_execsql_test autoindex1-501 {
  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {
  0 0 0 {SCAN TABLE t501} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SEARCH TABLE t502 USING AUTOMATIC COVERING INDEX (y=?)}
}
do_execsql_test autoindex1-502 {
  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a=123
     AND t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {
  0 0 0 {SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t502}
}


# The following code checks a performance regression reported on the
# mailing list on 2010-10-19.  The problem is that the nRowEst field
# of ephermeral tables was not being initialized correctly and so no
# automatic index was being created for the emphemeral table when it was
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
           WHERE prev.flock_no = later.flock_no
           AND later.owner_change_date > prev.owner_change_date
           AND later.owner_change_date <= s.date_of_registration||' 00:00:00')
       ) y ON x.sheep_no = y.sheep_no
   WHERE y.sheep_no IS NULL
   ORDER BY x.registering_flock;
} {
  1 0 0 {SCAN TABLE sheep AS s (~1000000 rows)} 
  1 1 1 {SEARCH TABLE flock_owner AS prev USING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date<?) (~2 rows)} 
  1 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2} 
  2 0 0 {SEARCH TABLE flock_owner AS later USING COVERING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date>? AND owner_change_date<?) (~1 rows)} 
  0 0 0 {SCAN TABLE sheep AS x USING INDEX sheep_reg_flock_index (~1000000 rows)} 
  0 1 1 {SEARCH SUBQUERY 1 AS y USING AUTOMATIC COVERING INDEX (sheep_no=?) (~8 rows)}
}


do_execsql_test autoindex1-700 {
  CREATE TABLE t5(a, b, c);
  EXPLAIN QUERY PLAN SELECT a FROM t5 WHERE b=10 ORDER BY c;
} {
  0 0 0 {SCAN TABLE t5 (~100000 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# The following checks a performance issue reported on the sqlite-dev
# mailing list on 2013-01-10
#
do_execsql_test autoindex1-800 {







|
|

|
|
|







|







265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
           WHERE prev.flock_no = later.flock_no
           AND later.owner_change_date > prev.owner_change_date
           AND later.owner_change_date <= s.date_of_registration||' 00:00:00')
       ) y ON x.sheep_no = y.sheep_no
   WHERE y.sheep_no IS NULL
   ORDER BY x.registering_flock;
} {
  1 0 0 {SCAN TABLE sheep AS s} 
  1 1 1 {SEARCH TABLE flock_owner AS prev USING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date<?)} 
  1 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2} 
  2 0 0 {SEARCH TABLE flock_owner AS later USING COVERING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date>? AND owner_change_date<?)} 
  0 0 0 {SCAN TABLE sheep AS x USING INDEX sheep_reg_flock_index} 
  0 1 1 {SEARCH SUBQUERY 1 AS y USING AUTOMATIC COVERING INDEX (sheep_no=?)}
}


do_execsql_test autoindex1-700 {
  CREATE TABLE t5(a, b, c);
  EXPLAIN QUERY PLAN SELECT a FROM t5 WHERE b=10 ORDER BY c;
} {
  0 0 0 {SCAN TABLE t5} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# The following checks a performance issue reported on the sqlite-dev
# mailing list on 2013-01-10
#
do_execsql_test autoindex1-800 {
Changes to test/backup4.test.
97
98
99
100
101
102
103
104
  db1 close
  file size test.db
} {1024}

do_test 3.4 { file size test.db2 } 0

finish_test








<
97
98
99
100
101
102
103

  db1 close
  file size test.db
} {1024}

do_test 3.4 { file size test.db2 } 0

finish_test

Changes to test/between.test.
44
45
46
47
48
49
50
51
52
53
54
55
56
57










58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    CREATE INDEX i1zyx ON t1(z,y,x);
    COMMIT;
  }
} {}

# This procedure executes the SQL.  Then it appends to the result the
# "sort" or "nosort" keyword depending on whether or not any sorting
# is done.  Then it appends the ::sqlite_query_plan variable.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x










  return [concat $data $::sqlite_query_plan]
}

do_test between-1.1.1 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 5 AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 i1w}
do_test between-1.1.2 {
  queryplan {
    SELECT * FROM t1 WHERE +w BETWEEN 5 AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 {}}
do_test between-1.2.1 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 5 AND 65-y ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 i1w}
do_test between-1.2.2 {
  queryplan {
    SELECT * FROM t1 WHERE +w BETWEEN 5 AND 65-y ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 {}}
do_test between-1.3.1 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 41-y AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 i1w}
do_test between-1.3.2 {
  queryplan {
    SELECT * FROM t1 WHERE +w BETWEEN 41-y AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 {}}
do_test between-1.4 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 41-y AND 65-y ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 {}}
do_test between-1.5.1 {
  queryplan {
    SELECT * FROM t1 WHERE 26 BETWEEN y AND z ORDER BY +w
  }
} {4 2 25 27 sort t1 i1zyx}
do_test between-1.5.2 {
  queryplan {
    SELECT * FROM t1 WHERE 26 BETWEEN +y AND z ORDER BY +w
  }
} {4 2 25 27 sort t1 i1zyx}
do_test between-1.5.3 {
  queryplan {
    SELECT * FROM t1 WHERE 26 BETWEEN y AND +z ORDER BY +w
  }
} {4 2 25 27 sort t1 {}}


finish_test







|






>
>
>
>
>
>
>
>
>
>
|











|









|









|




|














|



44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    CREATE INDEX i1zyx ON t1(z,y,x);
    COMMIT;
  }
} {}

# This procedure executes the SQL.  Then it appends to the result the
# "sort" or "nosort" keyword depending on whether or not any sorting
# is done.  Then it appends the names of the table and index used.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x
  set eqp [execsql "EXPLAIN QUERY PLAN $sql"]
  # puts eqp=$eqp
  foreach {a b c x} $eqp {
    if {[regexp { TABLE (\w+ AS )?(\w+) USING.* INDEX (\w+)\y} \
        $x all as tab idx]} {
      lappend data $tab $idx
    } elseif {[regexp { TABLE (\w+ AS )?(\w+)\y} $x all as tab]} {
      lappend data $tab *
    }
  }
  return $data   
}

do_test between-1.1.1 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 5 AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 i1w}
do_test between-1.1.2 {
  queryplan {
    SELECT * FROM t1 WHERE +w BETWEEN 5 AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 *}
do_test between-1.2.1 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 5 AND 65-y ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 i1w}
do_test between-1.2.2 {
  queryplan {
    SELECT * FROM t1 WHERE +w BETWEEN 5 AND 65-y ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 *}
do_test between-1.3.1 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 41-y AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 i1w}
do_test between-1.3.2 {
  queryplan {
    SELECT * FROM t1 WHERE +w BETWEEN 41-y AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 *}
do_test between-1.4 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 41-y AND 65-y ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 *}
do_test between-1.5.1 {
  queryplan {
    SELECT * FROM t1 WHERE 26 BETWEEN y AND z ORDER BY +w
  }
} {4 2 25 27 sort t1 i1zyx}
do_test between-1.5.2 {
  queryplan {
    SELECT * FROM t1 WHERE 26 BETWEEN +y AND z ORDER BY +w
  }
} {4 2 25 27 sort t1 i1zyx}
do_test between-1.5.3 {
  queryplan {
    SELECT * FROM t1 WHERE 26 BETWEEN y AND +z ORDER BY +w
  }
} {4 2 25 27 sort t1 *}


finish_test
Changes to test/boundary3.tcl.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file is automatically generated from a separate TCL script.
# This file seeks to exercise integer boundary values.
#
# $Id: boundary3.tcl,v 1.3 2009/01/02 15:45:48 shane Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Many of the boundary tests depend on a working 64-bit implementation.
if {![working_64bit_int]} { finish_test; return }
}







<







9
10
11
12
13
14
15

16
17
18
19
20
21
22
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file is automatically generated from a separate TCL script.
# This file seeks to exercise integer boundary values.
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Many of the boundary tests depend on a working 64-bit implementation.
if {![working_64bit_int]} { finish_test; return }
}
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
  0x7fffffffff
  0x7fffffffffff
  0x7fffffffffffff
  0x7fffffffffffffff
} {
  set x [expr {wide($x)}]
  set boundarynum($x) 1
  set boundarynum([expr {$x+1}]) 1
  set boundarynum([expr {-($x+1)}]) 1
  set boundarynum([expr {-($x+2)}]) 1
  set boundarynum([expr {$x+$x+1}]) 1
  set boundarynum([expr {$x+$x+2}]) 1
}
set x [expr {wide(127)}]
for {set i 1} {$i<=9} {incr i} {
  set boundarynum($x) 1
  set boundarynum([expr {$x+1}]) 1
  set x [expr {wide($x*128 + 127)}]
}

# Scramble the $inlist into a random order.
#
proc scramble {inlist} {
  set y {}







|
|
|
|
|




|







35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
  0x7fffffffff
  0x7fffffffffff
  0x7fffffffffffff
  0x7fffffffffffffff
} {
  set x [expr {wide($x)}]
  set boundarynum($x) 1
  set boundarynum([expr {wide($x+1)}]) 1
  set boundarynum([expr {wide(-($x+1))}]) 1
  set boundarynum([expr {wide(-($x+2))}]) 1
  set boundarynum([expr {wide($x+$x+1)}]) 1
  set boundarynum([expr {wide($x+$x+2)}]) 1
}
set x [expr {wide(127)}]
for {set i 1} {$i<=9} {incr i} {
  set boundarynum($x) 1
  set boundarynum([expr {wide($x+1)}]) 1
  set x [expr {wide($x*128 + 127)}]
}

# Scramble the $inlist into a random order.
#
proc scramble {inlist} {
  set y {}
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
puts "  db eval \173"
puts "    CREATE TABLE t1(a,x);"
set a 0
foreach r $nums1 {
  incr a
  set t1ra($r) $a
  set t1ar($a) $r
  set x [format %08x%08x [expr {wide($r)>>32}] $r]
  set t1rx($r) $x
  set t1xr($x) $r
  puts "    INSERT INTO t1(oid,a,x) VALUES($r,$a,'$x');"
}
puts "    CREATE INDEX t1i1 ON t1(a);"
puts "    CREATE INDEX t1i2 ON t1(x);"
puts "  \175"







|







111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
puts "  db eval \173"
puts "    CREATE TABLE t1(a,x);"
set a 0
foreach r $nums1 {
  incr a
  set t1ra($r) $a
  set t1ar($a) $r
  set x [format %016x [expr {wide($r)}]]
  set t1rx($r) $x
  set t1xr($x) $r
  puts "    INSERT INTO t1(oid,a,x) VALUES($r,$a,'$x');"
}
puts "    CREATE INDEX t1i1 ON t1(a);"
puts "    CREATE INDEX t1i2 ON t1(x);"
puts "  \175"
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

set i 0
foreach r $nums3 {
  incr i

  set r5 $r.5
  set r0 $r.0
  if {abs($r)<9.22337203685477580800e+18} {
    set x $t1rx($r)
    set a $t1ra($r)
    puts "do_test $tname-2.$i.1 \173"
    puts "  db eval \173"
    puts "    SELECT t1.* FROM t1, t2 WHERE t1.rowid=$r AND t2.a=t1.a"
    puts "  \175"
    puts "\175 {$a $x}"







|







153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

set i 0
foreach r $nums3 {
  incr i

  set r5 $r.5
  set r0 $r.0
   if {abs($r)<0x7FFFFFFFFFFFFFFF || $r==-9223372036854775808} {
    set x $t1rx($r)
    set a $t1ra($r)
    puts "do_test $tname-2.$i.1 \173"
    puts "  db eval \173"
    puts "    SELECT t1.* FROM t1, t2 WHERE t1.rowid=$r AND t2.a=t1.a"
    puts "  \175"
    puts "\175 {$a $x}"
Changes to test/btreefault.test.
51
52
53
54
55
56
57
58
} -test {
  sqlite3_finalize $::STMT
  faultsim_test_result {0 {}} 
  faultsim_integrity_check
}

finish_test








<
51
52
53
54
55
56
57

} -test {
  sqlite3_finalize $::STMT
  faultsim_test_result {0 {}} 
  faultsim_integrity_check
}

finish_test

Changes to test/capi3d.test.
104
105
106
107
108
109
110







111
112
113
114
115
116
117

test_is_readonly capi3d-2.1 {SELECT * FROM sqlite_master} 1
test_is_readonly capi3d-2.2 {CREATE TABLE t1(x)} 0
db eval {CREATE TABLE t1(x)}
test_is_readonly capi3d-2.3 {INSERT INTO t1 VALUES(5)} 0
test_is_readonly capi3d-2.4 {UPDATE t1 SET x=x+1 WHERE x<0} 0
test_is_readonly capi3d-2.5 {SELECT * FROM t1} 1







do_test capi3-2.99 {
  sqlite3_stmt_readonly 0
} 1

# Tests for sqlite3_stmt_busy
#
do_test capi3d-3.1 {







>
>
>
>
>
>
>







104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

test_is_readonly capi3d-2.1 {SELECT * FROM sqlite_master} 1
test_is_readonly capi3d-2.2 {CREATE TABLE t1(x)} 0
db eval {CREATE TABLE t1(x)}
test_is_readonly capi3d-2.3 {INSERT INTO t1 VALUES(5)} 0
test_is_readonly capi3d-2.4 {UPDATE t1 SET x=x+1 WHERE x<0} 0
test_is_readonly capi3d-2.5 {SELECT * FROM t1} 1
ifcapable wal {
  test_is_readonly capi3d-2.6 {PRAGMA journal_mode=WAL} 0
  test_is_readonly capi3d-2.7 {PRAGMA wal_checkpoint} 0
}
test_is_readonly capi3d-2.8 {PRAGMA application_id=1234} 0
test_is_readonly capi3d-2.9 {VACUUM} 0
test_is_readonly capi3d-2.10 {PRAGMA integrity_check} 1
do_test capi3-2.99 {
  sqlite3_stmt_readonly 0
} 1

# Tests for sqlite3_stmt_busy
#
do_test capi3d-3.1 {
Changes to test/capi3e.test.
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# capi3e-1.*: Test sqlite3_open with various UTF8 filenames
# capi3e-2.*: Test sqlite3_open16 with various UTF8 filenames
# capi3e-3.*: Test ATTACH with various UTF8 filenames

db close

# here's the list of file names we're testing
set names {t 1 t. 1. t.d 1.d t-1 1-1 t.db ä.db ë.db ö.db ü.db ÿ.db}

set i 0
foreach name $names {
  incr i
  do_test capi3e-1.1.$i {
    set db2 [sqlite3_open $name {}]
    sqlite3_errcode $db2







|







56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# capi3e-1.*: Test sqlite3_open with various UTF8 filenames
# capi3e-2.*: Test sqlite3_open16 with various UTF8 filenames
# capi3e-3.*: Test ATTACH with various UTF8 filenames

db close

# here's the list of file names we're testing
set names {t 1 t. 1. t.d 1.d t-1 1-1 t.db ä.db ë.db ö.db ü.db ÿ.db}

set i 0
foreach name $names {
  incr i
  do_test capi3e-1.1.$i {
    set db2 [sqlite3_open $name {}]
    sqlite3_errcode $db2
Changes to test/check.test.
447
448
449
450
451
452
453






454
455
} {}

do_test 7.8 {
  db2 func myfunc myfunc
  catchsql { INSERT INTO t6 VALUES(12) } db2
} {1 {constraint failed}}








finish_test







>
>
>
>
>
>


447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
} {}

do_test 7.8 {
  db2 func myfunc myfunc
  catchsql { INSERT INTO t6 VALUES(12) } db2
} {1 {constraint failed}}

# 2013-08-02:  Silently ignore database name qualifiers in CHECK constraints.
#
do_execsql_test 8.1 {
  CREATE TABLE t810(a, CHECK( main.t810.a>0 ));
  CREATE TABLE t811(b, CHECK( xyzzy.t811.b BETWEEN 5 AND 10 ));
} {}

finish_test
Changes to test/close.test.
72
73
74
75
76
77
78
79
} {1 {(21) library routine called out of sequence}}

do_test 1.4.4 {
  sqlite3_finalize $STMT
} {SQLITE_OK}

finish_test








<
72
73
74
75
76
77
78

} {1 {(21) library routine called out of sequence}}

do_test 1.4.4 {
  sqlite3_finalize $STMT
} {SQLITE_OK}

finish_test

Changes to test/collate2.test.
13
14
15
16
17
18
19


20
21
22
23
24
25
26
# focus of this script is page cache subsystem.
#
# $Id: collate2.test,v 1.6 2008/08/20 16:35:10 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl



#
# Tests are organised as follows:
#
# collate2-1.* WHERE <expr> expressions (sqliteExprIfTrue).
# collate2-2.* WHERE NOT <expr> expressions (sqliteExprIfFalse).
# collate2-3.* SELECT <expr> expressions (sqliteExprCode).
# collate2-4.* Precedence of collation/data types in binary comparisons







>
>







13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# focus of this script is page cache subsystem.
#
# $Id: collate2.test,v 1.6 2008/08/20 16:35:10 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

set ::testprefix collate2

#
# Tests are organised as follows:
#
# collate2-1.* WHERE <expr> expressions (sqliteExprIfTrue).
# collate2-2.* WHERE NOT <expr> expressions (sqliteExprIfFalse).
# collate2-3.* SELECT <expr> expressions (sqliteExprCode).
# collate2-4.* Precedence of collation/data types in binary comparisons
632
633
634
635
636
637
638
639

640
641
642
643
644
645

646
647
648
649
650
651
652
} {aa}

# Test that when one side has a default collation type and the other
# does not, the collation type is used.
do_test collate2-4.3 {
  execsql {
    SELECT collate2t1.a FROM collate2t1, collate2t3 
      WHERE collate2t1.b = collate2t3.b||'';

  }
} {aa aA Aa AA}
do_test collate2-4.4 {
  execsql {
    SELECT collate2t1.a FROM collate2t1, collate2t3 
      WHERE collate2t3.b||'' = collate2t1.b;

  }
} {aa aA Aa AA}

do_test collate2-4.5 {
  execsql {
    DROP TABLE collate2t3;
  }







|
>





|
>







634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
} {aa}

# Test that when one side has a default collation type and the other
# does not, the collation type is used.
do_test collate2-4.3 {
  execsql {
    SELECT collate2t1.a FROM collate2t1, collate2t3 
      WHERE collate2t1.b = collate2t3.b||''
      ORDER BY +collate2t1.a DESC;
  }
} {aa aA Aa AA}
do_test collate2-4.4 {
  execsql {
    SELECT collate2t1.a FROM collate2t1, collate2t3 
      WHERE collate2t3.b||'' = collate2t1.b
      ORDER BY +collate2t1.a DESC;
  }
} {aa aA Aa AA}

do_test collate2-4.5 {
  execsql {
    DROP TABLE collate2t3;
  }
686
687
688
689
690
691
692
693


























694
  }
} {{} aa {} {} {} aa {} {} {} aa {} {} {} aa {} {} {}}
do_test collate2-5.5 {
  execsql {
    SELECT collate2t1.b, collate2t2.b FROM collate2t2 LEFT OUTER JOIN collate2t1 USING (b);
  }
} {aa aa}



























finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
  }
} {{} aa {} {} {} aa {} {} {} aa {} {} {} aa {} {} {}}
do_test collate2-5.5 {
  execsql {
    SELECT collate2t1.b, collate2t2.b FROM collate2t2 LEFT OUTER JOIN collate2t1 USING (b);
  }
} {aa aa}

do_execsql_test 6.1 {
  CREATE TABLE t1(x);
  INSERT INTO t1 VALUES('b');
  INSERT INTO t1 VALUES('B');
}
do_execsql_test 6.2 {
  SELECT * FROM t1 WHERE x COLLATE nocase BETWEEN 'a' AND 'c';
} {b B}
do_execsql_test 6.3 {
  SELECT * FROM t1 WHERE x BETWEEN 'a' COLLATE nocase AND 'c' COLLATE nocase;
} {b B}
do_execsql_test 6.4 {
  SELECT * FROM t1 
  WHERE x COLLATE nocase BETWEEN 'a' COLLATE nocase AND 'c' COLLATE nocase;
} {b B}
do_execsql_test 6.5 {
  SELECT * FROM t1 WHERE +x COLLATE nocase BETWEEN 'a' AND 'c';
} {b B}
do_execsql_test 6.6 {
  SELECT * FROM t1 WHERE +x BETWEEN 'a' COLLATE nocase AND 'c' COLLATE nocase;
} {b B}
do_execsql_test 6.7 {
  SELECT * FROM t1 
  WHERE +x COLLATE nocase BETWEEN 'a' COLLATE nocase AND 'c' COLLATE nocase;
} {b B}

finish_test
Added test/contrib01.test.




















































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# 2013-06-05
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file contains test cases that were contributed on the sqlite-users
# mailing list on 2013-06-05 by Mi Chen at mi.chen@echostar.com.
#
# At the time it was contributed, this test failed on trunk, but 
# worked on the NGQP.

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Build some test data
#
do_test contrib01-1.0 {
  db eval {
    CREATE TABLE T1 (B INTEGER NOT NULL,
                     C INTEGER NOT NULL,
                     D INTEGER NOT NULL,
                     E INTEGER NOT NULL,
                     F INTEGER NOT NULL,
                     G INTEGER NOT NULL,
                     H INTEGER NOT NULL,
                     PRIMARY KEY (B, C, D));
    
    CREATE TABLE T2 (A INTEGER NOT NULL,
                     B INTEGER NOT NULL,
                     C INTEGER NOT NULL,
                     PRIMARY KEY (A, B, C));
    
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15527);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15560);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15561);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15563);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15564);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15566);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15567);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15569);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15612);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15613);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15638);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15681);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15682);
    
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15527,6,0,5,5,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15560,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15561,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15563,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15564,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15566,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15567,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15569,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15612,6,0,5,5,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15613,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15638,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15681,6,0,5,5,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15682,6,0,5,2,0);
  }
} {}
do_test contrib01-1.1 {
  db eval {
    SELECT T2.A, T2.B, T1.D, T1.E, T1.F, T1.G, T1.H, MAX(T1.C), '^'
      FROM T1, T2
     WHERE T1.B = T2.B
       AND T1.C = T2.C
     GROUP BY T2.A, T2.B, T1.D, T1.E, T1.F, T1.G, T1.H
     ORDER BY +max(t1.c);
  }
} {702118 16183 6 0 5 5 0 15681 ^ 702118 16183 6 0 5 2 0 15682 ^}
do_test contrib01-1.2 {
  db eval {
   SELECT T2.A, T2.B, T1.D, T1.E, T1.F, T1.G, T1.H, MAX(T1.C), '^'
     FROM T1, T2
    WHERE T1.B = T2.B
      AND T1.C = T2.C
    GROUP BY T2.A, T2.B, T1.F, T1.D, T1.E, T1.G, T1.H
    ORDER BY +max(t1.c);
  }
} {702118 16183 6 0 5 5 0 15681 ^ 702118 16183 6 0 5 2 0 15682 ^}

finish_test
Changes to test/corruptF.test.
143
144
145
146
147
148
149
150
      set res ""
    }
    set res
  } {}
}

finish_test








<
143
144
145
146
147
148
149

      set res ""
    }
    set res
  } {}
}

finish_test

Added test/corruptG.test.


























































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# 2013-08-01
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix corruptG

# Do not use a codec for tests in this file, as the database file is
# manipulated directly using tcl scripts (using the [hexio_write] command).
#
do_not_use_codec

# Create a simple database with a single entry.  Then corrupt the
# header-size varint on the index payload so that it maps into a
# negative number.  Try to use the database.
#

do_execsql_test 1.1 {
  PRAGMA page_size=512;
  CREATE TABLE t1(a,b,c);
  INSERT INTO t1(rowid,a,b,c) VALUES(52,'abc','xyz','123');
  CREATE INDEX t1abc ON t1(a,b,c);
}

set idxroot [db one {SELECT rootpage FROM sqlite_master WHERE name = 't1abc'}]

# Corrupt the file
db close
hexio_write test.db [expr {$idxroot*512 - 15}] 888080807f
sqlite3 db test.db

# Try to use the file.
do_test 1.2 {
  catchsql {
    SELECT c FROM t1 WHERE a>'abc';
  }
} {0 {}}
do_test 1.3 {
  catchsql {
     PRAGMA integrity_check
  }
} {0 ok}
do_test 1.4 {
  catchsql {
    SELECT c FROM t1 ORDER BY a;
  }
} {1 {database disk image is malformed}}

# Corrupt the same file in a slightly different way.  Make the record header
# sane, but corrupt one of the serial_type value to indicate a huge payload
# such that the payload begins in allocated space but overflows the buffer.
#
db close
hexio_write test.db [expr {$idxroot*512-15}] 0513ff7f01
sqlite3 db test.db

do_test 2.1 {
  catchsql {
    SELECT rowid FROM t1 WHERE a='abc' and b='xyz123456789XYZ';
  }
  # The following test result is brittle.  The point above is to try to
  # force a buffer overread by a corrupt database file.  If we get an
  # incorrect answer from a corrupt database file, that is OK.  If the
  # result below changes, that just means that "undefined behavior" has
  # changed.
} {0 52}

finish_test
Changes to test/dbstatus.test.
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

proc lookaside {db} {
  expr { $::lookaside_buffer_size *
    [lindex [sqlite3_db_status $db SQLITE_DBSTATUS_LOOKASIDE_USED 0] 1]
  }
}

ifcapable stat3 {
  set STAT3 1
} else {
  set STAT3 0
}

ifcapable malloc_usable_size {
  finish_test







|







57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

proc lookaside {db} {
  expr { $::lookaside_buffer_size *
    [lindex [sqlite3_db_status $db SQLITE_DBSTATUS_LOOKASIDE_USED 0] 1]
  }
}

ifcapable stat4||stat3 {
  set STAT3 1
} else {
  set STAT3 0
}

ifcapable malloc_usable_size {
  finish_test
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    # for any reason is not counted as "schema memory".
    #
    # Additionally, in auto-vacuum mode, dropping tables and indexes causes
    # the page-cache to shrink. So the amount of memory freed is always
    # much greater than just that reported by DBSTATUS_SCHEMA_USED in this
    # case.
    #
    # Some of the memory used for sqlite_stat3 is unaccounted for by
    # dbstatus.
    #
    # Finally, on osx the estimate of memory used by the schema may be
    # slightly low. 
    #
    if {[string match *x $tn] || $AUTOVACUUM
         || ([string match *y $tn] && $STAT3)







|







210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    # for any reason is not counted as "schema memory".
    #
    # Additionally, in auto-vacuum mode, dropping tables and indexes causes
    # the page-cache to shrink. So the amount of memory freed is always
    # much greater than just that reported by DBSTATUS_SCHEMA_USED in this
    # case.
    #
    # Some of the memory used for sqlite_stat4 is unaccounted for by
    # dbstatus.
    #
    # Finally, on osx the estimate of memory used by the schema may be
    # slightly low. 
    #
    if {[string match *x $tn] || $AUTOVACUUM
         || ([string match *y $tn] && $STAT3)
Changes to test/descidx1.test.
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
  do_test descidx1-4.2 {
    execsql {
      SELECT d FROM t2 ORDER BY a;
    }
  } {1.0 2.2 2.0 2.1 2.3 3.0 4.0 5.0 6.0}
  do_test descidx1-4.3 {
    execsql {
      SELECT d FROM t2 WHERE a>=2;
    }
  } {2.2 2.0 2.1 2.3 3.0 4.0 5.0 6.0}
  do_test descidx1-4.4 {
    execsql {
      SELECT d FROM t2 WHERE a>2;
    }
  } {3.0 4.0 5.0 6.0}
  do_test descidx1-4.5 {
    execsql {
      SELECT d FROM t2 WHERE a=2 AND b>'two';
    }
  } {2.2}







|




|







193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
  do_test descidx1-4.2 {
    execsql {
      SELECT d FROM t2 ORDER BY a;
    }
  } {1.0 2.2 2.0 2.1 2.3 3.0 4.0 5.0 6.0}
  do_test descidx1-4.3 {
    execsql {
      SELECT d FROM t2 WHERE a>=2 ORDER BY a;
    }
  } {2.2 2.0 2.1 2.3 3.0 4.0 5.0 6.0}
  do_test descidx1-4.4 {
    execsql {
      SELECT d FROM t2 WHERE a>2 ORDER BY a;
    }
  } {3.0 4.0 5.0 6.0}
  do_test descidx1-4.5 {
    execsql {
      SELECT d FROM t2 WHERE a=2 AND b>'two';
    }
  } {2.2}
Changes to test/distinct.test.
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

foreach {tn sql temptables res} {
  1   "a, b FROM t1"                                       {}      {A B a b}
  2   "b, a FROM t1"                                       {}      {B A b a}
  3   "a, b, c FROM t1"                                    {hash}  {a b c A B C}
  4   "a, b, c FROM t1 ORDER BY a, b, c"                   {btree} {A B C a b c}
  5   "b FROM t1 WHERE a = 'a'"                            {}      {b}
  6   "b FROM t1"                                          {hash}  {b B}
  7   "a FROM t1"                                          {}      {A a}
  8   "b COLLATE nocase FROM t1"                           {}      {b}
  9   "b COLLATE nocase FROM t1 ORDER BY b COLLATE nocase" {}      {b}
} {
  do_execsql_test    2.$tn.1 "SELECT DISTINCT $sql" $res
  do_temptables_test 2.$tn.2 "SELECT DISTINCT $sql" $temptables
}







|







161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

foreach {tn sql temptables res} {
  1   "a, b FROM t1"                                       {}      {A B a b}
  2   "b, a FROM t1"                                       {}      {B A b a}
  3   "a, b, c FROM t1"                                    {hash}  {a b c A B C}
  4   "a, b, c FROM t1 ORDER BY a, b, c"                   {btree} {A B C a b c}
  5   "b FROM t1 WHERE a = 'a'"                            {}      {b}
  6   "b FROM t1 ORDER BY +b COLLATE binary"          {btree hash} {B b}
  7   "a FROM t1"                                          {}      {A a}
  8   "b COLLATE nocase FROM t1"                           {}      {b}
  9   "b COLLATE nocase FROM t1 ORDER BY b COLLATE nocase" {}      {b}
} {
  do_execsql_test    2.$tn.1 "SELECT DISTINCT $sql" $res
  do_temptables_test 2.$tn.2 "SELECT DISTINCT $sql" $temptables
}
Changes to test/e_createtable.test.
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
      db eval "SELECT DISTINCT tbl_name FROM $master ORDER BY tbl_name"
    ]
  }
  set res
}


# EVIDENCE-OF: R-47266-09114 -- syntax diagram type-name
#
do_createtable_tests 0.1.1 -repair {
  drop_all_tables
} {
  1   "CREATE TABLE t1(c1 one)"                        {}
  2   "CREATE TABLE t1(c1 one two)"                    {}
  3   "CREATE TABLE t1(c1 one two three)"              {}
  4   "CREATE TABLE t1(c1 one two three four)"         {}
  5   "CREATE TABLE t1(c1 one two three four(14))"     {}
  6   "CREATE TABLE t1(c1 one two three four(14, 22))" {}
  7   "CREATE TABLE t1(c1 var(+14, -22.3))"            {}
  8   "CREATE TABLE t1(c1 var(1.0e10))"                {}
}
do_createtable_tests 0.1.2 -error {
  near "%s": syntax error
} {
  1   "CREATE TABLE t1(c1 one(number))"                {number}
}


# EVIDENCE-OF: R-60689-48779 -- syntax diagram column-constraint
#
do_createtable_tests 0.2.1 -repair {
  drop_all_tables 
  execsql { CREATE TABLE t2(x PRIMARY KEY) }
} {
  1.1   "CREATE TABLE t1(c1 text PRIMARY KEY)"                         {}
  1.2   "CREATE TABLE t1(c1 text PRIMARY KEY ASC)"                     {}







<
<



















|







54
55
56
57
58
59
60


61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
      db eval "SELECT DISTINCT tbl_name FROM $master ORDER BY tbl_name"
    ]
  }
  set res
}




do_createtable_tests 0.1.1 -repair {
  drop_all_tables
} {
  1   "CREATE TABLE t1(c1 one)"                        {}
  2   "CREATE TABLE t1(c1 one two)"                    {}
  3   "CREATE TABLE t1(c1 one two three)"              {}
  4   "CREATE TABLE t1(c1 one two three four)"         {}
  5   "CREATE TABLE t1(c1 one two three four(14))"     {}
  6   "CREATE TABLE t1(c1 one two three four(14, 22))" {}
  7   "CREATE TABLE t1(c1 var(+14, -22.3))"            {}
  8   "CREATE TABLE t1(c1 var(1.0e10))"                {}
}
do_createtable_tests 0.1.2 -error {
  near "%s": syntax error
} {
  1   "CREATE TABLE t1(c1 one(number))"                {number}
}


# syntax diagram column-constraint
#
do_createtable_tests 0.2.1 -repair {
  drop_all_tables 
  execsql { CREATE TABLE t2(x PRIMARY KEY) }
} {
  1.1   "CREATE TABLE t1(c1 text PRIMARY KEY)"                         {}
  1.2   "CREATE TABLE t1(c1 text PRIMARY KEY ASC)"                     {}
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
  8.2   {
    CREATE TABLE t1(c1 
      REFERENCES t1 DEFAULT 123 CHECK(c1 IS 'ten') UNIQUE NOT NULL PRIMARY KEY 
    );
  } {}
}

# EVIDENCE-OF: R-58169-51804 -- syntax diagram table-constraint
#
do_createtable_tests 0.3.1 -repair {
  drop_all_tables 
  execsql { CREATE TABLE t2(x PRIMARY KEY) }
} {
  1.1   "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1))"                         {}
  1.2   "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1, c2))"                     {}
  1.3   "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1, c2) ON CONFLICT IGNORE)"  {}

  2.1   "CREATE TABLE t1(c1, c2, UNIQUE(c1))"                              {}
  2.2   "CREATE TABLE t1(c1, c2, UNIQUE(c1, c2))"                          {}
  2.3   "CREATE TABLE t1(c1, c2, UNIQUE(c1, c2) ON CONFLICT IGNORE)"       {}

  3.1   "CREATE TABLE t1(c1, c2, CHECK(c1 IS NOT c2))"                     {}

  4.1   "CREATE TABLE t1(c1, c2, FOREIGN KEY(c1) REFERENCES t2)"           {}
}

# EVIDENCE-OF: R-44826-22243 -- syntax diagram column-def
#
do_createtable_tests 0.4.1 -repair {
  drop_all_tables 
} {
  1     {CREATE TABLE t1(
           col1,
           col2 TEXT,
           col3 INTEGER UNIQUE,
           col4 VARCHAR(10, 10) PRIMARY KEY,
           "name with spaces" REFERENCES t1
         );
        } {}
}

# EVIDENCE-OF: R-45698-45677 -- syntax diagram create-table-stmt
#
do_createtable_tests 0.5.1 -repair {
  drop_all_tables 
  execsql { CREATE TABLE t2(a, b, c) }
} {
  1     "CREATE TABLE t1(a, b, c)"                                    {}
  2     "CREATE TEMP TABLE t1(a, b, c)"                               {}







|


















|














|







120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
  8.2   {
    CREATE TABLE t1(c1 
      REFERENCES t1 DEFAULT 123 CHECK(c1 IS 'ten') UNIQUE NOT NULL PRIMARY KEY 
    );
  } {}
}

# -- syntax diagram table-constraint
#
do_createtable_tests 0.3.1 -repair {
  drop_all_tables 
  execsql { CREATE TABLE t2(x PRIMARY KEY) }
} {
  1.1   "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1))"                         {}
  1.2   "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1, c2))"                     {}
  1.3   "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1, c2) ON CONFLICT IGNORE)"  {}

  2.1   "CREATE TABLE t1(c1, c2, UNIQUE(c1))"                              {}
  2.2   "CREATE TABLE t1(c1, c2, UNIQUE(c1, c2))"                          {}
  2.3   "CREATE TABLE t1(c1, c2, UNIQUE(c1, c2) ON CONFLICT IGNORE)"       {}

  3.1   "CREATE TABLE t1(c1, c2, CHECK(c1 IS NOT c2))"                     {}

  4.1   "CREATE TABLE t1(c1, c2, FOREIGN KEY(c1) REFERENCES t2)"           {}
}

# -- syntax diagram column-def
#
do_createtable_tests 0.4.1 -repair {
  drop_all_tables 
} {
  1     {CREATE TABLE t1(
           col1,
           col2 TEXT,
           col3 INTEGER UNIQUE,
           col4 VARCHAR(10, 10) PRIMARY KEY,
           "name with spaces" REFERENCES t1
         );
        } {}
}

# -- syntax diagram create-table-stmt
#
do_createtable_tests 0.5.1 -repair {
  drop_all_tables 
  execsql { CREATE TABLE t2(a, b, c) }
} {
  1     "CREATE TABLE t1(a, b, c)"                                    {}
  2     "CREATE TEMP TABLE t1(a, b, c)"                               {}
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
  12    "CREATE TEMPORARY TABLE IF NOT EXISTS temp.t1(a, b, c)"       {}

  13    "CREATE TABLE t1 AS SELECT * FROM t2"                         {}
  14    "CREATE TEMP TABLE t1 AS SELECT c, b, a FROM t2"              {}
  15    "CREATE TABLE t1 AS SELECT count(*), max(b), min(a) FROM t2"  {}
}

# EVIDENCE-OF: R-24369-11919 -- syntax diagram foreign-key-clause
#
#   1:         Explicit parent-key columns.
#   2:         Implicit child-key columns.
#
#   1:         MATCH FULL
#   2:         MATCH PARTIAL
#   3:         MATCH SIMPLE







<







179
180
181
182
183
184
185

186
187
188
189
190
191
192
  12    "CREATE TEMPORARY TABLE IF NOT EXISTS temp.t1(a, b, c)"       {}

  13    "CREATE TABLE t1 AS SELECT * FROM t2"                         {}
  14    "CREATE TEMP TABLE t1 AS SELECT c, b, a FROM t2"              {}
  15    "CREATE TABLE t1 AS SELECT count(*), max(b), min(a) FROM t2"  {}
}


#
#   1:         Explicit parent-key columns.
#   2:         Implicit child-key columns.
#
#   1:         MATCH FULL
#   2:         MATCH PARTIAL
#   3:         MATCH SIMPLE
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
#
do_execsql_test 4.10.0 {
  CREATE TABLE t1(a, b PRIMARY KEY);
  CREATE TABLE t2(a, b, c, UNIQUE(b, c));
}
do_createtable_tests 4.10 {
  1    "EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 5" 
       {0 0 0 {SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (b=?) (~1 rows)}}

  2    "EXPLAIN QUERY PLAN SELECT * FROM t2 ORDER BY b, c"
       {0 0 0 {SCAN TABLE t2 USING INDEX sqlite_autoindex_t2_1 (~1000000 rows)}}

  3    "EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE b=10 AND c>10"
       {0 0 0 {SEARCH TABLE t2 USING INDEX sqlite_autoindex_t2_1 (b=? AND c>?) (~2 rows)}}
}

# EVIDENCE-OF: R-45493-35653 A CHECK constraint may be attached to a
# column definition or specified as a table constraint. In practice it
# makes no difference.
#
#   All the tests that deal with CHECK constraints below (4.11.* and 







|


|


|







1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
#
do_execsql_test 4.10.0 {
  CREATE TABLE t1(a, b PRIMARY KEY);
  CREATE TABLE t2(a, b, c, UNIQUE(b, c));
}
do_createtable_tests 4.10 {
  1    "EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 5" 
       {0 0 0 {SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (b=?)}}

  2    "EXPLAIN QUERY PLAN SELECT * FROM t2 ORDER BY b, c"
       {0 0 0 {SCAN TABLE t2 USING INDEX sqlite_autoindex_t2_1}}

  3    "EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE b=10 AND c>10"
       {0 0 0 {SEARCH TABLE t2 USING INDEX sqlite_autoindex_t2_1 (b=? AND c>?)}}
}

# EVIDENCE-OF: R-45493-35653 A CHECK constraint may be attached to a
# column definition or specified as a table constraint. In practice it
# makes no difference.
#
#   All the tests that deal with CHECK constraints below (4.11.* and 
Changes to test/e_delete.test.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
}

do_execsql_test e_delete-0.0 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
} {}

# EVIDENCE-OF: R-62077-19799 -- syntax diagram delete-stmt
#
# EVIDENCE-OF: R-60796-31013 -- syntax diagram qualified-table-name
#
do_delete_tests e_delete-0.1 {
  1  "DELETE FROM t1"                              {}
  2  "DELETE FROM t1 INDEXED BY i1"                {}
  3  "DELETE FROM t1 NOT INDEXED"                  {}
  4  "DELETE FROM main.t1"                         {}
  5  "DELETE FROM main.t1 INDEXED BY i1"           {}







|
<
|







25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
}

do_execsql_test e_delete-0.0 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
} {}

# -- syntax diagram delete-stmt

# -- syntax diagram qualified-table-name
#
do_delete_tests e_delete-0.1 {
  1  "DELETE FROM t1"                              {}
  2  "DELETE FROM t1 INDEXED BY i1"                {}
  3  "DELETE FROM t1 NOT INDEXED"                  {}
  4  "DELETE FROM main.t1"                         {}
  5  "DELETE FROM main.t1 INDEXED BY i1"           {}
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
}

# EVIDENCE-OF: R-40026-10531 If SQLite is compiled with the
# SQLITE_ENABLE_UPDATE_DELETE_LIMIT compile-time option, then the syntax
# of the DELETE statement is extended by the addition of optional ORDER
# BY and LIMIT clauses:
#
# EVIDENCE-OF: R-52694-53361 -- syntax diagram delete-stmt-limited
#
do_delete_tests e_delete-3.1 {
  1   "DELETE FROM t1 LIMIT 5"                                    {}
  2   "DELETE FROM t1 LIMIT 5-1 OFFSET 2+2"                       {}
  3   "DELETE FROM t1 LIMIT 2+2, 16/4"                            {}
  4   "DELETE FROM t1 ORDER BY x LIMIT 5"                         {}
  5   "DELETE FROM t1 ORDER BY x LIMIT 5-1 OFFSET 2+2"            {}







|







287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
}

# EVIDENCE-OF: R-40026-10531 If SQLite is compiled with the
# SQLITE_ENABLE_UPDATE_DELETE_LIMIT compile-time option, then the syntax
# of the DELETE statement is extended by the addition of optional ORDER
# BY and LIMIT clauses:
#
# -- syntax diagram delete-stmt-limited
#
do_delete_tests e_delete-3.1 {
  1   "DELETE FROM t1 LIMIT 5"                                    {}
  2   "DELETE FROM t1 LIMIT 5-1 OFFSET 2+2"                       {}
  3   "DELETE FROM t1 LIMIT 2+2, 16/4"                            {}
  4   "DELETE FROM t1 ORDER BY x LIMIT 5"                         {}
  5   "DELETE FROM t1 ORDER BY x LIMIT 5-1 OFFSET 2+2"            {}
Changes to test/e_droptrigger.test.
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    CREATE TRIGGER aux.tr1 BEFORE $event ON t3 BEGIN SELECT r('aux.tr1') ; END;
    CREATE TRIGGER aux.tr2 AFTER  $event ON t3 BEGIN SELECT r('aux.tr2') ; END;
    CREATE TRIGGER aux.tr3 AFTER  $event ON t3 BEGIN SELECT r('aux.tr3') ; END;
  "
}


# EVIDENCE-OF: R-27975-10951 -- syntax diagram drop-trigger-stmt
#
do_droptrigger_tests 1.1 -repair {
  droptrigger_reopen_db
} -tclquery {
  list_all_triggers 
} {
  1   "DROP TRIGGER main.tr1"            







|







65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    CREATE TRIGGER aux.tr1 BEFORE $event ON t3 BEGIN SELECT r('aux.tr1') ; END;
    CREATE TRIGGER aux.tr2 AFTER  $event ON t3 BEGIN SELECT r('aux.tr2') ; END;
    CREATE TRIGGER aux.tr3 AFTER  $event ON t3 BEGIN SELECT r('aux.tr3') ; END;
  "
}


# -- syntax diagram drop-trigger-stmt
#
do_droptrigger_tests 1.1 -repair {
  droptrigger_reopen_db
} -tclquery {
  list_all_triggers 
} {
  1   "DROP TRIGGER main.tr1"            
Changes to test/e_dropview.test.
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
  set res
}

proc do_dropview_tests {nm args} {
  uplevel do_select_tests $nm $args
}

# EVIDENCE-OF: R-53136-36436 -- syntax diagram drop-view-stmt
#
# All paths in the syntax diagram for DROP VIEW are tested by tests 1.*.
#
do_dropview_tests 1 -repair {
  dropview_reopen_db
} -tclquery {
  list_all_views







|







66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
  set res
}

proc do_dropview_tests {nm args} {
  uplevel do_select_tests $nm $args
}

# -- syntax diagram drop-view-stmt
#
# All paths in the syntax diagram for DROP VIEW are tested by tests 1.*.
#
do_dropview_tests 1 -repair {
  dropview_reopen_db
} -tclquery {
  list_all_views
Changes to test/e_expr.test.
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
  string compare [reverse_str $zLeft] [reverse_str $zRight]
}
db collate reverse reverse_collate

# EVIDENCE-OF: R-59577-33471 The COLLATE operator is a unary postfix
# operator that assigns a collating sequence to an expression.
#
# EVIDENCE-OF: R-23441-22541 The COLLATE operator has a higher
# precedence (binds more tightly) than any prefix unary operator or any
# binary operator.
#
do_execsql_test e_expr-9.1 { SELECT  'abcd' < 'bbbb'    COLLATE reverse } 0
do_execsql_test e_expr-9.2 { SELECT ('abcd' < 'bbbb')   COLLATE reverse } 1
do_execsql_test e_expr-9.3 { SELECT  'abcd' <= 'bbbb'   COLLATE reverse } 0
do_execsql_test e_expr-9.4 { SELECT ('abcd' <= 'bbbb')  COLLATE reverse } 1

do_execsql_test e_expr-9.5 { SELECT  'abcd' > 'bbbb'    COLLATE reverse } 1







|
|
|







362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
  string compare [reverse_str $zLeft] [reverse_str $zRight]
}
db collate reverse reverse_collate

# EVIDENCE-OF: R-59577-33471 The COLLATE operator is a unary postfix
# operator that assigns a collating sequence to an expression.
#
# EVIDENCE-OF: R-36231-30731 The COLLATE operator has a higher
# precedence (binds more tightly) than any binary operator and any unary
# prefix operator except "~".
#
do_execsql_test e_expr-9.1 { SELECT  'abcd' < 'bbbb'    COLLATE reverse } 0
do_execsql_test e_expr-9.2 { SELECT ('abcd' < 'bbbb')   COLLATE reverse } 1
do_execsql_test e_expr-9.3 { SELECT  'abcd' <= 'bbbb'   COLLATE reverse } 0
do_execsql_test e_expr-9.4 { SELECT ('abcd' <= 'bbbb')  COLLATE reverse } 1

do_execsql_test e_expr-9.5 { SELECT  'abcd' > 'bbbb'    COLLATE reverse } 1
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
       [sqlite3_column_type $stmt 3] 
} {NULL NULL NULL NULL}
do_test e_expr-11.7.1 { sqlite3_finalize $stmt } SQLITE_OK

#-------------------------------------------------------------------------
# "Test" the syntax diagrams in lang_expr.html.
#
# EVIDENCE-OF: R-02989-21050 -- syntax diagram signed-number
#
do_execsql_test e_expr-12.1.1 { SELECT 0, +0, -0 } {0 0 0}
do_execsql_test e_expr-12.1.2 { SELECT 1, +1, -1 } {1 1 -1}
do_execsql_test e_expr-12.1.3 { SELECT 2, +2, -2 } {2 2 -2}
do_execsql_test e_expr-12.1.4 { 
  SELECT 1.4, +1.4, -1.4 
} {1.4 1.4 -1.4}
do_execsql_test e_expr-12.1.5 { 
  SELECT 1.5e+5, +1.5e+5, -1.5e+5 
} {150000.0 150000.0 -150000.0}
do_execsql_test e_expr-12.1.6 { 
  SELECT 0.0001, +0.0001, -0.0001 
} {0.0001 0.0001 -0.0001}

# EVIDENCE-OF: R-43188-60852 -- syntax diagram literal-value
#
set sqlite_current_time 1
do_execsql_test e_expr-12.2.1 {SELECT 123}               {123}
do_execsql_test e_expr-12.2.2 {SELECT 123.4e05}          {12340000.0}
do_execsql_test e_expr-12.2.3 {SELECT 'abcde'}           {abcde}
do_execsql_test e_expr-12.2.4 {SELECT X'414243'}         {ABC}
do_execsql_test e_expr-12.2.5 {SELECT NULL}              {{}}
do_execsql_test e_expr-12.2.6 {SELECT CURRENT_TIME}      {00:00:01}
do_execsql_test e_expr-12.2.7 {SELECT CURRENT_DATE}      {1970-01-01}
do_execsql_test e_expr-12.2.8 {SELECT CURRENT_TIMESTAMP} {{1970-01-01 00:00:01}}
set sqlite_current_time 0

# EVIDENCE-OF: R-50544-32159 -- syntax diagram expr
#
forcedelete test.db2
execsql {
  ATTACH 'test.db2' AS dbname;
  CREATE TABLE dbname.tblname(cname);
}








|














|












|







627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
       [sqlite3_column_type $stmt 3] 
} {NULL NULL NULL NULL}
do_test e_expr-11.7.1 { sqlite3_finalize $stmt } SQLITE_OK

#-------------------------------------------------------------------------
# "Test" the syntax diagrams in lang_expr.html.
#
# -- syntax diagram signed-number
#
do_execsql_test e_expr-12.1.1 { SELECT 0, +0, -0 } {0 0 0}
do_execsql_test e_expr-12.1.2 { SELECT 1, +1, -1 } {1 1 -1}
do_execsql_test e_expr-12.1.3 { SELECT 2, +2, -2 } {2 2 -2}
do_execsql_test e_expr-12.1.4 { 
  SELECT 1.4, +1.4, -1.4 
} {1.4 1.4 -1.4}
do_execsql_test e_expr-12.1.5 { 
  SELECT 1.5e+5, +1.5e+5, -1.5e+5 
} {150000.0 150000.0 -150000.0}
do_execsql_test e_expr-12.1.6 { 
  SELECT 0.0001, +0.0001, -0.0001 
} {0.0001 0.0001 -0.0001}

# -- syntax diagram literal-value
#
set sqlite_current_time 1
do_execsql_test e_expr-12.2.1 {SELECT 123}               {123}
do_execsql_test e_expr-12.2.2 {SELECT 123.4e05}          {12340000.0}
do_execsql_test e_expr-12.2.3 {SELECT 'abcde'}           {abcde}
do_execsql_test e_expr-12.2.4 {SELECT X'414243'}         {ABC}
do_execsql_test e_expr-12.2.5 {SELECT NULL}              {{}}
do_execsql_test e_expr-12.2.6 {SELECT CURRENT_TIME}      {00:00:01}
do_execsql_test e_expr-12.2.7 {SELECT CURRENT_DATE}      {1970-01-01}
do_execsql_test e_expr-12.2.8 {SELECT CURRENT_TIMESTAMP} {{1970-01-01 00:00:01}}
set sqlite_current_time 0

# -- syntax diagram expr
#
forcedelete test.db2
execsql {
  ATTACH 'test.db2' AS dbname;
  CREATE TABLE dbname.tblname(cname);
}

812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
    incr x
    do_test e_expr-12.3.$tn.$x { 
      set rc [catch { execsql "SELECT $e FROM tblname" } msg]
    } {0}
  }
}

# EVIDENCE-OF: R-39820-63916 -- syntax diagram raise-function
#
foreach {tn raiseexpr} {
  1 "RAISE(IGNORE)"
  2 "RAISE(ROLLBACK, 'error message')"
  3 "RAISE(ABORT, 'error message')"
  4 "RAISE(FAIL, 'error message')"
} {







|







812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
    incr x
    do_test e_expr-12.3.$tn.$x { 
      set rc [catch { execsql "SELECT $e FROM tblname" } msg]
    } {0}
  }
}

# -- syntax diagram raise-function
#
foreach {tn raiseexpr} {
  1 "RAISE(IGNORE)"
  2 "RAISE(ROLLBACK, 'error message')"
  3 "RAISE(ABORT, 'error message')"
  4 "RAISE(FAIL, 'error message')"
} {
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
  set chars [split $str]
  for {set i [expr [llength $chars]-1]} {$i>=0} {incr i -1} {
    append ret [lindex $chars $i]
  }
  set ret
}
proc reverse {lhs rhs} {
  string compare [rev $lhs] [ref $rhs]
}
db collate reverse reverse
do_execsql_test e_expr-23.1.1 {
  CREATE TABLE t1(
    a TEXT     COLLATE NOCASE,
    b          COLLATE REVERSE,
    c INTEGER,







|







1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
  set chars [split $str]
  for {set i [expr [llength $chars]-1]} {$i>=0} {incr i -1} {
    append ret [lindex $chars $i]
  }
  set ret
}
proc reverse {lhs rhs} {
  string compare [rev $lhs] [rev $rhs]
}
db collate reverse reverse
do_execsql_test e_expr-23.1.1 {
  CREATE TABLE t1(
    a TEXT     COLLATE NOCASE,
    b          COLLATE REVERSE,
    c INTEGER,
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
  SELECT CASE 'AbC' WHEN 'abc' THEN 'A' WHEN a THEN 'B' END FROM t1
} {B}
do_execsql_test e_expr-23.1.4 {
  SELECT CASE a WHEN b THEN 'A' ELSE 'B' END FROM t1
} {B}
do_execsql_test e_expr-23.1.5 {
  SELECT CASE b WHEN a THEN 'A' ELSE 'B' END FROM t1
} {A}
do_execsql_test e_expr-23.1.6 {
  SELECT CASE 55 WHEN '55' THEN 'A' ELSE 'B' END
} {B}
do_execsql_test e_expr-23.1.7 {
  SELECT CASE c WHEN '55' THEN 'A' ELSE 'B' END FROM t1
} {A}
do_execsql_test e_expr-23.1.8 {







|







1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
  SELECT CASE 'AbC' WHEN 'abc' THEN 'A' WHEN a THEN 'B' END FROM t1
} {B}
do_execsql_test e_expr-23.1.4 {
  SELECT CASE a WHEN b THEN 'A' ELSE 'B' END FROM t1
} {B}
do_execsql_test e_expr-23.1.5 {
  SELECT CASE b WHEN a THEN 'A' ELSE 'B' END FROM t1
} {B}
do_execsql_test e_expr-23.1.6 {
  SELECT CASE 55 WHEN '55' THEN 'A' ELSE 'B' END
} {B}
do_execsql_test e_expr-23.1.7 {
  SELECT CASE c WHEN '55' THEN 'A' ELSE 'B' END FROM t1
} {A}
do_execsql_test e_expr-23.1.8 {
Changes to test/e_fkey.test.
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
  }
} {}
do_execsql_test e_fkey-25.2 {
  PRAGMA foreign_keys = OFF;
  EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
  EXPLAIN QUERY PLAN SELECT rowid FROM track WHERE trackartist = ?;
} {
  0 0 0 {SCAN TABLE artist (~1000000 rows)} 
  0 0 0 {SCAN TABLE track (~100000 rows)}
}
do_execsql_test e_fkey-25.3 {
  PRAGMA foreign_keys = ON;
  EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
} {
  0 0 0 {SCAN TABLE artist (~1000000 rows)} 
  0 0 0 {SCAN TABLE track (~100000 rows)}
}
do_test e_fkey-25.4 {
  execsql {
    INSERT INTO artist VALUES(5, 'artist 5');
    INSERT INTO artist VALUES(6, 'artist 6');
    INSERT INTO artist VALUES(7, 'artist 7');
    INSERT INTO track VALUES(1, 'track 1', 5);







|
|





|
|







970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
  }
} {}
do_execsql_test e_fkey-25.2 {
  PRAGMA foreign_keys = OFF;
  EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
  EXPLAIN QUERY PLAN SELECT rowid FROM track WHERE trackartist = ?;
} {
  0 0 0 {SCAN TABLE artist} 
  0 0 0 {SCAN TABLE track}
}
do_execsql_test e_fkey-25.3 {
  PRAGMA foreign_keys = ON;
  EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
} {
  0 0 0 {SCAN TABLE artist} 
  0 0 0 {SCAN TABLE track}
}
do_test e_fkey-25.4 {
  execsql {
    INSERT INTO artist VALUES(5, 'artist 5');
    INSERT INTO artist VALUES(6, 'artist 6');
    INSERT INTO artist VALUES(7, 'artist 7');
    INSERT INTO track VALUES(1, 'track 1', 5);
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
} {}
do_test e_fkey-27.2 {
  eqp { INSERT INTO artist VALUES(?, ?) }
} {}
do_execsql_test e_fkey-27.3 {
  EXPLAIN QUERY PLAN UPDATE artist SET artistid = ?, artistname = ?
} {
  0 0 0 {SCAN TABLE artist (~1000000 rows)} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?) (~10 rows)} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?) (~10 rows)}
}
do_execsql_test e_fkey-27.4 {
  EXPLAIN QUERY PLAN DELETE FROM artist
} {
  0 0 0 {SCAN TABLE artist (~1000000 rows)} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?) (~10 rows)}
}


###########################################################################
### SECTION 4.1: Composite Foreign Key Constraints
###########################################################################








|
|
|




|
|







1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
} {}
do_test e_fkey-27.2 {
  eqp { INSERT INTO artist VALUES(?, ?) }
} {}
do_execsql_test e_fkey-27.3 {
  EXPLAIN QUERY PLAN UPDATE artist SET artistid = ?, artistname = ?
} {
  0 0 0 {SCAN TABLE artist} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)}
}
do_execsql_test e_fkey-27.4 {
  EXPLAIN QUERY PLAN DELETE FROM artist
} {
  0 0 0 {SCAN TABLE artist} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)}
}


###########################################################################
### SECTION 4.1: Composite Foreign Key Constraints
###########################################################################

Changes to test/e_insert.test.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
  CREATE TABLE a4(c UNIQUE, d);
} {}

proc do_insert_tests {args} {
  uplevel do_select_tests $args
}

# EVIDENCE-OF: R-21350-31508 -- syntax diagram insert-stmt
#
do_insert_tests e_insert-0 {
     1  "INSERT             INTO a1 DEFAULT VALUES"                   {}
     2  "INSERT             INTO main.a1 DEFAULT VALUES"              {}
     3  "INSERT OR ROLLBACK INTO main.a1 DEFAULT VALUES"              {}
     4  "INSERT OR ROLLBACK INTO a1 DEFAULT VALUES"                   {}
     5  "INSERT OR ABORT    INTO main.a1 DEFAULT VALUES"              {}







|







46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
  CREATE TABLE a4(c UNIQUE, d);
} {}

proc do_insert_tests {args} {
  uplevel do_select_tests $args
}

# -- syntax diagram insert-stmt
#
do_insert_tests e_insert-0 {
     1  "INSERT             INTO a1 DEFAULT VALUES"                   {}
     2  "INSERT             INTO main.a1 DEFAULT VALUES"              {}
     3  "INSERT OR ROLLBACK INTO main.a1 DEFAULT VALUES"              {}
     4  "INSERT OR ROLLBACK INTO a1 DEFAULT VALUES"                   {}
     5  "INSERT OR ABORT    INTO main.a1 DEFAULT VALUES"              {}
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    2a   "INSERT INTO a2 VALUES('abc', NULL, 3*3+1)"      {}
    2b   "SELECT * FROM a2 WHERE oid=last_insert_rowid()" {abc {} 10}

    3a   "INSERT INTO a2 VALUES((SELECT count(*) FROM a2), 'x', 'y')" {}
    3b   "SELECT * FROM a2 WHERE oid=last_insert_rowid()" {2 x y}
}

# EVIDENCE-OF: R-44710-64652 If a column-list is specified, then the
# number of values in each term of the VALUS list must match the number
# of specified columns.
#
do_insert_tests e_insert-1.4 -error { 
  %d values for %d columns
} {
    1    "INSERT INTO a2(a, b, c) VALUES(1)"         {1 3}
    2    "INSERT INTO a2(a, b, c) VALUES(1,2)"       {2 3}







|
|







187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    2a   "INSERT INTO a2 VALUES('abc', NULL, 3*3+1)"      {}
    2b   "SELECT * FROM a2 WHERE oid=last_insert_rowid()" {abc {} 10}

    3a   "INSERT INTO a2 VALUES((SELECT count(*) FROM a2), 'x', 'y')" {}
    3b   "SELECT * FROM a2 WHERE oid=last_insert_rowid()" {2 x y}
}

# EVIDENCE-OF: R-09234-17933 If a column-list is specified, then the
# number of values in each term of the VALUE list must match the number
# of specified columns.
#
do_insert_tests e_insert-1.4 -error { 
  %d values for %d columns
} {
    1    "INSERT INTO a2(a, b, c) VALUES(1)"         {1 3}
    2    "INSERT INTO a2(a, b, c) VALUES(1,2)"       {2 3}
Changes to test/e_reindex.test.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

do_execsql_test e_reindex-0.0 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a, b);
  CREATE INDEX i2 ON t1(b, a);
} {}

# EVIDENCE-OF: R-51477-38549 -- syntax diagram reindex-stmt
#
do_reindex_tests e_reindex-0.1 {
  1   "REINDEX"           {}
  2   "REINDEX nocase"    {}
  3   "REINDEX binary"    {}
  4   "REINDEX t1"        {}
  5   "REINDEX main.t1"   {}







|







22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

do_execsql_test e_reindex-0.0 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a, b);
  CREATE INDEX i2 ON t1(b, a);
} {}

#  -- syntax diagram reindex-stmt
#
do_reindex_tests e_reindex-0.1 {
  1   "REINDEX"           {}
  2   "REINDEX nocase"    {}
  3   "REINDEX binary"    {}
  4   "REINDEX t1"        {}
  5   "REINDEX main.t1"   {}
Changes to test/e_select.test.
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
  }
}

#-------------------------------------------------------------------------
# The following tests check that all paths on the syntax diagrams on
# the lang_select.html page may be taken.
#
# EVIDENCE-OF: R-11353-33501 -- syntax diagram join-constraint
#
do_join_test e_select-0.1.1 {
  SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a)
} {3}
do_join_test e_select-0.1.2 {
  SELECT count(*) FROM t1 %JOIN% t2 USING (a)
} {3}
do_join_test e_select-0.1.3 {
  SELECT count(*) FROM t1 %JOIN% t2
} {9}
do_catchsql_test e_select-0.1.4 {
  SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a)
} {1 {cannot have both ON and USING clauses in the same join}}
do_catchsql_test e_select-0.1.5 {
  SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a)
} {1 {near "ON": syntax error}}

# EVIDENCE-OF: R-40919-40941 -- syntax diagram select-core
#
#   0: SELECT ...
#   1: SELECT DISTINCT ...
#   2: SELECT ALL ...
#
#   0: No FROM clause
#   1: Has FROM clause







|

















|







79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
  }
}

#-------------------------------------------------------------------------
# The following tests check that all paths on the syntax diagrams on
# the lang_select.html page may be taken.
#
# -- syntax diagram join-constraint
#
do_join_test e_select-0.1.1 {
  SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a)
} {3}
do_join_test e_select-0.1.2 {
  SELECT count(*) FROM t1 %JOIN% t2 USING (a)
} {3}
do_join_test e_select-0.1.3 {
  SELECT count(*) FROM t1 %JOIN% t2
} {9}
do_catchsql_test e_select-0.1.4 {
  SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a)
} {1 {cannot have both ON and USING clauses in the same join}}
do_catchsql_test e_select-0.1.5 {
  SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a)
} {1 {near "ON": syntax error}}

# -- syntax diagram select-core
#
#   0: SELECT ...
#   1: SELECT DISTINCT ...
#   2: SELECT ALL ...
#
#   0: No FROM clause
#   1: Has FROM clause
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    1 a 1 c
  }
  2112.2  "SELECT ALL count(*), max(a) FROM t1 
           WHERE 0 GROUP BY b HAVING count(*)=2" { }
}


# EVIDENCE-OF: R-41378-26734 -- syntax diagram result-column
#
do_select_tests e_select-0.3 {
  1  "SELECT * FROM t1" {a one b two c three}
  2  "SELECT t1.* FROM t1" {a one b two c three}
  3  "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx}
  4  "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx}
  5  "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx}
}

# EVIDENCE-OF: R-43129-35648 -- syntax diagram join-source
#
# EVIDENCE-OF: R-36683-37460 -- syntax diagram join-op
#
do_select_tests e_select-0.4 {
  1  "SELECT t1.rowid FROM t1" {1 2 3}
  2  "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3}
  3  "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}

  4  "SELECT t1.rowid FROM t1" {1 2 3}







|









|

|







222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    1 a 1 c
  }
  2112.2  "SELECT ALL count(*), max(a) FROM t1 
           WHERE 0 GROUP BY b HAVING count(*)=2" { }
}


# -- syntax diagram result-column
#
do_select_tests e_select-0.3 {
  1  "SELECT * FROM t1" {a one b two c three}
  2  "SELECT t1.* FROM t1" {a one b two c three}
  3  "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx}
  4  "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx}
  5  "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx}
}

# -- syntax diagram join-source
#
# -- syntax diagram join-op
#
do_select_tests e_select-0.4 {
  1  "SELECT t1.rowid FROM t1" {1 2 3}
  2  "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3}
  3  "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}

  4  "SELECT t1.rowid FROM t1" {1 2 3}
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
  12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3}
  13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3}
  14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3}
  15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3}
  16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3}
}

# EVIDENCE-OF: R-28308-37813 -- syntax diagram compound-operator
#
do_select_tests e_select-0.5 {
  1  "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4}
  2  "SELECT rowid FROM t1 UNION     SELECT rowid+2 FROM t4" {1 2 3 4}
  3  "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3}
  4  "SELECT rowid FROM t1 EXCEPT    SELECT rowid+2 FROM t4" {1 2}
}

# EVIDENCE-OF: R-06480-34950 -- syntax diagram ordering-term
#
do_select_tests e_select-0.6 {
  1  "SELECT b||a FROM t1 ORDER BY b||a"                  {onea threec twob}
  2  "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob}
  3  "SELECT b||a FROM t1 ORDER BY (b||a) ASC"            {onea threec twob}
  4  "SELECT b||a FROM t1 ORDER BY (b||a) DESC"           {twob threec onea}
}

# EVIDENCE-OF: R-23926-36668 -- syntax diagram select-stmt
#
do_select_tests e_select-0.7 {
  1  "SELECT * FROM t1" {a one b two c three}
  2  "SELECT * FROM t1 ORDER BY b" {a one c three b two}
  3  "SELECT * FROM t1 ORDER BY b, a" {a one c three b two}

  4  "SELECT * FROM t1 LIMIT 10" {a one b two c three}







|








|








|







259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
  12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3}
  13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3}
  14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3}
  15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3}
  16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3}
}

# -- syntax diagram compound-operator
#
do_select_tests e_select-0.5 {
  1  "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4}
  2  "SELECT rowid FROM t1 UNION     SELECT rowid+2 FROM t4" {1 2 3 4}
  3  "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3}
  4  "SELECT rowid FROM t1 EXCEPT    SELECT rowid+2 FROM t4" {1 2}
}

# -- syntax diagram ordering-term
#
do_select_tests e_select-0.6 {
  1  "SELECT b||a FROM t1 ORDER BY b||a"                  {onea threec twob}
  2  "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob}
  3  "SELECT b||a FROM t1 ORDER BY (b||a) ASC"            {onea threec twob}
  4  "SELECT b||a FROM t1 ORDER BY (b||a) DESC"           {twob threec onea}
}

# -- syntax diagram select-stmt
#
do_select_tests e_select-0.7 {
  1  "SELECT * FROM t1" {a one b two c three}
  2  "SELECT * FROM t1 ORDER BY b" {a one c three b two}
  3  "SELECT * FROM t1 ORDER BY b, a" {a one c three b two}

  4  "SELECT * FROM t1 LIMIT 10" {a one b two c three}
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#    The tests are built on this assertion. Really, they test that the output
#    of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result
#    of calculating the cartesian product of the left and right-hand datasets. 
#
# EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
# JOIN", "JOIN" and "," join operators.
#
# EVIDENCE-OF: R-07544-24155 The "CROSS JOIN" join operator produces the
# same data as the "INNER JOIN", "JOIN" and "," operators
#
#    All tests are run 4 times, with the only difference in each run being
#    which of the 4 equivalent cartesian product join operators are used.
#    Since the output data is the same in all cases, we consider that this
#    qualifies as testing the two statements above.
#
do_execsql_test e_select-1.4.0 {







|
|







391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#    The tests are built on this assertion. Really, they test that the output
#    of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result
#    of calculating the cartesian product of the left and right-hand datasets. 
#
# EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
# JOIN", "JOIN" and "," join operators.
#
# EVIDENCE-OF: R-25071-21202 The "CROSS JOIN" join operator produces the
# same result as the "INNER JOIN", "JOIN" and "," operators
#
#    All tests are run 4 times, with the only difference in each run being
#    which of the 4 equivalent cartesian product join operators are used.
#    Since the output data is the same in all cases, we consider that this
#    qualifies as testing the two statements above.
#
do_execsql_test e_select-1.4.0 {
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
  1   "SELECT ALL a FROM h1"      {1 1 1 4 4 4}
  2   "SELECT DISTINCT a FROM h1" {1 4}
}

# EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then
# the entire set of result rows are returned by the SELECT.
#
# EVIDENCE-OF: R-47911-02086 If neither ALL or DISTINCT are present,
# then the behavior is as if ALL were specified.
#
# EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT,
# then duplicate rows are removed from the set of result rows before it
# is returned.
#
#   The three testable statements above are tested by e_select-5.2.*,







|







1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
  1   "SELECT ALL a FROM h1"      {1 1 1 4 4 4}
  2   "SELECT DISTINCT a FROM h1" {1 4}
}

# EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then
# the entire set of result rows are returned by the SELECT.
#
# EVIDENCE-OF: R-01256-01950 If neither ALL or DISTINCT are present,
# then the behavior is as if ALL were specified.
#
# EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT,
# then duplicate rows are removed from the set of result rows before it
# is returned.
#
#   The three testable statements above are tested by e_select-5.2.*,
Changes to test/e_select2.test.
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
  # JOIN", "JOIN" or a comma (",") and there is no ON or USING clause,
  # then the result of the join is simply the cartesian product of the
  # left and right-hand datasets.
  #
  # EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
  # JOIN", "JOIN" and "," join operators.
  #
  # EVIDENCE-OF: R-07544-24155 The "CROSS JOIN" join operator produces the
  # same data as the "INNER JOIN", "JOIN" and "," operators
  #
  test_join $tn.1.1  "t1, t2"                {t1 t2}
  test_join $tn.1.2  "t1 INNER JOIN t2"      {t1 t2}
  test_join $tn.1.3  "t1 CROSS JOIN t2"      {t1 t2}
  test_join $tn.1.4  "t1 JOIN t2"            {t1 t2}
  test_join $tn.1.5  "t2, t3"                {t2 t3}
  test_join $tn.1.6  "t2 INNER JOIN t3"      {t2 t3}







|
|







348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
  # JOIN", "JOIN" or a comma (",") and there is no ON or USING clause,
  # then the result of the join is simply the cartesian product of the
  # left and right-hand datasets.
  #
  # EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
  # JOIN", "JOIN" and "," join operators.
  #
  # EVIDENCE-OF: R-25071-21202 The "CROSS JOIN" join operator produces the
  # same result as the "INNER JOIN", "JOIN" and "," operators
  #
  test_join $tn.1.1  "t1, t2"                {t1 t2}
  test_join $tn.1.2  "t1 INNER JOIN t2"      {t1 t2}
  test_join $tn.1.3  "t1 CROSS JOIN t2"      {t1 t2}
  test_join $tn.1.4  "t1 JOIN t2"            {t1 t2}
  test_join $tn.1.5  "t2, t3"                {t2 t3}
  test_join $tn.1.6  "t2 INNER JOIN t3"      {t2 t3}
Changes to test/e_update.test.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
  CREATE TABLE aux.t5(a, b);
} {}

proc do_update_tests {args} {
  uplevel do_select_tests $args
}

# EVIDENCE-OF: R-62337-45828 -- syntax diagram update-stmt
#
do_update_tests e_update-0 {
  1    "UPDATE t1 SET a=10" {}
  2    "UPDATE t1 SET a=10, b=5" {}
  3    "UPDATE t1 SET a=10 WHERE b=5" {}
  4    "UPDATE t1 SET b=5,a=10 WHERE 1" {}
  5    "UPDATE main.t1 SET a=10" {}







|







45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
  CREATE TABLE aux.t5(a, b);
} {}

proc do_update_tests {args} {
  uplevel do_select_tests $args
}

# -- syntax diagram update-stmt
#
do_update_tests e_update-0 {
  1    "UPDATE t1 SET a=10" {}
  2    "UPDATE t1 SET a=10, b=5" {}
  3    "UPDATE t1 SET a=10 WHERE b=5" {}
  4    "UPDATE t1 SET b=5,a=10 WHERE 1" {}
  5    "UPDATE main.t1 SET a=10" {}
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
}

# EVIDENCE-OF: R-59581-44104 If SQLite is built with the
# SQLITE_ENABLE_UPDATE_DELETE_LIMIT compile-time option then the syntax
# of the UPDATE statement is extended with optional ORDER BY and LIMIT
# clauses
#
# EVIDENCE-OF: R-45169-39597 -- syntax diagram update-stmt-limited
#
do_update_tests e_update-3.0 {
  1   "UPDATE t1 SET a=b LIMIT 5"                                    {}
  2   "UPDATE t1 SET a=b LIMIT 5-1 OFFSET 2+2"                       {}
  3   "UPDATE t1 SET a=b LIMIT 2+2, 16/4"                            {}
  4   "UPDATE t1 SET a=b ORDER BY a LIMIT 5"                         {}
  5   "UPDATE t1 SET a=b ORDER BY a LIMIT 5-1 OFFSET 2+2"            {}







|







489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
}

# EVIDENCE-OF: R-59581-44104 If SQLite is built with the
# SQLITE_ENABLE_UPDATE_DELETE_LIMIT compile-time option then the syntax
# of the UPDATE statement is extended with optional ORDER BY and LIMIT
# clauses
#
# -- syntax diagram update-stmt-limited
#
do_update_tests e_update-3.0 {
  1   "UPDATE t1 SET a=b LIMIT 5"                                    {}
  2   "UPDATE t1 SET a=b LIMIT 5-1 OFFSET 2+2"                       {}
  3   "UPDATE t1 SET a=b LIMIT 2+2, 16/4"                            {}
  4   "UPDATE t1 SET a=b ORDER BY a LIMIT 5"                         {}
  5   "UPDATE t1 SET a=b ORDER BY a LIMIT 5-1 OFFSET 2+2"            {}
Changes to test/e_uri.test.
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# EVIDENCE-OF: R-23027-03515 Setting it to "shared" is equivalent to
# setting the SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed
# to sqlite3_open_v2().
#
# EVIDENCE-OF: R-49793-28525 Setting the cache parameter to "private" is
# equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit.
#
# EVIDENCE-OF: R-19510-48080 If sqlite3_open_v2() is used and the
# "cache" parameter is present in a URI filename, its value overrides
# any behavior requested by setting SQLITE_OPEN_PRIVATECACHE or
# SQLITE_OPEN_SHAREDCACHE flag.
#
set orig [sqlite3_enable_shared_cache]
foreach {tn uri flags shared_default isshared} {
  1.1   "file:test.db"                  ""         0    0







|







355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# EVIDENCE-OF: R-23027-03515 Setting it to "shared" is equivalent to
# setting the SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed
# to sqlite3_open_v2().
#
# EVIDENCE-OF: R-49793-28525 Setting the cache parameter to "private" is
# equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit.
#
# EVIDENCE-OF: R-31773-41793 If sqlite3_open_v2() is used and the
# "cache" parameter is present in a URI filename, its value overrides
# any behavior requested by setting SQLITE_OPEN_PRIVATECACHE or
# SQLITE_OPEN_SHAREDCACHE flag.
#
set orig [sqlite3_enable_shared_cache]
foreach {tn uri flags shared_default isshared} {
  1.1   "file:test.db"                  ""         0    0
Changes to test/e_vacuum.test.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    set prevpageno $pageno
  }
  execsql { DROP TABLE temp.stat }
  set nFrag
}


# EVIDENCE-OF: R-45173-45977 -- syntax diagram vacuum-stmt
#
do_execsql_test e_vacuum-0.1 { VACUUM } {}

# EVIDENCE-OF: R-51469-36013 Unless SQLite is running in
# "auto_vacuum=FULL" mode, when a large amount of data is deleted from
# the database file it leaves behind empty space, or "free" database
# pages.







|







61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    set prevpageno $pageno
  }
  execsql { DROP TABLE temp.stat }
  set nFrag
}


# -- syntax diagram vacuum-stmt
#
do_execsql_test e_vacuum-0.1 { VACUUM } {}

# EVIDENCE-OF: R-51469-36013 Unless SQLite is running in
# "auto_vacuum=FULL" mode, when a large amount of data is deleted from
# the database file it leaves behind empty space, or "free" database
# pages.
Changes to test/eqp.test.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374


375
376
377
378
379
380
381
382

383
384
385
386
387
388
389
390

391
392
393
394
395
396
397
398
399

400
401
402
403
404
405
406
407
408
409

410
411
412
413
414
415
416
417
418

419
420
421
422
423
424
425

426
427

428
429
430
431
432
433
434
435

436
437
438
439
440
441
442
443

444
445
446

447
448
449
450
451
452
453
454
455
456
457
458
459

460

461
462
463
464
465
466
467
468
469

470
471

472
473
474
475
476
477
478

479
480

481
482
483
484
485
486
487
488
489
490
491

492
493
494
495
496
497
498
499
500
501
  CREATE TABLE t2(a, b);
  CREATE TABLE t3(a, b);
}

do_eqp_test 1.2 {
  SELECT * FROM t2, t1 WHERE t1.a=1 OR t1.b=2;
} {
  0 0 1 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~10 rows)} 
  0 0 1 {SEARCH TABLE t1 USING INDEX i2 (b=?) (~10 rows)} 
  0 1 0 {SCAN TABLE t2 (~1000000 rows)}
}
do_eqp_test 1.3 {
  SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=1 OR t1.b=2;
} {
  0 0 0 {SCAN TABLE t2 (~1000000 rows)}
  0 1 1 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~10 rows)} 
  0 1 1 {SEARCH TABLE t1 USING INDEX i2 (b=?) (~10 rows)} 
}
do_eqp_test 1.3 {
  SELECT a FROM t1 ORDER BY a
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1 (~1000000 rows)}
}
do_eqp_test 1.4 {
  SELECT a FROM t1 ORDER BY +a
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_eqp_test 1.5 {
  SELECT a FROM t1 WHERE a=4
} {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?) (~10 rows)}
}
do_eqp_test 1.6 {
  SELECT DISTINCT count(*) FROM t3 GROUP BY a;
} {
  0 0 0 {SCAN TABLE t3 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}

do_eqp_test 1.7 {
  SELECT * FROM t3 JOIN (SELECT 1)
} {
  0 0 1 {SCAN SUBQUERY 1 (~1 rows)}
  0 1 0 {SCAN TABLE t3 (~1000000 rows)}
}
do_eqp_test 1.8 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION SELECT 2)
} {
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (UNION)}
  0 0 1 {SCAN SUBQUERY 1 (~2 rows)}
  0 1 0 {SCAN TABLE t3 (~1000000 rows)}
}
do_eqp_test 1.9 {
  SELECT * FROM t3 JOIN (SELECT 1 EXCEPT SELECT a FROM t3 LIMIT 17)
} {
  3 0 0 {SCAN TABLE t3 (~1000000 rows)}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (EXCEPT)}
  0 0 1 {SCAN SUBQUERY 1 (~17 rows)}
  0 1 0 {SCAN TABLE t3 (~1000000 rows)}
}
do_eqp_test 1.10 {
  SELECT * FROM t3 JOIN (SELECT 1 INTERSECT SELECT a FROM t3 LIMIT 17)
} {
  3 0 0 {SCAN TABLE t3 (~1000000 rows)}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (INTERSECT)}
  0 0 1 {SCAN SUBQUERY 1 (~1 rows)}
  0 1 0 {SCAN TABLE t3 (~1000000 rows)}
}

do_eqp_test 1.11 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION ALL SELECT a FROM t3 LIMIT 17)
} {
  3 0 0 {SCAN TABLE t3 (~1000000 rows)}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 (UNION ALL)}
  0 0 1 {SCAN SUBQUERY 1 (~17 rows)}
  0 1 0 {SCAN TABLE t3 (~1000000 rows)}
}

#-------------------------------------------------------------------------
# Test cases eqp-2.* - tests for single select statements.
#
drop_all_tables
do_execsql_test 2.1 {
  CREATE TABLE t1(x, y);

  CREATE TABLE t2(x, y);
  CREATE INDEX t2i1 ON t2(x);
}

det 2.2.1 "SELECT DISTINCT min(x), max(x) FROM t1 GROUP BY x ORDER BY 1" {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.2 "SELECT DISTINCT min(x), max(x) FROM t2 GROUP BY x ORDER BY 1" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.3 "SELECT DISTINCT * FROM t1" {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}
det 2.2.4 "SELECT DISTINCT * FROM t1, t2" {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 1 1 {SCAN TABLE t2 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}
det 2.2.5 "SELECT DISTINCT * FROM t1, t2 ORDER BY t1.x" {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 1 1 {SCAN TABLE t2 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.6 "SELECT DISTINCT t2.x FROM t1, t2 ORDER BY t2.x" {
  0 0 1 {SCAN TABLE t2 USING COVERING INDEX t2i1 (~1000000 rows)}
  0 1 0 {SCAN TABLE t1 (~1000000 rows)}
}

det 2.3.1 "SELECT max(x) FROM t2" {
  0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2i1 (~1 rows)}
}
det 2.3.2 "SELECT min(x) FROM t2" {
  0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2i1 (~1 rows)}
}
det 2.3.3 "SELECT min(x), max(x) FROM t2" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1 (~1000000 rows)}
}

det 2.4.1 "SELECT * FROM t1 WHERE rowid=?" {
  0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}



#-------------------------------------------------------------------------
# Test cases eqp-3.* - tests for select statements that use sub-selects.
#
do_eqp_test 3.1.1 {
  SELECT (SELECT x FROM t1 AS sub) FROM t1;
} {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub (~1000000 rows)}
}
do_eqp_test 3.1.2 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub);
} {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub (~1000000 rows)}
}
do_eqp_test 3.1.3 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub ORDER BY y);
} {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub (~1000000 rows)}
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_eqp_test 3.1.4 {
  SELECT * FROM t1 WHERE (SELECT x FROM t2 ORDER BY x);
} {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1 (~1000000 rows)}
}

det 3.2.1 {
  SELECT * FROM (SELECT * FROM t1 ORDER BY x LIMIT 10) ORDER BY y LIMIT 5
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  0 0 0 {SCAN SUBQUERY 1 (~10 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 3.2.2 {
  SELECT * FROM 
    (SELECT * FROM t1 ORDER BY x LIMIT 10) AS x1,
    (SELECT * FROM t2 ORDER BY x LIMIT 10) AS x2
  ORDER BY x2.y LIMIT 5
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  2 0 0 {SCAN TABLE t2 USING INDEX t2i1 (~1000000 rows)} 
  0 0 0 {SCAN SUBQUERY 1 AS x1 (~10 rows)} 
  0 1 1 {SCAN SUBQUERY 2 AS x2 (~10 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

det 3.3.1 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2)
} {
  0 0 0 {SCAN TABLE t1 (~100000 rows)} 
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2 (~1000000 rows)}
}
det 3.3.2 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {
  0 0 0 {SCAN TABLE t1 (~500000 rows)} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2 (~500000 rows)}
}
det 3.3.3 {
  SELECT * FROM t1 WHERE EXISTS (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {
  0 0 0 {SCAN TABLE t1 (~500000 rows)} 
  0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2 (~500000 rows)}
}

#-------------------------------------------------------------------------
# Test cases eqp-4.* - tests for composite select statements.
#
do_eqp_test 4.1.1 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.1.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.1.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION)} 
}
do_eqp_test 4.1.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (INTERSECT)} 
}
do_eqp_test 4.1.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)} 
}

do_eqp_test 4.2.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 USING INDEX t2i1 (~1000000 rows)} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.2.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION)} 
}
do_eqp_test 4.2.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (INTERSECT)} 
}
do_eqp_test 4.2.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)} 
}

do_eqp_test 4.3.1 {
  SELECT x FROM t1 UNION SELECT x FROM t2
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  2 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1 (~1000000 rows)} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)} 
}

do_eqp_test 4.3.2 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1
} {
  2 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  3 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1 (~1000000 rows)} 
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (UNION)}
  4 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 4 USING TEMP B-TREE (UNION)}
}
do_eqp_test 4.3.3 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1 ORDER BY 1
} {
  2 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  3 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1 (~1000000 rows)} 
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 (UNION)} 
  4 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  4 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 4 (UNION)}
}

#-------------------------------------------------------------------------
# This next block of tests verifies that the examples on the 
# lang_explain.html page are correct.
#
drop_all_tables

# EVIDENCE-OF: R-64208-08323 sqlite> EXPLAIN QUERY PLAN SELECT a, b
# FROM t1 WHERE a=1; 0|0|0|SCAN TABLE t1 (~100000 rows)


do_execsql_test 5.1.0 { CREATE TABLE t1(a, b) }
det 5.1.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SCAN TABLE t1 (~100000 rows)}
}

# EVIDENCE-OF: R-09022-44606 sqlite> CREATE INDEX i1 ON t1(a);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING INDEX i1 (a=?) (~10 rows)

do_execsql_test 5.2.0 { CREATE INDEX i1 ON t1(a) }
det 5.2.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~10 rows)}
}

# EVIDENCE-OF: R-62228-34103 sqlite> CREATE INDEX i2 ON t1(a, b);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) (~10 rows)

do_execsql_test 5.3.0 { CREATE INDEX i2 ON t1(a, b) }
det 5.3.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) (~10 rows)}
}

# EVIDENCE-OF: R-22253-05302 sqlite> EXPLAIN QUERY PLAN SELECT t1.*,
# t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2; 0|0|0|SEARCH TABLE t1
# USING COVERING INDEX i2 (a=? AND b>?) (~3 rows) 0|1|1|SCAN TABLE t2
# (~1000000 rows)

do_execsql_test 5.4.0 {CREATE TABLE t2(c, d)}
det 5.4.1 "SELECT t1.*, t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?) (~2 rows)}
  0 1 1 {SCAN TABLE t2 (~1000000 rows)}
}

# EVIDENCE-OF: R-21040-07025 sqlite> EXPLAIN QUERY PLAN SELECT t1.*,
# t2.* FROM t2, t1 WHERE t1.a=1 AND t1.b>2; 0|0|1|SEARCH TABLE t1
# USING COVERING INDEX i2 (a=? AND b>?) (~3 rows) 0|1|0|SCAN TABLE t2
# (~1000000 rows)

det 5.5 "SELECT t1.*, t2.* FROM t2, t1 WHERE t1.a=1 AND t1.b>2" {
  0 0 1 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?) (~2 rows)}
  0 1 0 {SCAN TABLE t2 (~1000000 rows)}
}

# EVIDENCE-OF: R-39007-61103 sqlite> CREATE INDEX i3 ON t1(b);
# sqlite> EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=1 OR b=2;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) (~10 rows)
# 0|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?) (~10 rows)

do_execsql_test 5.5.0 {CREATE INDEX i3 ON t1(b)}
det 5.6.1 "SELECT * FROM t1 WHERE a=1 OR b=2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) (~10 rows)}
  0 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?) (~10 rows)}
}

# EVIDENCE-OF: R-33025-54904 sqlite> EXPLAIN QUERY PLAN SELECT c, d

# FROM t2 ORDER BY c; 0|0|0|SCAN TABLE t2 (~1000000 rows) 0|0|0|USE TEMP
# B-TREE FOR ORDER BY

det 5.7 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# EVIDENCE-OF: R-38854-22809 sqlite> CREATE INDEX i4 ON t2(c);
# sqlite> EXPLAIN QUERY PLAN SELECT c, d FROM t2 ORDER BY c;
# 0|0|0|SCAN TABLE t2 USING INDEX i4 (~1000000 rows)

do_execsql_test 5.8.0 {CREATE INDEX i4 ON t2(c)}
det 5.8.1 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2 USING INDEX i4 (~1000000 rows)}
}

# EVIDENCE-OF: R-29884-43993 sqlite> EXPLAIN QUERY PLAN SELECT
# (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2;
# 0|0|0|SCAN TABLE t2 (~1000000 rows) 0|0|0|EXECUTE SCALAR SUBQUERY 1

# 1|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) (~10 rows)
# 0|0|0|EXECUTE CORRELATED SCALAR SUBQUERY 2 2|0|0|SEARCH TABLE t1 USING
# INDEX i3 (b=?) (~10 rows)

det 5.9 {
  SELECT (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2
} {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i4 (~1000000 rows)}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) (~10 rows)}
  0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2}
  2 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?) (~10 rows)}
}

# EVIDENCE-OF: R-17911-16445 sqlite> EXPLAIN QUERY PLAN SELECT
# count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x;
# 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2 (~1000000 rows) 0|0|0|SCAN

# SUBQUERY 1 (~1000000 rows) 0|0|0|USE TEMP B-TREE FOR GROUP BY

det 5.10 {
  SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x
} {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2 (~1000000 rows)}
  0 0 0 {SCAN SUBQUERY 1 (~100 rows)}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
}

# EVIDENCE-OF: R-18544-33103 sqlite> EXPLAIN QUERY PLAN SELECT * FROM

# (SELECT * FROM t2 WHERE c=1), t1; 0|0|0|SEARCH TABLE t2 USING INDEX i4
# (c=?) (~10 rows) 0|1|1|SCAN TABLE t1 (~1000000 rows)

det 5.11 "SELECT * FROM (SELECT * FROM t2 WHERE c=1), t1" {
  0 0 0 {SEARCH TABLE t2 USING INDEX i4 (c=?) (~10 rows)}
  0 1 1 {SCAN TABLE t1 USING COVERING INDEX i2 (~1000000 rows)}
}

# EVIDENCE-OF: R-40701-42164 sqlite> EXPLAIN QUERY PLAN SELECT a FROM
# t1 UNION SELECT c FROM t2; 1|0|0|SCAN TABLE t1 (~1000000 rows)

# 2|0|0|SCAN TABLE t2 (~1000000 rows) 0|0|0|COMPOUND SUBQUERIES 1 AND 2
# USING TEMP B-TREE (UNION)

det 5.12 "SELECT a FROM t1 UNION SELECT c FROM t2" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i1 (~1000000 rows)}
  2 0 0 {SCAN TABLE t2 USING COVERING INDEX i4 (~1000000 rows)}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)}
}

# EVIDENCE-OF: R-61538-24748 sqlite> EXPLAIN QUERY PLAN SELECT a FROM
# t1 EXCEPT SELECT d FROM t2 ORDER BY 1; 1|0|0|SCAN TABLE t1 USING
# COVERING INDEX i2 (~1000000 rows) 2|0|0|SCAN TABLE t2 (~1000000 rows)
# 2|0|0|USE TEMP B-TREE FOR ORDER BY 0|0|0|COMPOUND SUBQUERIES 1 AND 2
# (EXCEPT)

det 5.13 "SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2 (~1000000 rows)}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)}
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)}
}


#-------------------------------------------------------------------------
# The following tests - eqp-6.* - test that the example C code on 







|
|
|




|
|
|




|




|





|




|







|
|





|
|




|

|
|




|

|
|





|

|
|














|





|




|



|
|



|
|




|
|



|


|


|



|










|

|




|

|




|

|





|

|





|

|








|

|
|
|






|

|




|

|




|

|








|
|





|

|






|

|






|

|






|

|







|

|





|

|






|

|






|

|







|
|






|
|

|





|

|

|










|
|
>
>


|


|

|
>


|


|

|
>


|


|
|
|
|
>


|
|


|
|
|
|
>

|
|


|

|
|
>


|
|


|
>
|
|
>

|



|

|
>


|


|

|
>
|
|
|
>



|

|

|


|
|
|
>
|
>



|
|



|
>
|
|
>

|
|


|
|
>
|
|
>

|
|



|
|
|
|
|
>

|
|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
  CREATE TABLE t2(a, b);
  CREATE TABLE t3(a, b);
}

do_eqp_test 1.2 {
  SELECT * FROM t2, t1 WHERE t1.a=1 OR t1.b=2;
} {
  0 0 1 {SEARCH TABLE t1 USING INDEX i1 (a=?)} 
  0 0 1 {SEARCH TABLE t1 USING INDEX i2 (b=?)} 
  0 1 0 {SCAN TABLE t2}
}
do_eqp_test 1.3 {
  SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=1 OR t1.b=2;
} {
  0 0 0 {SCAN TABLE t2}
  0 1 1 {SEARCH TABLE t1 USING INDEX i1 (a=?)} 
  0 1 1 {SEARCH TABLE t1 USING INDEX i2 (b=?)} 
}
do_eqp_test 1.3 {
  SELECT a FROM t1 ORDER BY a
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}
}
do_eqp_test 1.4 {
  SELECT a FROM t1 ORDER BY +a
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_eqp_test 1.5 {
  SELECT a FROM t1 WHERE a=4
} {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}
}
do_eqp_test 1.6 {
  SELECT DISTINCT count(*) FROM t3 GROUP BY a;
} {
  0 0 0 {SCAN TABLE t3}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}

do_eqp_test 1.7 {
  SELECT * FROM t3 JOIN (SELECT 1)
} {
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}
do_eqp_test 1.8 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION SELECT 2)
} {
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (UNION)}
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}
do_eqp_test 1.9 {
  SELECT * FROM t3 JOIN (SELECT 1 EXCEPT SELECT a FROM t3 LIMIT 17)
} {
  3 0 0 {SCAN TABLE t3}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (EXCEPT)}
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}
do_eqp_test 1.10 {
  SELECT * FROM t3 JOIN (SELECT 1 INTERSECT SELECT a FROM t3 LIMIT 17)
} {
  3 0 0 {SCAN TABLE t3}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (INTERSECT)}
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}

do_eqp_test 1.11 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION ALL SELECT a FROM t3 LIMIT 17)
} {
  3 0 0 {SCAN TABLE t3}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 (UNION ALL)}
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}

#-------------------------------------------------------------------------
# Test cases eqp-2.* - tests for single select statements.
#
drop_all_tables
do_execsql_test 2.1 {
  CREATE TABLE t1(x, y);

  CREATE TABLE t2(x, y);
  CREATE INDEX t2i1 ON t2(x);
}

det 2.2.1 "SELECT DISTINCT min(x), max(x) FROM t1 GROUP BY x ORDER BY 1" {
  0 0 0 {SCAN TABLE t1}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.2 "SELECT DISTINCT min(x), max(x) FROM t2 GROUP BY x ORDER BY 1" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.3 "SELECT DISTINCT * FROM t1" {
  0 0 0 {SCAN TABLE t1}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}
det 2.2.4 "SELECT DISTINCT * FROM t1, t2" {
  0 0 0 {SCAN TABLE t1}
  0 1 1 {SCAN TABLE t2}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}
det 2.2.5 "SELECT DISTINCT * FROM t1, t2 ORDER BY t1.x" {
  0 0 0 {SCAN TABLE t1}
  0 1 1 {SCAN TABLE t2}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.6 "SELECT DISTINCT t2.x FROM t1, t2 ORDER BY t2.x" {
  0 0 1 {SCAN TABLE t2 USING COVERING INDEX t2i1}
  0 1 0 {SCAN TABLE t1}
}

det 2.3.1 "SELECT max(x) FROM t2" {
  0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2i1}
}
det 2.3.2 "SELECT min(x) FROM t2" {
  0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2i1}
}
det 2.3.3 "SELECT min(x), max(x) FROM t2" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1}
}

det 2.4.1 "SELECT * FROM t1 WHERE rowid=?" {
  0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)}
}



#-------------------------------------------------------------------------
# Test cases eqp-3.* - tests for select statements that use sub-selects.
#
do_eqp_test 3.1.1 {
  SELECT (SELECT x FROM t1 AS sub) FROM t1;
} {
  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub}
}
do_eqp_test 3.1.2 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub);
} {
  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub}
}
do_eqp_test 3.1.3 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub ORDER BY y);
} {
  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub}
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_eqp_test 3.1.4 {
  SELECT * FROM t1 WHERE (SELECT x FROM t2 ORDER BY x);
} {
  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1}
}

det 3.2.1 {
  SELECT * FROM (SELECT * FROM t1 ORDER BY x LIMIT 10) ORDER BY y LIMIT 5
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  0 0 0 {SCAN SUBQUERY 1} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 3.2.2 {
  SELECT * FROM 
    (SELECT * FROM t1 ORDER BY x LIMIT 10) AS x1,
    (SELECT * FROM t2 ORDER BY x LIMIT 10) AS x2
  ORDER BY x2.y LIMIT 5
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  2 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  0 0 0 {SCAN SUBQUERY 1 AS x1} 
  0 1 1 {SCAN SUBQUERY 2 AS x2} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

det 3.3.1 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2)
} {
  0 0 0 {SCAN TABLE t1} 
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2}
}
det 3.3.2 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {
  0 0 0 {SCAN TABLE t1} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2}
}
det 3.3.3 {
  SELECT * FROM t1 WHERE EXISTS (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {
  0 0 0 {SCAN TABLE t1} 
  0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2}
}

#-------------------------------------------------------------------------
# Test cases eqp-4.* - tests for composite select statements.
#
do_eqp_test 4.1.1 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2
} {
  1 0 0 {SCAN TABLE t1} 
  2 0 0 {SCAN TABLE t2} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.1.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.1.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION)} 
}
do_eqp_test 4.1.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (INTERSECT)} 
}
do_eqp_test 4.1.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)} 
}

do_eqp_test 4.2.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.2.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION)} 
}
do_eqp_test 4.2.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (INTERSECT)} 
}
do_eqp_test 4.2.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)} 
}

do_eqp_test 4.3.1 {
  SELECT x FROM t1 UNION SELECT x FROM t2
} {
  1 0 0 {SCAN TABLE t1} 
  2 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)} 
}

do_eqp_test 4.3.2 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1
} {
  2 0 0 {SCAN TABLE t1} 
  3 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1} 
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (UNION)}
  4 0 0 {SCAN TABLE t1} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 4 USING TEMP B-TREE (UNION)}
}
do_eqp_test 4.3.3 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1 ORDER BY 1
} {
  2 0 0 {SCAN TABLE t1} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  3 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1} 
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 (UNION)} 
  4 0 0 {SCAN TABLE t1} 
  4 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 4 (UNION)}
}

#-------------------------------------------------------------------------
# This next block of tests verifies that the examples on the 
# lang_explain.html page are correct.
#
drop_all_tables

# EVIDENCE-OF: R-47779-47605 sqlite> EXPLAIN QUERY PLAN SELECT a, b
# FROM t1 WHERE a=1;
# 0|0|0|SCAN TABLE t1
#
do_execsql_test 5.1.0 { CREATE TABLE t1(a, b) }
det 5.1.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SCAN TABLE t1}
}

# EVIDENCE-OF: R-55852-17599 sqlite> CREATE INDEX i1 ON t1(a);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING INDEX i1
#
do_execsql_test 5.2.0 { CREATE INDEX i1 ON t1(a) }
det 5.2.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}
}

# EVIDENCE-OF: R-21179-11011 sqlite> CREATE INDEX i2 ON t1(a, b);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
#
do_execsql_test 5.3.0 { CREATE INDEX i2 ON t1(a, b) }
det 5.3.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
}

# EVIDENCE-OF: R-09991-48941 sqlite> EXPLAIN QUERY PLAN
# SELECT t1.*, t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)
# 0|1|1|SCAN TABLE t2
#
do_execsql_test 5.4.0 {CREATE TABLE t2(c, d)}
det 5.4.1 "SELECT t1.*, t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)}
  0 1 1 {SCAN TABLE t2}
}

# EVIDENCE-OF: R-33626-61085 sqlite> EXPLAIN QUERY PLAN
# SELECT t1.*, t2.* FROM t2, t1 WHERE t1.a=1 AND t1.b>2;
# 0|0|1|SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)
# 0|1|0|SCAN TABLE t2
#
det 5.5 "SELECT t1.*, t2.* FROM t2, t1 WHERE t1.a=1 AND t1.b>2" {
  0 0 1 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)}
  0 1 0 {SCAN TABLE t2}
}

# EVIDENCE-OF: R-04002-25654 sqlite> CREATE INDEX i3 ON t1(b);
# sqlite> EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=1 OR b=2;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
# 0|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?)
#
do_execsql_test 5.5.0 {CREATE INDEX i3 ON t1(b)}
det 5.6.1 "SELECT * FROM t1 WHERE a=1 OR b=2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
  0 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?)}
}

# EVIDENCE-OF: R-24577-38891 sqlite> EXPLAIN QUERY PLAN
# SELECT c, d FROM t2 ORDER BY c;
# 0|0|0|SCAN TABLE t2
# 0|0|0|USE TEMP B-TREE FOR ORDER BY
#
det 5.7 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# EVIDENCE-OF: R-58157-12355 sqlite> CREATE INDEX i4 ON t2(c);
# sqlite> EXPLAIN QUERY PLAN SELECT c, d FROM t2 ORDER BY c;
# 0|0|0|SCAN TABLE t2 USING INDEX i4
#
do_execsql_test 5.8.0 {CREATE INDEX i4 ON t2(c)}
det 5.8.1 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2 USING INDEX i4}
}

# EVIDENCE-OF: R-13931-10421 sqlite> EXPLAIN QUERY PLAN SELECT
# (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2;
# 0|0|0|SCAN TABLE t2
# 0|0|0|EXECUTE SCALAR SUBQUERY 1
# 1|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
# 0|0|0|EXECUTE CORRELATED SCALAR SUBQUERY 2
# 2|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?)
#
det 5.9 {
  SELECT (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2
} {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i4}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
  0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2}
  2 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?)}
}

# EVIDENCE-OF: R-50892-45943 sqlite> EXPLAIN QUERY PLAN
# SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x;
# 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2
# 0|0|0|SCAN SUBQUERY 1
# 0|0|0|USE TEMP B-TREE FOR GROUP BY
#
det 5.10 {
  SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x
} {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2}
  0 0 0 {SCAN SUBQUERY 1}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
}

# EVIDENCE-OF: R-46219-33846 sqlite> EXPLAIN QUERY PLAN
# SELECT * FROM (SELECT * FROM t2 WHERE c=1), t1;
# 0|0|0|SEARCH TABLE t2 USING INDEX i4 (c=?)
# 0|1|1|SCAN TABLE t1
#
det 5.11 "SELECT * FROM (SELECT * FROM t2 WHERE c=1), t1" {
  0 0 0 {SEARCH TABLE t2 USING INDEX i4 (c=?)}
  0 1 1 {SCAN TABLE t1 USING COVERING INDEX i2}
}

# EVIDENCE-OF: R-37879-39987 sqlite> EXPLAIN QUERY PLAN
# SELECT a FROM t1 UNION SELECT c FROM t2;
# 1|0|0|SCAN TABLE t1
# 2|0|0|SCAN TABLE t2
# 0|0|0|COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)
#
det 5.12 "SELECT a FROM t1 UNION SELECT c FROM t2" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2}
  2 0 0 {SCAN TABLE t2 USING COVERING INDEX i4}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)}
}

# EVIDENCE-OF: R-44864-63011 sqlite> EXPLAIN QUERY PLAN
# SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1;
# 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2
# 2|0|0|SCAN TABLE t2 2|0|0|USE TEMP B-TREE FOR ORDER BY
# 0|0|0|COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)
#
det 5.13 "SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2}
  2 0 0 {SCAN TABLE t2}
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)}
}


#-------------------------------------------------------------------------
# The following tests - eqp-6.* - test that the example C code on 
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    set data
  }] [list $res]
}

do_peqp_test 6.1 {
  SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1
} [string trimleft {
1 0 0 SCAN TABLE t1 USING COVERING INDEX i2 (~1000000 rows)
2 0 0 SCAN TABLE t2 (~1000000 rows)
2 0 0 USE TEMP B-TREE FOR ORDER BY
0 0 0 COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)
}]

#-------------------------------------------------------------------------
# The following tests - eqp-7.* - test that queries that use the OP_Count
# optimization return something sensible with EQP.
#
drop_all_tables

do_execsql_test 7.0 {
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(a, b);
  CREATE INDEX i1 ON t2(a);
}

det 7.1 "SELECT count(*) FROM t1" {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
}

det 7.2 "SELECT count(*) FROM t2" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i1(~1000000 rows)}
}

do_execsql_test 7.3 {
  INSERT INTO t1 VALUES(1, 2);
  INSERT INTO t1 VALUES(3, 4);

  INSERT INTO t2 VALUES(1, 2);
  INSERT INTO t2 VALUES(3, 4);
  INSERT INTO t2 VALUES(5, 6);
 
  ANALYZE;
}

db close
sqlite3 db test.db

det 7.4 "SELECT count(*) FROM t1" {
  0 0 0 {SCAN TABLE t1 (~2 rows)}
}

det 7.5 "SELECT count(*) FROM t2" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i1(~3 rows)}
}


finish_test







|
|

















|



|

















|



|




546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    set data
  }] [list $res]
}

do_peqp_test 6.1 {
  SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1
} [string trimleft {
1 0 0 SCAN TABLE t1 USING COVERING INDEX i2
2 0 0 SCAN TABLE t2
2 0 0 USE TEMP B-TREE FOR ORDER BY
0 0 0 COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)
}]

#-------------------------------------------------------------------------
# The following tests - eqp-7.* - test that queries that use the OP_Count
# optimization return something sensible with EQP.
#
drop_all_tables

do_execsql_test 7.0 {
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(a, b);
  CREATE INDEX i1 ON t2(a);
}

det 7.1 "SELECT count(*) FROM t1" {
  0 0 0 {SCAN TABLE t1}
}

det 7.2 "SELECT count(*) FROM t2" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i1}
}

do_execsql_test 7.3 {
  INSERT INTO t1 VALUES(1, 2);
  INSERT INTO t1 VALUES(3, 4);

  INSERT INTO t2 VALUES(1, 2);
  INSERT INTO t2 VALUES(3, 4);
  INSERT INTO t2 VALUES(5, 6);
 
  ANALYZE;
}

db close
sqlite3 db test.db

det 7.4 "SELECT count(*) FROM t1" {
  0 0 0 {SCAN TABLE t1}
}

det 7.5 "SELECT count(*) FROM t2" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i1}
}


finish_test
Changes to test/exclusive.test.
502
503
504
505
506
507
508
509

do_execsql_test exclusive-6.5 {
  PRAGMA locking_mode = EXCLUSIVE;
  SELECT * FROM sqlite_master;
} {exclusive}

finish_test








<
502
503
504
505
506
507
508


do_execsql_test exclusive-6.5 {
  PRAGMA locking_mode = EXCLUSIVE;
  SELECT * FROM sqlite_master;
} {exclusive}

finish_test

Changes to test/fallocate.test.
139
140
141
142
143
144
145
146
    execsql { PRAGMA wal_checkpoint }
    file size test.db
  } [expr 32*1024]
}


finish_test








<
139
140
141
142
143
144
145

    execsql { PRAGMA wal_checkpoint }
    file size test.db
  } [expr 32*1024]
}


finish_test

Changes to test/filefmt.test.
244
245
246
247
248
249
250
251
do_test filefmt-4.4 { 
  sqlite3 db2 bak.db
  db2 eval { PRAGMA integrity_check }
} {ok}
db2 close

finish_test








<
244
245
246
247
248
249
250

do_test filefmt-4.4 { 
  sqlite3 db2 bak.db
  db2 eval { PRAGMA integrity_check }
} {ok}
db2 close

finish_test

Changes to test/fkey1.test.
113
114
115
116
117
118
119



120
121
    );
    PRAGMA foreign_key_list(t9);
  }
} [concat                        \
  {0 0 t5 d {} {SET DEFAULT} CASCADE NONE} \
  {0 1 t5 e {} {SET DEFAULT} CASCADE NONE} \
]




finish_test







>
>
>


113
114
115
116
117
118
119
120
121
122
123
124
    );
    PRAGMA foreign_key_list(t9);
  }
} [concat                        \
  {0 0 t5 d {} {SET DEFAULT} CASCADE NONE} \
  {0 1 t5 e {} {SET DEFAULT} CASCADE NONE} \
]
do_test fkey1-3.5 {
  sqlite3_db_status db DBSTATUS_DEFERRED_FKS 0
} {0 0 0}

finish_test
Added test/fkey6.test.














































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# 2013-07-11
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file tests the PRAGMA defer_foreign_keys and 
# SQLITE_DBSTATUS_DEFERRED_FKS
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable {!foreignkey} {
  finish_test
  return
}

do_execsql_test fkey6-1.1 {
  PRAGMA foreign_keys=ON;
  CREATE TABLE t1(x INTEGER PRIMARY KEY);
  CREATE TABLE t2(y INTEGER PRIMARY KEY,
          z INTEGER REFERENCES t1(x) DEFERRABLE INITIALLY DEFERRED);
  CREATE INDEX t2z ON t2(z);
  CREATE TABLE t3(u INTEGER PRIMARY KEY, v INTEGER REFERENCES t1(x));
  CREATE INDEX t3v ON t3(v);
  INSERT INTO t1 VALUES(1),(2),(3),(4),(5);
  INSERT INTO t2 VALUES(1,1),(2,2);
  INSERT INTO t3 VALUES(3,3),(4,4);
} {}
do_test fkey6-1.2 {
  catchsql {DELETE FROM t1 WHERE x=2;}
} {1 {foreign key constraint failed}}
do_test fkey6-1.3 {
  sqlite3_db_status db DBSTATUS_DEFERRED_FKS 0
} {0 0 0}
do_test fkey6-1.4 {
  execsql {
    BEGIN;
    DELETE FROM t1 WHERE x=1;
  }
} {}
do_test fkey6-1.5.1 {
  sqlite3_db_status db DBSTATUS_DEFERRED_FKS 1
} {0 1 0}
do_test fkey6-1.5.2 {
  sqlite3_db_status db DBSTATUS_DEFERRED_FKS 0
} {0 1 0}
do_test fkey6-1.6 {
  execsql {
    ROLLBACK;
  }
} {}
do_test fkey6-1.7 {
  sqlite3_db_status db DBSTATUS_DEFERRED_FKS 0
} {0 0 0}
do_test fkey6-1.8 {
  execsql {
    PRAGMA defer_foreign_keys=ON;
    BEGIN;
    DELETE FROM t1 WHERE x=3;
  }
} {}
do_test fkey6-1.9 {
  sqlite3_db_status db DBSTATUS_DEFERRED_FKS 0
} {0 1 0}
do_test fkey6-1.10 {
  execsql {
    ROLLBACK;
    PRAGMA defer_foreign_keys=OFF;
    BEGIN;
  }
  catchsql {DELETE FROM t1 WHERE x=3}
} {1 {foreign key constraint failed}}
db eval {ROLLBACK}

do_test fkey6-1.20 {
  execsql {
    BEGIN;
    DELETE FROM t1 WHERE x=1;
  }
  sqlite3_db_status db DBSTATUS_DEFERRED_FKS 0
} {0 1 0}
do_test fkey6-1.21 {
  execsql {
    DELETE FROM t2 WHERE y=1;
  }
  sqlite3_db_status db DBSTATUS_DEFERRED_FKS 0
} {0 0 0}
do_test fkey6-1.22 {
  execsql {
    COMMIT;
  }
} {}


finish_test
Added test/fkey7.test.












































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file implements tests for foreign keys.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix fkey7

ifcapable {!foreignkey} {
  finish_test
  return
}

do_execsql_test 1.1 {
  PRAGMA foreign_keys = 1;

  CREATE TABLE s1(a PRIMARY KEY, b);
  CREATE TABLE par(a, b REFERENCES s1, c UNIQUE, PRIMARY KEY(a));

  CREATE TABLE c1(a, b REFERENCES par);
  CREATE TABLE c2(a, b REFERENCES par);
  CREATE TABLE c3(a, b REFERENCES par(c));
}

proc auth {op tbl args} {
  if {$op == "SQLITE_READ"} { set ::tbls($tbl) 1 }
  return "SQLITE_OK"
}
db auth auth
db cache size 0
proc do_tblsread_test {tn sql tbllist} {
  array unset ::tbls
  uplevel [list execsql $sql]
  uplevel [list do_test $tn {lsort [array names ::tbls]} $tbllist]
}

do_tblsread_test 1.2 { UPDATE par SET b=? WHERE a=? } {par s1}
do_tblsread_test 1.3 { UPDATE par SET a=? WHERE b=? } {c1 c2 par}
do_tblsread_test 1.4 { UPDATE par SET c=? WHERE b=? } {c3 par}
do_tblsread_test 1.5 { UPDATE par SET a=?,b=?,c=? WHERE b=? } {c1 c2 c3 par s1}


finish_test
Changes to test/fts3aa.test.
220
221
222
223
224
225
226
227
} {}
do_catchsql_test fts3aa-7.5 {
  CREATE VIRTUAL TABLE t4 USING fts4(tokenize=simple, tokenize=simple);
} {1 {unrecognized parameter: tokenize=simple}}


finish_test








<
220
221
222
223
224
225
226

} {}
do_catchsql_test fts3aa-7.5 {
  CREATE VIRTUAL TABLE t4 USING fts4(tokenize=simple, tokenize=simple);
} {1 {unrecognized parameter: tokenize=simple}}


finish_test

Changes to test/fts3ao.test.
216
217
218
219
220
221
222
223
do_execsql_test 5.2 {
  ALTER TABLE t7 RENAME TO t8;
  SELECT count(*) FROM sqlite_master WHERE name LIKE 't7%';
  SELECT count(*) FROM sqlite_master WHERE name LIKE 't8%';
} {0 6}

finish_test








<
216
217
218
219
220
221
222

do_execsql_test 5.2 {
  ALTER TABLE t7 RENAME TO t8;
  SELECT count(*) FROM sqlite_master WHERE name LIKE 't7%';
  SELECT count(*) FROM sqlite_master WHERE name LIKE 't8%';
} {0 6}

finish_test

Changes to test/fts3atoken.test.
189
190
191
192
193
194
195
196
197

do_test fts3token-internal {
  execsql { SELECT fts3_tokenizer_internal_test() }
} {ok}


finish_test









<
<
189
190
191
192
193
194
195



do_test fts3token-internal {
  execsql { SELECT fts3_tokenizer_internal_test() }
} {ok}


finish_test


Changes to test/fts3auto.test.
703
704
705
706
707
708
709
710
  do_fts3query_test 7.$tn.1             t1 {"M B"}
  do_fts3query_test 7.$tn.2             t1 {"B D"}
  do_fts3query_test 7.$tn.3 -deferred B t1 {"M B D"}
}

set sqlite_fts3_enable_parentheses $sfep
finish_test








<
703
704
705
706
707
708
709

  do_fts3query_test 7.$tn.1             t1 {"M B"}
  do_fts3query_test 7.$tn.2             t1 {"B D"}
  do_fts3query_test 7.$tn.3 -deferred B t1 {"M B D"}
}

set sqlite_fts3_enable_parentheses $sfep
finish_test

Changes to test/fts3aux1.test.
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
db func rec rec

# Use EQP to show that the WHERE expression "term='braid'" uses a different
# index number (1) than "+term='braid'" (0).
#
do_execsql_test 2.1.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term='braid'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 1: (~0 rows)} }
do_execsql_test 2.1.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term='braid'
} {0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0: (~0 rows)}}

# Now show that using "term='braid'" means the virtual table returns
# only 1 row to SQLite, but "+term='braid'" means all 19 are returned.
#
do_test 2.1.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms_v WHERE rec('cnt', term) AND term='braid' }







|


|







101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
db func rec rec

# Use EQP to show that the WHERE expression "term='braid'" uses a different
# index number (1) than "+term='braid'" (0).
#
do_execsql_test 2.1.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term='braid'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 1:} }
do_execsql_test 2.1.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term='braid'
} {0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:}}

# Now show that using "term='braid'" means the virtual table returns
# only 1 row to SQLite, but "+term='braid'" means all 19 are returned.
#
do_test 2.1.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms_v WHERE rec('cnt', term) AND term='braid' }
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

# Special case: term=NULL
#
do_execsql_test 2.1.5 { SELECT * FROM terms WHERE term=NULL } {}

do_execsql_test 2.2.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term>'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 2: (~0 rows)} }
do_execsql_test 2.2.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term>'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0: (~0 rows)} }

do_execsql_test 2.2.1.3 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term<'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 4: (~0 rows)} }
do_execsql_test 2.2.1.4 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term<'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0: (~0 rows)} }

do_execsql_test 2.2.1.5 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term BETWEEN 'brags' AND 'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 6: (~0 rows)} }
do_execsql_test 2.2.1.6 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term BETWEEN 'brags' AND 'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0: (~0 rows)} }

do_test 2.2.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms WHERE rec('cnt', term) AND term>'brain' }
  set cnt
} {18}
do_test 2.2.2.2 {







|


|



|


|



|


|







150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

# Special case: term=NULL
#
do_execsql_test 2.1.5 { SELECT * FROM terms WHERE term=NULL } {}

do_execsql_test 2.2.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term>'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 2:} }
do_execsql_test 2.2.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term>'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} }

do_execsql_test 2.2.1.3 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term<'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 4:} }
do_execsql_test 2.2.1.4 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term<'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} }

do_execsql_test 2.2.1.5 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term BETWEEN 'brags' AND 'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 6:} }
do_execsql_test 2.2.1.6 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term BETWEEN 'brags' AND 'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} }

do_test 2.2.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms WHERE rec('cnt', term) AND term>'brain' }
  set cnt
} {18}
do_test 2.2.2.2 {
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
  5    1    "ORDER BY documents"
  6    1    "ORDER BY documents DESC"
  7    1    "ORDER BY occurrences ASC"
  8    1    "ORDER BY occurrences"
  9    1    "ORDER BY occurrences DESC"
} {

  set res [list 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0: (~0 rows)}]
  if {$sort} { lappend res 0 0 0 {USE TEMP B-TREE FOR ORDER BY} }

  set sql "SELECT * FROM terms $orderby"
  do_execsql_test 2.3.1.$tn "EXPLAIN QUERY PLAN $sql" $res
}

#-------------------------------------------------------------------------







|







331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
  5    1    "ORDER BY documents"
  6    1    "ORDER BY documents DESC"
  7    1    "ORDER BY occurrences ASC"
  8    1    "ORDER BY occurrences"
  9    1    "ORDER BY occurrences DESC"
} {

  set res [list 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:}]
  if {$sort} { lappend res 0 0 0 {USE TEMP B-TREE FOR ORDER BY} }

  set sql "SELECT * FROM terms $orderby"
  do_execsql_test 2.3.1.$tn "EXPLAIN QUERY PLAN $sql" $res
}

#-------------------------------------------------------------------------
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
proc do_plansql_test {tn sql r} {
  uplevel do_execsql_test $tn [list "EXPLAIN QUERY PLAN $sql ; $sql"] [list $r]
}

do_plansql_test 4.2 {
  SELECT y FROM x2, terms WHERE y = term AND col = '*'
} {
  0 0 0 {SCAN TABLE x2 (~1000000 rows)} 
  0 1 1 {SCAN TABLE terms VIRTUAL TABLE INDEX 1: (~0 rows)} 
  a b c d e f g h i j k l
}

do_plansql_test 4.3 {
  SELECT y FROM terms, x2 WHERE y = term AND col = '*'
} {
  0 0 1 {SCAN TABLE x2 (~1000000 rows)} 
  0 1 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 1: (~0 rows)} 
  a b c d e f g h i j k l
}

do_plansql_test 4.4 {
  SELECT y FROM x3, terms WHERE y = term AND col = '*'
} {
  0 0 1 {SCAN TABLE terms VIRTUAL TABLE INDEX 0: (~0 rows)} 
  0 1 0 {SEARCH TABLE x3 USING COVERING INDEX i1 (y=?) (~10 rows)}
  a b c d e f g h i j k l
}

do_plansql_test 4.5 {
  SELECT y FROM terms, x3 WHERE y = term AND occurrences>1 AND col = '*'
} {
  0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0: (~0 rows)} 
  0 1 1 {SEARCH TABLE x3 USING COVERING INDEX i1 (y=?) (~10 rows)}
  a k l
}

#-------------------------------------------------------------------------
# The following tests check that fts4aux can handle an fts table with an
# odd name (one that requires quoting for use in SQL statements). And that
# the argument to the fts4aux constructor is properly dequoted before use.







|
|






|
|






|
|






|
|







406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
proc do_plansql_test {tn sql r} {
  uplevel do_execsql_test $tn [list "EXPLAIN QUERY PLAN $sql ; $sql"] [list $r]
}

do_plansql_test 4.2 {
  SELECT y FROM x2, terms WHERE y = term AND col = '*'
} {
  0 0 0 {SCAN TABLE x2} 
  0 1 1 {SCAN TABLE terms VIRTUAL TABLE INDEX 1:} 
  a b c d e f g h i j k l
}

do_plansql_test 4.3 {
  SELECT y FROM terms, x2 WHERE y = term AND col = '*'
} {
  0 0 1 {SCAN TABLE x2} 
  0 1 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 1:} 
  a b c d e f g h i j k l
}

do_plansql_test 4.4 {
  SELECT y FROM x3, terms WHERE y = term AND col = '*'
} {
  0 0 1 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} 
  0 1 0 {SEARCH TABLE x3 USING COVERING INDEX i1 (y=?)}
  a b c d e f g h i j k l
}

do_plansql_test 4.5 {
  SELECT y FROM terms, x3 WHERE y = term AND occurrences>1 AND col = '*'
} {
  0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} 
  0 1 1 {SEARCH TABLE x3 USING COVERING INDEX i1 (y=?)}
  a k l
}

#-------------------------------------------------------------------------
# The following tests check that fts4aux can handle an fts table with an
# odd name (one that requires quoting for use in SQL statements). And that
# the argument to the fts4aux constructor is properly dequoted before use.
515
516
517
518
519
520
521
522

do_test 8.2 {
  execsql {DETACH att}
  catchsql { SELECT * FROM aux2 }
} {1 {SQL logic error or missing database}}

finish_test








<
515
516
517
518
519
520
521


do_test 8.2 {
  execsql {DETACH att}
  catchsql { SELECT * FROM aux2 }
} {1 {SQL logic error or missing database}}

finish_test

Changes to test/fts3corrupt.test.
162
163
164
165
166
167
168
169
  UPDATE t1_stat SET value = NULL;
  SELECT matchinfo(t1, 'nxa') FROM t1 WHERE t1 MATCH 't*';
} {1 {database disk image is malformed}}
do_test 5.3.1 { sqlite3_extended_errcode db } SQLITE_CORRUPT_VTAB


finish_test








<
162
163
164
165
166
167
168

  UPDATE t1_stat SET value = NULL;
  SELECT matchinfo(t1, 'nxa') FROM t1 WHERE t1 MATCH 't*';
} {1 {database disk image is malformed}}
do_test 5.3.1 { sqlite3_extended_errcode db } SQLITE_CORRUPT_VTAB


finish_test

Changes to test/fts3defer2.test.
149
150
151
152
153
154
155
156
  do_execsql_test 2.4.$tn {
    SELECT docid, mit(matchinfo(t3, 'pcxnal')) FROM t3 WHERE t3 MATCH '"a b c"';
  } {1 {1 1 1 4 4 11 912 6} 3 {1 1 1 4 4 11 912 6}}
}


finish_test








<
149
150
151
152
153
154
155

  do_execsql_test 2.4.$tn {
    SELECT docid, mit(matchinfo(t3, 'pcxnal')) FROM t3 WHERE t3 MATCH '"a b c"';
  } {1 {1 1 1 4 4 11 912 6} 3 {1 1 1 4 4 11 912 6}}
}


finish_test

Changes to test/fts3expr3.test.
200
201
202
203
204
205
206
207
208
209
210
  test_fts3expr2 $::query
} -test {
  faultsim_test_result [list 0 $::result]
}

set sqlite_fts3_enable_parentheses 0
finish_test











<
<
<
<
200
201
202
203
204
205
206




  test_fts3expr2 $::query
} -test {
  faultsim_test_result [list 0 $::result]
}

set sqlite_fts3_enable_parentheses 0
finish_test




Changes to test/fts3malloc.test.
58
59
60
61
62
63
64



65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

84
85
86
87
88
89
90
}
do_error_test fts3_malloc-1.5 {
  CREATE VIRTUAL TABLE ft5 USING fts3(a, b, tokenize unknown)
} {unknown tokenizer: unknown}
do_write_test fts3_malloc-1.6 sqlite_master {
  CREATE VIRTUAL TABLE ft6 USING fts3(a, b, tokenize porter)
}




# Test the xConnect/xDisconnect methods:
#db eval { ATTACH 'test2.db' AS aux }
#do_write_test fts3_malloc-1.6 aux.sqlite_master {
#  CREATE VIRTUAL TABLE aux.ft7 USING fts3(a, b, c);
#}
#do_write_test fts3_malloc-1.6 aux.sqlite_master {
#  CREATE VIRTUAL TABLE aux.ft7 USING fts3(a, b, c);
#}



do_test fts3_malloc-2.0 {
  execsql { 
    DROP TABLE ft1;
    DROP TABLE ft2;
    DROP TABLE ft3;
    DROP TABLE ft4;
    DROP TABLE ft6;

  }
  execsql { CREATE VIRTUAL TABLE ft USING fts3(a, b) }
  for {set ii 1} {$ii < 32} {incr ii} {
    set a [list]
    set b [list]
    if {$ii & 0x01} {lappend a one   ; lappend b neung}
    if {$ii & 0x02} {lappend a two   ; lappend b song }







>
>
>



















>







58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
}
do_error_test fts3_malloc-1.5 {
  CREATE VIRTUAL TABLE ft5 USING fts3(a, b, tokenize unknown)
} {unknown tokenizer: unknown}
do_write_test fts3_malloc-1.6 sqlite_master {
  CREATE VIRTUAL TABLE ft6 USING fts3(a, b, tokenize porter)
}
do_write_test fts3_malloc-1.7 sqlite_master {
  CREATE VIRTUAL TABLE ft7 USING fts4(a, b, notindexed=b)
}

# Test the xConnect/xDisconnect methods:
#db eval { ATTACH 'test2.db' AS aux }
#do_write_test fts3_malloc-1.6 aux.sqlite_master {
#  CREATE VIRTUAL TABLE aux.ft7 USING fts3(a, b, c);
#}
#do_write_test fts3_malloc-1.6 aux.sqlite_master {
#  CREATE VIRTUAL TABLE aux.ft7 USING fts3(a, b, c);
#}



do_test fts3_malloc-2.0 {
  execsql { 
    DROP TABLE ft1;
    DROP TABLE ft2;
    DROP TABLE ft3;
    DROP TABLE ft4;
    DROP TABLE ft6;
    DROP TABLE ft7;
  }
  execsql { CREATE VIRTUAL TABLE ft USING fts3(a, b) }
  for {set ii 1} {$ii < 32} {incr ii} {
    set a [list]
    set b [list]
    if {$ii & 0x01} {lappend a one   ; lappend b neung}
    if {$ii & 0x02} {lappend a two   ; lappend b song }
297
298
299
300
301
302
303
304

do_write_test fts3_malloc-5.3 ft_content {
  INSERT INTO ft8 VALUES('short alongertoken reallyquitealotlongerimeanit andthistokenisjustsolongthatonemightbeforgivenforimaginingthatitwasmerelyacontrivedexampleandnotarealtoken')
}


finish_test








<
301
302
303
304
305
306
307


do_write_test fts3_malloc-5.3 ft_content {
  INSERT INTO ft8 VALUES('short alongertoken reallyquitealotlongerimeanit andthistokenisjustsolongthatonemightbeforgivenforimaginingthatitwasmerelyacontrivedexampleandnotarealtoken')
}


finish_test

Changes to test/fts3matchinfo.test.
422
423
424
425
426
427
428
429





430

do_execsql_test 8.3 {
  INSERT INTO t12 VALUES('a d d a');
  SELECT mit(matchinfo(t12, 'x')) FROM t12 WHERE t12 MATCH 'a NEAR/1 d OR a';
} {
  {0 3 2 0 3 2 1 4 3} {1 3 2 1 3 2 1 4 3} {2 3 2 2 3 2 2 4 3}
}

finish_test














|
>
>
>
>
>

>
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
do_execsql_test 8.3 {
  INSERT INTO t12 VALUES('a d d a');
  SELECT mit(matchinfo(t12, 'x')) FROM t12 WHERE t12 MATCH 'a NEAR/1 d OR a';
} {
  {0 3 2 0 3 2 1 4 3} {1 3 2 1 3 2 1 4 3} {2 3 2 2 3 2 2 4 3}
}

do_execsql_test 9.1 {
  CREATE VIRTUAL TABLE ft2 USING fts4;
  INSERT INTO ft2 VALUES('a b c d e');
  INSERT INTO ft2 VALUES('f a b c d');
  SELECT snippet(ft2, '[', ']', '', -1, 1) FROM ft2 WHERE ft2 MATCH 'c';
} {{[c]} {[c]}}

finish_test
Changes to test/fts3prefix2.test.
55
56
57
58
59
60
61
62
  {T TX T TX T TX T TX T TX}
  {T TX T TX T TX T TX T TX}
  {T TX T TX T TX T TX T TX}
  {T TX T TX T TX T TX T TX}
}

finish_test








<
55
56
57
58
59
60
61

  {T TX T TX T TX T TX T TX}
  {T TX T TX T TX T TX T TX}
  {T TX T TX T TX T TX T TX}
  {T TX T TX T TX T TX T TX}
}

finish_test

Changes to test/fts3query.test.
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    CREATE VIRTUAL TABLE ft USING fts3(title);
    CREATE TABLE bt(title);
  }
} {}
do_eqp_test fts3query-4.2 {
  SELECT t1.number FROM t1, ft WHERE t1.number=ft.rowid ORDER BY t1.date
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1 (~1000000 rows)} 
  0 1 1 {SCAN TABLE ft VIRTUAL TABLE INDEX 1: (~0 rows)}
}
do_eqp_test fts3query-4.3 {
  SELECT t1.number FROM ft, t1 WHERE t1.number=ft.rowid ORDER BY t1.date
} {
  0 0 1 {SCAN TABLE t1 USING COVERING INDEX i1 (~1000000 rows)} 
  0 1 0 {SCAN TABLE ft VIRTUAL TABLE INDEX 1: (~0 rows)}
}
do_eqp_test fts3query-4.4 {
  SELECT t1.number FROM t1, bt WHERE t1.number=bt.rowid ORDER BY t1.date
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1 (~1000000 rows)} 
  0 1 1 {SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}
do_eqp_test fts3query-4.5 {
  SELECT t1.number FROM bt, t1 WHERE t1.number=bt.rowid ORDER BY t1.date
} {
  0 0 1 {SCAN TABLE t1 USING COVERING INDEX i1 (~1000000 rows)} 
  0 1 0 {SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}


# Test that calling matchinfo() with the wrong number of arguments, or with
# an invalid argument returns an error.
#
do_execsql_test 5.1 {







|
|




|
|




|
|




|
|







114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    CREATE VIRTUAL TABLE ft USING fts3(title);
    CREATE TABLE bt(title);
  }
} {}
do_eqp_test fts3query-4.2 {
  SELECT t1.number FROM t1, ft WHERE t1.number=ft.rowid ORDER BY t1.date
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 1 {SCAN TABLE ft VIRTUAL TABLE INDEX 1:}
}
do_eqp_test fts3query-4.3 {
  SELECT t1.number FROM ft, t1 WHERE t1.number=ft.rowid ORDER BY t1.date
} {
  0 0 1 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 0 {SCAN TABLE ft VIRTUAL TABLE INDEX 1:}
}
do_eqp_test fts3query-4.4 {
  SELECT t1.number FROM t1, bt WHERE t1.number=bt.rowid ORDER BY t1.date
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 1 {SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?)}
}
do_eqp_test fts3query-4.5 {
  SELECT t1.number FROM bt, t1 WHERE t1.number=bt.rowid ORDER BY t1.date
} {
  0 0 1 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 0 {SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?)}
}


# Test that calling matchinfo() with the wrong number of arguments, or with
# an invalid argument returns an error.
#
do_execsql_test 5.1 {
206
207
208
209
210
211
212
213

  7 "SELECT snippet(t3, 'XXX', 'YYY', 'ZZZ', 1, 5) FROM t3 WHERE t3 MATCH 'gestures'" 
  {{ZZZthe hand XXXgesturesYYY (called beatsZZZ}}
}


finish_test








<
206
207
208
209
210
211
212


  7 "SELECT snippet(t3, 'XXX', 'YYY', 'ZZZ', 1, 5) FROM t3 WHERE t3 MATCH 'gestures'" 
  {{ZZZthe hand XXXgesturesYYY (called beatsZZZ}}
}


finish_test

Changes to test/fts3shared.test.
170
171
172
173
174
175
176
177
  execsql ROLLBACK dbW 
}

dbW close
dbR close
sqlite3_enable_shared_cache $::enable_shared_cache
finish_test








<
170
171
172
173
174
175
176

  execsql ROLLBACK dbW 
}

dbW close
dbR close
sqlite3_enable_shared_cache $::enable_shared_cache
finish_test

Changes to test/fts3snippet.test.
Changes to test/fts3sort.test.
178
179
180
181
182
183
184
185
  INSERT INTO t4(docid, x) VALUES(1, 'ab');
  SELECT rowid FROM t4 WHERE x MATCH 'a*';
} {-113382409004785664 1}



finish_test








<
178
179
180
181
182
183
184

  INSERT INTO t4(docid, x) VALUES(1, 'ab');
  SELECT rowid FROM t4 WHERE x MATCH 'a*';
} {-113382409004785664 1}



finish_test

Changes to test/fts3tok1.test.
109
110
111
112
113
114
115
116
117
do_catchsql_test 2.1 {
  CREATE VIRTUAL TABLE t4 USING fts3tokenize;
  SELECT * FROM t4;
} {1 {SQL logic error or missing database}}


finish_test









<
<
109
110
111
112
113
114
115


do_catchsql_test 2.1 {
  CREATE VIRTUAL TABLE t4 USING fts3tokenize;
  SELECT * FROM t4;
} {1 {SQL logic error or missing database}}


finish_test


Changes to test/fts3tok_err.test.
41
42
43
44
45
46
47
48
49
  execsql { SELECT token FROM t1 WHERE input = 'A galaxy far, far away' } 
} -test {
  faultsim_test_result {0 {a galaxy far far away}} 
}


finish_test









<
<
41
42
43
44
45
46
47


  execsql { SELECT token FROM t1 WHERE input = 'A galaxy far, far away' } 
} -test {
  faultsim_test_result {0 {a galaxy far far away}} 
}


finish_test


Changes to test/fts4content.test.
619
620
621
622
623
624
625
626
do_execsql_test 10.7 {
  SELECT snippet(ft, '[', ']', '...', -1, 5) FROM ft WHERE ft MATCH 'e'
} {
  {...c d [e] f g...}
}

finish_test








<
619
620
621
622
623
624
625

do_execsql_test 10.7 {
  SELECT snippet(ft, '[', ']', '...', -1, 5) FROM ft WHERE ft MATCH 'e'
} {
  {...c d [e] f g...}
}

finish_test

Added test/fts4noti.test.






















































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# 2013 June 21
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#*************************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is testing the notindexed=xxx FTS4 option.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix fts4noti

# If SQLITE_ENABLE_FTS3 is defined, omit this file.
ifcapable !fts3 {
  finish_test
  return
}


#-------------------------------------------------------------------------
# Test that typos in "notindexed=" column names are detected.
#
do_execsql_test 1.0 {
  CREATE TABLE cc(a, b, c);
}
foreach {tn arg res} {
  1 "(b, c, notindexed=a)"                  {1 {no such column: a}}
  2 "(a, b, notindexed=a)"                                   {0 {}}
  3 "(a, b, notindexed=a, notindexed=a)"                     {0 {}}
  4 "(notindexed=a, a, b)"                                   {0 {}}
  5 "(notindexed=a, notindexed=b, notindexed=c, a, b, c, d)" {0 {}}
  6 "(notindexed=a, notindexed=B, notindexed=c, a, b, c, d)" {0 {}}
  7 "(notindexed=a, notindexed=b, notindexed=c, a, B, c, d)" {0 {}}
  8 "(notindexed=d, content=cc)" {1 {no such column: d}}
  9 "(notindexed=a, content=cc)" {0 {}}
  10 "(notindexed=a, notindexed=b, a)" {1 {no such column: b}}
  11 "(notindexed=a, notindexed=b, b)" {1 {no such column: a}}
} {
  do_catchsql_test 1.$tn "CREATE VIRTUAL TABLE t1 USING fts4 $arg" $res
  if {[lindex $res 0]==0} { execsql "DROP TABLE t1" }
}

do_execsql_test 1.x { SELECT name FROM sqlite_master } {cc}


#-------------------------------------------------------------------------
# Test that notindexed columns are not indexed.
#
foreach {tn schema} {
  1 { 
    CREATE VIRTUAL TABLE t1 USING fts4(a, b, c, notindexed=b); 
  }
  2 { 
    CREATE TABLE c1(a, b, c);
    INSERT INTO c1 VALUES('one two', 'three four', 'five six');
    INSERT INTO c1 VALUES('three four', 'five six', 'one two');
    CREATE VIRTUAL TABLE t1 USING fts4(content=c1, notindexed=b); 
  }
  3 { 
    CREATE VIRTUAL TABLE t1 USING fts4(content="", a, b, c, notindexed=b); 
  }
} {
  execsql $schema

  do_execsql_test 2.$tn.1 {
    INSERT INTO t1(docid,a,b,c) VALUES(1, 'one two', 'three four', 'five six');
    INSERT INTO t1(docid,a,b,c) VALUES(2, 'three four', 'five six', 'one two');
  }

  do_execsql_test 2.$tn.2 { SELECT docid FROM t1 WHERE t1 MATCH 'one' } {1 2}
  do_execsql_test 2.$tn.3 { SELECT docid FROM t1 WHERE t1 MATCH 'three' } {2}
  do_execsql_test 2.$tn.4 { SELECT docid FROM t1 WHERE t1 MATCH 'five' } {1}

  do_execsql_test 2.$tn.5 { INSERT INTO t1(t1) VALUES('optimize') }

  do_execsql_test 2.$tn.6 { SELECT docid FROM t1 WHERE t1 MATCH 'one' } {1 2}
  do_execsql_test 2.$tn.7 { SELECT docid FROM t1 WHERE t1 MATCH 'three' } {2}
  do_execsql_test 2.$tn.8 { SELECT docid FROM t1 WHERE t1 MATCH 'five' } {1}

  if {$tn!=3} {
    do_execsql_test 2.$tn.9 { INSERT INTO t1(t1) VALUES('rebuild') }
  
    do_execsql_test 2.$tn.10 { SELECT docid FROM t1 WHERE t1 MATCH 'one' } {1 2}
    do_execsql_test 2.$tn.11 { SELECT docid FROM t1 WHERE t1 MATCH 'three' } {2}
    do_execsql_test 2.$tn.12 { SELECT docid FROM t1 WHERE t1 MATCH 'five' } {1}
  
    do_execsql_test 2.$tn.13 { 
      SELECT a,b,c FROM t1 WHERE docid=1
    } {{one two} {three four} {five six}}
    do_execsql_test 2.$tn.14 { 
      SELECT a,b,c FROM t1 WHERE docid=2
    } {{three four} {five six} {one two}}
  }

  do_execsql_test 2.x { DROP TABLE t1 }
}

#-------------------------------------------------------------------------
# Test that notindexed columns are not scanned for deferred tokens.
#

do_execsql_test 3.1 {
  CREATE VIRTUAL TABLE t2 USING fts4(x, y, notindexed=x);
}
do_test 3.2 {
  set v [string repeat " 1" 50000]
  set v1 "x $v"
  set v2 "y $v"
  execsql { 
    INSERT INTO t2 VALUES(1, 'x y z');
    INSERT INTO t2 VALUES(2, $v1);
    INSERT INTO t2 VALUES(3, $v2);
    INSERT INTO t2 VALUES(4, $v2);
    INSERT INTO t2 VALUES(5, $v2);
    INSERT INTO t2 VALUES(6, $v2);
  }
} {}

do_execsql_test 3.3 { SELECT x FROM t2 WHERE t2 MATCH '2' } {}
do_execsql_test 3.4 { SELECT x FROM t2 WHERE t2 MATCH '1' } {2 3 4 5 6}
do_execsql_test 3.5 { SELECT x FROM t2 WHERE t2 MATCH 'x' } {1 2}
do_execsql_test 3.6 { SELECT x FROM t2 WHERE t2 MATCH 'x 1' } {2}

do_execsql_test 3.x { DROP TABLE t2 }
  
#-------------------------------------------------------------------------
# Test that the types of notindexed columns are not modified.
#
do_execsql_test 4.1 {
  CREATE VIRTUAL TABLE t2 USING fts4(poi, addr, notindexed=poi);
  INSERT INTO t2 VALUES(114, 'x x x');
  INSERT INTO t2 VALUES(X'1234', 'y y y');
  INSERT INTO t2 VALUES(NULL, 'z z z');
  INSERT INTO t2 VALUES(113.2, 'w w w');
  INSERT INTO t2 VALUES('poi', 'v v v');
}
do_execsql_test 4.2 { SELECT typeof(poi) FROM t2 WHERE t2 MATCH 'x' } {integer}
do_execsql_test 4.3 { SELECT typeof(poi) FROM t2 WHERE t2 MATCH 'y' } {blob}
do_execsql_test 4.4 { SELECT typeof(poi) FROM t2 WHERE t2 MATCH 'z' } {null}
do_execsql_test 4.5 { SELECT typeof(poi) FROM t2 WHERE t2 MATCH 'w' } {real}
do_execsql_test 4.6 { SELECT typeof(poi) FROM t2 WHERE t2 MATCH 'v' } {text}

do_execsql_test 4.x { DROP TABLE t2 }

#-------------------------------------------------------------------------
# Test that multiple notindexed options on a single table work as expected.
#
do_execsql_test 5.1 {
  CREATE VIRTUAL TABLE t2 USING fts4(
      notindexed="three", one, two, three, notindexed="one",
  );
  INSERT INTO t2 VALUES('a', 'b', 'c');
  INSERT INTO t2 VALUES('c', 'a', 'b');
  INSERT INTO t2 VALUES('b', 'c', 'a');
}
do_execsql_test 5.2 { SELECT docid FROM t2 WHERE t2 MATCH 'a' } {2}
do_execsql_test 5.3 { SELECT docid FROM t2 WHERE t2 MATCH 'b' } {1}
do_execsql_test 5.4 { SELECT docid FROM t2 WHERE t2 MATCH 'c' } {3}

do_execsql_test 5.x { DROP TABLE t2 }

finish_test



Changes to test/fts4unicode.test.
398
399
400
401
402
403
404



































405
406
    set config [string map [list * $c] $config]
    set input  [string map [list * $c] "hello*world"]
    set output [string map [list * $c] $res]
    do_unicode_token_test3 7.$tn1.$tn2 {*}$config $input $output
  }
}





































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    set config [string map [list * $c] $config]
    set input  [string map [list * $c] "hello*world"]
    set output [string map [list * $c] $res]
    do_unicode_token_test3 7.$tn1.$tn2 {*}$config $input $output
  }
}

#-------------------------------------------------------------------------
# Cursory test of remove_diacritics=0.
#
# 00C4;LATIN CAPITAL LETTER A WITH DIAERESIS
# 00D6;LATIN CAPITAL LETTER O WITH DIAERESIS
# 00E4;LATIN SMALL LETTER A WITH DIAERESIS
# 00F6;LATIN SMALL LETTER O WITH DIAERESIS
#
do_execsql_test 8.1.1 "
  CREATE VIRTUAL TABLE t3 USING fts4(tokenize=unicode61 'remove_diacritics=1');
  INSERT INTO t3 VALUES('o');
  INSERT INTO t3 VALUES('a');
  INSERT INTO t3 VALUES('O');
  INSERT INTO t3 VALUES('A');
  INSERT INTO t3 VALUES('\xD6');
  INSERT INTO t3 VALUES('\xC4');
  INSERT INTO t3 VALUES('\xF6');
  INSERT INTO t3 VALUES('\xE4');
"
do_execsql_test 8.1.2 {
  SELECT rowid FROM t3 WHERE t3 MATCH 'o';
} {1 3 5 7}
do_execsql_test 8.1.3 {
  SELECT rowid FROM t3 WHERE t3 MATCH 'a';
} {2 4 6 8}
do_execsql_test 8.2.1 {
  CREATE VIRTUAL TABLE t4 USING fts4(tokenize=unicode61 "remove_diacritics=0");
  INSERT INTO t4 SELECT * FROM t3;
}
do_execsql_test 8.2.2 {
  SELECT rowid FROM t4 WHERE t4 MATCH 'o';
} {1 3}
do_execsql_test 8.2.3 {
  SELECT rowid FROM t4 WHERE t4 MATCH 'a';
} {2 4}

finish_test
Changes to test/func.test.
10
11
12
13
14
15
16

17
18
19
20
21
22
23
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing built-in functions.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl


# Create a table to work with.
#
do_test func-0.0 {
  execsql {CREATE TABLE tbl1(t1 text)}
  foreach word {this program is free software} {
    execsql "INSERT INTO tbl1 VALUES('$word')"







>







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing built-in functions.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix func

# Create a table to work with.
#
do_test func-0.0 {
  execsql {CREATE TABLE tbl1(t1 text)}
  foreach word {this program is free software} {
    execsql "INSERT INTO tbl1 VALUES('$word')"
677
678
679
680
681
682
683


























684
685
686
687
688
689
690
  sqlite3_bind_text $STMT 1 hello\000 -1
  set res [list]
  while { "SQLITE_ROW"==[sqlite3_step $STMT] } {
    lappend res [sqlite3_column_text $STMT 0]
  }
  lappend res [sqlite3_finalize $STMT]
} {{0 0} {1 0} SQLITE_OK}



























# Make sure that a function with a very long name is rejected
do_test func-14.1 {
  catch {
    db function [string repeat X 254] {return "hello"}
  } 
} {0}







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
  sqlite3_bind_text $STMT 1 hello\000 -1
  set res [list]
  while { "SQLITE_ROW"==[sqlite3_step $STMT] } {
    lappend res [sqlite3_column_text $STMT 0]
  }
  lappend res [sqlite3_finalize $STMT]
} {{0 0} {1 0} SQLITE_OK}

# Test that auxiliary data is discarded when a statement is reset.
do_execsql_test 13.8.1 {
  SELECT test_auxdata('constant') FROM t4;
} {0 1}
do_execsql_test 13.8.2 {
  SELECT test_auxdata('constant') FROM t4;
} {0 1}
db cache flush
do_execsql_test 13.8.3 {
  SELECT test_auxdata('constant') FROM t4;
} {0 1}
set V "one"
do_execsql_test 13.8.4 {
  SELECT test_auxdata($V), $V FROM t4;
} {0 one 1 one}
set V "two"
do_execsql_test 13.8.5 {
  SELECT test_auxdata($V), $V FROM t4;
} {0 two 1 two}
db cache flush
set V "three"
do_execsql_test 13.8.6 {
  SELECT test_auxdata($V), $V FROM t4;
} {0 three 1 three}


# Make sure that a function with a very long name is rejected
do_test func-14.1 {
  catch {
    db function [string repeat X 254] {return "hello"}
  } 
} {0}
Changes to test/fuzzer1.test.
1724
1725
1726
1727
1728
1729
1730
1731

1732
1733
1734
1735
1736
1737

1738
1739
1740
1741
1742
1743

1744
1745
1746
1747
1748
1749

1750
1751
1752
1753
1754
1755
1756

1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
  INSERT INTO x3_rules VALUES(2, 'a', 'z',  8);
  CREATE VIRTUAL TABLE x3 USING fuzzer(x3_rules);
}

do_execsql_test 8.2.1 {
  SELECT cFrom, cTo, word 
    FROM x3_rules CROSS JOIN x3 
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2;

} {a x x a y y a z z}

do_execsql_test 8.2.2 {
  SELECT cFrom, cTo, word 
    FROM x3 CROSS JOIN x3_rules
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2;

} {a z z a y y a x x}

do_execsql_test 8.2.3 {
  SELECT cFrom, cTo, word 
    FROM x3_rules, x3 
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2;

} {a z z a y y a x x}

do_execsql_test 8.2.4 {
  SELECT cFrom, cTo, word 
    FROM x3, x3_rules
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2;

} {a z z a y y a x x}

do_execsql_test 8.2.5 {
  CREATE INDEX i1 ON x3_rules(cost);
  SELECT cFrom, cTo, word 
    FROM x3_rules, x3 
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2;

} {a z z a y y a x x}

do_execsql_test 8.2.5 {
  SELECT word FROM x3_rules, x3 WHERE word MATCH x3_rules.cFrom AND ruleset=2;
} {a z y x a z y x a z y x}

do_execsql_test 8.2.6 {
  SELECT word FROM x3_rules, x3 
  WHERE word MATCH x3_rules.cFrom 
    AND ruleset=2 
    AND x3_rules.cost=8;







|
>





|
>





|
>





|
>






|
>



|







1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
  INSERT INTO x3_rules VALUES(2, 'a', 'z',  8);
  CREATE VIRTUAL TABLE x3 USING fuzzer(x3_rules);
}

do_execsql_test 8.2.1 {
  SELECT cFrom, cTo, word 
    FROM x3_rules CROSS JOIN x3 
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2
    ORDER BY +cTo;
} {a x x a y y a z z}

do_execsql_test 8.2.2 {
  SELECT cFrom, cTo, word 
    FROM x3 CROSS JOIN x3_rules
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2
    ORDER BY +cTo DESC
} {a z z a y y a x x}

do_execsql_test 8.2.3 {
  SELECT cFrom, cTo, word 
    FROM x3_rules, x3 
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2
    ORDER BY +cTo DESC;
} {a z z a y y a x x}

do_execsql_test 8.2.4 {
  SELECT cFrom, cTo, word 
    FROM x3, x3_rules
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2
    ORDER BY +cTo DESC;
} {a z z a y y a x x}

do_execsql_test 8.2.5 {
  CREATE INDEX i1 ON x3_rules(cost);
  SELECT cFrom, cTo, word 
    FROM x3_rules, x3 
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2
    ORDER BY +cTo DESC;
} {a z z a y y a x x}

do_execsql_test 8.2.5 {
  SELECT word FROM x3_rules, x3 WHERE word MATCH x3_rules.cFrom AND ruleset=2
} {a z y x a z y x a z y x}

do_execsql_test 8.2.6 {
  SELECT word FROM x3_rules, x3 
  WHERE word MATCH x3_rules.cFrom 
    AND ruleset=2 
    AND x3_rules.cost=8;
Changes to test/incrblob3.test.
265
266
267
268
269
270
271
272
  sqlite3_db_config_lookaside db 0 0 0
  list [catch {db incrblob blobs v 1} msg] $msg
} {1 {database schema has changed}}
db close
tvfs delete

finish_test








<
265
266
267
268
269
270
271

  sqlite3_db_config_lookaside db 0 0 0
  list [catch {db incrblob blobs v 1} msg] $msg
} {1 {database schema has changed}}
db close
tvfs delete

finish_test

Changes to test/incrblob4.test.
83
84
85
86
87
88
89
90
  set new [string repeat % 900]
  execsql { UPDATE t1 SET v = $new WHERE k = 20 }
  execsql { DELETE FROM t1 WHERE k=19 }
  execsql { INSERT INTO t1(v) VALUES($new) }
} {}

finish_test








<
83
84
85
86
87
88
89

  set new [string repeat % 900]
  execsql { UPDATE t1 SET v = $new WHERE k = 20 }
  execsql { DELETE FROM t1 WHERE k=19 }
  execsql { INSERT INTO t1(v) VALUES($new) }
} {}

finish_test

Changes to test/incrblobfault.test.
63
64
65
66
67
68
69
70
  gets $::blob
} -test {
  faultsim_test_result {0 {hello world}}
  catch { close $::blob }
}

finish_test








<
63
64
65
66
67
68
69

  gets $::blob
} -test {
  faultsim_test_result {0 {hello world}}
  catch { close $::blob }
}

finish_test

Changes to test/incrvacuum3.test.
147
148
149
150
151
152
153
154
  }

  do_execsql_test $T.1.x.1 { PRAGMA freelist_count   } 0
  do_execsql_test $T.1.x.2 { SELECT count(*) FROM t1 } 128
}

finish_test








<
147
148
149
150
151
152
153

  }

  do_execsql_test $T.1.x.1 { PRAGMA freelist_count   } 0
  do_execsql_test $T.1.x.2 { SELECT count(*) FROM t1 } 128
}

finish_test

Changes to test/index.test.
711
712
713
714
715
716
717

















718
719
720
  }
} {}
do_test index-20.2 {
  execsql {
    DROP INDEX "t6i1";
  }
} {}

















   

finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
  }
} {}
do_test index-20.2 {
  execsql {
    DROP INDEX "t6i1";
  }
} {}

# Try to create a TEMP index on a non-TEMP table. */
#
do_test index-21.1 {
  catchsql {
     CREATE INDEX temp.i21 ON t6(c);
  }
} {1 {cannot create a TEMP index on non-TEMP table "t6"}}
do_test index-21.2 {
  catchsql {
     CREATE TEMP TABLE t6(x);
     INSERT INTO temp.t6 values(1),(5),(9);
     CREATE INDEX temp.i21 ON t6(x);
     SELECT x FROM t6 ORDER BY x DESC;
  }
} {0 {9 5 1}}

   

finish_test
Added test/index6.test.








































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# 2013-07-31
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Test cases for partial indices
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !vtab {
  finish_test
  return
}

load_static_extension db wholenumber;
do_test index6-1.1 {
  # Able to parse and manage partial indices
  execsql {
    CREATE TABLE t1(a,b,c);
    CREATE INDEX t1a ON t1(a) WHERE a IS NOT NULL;
    CREATE INDEX t1b ON t1(b) WHERE b>10;
    CREATE VIRTUAL TABLE nums USING wholenumber;
    INSERT INTO t1(a,b,c)
       SELECT CASE WHEN value%3!=0 THEN value END, value, value
         FROM nums WHERE value<=20;
    SELECT count(a), count(b) FROM t1;
    PRAGMA integrity_check;
  }
} {14 20 ok}

# Error conditions during parsing...
#
do_test index6-1.2 {
  catchsql {
    CREATE INDEX bad1 ON t1(a,b) WHERE x IS NOT NULL;
  }
} {1 {no such column: x}}
do_test index6-1.3 {
  catchsql {
    CREATE INDEX bad1 ON t1(a,b) WHERE EXISTS(SELECT * FROM t1);
  }
} {1 {subqueries prohibited in partial index WHERE clauses}}
do_test index6-1.4 {
  catchsql {
    CREATE INDEX bad1 ON t1(a,b) WHERE a!=?1;
  }
} {1 {parameters prohibited in partial index WHERE clauses}}
do_test index6-1.5 {
  catchsql {
    CREATE INDEX bad1 ON t1(a,b) WHERE a!=random();
  }
} {1 {functions prohibited in partial index WHERE clauses}}
do_test index6-1.6 {
  catchsql {
    CREATE INDEX bad1 ON t1(a,b) WHERE a NOT LIKE 'abc%';
  }
} {1 {functions prohibited in partial index WHERE clauses}}

do_test index6-1.10 {
  execsql {
    ANALYZE;
    SELECT idx, stat FROM sqlite_stat1 ORDER BY idx;
    PRAGMA integrity_check;
  }
} {{} 20 t1a {14 1} t1b {10 1} ok}

# STAT1 shows the partial indices have a reduced number of
# rows.
#
do_test index6-1.11 {
  execsql {
    UPDATE t1 SET a=b;
    ANALYZE;
    SELECT idx, stat FROM sqlite_stat1 ORDER BY idx;
    PRAGMA integrity_check;
  }
} {{} 20 t1a {20 1} t1b {10 1} ok}

do_test index6-1.11 {
  execsql {
    UPDATE t1 SET a=NULL WHERE b%3!=0;
    UPDATE t1 SET b=b+100;
    ANALYZE;
    SELECT idx, stat FROM sqlite_stat1 ORDER BY idx;
    PRAGMA integrity_check;
  }
} {{} 20 t1a {6 1} t1b {20 1} ok}

do_test index6-1.12 {
  execsql {
    UPDATE t1 SET a=CASE WHEN b%3!=0 THEN b END;
    UPDATE t1 SET b=b-100;
    ANALYZE;
    SELECT idx, stat FROM sqlite_stat1 ORDER BY idx;
    PRAGMA integrity_check;
  }
} {{} 20 t1a {13 1} t1b {10 1} ok}

do_test index6-1.13 {
  execsql {
    DELETE FROM t1 WHERE b BETWEEN 8 AND 12;
    ANALYZE;
    SELECT idx, stat FROM sqlite_stat1 ORDER BY idx;
    PRAGMA integrity_check;
  }
} {{} 15 t1a {10 1} t1b {8 1} ok}

do_test index6-1.14 {
  execsql {
    REINDEX;
    ANALYZE;
    SELECT idx, stat FROM sqlite_stat1 ORDER BY idx;
    PRAGMA integrity_check;
  }
} {{} 15 t1a {10 1} t1b {8 1} ok}

do_test index6-1.15 {
  execsql {
    CREATE INDEX t1c ON t1(c);
    ANALYZE;
    SELECT idx, stat FROM sqlite_stat1 ORDER BY idx;
    PRAGMA integrity_check;
  }
} {t1a {10 1} t1b {8 1} t1c {15 1} ok}

# Queries use partial indices as appropriate times.
#
do_test index6-2.1 {
  execsql {
    CREATE TABLE t2(a,b);
    INSERT INTO t2(a,b) SELECT value, value FROM nums WHERE value<1000;
    UPDATE t2 SET a=NULL WHERE b%5==0;
    CREATE INDEX t2a1 ON t2(a) WHERE a IS NOT NULL;
    SELECT count(*) FROM t2 WHERE a IS NOT NULL;
  }
} {800}
do_test index6-2.2 {
  execsql {
    EXPLAIN QUERY PLAN
    SELECT * FROM t2 WHERE a=5;
  }
} {/.* TABLE t2 USING INDEX t2a1 .*/}
ifcapable stat4||stat3 {
  do_test index6-2.3stat4 {
    execsql {
      EXPLAIN QUERY PLAN
      SELECT * FROM t2 WHERE a IS NOT NULL;
    }
  } {/.* TABLE t2 USING INDEX t2a1 .*/}
} else {
  do_test index6-2.3stat4 {
    execsql {
      EXPLAIN QUERY PLAN
      SELECT * FROM t2 WHERE a IS NOT NULL AND a>0;
    }
  } {/.* TABLE t2 USING INDEX t2a1 .*/}
}
do_test index6-2.4 {
  execsql {
    EXPLAIN QUERY PLAN
    SELECT * FROM t2 WHERE a IS NULL;
  }
} {~/.*INDEX t2a1.*/}

do_execsql_test index6-2.101 {
  DROP INDEX t2a1;
  UPDATE t2 SET a=b, b=b+10000;
  SELECT b FROM t2 WHERE a=15;
} {10015}
do_execsql_test index6-2.102 {
  CREATE INDEX t2a2 ON t2(a) WHERE a<100 OR a>200;
  SELECT b FROM t2 WHERE a=15;
  PRAGMA integrity_check;
} {10015 ok}
do_execsql_test index6-2.102eqp {
  EXPLAIN QUERY PLAN
  SELECT b FROM t2 WHERE a=15;
} {~/.*INDEX t2a2.*/}
do_execsql_test index6-2.103 {
  SELECT b FROM t2 WHERE a=15 AND a<100;
} {10015}
do_execsql_test index6-2.103eqp {
  EXPLAIN QUERY PLAN
  SELECT b FROM t2 WHERE a=15 AND a<100;
} {/.*INDEX t2a2.*/}
do_execsql_test index6-2.104 {
  SELECT b FROM t2 WHERE a=515 AND a>200;
} {10515}
do_execsql_test index6-2.104eqp {
  EXPLAIN QUERY PLAN
  SELECT b FROM t2 WHERE a=515 AND a>200;
} {/.*INDEX t2a2.*/}

# Partial UNIQUE indices
#
do_execsql_test index6-3.1 {
  CREATE TABLE t3(a,b);
  INSERT INTO t3 SELECT value, value FROM nums WHERE value<200;
  UPDATE t3 SET a=999 WHERE b%5!=0;
  CREATE UNIQUE INDEX t3a ON t3(a) WHERE a<>999;
} {}
do_test index6-3.2 {
  # unable to insert a duplicate row a-value that is not 999.
  catchsql {
    INSERT INTO t3(a,b) VALUES(150, 'test1');
  }
} {1 {column a is not unique}}
do_test index6-3.3 {
  # can insert multiple rows with a==999 because such rows are not
  # part of the unique index.
  catchsql {
    INSERT INTO t3(a,b) VALUES(999, 'test1'), (999, 'test2');
  }
} {0 {}}
do_execsql_test index6-3.4 {
  SELECT count(*) FROM t3 WHERE a=999;
} {162}
integrity_check index6-3.5

do_execsql_test index6-4.0 {
  VACUUM;
  PRAGMA integrity_check;
} {ok}

# Silently ignore database name qualifiers in partial indices.
#
do_execsql_test index6-5.0 {
  CREATE INDEX t3b ON t3(b) WHERE xyzzy.t3.b BETWEEN 5 AND 10;
                               /* ^^^^^-- ignored */
  ANALYZE;
  SELECT count(*) FROM t3 WHERE t3.b BETWEEN 5 AND 10;
  SELECT stat+0 FROM sqlite_stat1 WHERE idx='t3b';
} {6 6}

finish_test
Changes to test/indexedby.test.
9
10
11
12
13
14
15

16
17
18
19
20
21
22
#
#***********************************************************************
#
# $Id: indexedby.test,v 1.5 2009/03/22 20:36:19 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl


# Create a schema with some indexes.
#
do_test indexedby-1.1 {
  execsql {
    CREATE TABLE t1(a, b);
    CREATE INDEX i1 ON t1(a);







>







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
#***********************************************************************
#
# $Id: indexedby.test,v 1.5 2009/03/22 20:36:19 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix indexedby

# Create a schema with some indexes.
#
do_test indexedby-1.1 {
  execsql {
    CREATE TABLE t1(a, b);
    CREATE INDEX i1 ON t1(a);
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
  uplevel "execsql {EXPLAIN QUERY PLAN $sql}"
}

# These tests are to check that "EXPLAIN QUERY PLAN" is working as expected.
#
do_execsql_test indexedby-1.2 {
  EXPLAIN QUERY PLAN select * from t1 WHERE a = 10; 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~10 rows)}}
do_execsql_test indexedby-1.3 {
  EXPLAIN QUERY PLAN select * from t1 ; 
} {0 0 0 {SCAN TABLE t1 (~1000000 rows)}}
do_execsql_test indexedby-1.4 {
  EXPLAIN QUERY PLAN select * from t1, t2 WHERE c = 10; 
} {
  0 0 1 {SEARCH TABLE t2 USING INDEX i3 (c=?) (~10 rows)} 
  0 1 0 {SCAN TABLE t1 (~1000000 rows)}
}

# Parser tests. Test that an INDEXED BY or NOT INDEX clause can be 
# attached to a table in the FROM clause, but not to a sub-select or
# SQL view. Also test that specifying an index that does not exist or
# is attached to a different table is detected as an error.
# 







|


|



|
|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
  uplevel "execsql {EXPLAIN QUERY PLAN $sql}"
}

# These tests are to check that "EXPLAIN QUERY PLAN" is working as expected.
#
do_execsql_test indexedby-1.2 {
  EXPLAIN QUERY PLAN select * from t1 WHERE a = 10; 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-1.3 {
  EXPLAIN QUERY PLAN select * from t1 ; 
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-1.4 {
  EXPLAIN QUERY PLAN select * from t1, t2 WHERE c = 10; 
} {
  0 0 1 {SEARCH TABLE t2 USING INDEX i3 (c=?)} 
  0 1 0 {SCAN TABLE t1}
}

# Parser tests. Test that an INDEXED BY or NOT INDEX clause can be 
# attached to a table in the FROM clause, but not to a sub-select or
# SQL view. Also test that specifying an index that does not exist or
# is attached to a different table is detected as an error.
# 
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
  catchsql { SELECT * FROM v1 INDEXED BY i1 WHERE a = 'one' }
} {1 {no such index: i1}}

# Tests for single table cases.
#
do_execsql_test indexedby-3.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'
} {0 0 0 {SCAN TABLE t1 (~10000 rows)}}
do_execsql_test indexedby-3.2 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' AND b = 'two'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~2 rows)}}
do_execsql_test indexedby-3.3 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' AND b = 'two'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?) (~2 rows)}}
do_test indexedby-3.4 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' }
} {1 {cannot use index: i2}}
do_test indexedby-3.5 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 ORDER BY a }
} {1 {cannot use index: i2}}
do_test indexedby-3.6 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' }
} {0 {}}
do_test indexedby-3.7 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 ORDER BY a }
} {0 {}}

do_execsql_test indexedby-3.8 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 ORDER BY e 
} {0 0 0 {SCAN TABLE t3 USING INDEX sqlite_autoindex_t3_1 (~1000000 rows)}}
do_execsql_test indexedby-3.9 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE e = 10 
} {0 0 0 {SEARCH TABLE t3 USING INDEX sqlite_autoindex_t3_1 (e=?) (~1 rows)}}
do_test indexedby-3.10 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE f = 10 }
} {1 {cannot use index: sqlite_autoindex_t3_1}}
do_test indexedby-3.11 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_2 WHERE f = 10 }
} {1 {no such index: sqlite_autoindex_t3_2}}

# Tests for multiple table cases.
#
do_execsql_test indexedby-4.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1, t2 WHERE a = c 
} {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  0 1 1 {SEARCH TABLE t2 USING INDEX i3 (c=?) (~10 rows)}
}
do_execsql_test indexedby-4.2 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 INDEXED BY i1, t2 WHERE a = c 
} {
  0 0 1 {SCAN TABLE t2 (~1000000 rows)} 
  0 1 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~10 rows)}
}
do_test indexedby-4.3 {
  catchsql {
    SELECT * FROM t1 INDEXED BY i1, t2 INDEXED BY i3 WHERE a=c
  }
} {1 {cannot use index: i1}}
do_test indexedby-4.4 {
  catchsql {
    SELECT * FROM t2 INDEXED BY i3, t1 INDEXED BY i1 WHERE a=c
  }
} {1 {cannot use index: i3}}

# Test embedding an INDEXED BY in a CREATE VIEW statement. This block
# also tests that nothing bad happens if an index refered to by
# a CREATE VIEW statement is dropped and recreated.
#
do_execsql_test indexedby-5.1 {
  CREATE VIEW v2 AS SELECT * FROM t1 INDEXED BY i1 WHERE a > 5;
  EXPLAIN QUERY PLAN SELECT * FROM v2 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?) (~250000 rows)}}
do_execsql_test indexedby-5.2 {
  EXPLAIN QUERY PLAN SELECT * FROM v2 WHERE b = 10 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?) (~25000 rows)}}
do_test indexedby-5.3 {
  execsql { DROP INDEX i1 }
  catchsql { SELECT * FROM v2 }
} {1 {no such index: i1}}
do_test indexedby-5.4 {
  # Recreate index i1 in such a way as it cannot be used by the view query.
  execsql { CREATE INDEX i1 ON t1(b) }
  catchsql { SELECT * FROM v2 }
} {1 {cannot use index: i1}}
do_test indexedby-5.5 {
  # Drop and recreate index i1 again. This time, create it so that it can
  # be used by the query.
  execsql { DROP INDEX i1 ; CREATE INDEX i1 ON t1(a) }
  catchsql { SELECT * FROM v2 }
} {0 {}}

# Test that "NOT INDEXED" may use the rowid index, but not others.
# 
do_execsql_test indexedby-6.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 10 ORDER BY rowid 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?) (~10 rows)}}
do_execsql_test indexedby-6.2 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE b = 10 ORDER BY rowid 
} {0 0 0 {SCAN TABLE t1 USING INTEGER PRIMARY KEY (~100000 rows)}}

# Test that "INDEXED BY" can be used in a DELETE statement.
# 
do_execsql_test indexedby-7.1 {
  EXPLAIN QUERY PLAN DELETE FROM t1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?) (~10 rows)}}
do_execsql_test indexedby-7.2 {
  EXPLAIN QUERY PLAN DELETE FROM t1 NOT INDEXED WHERE a = 5 
} {0 0 0 {SCAN TABLE t1 (~100000 rows)}}
do_execsql_test indexedby-7.3 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?) (~10 rows)}}
do_execsql_test indexedby-7.4 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~2 rows)}}
do_execsql_test indexedby-7.5 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i2 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?) (~2 rows)}}
do_test indexedby-7.6 {
  catchsql { DELETE FROM t1 INDEXED BY i2 WHERE a = 5}
} {1 {cannot use index: i2}}

# Test that "INDEXED BY" can be used in an UPDATE statement.
# 
do_execsql_test indexedby-8.1 {
  EXPLAIN QUERY PLAN UPDATE t1 SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?) (~10 rows)}}
do_execsql_test indexedby-8.2 {
  EXPLAIN QUERY PLAN UPDATE t1 NOT INDEXED SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SCAN TABLE t1 (~100000 rows)}}
do_execsql_test indexedby-8.3 {
  EXPLAIN QUERY PLAN UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?) (~10 rows)}}
do_execsql_test indexedby-8.4 {
  EXPLAIN QUERY PLAN 
  UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~2 rows)}}
do_execsql_test indexedby-8.5 {
  EXPLAIN QUERY PLAN 
  UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?) (~2 rows)}}
do_test indexedby-8.6 {
  catchsql { UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5}
} {1 {cannot use index: i2}}

# Test that bug #3560 is fixed.
#
do_test indexedby-9.1 {
  execsql {
    CREATE TABLE maintable( id integer);
    CREATE TABLE joinme(id_int integer, id_text text);
    CREATE INDEX joinme_id_text_idx on joinme(id_text);
    CREATE INDEX joinme_id_int_idx on joinme(id_int);
  }
} {}
do_test indexedby-9.2 {
  catchsql {
    select * from maintable as m inner join
    joinme as j indexed by joinme_id_text_idx
    on ( m.id  = j.id_int)
  }
} {1 {cannot use index: joinme_id_text_idx}}
do_test indexedby-9.3 {
  catchsql { select * from maintable, joinme INDEXED by joinme_id_text_idx }
} {1 {cannot use index: joinme_id_text_idx}}

# Make sure we can still create tables, indices, and columns whose name
# is "indexed".
#
do_test indexedby-10.1 {
  execsql {
    CREATE TABLE indexed(x,y);







|



|



|


|


|










|



|


|









|
|




|
|





|




|








|


|








|











|


|





|


|


|


|


|


|





|


|


|



|



|


|

















|


|







82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
  catchsql { SELECT * FROM v1 INDEXED BY i1 WHERE a = 'one' }
} {1 {no such index: i1}}

# Tests for single table cases.
#
do_execsql_test indexedby-3.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-3.2 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' AND b = 'two'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-3.3 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' AND b = 'two'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_test indexedby-3.4 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' }
} {1 {no query solution}}
do_test indexedby-3.5 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 ORDER BY a }
} {1 {no query solution}}
do_test indexedby-3.6 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' }
} {0 {}}
do_test indexedby-3.7 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 ORDER BY a }
} {0 {}}

do_execsql_test indexedby-3.8 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 ORDER BY e 
} {0 0 0 {SCAN TABLE t3 USING INDEX sqlite_autoindex_t3_1}}
do_execsql_test indexedby-3.9 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE e = 10 
} {0 0 0 {SEARCH TABLE t3 USING INDEX sqlite_autoindex_t3_1 (e=?)}}
do_test indexedby-3.10 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE f = 10 }
} {1 {no query solution}}
do_test indexedby-3.11 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_2 WHERE f = 10 }
} {1 {no such index: sqlite_autoindex_t3_2}}

# Tests for multiple table cases.
#
do_execsql_test indexedby-4.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1, t2 WHERE a = c 
} {
  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SEARCH TABLE t2 USING INDEX i3 (c=?)}
}
do_execsql_test indexedby-4.2 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 INDEXED BY i1, t2 WHERE a = c 
} {
  0 0 1 {SCAN TABLE t2} 
  0 1 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}
}
do_test indexedby-4.3 {
  catchsql {
    SELECT * FROM t1 INDEXED BY i1, t2 INDEXED BY i3 WHERE a=c
  }
} {1 {no query solution}}
do_test indexedby-4.4 {
  catchsql {
    SELECT * FROM t2 INDEXED BY i3, t1 INDEXED BY i1 WHERE a=c
  }
} {1 {no query solution}}

# Test embedding an INDEXED BY in a CREATE VIEW statement. This block
# also tests that nothing bad happens if an index refered to by
# a CREATE VIEW statement is dropped and recreated.
#
do_execsql_test indexedby-5.1 {
  CREATE VIEW v2 AS SELECT * FROM t1 INDEXED BY i1 WHERE a > 5;
  EXPLAIN QUERY PLAN SELECT * FROM v2 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?)}}
do_execsql_test indexedby-5.2 {
  EXPLAIN QUERY PLAN SELECT * FROM v2 WHERE b = 10 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?)}}
do_test indexedby-5.3 {
  execsql { DROP INDEX i1 }
  catchsql { SELECT * FROM v2 }
} {1 {no such index: i1}}
do_test indexedby-5.4 {
  # Recreate index i1 in such a way as it cannot be used by the view query.
  execsql { CREATE INDEX i1 ON t1(b) }
  catchsql { SELECT * FROM v2 }
} {1 {no query solution}}
do_test indexedby-5.5 {
  # Drop and recreate index i1 again. This time, create it so that it can
  # be used by the query.
  execsql { DROP INDEX i1 ; CREATE INDEX i1 ON t1(a) }
  catchsql { SELECT * FROM v2 }
} {0 {}}

# Test that "NOT INDEXED" may use the rowid index, but not others.
# 
do_execsql_test indexedby-6.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 10 ORDER BY rowid 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_execsql_test indexedby-6.2 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE b = 10 ORDER BY rowid 
} {0 0 0 {SCAN TABLE t1}}

# Test that "INDEXED BY" can be used in a DELETE statement.
# 
do_execsql_test indexedby-7.1 {
  EXPLAIN QUERY PLAN DELETE FROM t1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.2 {
  EXPLAIN QUERY PLAN DELETE FROM t1 NOT INDEXED WHERE a = 5 
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-7.3 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.4 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.5 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i2 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_test indexedby-7.6 {
  catchsql { DELETE FROM t1 INDEXED BY i2 WHERE a = 5}
} {1 {no query solution}}

# Test that "INDEXED BY" can be used in an UPDATE statement.
# 
do_execsql_test indexedby-8.1 {
  EXPLAIN QUERY PLAN UPDATE t1 SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}}
do_execsql_test indexedby-8.2 {
  EXPLAIN QUERY PLAN UPDATE t1 NOT INDEXED SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-8.3 {
  EXPLAIN QUERY PLAN UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}}
do_execsql_test indexedby-8.4 {
  EXPLAIN QUERY PLAN 
  UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-8.5 {
  EXPLAIN QUERY PLAN 
  UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_test indexedby-8.6 {
  catchsql { UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5}
} {1 {no query solution}}

# Test that bug #3560 is fixed.
#
do_test indexedby-9.1 {
  execsql {
    CREATE TABLE maintable( id integer);
    CREATE TABLE joinme(id_int integer, id_text text);
    CREATE INDEX joinme_id_text_idx on joinme(id_text);
    CREATE INDEX joinme_id_int_idx on joinme(id_int);
  }
} {}
do_test indexedby-9.2 {
  catchsql {
    select * from maintable as m inner join
    joinme as j indexed by joinme_id_text_idx
    on ( m.id  = j.id_int)
  }
} {1 {no query solution}}
do_test indexedby-9.3 {
  catchsql { select * from maintable, joinme INDEXED by joinme_id_text_idx }
} {1 {no query solution}}

# Make sure we can still create tables, indices, and columns whose name
# is "indexed".
#
do_test indexedby-10.1 {
  execsql {
    CREATE TABLE indexed(x,y);
270
271
272
273
274
275
276














































277
    CREATE TABLE t10(indexed INTEGER);
    INSERT INTO t10 VALUES(1);
    CREATE INDEX indexed ON t10(indexed);
    SELECT * FROM t10 indexed by indexed WHERE indexed>0
  }
} {1}















































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    CREATE TABLE t10(indexed INTEGER);
    INSERT INTO t10 VALUES(1);
    CREATE INDEX indexed ON t10(indexed);
    SELECT * FROM t10 indexed by indexed WHERE indexed>0
  }
} {1}

#-------------------------------------------------------------------------
# Ensure that the rowid at the end of each index entry may be used
# for equality constraints in the same way as other indexed fields.
#
do_execsql_test 11.1 {
  CREATE TABLE x1(a, b TEXT);
  CREATE INDEX x1i ON x1(a, b);
  INSERT INTO x1 VALUES(1, 1);
  INSERT INTO x1 VALUES(1, 1);
  INSERT INTO x1 VALUES(1, 1);
  INSERT INTO x1 VALUES(1, 1);
}
do_execsql_test 11.2 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid=3;
} {1 1 3}
do_execsql_test 11.3 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3';
} {1 1 3}
do_execsql_test 11.4 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0';
} {1 1 3}
do_eqp_test 11.5 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0';
} {0 0 0 {SEARCH TABLE x1 USING COVERING INDEX x1i (a=? AND b=? AND rowid=?)}}

do_execsql_test 11.6 {
  CREATE TABLE x2(c INTEGER PRIMARY KEY, a, b TEXT);
  CREATE INDEX x2i ON x2(a, b);
  INSERT INTO x2 VALUES(1, 1, 1);
  INSERT INTO x2 VALUES(2, 1, 1);
  INSERT INTO x2 VALUES(3, 1, 1);
  INSERT INTO x2 VALUES(4, 1, 1);
}
do_execsql_test 11.7 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c=3;
} {1 1 3}
do_execsql_test 11.8 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3';
} {1 1 3}
do_execsql_test 11.9 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3.0';
} {1 1 3}
do_eqp_test 11.10 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3.0';
} {0 0 0 {SEARCH TABLE x2 USING COVERING INDEX x2i (a=? AND b=? AND rowid=?)}}

finish_test
Changes to test/intpkey.test.
121
122
123
124
125
126
127
128



129
130
131
132
133
134
135
136
#
do_test intpkey-1.12.1 {
  execsql {
    SELECT * FROM t1 WHERE a==4;
  }
} {4 one two}
do_test intpkey-1.12.2 {
  set sqlite_query_plan



} {t1 *}

# Try to insert a non-integer value into the primary key field.  This
# should result in a data type mismatch.
#
do_test intpkey-1.13.1 {
  set r [catch {execsql {
    INSERT INTO t1 VALUES('x','y','z');







|
>
>
>
|







121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#
do_test intpkey-1.12.1 {
  execsql {
    SELECT * FROM t1 WHERE a==4;
  }
} {4 one two}
do_test intpkey-1.12.2 {
  execsql {
    EXPLAIN QUERY PLAN
    SELECT * FROM t1 WHERE a==4;
  }
} {/SEARCH TABLE t1 /}

# Try to insert a non-integer value into the primary key field.  This
# should result in a data type mismatch.
#
do_test intpkey-1.13.1 {
  set r [catch {execsql {
    INSERT INTO t1 VALUES('x','y','z');
Changes to test/io.test.
637
638
639
640
641
642
643
644
  hexio_write test.db [expr 1024 * 5] [string repeat 00 2048]
  do_execsql_test 6.2.$tn.3 { PRAGMA integrity_check } {ok}
  db close
}

sqlite3_simulate_device -char {} -sectorsize 0
finish_test








<
637
638
639
640
641
642
643

  hexio_write test.db [expr 1024 * 5] [string repeat 00 2048]
  do_execsql_test 6.2.$tn.3 { PRAGMA integrity_check } {ok}
  db close
}

sqlite3_simulate_device -char {} -sectorsize 0
finish_test

Changes to test/ioerr6.test.
85
86
87
88
89
90
91
92
  db eval { CREATE TABLE t3(x) }
  if {[db one { PRAGMA integrity_check }] != "ok"} {
    error "integrity check failed"
  }
}

finish_test








<
85
86
87
88
89
90
91

  db eval { CREATE TABLE t3(x) }
  if {[db one { PRAGMA integrity_check }] != "ok"} {
    error "integrity check failed"
  }
}

finish_test

Changes to test/like.test.
152
153
154
155
156
157
158
159
160
161
162
163
164
165













166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
ifcapable !like_opt {
  finish_test
  return
} 

# This procedure executes the SQL.  Then it appends to the result the
# "sort" or "nosort" keyword (as in the cksort procedure above) then
# it appends the ::sqlite_query_plan variable.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x













  return [concat $data $::sqlite_query_plan]
}

# Perform tests on the like optimization.
#
# With no index on t1.x and with case sensitivity turned off, no optimization
# is performed.
#
do_test like-3.1 {
  set sqlite_like_count 0
  queryplan {
    SELECT x FROM t1 WHERE x LIKE 'abc%' ORDER BY 1;
  }
} {ABC {ABC abc xyz} abc abcd sort t1 {}}
do_test like-3.2 {
  set sqlite_like_count
} {12}

# With an index on t1.x and case sensitivity on, optimize completely.
#
do_test like-3.3 {







|






>
>
>
>
>
>
>
>
>
>
>
>
>
|












|







152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
ifcapable !like_opt {
  finish_test
  return
} 

# This procedure executes the SQL.  Then it appends to the result the
# "sort" or "nosort" keyword (as in the cksort procedure above) then
# it appends the names of the table and index used.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x
  set eqp [execsql "EXPLAIN QUERY PLAN $sql"]
  # puts eqp=$eqp
  foreach {a b c x} $eqp {
    if {[regexp { TABLE (\w+ AS )?(\w+) USING COVERING INDEX (\w+)\y} \
        $x all as tab idx]} {
      lappend data {} $idx
    } elseif {[regexp { TABLE (\w+ AS )?(\w+) USING.* INDEX (\w+)\y} \
        $x all as tab idx]} {
      lappend data $tab $idx
    } elseif {[regexp { TABLE (\w+ AS )?(\w+)\y} $x all as tab]} {
      lappend data $tab *
    }
  }
  return $data   
}

# Perform tests on the like optimization.
#
# With no index on t1.x and with case sensitivity turned off, no optimization
# is performed.
#
do_test like-3.1 {
  set sqlite_like_count 0
  queryplan {
    SELECT x FROM t1 WHERE x LIKE 'abc%' ORDER BY 1;
  }
} {ABC {ABC abc xyz} abc abcd sort t1 *}
do_test like-3.2 {
  set sqlite_like_count
} {12}

# With an index on t1.x and case sensitivity on, optimize completely.
#
do_test like-3.3 {
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287


288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

321
322
323
324
325
326
327
328
329
330

331
332
333
334
335
336
337
338
339
  set sqlite_like_count
} 12

# No optimization for case insensitive LIKE
#
do_test like-3.13 {
  set sqlite_like_count 0

  queryplan {
    PRAGMA case_sensitive_like=off;
    SELECT x FROM t1 WHERE x LIKE 'abc%' ORDER BY 1;
  }
} {ABC {ABC abc xyz} abc abcd nosort {} i1}
do_test like-3.14 {
  set sqlite_like_count
} 12

# No optimization without an index.
#
do_test like-3.15 {
  set sqlite_like_count 0
  queryplan {
    PRAGMA case_sensitive_like=on;
    DROP INDEX i1;


    SELECT x FROM t1 WHERE x LIKE 'abc%' ORDER BY 1;
  }
} {abc abcd sort t1 {}}
do_test like-3.16 {
  set sqlite_like_count
} 12

# No GLOB optimization without an index.
#
do_test like-3.17 {
  set sqlite_like_count 0
  queryplan {
    SELECT x FROM t1 WHERE x GLOB 'abc*' ORDER BY 1;
  }
} {abc abcd sort t1 {}}
do_test like-3.18 {
  set sqlite_like_count
} 12

# GLOB is optimized regardless of the case_sensitive_like setting.
#
do_test like-3.19 {
  set sqlite_like_count 0
  db eval {CREATE INDEX i1 ON t1(x);}
  queryplan {
    SELECT x FROM t1 WHERE x GLOB 'abc*' ORDER BY 1;
  }
} {abc abcd nosort {} i1}
do_test like-3.20 {
  set sqlite_like_count
} 0
do_test like-3.21 {
  set sqlite_like_count 0

  queryplan {
    PRAGMA case_sensitive_like=on;
    SELECT x FROM t1 WHERE x GLOB 'abc*' ORDER BY 1;
  }
} {abc abcd nosort {} i1}
do_test like-3.22 {
  set sqlite_like_count
} 0
do_test like-3.23 {
  set sqlite_like_count 0

  queryplan {
    PRAGMA case_sensitive_like=off;
    SELECT x FROM t1 WHERE x GLOB 'a[bc]d' ORDER BY 1;
  }
} {abd acd nosort {} i1}
do_test like-3.24 {
  set sqlite_like_count
} 6








>

<











|


>
>


|











|


















>

<








>

<







278
279
280
281
282
283
284
285
286

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

338
339
340
341
342
343
344
345
346
347

348
349
350
351
352
353
354
  set sqlite_like_count
} 12

# No optimization for case insensitive LIKE
#
do_test like-3.13 {
  set sqlite_like_count 0
  db eval {PRAGMA case_sensitive_like=off;}
  queryplan {

    SELECT x FROM t1 WHERE x LIKE 'abc%' ORDER BY 1;
  }
} {ABC {ABC abc xyz} abc abcd nosort {} i1}
do_test like-3.14 {
  set sqlite_like_count
} 12

# No optimization without an index.
#
do_test like-3.15 {
  set sqlite_like_count 0
  db eval {
    PRAGMA case_sensitive_like=on;
    DROP INDEX i1;
  }
  queryplan {
    SELECT x FROM t1 WHERE x LIKE 'abc%' ORDER BY 1;
  }
} {abc abcd sort t1 *}
do_test like-3.16 {
  set sqlite_like_count
} 12

# No GLOB optimization without an index.
#
do_test like-3.17 {
  set sqlite_like_count 0
  queryplan {
    SELECT x FROM t1 WHERE x GLOB 'abc*' ORDER BY 1;
  }
} {abc abcd sort t1 *}
do_test like-3.18 {
  set sqlite_like_count
} 12

# GLOB is optimized regardless of the case_sensitive_like setting.
#
do_test like-3.19 {
  set sqlite_like_count 0
  db eval {CREATE INDEX i1 ON t1(x);}
  queryplan {
    SELECT x FROM t1 WHERE x GLOB 'abc*' ORDER BY 1;
  }
} {abc abcd nosort {} i1}
do_test like-3.20 {
  set sqlite_like_count
} 0
do_test like-3.21 {
  set sqlite_like_count 0
  db eval {PRAGMA case_sensitive_like=on;}
  queryplan {

    SELECT x FROM t1 WHERE x GLOB 'abc*' ORDER BY 1;
  }
} {abc abcd nosort {} i1}
do_test like-3.22 {
  set sqlite_like_count
} 0
do_test like-3.23 {
  set sqlite_like_count 0
  db eval {PRAGMA case_sensitive_like=off;}
  queryplan {

    SELECT x FROM t1 WHERE x GLOB 'a[bc]d' ORDER BY 1;
  }
} {abd acd nosort {} i1}
do_test like-3.24 {
  set sqlite_like_count
} 6

805
806
807
808
809
810
811

812
813
814
815
816
817

818
819
820
821
822
823
824
825
826


827
828
829
830

831
832
833
834
835
836
837
838
839
840


841
842
843
844

845
846
847
848
849
850

851
852
853
854
855
856

857
858
859
860
861
862
863
864
865


866
867
868
869
870
871
872
873
874
875
876
    INSERT INTO t11 VALUES(10, 'yz','yz');
    INSERT INTO t11 VALUES(11, 'X','X');
    INSERT INTO t11 VALUES(12, 'YZ','YZ');
    SELECT count(*) FROM t11;
  }
} {12}
do_test like-11.1 {

  queryplan {
    PRAGMA case_sensitive_like=OFF;
    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
  }
} {abc abcd ABC ABCD nosort t11 *}
do_test like-11.2 {

  queryplan {
    PRAGMA case_sensitive_like=ON;
    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
  }
} {abc abcd nosort t11 *}
do_test like-11.3 {
  queryplan {
    PRAGMA case_sensitive_like=OFF;
    CREATE INDEX t11b ON t11(b);


    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11b}
do_test like-11.4 {

  queryplan {
    PRAGMA case_sensitive_like=ON;
    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
  }
} {abc abcd nosort t11 *}
do_test like-11.5 {
  queryplan {
    PRAGMA case_sensitive_like=OFF;
    DROP INDEX t11b;
    CREATE INDEX t11bnc ON t11(b COLLATE nocase);


    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11bnc}
do_test like-11.6 {

  queryplan {
    CREATE INDEX t11bb ON t11(b COLLATE binary);
    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11bnc}
do_test like-11.7 {

  queryplan {
    PRAGMA case_sensitive_like=ON;
    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd sort {} t11bb}
do_test like-11.8 {

  queryplan {
    PRAGMA case_sensitive_like=OFF;
    SELECT b FROM t11 WHERE b GLOB 'abc*' ORDER BY +a;
  }
} {abc abcd sort {} t11bb}
do_test like-11.9 {
  queryplan {
    CREATE INDEX t11cnc ON t11(c COLLATE nocase);
    CREATE INDEX t11cb ON t11(c COLLATE binary);


    SELECT c FROM t11 WHERE c LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11cnc}
do_test like-11.10 {
  queryplan {
    SELECT c FROM t11 WHERE c GLOB 'abc*' ORDER BY +a;
  }
} {abc abcd sort {} t11cb}


finish_test







>

<




>

<




|


>
>




>

<




|



>
>




>

<




>

<




>

<




|


>
>











820
821
822
823
824
825
826
827
828

829
830
831
832
833
834

835
836
837
838
839
840
841
842
843
844
845
846
847
848
849

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865

866
867
868
869
870
871

872
873
874
875
876
877

878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
    INSERT INTO t11 VALUES(10, 'yz','yz');
    INSERT INTO t11 VALUES(11, 'X','X');
    INSERT INTO t11 VALUES(12, 'YZ','YZ');
    SELECT count(*) FROM t11;
  }
} {12}
do_test like-11.1 {
  db eval {PRAGMA case_sensitive_like=OFF;}
  queryplan {

    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
  }
} {abc abcd ABC ABCD nosort t11 *}
do_test like-11.2 {
  db eval {PRAGMA case_sensitive_like=ON;}
  queryplan {

    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
  }
} {abc abcd nosort t11 *}
do_test like-11.3 {
  db eval {
    PRAGMA case_sensitive_like=OFF;
    CREATE INDEX t11b ON t11(b);
  }
  queryplan {
    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11b}
do_test like-11.4 {
  db eval {PRAGMA case_sensitive_like=ON;}
  queryplan {

    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
  }
} {abc abcd nosort t11 *}
do_test like-11.5 {
  db eval {
    PRAGMA case_sensitive_like=OFF;
    DROP INDEX t11b;
    CREATE INDEX t11bnc ON t11(b COLLATE nocase);
  }
  queryplan {
    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11bnc}
do_test like-11.6 {
  db eval {CREATE INDEX t11bb ON t11(b COLLATE binary);}
  queryplan {

    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11bnc}
do_test like-11.7 {
  db eval {PRAGMA case_sensitive_like=ON;}
  queryplan {

    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd sort {} t11bb}
do_test like-11.8 {
  db eval {PRAGMA case_sensitive_like=OFF;}
  queryplan {

    SELECT b FROM t11 WHERE b GLOB 'abc*' ORDER BY +a;
  }
} {abc abcd sort {} t11bb}
do_test like-11.9 {
  db eval {
    CREATE INDEX t11cnc ON t11(c COLLATE nocase);
    CREATE INDEX t11cb ON t11(c COLLATE binary);
  }
  queryplan {
    SELECT c FROM t11 WHERE c LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11cnc}
do_test like-11.10 {
  queryplan {
    SELECT c FROM t11 WHERE c GLOB 'abc*' ORDER BY +a;
  }
} {abc abcd sort {} t11cb}


finish_test
Changes to test/loadext2.test.
38
39
40
41
42
43
44













45
46
47
48
49
50
51
  }
} {1 {no such function: sqr}}
do_test loadext2-1.2 {
  catchsql {
    SELECT cube(2)
  }
} {1 {no such function: cube}}














# Register auto-loaders.  Still functions do not exist.
#
do_test loadext2-1.3 {
  sqlite3_auto_extension_sqr
  sqlite3_auto_extension_cube
  catchsql {







>
>
>
>
>
>
>
>
>
>
>
>
>







38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
  }
} {1 {no such function: sqr}}
do_test loadext2-1.2 {
  catchsql {
    SELECT cube(2)
  }
} {1 {no such function: cube}}

# Extensions loaders not currently registered
#
do_test loadext2-1.2.1 {
  sqlite3_cancel_auto_extension_sqr
} {0}
do_test loadext2-1.2.2 {
  sqlite3_cancel_auto_extension_sqr
} {0}
do_test loadext2-1.2.3 {
  sqlite3_cancel_auto_extension_sqr
} {0}


# Register auto-loaders.  Still functions do not exist.
#
do_test loadext2-1.3 {
  sqlite3_auto_extension_sqr
  sqlite3_auto_extension_cube
  catchsql {
72
73
74
75
76
77
78
79
80











81
82
83
84
85
86
87
    SELECT cube(2)
  }
} {0 8.0}


# Reset extension auto loading.  Existing extensions still exist.
#
do_test loadext2-1.7 {
  sqlite3_reset_auto_extension











  catchsql {
    SELECT sqr(2)
  }
} {0 4.0}
do_test loadext2-1.8 {
  catchsql {
    SELECT cube(2)







|
|
>
>
>
>
>
>
>
>
>
>
>







85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    SELECT cube(2)
  }
} {0 8.0}


# Reset extension auto loading.  Existing extensions still exist.
#
do_test loadext2-1.7.1 {
  sqlite3_cancel_auto_extension_sqr
} {1}
do_test loadext2-1.7.2 {
  sqlite3_cancel_auto_extension_sqr
} {0}
do_test loadext2-1.7.3 {
  sqlite3_cancel_auto_extension_cube
} {1}
do_test loadext2-1.7.4 {
  sqlite3_cancel_auto_extension_cube
} {0}
do_test loadext2-1.7.5 {
  catchsql {
    SELECT sqr(2)
  }
} {0 4.0}
do_test loadext2-1.8 {
  catchsql {
    SELECT cube(2)
Changes to test/lock7.test.
54
55
56
57
58
59
60
61
  execsql { COMMIT } db1
} {}

db1 close
db2 close

finish_test








<
54
55
56
57
58
59
60

  execsql { COMMIT } db1
} {}

db1 close
db2 close

finish_test

Changes to test/malloc5.test.
201
202
203
204
205
206
207

208
209
210
211
212
213
214
215

216
217
218
219
220
221
222
do_test malloc5-4.1 {
  execsql {BEGIN;}
  execsql {DELETE FROM abc;}
  for {set i 0} {$i < 10000} {incr i} {
    execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');"
  }
  execsql {COMMIT;}

  sqlite3_release_memory
  sqlite3_memory_highwater 1
  execsql {SELECT * FROM abc}
  set nMaxBytes [sqlite3_memory_highwater 1]
  puts -nonewline " (Highwater mark: $nMaxBytes) "
  expr $nMaxBytes > 1000000
} {1}
do_test malloc5-4.2 {

  sqlite3_release_memory
  sqlite3_soft_heap_limit 100000
  sqlite3_memory_highwater 1
  execsql {SELECT * FROM abc}
  set nMaxBytes [sqlite3_memory_highwater 1]
  puts -nonewline " (Highwater mark: $nMaxBytes) "
  expr $nMaxBytes <= 110000







>








>







201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
do_test malloc5-4.1 {
  execsql {BEGIN;}
  execsql {DELETE FROM abc;}
  for {set i 0} {$i < 10000} {incr i} {
    execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');"
  }
  execsql {COMMIT;}
  db cache flush
  sqlite3_release_memory
  sqlite3_memory_highwater 1
  execsql {SELECT * FROM abc}
  set nMaxBytes [sqlite3_memory_highwater 1]
  puts -nonewline " (Highwater mark: $nMaxBytes) "
  expr $nMaxBytes > 1000000
} {1}
do_test malloc5-4.2 {
  db cache flush
  sqlite3_release_memory
  sqlite3_soft_heap_limit 100000
  sqlite3_memory_highwater 1
  execsql {SELECT * FROM abc}
  set nMaxBytes [sqlite3_memory_highwater 1]
  puts -nonewline " (Highwater mark: $nMaxBytes) "
  expr $nMaxBytes <= 110000
Changes to test/mallocA.test.
11
12
13
14
15
16
17

18
19
20
21
22
23
24
# This file contains additional out-of-memory checks (see malloc.tcl).
#
# $Id: mallocA.test,v 1.8 2008/02/18 22:24:58 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/malloc_common.tcl


# Only run these tests if memory debugging is turned on.
#
if {!$MEMDEBUG} {
   puts "Skipping mallocA tests: not compiled with -DSQLITE_MEMDEBUG..."
   finish_test
   return







>







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# This file contains additional out-of-memory checks (see malloc.tcl).
#
# $Id: mallocA.test,v 1.8 2008/02/18 22:24:58 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/malloc_common.tcl
set testprefix mallocA

# Only run these tests if memory debugging is turned on.
#
if {!$MEMDEBUG} {
   puts "Skipping mallocA tests: not compiled with -DSQLITE_MEMDEBUG..."
   finish_test
   return
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69















































70
71
72
73
74
75
76
77
78
  CREATE INDEX t1i1 ON t1(a);
  CREATE INDEX t1i2 ON t1(b,c);
  CREATE TABLE t2(x,y,z);
}
db close
copy_file test.db test.db.bu


do_malloc_test mallocA-1 -testdb test.db.bu -sqlbody {
  ANALYZE
}
do_malloc_test mallocA-1.1 -testdb test.db.bu -sqlbody {
  ANALYZE t1
}
do_malloc_test mallocA-1.2 -testdb test.db.bu -sqlbody {
  ANALYZE main
}
do_malloc_test mallocA-1.3 -testdb test.db.bu -sqlbody {
  ANALYZE main.t1
}

ifcapable reindex {
  do_malloc_test mallocA-2 -testdb test.db.bu -sqlbody {
    REINDEX;
  }
  do_malloc_test mallocA-3 -testdb test.db.bu -sqlbody {
    REINDEX t1;
  }
  do_malloc_test mallocA-4 -testdb test.db.bu -sqlbody {
    REINDEX main.t1;
  }
  do_malloc_test mallocA-5 -testdb test.db.bu -sqlbody {
    REINDEX nocase;
  }
}
















































# Ensure that no file descriptors were leaked.
do_test malloc-99.X {
  catch {db close}
  set sqlite_open_file_count
} {0}

forcedelete test.db.bu
finish_test







<












>














>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
  CREATE INDEX t1i1 ON t1(a);
  CREATE INDEX t1i2 ON t1(b,c);
  CREATE TABLE t2(x,y,z);
}
db close
copy_file test.db test.db.bu


do_malloc_test mallocA-1 -testdb test.db.bu -sqlbody {
  ANALYZE
}
do_malloc_test mallocA-1.1 -testdb test.db.bu -sqlbody {
  ANALYZE t1
}
do_malloc_test mallocA-1.2 -testdb test.db.bu -sqlbody {
  ANALYZE main
}
do_malloc_test mallocA-1.3 -testdb test.db.bu -sqlbody {
  ANALYZE main.t1
}

ifcapable reindex {
  do_malloc_test mallocA-2 -testdb test.db.bu -sqlbody {
    REINDEX;
  }
  do_malloc_test mallocA-3 -testdb test.db.bu -sqlbody {
    REINDEX t1;
  }
  do_malloc_test mallocA-4 -testdb test.db.bu -sqlbody {
    REINDEX main.t1;
  }
  do_malloc_test mallocA-5 -testdb test.db.bu -sqlbody {
    REINDEX nocase;
  }
}

reset_db
sqlite3_db_config_lookaside db 0 0 0
do_execsql_test 6-prep {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a, b);
  INSERT INTO t1 VALUES('abc', 'w'); -- rowid=1
  INSERT INTO t1 VALUES('abc', 'x'); -- rowid=2
  INSERT INTO t1 VALUES('abc', 'y'); -- rowid=3
  INSERT INTO t1 VALUES('abc', 'z'); -- rowid=4

  INSERT INTO t1 VALUES('def', 'w'); -- rowid=5
  INSERT INTO t1 VALUES('def', 'x'); -- rowid=6
  INSERT INTO t1 VALUES('def', 'y'); -- rowid=7
  INSERT INTO t1 VALUES('def', 'z'); -- rowid=8

  ANALYZE;
}

do_faultsim_test 6.1 -faults oom* -body {
  execsql { SELECT rowid FROM t1 WHERE a='abc' AND b='x' }
} -test {
  faultsim_test_result [list 0 2]
}
do_faultsim_test 6.2 -faults oom* -body {
  execsql { SELECT rowid FROM t1 WHERE a='abc' AND b<'y' }
} -test {
  faultsim_test_result [list 0 {1 2}]
}
ifcapable stat3 {
  do_test 6.3-prep {
    execsql {
      PRAGMA writable_schema = 1;
      CREATE TABLE sqlite_stat4 AS 
      SELECT tbl, idx, neq, nlt, ndlt, sqlite_record(sample) AS sample 
      FROM sqlite_stat3;
    }
  } {}
  do_faultsim_test 6.3 -faults oom* -body {
    execsql { 
      ANALYZE sqlite_master;
      SELECT rowid FROM t1 WHERE a='abc' AND b<'y';
    }
  } -test {
    faultsim_test_result [list 0 {1 2}]
  }
}

# Ensure that no file descriptors were leaked.
do_test malloc-99.X {
  catch {db close}
  set sqlite_open_file_count
} {0}

forcedelete test.db.bu
finish_test
Changes to test/malloc_common.tcl.
89
90
91
92
93
94
95








96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116


117
118
119
120
121
122
123
  -injectinstall   cantopen_injectinstall    \
  -injectstart     {cantopen_injectstart 1}  \
  -injectstop      cantopen_injectstop       \
  -injecterrlist   {{1 {unable to open database file}}}  \
  -injectuninstall cantopen_injectuninstall  \
]











#--------------------------------------------------------------------------
# Usage do_faultsim_test NAME ?OPTIONS...? 
#
#     -faults           List of fault types to simulate.
#
#     -prep             Script to execute before -body.
#
#     -body             Script to execute (with fault injection).
#
#     -test             Script to execute after -body.
#
#     -install          Script to execute after faultsim -injectinstall
#
#     -uninstall        Script to execute after faultsim -uninjectinstall
#
proc do_faultsim_test {name args} {
  global FAULTSIM
  
  set DEFAULT(-faults)        [array names FAULTSIM]


  set DEFAULT(-prep)          ""
  set DEFAULT(-body)          ""
  set DEFAULT(-test)          ""
  set DEFAULT(-install)       ""
  set DEFAULT(-uninstall)     ""

  fix_testname name







>
>
>
>
>
>
>
>




















|
>
>







89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
  -injectinstall   cantopen_injectinstall    \
  -injectstart     {cantopen_injectstart 1}  \
  -injectstop      cantopen_injectstop       \
  -injecterrlist   {{1 {unable to open database file}}}  \
  -injectuninstall cantopen_injectuninstall  \
]

set FAULTSIM(interrupt) [list                 \
  -injectinstall   interrupt_injectinstall    \
  -injectstart     interrupt_injectstart      \
  -injectstop      interrupt_injectstop       \
  -injecterrlist   {{1 interrupted} {1 interrupt}}        \
  -injectuninstall interrupt_injectuninstall  \
]



#--------------------------------------------------------------------------
# Usage do_faultsim_test NAME ?OPTIONS...? 
#
#     -faults           List of fault types to simulate.
#
#     -prep             Script to execute before -body.
#
#     -body             Script to execute (with fault injection).
#
#     -test             Script to execute after -body.
#
#     -install          Script to execute after faultsim -injectinstall
#
#     -uninstall        Script to execute after faultsim -uninjectinstall
#
proc do_faultsim_test {name args} {
  global FAULTSIM
  
  foreach n [array names FAULTSIM] {
    if {$n != "interrupt"} {lappend DEFAULT(-faults) $n}
  }
  set DEFAULT(-prep)          ""
  set DEFAULT(-body)          ""
  set DEFAULT(-test)          ""
  set DEFAULT(-install)       ""
  set DEFAULT(-uninstall)     ""

  fix_testname name
250
251
252
253
254
255
256
















257
258
259
260
261
262
263
}
proc cantopen_injectstart {persist iFail} {
  shmfault cantopen $iFail $persist
}
proc cantopen_injectstop {} {
  shmfault cantopen
}

















# This command is not called directly. It is used by the 
# [faultsim_test_result] command created by [do_faultsim_test] and used
# by -test scripts.
#
proc faultsim_test_result_int {args} {
  upvar testrc testrc testresult testresult testnfail testnfail







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
}
proc cantopen_injectstart {persist iFail} {
  shmfault cantopen $iFail $persist
}
proc cantopen_injectstop {} {
  shmfault cantopen
}

# The following procs are used as [do_one_faultsim_test] callbacks 
# when injecting SQLITE_INTERRUPT error faults into test cases.
#
proc interrupt_injectinstall {} {
}
proc interrupt_injectuninstall {} {
}
proc interrupt_injectstart {iFail} {
  set ::sqlite_interrupt_count $iFail
}
proc interrupt_injectstop {} {
  set res [expr $::sqlite_interrupt_count<=0]
  set ::sqlite_interrupt_count 0
  set res
}

# This command is not called directly. It is used by the 
# [faultsim_test_result] command created by [do_faultsim_test] and used
# by -test scripts.
#
proc faultsim_test_result_int {args} {
  upvar testrc testrc testresult testresult testnfail testnfail
Changes to test/memsubsys1.test.
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Test 2:  Activate PAGECACHE with 20 pages
#
db close
sqlite3_shutdown
sqlite3_config_pagecache [expr 1024+$xtra_size] 20
sqlite3_initialize
reset_highwater_marks
build_test_db memsubsys1-2 {PRAGMA page_size=1024}
#show_memstats
set MEMORY_MANAGEMENT $sqlite_options(memorymanage)
ifcapable !malloc_usable_size {
 do_test memsubsys1-2.3 {
    set pg_ovfl [lindex [sqlite3_status SQLITE_STATUS_PAGECACHE_OVERFLOW 0] 2]
  } [expr ($TEMP_STORE>1 || $MEMORY_MANAGEMENT==0)*1024]
}







|







90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Test 2:  Activate PAGECACHE with 20 pages
#
db close
sqlite3_shutdown
sqlite3_config_pagecache [expr 1024+$xtra_size] 20
sqlite3_initialize
reset_highwater_marks
build_test_db memsubsys1-2 {PRAGMA page_size=1024; PRAGMA mmap_size=0}
#show_memstats
set MEMORY_MANAGEMENT $sqlite_options(memorymanage)
ifcapable !malloc_usable_size {
 do_test memsubsys1-2.3 {
    set pg_ovfl [lindex [sqlite3_status SQLITE_STATUS_PAGECACHE_OVERFLOW 0] 2]
  } [expr ($TEMP_STORE>1 || $MEMORY_MANAGEMENT==0)*1024]
}
Changes to test/misc7.test.
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
sqlite3 db test.db

ifcapable explain {
  do_execsql_test misc7-14.1 {
    CREATE TABLE abc(a PRIMARY KEY, b, c);
    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 WHERE rowid = 1;
  } {
    0 0 0 {SEARCH TABLE abc AS t2 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
  }
  do_execsql_test misc7-14.2 {
    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 WHERE a = 1;
  } {0 0 0 
     {SEARCH TABLE abc AS t2 USING INDEX sqlite_autoindex_abc_1 (a=?) (~1 rows)}
  }
  do_execsql_test misc7-14.3 {
    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 ORDER BY a;
  } {0 0 0 
     {SCAN TABLE abc AS t2 USING INDEX sqlite_autoindex_abc_1 (~1000000 rows)}
  }
}

db close
forcedelete test.db
forcedelete test.db-journal
sqlite3 db test.db







|




|




|







265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
sqlite3 db test.db

ifcapable explain {
  do_execsql_test misc7-14.1 {
    CREATE TABLE abc(a PRIMARY KEY, b, c);
    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 WHERE rowid = 1;
  } {
    0 0 0 {SEARCH TABLE abc AS t2 USING INTEGER PRIMARY KEY (rowid=?)}
  }
  do_execsql_test misc7-14.2 {
    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 WHERE a = 1;
  } {0 0 0 
     {SEARCH TABLE abc AS t2 USING INDEX sqlite_autoindex_abc_1 (a=?)}
  }
  do_execsql_test misc7-14.3 {
    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 ORDER BY a;
  } {0 0 0 
     {SCAN TABLE abc AS t2 USING INDEX sqlite_autoindex_abc_1}
  }
}

db close
forcedelete test.db
forcedelete test.db-journal
sqlite3 db test.db
Changes to test/mmap3.test.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
ifcapable !mmap {
  finish_test
  return
}
source $testdir/lock_common.tcl
set testprefix mmap3

do_test mmap3-1.0 {







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
ifcapable !mmap||!vtab {
  finish_test
  return
}
source $testdir/lock_common.tcl
set testprefix mmap3

do_test mmap3-1.0 {
Added test/mmapfault.test.


























































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# 2013-05-23
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/malloc_common.tcl
ifcapable !mmap {
  finish_test
  return
}
set testprefix mmapfault

set a_string_counter 1
proc a_string {n} {
  global a_string_counter
  incr a_string_counter
  string range [string repeat "${a_string_counter}." $n] 1 $n
}
db func a_string a_string

do_test 1-pre {
  execsql {
    CREATE TABLE t1(a UNIQUE, b UNIQUE);
    INSERT INTO t1 VALUES(a_string(200), a_string(300));
    INSERT INTO t1 SELECT a_string(200), a_string(300) FROM t1;
    INSERT INTO t1 SELECT a_string(200), a_string(300) FROM t1;
  }
  faultsim_save_and_close
} {}


do_faultsim_test 1 -prep {
  faultsim_restore_and_reopen
  db func a_string a_string
  breakpoint
  execsql {
    PRAGMA mmap_size = 1000000;
    PRAGMA cache_size = 5;
    BEGIN;
      INSERT INTO t1 SELECT a_string(200), a_string(300) FROM t1;
      INSERT INTO t1 SELECT a_string(200), a_string(300) FROM t1;
      INSERT INTO t1 SELECT a_string(200), a_string(300) FROM t1;
      INSERT INTO t1 SELECT a_string(200), a_string(300) FROM t1;
  }
} -body {
  execsql { INSERT INTO t1 VALUES(a_string(200), a_string(300)) }
} -test {
  faultsim_test_result {0 {}} 

  if {[sqlite3_get_autocommit db]} {
    sqlite3 db2 test.db
    set nRow [db2 one {SELECT count(*) FROM t1}]
    if {$nRow!=4} { error "Database content appears incorrect (1)" }
    db2 close
  }

  execsql { INSERT INTO t1 VALUES(a_string(201), a_string(301)) }
  set nRow [db one {SELECT count(*) FROM t1}]
  if {$nRow!=5 && $nRow!=66 && $nRow!=65} { 
    error "Database content appears incorrect (2) ($nRow)" 
  }

  catch { execsql COMMIT }
}



finish_test
Changes to test/notify3.test.
146
147
148
149
150
151
152
153
}
catch { db1 close }
catch { db2 close }


sqlite3_enable_shared_cache $esc
finish_test








<
146
147
148
149
150
151
152

}
catch { db1 close }
catch { db2 close }


sqlite3_enable_shared_cache $esc
finish_test

Changes to test/orderby1.test.
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140
141
142
143
144

145
146
147
148
149
150

151
152
153
154
155
156
157
158
159
        (NULL, 2, 1, 'two-a'),
        (NULL, 3, 1, 'three-a');
    COMMIT;
  }
} {}
do_test 1.1a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}

# Verify that the ORDER BY clause is optimized out
#
do_test 1.1b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {~/ORDER BY/}  ;# ORDER BY optimized out

# The same query with ORDER BY clause optimization disabled via + operators
# should give exactly the same answer.
#
do_test 1.2a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn
  }
} {one-a one-c two-a two-b three-a three-c}

# The output is sorted manually in this case.
#
do_test 1.2b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to "+" on ORDER BY terms

# The same query with ORDER BY optimizations turned off via built-in test.
#
do_test 1.3a {
  optimization_control db order-by-idx-join 0
  db cache flush
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 1.3b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to disabled optimization
optimization_control db all 1
db cache flush

# Reverse order sorts
#
do_test 1.4a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {three-a three-c two-a two-b one-a one-c}
do_test 1.4b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title DESC, +tn
  }
} {three-a three-c two-a two-b one-a one-c}  ;# verify same order after sorting
do_test 1.4c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {~/ORDER BY/}  ;# optimized out


do_test 1.5a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}
do_test 1.5b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}  ;# verify same order after sorting
do_test 1.5c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {~/ORDER BY/}  ;# optimized out

do_test 1.6a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn DESC

  }
} {three-c three-a two-b two-a one-c one-a}
do_test 1.6b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title DESC, +tn DESC

  }
} {three-c three-a two-b two-a one-c one-a}  ;# verify same order after sorting
do_test 1.6c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn DESC

  }
} {~/ORDER BY/}  ;# ORDER BY optimized-out


# Reconstruct the test data to use indices rather than integer primary keys.
#
do_test 2.0 {
  db eval {
    BEGIN;







|

















|








|









|





|









|




|





|

|
<



|




|





|

|



|
>




|
>





|
>

|







44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        (NULL, 2, 1, 'two-a'),
        (NULL, 3, 1, 'three-a');
    COMMIT;
  }
} {}
do_test 1.1a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}

# Verify that the ORDER BY clause is optimized out
#
do_test 1.1b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {~/ORDER BY/}  ;# ORDER BY optimized out

# The same query with ORDER BY clause optimization disabled via + operators
# should give exactly the same answer.
#
do_test 1.2a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn
  }
} {one-a one-c two-a two-b three-a three-c}

# The output is sorted manually in this case.
#
do_test 1.2b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to "+" on ORDER BY terms

# The same query with ORDER BY optimizations turned off via built-in test.
#
do_test 1.3a {
  optimization_control db order-by-idx-join 0
  db cache flush
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 1.3b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to disabled optimization
optimization_control db all 1
db cache flush

# Reverse order sorts
#
do_test 1.4a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {three-a three-c two-a two-b one-a one-c}
do_test 1.4b {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title DESC, +tn
  }
} {three-a three-c two-a two-b one-a one-c}  ;# verify same order after sorting
do_test 1.4c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {~/ORDER BY/}  ;# ORDER BY suppressed due to uniqueness constraints


do_test 1.5a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}
do_test 1.5b {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}  ;# verify same order after sorting
do_test 1.5c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {~/ORDER BY/}  ;# ORDER BY suppressed due to uniqueness constraints

do_test 1.6a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid)
     ORDER BY title DESC, tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}
do_test 1.6b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid)
     ORDER BY +title DESC, +tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}  ;# verify same order after sorting
do_test 1.6c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid)
     ORDER BY title DESC, tn DESC
  }
} {~/ORDER BY/}  ;# ORDER BY 


# Reconstruct the test data to use indices rather than integer primary keys.
#
do_test 2.0 {
  db eval {
    BEGIN;
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
        (20, 1, 'two-a'),
        (3,  1, 'three-a');
    COMMIT;
  }
} {}
do_test 2.1a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}

# Verify that the ORDER BY clause is optimized out
#
do_test 2.1b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {~/ORDER BY/}  ;# ORDER BY optimized out

do_test 2.1c {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, aid, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 2.1d {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, aid, tn
  }
} {~/ORDER BY/}  ;# ORDER BY optimized out

# The same query with ORDER BY clause optimization disabled via + operators
# should give exactly the same answer.
#
do_test 2.2a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn
  }
} {one-a one-c two-a two-b three-a three-c}

# The output is sorted manually in this case.
#
do_test 2.2b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to "+" on ORDER BY terms

# The same query with ORDER BY optimizations turned off via built-in test.
#
do_test 2.3a {
  optimization_control db order-by-idx-join 0
  db cache flush
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 2.3b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to disabled optimization
optimization_control db all 1
db cache flush

# Reverse order sorts
#
do_test 2.4a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {three-a three-c two-a two-b one-a one-c}
do_test 2.4b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title DESC, +tn
  }
} {three-a three-c two-a two-b one-a one-c}  ;# verify same order after sorting
do_test 2.4c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {~/ORDER BY/}  ;# optimized out


do_test 2.5a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}
do_test 2.5b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}  ;# verify same order after sorting
do_test 2.5c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {~/ORDER BY/}  ;# optimized out

do_test 2.6a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}
do_test 2.6b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title DESC, +tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}  ;# verify same order after sorting
do_test 2.6c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {~/ORDER BY/}  ;# ORDER BY optimized out


# Generate another test dataset, but this time using mixed ASC/DESC indices.
#
do_test 3.0 {
  db eval {
    BEGIN;







|








|

|



|





|

|






|








|









|





|









|




|





|

|




|




|





|

|



|




|





|

|







181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        (20, 1, 'two-a'),
        (3,  1, 'three-a');
    COMMIT;
  }
} {}
do_test 2.1a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}

# Verify that the ORDER BY clause is optimized out
#
do_test 2.1b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {/ORDER BY/}  ;# ORDER BY required because of missing aid term in ORDER BY

do_test 2.1c {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, aid, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 2.1d {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, aid, tn
  }
} {/ORDER BY/}  ;# ORDER BY required in this case

# The same query with ORDER BY clause optimization disabled via + operators
# should give exactly the same answer.
#
do_test 2.2a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn
  }
} {one-a one-c two-a two-b three-a three-c}

# The output is sorted manually in this case.
#
do_test 2.2b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to "+" on ORDER BY terms

# The same query with ORDER BY optimizations turned off via built-in test.
#
do_test 2.3a {
  optimization_control db order-by-idx-join 0
  db cache flush
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 2.3b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to disabled optimization
optimization_control db all 1
db cache flush

# Reverse order sorts
#
do_test 2.4a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {three-a three-c two-a two-b one-a one-c}
do_test 2.4b {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title DESC, +tn
  }
} {three-a three-c two-a two-b one-a one-c}  ;# verify same order after sorting
do_test 2.4c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {/ORDER BY/}  ;# separate sorting pass due to mixed DESC/ASC


do_test 2.5a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}
do_test 2.5b {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}  ;# verify same order after sorting
do_test 2.5c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {/ORDER BY/}  ;# separate sorting pass due to mixed ASC/DESC

do_test 2.6a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}
do_test 2.6b {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title DESC, +tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}  ;# verify same order after sorting
do_test 2.6c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {/ORDER BY/}  ;# ORDER BY required


# Generate another test dataset, but this time using mixed ASC/DESC indices.
#
do_test 3.0 {
  db eval {
    BEGIN;
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

428
429
430
431
432
433
434
435

















436
437
438
} {~/ORDER BY/}  ;# ORDER BY optimized out

# The same query with ORDER BY clause optimization disabled via + operators
# should give exactly the same answer.
#
do_test 3.2a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}

# The output is sorted manually in this case.
#
do_test 3.2b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {/ORDER BY/}   ;# separate sorting pass due to "+" on ORDER BY terms

# The same query with ORDER BY optimizations turned off via built-in test.
#
do_test 3.3a {
  optimization_control db order-by-idx-join 0
  db cache flush
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}
do_test 3.3b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {/ORDER BY/}   ;# separate sorting pass due to disabled optimization
optimization_control db all 1
db cache flush

# Without the mixed ASC/DESC on ORDER BY
#
do_test 3.4a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 3.4b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn
  }
} {one-a one-c two-a two-b three-a three-c}  ;# verify same order after sorting
do_test 3.4c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {~/ORDER BY/}  ;# optimized out


do_test 3.5a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}
do_test 3.5b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title DESC, +tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}  ;# verify same order after sorting
do_test 3.5c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {~/ORDER BY/}  ;# optimzed out


do_test 3.6a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {three-a three-c two-a two-b one-a one-c}
do_test 3.6b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title DESC, +tn

  }
} {three-a three-c two-a two-b one-a one-c}  ;# verify same order after sorting
do_test 3.6c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {~/ORDER BY/}  ;# inverted ASC/DESC is optimized out



















finish_test







|








|









|





|









|




|





|

|
<



|




|





|

|









|
>








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
} {~/ORDER BY/}  ;# ORDER BY optimized out

# The same query with ORDER BY clause optimization disabled via + operators
# should give exactly the same answer.
#
do_test 3.2a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}

# The output is sorted manually in this case.
#
do_test 3.2b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {/ORDER BY/}   ;# separate sorting pass due to "+" on ORDER BY terms

# The same query with ORDER BY optimizations turned off via built-in test.
#
do_test 3.3a {
  optimization_control db order-by-idx-join 0
  db cache flush
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}
do_test 3.3b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {/ORDER BY/}   ;# separate sorting pass due to disabled optimization
optimization_control db all 1
db cache flush

# Without the mixed ASC/DESC on ORDER BY
#
do_test 3.4a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 3.4b {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn
  }
} {one-a one-c two-a two-b three-a three-c}  ;# verify same order after sorting
do_test 3.4c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {~/ORDER BY/}  ;# ORDER BY suppressed by uniqueness constraints


do_test 3.5a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}
do_test 3.5b {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title DESC, +tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}  ;# verify same order after sorting
do_test 3.5c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {~/ORDER BY/}  ;# ORDER BY suppressed by uniqueness constraints


do_test 3.6a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {three-a three-c two-a two-b one-a one-c}
do_test 3.6b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid)
     ORDER BY +title DESC, +tn
  }
} {three-a three-c two-a two-b one-a one-c}  ;# verify same order after sorting
do_test 3.6c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {~/ORDER BY/}  ;# inverted ASC/DESC is optimized out

# Ticket 5ed1772895bf3deeab78c5e3519b1da9165c541b (2013-06-04)
# Incorrect ORDER BY on an indexed JOIN
#
do_test 4.0 {
  db eval {
    CREATE TABLE t41(a INT UNIQUE NOT NULL, b INT NOT NULL);
    CREATE INDEX t41ba ON t41(b,a);
    CREATE TABLE t42(x INT NOT NULL REFERENCES t41(a), y INT NOT NULL);
    CREATE UNIQUE INDEX t42xy ON t42(x,y);
    INSERT INTO t41 VALUES(1,1),(3,1);
    INSERT INTO t42 VALUES(1,13),(1,15),(3,14),(3,16);
    
    SELECT b, y FROM t41 CROSS JOIN t42 ON x=a ORDER BY b, y;
  }
} {1 13 1 14 1 15 1 16}



finish_test
Added test/orderby5.test.


































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# 2013-06-14
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing that the optimizations that disable
# ORDER BY clauses work correctly
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix orderby5

# Generate test data for a join.  Verify that the join gets the
# correct answer.
#
do_execsql_test 1.1 {
  CREATE TABLE t1(a,b,c);
  CREATE INDEX t1bc ON t1(b,c);

  EXPLAIN QUERY PLAN
  SELECT DISTINCT a, b, c FROM t1 WHERE a=0;
} {~/B-TREE/}
do_execsql_test 1.2.1 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT a, c, b FROM t1 WHERE a=0;
} {~/B-TREE/}
do_execsql_test 1.2.2 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT a, c, b FROM t1 WHERE a='xyz' COLLATE nocase;
} {/B-TREE/}
do_execsql_test 1.2.3 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT a COLLATE nocase, c, b FROM t1 WHERE a='xyz';
} {/B-TREE/}
do_execsql_test 1.2.4 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT a COLLATE nocase, c, b FROM t1 WHERE a='xyz' COLLATE nocase;
} {~/B-TREE/}
do_execsql_test 1.3 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT b, a, c FROM t1 WHERE a=0;
} {~/B-TREE/}
do_execsql_test 1.4 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT b, c, a FROM t1 WHERE a=0;
} {~/B-TREE/}
do_execsql_test 1.5 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT c, a, b FROM t1 WHERE a=0;
} {~/B-TREE/}
do_execsql_test 1.6 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT c, b, a FROM t1 WHERE a=0;
} {~/B-TREE/}
do_execsql_test 1.7 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT c, b, a FROM t1 WHERE +a=0;
} {/B-TREE/}
do_execsql_test 2.1 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY a, b, c;
} {~/B-TREE/}
do_execsql_test 2.2 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE +a=0 ORDER BY a, b, c;
} {/B-TREE/}
do_execsql_test 2.3 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY b, a, c;
} {~/B-TREE/}
do_execsql_test 2.4 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY b, c, a;
} {~/B-TREE/}
do_execsql_test 2.5 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY a, c, b;
} {/B-TREE/}
do_execsql_test 2.6 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY c, a, b;
} {/B-TREE/}
do_execsql_test 2.7 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY c, b, a;
} {/B-TREE/}


finish_test
Changes to test/pager1.test.
2811
2812
2813
2814
2815
2816
2817
2818

do_test 43.3 {
  db eval { SELECT * FROM t3 }
  sqlite3_db_status db CACHE_MISS 0
} {0 1 0}

finish_test








<
2811
2812
2813
2814
2815
2816
2817


do_test 43.3 {
  db eval { SELECT * FROM t3 }
  sqlite3_db_status db CACHE_MISS 0
} {0 1 0}

finish_test

Changes to test/pagerfault.test.
1542
1543
1544
1545
1546
1547
1548
1549
  catch { db2 close }
}

sqlite3_shutdown
sqlite3_config_uri 0

finish_test








<
1542
1543
1544
1545
1546
1547
1548

  catch { db2 close }
}

sqlite3_shutdown
sqlite3_config_uri 0

finish_test

Changes to test/pagerfault2.test.
92
93
94
95
96
97
98
99
  execsql { INSERT INTO t1 VALUES (a_string(2000000), a_string(2500000)) }
} -test {
  faultsim_test_result {0 {}}
}

sqlite3_memdebug_vfs_oom_test 1
finish_test








<
92
93
94
95
96
97
98

  execsql { INSERT INTO t1 VALUES (a_string(2000000), a_string(2500000)) }
} -test {
  faultsim_test_result {0 {}}
}

sqlite3_memdebug_vfs_oom_test 1
finish_test

Changes to test/pagerfault3.test.
57
58
59
60
61
62
63
64
  }
} -test {
  faultsim_test_result {0 {}} 
  faultsim_integrity_check
}

finish_test








<
57
58
59
60
61
62
63

  }
} -test {
  faultsim_test_result {0 {}} 
  faultsim_integrity_check
}

finish_test

Changes to test/pcache.test.
40
41
42
43
44
45
46

47
48
49
50
51
52
53
} {current 0 max 0 min 0 recyclable 0}

do_test pcache-1.2 {
  sqlite3 db test.db
  execsql {
    PRAGMA cache_size=12;
    PRAGMA auto_vacuum=0;

  }
  pcache_stats
} {current 1 max 12 min 10 recyclable 1}

do_test pcache-1.3 {
  execsql {
    BEGIN;







>







40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
} {current 0 max 0 min 0 recyclable 0}

do_test pcache-1.2 {
  sqlite3 db test.db
  execsql {
    PRAGMA cache_size=12;
    PRAGMA auto_vacuum=0;
    PRAGMA mmap_size=0;
  }
  pcache_stats
} {current 1 max 12 min 10 recyclable 1}

do_test pcache-1.3 {
  execsql {
    BEGIN;
Changes to test/percentile.test.
176
177
178
179
180
181
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

205
206
207
    UPDATE t1 SET x=-1.0e300*1.0e300 WHERE rowid=5;
    SELECT percentile(x,50) from t1;
  }
} {1 {Inf input to percentile()}}

# Million-row Inputs
#

do_test percentile-2.0 {
  load_static_extension db wholenumber
  execsql {
    CREATE VIRTUAL TABLE nums USING wholenumber;
    CREATE TABLE t3(x);
    INSERT INTO t3 SELECT value-1 FROM nums WHERE value BETWEEN 1 AND 500000;
    INSERT INTO t3 SELECT value*10 FROM nums
                    WHERE value BETWEEN 500000 AND 999999;
    SELECT count(*) FROM t3;
  }
} {1000000}
foreach {in out} {
    0          0.0
  100    9999990.0
   50    2749999.5
   10      99999.9
} {
  do_test percentile-2.1.$in {
    execsql {
      SELECT percentile(x, $in) from t3;
    }
  } $out

}

finish_test







>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>



176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    UPDATE t1 SET x=-1.0e300*1.0e300 WHERE rowid=5;
    SELECT percentile(x,50) from t1;
  }
} {1 {Inf input to percentile()}}

# Million-row Inputs
#
ifcapable vtab {
  do_test percentile-2.0 {
    load_static_extension db wholenumber
    execsql {
      CREATE VIRTUAL TABLE nums USING wholenumber;
      CREATE TABLE t3(x);
      INSERT INTO t3 SELECT value-1 FROM nums WHERE value BETWEEN 1 AND 500000;
      INSERT INTO t3 SELECT value*10 FROM nums
                      WHERE value BETWEEN 500000 AND 999999;
      SELECT count(*) FROM t3;
    }
  } {1000000}
  foreach {in out} {
      0          0.0
    100    9999990.0
     50    2749999.5
     10      99999.9
  } {
    do_test percentile-2.1.$in {
      execsql {
        SELECT percentile(x, $in) from t3;
      }
    } $out
  }
}

finish_test
Changes to test/permutations.test.
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214












































































215
216
217
218
219
220
221
  fts3near.test fts3query.test fts3shared.test fts3snippet.test 
  fts3sort.test
  fts3fault.test fts3malloc.test fts3matchinfo.test
  fts3aux1.test fts3comp1.test fts3auto.test
  fts4aa.test fts4content.test
  fts3conf.test fts3prefix.test fts3fault2.test fts3corrupt.test
  fts3corrupt2.test fts3first.test fts4langid.test fts4merge.test
  fts4check.test fts4unicode.test
}

test_suite "nofaultsim" -prefix "" -description {
  "Very" quick test suite. Runs in less than 5 minutes on a workstation. 
  This test suite is the same as the "quick" tests, except that some files
  that test malloc and IO errors are omitted.
} -files [
  test_set $allquicktests -exclude *malloc* *ioerr* *fault*
] -initialize {
  catch {db close}
  sqlite3_shutdown
  install_malloc_faultsim 0
  sqlite3_initialize
  autoinstall_test_functions
} -shutdown {
  unset -nocomplain ::G(valgrind)
}













































































lappend ::testsuitelist xxx
#-------------------------------------------------------------------------
# Define the coverage related test suites:
#
#   coverage-wal
#







|

















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
  fts3near.test fts3query.test fts3shared.test fts3snippet.test 
  fts3sort.test
  fts3fault.test fts3malloc.test fts3matchinfo.test
  fts3aux1.test fts3comp1.test fts3auto.test
  fts4aa.test fts4content.test
  fts3conf.test fts3prefix.test fts3fault2.test fts3corrupt.test
  fts3corrupt2.test fts3first.test fts4langid.test fts4merge.test
  fts4check.test fts4unicode.test fts4noti.test
}

test_suite "nofaultsim" -prefix "" -description {
  "Very" quick test suite. Runs in less than 5 minutes on a workstation. 
  This test suite is the same as the "quick" tests, except that some files
  that test malloc and IO errors are omitted.
} -files [
  test_set $allquicktests -exclude *malloc* *ioerr* *fault*
] -initialize {
  catch {db close}
  sqlite3_shutdown
  install_malloc_faultsim 0
  sqlite3_initialize
  autoinstall_test_functions
} -shutdown {
  unset -nocomplain ::G(valgrind)
}

test_suite "queryplanner" -prefix "" -description {
  Tests of the query planner and query optimizer
} -files {
  alter2.test alter3.test alter4.test alter.test analyze3.test
  analyze4.test analyze5.test analyze6.test analyze7.test analyze8.test
  analyze.test attach2.test attach3.test attach4.test
  attach.test autoinc.test autoindex1.test between.test cast.test
  check.test closure01.test coalesce.test collate1.test collate2.test
  collate3.test collate4.test collate5.test collate6.test collate7.test
  collate8.test collate9.test collateA.test colmeta.test colname.test
  conflict.test count.test coveridxscan.test createtab.test cse.test
  date.test dbstatus2.test dbstatus.test default.test delete2.test
  delete3.test delete.test descidx1.test descidx2.test descidx3.test
  distinctagg.test distinct.test e_createtable.test e_delete.test
  e_droptrigger.test e_dropview.test e_expr.test e_insert.test
  eqp.test e_reindex.test e_resolve.test e_select2.test e_select.test
  e_update.test exists.test expr.test fkey1.test fkey2.test fkey3.test
  fkey4.test fkey5.test func2.test func3.test func.test 
  in3.test in4.test in5.test index2.test index3.test
  index4.test index5.test indexedby.test index.test
  insert2.test insert3.test insert4.test insert5.test insert.test
  instr.test in.test intpkey.test join2.test join3.test join4.test
  join5.test join6.test join.test like2.test like.test limit.test
  minmax2.test minmax3.test minmax4.test minmax.test misc1.test misc2.test
  misc3.test misc4.test misc5.test misc6.test misc7.test orderby1.test
  orderby2.test orderby3.test orderby4.test randexpr1.test regexp1.test
  reindex.test rowhash.test rowid.test schema2.test schema3.test
  schema4.test schema5.test schema.test
  select1.test select2.test select3.test select4.test select5.test
  select6.test select7.test select8.test select9.test selectA.test
  selectB.test selectC.test selectD.test selectE.test sidedelete.test
  sort.test spellfix.test subquery2.test subquery.test subselect.test
  substr.test tkt-02a8e81d44.test tkt1435.test tkt1443.test tkt1444.test
  tkt1449.test tkt1473.test tkt1501.test tkt1512.test tkt1514.test
  tkt1536.test tkt1537.test tkt1567.test tkt1644.test tkt1667.test
  tkt1873.test tkt2141.test tkt2192.test tkt2213.test tkt2251.test
  tkt2285.test tkt2332.test tkt2339.test tkt2391.test tkt2409.test
  tkt2450.test tkt2565.test tkt2640.test tkt2643.test tkt2686.test
  tkt-26ff0c2d1e.test tkt2767.test tkt2817.test tkt2820.test tkt2822.test
  tkt2832.test tkt2854.test tkt2920.test tkt2927.test tkt2942.test
  tkt-2a5629202f.test tkt-2d1a5c67d.test tkt-2ea2425d34.test tkt3080.test
  tkt3093.test tkt3121.test tkt-31338dca7e.test tkt-313723c356.test
  tkt3201.test tkt3292.test tkt3298.test tkt3334.test tkt3346.test
  tkt3357.test tkt3419.test tkt3424.test tkt3442.test tkt3457.test
  tkt3461.test tkt3493.test tkt3508.test tkt3522.test tkt3527.test
  tkt3541.test tkt3554.test tkt3581.test tkt35xx.test tkt3630.test
  tkt3718.test tkt3731.test tkt3757.test tkt3761.test tkt3762.test
  tkt3773.test tkt3791.test tkt3793.test tkt3810.test tkt3824.test
  tkt3832.test tkt3838.test tkt3841.test tkt-385a5b56b9.test tkt3871.test
  tkt3879.test tkt-38cb5df375.test tkt3911.test tkt3918.test tkt3922.test
  tkt3929.test tkt3935.test tkt3992.test tkt3997.test tkt-3998683a16.test
  tkt-3a77c9714e.test tkt-3fe897352e.test tkt4018.test tkt-4a03edc4c8.test
  tkt-4dd95f6943.test tkt-54844eea3f.test tkt-5d863f876e.test
  tkt-5e10420e8d.test tkt-5ee23731f.test tkt-6bfb98dfc0.test
  tkt-752e1646fc.test tkt-78e04e52ea.test tkt-7a31705a7e6.test
  tkt-7bbfb7d442.test tkt-80ba201079.test tkt-80e031a00f.test
  tkt-8454a207b9.test tkt-91e2e8ba6f.test tkt-94c04eaadb.test
  tkt-9d68c883.test tkt-a7b7803e.test tkt-b1d3a2e531.test
  tkt-b351d95f9.test tkt-b72787b1.test tkt-bd484a090c.test
  tkt-bdc6bbbb38.test tkt-c48d99d690.test tkt-cbd054fa6b.test
  tkt-d11f09d36e.test tkt-d635236375.test tkt-d82e3f3721.test
  tkt-f3e5abed55.test tkt-f777251dc7a.test tkt-f7b4edec.test
  tkt-f973c7ac31.test tkt-fa7bf5ec.test tkt-fc62af4523.test
  tkt-fc7bd6358f.test trigger1.test trigger2.test trigger3.test
  trigger4.test trigger5.test trigger6.test trigger7.test trigger8.test
  trigger9.test triggerA.test triggerB.test triggerC.test triggerD.test
  types2.test types3.test types.test unique.test unordered.test
  update.test view.test vtab1.test vtab2.test vtab3.test vtab4.test
  vtab5.test vtab6.test vtab7.test vtab8.test vtab9.test vtab_alter.test
  vtabA.test vtabB.test vtabC.test vtabD.test vtabE.test
  vtabF.test where2.test where3.test where4.test where5.test where6.test
  where7.test where8m.test where8.test where9.test whereA.test whereB.test
  whereC.test whereD.test whereE.test whereF.test wherelimit.test
  where.test
}

lappend ::testsuitelist xxx
#-------------------------------------------------------------------------
# Define the coverage related test suites:
#
#   coverage-wal
#
230
231
232
233
234
235
236








237
238
239
240
241
242
243

test_suite "coverage-pager" -description {
  Coverage tests for file pager.c.
} -files {
  pager1.test    pager2.test  pagerfault.test  pagerfault2.test
  walfault.test  walbak.test  journal2.test    tkt-9d68c883.test
} 










lappend ::testsuitelist xxx
#-------------------------------------------------------------------------
# Define the permutation test suites:
#








>
>
>
>
>
>
>
>







306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

test_suite "coverage-pager" -description {
  Coverage tests for file pager.c.
} -files {
  pager1.test    pager2.test  pagerfault.test  pagerfault2.test
  walfault.test  walbak.test  journal2.test    tkt-9d68c883.test
} 

test_suite "coverage-analyze" -description {
  Coverage tests for file analyze.c.
} -files {
  analyze3.test analyze4.test analyze5.test analyze6.test
  analyze7.test analyze8.test analyze9.test analyzeA.test
  analyze.test analyzeB.test mallocA.test
} 


lappend ::testsuitelist xxx
#-------------------------------------------------------------------------
# Define the permutation test suites:
#

420
421
422
423
424
425
426


427
428
429
430
431
432
433
#
test_suite "utf16" -description {
  Run tests using UTF-16 databases
} -presql {
  pragma encoding = 'UTF-16'
} -files {
    alter.test alter3.test


    auth.test bind.test blob.test capi2.test capi3.test collate1.test
    collate2.test collate3.test collate4.test collate5.test collate6.test
    conflict.test date.test delete.test expr.test fkey1.test func.test
    hook.test index.test insert2.test insert.test interrupt.test in.test
    intpkey.test ioerr.test join2.test join.test lastinsert.test
    laststmtchanges.test limit.test lock2.test lock.test main.test 
    memdb.test minmax.test misc1.test misc2.test misc3.test notnull.test







>
>







504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
#
test_suite "utf16" -description {
  Run tests using UTF-16 databases
} -presql {
  pragma encoding = 'UTF-16'
} -files {
    alter.test alter3.test
    analyze.test analyze3.test analyze4.test analyze5.test analyze6.test
    analyze7.test analyze8.test analyze9.test analyzeA.test analyzeB.test
    auth.test bind.test blob.test capi2.test capi3.test collate1.test
    collate2.test collate3.test collate4.test collate5.test collate6.test
    conflict.test date.test delete.test expr.test fkey1.test func.test
    hook.test index.test insert2.test insert.test interrupt.test in.test
    intpkey.test ioerr.test join2.test join.test lastinsert.test
    laststmtchanges.test limit.test lock2.test lock.test main.test 
    memdb.test minmax.test misc1.test misc2.test misc3.test notnull.test
Changes to test/pragma2.test.
18
19
20
21
22
23
24

25
26
27
28
29
30
31
source $testdir/tester.tcl

# Test organization:
#
# pragma2-1.*: Test freelist_count pragma on the main database.
# pragma2-2.*: Test freelist_count pragma on an attached database.
# pragma2-3.*: Test trying to write to the freelist_count is a no-op.

#

ifcapable !pragma||!schema_pragmas {
  finish_test
  return
}








>







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
source $testdir/tester.tcl

# Test organization:
#
# pragma2-1.*: Test freelist_count pragma on the main database.
# pragma2-2.*: Test freelist_count pragma on an attached database.
# pragma2-3.*: Test trying to write to the freelist_count is a no-op.
# pragma2-4.*: Tests for PRAGMA cache_spill
#

ifcapable !pragma||!schema_pragmas {
  finish_test
  return
}

111
112
113
114
115
116
117
118














































































119
  do_test pragma2-3.3 {
    execsql {
      PRAGMA aux.freelist_count = 500;
      PRAGMA aux.freelist_count;
    }
  } {9 9}
}















































































finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
  do_test pragma2-3.3 {
    execsql {
      PRAGMA aux.freelist_count = 500;
      PRAGMA aux.freelist_count;
    }
  } {9 9}
}

# Default setting of PRAGMA cache_spill is always ON
#
db close
delete_file test.db test.db-journal
delete_file test2.db test2.db-journal
sqlite3 db test.db
do_execsql_test pragma2-4.1 {
  PRAGMA cache_spill;
  PRAGMA main.cache_spill;
  PRAGMA temp.cache_spill;
} {1 1 1}
do_execsql_test pragma2-4.2 {
  PRAGMA cache_spill=OFF;
  PRAGMA cache_spill;
  PRAGMA main.cache_spill;
  PRAGMA temp.cache_spill;
} {0 0 0}
do_execsql_test pragma2-4.3 {
  PRAGMA page_size=1024;
  PRAGMA cache_size=50;
  BEGIN;
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c, d);
  INSERT INTO t1 VALUES(1, randomblob(400), 1, randomblob(400));
  INSERT INTO t1 SELECT a+1, randomblob(400), a+1, randomblob(400) FROM t1;
  INSERT INTO t1 SELECT a+2, randomblob(400), a+2, randomblob(400) FROM t1;
  INSERT INTO t1 SELECT a+4, randomblob(400), a+4, randomblob(400) FROM t1;
  INSERT INTO t1 SELECT a+8, randomblob(400), a+8, randomblob(400) FROM t1;
  INSERT INTO t1 SELECT a+16, randomblob(400), a+16, randomblob(400) FROM t1;
  INSERT INTO t1 SELECT a+32, randomblob(400), a+32, randomblob(400) FROM t1;
  INSERT INTO t1 SELECT a+64, randomblob(400), a+64, randomblob(400) FROM t1;
  COMMIT;
  ATTACH 'test2.db' AS aux1;
  CREATE TABLE aux1.t2(a INTEGER PRIMARY KEY, b, c, d);
  INSERT INTO t2 SELECT * FROM t1;
  DETACH aux1;
  PRAGMA cache_spill=ON;
} {}
sqlite3_release_memory
do_test pragma2-4.4 {
  db eval {
    BEGIN;
    UPDATE t1 SET c=c+1;
    PRAGMA lock_status;
  }
} {main exclusive temp unknown}  ;# EXCLUSIVE lock due to cache spill
do_test pragma2-4.5 {
  db eval {
    COMMIT;
    PRAGMA cache_spill=OFF;
    BEGIN;
    UPDATE t1 SET c=c-1;
    PRAGMA lock_status;
  }
} {main reserved temp unknown}   ;# No cache spill, so no exclusive lock

# Verify that newly attached databases inherit the cache_spill=OFF
# setting.
#
do_execsql_test pragma2-4.6 {
  COMMIT;
  ATTACH 'test2.db' AS aux1;
  PRAGMA aux1.cache_size=50;
  BEGIN;
  UPDATE t2 SET c=c+1;
  PRAGMA lock_status;
} {main unlocked temp unknown aux1 reserved}
do_execsql_test pragma2-4.7 {
  COMMIT;
}
sqlite3_release_memory
do_execsql_test pragma2-4.8 {
  PRAGMA cache_spill=ON; -- Applies to all databases
  BEGIN;
  UPDATE t2 SET c=c-1;
  PRAGMA lock_status;
} {main unlocked temp unknown aux1 exclusive}
   

finish_test
Changes to test/progress.test.
160
161
162
163
164
165
166

167
168
169
170

171
172
173
174
175
176
177
    CREATE TABLE abc(a, b, c);
    INSERT INTO abc VALUES(1, 2, 3);
    INSERT INTO abc VALUES(4, 5, 6);
    INSERT INTO abc VALUES(7, 8, 9);
  }

  set ::res [list]

  db eval {SELECT a, b, c FROM abc} {
    lappend ::res $a $b $c
    db progress 10 "expr 1"
    catch {db eval {SELECT a, b, c FROM abc} { }} msg

    lappend ::res $msg
  }

  set ::res
} {1 2 3 interrupted 4 5 6 interrupted 7 8 9 interrupted}

finish_test







>


|

>







160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    CREATE TABLE abc(a, b, c);
    INSERT INTO abc VALUES(1, 2, 3);
    INSERT INTO abc VALUES(4, 5, 6);
    INSERT INTO abc VALUES(7, 8, 9);
  }

  set ::res [list]
  explain {SELECT a, b, c FROM abc} 
  db eval {SELECT a, b, c FROM abc} {
    lappend ::res $a $b $c
    db progress 5 "expr 1"
    catch {db eval {SELECT a, b, c FROM abc} { }} msg
    db progress 5 "expr 0"
    lappend ::res $msg
  }

  set ::res
} {1 2 3 interrupted 4 5 6 interrupted 7 8 9 interrupted}

finish_test
Added test/queryonly.test.
















































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# 2013-07-11
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file tests the "query_only" pragma.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_execsql_test queryonly-1.1 {
  CREATE TABLE t1(a);
  INSERT INTO t1 VALUES(123),(456);
  SELECT a FROM t1 ORDER BY a;
} {123 456}
do_execsql_test queryonly-1.2 {
  PRAGMA query_only;
} {0}
do_execsql_test queryonly-1.3 {
  PRAGMA query_only=ON;
  PRAGMA query_only;
} {1}
do_test queryonly-1.4 {
  catchsql {INSERT INTO t1 VALUES(789);}
} {1 {attempt to write a readonly database}}
do_test queryonly-1.5 {
  catchsql {DELETE FROM t1;}
} {1 {attempt to write a readonly database}}
do_test queryonly-1.6 {
  catchsql {UPDATE t1 SET a=a+1;}
} {1 {attempt to write a readonly database}}
do_test queryonly-1.7 {
  catchsql {CREATE TABLE t2(b);}
} {1 {attempt to write a readonly database}}
do_test queryonly-1.8 {
  catchsql {CREATE INDEX t1a ON t1(a);}
} {1 {attempt to write a readonly database}}
do_test queryonly-1.9 {
  catchsql {DROP TABLE t1;}
} {1 {attempt to write a readonly database}}
do_test queryonly-1.10 {
  catchsql {ANALYZE;}
} {1 {attempt to write a readonly database}}
do_execsql_test queryonly-1.11 {
  SELECT a FROM t1 ORDER BY a;
} {123 456}

do_execsql_test queryonly-2.2 {
  PRAGMA query_only;
} {1}
do_execsql_test queryonly-2.3 {
  PRAGMA query_only=OFF;
  PRAGMA query_only;
} {0}
do_execsql_test queryonly-2.4 {
  INSERT INTO t1 VALUES(789);
  SELECT a FROM t1 ORDER BY a;
} {123 456 789}
do_execsql_test queryonly-2.5 {
  UPDATE t1 SET a=a+1;
  SELECT a FROM t1 ORDER BY a;
} {124 457 790}

finish_test
Changes to test/resolver01.test.
9
10
11
12
13
14
15


16
17
18
19






20
21
22
23
24
25
26
27
28






































29
30
31
32

































33
34
35











































































36















37
38
39
#
#***********************************************************************
#
# This file tests features of the name resolver (the component that
# figures out what identifiers in the SQL statement refer to) that
# were fixed by ticket [2500cdb9be]
#



set testdir [file dirname $argv0]
source $testdir/tester.tcl







do_test resolver01-1.1 {
  catchsql {
    CREATE TABLE t1(x, y); INSERT INTO t1 VALUES(11,22);
    CREATE TABLE t2(y, z); INSERT INTO t2 VALUES(33,44);
    SELECT 1 AS y FROM t1, t2 ORDER BY y;
  }
} {0 1}
do_test resolver01-1.2 {
  catchsql {






































    SELECT 2 AS y FROM t1, t2 ORDER BY y COLLATE nocase;
  }
} {0 2}
do_test resolver01-1.3 {

































  catchsql {
    SELECT 3 AS y FROM t1, t2 ORDER BY +y;
  }











































































} {0 3}

















finish_test







>
>




>
>
>
>
>
>









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#
#***********************************************************************
#
# This file tests features of the name resolver (the component that
# figures out what identifiers in the SQL statement refer to) that
# were fixed by ticket [2500cdb9be]
#
# See also tickets [1c69be2daf] and [f617ea3125] from 2013-08-14.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# "ORDER BY y" binds to the output result-set column named "y"
# if available.  If no output column is named "y", then try to
# bind against an input column named "y".
#
# This is classical SQL92 behavior.
#
do_test resolver01-1.1 {
  catchsql {
    CREATE TABLE t1(x, y); INSERT INTO t1 VALUES(11,22);
    CREATE TABLE t2(y, z); INSERT INTO t2 VALUES(33,44);
    SELECT 1 AS y FROM t1, t2 ORDER BY y;
  }
} {0 1}
do_test resolver01-1.2 {
  catchsql {
    SELECT 1 AS yy FROM t1, t2 ORDER BY y;
  }
} {1 {ambiguous column name: y}}
do_test resolver01-1.3 {
  catchsql {
    CREATE TABLE t3(x,y); INSERT INTO t3 VALUES(11,44),(33,22);
    SELECT x AS y FROM t3 ORDER BY y;
  }
} {0 {11 33}}
do_test resolver01-1.4 {
  catchsql {
    SELECT x AS yy FROM t3 ORDER BY y;
  }
} {0 {33 11}}

# SQLite allows the WHERE clause to reference output columns if there is
# no other way to resolve the name.
#
do_test resolver01-1.5 {
  catchsql {
    SELECT x AS yy FROM t3 ORDER BY yy;
  }
} {0 {11 33}}
do_test resolver01-1.6 {
  catchsql {
    SELECT x AS yy FROM t3 ORDER BY 1;
  }
} {0 {11 33}}

# The "ORDER BY y COLLATE nocase" form works the same as "ORDER BY y".
# The "y" binds more tightly to output columns than to input columns.
#
# This is for compatibility with SQL92 and with historical SQLite behavior.
# Note that PostgreSQL considers "y COLLATE nocase" to be an expression
# and thus PostgreSQL treats this case as if it where the 3.x case below.
#
do_test resolver01-2.1 {
  catchsql {
    SELECT 2 AS y FROM t1, t2 ORDER BY y COLLATE nocase;
  }
} {0 2}
do_test resolver01-2.2 {
  catchsql {
    SELECT 2 AS yy FROM t1, t2 ORDER BY y COLLATE nocase;
  }
} {1 {ambiguous column name: y}}
do_test resolver01-2.3 {
  catchsql {
    SELECT x AS y FROM t3 ORDER BY y COLLATE nocase;
  }
} {0 {11 33}}
do_test resolver01-2.4 {
  catchsql {
    SELECT x AS yy FROM t3 ORDER BY y COLLATE nocase;
  }
} {0 {33 11}}
do_test resolver01-2.5 {
  catchsql {
    SELECT x AS yy FROM t3 ORDER BY yy COLLATE nocase;
  }
} {0 {11 33}}
do_test resolver01-2.6 {
  catchsql {
    SELECT x AS yy FROM t3 ORDER BY 1 COLLATE nocase;
  }
} {0 {11 33}}

# But if the form is "ORDER BY expr" then bind more tightly to the
# the input column names and only use the output column names if no
# input column name matches.
#
# This is SQL99 behavior, as implemented by PostgreSQL and MS-SQL.
# Note that Oracle works differently.
#
do_test resolver01-3.1 {
  catchsql {
    SELECT 3 AS y FROM t1, t2 ORDER BY +y;
  }
} {1 {ambiguous column name: y}}
do_test resolver01-3.2 {
  catchsql {
    SELECT 2 AS yy FROM t1, t2 ORDER BY +y;
  }
} {1 {ambiguous column name: y}}
do_test resolver01-3.3 {
  catchsql {
    SELECT x AS y FROM t3 ORDER BY +y;
  }
} {0 {33 11}}
do_test resolver01-3.4 {
  catchsql {
    SELECT x AS yy FROM t3 ORDER BY +y;
  }
} {0 {33 11}}
do_test resolver01-3.5 {
  catchsql {
    SELECT x AS yy FROM t3 ORDER BY +yy
  }
} {0 {11 33}}

# This is the test case given in ticket [f617ea3125e9] (with table name
# changed from "t1" to "t4".  The behavior of (1) and (3) match with
# PostgreSQL, but we intentionally break with PostgreSQL to provide
# SQL92 behavior for case (2).
#
do_execsql_test resolver01-4.1 {
  CREATE TABLE t4(m CHAR(2));
  INSERT INTO t4 VALUES('az');
  INSERT INTO t4 VALUES('by');
  INSERT INTO t4 VALUES('cx');
  SELECT '1', substr(m,2) AS m FROM t4 ORDER BY m;
  SELECT '2', substr(m,2) AS m FROM t4 ORDER BY m COLLATE binary;
  SELECT '3', substr(m,2) AS m FROM t4 ORDER BY lower(m);
} {1 x 1 y 1 z 2 x 2 y 2 z 3 z 3 y 3 x}

##########################################################################
# Test cases for ticket [1c69be2dafc28]:  Make sure the GROUP BY binds
# more tightly to the input tables in all cases.
#
# This first case case has been wrong in SQLite for time out of mind.
# For SQLite version 3.7.17 the answer was two rows, which is wrong.
#
do_execsql_test resolver01-5.1 {
  CREATE TABLE t5(m CHAR(2));
  INSERT INTO t5 VALUES('ax');
  INSERT INTO t5 VALUES('bx');
  INSERT INTO t5 VALUES('cy');
  SELECT count(*), substr(m,2,1) AS m FROM t5 GROUP BY m ORDER BY 1, 2;
} {1 x 1 x 1 y}

# This case is unambiguous and has always been correct.
#
do_execsql_test resolver01-5.2 {
  SELECT count(*), substr(m,2,1) AS mx FROM t5 GROUP BY m ORDER BY 1, 2;
} {1 x 1 x 1 y}

# This case is not allowed in standard SQL, but SQLite allows and does
# the sensible thing.
#
do_execsql_test resolver01-5.3 {
  SELECT count(*), substr(m,2,1) AS mx FROM t5 GROUP BY mx ORDER BY 1, 2;
} {1 y 2 x}
do_execsql_test resolver01-5.4 {
  SELECT count(*), substr(m,2,1) AS mx FROM t5
   GROUP BY substr(m,2,1) ORDER BY 1, 2;
} {1 y 2 x}

# These test case weere provided in the 2013-08-14 email from Rob Golsteijn
# that originally reported the problem of ticket [1c69be2dafc28].
#
do_execsql_test resolver01-6.1 {
  CREATE TABLE t61(name);
  SELECT min(name) FROM t61 GROUP BY lower(name);
} {}
do_execsql_test resolver01-6.2 {
  SELECT min(name) AS name FROM t61 GROUP BY lower(name); 
} {}
do_execsql_test resolver01-6.3 {
  CREATE TABLE t63(name);
  INSERT INTO t63 VALUES (NULL);
  INSERT INTO t63 VALUES ('abc');
  SELECT count(),
       NULLIF(name,'abc') AS name
    FROM t63
   GROUP BY lower(name);
} {1 {} 1 {}}





finish_test
Changes to test/securedel2.test.
88
89
90
91
92
93
94
95
  for {set i 2} {$i <= 850} {incr i 5} {
    incr n [detect_blob {} $i]
  }
  set n
} {0}

finish_test








<
88
89
90
91
92
93
94

  for {set i 2} {$i <= 850} {incr i 5} {
    incr n [detect_blob {} $i]
  }
  set n
} {0}

finish_test

Changes to test/select9.test.
445
446
447
448
449
450
451


















452
453
454
} {~/SCAN TABLE/}  ;# Uses indices with "x, y"
do_test select9-5.3 {
  db eval {
    EXPLAIN QUERY PLAN
       SELECT x, y FROM v5 WHERE +x='12345' ORDER BY y;
  }
} {/SCAN TABLE/}   ;# Full table scan if the "+x" prevents index usage.




















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
} {~/SCAN TABLE/}  ;# Uses indices with "x, y"
do_test select9-5.3 {
  db eval {
    EXPLAIN QUERY PLAN
       SELECT x, y FROM v5 WHERE +x='12345' ORDER BY y;
  }
} {/SCAN TABLE/}   ;# Full table scan if the "+x" prevents index usage.

# 2013-07-09:  Ticket [490a4b7235624298]: 
# "WHERE 0" on the first element of a UNION causes an assertion fault
#
do_execsql_test select9-6.1 {
  CREATE TABLE t61(a);
  CREATE TABLE t62(b);
  INSERT INTO t61 VALUES(111);
  INSERT INTO t62 VALUES(222);
  SELECT a FROM t61 WHERE 0 UNION SELECT b FROM t62;
} {222}
do_execsql_test select9-6.2 {
  SELECT a FROM t61 WHERE 0 UNION ALL SELECT b FROM t62;
} {222}
do_execsql_test select9-6.3 {
  SELECT a FROM t61 UNION SELECT b FROM t62 WHERE 0;
} {111}



finish_test
Changes to test/shared8.test.
106
107
108
109
110
111
112
113
  catchsql { SELECT * FROM v1 } db4
} {1 {no such table: v1}}


foreach db {db1 db2 db3 db4} { catch { $db close } }
sqlite3_enable_shared_cache $::enable_shared_cache
finish_test








<
106
107
108
109
110
111
112

  catchsql { SELECT * FROM v1 } db4
} {1 {no such table: v1}}


foreach db {db1 db2 db3 db4} { catch { $db close } }
sqlite3_enable_shared_cache $::enable_shared_cache
finish_test

Changes to test/sharedlock.test.
48
49
50
51
52
53
54
55
} {1 one 2 two 3 three}

db close
db2 close

sqlite3_enable_shared_cache $::enable_shared_cache
finish_test








<
48
49
50
51
52
53
54

} {1 one 2 two 3 three}

db close
db2 close

sqlite3_enable_shared_cache $::enable_shared_cache
finish_test

Changes to test/shell1.test.
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# .import FILE TABLE     Import data from FILE into TABLE
do_test shell1-3.11.1 {
  catchcmd "test.db" ".import"
} {1 {Error: unknown command or invalid arguments:  "import". Enter ".help" for help}}
do_test shell1-3.11.2 {
  catchcmd "test.db" ".import FOO"
} {1 {Error: unknown command or invalid arguments:  "import". Enter ".help" for help}}
do_test shell1-3.11.2 {
  catchcmd "test.db" ".import FOO BAR"
} {1 {Error: no such table: BAR}}
do_test shell1-3.11.3 {
  # too many arguments
  catchcmd "test.db" ".import FOO BAR BAD"
} {1 {Error: unknown command or invalid arguments:  "import". Enter ".help" for help}}

# .indices ?TABLE?       Show names of all indices
#                          If TABLE specified, only show indices for tables







|
|
|







393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# .import FILE TABLE     Import data from FILE into TABLE
do_test shell1-3.11.1 {
  catchcmd "test.db" ".import"
} {1 {Error: unknown command or invalid arguments:  "import". Enter ".help" for help}}
do_test shell1-3.11.2 {
  catchcmd "test.db" ".import FOO"
} {1 {Error: unknown command or invalid arguments:  "import". Enter ".help" for help}}
#do_test shell1-3.11.2 {
#  catchcmd "test.db" ".import FOO BAR"
#} {1 {Error: no such table: BAR}}
do_test shell1-3.11.3 {
  # too many arguments
  catchcmd "test.db" ".import FOO BAR BAD"
} {1 {Error: unknown command or invalid arguments:  "import". Enter ".help" for help}}

# .indices ?TABLE?       Show names of all indices
#                          If TABLE specified, only show indices for tables
705
706
707
708
709
710
711









712
713
714
715



716

717
718
719
720
721
722
723
  catchcmd test.db \
     ".log stdout\nSELECT coalesce(sqlite_log(123,'hello'),'456');"
} "0 {(123) hello\n456}"

do_test shell1-3-29.1 {
  catchcmd "test.db" ".print this is a test"
} {0 {this is a test}}










# Test the output of the ".dump" command
#
do_test shell1-4.1 {



  db eval {

    CREATE TABLE t1(x);
    INSERT INTO t1 VALUES(null), (''), (1), (2.25), ('hello'), (x'807f');
  }
  catchcmd test.db {.dump}
} {0 {PRAGMA foreign_keys=OFF;
BEGIN TRANSACTION;
CREATE TABLE t1(x);







>
>
>
>
>
>
>
>
>




>
>
>

>







705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
  catchcmd test.db \
     ".log stdout\nSELECT coalesce(sqlite_log(123,'hello'),'456');"
} "0 {(123) hello\n456}"

do_test shell1-3-29.1 {
  catchcmd "test.db" ".print this is a test"
} {0 {this is a test}}

# dot-command argument quoting
do_test shell1-3-30.1 {
  catchcmd {test.db} {.print "this\"is'a\055test" 'this\"is\\a\055test'}
} {0 {this"is'a-test this\"is\\a\055test}}
do_test shell1-3-31.1 {
  catchcmd {test.db} {.print "this\nis\ta\\test" 'this\nis\ta\\test'}
} [list 0 "this\nis\ta\\test this\\nis\\ta\\\\test"]


# Test the output of the ".dump" command
#
do_test shell1-4.1 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
    PRAGMA encoding=UTF16;
    CREATE TABLE t1(x);
    INSERT INTO t1 VALUES(null), (''), (1), (2.25), ('hello'), (x'807f');
  }
  catchcmd test.db {.dump}
} {0 {PRAGMA foreign_keys=OFF;
BEGIN TRANSACTION;
CREATE TABLE t1(x);
739
740
741
742
743
744
745








746
747
748
749
750
751
752
INSERT INTO t1 VALUES(2.25);
INSERT INTO t1 VALUES('hello');
INSERT INTO t1 VALUES(X'807f');}}

# Test the output of ".mode tcl"
#
do_test shell1-4.3 {








  catchcmd test.db ".mode tcl\nselect * from t1;"
} {0 {""
""
"1"
"2.25"
"hello"
"\200\177"}}







>
>
>
>
>
>
>
>







752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
INSERT INTO t1 VALUES(2.25);
INSERT INTO t1 VALUES('hello');
INSERT INTO t1 VALUES(X'807f');}}

# Test the output of ".mode tcl"
#
do_test shell1-4.3 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
    PRAGMA encoding=UTF8;
    CREATE TABLE t1(x);
    INSERT INTO t1 VALUES(null), (''), (1), (2.25), ('hello'), (x'807f');
  }
  catchcmd test.db ".mode tcl\nselect * from t1;"
} {0 {""
""
"1"
"2.25"
"hello"
"\200\177"}}
Changes to test/shell5.test.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# .import FILE TABLE     Import data from FILE into TABLE
do_test shell5-1.1.1 {
  catchcmd "test.db" ".import"
} {1 {Error: unknown command or invalid arguments:  "import". Enter ".help" for help}}
do_test shell5-1.1.2 {
  catchcmd "test.db" ".import FOO"
} {1 {Error: unknown command or invalid arguments:  "import". Enter ".help" for help}}
do_test shell5-1.1.2 {
  catchcmd "test.db" ".import FOO BAR"
} {1 {Error: no such table: BAR}}
do_test shell5-1.1.3 {
  # too many arguments
  catchcmd "test.db" ".import FOO BAR BAD"
} {1 {Error: unknown command or invalid arguments:  "import". Enter ".help" for help}}

# .separator STRING      Change separator used by output mode and .import
do_test shell1-1.2.1 {







|
|
|







41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# .import FILE TABLE     Import data from FILE into TABLE
do_test shell5-1.1.1 {
  catchcmd "test.db" ".import"
} {1 {Error: unknown command or invalid arguments:  "import". Enter ".help" for help}}
do_test shell5-1.1.2 {
  catchcmd "test.db" ".import FOO"
} {1 {Error: unknown command or invalid arguments:  "import". Enter ".help" for help}}
#do_test shell5-1.1.2 {
#  catchcmd "test.db" ".import FOO BAR"
#} {1 {Error: no such table: BAR}}
do_test shell5-1.1.3 {
  # too many arguments
  catchcmd "test.db" ".import FOO BAR BAD"
} {1 {Error: unknown command or invalid arguments:  "import". Enter ".help" for help}}

# .separator STRING      Change separator used by output mode and .import
do_test shell1-1.2.1 {
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126

# import file with 1 row, 1 column (expecting 2 cols)
do_test shell5-1.4.3 {
  set in [open shell5.csv w]
  puts $in "1"
  close $in
  set res [catchcmd "test.db" {.import shell5.csv t1}]
} {1 {Error: shell5.csv line 1: expected 2 columns of data but found 1}}

# import file with 1 row, 3 columns (expecting 2 cols)
do_test shell5-1.4.4 {
  set in [open shell5.csv w]
  puts $in "1|2|3"
  close $in
  set res [catchcmd "test.db" {.import shell5.csv t1}]
} {1 {Error: shell5.csv line 1: expected 2 columns of data but found 3}}

# import file with 1 row, 2 columns
do_test shell5-1.4.5 {
  set in [open shell5.csv w]
  puts $in "1|2"
  close $in
  set res [catchcmd "test.db" {.import shell5.csv t1

SELECT COUNT(*) FROM t1;}]
} {0 1}

# import file with 2 rows, 2 columns
# note we end up with 3 rows because of the 1 row 
# imported above.
do_test shell5-1.4.6 {







|







|






|
>







97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

# import file with 1 row, 1 column (expecting 2 cols)
do_test shell5-1.4.3 {
  set in [open shell5.csv w]
  puts $in "1"
  close $in
  set res [catchcmd "test.db" {.import shell5.csv t1}]
} {1 {shell5.csv:1: expected 2 columns but found 1 - filling the rest with NULL}}

# import file with 1 row, 3 columns (expecting 2 cols)
do_test shell5-1.4.4 {
  set in [open shell5.csv w]
  puts $in "1|2|3"
  close $in
  set res [catchcmd "test.db" {.import shell5.csv t1}]
} {1 {shell5.csv:1: expected 2 columns but found 3 - extras ignored}}

# import file with 1 row, 2 columns
do_test shell5-1.4.5 {
  set in [open shell5.csv w]
  puts $in "1|2"
  close $in
  set res [catchcmd "test.db" {DELETE FROM t1;
.import shell5.csv t1
SELECT COUNT(*) FROM t1;}]
} {0 1}

# import file with 2 rows, 2 columns
# note we end up with 3 rows because of the 1 row 
# imported above.
do_test shell5-1.4.6 {
193
194
195
196
197
198
199
200
201
202
203



204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226
227
228








































229
SELECT length(b) FROM t1 WHERE a='8';}]
} {0 999}

# try importing into a table with a large number of columns.
# This is limited by SQLITE_MAX_VARIABLE_NUMBER, which defaults to 999.
set cols 999
do_test shell5-1.6.1 {
  set sql {CREATE TABLE t2(}
  set data {}
  for {set i 1} {$i<$cols} {incr i} {
    append sql "c$i,"



    append data "$i|"
  }
  append sql "c$cols);"
  append data "$cols"
  catchcmd "test.db" $sql
  set in [open shell5.csv w]
  puts $in $data
  close $in
  set res [catchcmd "test.db" {.import shell5.csv t2
SELECT COUNT(*) FROM t2;}]
} {0 1}

# try importing a large number of rows
set rows 999999
do_test shell5-1.7.1 {
  set in [open shell5.csv w]

  for {set i 1} {$i<=$rows} {incr i} {
    puts $in $i
  }
  close $in
  set res [catchcmd "test.db" {CREATE TABLE t3(a);
.import shell5.csv t3
SELECT COUNT(*) FROM t3;}]
} [list 0 $rows]









































finish_test







<


|
>
>
>


<

<








|


>




|




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

194
195
196
197
198
199
200

201
202
203
204
205
206
207
208

209

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
SELECT length(b) FROM t1 WHERE a='8';}]
} {0 999}

# try importing into a table with a large number of columns.
# This is limited by SQLITE_MAX_VARIABLE_NUMBER, which defaults to 999.
set cols 999
do_test shell5-1.6.1 {

  set data {}
  for {set i 1} {$i<$cols} {incr i} {
    append data "c$i|"
  }
  append data "c$cols\n";
  for {set i 1} {$i<$cols} {incr i} {
    append data "$i|"
  }

  append data "$cols"

  set in [open shell5.csv w]
  puts $in $data
  close $in
  set res [catchcmd "test.db" {.import shell5.csv t2
SELECT COUNT(*) FROM t2;}]
} {0 1}

# try importing a large number of rows
set rows 9999
do_test shell5-1.7.1 {
  set in [open shell5.csv w]
  puts $in a
  for {set i 1} {$i<=$rows} {incr i} {
    puts $in $i
  }
  close $in
  set res [catchcmd "test.db" {.mode csv
.import shell5.csv t3
SELECT COUNT(*) FROM t3;}]
} [list 0 $rows]

# Inport from a pipe.  (Unix only, as it requires "awk")
if {$tcl_platform(platform)=="unix"} {
  do_test shell5-1.8 {
    file delete -force test.db
    catchcmd test.db {.mode csv
.import "|awk 'END{print \"x,y\";for(i=1;i<=5;i++){print i \",this is \" i}}'" t1
SELECT * FROM t1;}
  } {0 {1,"this is 1"
2,"this is 2"
3,"this is 3"
4,"this is 4"
5,"this is 5"}}
}

# Import columns containing quoted strings
do_test shell5-1.9 {
  set out [open shell5.csv w]
  puts $out {1,"",11}
  puts $out {2,"x",22}
  puts $out {3,"""",33}
  puts $out {4,"hello",44}
  puts $out "5,55,\"\"\r"
  puts $out {6,66,"x"}
  puts $out {7,77,""""}
  puts $out {8,88,"hello"}
  puts $out {"",9,99}
  puts $out {"x",10,110}
  puts $out {"""",11,121}
  puts $out {"hello",12,132}
  close $out
  file delete -force test.db
  catchcmd test.db {.mode csv
    CREATE TABLE t1(a,b,c);
.import shell5.csv t1
  }
  sqlite3 db test.db
  db eval {SELECT *, '|' FROM t1 ORDER BY rowid}
} {1 {} 11 | 2 x 22 | 3 {"} 33 | 4 hello 44 | 5 55 {} | 6 66 x | 7 77 {"} | 8 88 hello | {} 9 99 | x 10 110 | {"} 11 121 | hello 12 132 |}
db close

finish_test
Changes to test/spellfix.test.
100
101
102
103
104
105
106
















107
108
109
110
111
112
113
} {ae}
do_execsql_test 1.13 {
  SELECT next_char('','vocab','w');
} {r}
do_test 1.14 {
  catchsql {SELECT next_char('','xyzzy','a')}
} {1 {no such table: xyzzy}}

















do_execsql_test 2.1 {
  CREATE VIRTUAL TABLE t2 USING spellfix1;
  INSERT INTO t2 (word, soundslike) VALUES('school', 'skuul');
  INSERT INTO t2 (word, soundslike) VALUES('psalm', 'sarm');
  SELECT word, matchlen FROM t2 WHERE word MATCH 'sar*' LIMIT 5;
} {psalm 4}







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
} {ae}
do_execsql_test 1.13 {
  SELECT next_char('','vocab','w');
} {r}
do_test 1.14 {
  catchsql {SELECT next_char('','xyzzy','a')}
} {1 {no such table: xyzzy}}

do_execsql_test 1.20 {
  CREATE TABLE vocab2(w TEXT);
  CREATE INDEX vocab2w ON vocab2(w COLLATE nocase);
  INSERT INTO vocab2 VALUES('abc'), ('ABD'), ('aBe'), ('AbF');
  SELECT next_char('ab', 'vocab2', 'w', null, 'nocase');
} {cDeF}
do_execsql_test 1.21 {
  SELECT next_char('ab','vocab2','w',null,null);
} {c}
do_execsql_test 1.22 {
  SELECT next_char('AB','vocab2','w',null,'NOCASE');
} {cDeF}
do_execsql_test 1.23 {
  SELECT next_char('ab','vocab2','w',null,'binary');
} {c}

do_execsql_test 2.1 {
  CREATE VIRTUAL TABLE t2 USING spellfix1;
  INSERT INTO t2 (word, soundslike) VALUES('school', 'skuul');
  INSERT INTO t2 (word, soundslike) VALUES('psalm', 'sarm');
  SELECT word, matchlen FROM t2 WHERE word MATCH 'sar*' LIMIT 5;
} {psalm 4}
Changes to test/subquery.test.
237
238
239
240
241
242
243
244



245
246
247
248
249
250
251
252
  execsql {
    CREATE INDEX t4i ON t4(x);
    SELECT * FROM t4 WHERE x IN (SELECT a FROM t3);
  }
} {10.0}
do_test subquery-2.5.3.2 {
  # Verify that the t4i index was not used in the previous query
  set ::sqlite_query_plan



} {t4 {}}
do_test subquery-2.5.4 {
  execsql {
    DROP TABLE t3;
    DROP TABLE t4;
  }
} {}








|
>
>
>
|







237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
  execsql {
    CREATE INDEX t4i ON t4(x);
    SELECT * FROM t4 WHERE x IN (SELECT a FROM t3);
  }
} {10.0}
do_test subquery-2.5.3.2 {
  # Verify that the t4i index was not used in the previous query
  execsql {
    EXPLAIN QUERY PLAN
    SELECT * FROM t4 WHERE x IN (SELECT a FROM t3);
  }
} {/SCAN TABLE t4 /}
do_test subquery-2.5.4 {
  execsql {
    DROP TABLE t3;
    DROP TABLE t4;
  }
} {}

Changes to test/table.test.
264
265
266
267
268
269
270

271
272
273
274
275
276
277
#
do_test table-5.2.1 {
  db eval {
    ANALYZE;
    DROP TABLE IF EXISTS sqlite_stat1;
    DROP TABLE IF EXISTS sqlite_stat2;
    DROP TABLE IF EXISTS sqlite_stat3;

    SELECT name FROM sqlite_master WHERE name GLOB 'sqlite_stat*';
  }
} {}

# Make sure an EXPLAIN does not really create a new table
#
do_test table-5.3 {







>







264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#
do_test table-5.2.1 {
  db eval {
    ANALYZE;
    DROP TABLE IF EXISTS sqlite_stat1;
    DROP TABLE IF EXISTS sqlite_stat2;
    DROP TABLE IF EXISTS sqlite_stat3;
    DROP TABLE IF EXISTS sqlite_stat4;
    SELECT name FROM sqlite_master WHERE name GLOB 'sqlite_stat*';
  }
} {}

# Make sure an EXPLAIN does not really create a new table
#
do_test table-5.3 {
Changes to test/tester.tcl.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#***********************************************************************
# This file implements some common TCL routines used for regression
# testing the SQLite library
#
# $Id: tester.tcl,v 1.143 2009/04/09 01:23:49 drh Exp $

#-------------------------------------------------------------------------
# The commands provided by the code in this file to help with creating 
# test cases are as follows:
#
# Commands to manipulate the db and the file-system at a high level:
#
#      is_relative_file
#      test_pwd
#      get_pwd







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#***********************************************************************
# This file implements some common TCL routines used for regression
# testing the SQLite library
#
# $Id: tester.tcl,v 1.143 2009/04/09 01:23:49 drh Exp $

#-------------------------------------------------------------------------
# The commands provided by the code in this file to help with creating
# test cases are as follows:
#
# Commands to manipulate the db and the file-system at a high level:
#
#      is_relative_file
#      test_pwd
#      get_pwd
38
39
40
41
42
43
44

45
46
47
48
49
50
51
#
#      dbcksum                DB DBNAME
#      allcksum               ?DB?
#      cksum                  ?DB?
#
# Commands to execute/explain SQL statements:
#

#      stepsql                DB SQL
#      execsql2               SQL
#      explain_no_trace       SQL
#      explain                SQL ?DB?
#      catchsql               SQL ?DB?
#      execsql                SQL ?DB?
#







>







38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#
#      dbcksum                DB DBNAME
#      allcksum               ?DB?
#      cksum                  ?DB?
#
# Commands to execute/explain SQL statements:
#
#      memdbsql               SQL
#      stepsql                DB SQL
#      execsql2               SQL
#      explain_no_trace       SQL
#      explain                SQL ?DB?
#      catchsql               SQL ?DB?
#      execsql                SQL ?DB?
#
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#      wal_is_wal_mode
#      wal_set_journal_mode   ?DB?
#      wal_check_journal_mode TESTNAME?DB?
#      permutation
#      presql
#

# Set the precision of FP arithmatic used by the interpreter. And 
# configure SQLite to take database file locks on the page that begins
# 64KB into the database file instead of the one 1GB in. This means
# the code that handles that special case can be tested without creating
# very large database files.
#
set tcl_precision 15
sqlite3_test_control_pending_byte 0x0010000


# If the pager codec is available, create a wrapper for the [sqlite3] 
# command that appends "-key {xyzzy}" to the command line. i.e. this:
#
#     sqlite3 db test.db
#
# becomes
#
#     sqlite3 db test.db -key {xyzzy}







|









|







77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#      wal_is_wal_mode
#      wal_set_journal_mode   ?DB?
#      wal_check_journal_mode TESTNAME?DB?
#      permutation
#      presql
#

# Set the precision of FP arithmatic used by the interpreter. And
# configure SQLite to take database file locks on the page that begins
# 64KB into the database file instead of the one 1GB in. This means
# the code that handles that special case can be tested without creating
# very large database files.
#
set tcl_precision 15
sqlite3_test_control_pending_byte 0x0010000


# If the pager codec is available, create a wrapper for the [sqlite3]
# command that appends "-key {xyzzy}" to the command line. i.e. this:
#
#     sqlite3 db test.db
#
# becomes
#
#     sqlite3 db test.db -key {xyzzy}
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
      }
      if {[info exists ::G(perm:dbconfig)]} {
        set ::dbhandle [lindex $args 0]
        uplevel #0 $::G(perm:dbconfig)
      }
      set res
    } else {
      # This command is not opening a new database connection. Pass the 
      # arguments through to the C implementation as the are.
      #
      uplevel 1 sqlite_orig $args
    }
  }
}








|







119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
      }
      if {[info exists ::G(perm:dbconfig)]} {
        set ::dbhandle [lindex $args 0]
        uplevel #0 $::G(perm:dbconfig)
      }
      set res
    } else {
      # This command is not opening a new database connection. Pass the
      # arguments through to the C implementation as the are.
      #
      uplevel 1 sqlite_orig $args
    }
  }
}

286
287
288
289
290
291
292




























































293
294
295
296
297
298
299
        file delete -force $filename
      } else {
        file delete $filename
      }
    }
  }
}





























































proc execpresql {handle args} {
  trace remove execution $handle enter [list execpresql $handle]
  if {[info exists ::G(perm:presql)]} {
    $handle eval $::G(perm:presql)
  }
}







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
        file delete -force $filename
      } else {
        file delete $filename
      }
    }
  }
}

if {$::tcl_platform(platform) eq "windows"} {
  proc do_remove_win32_dir {args} {
    set nRetry [getFileRetries]     ;# Maximum number of retries.
    set nDelay [getFileRetryDelay]  ;# Delay in ms before retrying.

    foreach dirName $args {
      # On windows, sometimes even a [remove_win32_dir] can fail just after
      # a directory is emptied. The cause is usually "tag-alongs" - programs
      # like anti-virus software, automatic backup tools and various explorer
      # extensions that keep a file open a little longer than we expect,
      # causing the delete to fail.
      #
      # The solution is to wait a short amount of time before retrying the
      # removal.
      #
      if {$nRetry > 0} {
        for {set i 0} {$i < $nRetry} {incr i} {
          set rc [catch {
            remove_win32_dir $dirName
          } msg]
          if {$rc == 0} break
          if {$nDelay > 0} { after $nDelay }
        }
        if {$rc} { error $msg }
      } else {
        remove_win32_dir $dirName
      }
    }
  }

  proc do_delete_win32_file {args} {
    set nRetry [getFileRetries]     ;# Maximum number of retries.
    set nDelay [getFileRetryDelay]  ;# Delay in ms before retrying.

    foreach fileName $args {
      # On windows, sometimes even a [delete_win32_file] can fail just after
      # a file is closed. The cause is usually "tag-alongs" - programs like
      # anti-virus software, automatic backup tools and various explorer
      # extensions that keep a file open a little longer than we expect,
      # causing the delete to fail.
      #
      # The solution is to wait a short amount of time before retrying the
      # delete.
      #
      if {$nRetry > 0} {
        for {set i 0} {$i < $nRetry} {incr i} {
          set rc [catch {
            delete_win32_file $fileName
          } msg]
          if {$rc == 0} break
          if {$nDelay > 0} { after $nDelay }
        }
        if {$rc} { error $msg }
      } else {
        delete_win32_file $fileName
      }
    }
  }
}

proc execpresql {handle args} {
  trace remove execution $handle enter [list execpresql $handle]
  if {[info exists ::G(perm:presql)]} {
    $handle eval $::G(perm:presql)
  }
}
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

# The following block only runs the first time this file is sourced. It
# does not run in slave interpreters (since the ::cmdlinearg array is
# populated before the test script is run in slave interpreters).
#
if {[info exists cmdlinearg]==0} {

  # Parse any options specified in the $argv array. This script accepts the 
  # following options: 
  #
  #   --pause
  #   --soft-heap-limit=NN
  #   --maxerror=NN
  #   --malloctrace=N
  #   --backtrace=N
  #   --binarylog=N







|
|







369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

# The following block only runs the first time this file is sourced. It
# does not run in slave interpreters (since the ::cmdlinearg array is
# populated before the test script is run in slave interpreters).
#
if {[info exists cmdlinearg]==0} {

  # Parse any options specified in the $argv array. This script accepts the
  # following options:
  #
  #   --pause
  #   --soft-heap-limit=NN
  #   --maxerror=NN
  #   --malloctrace=N
  #   --backtrace=N
  #   --binarylog=N
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
  set cmdlinearg(start)             ""
  set cmdlinearg(match)             ""

  set leftover [list]
  foreach a $argv {
    switch -regexp -- $a {
      {^-+pause$} {
        # Wait for user input before continuing. This is to give the user an 
        # opportunity to connect profiling tools to the process.
        puts -nonewline "Press RETURN to begin..."
        flush stdout
        gets stdin
      }
      {^-+soft-heap-limit=.+$} {
        foreach {dummy cmdlinearg(soft-heap-limit)} [split $a =] break







|







399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
  set cmdlinearg(start)             ""
  set cmdlinearg(match)             ""

  set leftover [list]
  foreach a $argv {
    switch -regexp -- $a {
      {^-+pause$} {
        # Wait for user input before continuing. This is to give the user an
        # opportunity to connect profiling tools to the process.
        puts -nonewline "Press RETURN to begin..."
        flush stdout
        gets stdin
      }
      {^-+soft-heap-limit=.+$} {
        foreach {dummy cmdlinearg(soft-heap-limit)} [split $a =] break
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    }
  }
  set argv $leftover

  # Install the malloc layer used to inject OOM errors. And the 'automatic'
  # extensions. This only needs to be done once for the process.
  #
  sqlite3_shutdown 
  install_malloc_faultsim 1 
  sqlite3_initialize
  autoinstall_test_functions

  # If the --binarylog option was specified, create the logging VFS. This
  # call installs the new VFS as the default for all SQLite connections.
  #
  if {$cmdlinearg(binarylog)} {







|
|







462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    }
  }
  set argv $leftover

  # Install the malloc layer used to inject OOM errors. And the 'automatic'
  # extensions. This only needs to be done once for the process.
  #
  sqlite3_shutdown
  install_malloc_faultsim 1
  sqlite3_initialize
  autoinstall_test_functions

  # If the --binarylog option was specified, create the logging VFS. This
  # call installs the new VFS as the default for all SQLite connections.
  #
  if {$cmdlinearg(binarylog)} {
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# Increment the number of tests run
#
proc incr_ntest {} {
  set_test_counter count [expr [set_test_counter count] + 1]
}


# Invoke the do_test procedure to run a single test 
#
proc do_test {name cmd expected} {
  global argv cmdlinearg

  fix_testname name

  sqlite3_memdebug_settitle $name

#  if {[llength $argv]==0} { 
#    set go 1
#  } else {
#    set go 0
#    foreach pattern $argv {
#      if {[string match $pattern $name]} {
#        set go 1
#        break







|








|







573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# Increment the number of tests run
#
proc incr_ntest {} {
  set_test_counter count [expr [set_test_counter count] + 1]
}


# Invoke the do_test procedure to run a single test
#
proc do_test {name cmd expected} {
  global argv cmdlinearg

  fix_testname name

  sqlite3_memdebug_settitle $name

#  if {[llength $argv]==0} {
#    set go 1
#  } else {
#    set go 0
#    foreach pattern $argv {
#      if {[string match $pattern $name]} {
#        set go 1
#        break
547
548
549
550
551
552
553



554
555
556
557
558
559










560
561
562
563
564
565
566

  if {![info exists ::G(match)] || [string match $::G(match) $name]} {
    if {[catch {uplevel #0 "$cmd;\n"} result]} {
      puts "\nError: $result"
      fail_test $name
    } else {
      if {[regexp {^~?/.*/$} $expected]} {



        if {[string index $expected 0]=="~"} {
          set re [string map {# {[-0-9.]+}} [string range $expected 2 end-1]]
          set ok [expr {![regexp $re $result]}]
        } else {
          set re [string map {# {[-0-9.]+}} [string range $expected 1 end-1]]
          set ok [regexp $re $result]










        }
      } else {
        set ok [expr {[string compare $result $expected]==0}]
      }
      if {!$ok} {
        # if {![info exists ::testprefix] || $::testprefix eq ""} {
        #   error "no test prefix"







>
>
>






>
>
>
>
>
>
>
>
>
>







608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

  if {![info exists ::G(match)] || [string match $::G(match) $name]} {
    if {[catch {uplevel #0 "$cmd;\n"} result]} {
      puts "\nError: $result"
      fail_test $name
    } else {
      if {[regexp {^~?/.*/$} $expected]} {
        # "expected" is of the form "/PATTERN/" then the result if correct if
        # regular expression PATTERN matches the result.  "~/PATTERN/" means
        # the regular expression must not match.
        if {[string index $expected 0]=="~"} {
          set re [string map {# {[-0-9.]+}} [string range $expected 2 end-1]]
          set ok [expr {![regexp $re $result]}]
        } else {
          set re [string map {# {[-0-9.]+}} [string range $expected 1 end-1]]
          set ok [regexp $re $result]
        }
      } elseif {[regexp {^~?\*.*\*$} $expected]} {
        # "expected" is of the form "*GLOB*" then the result if correct if
        # glob pattern GLOB matches the result.  "~/GLOB/" means
        # the glob must not match.
        if {[string index $expected 0]=="~"} {
          set e [string range $expected 1 end]
          set ok [expr {![string match $e $result]}]
        } else {
          set ok [string match $expected $result]
        }
      } else {
        set ok [expr {[string compare $result $expected]==0}]
      }
      if {!$ok} {
        # if {![info exists ::testprefix] || $::testprefix eq ""} {
        #   error "no test prefix"
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
  uplevel [list do_test $name [
    subst -nocommands { realnum_normalize [ $cmd ] }
  ] [realnum_normalize $expected]]
}

proc fix_testname {varname} {
  upvar $varname testname
  if {[info exists ::testprefix] 
   && [string is digit [string range $testname 0 0]]
  } {
    set testname "${::testprefix}-$testname"
  }
}
    
proc do_execsql_test {testname sql {result {}}} {
  fix_testname testname
  uplevel do_test [list $testname] [list "execsql {$sql}"] [list [list {*}$result]]
}
proc do_catchsql_test {testname sql result} {
  fix_testname testname
  uplevel do_test [list $testname] [list "catchsql {$sql}"] [list $result]







|





|







685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
  uplevel [list do_test $name [
    subst -nocommands { realnum_normalize [ $cmd ] }
  ] [realnum_normalize $expected]]
}

proc fix_testname {varname} {
  upvar $varname testname
  if {[info exists ::testprefix]
   && [string is digit [string range $testname 0 0]]
  } {
    set testname "${::testprefix}-$testname"
  }
}

proc do_execsql_test {testname sql {result {}}} {
  fix_testname testname
  uplevel do_test [list $testname] [list "execsql {$sql}"] [list [list {*}$result]]
}
proc do_catchsql_test {testname sql result} {
  fix_testname testname
  uplevel do_test [list $testname] [list "catchsql {$sql}"] [list $result]
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

proc delete_all_data {} {
  db eval {SELECT tbl_name AS t FROM sqlite_master WHERE type = 'table'} {
    db eval "DELETE FROM '[string map {' ''} $t]'"
  }
}

# Run an SQL script.  
# Return the number of microseconds per statement.
#
proc speed_trial {name numstmt units sql} {
  puts -nonewline [format {%-21.21s } $name...]
  flush stdout
  set speed [time {sqlite3_exec_nr db $sql}]
  set tm [lindex $speed 0]







|







777
778
779
780
781
782
783
784
785
786
787
788
789
790
791

proc delete_all_data {} {
  db eval {SELECT tbl_name AS t FROM sqlite_master WHERE type = 'table'} {
    db eval "DELETE FROM '[string map {' ''} $t]'"
  }
}

# Run an SQL script.
# Return the number of microseconds per statement.
#
proc speed_trial {name numstmt units sql} {
  puts -nonewline [format {%-21.21s } $name...]
  flush stdout
  set speed [time {sqlite3_exec_nr db $sql}]
  set tm [lindex $speed 0]
789
790
791
792
793
794
795














796

797

798



799
800
801
802
803
804
805
  db close
  sqlite3_reset_auto_extension

  sqlite3_soft_heap_limit 0
  set nTest [incr_ntest]
  set nErr [set_test_counter errors]















  puts "$nErr errors out of $nTest tests"

  if {$nErr>0} {

    puts "Failures on these tests: [set_test_counter fail_list]"



  }
  foreach warning [set_test_counter warn_list] {
    puts "Warning: $warning"
  }
  run_thread_tests 1
  if {[llength $omitList]>0} {
    puts "Omitted test cases:"







>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
|
>
|
>
>
>







863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
  db close
  sqlite3_reset_auto_extension

  sqlite3_soft_heap_limit 0
  set nTest [incr_ntest]
  set nErr [set_test_counter errors]

  set nKnown 0
  if {[file readable known-problems.txt]} {
    set fd [open known-problems.txt]
    set content [read $fd]
    close $fd
    foreach x $content {set known_error($x) 1}
    foreach x [set_test_counter fail_list] {
      if {[info exists known_error($x)]} {incr nKnown}
    }
  }
  if {$nKnown>0} {
    puts "[expr {$nErr-$nKnown}] new errors and $nKnown known errors\
         out of $nTest tests"
  } else {
    puts "$nErr errors out of $nTest tests"
  }
  if {$nErr>$nKnown} {
    puts -nonewline "Failures on these tests:"
    foreach x [set_test_counter fail_list] {
      if {![info exists known_error($x)]} {puts -nonewline " $x"}
    }
    puts ""
  }
  foreach warning [set_test_counter warn_list] {
    puts "Warning: $warning"
  }
  run_thread_tests 1
  if {[llength $omitList]>0} {
    puts "Omitted test cases:"
947
948
949
950
951
952
953









954
955
956
957
958
959
960
  db eval $sql data {
    foreach f $data(*) {
      lappend result $f $data($f)
    }
  }
  return $result
}










# Use the non-callback API to execute multiple SQL statements
#
proc stepsql {dbptr sql} {
  set sql [string trim $sql]
  set r 0
  while {[string length $sql]>0} {







>
>
>
>
>
>
>
>
>







1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
  db eval $sql data {
    foreach f $data(*) {
      lappend result $f $data($f)
    }
  }
  return $result
}

# Use a temporary in-memory database to execute SQL statements
#
proc memdbsql {sql} {
  sqlite3 memdb :memory:
  set result [memdb eval $sql]
  memdb close
  return $result
}

# Use the non-callback API to execute multiple SQL statements
#
proc stepsql {dbptr sql} {
  set sql [string trim $sql]
  set r 0
  while {[string length $sql]>0} {
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
  set blocksize ""
  set crashdelay 1
  set prngseed 0
  set tclbody {}
  set crashfile ""
  set dc ""
  set sql [lindex $args end]
  
  for {set ii 0} {$ii < [llength $args]-1} {incr ii 2} {
    set z [lindex $args $ii]
    set n [string length $z]
    set z2 [lindex $args [expr $ii+1]]

    if     {$n>1 && [string first $z -delay]==0}     {set crashdelay $z2} \
    elseif {$n>1 && [string first $z -seed]==0}      {set prngseed $z2} \
    elseif {$n>1 && [string first $z -file]==0}      {set crashfile $z2}  \
    elseif {$n>1 && [string first $z -tclbody]==0}   {set tclbody $z2}  \
    elseif {$n>1 && [string first $z -blocksize]==0} {set blocksize "-s $z2" } \
    elseif {$n>1 && [string first $z -characteristics]==0} {set dc "-c {$z2}" } \
    else   { error "Unrecognized option: $z" }
  }

  if {$crashfile eq ""} {
    error "Compulsory option -file missing"
  }

  # $crashfile gets compared to the native filename in 
  # cfSync(), which can be different then what TCL uses by
  # default, so here we force it to the "nativename" format.
  set cfile [string map {\\ \\\\} [file nativename [file join [get_pwd] $crashfile]]]

  set f [open crash.tcl w]
  puts $f "sqlite3_crash_enable 1"
  puts $f "sqlite3_crashparams $blocksize $dc $crashdelay $cfile"







|


















|







1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
  set blocksize ""
  set crashdelay 1
  set prngseed 0
  set tclbody {}
  set crashfile ""
  set dc ""
  set sql [lindex $args end]

  for {set ii 0} {$ii < [llength $args]-1} {incr ii 2} {
    set z [lindex $args $ii]
    set n [string length $z]
    set z2 [lindex $args [expr $ii+1]]

    if     {$n>1 && [string first $z -delay]==0}     {set crashdelay $z2} \
    elseif {$n>1 && [string first $z -seed]==0}      {set prngseed $z2} \
    elseif {$n>1 && [string first $z -file]==0}      {set crashfile $z2}  \
    elseif {$n>1 && [string first $z -tclbody]==0}   {set tclbody $z2}  \
    elseif {$n>1 && [string first $z -blocksize]==0} {set blocksize "-s $z2" } \
    elseif {$n>1 && [string first $z -characteristics]==0} {set dc "-c {$z2}" } \
    else   { error "Unrecognized option: $z" }
  }

  if {$crashfile eq ""} {
    error "Compulsory option -file missing"
  }

  # $crashfile gets compared to the native filename in
  # cfSync(), which can be different then what TCL uses by
  # default, so here we force it to the "nativename" format.
  set cfile [string map {\\ \\\\} [file nativename [file join [get_pwd] $crashfile]]]

  set f [open crash.tcl w]
  puts $f "sqlite3_crash_enable 1"
  puts $f "sqlite3_crashparams $blocksize $dc $crashdelay $cfile"
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
    puts $f   "$sql"
    puts $f "}"
  }
  close $f
  set r [catch {
    exec [info nameofexec] crash.tcl >@stdout
  } msg]
  
  # Windows/ActiveState TCL returns a slightly different
  # error message.  We map that to the expected message
  # so that we don't have to change all of the test
  # cases.
  if {$::tcl_platform(platform)=="windows"} {
    if {$msg=="child killed: unknown signal"} {
      set msg "child process exited abnormally"
    }
  }
  
  lappend r $msg
}

proc run_ioerr_prep {} {
  set ::sqlite_io_error_pending 0
  catch {db close}
  catch {db2 close}







|









|







1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
    puts $f   "$sql"
    puts $f "}"
  }
  close $f
  set r [catch {
    exec [info nameofexec] crash.tcl >@stdout
  } msg]

  # Windows/ActiveState TCL returns a slightly different
  # error message.  We map that to the expected message
  # so that we don't have to change all of the test
  # cases.
  if {$::tcl_platform(platform)=="windows"} {
    if {$msg=="child killed: unknown signal"} {
      set msg "child process exited abnormally"
    }
  }

  lappend r $msg
}

proc run_ioerr_prep {} {
  set ::sqlite_io_error_pending 0
  catch {db close}
  catch {db2 close}
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
  }
  expr 0
}

# Usage: do_ioerr_test <test number> <options...>
#
# This proc is used to implement test cases that check that IO errors
# are correctly handled. The first argument, <test number>, is an integer 
# used to name the tests executed by this proc. Options are as follows:
#
#     -tclprep          TCL script to run to prepare test.
#     -sqlprep          SQL script to run to prepare test.
#     -tclbody          TCL script to run with IO error simulation.
#     -sqlbody          TCL script to run with IO error simulation.
#     -exclude          List of 'N' values not to test.







|







1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
  }
  expr 0
}

# Usage: do_ioerr_test <test number> <options...>
#
# This proc is used to implement test cases that check that IO errors
# are correctly handled. The first argument, <test number>, is an integer
# used to name the tests executed by this proc. Options are as follows:
#
#     -tclprep          TCL script to run to prepare test.
#     -sqlprep          SQL script to run to prepare test.
#     -tclbody          TCL script to run with IO error simulation.
#     -sqlbody          TCL script to run with IO error simulation.
#     -exclude          List of 'N' values not to test.
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
  set ::ioerropts(-ckrefcount) 0
  set ::ioerropts(-restoreprng) 1
  array set ::ioerropts $args

  # TEMPORARY: For 3.5.9, disable testing of extended result codes. There are
  # a couple of obscure IO errors that do not return them.
  set ::ioerropts(-erc) 0
  
  # Create a single TCL script from the TCL and SQL specified
  # as the body of the test.
  set ::ioerrorbody {}
  if {[info exists ::ioerropts(-tclbody)]} {
    append ::ioerrorbody "$::ioerropts(-tclbody)\n"
  }
  if {[info exists ::ioerropts(-sqlbody)]} {







|







1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
  set ::ioerropts(-ckrefcount) 0
  set ::ioerropts(-restoreprng) 1
  array set ::ioerropts $args

  # TEMPORARY: For 3.5.9, disable testing of extended result codes. There are
  # a couple of obscure IO errors that do not return them.
  set ::ioerropts(-erc) 0

  # Create a single TCL script from the TCL and SQL specified
  # as the body of the test.
  set ::ioerrorbody {}
  if {[info exists ::ioerropts(-tclbody)]} {
    append ::ioerrorbody "$::ioerropts(-tclbody)\n"
  }
  if {[info exists ::ioerropts(-sqlbody)]} {
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246

  set ::go 1
  #reset_prng_state
  for {set n $::ioerropts(-start)} {$::go} {incr n} {
    set ::TN $n
    incr ::ioerropts(-count) -1
    if {$::ioerropts(-count)<0} break
 
    # Skip this IO error if it was specified with the "-exclude" option.
    if {[info exists ::ioerropts(-exclude)]} {
      if {[lsearch $::ioerropts(-exclude) $n]!=-1} continue
    }
    if {$::ioerropts(-restoreprng)} {
      restore_prng_state
    }

    # Delete the files test.db and test2.db, then execute the TCL and 
    # SQL (in that order) to prepare for the test case.
    do_test $testname.$n.1 {
      run_ioerr_prep
    } {0}

    # Read the 'checksum' of the database.
    if {$::ioerropts(-cksum)} {
      set ::checksum [cksum]
    }

    # Set the Nth IO error to fail.
    do_test $testname.$n.2 [subst {
      set ::sqlite_io_error_persist $::ioerropts(-persist)
      set ::sqlite_io_error_pending $n
    }] $n

    # Execute the TCL script created for the body of this test. If
    # at least N IO operations performed by SQLite as a result of 
    # the script, the Nth will fail.
    do_test $testname.$n.3 {
      set ::sqlite_io_error_hit 0
      set ::sqlite_io_error_hardhit 0
      set r [catch $::ioerrorbody msg]
      set ::errseen $r
      set rc [sqlite3_errcode $::DB]







|








|

















|







1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348

  set ::go 1
  #reset_prng_state
  for {set n $::ioerropts(-start)} {$::go} {incr n} {
    set ::TN $n
    incr ::ioerropts(-count) -1
    if {$::ioerropts(-count)<0} break

    # Skip this IO error if it was specified with the "-exclude" option.
    if {[info exists ::ioerropts(-exclude)]} {
      if {[lsearch $::ioerropts(-exclude) $n]!=-1} continue
    }
    if {$::ioerropts(-restoreprng)} {
      restore_prng_state
    }

    # Delete the files test.db and test2.db, then execute the TCL and
    # SQL (in that order) to prepare for the test case.
    do_test $testname.$n.1 {
      run_ioerr_prep
    } {0}

    # Read the 'checksum' of the database.
    if {$::ioerropts(-cksum)} {
      set ::checksum [cksum]
    }

    # Set the Nth IO error to fail.
    do_test $testname.$n.2 [subst {
      set ::sqlite_io_error_persist $::ioerropts(-persist)
      set ::sqlite_io_error_pending $n
    }] $n

    # Execute the TCL script created for the body of this test. If
    # at least N IO operations performed by SQLite as a result of
    # the script, the Nth will fail.
    do_test $testname.$n.3 {
      set ::sqlite_io_error_hit 0
      set ::sqlite_io_error_hardhit 0
      set r [catch $::ioerrorbody msg]
      set ::errseen $r
      set rc [sqlite3_errcode $::DB]
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
      #puts "s=$s r=$r q=$q"
      expr { ($s && !$r && !$q) || (!$s && $r && $q) }
    } {1}

    set ::sqlite_io_error_hit 0
    set ::sqlite_io_error_pending 0

    # Check that no page references were leaked. There should be 
    # a single reference if there is still an active transaction, 
    # or zero otherwise.
    #
    # UPDATE: If the IO error occurs after a 'BEGIN' but before any
    # locks are established on database files (i.e. if the error 
    # occurs while attempting to detect a hot-journal file), then
    # there may 0 page references and an active transaction according
    # to [sqlite3_get_autocommit].
    #
    if {$::go && $::sqlite_io_error_hardhit && $::ioerropts(-ckrefcount)} {
      do_test $testname.$n.4 {
        set bt [btree_from_db db]
        db_enter db
        array set stats [btree_pager_stats $bt]
        db_leave db
        set nRef $stats(ref)
        expr {$nRef == 0 || ([sqlite3_get_autocommit db]==0 && $nRef == 1)}
      } {1}
    }

    # If there is an open database handle and no open transaction, 
    # and the pager is not running in exclusive-locking mode,
    # check that the pager is in "unlocked" state. Theoretically,
    # if a call to xUnlock() failed due to an IO error the underlying
    # file may still be locked.
    #
    ifcapable pragma {
      if { [info commands db] ne ""







|
|



|















|







1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
      #puts "s=$s r=$r q=$q"
      expr { ($s && !$r && !$q) || (!$s && $r && $q) }
    } {1}

    set ::sqlite_io_error_hit 0
    set ::sqlite_io_error_pending 0

    # Check that no page references were leaked. There should be
    # a single reference if there is still an active transaction,
    # or zero otherwise.
    #
    # UPDATE: If the IO error occurs after a 'BEGIN' but before any
    # locks are established on database files (i.e. if the error
    # occurs while attempting to detect a hot-journal file), then
    # there may 0 page references and an active transaction according
    # to [sqlite3_get_autocommit].
    #
    if {$::go && $::sqlite_io_error_hardhit && $::ioerropts(-ckrefcount)} {
      do_test $testname.$n.4 {
        set bt [btree_from_db db]
        db_enter db
        array set stats [btree_pager_stats $bt]
        db_leave db
        set nRef $stats(ref)
        expr {$nRef == 0 || ([sqlite3_get_autocommit db]==0 && $nRef == 1)}
      } {1}
    }

    # If there is an open database handle and no open transaction,
    # and the pager is not running in exclusive-locking mode,
    # check that the pager is in "unlocked" state. Theoretically,
    # if a call to xUnlock() failed due to an IO error the underlying
    # file may still be locked.
    #
    ifcapable pragma {
      if { [info commands db] ne ""
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
    append txt $prag-[$db eval "PRAGMA $prag"]\n
  }
  # puts txt=$txt
  return [md5 $txt]
}

# Generate a checksum based on the contents of a single database with
# a database connection.  The name of the database is $dbname.  
# Examples of $dbname are "temp" or "main".
#
proc dbcksum {db dbname} {
  if {$dbname=="temp"} {
    set master sqlite_temp_master
  } else {
    set master $dbname.sqlite_master







|







1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
    append txt $prag-[$db eval "PRAGMA $prag"]\n
  }
  # puts txt=$txt
  return [md5 $txt]
}

# Generate a checksum based on the contents of a single database with
# a database connection.  The name of the database is $dbname.
# Examples of $dbname are "temp" or "main".
#
proc dbcksum {db dbname} {
  if {$dbname=="temp"} {
    set master sqlite_temp_master
  } else {
    set master $dbname.sqlite_master
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
  ifcapable trigger&&foreignkey {
    $db eval "PRAGMA foreign_keys = $pk"
  }
}

#-------------------------------------------------------------------------
# If a test script is executed with global variable $::G(perm:name) set to
# "wal", then the tests are run in WAL mode. Otherwise, they should be run 
# in rollback mode. The following Tcl procs are used to make this less 
# intrusive:
#
#   wal_set_journal_mode ?DB?
#
#     If running a WAL test, execute "PRAGMA journal_mode = wal" using
#     connection handle DB. Otherwise, this command is a no-op.
#
#   wal_check_journal_mode TESTNAME ?DB?
#
#     If running a WAL test, execute a tests case that fails if the main
#     database for connection handle DB is not currently a WAL database.
#     Otherwise (if not running a WAL permutation) this is a no-op.
#
#   wal_is_wal_mode
#   
#     Returns true if this test should be run in WAL mode. False otherwise.
# 
proc wal_is_wal_mode {} {
  expr {[permutation] eq "wal"}
}
proc wal_set_journal_mode {{db db}} {
  if { [wal_is_wal_mode] } {
    $db eval "PRAGMA journal_mode = WAL"
  }







|
|














|

|







1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
  ifcapable trigger&&foreignkey {
    $db eval "PRAGMA foreign_keys = $pk"
  }
}

#-------------------------------------------------------------------------
# If a test script is executed with global variable $::G(perm:name) set to
# "wal", then the tests are run in WAL mode. Otherwise, they should be run
# in rollback mode. The following Tcl procs are used to make this less
# intrusive:
#
#   wal_set_journal_mode ?DB?
#
#     If running a WAL test, execute "PRAGMA journal_mode = wal" using
#     connection handle DB. Otherwise, this command is a no-op.
#
#   wal_check_journal_mode TESTNAME ?DB?
#
#     If running a WAL test, execute a tests case that fails if the main
#     database for connection handle DB is not currently a WAL database.
#     Otherwise (if not running a WAL permutation) this is a no-op.
#
#   wal_is_wal_mode
#
#     Returns true if this test should be run in WAL mode. False otherwise.
#
proc wal_is_wal_mode {} {
  expr {[permutation] eq "wal"}
}
proc wal_set_journal_mode {{db db}} {
  if { [wal_is_wal_mode] } {
    $db eval "PRAGMA journal_mode = WAL"
  }
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
  # is not thread-safe.
  #
  if {[info exists ::run_thread_tests_called]==0} {
    do_test ${tail}-closeallfiles { expr {$::sqlite_open_file_count>0} } {0}
  }
  set ::sqlite_open_file_count 0

  # Test that the global "shared-cache" setting was not altered by 
  # the test script.
  #
  ifcapable shared_cache { 
    set res [expr {[sqlite3_enable_shared_cache] == $scs}]
    do_test ${tail}-sharedcachesetting [list set {} $res] 1
  }

  # Add some info to the output.
  #
  puts "Time: $tail $ms ms"







|


|







1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
  # is not thread-safe.
  #
  if {[info exists ::run_thread_tests_called]==0} {
    do_test ${tail}-closeallfiles { expr {$::sqlite_open_file_count>0} } {0}
  }
  set ::sqlite_open_file_count 0

  # Test that the global "shared-cache" setting was not altered by
  # the test script.
  #
  ifcapable shared_cache {
    set res [expr {[sqlite3_enable_shared_cache] == $scs}]
    do_test ${tail}-sharedcachesetting [list set {} $res] 1
  }

  # Add some info to the output.
  #
  puts "Time: $tail $ms ms"
Changes to test/tkt-2a5629202f.test.
42
43
44
45
46
47
48






49
50
51
52
53
54
55
} {null/four null/three a/one b/two}

do_execsql_test 1.3 {
  CREATE UNIQUE INDEX i1 ON t8(b);
  SELECT coalesce(b, 'null') || '/' || c FROM t8 x ORDER BY x.b, x.c
} {null/four null/three a/one b/two}







#-------------------------------------------------------------------------
#

do_execsql_test 2.1 {
  CREATE TABLE t2(a, b NOT NULL, c);
  CREATE UNIQUE INDEX t2ab ON t2(a, b);
  CREATE UNIQUE INDEX t2ba ON t2(b, a);







>
>
>
>
>
>







42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
} {null/four null/three a/one b/two}

do_execsql_test 1.3 {
  CREATE UNIQUE INDEX i1 ON t8(b);
  SELECT coalesce(b, 'null') || '/' || c FROM t8 x ORDER BY x.b, x.c
} {null/four null/three a/one b/two}

do_execsql_test 1.4 {
  DROP INDEX i1;
  CREATE UNIQUE INDEX i1 ON t8(b, c);
  SELECT coalesce(b, 'null') || '/' || c FROM t8 x ORDER BY x.b, x.c
} {null/four null/three a/one b/two}

#-------------------------------------------------------------------------
#

do_execsql_test 2.1 {
  CREATE TABLE t2(a, b NOT NULL, c);
  CREATE UNIQUE INDEX t2ab ON t2(a, b);
  CREATE UNIQUE INDEX t2ba ON t2(b, a);
64
65
66
67
68
69
70
71
} {sort}

do_test 2.4 {
  cksort { SELECT * FROM t2 WHERE a IS NULL ORDER BY a, b, c }
} {sort}

finish_test








<
70
71
72
73
74
75
76

} {sort}

do_test 2.4 {
  cksort { SELECT * FROM t2 WHERE a IS NULL ORDER BY a, b, c }
} {sort}

finish_test

Changes to test/tkt-385a5b56b9.test.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
do_execsql_test 2.0 {
  CREATE TABLE t2(x, y NOT NULL);
  CREATE UNIQUE INDEX t2x ON t2(x);
  CREATE UNIQUE INDEX t2y ON t2(y);
}

do_eqp_test 2.1 { SELECT DISTINCT x FROM t2 } {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2x (~1000000 rows)}
}

do_eqp_test 2.2 { SELECT DISTINCT y FROM t2 } {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2y (~1000000 rows)}
}

do_eqp_test 2.3 { SELECT DISTINCT x, y FROM t2 WHERE y=10 } {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2y (y=?) (~1 rows)}
}

do_eqp_test 2.4 { SELECT DISTINCT x, y FROM t2 WHERE x=10 } {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2x (x=?) (~1 rows)}
}

finish_test







|



|



|



|



31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
do_execsql_test 2.0 {
  CREATE TABLE t2(x, y NOT NULL);
  CREATE UNIQUE INDEX t2x ON t2(x);
  CREATE UNIQUE INDEX t2y ON t2(y);
}

do_eqp_test 2.1 { SELECT DISTINCT x FROM t2 } {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2x}
}

do_eqp_test 2.2 { SELECT DISTINCT y FROM t2 } {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2y}
}

do_eqp_test 2.3 { SELECT DISTINCT x, y FROM t2 WHERE y=10 } {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2y (y=?)}
}

do_eqp_test 2.4 { SELECT DISTINCT x, y FROM t2 WHERE x=10 } {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2x (x=?)}
}

finish_test
Changes to test/tkt-3a77c9714e.test.
66
67
68
69
70
71
72
73
        WHERE Connected=SrcWord LIMIT 1
      )
    )
} {FACTORING FACTOR SWIMMING SWIMM} 


finish_test








<
66
67
68
69
70
71
72

        WHERE Connected=SrcWord LIMIT 1
      )
    )
} {FACTORING FACTOR SWIMMING SWIMM} 


finish_test

Changes to test/tkt-3fe897352e.test.
Changes to test/tkt-78e04e52ea.test.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    CREATE INDEX i1 ON ""("" COLLATE nocase);
  }
} {}
do_test tkt-78e04-1.4 {
  execsql {
    EXPLAIN QUERY PLAN SELECT * FROM "" WHERE "" LIKE 'abc%';
  }
} {0 0 0 {SCAN TABLE  USING COVERING INDEX i1 (~500000 rows)}}
do_test tkt-78e04-1.5 {
  execsql {
    DROP TABLE "";
    SELECT name FROM sqlite_master;
  }
} {t2}

do_test tkt-78e04-2.1 {
  execsql {
    CREATE INDEX "" ON t2(x);
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=5;
  }
} {0 0 0 {SEARCH TABLE t2 USING COVERING INDEX  (x=?) (~10 rows)}}
do_test tkt-78e04-2.2 {
  execsql {
    DROP INDEX "";
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=2;
  }
} {0 0 0 {SCAN TABLE t2 (~100000 rows)}}

finish_test







|












|





|


40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    CREATE INDEX i1 ON ""("" COLLATE nocase);
  }
} {}
do_test tkt-78e04-1.4 {
  execsql {
    EXPLAIN QUERY PLAN SELECT * FROM "" WHERE "" LIKE 'abc%';
  }
} {0 0 0 {SCAN TABLE  USING COVERING INDEX i1}}
do_test tkt-78e04-1.5 {
  execsql {
    DROP TABLE "";
    SELECT name FROM sqlite_master;
  }
} {t2}

do_test tkt-78e04-2.1 {
  execsql {
    CREATE INDEX "" ON t2(x);
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=5;
  }
} {0 0 0 {SEARCH TABLE t2 USING COVERING INDEX  (x=?)}}
do_test tkt-78e04-2.2 {
  execsql {
    DROP INDEX "";
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=2;
  }
} {0 0 0 {SCAN TABLE t2}}

finish_test
Changes to test/tkt-7a31705a7e6.test.
19
20
21
22
23
24
25
26

do_execsql_test tkt-7a31705a7e6-1.1 {
  CREATE TABLE t1 (a INTEGER PRIMARY KEY);
  CREATE TABLE t2 (a INTEGER PRIMARY KEY, b INTEGER);
  CREATE TABLE t2x (b INTEGER PRIMARY KEY);
  SELECT t1.a FROM ((t1 JOIN t2 ON t1.a=t2.a) AS x JOIN t2x ON x.b=t2x.b) as y;
} {}








<
19
20
21
22
23
24
25


do_execsql_test tkt-7a31705a7e6-1.1 {
  CREATE TABLE t1 (a INTEGER PRIMARY KEY);
  CREATE TABLE t2 (a INTEGER PRIMARY KEY, b INTEGER);
  CREATE TABLE t2x (b INTEGER PRIMARY KEY);
  SELECT t1.a FROM ((t1 JOIN t2 ON t1.a=t2.a) AS x JOIN t2x ON x.b=t2x.b) as y;
} {}

Changes to test/tkt-7bbfb7d442.test.
148
149
150
151
152
153
154
155
156
do_execsql_test 2.3 {
  SELECT CASE WHEN DeliveredQty=10 THEN "TEST PASSED!" ELSE "TEST FAILED!" END 
  FROM InventoryControl WHERE SKU=31; 
} {{TEST PASSED!}}


finish_test









<
<
148
149
150
151
152
153
154


do_execsql_test 2.3 {
  SELECT CASE WHEN DeliveredQty=10 THEN "TEST PASSED!" ELSE "TEST FAILED!" END 
  FROM InventoryControl WHERE SKU=31; 
} {{TEST PASSED!}}


finish_test


Added test/tkt-868145d012.test.
































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# 2013 March 05
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library. Specifically,
# it tests that ticket [868145d012a1] is fixed.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_execsql_test tkt-868145d012.100 {
  CREATE TABLE p (
    id INTEGER PRIMARY KEY,
    uid VARCHAR(36),
    t INTEGER
  );
  
  CREATE TABLE pa (
    id INTEGER PRIMARY KEY,
    a_uid VARCHAR(36)
  );
  
  CREATE TABLE a (
    id INTEGER PRIMARY KEY,
    uid VARCHAR(36),
    t INTEGER
  );
  
  INSERT INTO pa VALUES(1,'1234');
  INSERT INTO pa VALUES(2,'2345');
  INSERT INTO p VALUES(3,'1234',97);
  INSERT INTO p VALUES(4,'1234',98);
  INSERT INTO a VALUES(5,'1234',98);
  INSERT INTO a VALUES(6,'1234',99);
} {}
do_execsql_test tkt-868145d012.110 {
  SELECT DISTINCT pa.id, p.id, a.id
  FROM
    pa
    LEFT JOIN p ON p.uid='1234'
    LEFT JOIN a ON a.uid=pa.a_uid
  WHERE
    a.t=p.t
  ;
} {1 4 5}
do_execsql_test tkt-868145d012.120 {
  SELECT DISTINCT pa.id, p.id, a.id
  FROM
    pa
    LEFT JOIN p ON p.uid='1234'
    LEFT JOIN a ON a.uid=pa.a_uid AND a.t=p.t
  ORDER BY 1, 2, 3
  ;
} {1 3 {} 1 4 5 2 3 {} 2 4 {}}

    
finish_test
Added test/tkt-9f2eb3abac.test.






























































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

# 2013 August 29
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/malloc_common.tcl
set ::testprefix tkt-9f2eb3abac

do_execsql_test 1.1 {
  CREATE TABLE t1(a,b,c,d,e, PRIMARY KEY(a,b,c,d,e));
  SELECT * FROM t1 WHERE a=? AND b=? AND c=? AND d=? AND e=?;
} {}

do_execsql_test 1.2 {
  CREATE TABLE "a" (
      "b" integer NOT NULL,
      "c" integer NOT NULL,
      PRIMARY KEY ("b", "c")
      );

  CREATE TABLE "d" (
      "e" integer NOT NULL,
      "g" integer NOT NULL,
      "f" integer NOT NULL,
      "h" integer NOT NULL,
      "i" character(10) NOT NULL,
      "j" int,
      PRIMARY KEY ("e", "g", "f", "h")
      );

  CREATE TABLE "d_to_a" (
      "f_e" integer NOT NULL,
      "f_g" integer NOT NULL,
      "f_f" integer NOT NULL,
      "f_h" integer NOT NULL,
      "t_b" integer NOT NULL,
      "t_c" integer NOT NULL,
      "r" character NOT NULL,
      "s" integer,
      PRIMARY KEY ("f_e", "f_g", "f_f", "f_h", "t_b", "t_c")
      );

  INSERT INTO d (g, e, h, f, j, i) VALUES ( 1, 1, 1, 1, 1, 1 );
  INSERT INTO a (b, c) VALUES ( 1, 1 );
  INSERT INTO d_to_a VALUES (1, 1, 1, 1, 1, 1, 1, 1);

  DELETE FROM d_to_a 
  WHERE f_g = 1 AND f_e = 1 AND f_h = 1 AND f_f = 1 AND t_b = 1 AND t_c = 1;

  SELECT * FROM d_to_a;
} {}

faultsim_delete_and_reopen
do_execsql_test 2.0 { CREATE TABLE t1(a,b,c,d,e, PRIMARY KEY(a,b,c,d,e)) }
do_execsql_test 2.1 { CREATE TABLE t2(x) }
faultsim_save_and_close

do_faultsim_test 3 -faults oom* -prep {
  faultsim_restore_and_reopen
  execsql { SELECT 1 FROM sqlite_master }
} -body {
  execsql { SELECT * FROM t1,t2 WHERE a=? AND b=? AND c=? AND d=? AND e=? }
} -test {
  faultsim_test_result {0 {}} 
}

finish_test

Changes to test/tkt-c48d99d690.test.
19
20
21
22
23
24
25
26
do_test 1.1 {
  execsql { INSERT INTO t2 SELECT * FROM t1 }
} {4}

do_test 1.2 { execsql VACUUM } {}

finish_test








<
19
20
21
22
23
24
25

do_test 1.1 {
  execsql { INSERT INTO t2 SELECT * FROM t1 }
} {4}

do_test 1.2 { execsql VACUUM } {}

finish_test

Changes to test/tkt-cbd054fa6b.test.
12
13
14
15
16
17
18
19
20
21
22















23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41


42
43











44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# This file implements tests to verify that ticket [cbd054fa6b] has been
# fixed.  
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}
















do_test tkt-cbd05-1.1 {
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT UNIQUE NOT NULL);
    CREATE INDEX t1_x ON t1(b);
    INSERT INTO t1 VALUES (NULL, '');
    INSERT INTO t1 VALUES (NULL, 'A');
    INSERT INTO t1 VALUES (NULL, 'B');
    INSERT INTO t1 VALUES (NULL, 'C');
    INSERT INTO t1 VALUES (NULL, 'D');
    INSERT INTO t1 VALUES (NULL, 'E');
    INSERT INTO t1 VALUES (NULL, 'F');
    INSERT INTO t1 VALUES (NULL, 'G');
    INSERT INTO t1 VALUES (NULL, 'H');
    INSERT INTO t1 VALUES (NULL, 'I');
    SELECT count(*) FROM t1;
  }
} {10}
do_test tkt-cbd05-1.2 {


  db eval {
    ANALYZE;











  }
} {}
do_test tkt-cbd05-1.3 {
  execsql { 
    SELECT tbl,idx,group_concat(sample,' ') 
    FROM sqlite_stat3 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {/t1 t1_x .[ ABCDEFGHI]{10}./}

do_test tkt-cbd05-2.1 {
  db eval {
    DROP TABLE t1;
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b BLOB UNIQUE NOT NULL);
    CREATE INDEX t1_x ON t1(b);
    INSERT INTO t1 VALUES(NULL, X'');







|



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



















>
>
|
<
>
>
>
>
>
>
>
>
>
>
>




|
|



|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# This file implements tests to verify that ticket [cbd054fa6b] has been
# fixed.  
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat4&&!stat3 {
  finish_test
  return
}

proc s {blob} {
  set ret ""
  binary scan $blob c* bytes
  foreach b $bytes {
    set t [binary format c $b]
    if {[string is print $t]} {
      append ret $t
    } else {
      append ret .
    }
  }
  return $ret
}
db function s s

do_test tkt-cbd05-1.1 {
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT UNIQUE NOT NULL);
    CREATE INDEX t1_x ON t1(b);
    INSERT INTO t1 VALUES (NULL, '');
    INSERT INTO t1 VALUES (NULL, 'A');
    INSERT INTO t1 VALUES (NULL, 'B');
    INSERT INTO t1 VALUES (NULL, 'C');
    INSERT INTO t1 VALUES (NULL, 'D');
    INSERT INTO t1 VALUES (NULL, 'E');
    INSERT INTO t1 VALUES (NULL, 'F');
    INSERT INTO t1 VALUES (NULL, 'G');
    INSERT INTO t1 VALUES (NULL, 'H');
    INSERT INTO t1 VALUES (NULL, 'I');
    SELECT count(*) FROM t1;
  }
} {10}
do_test tkt-cbd05-1.2 {
  db eval { ANALYZE; }
  ifcapable stat4 {
    db eval {

      PRAGMA writable_schema = 1;
      CREATE VIEW vvv AS 
      SELECT tbl,idx,neq,nlt,ndlt,test_extract(sample,0) AS sample
      FROM sqlite_stat4;
      PRAGMA writable_schema = 0;
    }
  } else {
    db eval {
      CREATE VIEW vvv AS 
      SELECT tbl,idx,neq,nlt,ndlt,sample FROM sqlite_stat3;
    }
  }
} {}
do_test tkt-cbd05-1.3 {
  execsql { 
    SELECT tbl,idx,group_concat(s(sample),' ') 
    FROM vvv 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {t1 t1_x { A B C D E F G H I}}

do_test tkt-cbd05-2.1 {
  db eval {
    DROP TABLE t1;
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b BLOB UNIQUE NOT NULL);
    CREATE INDEX t1_x ON t1(b);
    INSERT INTO t1 VALUES(NULL, X'');
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
do_test tkt-cbd05-2.2 {
  db eval {
    ANALYZE;
  }
} {}
do_test tkt-cbd05-2.3 {
  execsql { 
    SELECT tbl,idx,group_concat(sample,' ') 
    FROM sqlite_stat3 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {/t1 t1_x .[ ABCDEFGHI]{10}./}

finish_test







|
|



|


100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
do_test tkt-cbd05-2.2 {
  db eval {
    ANALYZE;
  }
} {}
do_test tkt-cbd05-2.3 {
  execsql { 
    SELECT tbl,idx,group_concat(s(sample),' ') 
    FROM vvv 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {t1 t1_x { A B C D E F G H I}}

finish_test
Changes to test/tkt-d11f09d36e.test.
55
56
57
58
59
60
61
62
  }
} {}
do_test tkt-d11f09d36e.5 {
  execsql { PRAGMA integrity_check }
} {ok}

finish_test








<
55
56
57
58
59
60
61

  }
} {}
do_test tkt-d11f09d36e.5 {
  execsql { PRAGMA integrity_check }
} {ok}

finish_test

Changes to test/tkt-f3e5abed55.test.
110
111
112
113
114
115
116
117
      SELECT * FROM t2;
    }
  } {1 2 3 4 1 2 3 4}
}


finish_test








<
110
111
112
113
114
115
116

      SELECT * FROM t2;
    }
  } {1 2 3 4 1 2 3 4}
}


finish_test

Changes to test/tkt-f973c7ac31.test.
80
81
82
83
84
85
86
87
      SELECT * FROM t WHERE c1 = 5 AND c2>'0' AND c2<='5' ORDER BY c2 ASC 
    }
  } {5 4 5 5}
} 


finish_test








<
80
81
82
83
84
85
86

      SELECT * FROM t WHERE c1 = 5 AND c2>'0' AND c2<='5' ORDER BY c2 ASC 
    }
  } {5 4 5 5}
} 


finish_test

Changes to test/tkt2822.test.
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
  execsql {
    SELECT a AS "b" FROM t3 ORDER BY [B];
  }
} {1 9}

# In "ORDER BY +b" the term is now an expression rather than
# a label.  It therefore matches by rule (3) instead of rule (2).
#
# 2013-04-13:  This is busted.  Changed to conform to PostgreSQL and
# MySQL and Oracle behavior.
# 
do_test tkt2822-5.5 {
  execsql {
    SELECT a AS b FROM t3 ORDER BY +b;
  }
} {1 9}

# Tests for rule 2 in compound queries
#
do_test tkt2822-6.1 {
  execsql {
    CREATE TABLE t6a(p,q);
    INSERT INTO t6a VALUES(1,8);







<
<
<





|







204
205
206
207
208
209
210



211
212
213
214
215
216
217
218
219
220
221
222
223
  execsql {
    SELECT a AS "b" FROM t3 ORDER BY [B];
  }
} {1 9}

# In "ORDER BY +b" the term is now an expression rather than
# a label.  It therefore matches by rule (3) instead of rule (2).



# 
do_test tkt2822-5.5 {
  execsql {
    SELECT a AS b FROM t3 ORDER BY +b;
  }
} {9 1}

# Tests for rule 2 in compound queries
#
do_test tkt2822-6.1 {
  execsql {
    CREATE TABLE t6a(p,q);
    INSERT INTO t6a VALUES(1,8);
Changes to test/tkt3442.test.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# These tests perform an EXPLAIN QUERY PLAN on both versions of the 
# SELECT referenced in ticket #3442 (both '5000' and "5000") 
# and verify that the query plan is the same.
#
ifcapable explain {
  do_test tkt3442-1.2 {
    EQP { SELECT node FROM listhash WHERE id='5000' LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?) (~1 rows)}}
  do_test tkt3442-1.3 {
    EQP { SELECT node FROM listhash WHERE id="5000" LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?) (~1 rows)}}
}


# Some extra tests testing other permutations of 5000.
#
ifcapable explain {
  do_test tkt3442-1.4 {
    EQP { SELECT node FROM listhash WHERE id=5000 LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?) (~1 rows)}}
}
do_test tkt3442-1.5 {
  catchsql {
    SELECT node FROM listhash WHERE id=[5000] LIMIT 1;
  }
} {1 {no such column: 5000}}








|


|








|







45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# These tests perform an EXPLAIN QUERY PLAN on both versions of the 
# SELECT referenced in ticket #3442 (both '5000' and "5000") 
# and verify that the query plan is the same.
#
ifcapable explain {
  do_test tkt3442-1.2 {
    EQP { SELECT node FROM listhash WHERE id='5000' LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?)}}
  do_test tkt3442-1.3 {
    EQP { SELECT node FROM listhash WHERE id="5000" LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?)}}
}


# Some extra tests testing other permutations of 5000.
#
ifcapable explain {
  do_test tkt3442-1.4 {
    EQP { SELECT node FROM listhash WHERE id=5000 LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?)}}
}
do_test tkt3442-1.5 {
  catchsql {
    SELECT node FROM listhash WHERE id=[5000] LIMIT 1;
  }
} {1 {no such column: 5000}}

Changes to test/tkt3918.test.
53
54
55
56
57
58
59
60
# page 4 from the database free-list. Bug 3918 caused sqlite to
# incorrectly report corruption here.
do_test tkt3918.5 {
  execsql { CREATE TABLE t2(a, b) }
} {}

finish_test








<
53
54
55
56
57
58
59

# page 4 from the database free-list. Bug 3918 caused sqlite to
# incorrectly report corruption here.
do_test tkt3918.5 {
  execsql { CREATE TABLE t2(a, b) }
} {}

finish_test

Changes to test/tkt3929.test.
46
47
48
49
50
51
52
53
  for {set i 3} {$i < 100} {incr i} {
    execsql { INSERT INTO t1(a) VALUES($i) }
  }
} {}

integrity_check tkt3930-1.3
finish_test








<
46
47
48
49
50
51
52

  for {set i 3} {$i < 100} {incr i} {
    execsql { INSERT INTO t1(a) VALUES($i) }
  }
} {}

integrity_check tkt3930-1.3
finish_test

Added test/tpch01.test.






















































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# 2013-09-05
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# TPC-H test queries.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix tpch01

do_execsql_test tpch01-1.0 {
  CREATE TABLE NATION  ( N_NATIONKEY  INTEGER NOT NULL,
                              N_NAME       CHAR(25) NOT NULL,
                              N_REGIONKEY  INTEGER NOT NULL,
                              N_COMMENT    VARCHAR(152));
  CREATE TABLE REGION  ( R_REGIONKEY  INTEGER NOT NULL,
                              R_NAME       CHAR(25) NOT NULL,
                              R_COMMENT    VARCHAR(152));
  CREATE TABLE PART  ( P_PARTKEY     INTEGER NOT NULL,
                            P_NAME        VARCHAR(55) NOT NULL,
                            P_MFGR        CHAR(25) NOT NULL,
                            P_BRAND       CHAR(10) NOT NULL,
                            P_TYPE        VARCHAR(25) NOT NULL,
                            P_SIZE        INTEGER NOT NULL,
                            P_CONTAINER   CHAR(10) NOT NULL,
                            P_RETAILPRICE DECIMAL(15,2) NOT NULL,
                            P_COMMENT     VARCHAR(23) NOT NULL );
  CREATE TABLE SUPPLIER ( S_SUPPKEY     INTEGER NOT NULL,
                               S_NAME        CHAR(25) NOT NULL,
                               S_ADDRESS     VARCHAR(40) NOT NULL,
                               S_NATIONKEY   INTEGER NOT NULL,
                               S_PHONE       CHAR(15) NOT NULL,
                               S_ACCTBAL     DECIMAL(15,2) NOT NULL,
                               S_COMMENT     VARCHAR(101) NOT NULL);
  CREATE TABLE PARTSUPP ( PS_PARTKEY     INTEGER NOT NULL,
                               PS_SUPPKEY     INTEGER NOT NULL,
                               PS_AVAILQTY    INTEGER NOT NULL,
                               PS_SUPPLYCOST  DECIMAL(15,2)  NOT NULL,
                               PS_COMMENT     VARCHAR(199) NOT NULL );
  CREATE TABLE CUSTOMER ( C_CUSTKEY     INTEGER NOT NULL,
                               C_NAME        VARCHAR(25) NOT NULL,
                               C_ADDRESS     VARCHAR(40) NOT NULL,
                               C_NATIONKEY   INTEGER NOT NULL,
                               C_PHONE       CHAR(15) NOT NULL,
                               C_ACCTBAL     DECIMAL(15,2)   NOT NULL,
                               C_MKTSEGMENT  CHAR(10) NOT NULL,
                               C_COMMENT     VARCHAR(117) NOT NULL);
  CREATE TABLE ORDERS  ( O_ORDERKEY       INTEGER NOT NULL,
                             O_CUSTKEY        INTEGER NOT NULL,
                             O_ORDERSTATUS    CHAR(1) NOT NULL,
                             O_TOTALPRICE     DECIMAL(15,2) NOT NULL,
                             O_ORDERDATE      DATE NOT NULL,
                             O_ORDERPRIORITY  CHAR(15) NOT NULL,  
                             O_CLERK          CHAR(15) NOT NULL, 
                             O_SHIPPRIORITY   INTEGER NOT NULL,
                             O_COMMENT        VARCHAR(79) NOT NULL);
  CREATE TABLE LINEITEM ( L_ORDERKEY    INTEGER NOT NULL,
                               L_PARTKEY     INTEGER NOT NULL,
                               L_SUPPKEY     INTEGER NOT NULL,
                               L_LINENUMBER  INTEGER NOT NULL,
                               L_QUANTITY    DECIMAL(15,2) NOT NULL,
                               L_EXTENDEDPRICE  DECIMAL(15,2) NOT NULL,
                               L_DISCOUNT    DECIMAL(15,2) NOT NULL,
                               L_TAX         DECIMAL(15,2) NOT NULL,
                               L_RETURNFLAG  CHAR(1) NOT NULL,
                               L_LINESTATUS  CHAR(1) NOT NULL,
                               L_SHIPDATE    DATE NOT NULL,
                               L_COMMITDATE  DATE NOT NULL,
                               L_RECEIPTDATE DATE NOT NULL,
                               L_SHIPINSTRUCT CHAR(25) NOT NULL,
                               L_SHIPMODE     CHAR(10) NOT NULL,
                               L_COMMENT      VARCHAR(44) NOT NULL);
  CREATE INDEX npki on nation(N_NATIONKEY);
  CREATE INDEX rpki on region(R_REGIONKEY);
  CREATE INDEX ppki on part(P_PARTKEY);
  CREATE INDEX spki on supplier(S_SUPPKEY);
  CREATE INDEX pspki on partsupp(PS_PARTKEY, PS_SUPPKEY);
  CREATE INDEX cpki on customer(C_CUSTKEY);
  CREATE INDEX opki on orders(O_ORDERKEY);
  CREATE INDEX lpki on lineitem(L_ORDERKEY, L_LINENUMBER);
  CREATE INDEX nrki on nation(n_regionkey);
  CREATE INDEX snki on supplier(s_nationkey);
  CREATE INDEX cnki on customer(c_nationkey);
  CREATE INDEX ocki on orders(O_CUSTKEY);
  CREATE INDEX odi on orders(O_ORDERDATE);
  CREATE INDEX lpki2 on lineitem(L_PARTKEY);
  CREATE INDEX lski on lineitem(L_SUPPKEY);
  CREATE INDEX lsdi on lineitem(L_SHIPDATE);
  CREATE INDEX lcdi on lineitem(L_COMMITDATE);
  CREATE INDEX lrdi on lineitem(L_RECEIPTDATE);
  CREATE INDEX bootleg_nni on nation(N_NAME);
  CREATE INDEX bootleg_psi on part(p_size);
  CREATE INDEX bootleg_pti on part(p_type);
  ANALYZE sqlite_master;
  INSERT INTO sqlite_stat1 VALUES('LINEITEM','lrdi','600572 236');
  INSERT INTO sqlite_stat1 VALUES('LINEITEM','lcdi','600572 244');
  INSERT INTO sqlite_stat1 VALUES('LINEITEM','lsdi','600572 238');
  INSERT INTO sqlite_stat1 VALUES('LINEITEM','lski','600572 601');
  INSERT INTO sqlite_stat1 VALUES('LINEITEM','lpki2','600572 31');
  INSERT INTO sqlite_stat1 VALUES('LINEITEM','lpki','600572 5 1');
  INSERT INTO sqlite_stat1 VALUES('ORDERS','odi','150000 63');
  INSERT INTO sqlite_stat1 VALUES('ORDERS','ocki','150000 15');
  INSERT INTO sqlite_stat1 VALUES('ORDERS','opki','150000 1');
  INSERT INTO sqlite_stat1 VALUES('CUSTOMER','cnki','15000 600');
  INSERT INTO sqlite_stat1 VALUES('CUSTOMER','cpki','15000 1');
  INSERT INTO sqlite_stat1 VALUES('PARTSUPP','pspki','80000 4 1');
  INSERT INTO sqlite_stat1 VALUES('SUPPLIER','snki','1000 40');
  INSERT INTO sqlite_stat1 VALUES('SUPPLIER','spki','1000 1');
  INSERT INTO sqlite_stat1 VALUES('PART','bootleg_pti','20000 134');
  INSERT INTO sqlite_stat1 VALUES('PART','bootleg_psi','20000 400');
  INSERT INTO sqlite_stat1 VALUES('PART','ppki','20000 1');
  INSERT INTO sqlite_stat1 VALUES('REGION','rpki','5 1');
  INSERT INTO sqlite_stat1 VALUES('NATION','bootleg_nni','25 1');
  INSERT INTO sqlite_stat1 VALUES('NATION','nrki','25 5');
  INSERT INTO sqlite_stat1 VALUES('NATION','npki','25 1');
  ANALYZE sqlite_master;
} {}

do_test tpch01-1.1 {
  unset -nocomplain ::eqpres
  set ::eqpres [db eval {EXPLAIN QUERY PLAN
       select
               o_year,
               sum(case
                       when nation = 'EGYPT' then volume
                       else 0
               end) / sum(volume) as mkt_share
       from
               (
                       select
                               strftime('%Y', o_orderdate) as o_year,
                               l_extendedprice * (1 - l_discount) as volume,
                               n2.n_name as nation
                       from
                               part,
                               supplier,
                               lineitem,
                               orders,
                               customer,
                               nation n1,
                               nation n2,
                               region
                       where
                               p_partkey = l_partkey
                               and s_suppkey = l_suppkey
                               and l_orderkey = o_orderkey
                               and o_custkey = c_custkey
                               and c_nationkey = n1.n_nationkey
                               and n1.n_regionkey = r_regionkey
                               and r_name = 'MIDDLE EAST'
                               and s_nationkey = n2.n_nationkey
                               and o_orderdate between  '1995-01-01' and '1996-12-31'
                               and p_type = 'LARGE PLATED STEEL'
               ) as all_nations
       group by
               o_year
       order by
               o_year;}]
  set ::eqpres
} {/0 0 0 {SEARCH TABLE part USING INDEX bootleg_pti .P_TYPE=..} 0 1 2 {SEARCH TABLE lineitem USING INDEX lpki2 .L_PARTKEY=..}.*/}
do_test tpch01-1.1b {
  set ::eqpres
} {/.* customer .* nation AS n1 .* nation AS n2 .*/}

do_eqp_test tpch01-1.2 {
select
    c_custkey,    c_name,    sum(l_extendedprice * (1 - l_discount)) as revenue,
    c_acctbal,    n_name,    c_address,    c_phone,    c_comment
from
    customer,    orders,    lineitem,    nation
where
    c_custkey = o_custkey    and l_orderkey = o_orderkey
    and o_orderdate >=  '1994-08-01'    and o_orderdate < date('1994-08-01', '+3 month')
    and l_returnflag = 'R'    and c_nationkey = n_nationkey
group by
    c_custkey,    c_name,    c_acctbal,    c_phone,    n_name, c_address,    c_comment
order by
    revenue desc;
} {0 0 1 {SEARCH TABLE orders USING INDEX odi (O_ORDERDATE>? AND O_ORDERDATE<?)} 0 1 0 {SEARCH TABLE customer USING INDEX cpki (C_CUSTKEY=?)} 0 2 3 {SEARCH TABLE nation USING INDEX npki (N_NATIONKEY=?)} 0 3 2 {SEARCH TABLE lineitem USING INDEX lpki (L_ORDERKEY=?)} 0 0 0 {USE TEMP B-TREE FOR GROUP BY} 0 0 0 {USE TEMP B-TREE FOR ORDER BY}}
Changes to test/transitive1.test.
42
43
44
45
46
47
48























































49
50
} {20 20 20}
do_execsql_test transitive1-210 {
  SELECT * FROM t2 WHERE a=b AND c=b AND c>=20 ORDER BY +a;
} {3 3 3 20 20 20}
do_execsql_test transitive1-220 {
  SELECT * FROM t2 WHERE a=b AND c=b AND c<=20 ORDER BY +a;
} {20 20 20 100 100 100}
























































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
} {20 20 20}
do_execsql_test transitive1-210 {
  SELECT * FROM t2 WHERE a=b AND c=b AND c>=20 ORDER BY +a;
} {3 3 3 20 20 20}
do_execsql_test transitive1-220 {
  SELECT * FROM t2 WHERE a=b AND c=b AND c<=20 ORDER BY +a;
} {20 20 20 100 100 100}

# Test cases for ticket [[d805526eae253103] 2013-07-08
# "Incorrect join result or assertion fault due to transitive constraints"
#
do_execsql_test transitive1-300 {
  CREATE TABLE t301(w INTEGER PRIMARY KEY, x);
  CREATE TABLE t302(y INTEGER UNIQUE, z);
  INSERT INTO t301 VALUES(1,2),(3,4),(5,6);
  INSERT INTO t302 VALUES(1,3),(3,6),(5,7);
  SELECT *
    FROM t301 CROSS JOIN t302
   WHERE w=y AND y IS NOT NULL
   ORDER BY +w;
} {1 2 1 3 3 4 3 6 5 6 5 7}
do_execsql_test transitive1-301 {
  SELECT *
    FROM t301 CROSS JOIN t302
   WHERE w=y AND y IS NOT NULL
   ORDER BY w;
} {1 2 1 3 3 4 3 6 5 6 5 7}
do_execsql_test transitive1-310 {
  SELECT *
    FROM t301 CROSS JOIN t302 ON w=y
   WHERE y>1
   ORDER BY +w
} {3 4 3 6 5 6 5 7}
do_execsql_test transitive1-311 {
  SELECT *
    FROM t301 CROSS JOIN t302 ON w=y
   WHERE y>1
   ORDER BY w
} {3 4 3 6 5 6 5 7}
do_execsql_test transitive1-312 {
  SELECT *
    FROM t301 CROSS JOIN t302 ON w=y
   WHERE y>1
   ORDER BY w DESC
} {5 6 5 7 3 4 3 6}
do_execsql_test transitive1-320 {
  SELECT *
    FROM t301 CROSS JOIN t302 ON w=y
   WHERE y BETWEEN 2 AND 4;
} {3 4 3 6}
do_execsql_test transitive1-331 {
  SELECT *
    FROM t301 CROSS JOIN t302 ON w=y
   WHERE y BETWEEN 1 AND 4
   ORDER BY w;
} {1 2 1 3 3 4 3 6}
do_execsql_test transitive1-332 {
  SELECT *
    FROM t301 CROSS JOIN t302 ON w=y
   WHERE y BETWEEN 1 AND 4
   ORDER BY w DESC;
} {3 4 3 6 1 2 1 3}

finish_test
Changes to test/unordered.test.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
  if {$idxmode == "unordered"} {
    execsql { UPDATE sqlite_stat1 SET stat = stat || ' unordered' }
  }
  db close
  sqlite3 db test.db
  foreach {tn sql r(ordered) r(unordered)} {
    1   "SELECT * FROM t1 ORDER BY a"
        {0 0 0 {SCAN TABLE t1 USING INDEX i1 (~128 rows)}}
        {0 0 0 {SCAN TABLE t1 (~128 rows)} 0 0 0 {USE TEMP B-TREE FOR ORDER BY}}
    2   "SELECT * FROM t1 WHERE a >?"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?) (~32 rows)}}
        {0 0 0 {SCAN TABLE t1 (~42 rows)}}
    3   "SELECT * FROM t1 WHERE a = ? ORDER BY rowid"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~1 rows)}}
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~1 rows)} 
         0 0 0 {USE TEMP B-TREE FOR ORDER BY}}
    4   "SELECT max(a) FROM t1"
        {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (~1 rows)}}
        {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (~1 rows)}}
    5   "SELECT group_concat(b) FROM t1 GROUP BY a"
        {0 0 0 {SCAN TABLE t1 USING INDEX i1 (~128 rows)}}
        {0 0 0 {SCAN TABLE t1 (~128 rows)} 0 0 0 {USE TEMP B-TREE FOR GROUP BY}}

    6   "SELECT * FROM t1 WHERE a = ?"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~1 rows)}}
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~1 rows)}}
    7   "SELECT count(*) FROM t1"
        {0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1(~128 rows)}}
        {0 0 0 {SCAN TABLE t1 (~128 rows)}}
  } {
    do_eqp_test 1.$idxmode.$tn $sql $r($idxmode)
  }
}

finish_test







|
|

|
|

|
|


|
|

|
|


|
|

|
|






36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
  if {$idxmode == "unordered"} {
    execsql { UPDATE sqlite_stat1 SET stat = stat || ' unordered' }
  }
  db close
  sqlite3 db test.db
  foreach {tn sql r(ordered) r(unordered)} {
    1   "SELECT * FROM t1 ORDER BY a"
        {0 0 0 {SCAN TABLE t1 USING INDEX i1}}
        {0 0 0 {SCAN TABLE t1} 0 0 0 {USE TEMP B-TREE FOR ORDER BY}}
    2   "SELECT * FROM t1 WHERE a >?"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?)}}
        {0 0 0 {SCAN TABLE t1}}
    3   "SELECT * FROM t1 WHERE a = ? ORDER BY rowid"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)} 
         0 0 0 {USE TEMP B-TREE FOR ORDER BY}}
    4   "SELECT max(a) FROM t1"
        {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1}}
        {0 0 0 {SEARCH TABLE t1}}
    5   "SELECT group_concat(b) FROM t1 GROUP BY a"
        {0 0 0 {SCAN TABLE t1 USING INDEX i1}}
        {0 0 0 {SCAN TABLE t1} 0 0 0 {USE TEMP B-TREE FOR GROUP BY}}

    6   "SELECT * FROM t1 WHERE a = ?"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
    7   "SELECT count(*) FROM t1"
        {0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}}
        {0 0 0 {SCAN TABLE t1}}
  } {
    do_eqp_test 1.$idxmode.$tn $sql $r($idxmode)
  }
}

finish_test
Changes to test/veryquick.test.
12
13
14
15
16
17
18
19

set testdir [file dirname $argv0]
source $testdir/permutations.test

run_test_suite veryquick

finish_test








<
12
13
14
15
16
17
18


set testdir [file dirname $argv0]
source $testdir/permutations.test

run_test_suite veryquick

finish_test

Changes to test/vtab1.test.
614
615
616
617
618
619
620

621
622
623
624
625
626
627
628
629
} [list \
  1 red green 2 hearts diamonds  \
  2 blue black 2 hearts diamonds \
]
do_test vtab1-5-7 {
  filter $::echo_module
} [list \

  xFilter {SELECT rowid, * FROM 't2' WHERE d = ?} \
  xFilter {SELECT rowid, * FROM 't1'}             \
]

execsql {
  DROP TABLE t1;
  DROP TABLE t2;
  DROP TABLE et1;
  DROP TABLE et2;







>

|







614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
} [list \
  1 red green 2 hearts diamonds  \
  2 blue black 2 hearts diamonds \
]
do_test vtab1-5-7 {
  filter $::echo_module
} [list \
  xFilter {SELECT rowid, * FROM 't1'}             \
  xFilter {SELECT rowid, * FROM 't2' WHERE d = ?} \
  xFilter {SELECT rowid, * FROM 't2' WHERE d = ?} \
]

execsql {
  DROP TABLE t1;
  DROP TABLE t2;
  DROP TABLE et1;
  DROP TABLE et2;
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
} {}
do_test vtab1-14.015 {
  execsql {SELECT * FROM echo_c WHERE +a NOT IN (1,8,'x',NULL,15,24)}
} {}



do_test vtab1-14.1 {
  execsql { DELETE FROM c }
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE rowid IN (1, 2, 3) }
  set echo_module
} {/xBestIndex {SELECT rowid, . FROM 'c' WHERE rowid = .} xFilter {SELECT rowid, . FROM 'c' WHERE rowid = .} 1/}

do_test vtab1-14.2 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE rowid = 1 }
  set echo_module
} [list xBestIndex {SELECT rowid, * FROM 'c' WHERE rowid = ?} xFilter {SELECT rowid, * FROM 'c' WHERE rowid = ?} 1]

do_test vtab1-14.3 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE a = 1 }
  set echo_module
} [list xBestIndex {SELECT rowid, * FROM 'c' WHERE a = ?} xFilter {SELECT rowid, * FROM 'c' WHERE a = ?} 1]

do_test vtab1-14.4 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE a IN (1, 2) }
  set echo_module
} {/xBestIndex {SELECT rowid, . FROM 'c' WHERE a = .} xFilter {SELECT rowid, . FROM 'c' WHERE a = .} 1/}

do_test vtab1-15.1 {
  execsql {
    CREATE TABLE t1(a, b, c);
    CREATE VIRTUAL TABLE echo_t1 USING echo(t1);
  }
} {}







|
|
|
|
|
|













|
|
|
|
|







1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
} {}
do_test vtab1-14.015 {
  execsql {SELECT * FROM echo_c WHERE +a NOT IN (1,8,'x',NULL,15,24)}
} {}



#do_test vtab1-14.1 {
#  execsql { DELETE FROM c }
#  set echo_module ""
#  execsql { SELECT * FROM echo_c WHERE rowid IN (1, 2, 3) }
#  set echo_module
#} {/.*xBestIndex {SELECT rowid, . FROM 'c' WHERE rowid = .} xFilter {SELECT rowid, . FROM 'c'} 1/}

do_test vtab1-14.2 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE rowid = 1 }
  set echo_module
} [list xBestIndex {SELECT rowid, * FROM 'c' WHERE rowid = ?} xFilter {SELECT rowid, * FROM 'c' WHERE rowid = ?} 1]

do_test vtab1-14.3 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE a = 1 }
  set echo_module
} [list xBestIndex {SELECT rowid, * FROM 'c' WHERE a = ?} xFilter {SELECT rowid, * FROM 'c' WHERE a = ?} 1]

#do_test vtab1-14.4 {
#  set echo_module ""
#  execsql { SELECT * FROM echo_c WHERE a IN (1, 2) }
#  set echo_module
#} {/xBestIndex {SELECT rowid, . FROM 'c' WHERE a = .} xFilter {SELECT rowid, . FROM 'c' WHERE a = .} 1/}

do_test vtab1-15.1 {
  execsql {
    CREATE TABLE t1(a, b, c);
    CREATE VIRTUAL TABLE echo_t1 USING echo(t1);
  }
} {}
Changes to test/vtab6.test.
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
set ::echo_module_ignore_usable 1
db cache flush

do_test vtab6-11.4.1 {
  catchsql {
    SELECT a, b, c FROM ab NATURAL JOIN bc;
  }
} {1 {table bc: xBestIndex returned an invalid plan}}
do_test vtab6-11.4.2 {
  catchsql {
    SELECT a, b, c FROM bc NATURAL JOIN ab;
  }
} {1 {table ab: xBestIndex returned an invalid plan}}

unset ::echo_module_ignore_usable

finish_test







|




|




557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
set ::echo_module_ignore_usable 1
db cache flush

do_test vtab6-11.4.1 {
  catchsql {
    SELECT a, b, c FROM ab NATURAL JOIN bc;
  }
} {1 {table ab: xBestIndex returned an invalid plan}}
do_test vtab6-11.4.2 {
  catchsql {
    SELECT a, b, c FROM bc NATURAL JOIN ab;
  }
} {1 {table bc: xBestIndex returned an invalid plan}}

unset ::echo_module_ignore_usable

finish_test
Changes to test/wal6.test.
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80


















































































































81

#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the operation of the library in
# "PRAGMA journal_mode=WAL" mode.
#

set testdir [file dirname $argv0]

source $testdir/tester.tcl
source $testdir/lock_common.tcl
source $testdir/wal_common.tcl
source $testdir/malloc_common.tcl
ifcapable !wal {finish_test ; return }

#-------------------------------------------------------------------------
# Changing to WAL mode in one connection forces the change in others.
#
db close
forcedelete test.db

set all_journal_modes {delete persist truncate memory off}
foreach jmode $all_journal_modes {

	do_test wal6-1.0.$jmode {
    sqlite3 db test.db
    execsql "PRAGMA journal_mode = $jmode;"
	} $jmode

	do_test wal6-1.1.$jmode {
	  execsql {
	    CREATE TABLE t1(a INTEGER PRIMARY KEY, b);
	    INSERT INTO t1 VALUES(1,2);
	    SELECT * FROM t1;
	  }
	} {1 2}

# Under Windows, you'll get an error trying to delete
# a file this is already opened.  Close the first connection
# so the other tests work.
if {$tcl_platform(platform)=="windows"} {
  if {$jmode=="persist" || $jmode=="truncate"} {
    db close
  }
}

	do_test wal6-1.2.$jmode {
	  sqlite3 db2 test.db
	  execsql {
		PRAGMA journal_mode=WAL;
		INSERT INTO t1 VALUES(3,4);
		SELECT * FROM t1 ORDER BY a;
	  } db2
	} {wal 1 2 3 4}

if {$tcl_platform(platform)=="windows"} {
  if {$jmode=="persist" || $jmode=="truncate"} {
	  sqlite3 db test.db
  }
}

	do_test wal6-1.3.$jmode {
	  execsql {
		  SELECT * FROM t1 ORDER BY a;
	  }
	} {1 2 3 4}

	db close
	db2 close
  forcedelete test.db

}



















































































































finish_test








>















|


|

|
|
|
|
|
|
|










|
|
|
|
|
|
|
|



|



|
|
|
|
|

|
|




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the operation of the library in
# "PRAGMA journal_mode=WAL" mode.
#

set testdir [file dirname $argv0]
set testprefix wal6
source $testdir/tester.tcl
source $testdir/lock_common.tcl
source $testdir/wal_common.tcl
source $testdir/malloc_common.tcl
ifcapable !wal {finish_test ; return }

#-------------------------------------------------------------------------
# Changing to WAL mode in one connection forces the change in others.
#
db close
forcedelete test.db

set all_journal_modes {delete persist truncate memory off}
foreach jmode $all_journal_modes {

  do_test wal6-1.0.$jmode {
    sqlite3 db test.db
    execsql "PRAGMA journal_mode = $jmode;"
  } $jmode

  do_test wal6-1.1.$jmode {
    execsql {
      CREATE TABLE t1(a INTEGER PRIMARY KEY, b);
      INSERT INTO t1 VALUES(1,2);
      SELECT * FROM t1;
    }
  } {1 2}

# Under Windows, you'll get an error trying to delete
# a file this is already opened.  Close the first connection
# so the other tests work.
if {$tcl_platform(platform)=="windows"} {
  if {$jmode=="persist" || $jmode=="truncate"} {
    db close
  }
}

  do_test wal6-1.2.$jmode {
    sqlite3 db2 test.db
    execsql {
    PRAGMA journal_mode=WAL;
    INSERT INTO t1 VALUES(3,4);
    SELECT * FROM t1 ORDER BY a;
    } db2
  } {wal 1 2 3 4}

if {$tcl_platform(platform)=="windows"} {
  if {$jmode=="persist" || $jmode=="truncate"} {
    sqlite3 db test.db
  }
}

  do_test wal6-1.3.$jmode {
    execsql {
      SELECT * FROM t1 ORDER BY a;
    }
  } {1 2 3 4}

  db close
  db2 close
  forcedelete test.db

}

#-------------------------------------------------------------------------
# Test that SQLITE_BUSY_SNAPSHOT is returned as expected.
#
reset_db
sqlite3 db2 test.db

do_execsql_test 2.1 {
  PRAGMA journal_mode = WAL;
  CREATE TABLE t1(a PRIMARY KEY, b TEXT);
  INSERT INTO t1 VALUES(1, 'one');
  INSERT INTO t1 VALUES(2, 'two');
  BEGIN;
    SELECT * FROM t1;
} {wal 1 one 2 two}

do_test 2.2 {
  execsql {
    SELECT * FROM t1;
    INSERT INTO t1 VALUES(3, 'three');
  } db2
} {1 one 2 two}

do_catchsql_test 2.3 { 
  INSERT INTO t1 VALUES('x', 'x') 
} {1 {database is locked}}

do_test 2.4 { 
  list [sqlite3_errcode db] [sqlite3_extended_errcode db]
} {SQLITE_BUSY SQLITE_BUSY_SNAPSHOT}

do_execsql_test 2.5 {
  SELECT * FROM t1;
  COMMIT;
  INSERT INTO t1 VALUES('x', 'x') 
} {1 one 2 two}

proc test3 {prefix} {
  do_test $prefix.1 {
    execsql { SELECT count(*) FROM t1 } 
  } {0}
  do_test $prefix.2 {
    execsql { INSERT INTO t1 VALUES('x', 'x') } db2
  } {}
  do_test $prefix.3 {
    execsql { INSERT INTO t1 VALUES('y', 'y') }
  } {}
  do_test $prefix.4 {
    execsql { SELECT count(*) FROM t1 } 
  } {2}
}

do_execsql_test 2.6.1 { DELETE FROM t1 }
test3 2.6.2

db func test3 test3
do_execsql_test 2.6.3 { DELETE FROM t1 }
db eval {SELECT test3('2.6.4')}

do_test 2.x {
  db2 close
} {}

#-------------------------------------------------------------------------
# Check that if BEGIN IMMEDIATE fails, it does not leave the user with
# an open read-transaction (unless one was already open before the BEGIN 
# IMMEDIATE). Even if there are other active VMs.
#

proc test4 {prefix} {
  do_test $prefix.1 {
    catchsql { BEGIN IMMEDIATE }
  } {1 {database is locked}}

  do_test $prefix.2 {
    execsql { COMMIT } db2
  } {}

  do_test $prefix.3 {
    execsql { BEGIN IMMEDIATE }
  } {}
  do_test $prefix.4 {
    execsql { COMMIT }
  } {}
}

reset_db
sqlite3 db2 test.db
do_execsql_test 3.1 { 
  PRAGMA journal_mode = WAL;
  CREATE TABLE ab(a PRIMARY KEY, b);
} {wal}

do_test 3.2.1 { 
  execsql { 
    BEGIN;
      INSERT INTO ab VALUES(1, 2);
  } db2
} {}
test4 3.2.2

db func test4 test4
do_test 3.3.1 {
  execsql { 
    BEGIN;
      INSERT INTO ab VALUES(3, 4);
  } db2
} {}

db eval {SELECT test4('3.3.2')}

do_test 3.x {
  db2 close
} {}

finish_test

Changes to test/wal8.test.
84
85
86
87
88
89
90
91

do_execsql_test 3.1 {
  PRAGMA page_size = 4096;
  SELECT name FROM sqlite_master;
} {t1}

finish_test








<
84
85
86
87
88
89
90


do_execsql_test 3.1 {
  PRAGMA page_size = 4096;
  SELECT name FROM sqlite_master;
} {t1}

finish_test

Changes to test/walcksum.test.
386
387
388
389
390
391
392
393
      db2 close
    }
    set FAIL
  } {0}
}
  
finish_test








<
386
387
388
389
390
391
392

      db2 close
    }
    set FAIL
  } {0}
}
  
finish_test

Changes to test/walcrash.test.
289
290
291
292
293
294
295
296
  do_test walcrash-7.$i.3 { execsql { PRAGMA main.integrity_check } } {ok}
  do_test walcrash-7.$i.4 { execsql { PRAGMA main.journal_mode } } {wal}

  db close
}

finish_test








<
289
290
291
292
293
294
295

  do_test walcrash-7.$i.3 { execsql { PRAGMA main.integrity_check } } {ok}
  do_test walcrash-7.$i.4 { execsql { PRAGMA main.journal_mode } } {wal}

  db close
}

finish_test

Changes to test/walcrash2.test.
92
93
94
95
96
97
98
99
do_test walcrash2-1.3 {
  sqlite3 db2 test.db
  execsql { SELECT count(*) FROM t1 } db2
} {0}
catch { db2 close }

finish_test








<
92
93
94
95
96
97
98

do_test walcrash2-1.3 {
  sqlite3 db2 test.db
  execsql { SELECT count(*) FROM t1 } db2
} {0}
catch { db2 close }

finish_test

Changes to test/walcrash3.test.
122
123
124
125
126
127
128
129
  do_test 2.$i.2 {
    sqlite3 db test.db
    execsql { PRAGMA integrity_check } 
  } {ok}
}

finish_test








<
122
123
124
125
126
127
128

  do_test 2.$i.2 {
    sqlite3 db test.db
    execsql { PRAGMA integrity_check } 
  } {ok}
}

finish_test

Changes to test/walro.test.
287
288
289
290
291
292
293
294
295
  do_test 2.1.5 {
    code1 { db close }
    code1 { tv delete }
  } {}
}

finish_test









<
<
287
288
289
290
291
292
293


  do_test 2.1.5 {
    code1 { db close }
    code1 { tv delete }
  } {}
}

finish_test


Changes to test/walshared.test.
56
57
58
59
60
61
62
63
  execsql { PRAGMA integrity_check } db2
} {ok}



sqlite3_enable_shared_cache $::enable_shared_cache
finish_test








<
56
57
58
59
60
61
62

  execsql { PRAGMA integrity_check } db2
} {ok}



sqlite3_enable_shared_cache $::enable_shared_cache
finish_test

Changes to test/where.test.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# "sqlite_search_count" which tallys the number of executions of MoveTo
# and Next operators in the VDBE.  By verifing that the search count is
# small we can be assured that indices are being used properly.
#
do_test where-1.1.1 {
  count {SELECT x, y, w FROM t1 WHERE w=10}
} {3 121 10 3}
do_test where-1.1.2 {
  set sqlite_query_plan
} {t1 i1w}
do_test where-1.1.3 {
  db status step
} {0}
do_test where-1.1.4 {
  db eval {SELECT x, y, w FROM t1 WHERE +w=10}
} {3 121 10}
do_test where-1.1.5 {
  db status step
} {99}
do_test where-1.1.6 {
  set sqlite_query_plan
} {t1 {}}
do_test where-1.1.7 {
  count {SELECT x, y, w AS abc FROM t1 WHERE abc=10}
} {3 121 10 3}
do_test where-1.1.8 {
  set sqlite_query_plan
} {t1 i1w}
do_test where-1.1.9 {
  db status step
} {0}
do_test where-1.2.1 {
  count {SELECT x, y, w FROM t1 WHERE w=11}
} {3 144 11 3}
do_test where-1.2.2 {
  count {SELECT x, y, w AS abc FROM t1 WHERE abc=11}
} {3 144 11 3}
do_test where-1.3.1 {
  count {SELECT x, y, w AS abc FROM t1 WHERE 11=w}
} {3 144 11 3}
do_test where-1.3.2 {
  count {SELECT x, y, w AS abc FROM t1 WHERE 11=abc}
} {3 144 11 3}
do_test where-1.4.1 {
  count {SELECT w, x, y FROM t1 WHERE 11=w AND x>2}
} {11 3 144 3}
do_test where-1.4.2 {
  set sqlite_query_plan
} {t1 i1w}
do_test where-1.4.3 {
  count {SELECT w AS a, x AS b, y FROM t1 WHERE 11=a AND b>2}
} {11 3 144 3}
do_test where-1.4.4 {
  set sqlite_query_plan
} {t1 i1w}
do_test where-1.5 {
  count {SELECT x, y FROM t1 WHERE y<200 AND w=11 AND x>2}
} {3 144 3}
do_test where-1.5.2 {
  set sqlite_query_plan
} {t1 i1w}
do_test where-1.6 {
  count {SELECT x, y FROM t1 WHERE y<200 AND x>2 AND w=11}
} {3 144 3}
do_test where-1.7 {
  count {SELECT x, y FROM t1 WHERE w=11 AND y<200 AND x>2}
} {3 144 3}
do_test where-1.8 {
  count {SELECT x, y FROM t1 WHERE w>10 AND y=144 AND x=3}
} {3 144 3}
do_test where-1.8.2 {
  set sqlite_query_plan
} {t1 i1xy}
do_test where-1.8.3 {
  count {SELECT x, y FROM t1 WHERE y=144 AND x=3}
  set sqlite_query_plan
} {{} i1xy}
do_test where-1.9 {
  count {SELECT x, y FROM t1 WHERE y=144 AND w>10 AND x=3}
} {3 144 3}
do_test where-1.10 {
  count {SELECT x, y FROM t1 WHERE x=3 AND w>=10 AND y=121}
} {3 121 3}
do_test where-1.11 {







|
|
|









|
|
|



|
|
|


















|
|
|



|
|
|



|
|
|









|
|
|
|
|
<
|







61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
# "sqlite_search_count" which tallys the number of executions of MoveTo
# and Next operators in the VDBE.  By verifing that the search count is
# small we can be assured that indices are being used properly.
#
do_test where-1.1.1 {
  count {SELECT x, y, w FROM t1 WHERE w=10}
} {3 121 10 3}
do_eqp_test where-1.1.2 {
  SELECT x, y, w FROM t1 WHERE w=10
} {*SEARCH TABLE t1 USING INDEX i1w (w=?)*}
do_test where-1.1.3 {
  db status step
} {0}
do_test where-1.1.4 {
  db eval {SELECT x, y, w FROM t1 WHERE +w=10}
} {3 121 10}
do_test where-1.1.5 {
  db status step
} {99}
do_eqp_test where-1.1.6 {
  SELECT x, y, w FROM t1 WHERE +w=10
} {*SCAN TABLE t1*}
do_test where-1.1.7 {
  count {SELECT x, y, w AS abc FROM t1 WHERE abc=10}
} {3 121 10 3}
do_eqp_test where-1.1.8 {
  SELECT x, y, w AS abc FROM t1 WHERE abc=10
} {*SEARCH TABLE t1 USING INDEX i1w (w=?)*}
do_test where-1.1.9 {
  db status step
} {0}
do_test where-1.2.1 {
  count {SELECT x, y, w FROM t1 WHERE w=11}
} {3 144 11 3}
do_test where-1.2.2 {
  count {SELECT x, y, w AS abc FROM t1 WHERE abc=11}
} {3 144 11 3}
do_test where-1.3.1 {
  count {SELECT x, y, w AS abc FROM t1 WHERE 11=w}
} {3 144 11 3}
do_test where-1.3.2 {
  count {SELECT x, y, w AS abc FROM t1 WHERE 11=abc}
} {3 144 11 3}
do_test where-1.4.1 {
  count {SELECT w, x, y FROM t1 WHERE 11=w AND x>2}
} {11 3 144 3}
do_eqp_test where-1.4.2 {
  SELECT w, x, y FROM t1 WHERE 11=w AND x>2
} {*SEARCH TABLE t1 USING INDEX i1w (w=?)*}
do_test where-1.4.3 {
  count {SELECT w AS a, x AS b, y FROM t1 WHERE 11=a AND b>2}
} {11 3 144 3}
do_eqp_test where-1.4.4 {
  SELECT w AS a, x AS b, y FROM t1 WHERE 11=a AND b>2
} {*SEARCH TABLE t1 USING INDEX i1w (w=?)*}
do_test where-1.5 {
  count {SELECT x, y FROM t1 WHERE y<200 AND w=11 AND x>2}
} {3 144 3}
do_eqp_test where-1.5.2 {
  SELECT x, y FROM t1 WHERE y<200 AND w=11 AND x>2
} {*SEARCH TABLE t1 USING INDEX i1w (w=?)*}
do_test where-1.6 {
  count {SELECT x, y FROM t1 WHERE y<200 AND x>2 AND w=11}
} {3 144 3}
do_test where-1.7 {
  count {SELECT x, y FROM t1 WHERE w=11 AND y<200 AND x>2}
} {3 144 3}
do_test where-1.8 {
  count {SELECT x, y FROM t1 WHERE w>10 AND y=144 AND x=3}
} {3 144 3}
do_eqp_test where-1.8.2 {
  SELECT x, y FROM t1 WHERE w>10 AND y=144 AND x=3
} {*SEARCH TABLE t1 USING INDEX i1xy (x=? AND y=?)*}
do_eqp_test where-1.8.3 {
  SELECT x, y FROM t1 WHERE y=144 AND x=3

} {*SEARCH TABLE t1 USING COVERING INDEX i1xy (x=? AND y=?)*}
do_test where-1.9 {
  count {SELECT x, y FROM t1 WHERE y=144 AND w>10 AND x=3}
} {3 144 3}
do_test where-1.10 {
  count {SELECT x, y FROM t1 WHERE x=3 AND w>=10 AND y=121}
} {3 121 3}
do_test where-1.11 {
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY c DESC LIMIT 3
  }
} {1 100 4 nosort}
do_test where-6.9.7 {
  cksort {
    SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY c,a LIMIT 3
  }
} {1 100 4 sort}
do_test where-6.9.8 {
  cksort {
    SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY a DESC, c ASC LIMIT 3
  }
} {1 100 4 nosort}
do_test where-6.9.9 {
  cksort {







|







600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
    SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY c DESC LIMIT 3
  }
} {1 100 4 nosort}
do_test where-6.9.7 {
  cksort {
    SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY c,a LIMIT 3
  }
} {1 100 4 nosort}
do_test where-6.9.8 {
  cksort {
    SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY a DESC, c ASC LIMIT 3
  }
} {1 100 4 nosort}
do_test where-6.9.9 {
  cksort {
1300
1301
1302
1303
1304
1305
1306
1307





























1308
do_test where-17.5 {
  execsql {
    CREATE TABLE tother(a, b);
    INSERT INTO tother VALUES(1, 3.7);
    SELECT id, a FROM tbooking, tother WHERE id>a;
  }
} {42 1 43 1}






























finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
do_test where-17.5 {
  execsql {
    CREATE TABLE tother(a, b);
    INSERT INTO tother VALUES(1, 3.7);
    SELECT id, a FROM tbooking, tother WHERE id>a;
  }
} {42 1 43 1}

# Ticket [be84e357c035d068135f20bcfe82761bbf95006b]  2013-09-03
# Segfault during query involving LEFT JOIN column in the ORDER BY clause.
#
do_execsql_test where-18.1 {
  CREATE TABLE t181(a);
  CREATE TABLE t182(b,c);
  INSERT INTO t181 VALUES(1);
  SELECT DISTINCT a FROM t181 LEFT JOIN t182 ON a=b ORDER BY c IS NULL;
} {1}
do_execsql_test where-18.2 {
  SELECT DISTINCT a FROM t181 LEFT JOIN t182 ON a=b ORDER BY +c;
} {1}
do_execsql_test where-18.3 {
  SELECT DISTINCT a FROM t181 LEFT JOIN t182 ON a=b ORDER BY c;
} {1}
do_execsql_test where-18.4 {
  INSERT INTO t181 VALUES(1),(1),(1),(1);
  SELECT DISTINCT a FROM t181 LEFT JOIN t182 ON a=b ORDER BY +c;
} {1}
do_execsql_test where-18.5 {
  INSERT INTO t181 VALUES(2);
  SELECT DISTINCT a FROM t181 LEFT JOIN t182 ON a=b ORDER BY c IS NULL, +a;
} {1 2}
do_execsql_test where-18.6 {
  INSERT INTO t181 VALUES(2);
  SELECT DISTINCT a FROM t181 LEFT JOIN t182 ON a=b ORDER BY +a, +c IS NULL;
} {1 2}


finish_test
Changes to test/where2.test.
62
63
64
65
66
67
68
69
70
71
72
73
74
75










76
77
78
79
80
81
82
83
  if {[db status sort]} {set x sort} {set x nosort}
  lappend data $x
  return $data
}

# This procedure executes the SQL.  Then it appends to the result the
# "sort" or "nosort" keyword (as in the cksort procedure above) then
# it appends the ::sqlite_query_plan variable.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x










  return [concat $data $::sqlite_query_plan]
}


# Prefer a UNIQUE index over another index.
#
do_test where2-1.1 {
  queryplan {







|






>
>
>
>
>
>
>
>
>
>
|







62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
  if {[db status sort]} {set x sort} {set x nosort}
  lappend data $x
  return $data
}

# This procedure executes the SQL.  Then it appends to the result the
# "sort" or "nosort" keyword (as in the cksort procedure above) then
# it appends the name of the table and index used.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x
  set eqp [execsql "EXPLAIN QUERY PLAN $sql"]
  # puts eqp=$eqp
  foreach {a b c x} $eqp {
    if {[regexp { TABLE (\w+ AS )?(\w+) USING.* INDEX (\w+)\y} \
        $x all as tab idx]} {
      lappend data $tab $idx
    } elseif {[regexp { TABLE (\w+ AS )?(\w+)\y} $x all as tab]} {
      lappend data $tab *
    }
  }
  return $data   
}


# Prefer a UNIQUE index over another index.
#
do_test where2-1.1 {
  queryplan {
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298


299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
  }
} [list 6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 $::idx]

do_test where2-6.3 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 OR w=100 OR 6=+w ORDER BY +w
  }
} {6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 {}}
do_test where2-6.4 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 OR +w=100 OR 6=w ORDER BY +w
  }
} {6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 {}}

set ::idx {}
ifcapable subquery {set ::idx i1zyx}
do_test where2-6.5 {
  queryplan {
    SELECT b.* FROM t1 a, t1 b
     WHERE a.w=1 AND (a.y=b.z OR b.z=10)
     ORDER BY +b.w
  }
} [list 1 0 4 4 2 1 9 10 sort a i1w b $::idx]
do_test where2-6.6 {
  queryplan {
    SELECT b.* FROM t1 a, t1 b
     WHERE a.w=1 AND (b.z=10 OR a.y=b.z OR b.z=10)
     ORDER BY +b.w
  }
} [list 1 0 4 4 2 1 9 10 sort a i1w b $::idx]



# Ticket #2249.  Make sure the OR optimization is not attempted if
# comparisons between columns of different affinities are needed.
#
do_test where2-6.7 {
  execsql {
    CREATE TABLE t2249a(a TEXT UNIQUE);
    CREATE TABLE t2249b(b INTEGER);
    INSERT INTO t2249a VALUES('0123');
    INSERT INTO t2249b VALUES(123);
  }
  queryplan {
    -- Because a is type TEXT and b is type INTEGER, both a and b
    -- will attempt to convert to NUMERIC before the comparison.
    -- They will thus compare equal.
    --
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=b;
  }
} {123 0123 nosort t2249b {} t2249a {}}
do_test where2-6.9 {
  queryplan {
    -- The + operator removes affinity from the rhs.  No conversions
    -- occur and the comparison is false.  The result is an empty set.
    --
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=+b;
  }
} {nosort t2249b {} {} sqlite_autoindex_t2249a_1}
do_test where2-6.9.2 {
  # The same thing but with the expression flipped around.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE +b=a
  }
} {nosort t2249b {} {} sqlite_autoindex_t2249a_1}
do_test where2-6.10 {
  queryplan {
    -- Use + on both sides of the comparison to disable indices
    -- completely.  Make sure we get the same result.
    --
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE +a=+b;
  }
} {nosort t2249b {} t2249a {}}
do_test where2-6.11 {
  # This will not attempt the OR optimization because of the a=b
  # comparison.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=b OR a='hello';
  }
} {123 0123 nosort t2249b {} t2249a {}}
do_test where2-6.11.2 {
  # Permutations of the expression terms.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE b=a OR a='hello';
  }
} {123 0123 nosort t2249b {} t2249a {}}
do_test where2-6.11.3 {
  # Permutations of the expression terms.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE 'hello'=a OR b=a;
  }
} {123 0123 nosort t2249b {} t2249a {}}
do_test where2-6.11.4 {
  # Permutations of the expression terms.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a='hello' OR b=a;
  }
} {123 0123 nosort t2249b {} t2249a {}}
ifcapable explain&&subquery {
  # These tests are not run if subquery support is not included in the
  # build. This is because these tests test the "a = 1 OR a = 2" to
  # "a IN (1, 2)" optimisation transformation, which is not enabled if
  # subqueries and the IN operator is not available.
  #
  do_test where2-6.12 {
    # In this case, the +b disables the affinity conflict and allows
    # the OR optimization to be used again.  The result is now an empty
    # set, the same as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=+b OR a='hello';
    }
  } {nosort t2249b {} {} sqlite_autoindex_t2249a_1}
  do_test where2-6.12.2 {
    # In this case, the +b disables the affinity conflict and allows
    # the OR optimization to be used again.  The result is now an empty
    # set, the same as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE a='hello' OR +b=a;
    }
  } {nosort t2249b {} {} sqlite_autoindex_t2249a_1}
  do_test where2-6.12.3 {
    # In this case, the +b disables the affinity conflict and allows
    # the OR optimization to be used again.  The result is now an empty
    # set, the same as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE +b=a OR a='hello';
    }
  } {nosort t2249b {} {} sqlite_autoindex_t2249a_1}
  do_test where2-6.13 {
    # The addition of +a on the second term disabled the OR optimization.
    # But we should still get the same empty-set result as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=+b OR +a='hello';
    }
  } {nosort t2249b {} t2249a {}}
}

# Variations on the order of terms in a WHERE clause in order
# to make sure the OR optimizer can recognize them all.
do_test where2-6.20 {
  queryplan {
    SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE x.a=y.a
  }
} {0123 0123 nosort x {} {} sqlite_autoindex_t2249a_1}
ifcapable explain&&subquery {
  # These tests are not run if subquery support is not included in the
  # build. This is because these tests test the "a = 1 OR a = 2" to
  # "a IN (1, 2)" optimisation transformation, which is not enabled if
  # subqueries and the IN operator is not available.
  #
  do_test where2-6.21 {
    queryplan {
      SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE x.a=y.a OR y.a='hello'
    }
  } {0123 0123 nosort x {} {} sqlite_autoindex_t2249a_1}
  do_test where2-6.22 {
    queryplan {
      SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE y.a=x.a OR y.a='hello'
    }
  } {0123 0123 nosort x {} {} sqlite_autoindex_t2249a_1}
  do_test where2-6.23 {
    queryplan {
      SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE y.a='hello' OR x.a=y.a
    }
  } {0123 0123 nosort x {} {} sqlite_autoindex_t2249a_1}
}

# Unique queries (queries that are guaranteed to return only a single
# row of result) do not call the sorter.  But all tables must give
# a unique result.  If any one table in the join does not give a unique
# result then sorting is necessary.
#







|




|

















>
>


















|







|





|







|






|





|





|





|













|







|







|






|








|










|




|




|







279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
  }
} [list 6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 $::idx]

do_test where2-6.3 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 OR w=100 OR 6=+w ORDER BY +w
  }
} {6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 *}
do_test where2-6.4 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 OR +w=100 OR 6=w ORDER BY +w
  }
} {6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 *}

set ::idx {}
ifcapable subquery {set ::idx i1zyx}
do_test where2-6.5 {
  queryplan {
    SELECT b.* FROM t1 a, t1 b
     WHERE a.w=1 AND (a.y=b.z OR b.z=10)
     ORDER BY +b.w
  }
} [list 1 0 4 4 2 1 9 10 sort a i1w b $::idx]
do_test where2-6.6 {
  queryplan {
    SELECT b.* FROM t1 a, t1 b
     WHERE a.w=1 AND (b.z=10 OR a.y=b.z OR b.z=10)
     ORDER BY +b.w
  }
} [list 1 0 4 4 2 1 9 10 sort a i1w b $::idx]

if {[permutation] != "no_optimization"} {

# Ticket #2249.  Make sure the OR optimization is not attempted if
# comparisons between columns of different affinities are needed.
#
do_test where2-6.7 {
  execsql {
    CREATE TABLE t2249a(a TEXT UNIQUE);
    CREATE TABLE t2249b(b INTEGER);
    INSERT INTO t2249a VALUES('0123');
    INSERT INTO t2249b VALUES(123);
  }
  queryplan {
    -- Because a is type TEXT and b is type INTEGER, both a and b
    -- will attempt to convert to NUMERIC before the comparison.
    -- They will thus compare equal.
    --
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=b;
  }
} {123 0123 nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
do_test where2-6.9 {
  queryplan {
    -- The + operator removes affinity from the rhs.  No conversions
    -- occur and the comparison is false.  The result is an empty set.
    --
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=+b;
  }
} {nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
do_test where2-6.9.2 {
  # The same thing but with the expression flipped around.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE +b=a
  }
} {nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
do_test where2-6.10 {
  queryplan {
    -- Use + on both sides of the comparison to disable indices
    -- completely.  Make sure we get the same result.
    --
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE +a=+b;
  }
} {nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
do_test where2-6.11 {
  # This will not attempt the OR optimization because of the a=b
  # comparison.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=b OR a='hello';
  }
} {123 0123 nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
do_test where2-6.11.2 {
  # Permutations of the expression terms.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE b=a OR a='hello';
  }
} {123 0123 nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
do_test where2-6.11.3 {
  # Permutations of the expression terms.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE 'hello'=a OR b=a;
  }
} {123 0123 nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
do_test where2-6.11.4 {
  # Permutations of the expression terms.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a='hello' OR b=a;
  }
} {123 0123 nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
ifcapable explain&&subquery {
  # These tests are not run if subquery support is not included in the
  # build. This is because these tests test the "a = 1 OR a = 2" to
  # "a IN (1, 2)" optimisation transformation, which is not enabled if
  # subqueries and the IN operator is not available.
  #
  do_test where2-6.12 {
    # In this case, the +b disables the affinity conflict and allows
    # the OR optimization to be used again.  The result is now an empty
    # set, the same as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=+b OR a='hello';
    }
  } {nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
  do_test where2-6.12.2 {
    # In this case, the +b disables the affinity conflict and allows
    # the OR optimization to be used again.  The result is now an empty
    # set, the same as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE a='hello' OR +b=a;
    }
  } {nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
  do_test where2-6.12.3 {
    # In this case, the +b disables the affinity conflict and allows
    # the OR optimization to be used again.  The result is now an empty
    # set, the same as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE +b=a OR a='hello';
    }
  } {nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
  do_test where2-6.13 {
    # The addition of +a on the second term disabled the OR optimization.
    # But we should still get the same empty-set result as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=+b OR +a='hello';
    }
  } {nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
}

# Variations on the order of terms in a WHERE clause in order
# to make sure the OR optimizer can recognize them all.
do_test where2-6.20 {
  queryplan {
    SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE x.a=y.a
  }
} {0123 0123 nosort x sqlite_autoindex_t2249a_1 y sqlite_autoindex_t2249a_1}
ifcapable explain&&subquery {
  # These tests are not run if subquery support is not included in the
  # build. This is because these tests test the "a = 1 OR a = 2" to
  # "a IN (1, 2)" optimisation transformation, which is not enabled if
  # subqueries and the IN operator is not available.
  #
  do_test where2-6.21 {
    queryplan {
      SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE x.a=y.a OR y.a='hello'
    }
  } {0123 0123 nosort x sqlite_autoindex_t2249a_1 y sqlite_autoindex_t2249a_1}
  do_test where2-6.22 {
    queryplan {
      SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE y.a=x.a OR y.a='hello'
    }
  } {0123 0123 nosort x sqlite_autoindex_t2249a_1 y sqlite_autoindex_t2249a_1}
  do_test where2-6.23 {
    queryplan {
      SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE y.a='hello' OR x.a=y.a
    }
  } {0123 0123 nosort x sqlite_autoindex_t2249a_1 y sqlite_autoindex_t2249a_1}
}

# Unique queries (queries that are guaranteed to return only a single
# row of result) do not call the sorter.  But all tables must give
# a unique result.  If any one table in the join does not give a unique
# result then sorting is necessary.
#
459
460
461
462
463
464
465


466
467
468
469
470
471
472
} {1 2 3 2 3 sort}
do_test where2-7.4 {
  cksort {
    create unique index i9y on t9(y);
    select * from t8, t9 where a=1 and y=3 order by b, x
  }
} {1 2 3 2 3 nosort}



# Ticket #1807.  Using IN constrains on multiple columns of
# a multi-column index.
#
ifcapable subquery {
  do_test where2-8.1 {
    execsql {







>
>







471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
} {1 2 3 2 3 sort}
do_test where2-7.4 {
  cksort {
    create unique index i9y on t9(y);
    select * from t8, t9 where a=1 and y=3 order by b, x
  }
} {1 2 3 2 3 nosort}

} ;# if {[permutation] != "no_optimization"}

# Ticket #1807.  Using IN constrains on multiple columns of
# a multi-column index.
#
ifcapable subquery {
  do_test where2-8.1 {
    execsql {
680
681
682
683
684
685
686













687
688
689
  }
} {4}
do_test where2-11.4 {
  execsql {
    SELECT d FROM t11 WHERE c=7 OR (a=1 AND b=2) ORDER BY d;
  }
} {4 8 10}















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>



694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
  }
} {4}
do_test where2-11.4 {
  execsql {
    SELECT d FROM t11 WHERE c=7 OR (a=1 AND b=2) ORDER BY d;
  }
} {4 8 10}

# Verify that the OR clause is used in an outer loop even when
# the OR clause scores slightly better on an inner loop.
if {[permutation] != "no_optimization"} {
do_execsql_test where2-12.1 {
  CREATE TABLE t12(x INTEGER PRIMARY KEY, y);
  CREATE INDEX t12y ON t12(y);
  EXPLAIN QUERY PLAN
    SELECT a.x, b.x
      FROM t12 AS a JOIN t12 AS b ON a.y=b.x
     WHERE (b.x=$abc OR b.y=$abc);
} {/.*SEARCH TABLE t12 AS b .*SEARCH TABLE t12 AS b .*/}
}


finish_test
Changes to test/where3.test.
99
100
101
102
103
104
105
106
107
108
109
110










111
112
113
114
115
116
117
118
       FROM parent1
       LEFT OUTER JOIN child1 ON parent1.child1key = child1.child1key 
       INNER JOIN child2 ON child2.child2key = parent1.child2key;
     }]
}

# This procedure executes the SQL.  Then it appends 
# the ::sqlite_query_plan variable.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]










  return [concat $data $::sqlite_query_plan]
}


# If you have a from clause of the form:   A B C left join D
# then make sure the query optimizer is able to reorder the 
# A B C part anyway it wants. 
#







|




>
>
>
>
>
>
>
>
>
>
|







99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
       FROM parent1
       LEFT OUTER JOIN child1 ON parent1.child1key = child1.child1key 
       INNER JOIN child2 ON child2.child2key = parent1.child2key;
     }]
}

# This procedure executes the SQL.  Then it appends 
# the names of the table and index used
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  set eqp [execsql "EXPLAIN QUERY PLAN $sql"]
  # puts eqp=$eqp
  foreach {a b c x} $eqp {
    if {[regexp { TABLE (\w+ AS )?(\w+) USING.* INDEX (\w+)\y} \
        $x all as tab idx]} {
      lappend data $tab $idx
    } elseif {[regexp { TABLE (\w+ AS )?(\w+)\y} $x all as tab]} {
      lappend data $tab *
    }
  }
  return $data   
}


# If you have a from clause of the form:   A B C left join D
# then make sure the query optimizer is able to reorder the 
# A B C part anyway it wants. 
#
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238






239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

271
272
273
274
275
276
277
    CREATE TABLE tC(cpk integer primary key, cx);
    CREATE TABLE tD(dpk integer primary key, dx);
  }
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND bpk=ax
  }
} {tA {} tB * tC * tD *}
do_test where3-2.1.1 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk
     WHERE cpk=bx AND bpk=ax
  }
} {tA {} tB * tC * tD *}
do_test where3-2.1.2 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk
     WHERE bx=cpk AND bpk=ax
  }
} {tA {} tB * tC * tD *}
do_test where3-2.1.3 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk
     WHERE bx=cpk AND ax=bpk
  }
} {tA {} tB * tC * tD *}
do_test where3-2.1.4 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE bx=cpk AND ax=bpk
  }
} {tA {} tB * tC * tD *}
do_test where3-2.1.5 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND ax=bpk
  }
} {tA {} tB * tC * tD *}
do_test where3-2.2 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND apk=bx
  }
} {tB {} tA * tC * tD *}
do_test where3-2.3 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND apk=bx
  }
} {tB {} tA * tC * tD *}
do_test where3-2.4 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE apk=cx AND bpk=ax
  }
} {tC {} tA * tB * tD *}
do_test where3-2.5 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=ax AND bpk=cx
  }
} {tA {} tC * tB * tD *}
do_test where3-2.6 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE bpk=cx AND apk=bx
  }
} {tC {} tB * tA * tD *}
do_test where3-2.7 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND apk=cx
  }
} {tB {} tC * tA * tD *}

# Ticket [13f033c865f878953]
# If the outer loop must be a full table scan, do not let ANALYZE trick
# the planner into use a table for the outer loop that might be indexable
# if held until an inner loop.
# 
do_execsql_test where3-3.0 {
  CREATE TABLE t301(a INTEGER PRIMARY KEY,b,c);
  CREATE INDEX t301c ON t301(c);
  INSERT INTO t301 VALUES(1,2,3);
  CREATE TABLE t302(x, y);
  INSERT INTO t302 VALUES(4,5);
  ANALYZE;
  explain query plan SELECT * FROM t302, t301 WHERE t302.x=5 AND t301.a=t302.y;
} {
  0 0 0 {SCAN TABLE t302 (~1 rows)} 
  0 1 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}
do_execsql_test where3-3.1 {
  explain query plan
  SELECT * FROM t301, t302 WHERE t302.x=5 AND t301.a=t302.y;
} {
  0 0 1 {SCAN TABLE t302 (~1 rows)} 
  0 1 0 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}








# Verify that when there are multiple tables in a join which must be
# full table scans that the query planner attempts put the table with
# the fewest number of output rows as the outer loop.
#
do_execsql_test where3-4.0 {
  CREATE TABLE t400(a INTEGER PRIMARY KEY, b, c);
  CREATE TABLE t401(p INTEGER PRIMARY KEY, q, r);
  CREATE TABLE t402(x INTEGER PRIMARY KEY, y, z);
  EXPLAIN QUERY PLAN
  SELECT * FROM t400, t401, t402 WHERE t402.z GLOB 'abc*';
} {
  0 0 2 {SCAN TABLE t402 (~500000 rows)} 
  0 1 0 {SCAN TABLE t400 (~1000000 rows)} 
  0 2 1 {SCAN TABLE t401 (~1000000 rows)}
}
do_execsql_test where3-4.1 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t400, t401, t402 WHERE t401.r GLOB 'abc*';
} {
  0 0 1 {SCAN TABLE t401 (~500000 rows)} 
  0 1 0 {SCAN TABLE t400 (~1000000 rows)} 
  0 2 2 {SCAN TABLE t402 (~1000000 rows)}
}
do_execsql_test where3-4.2 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t400, t401, t402 WHERE t400.c GLOB 'abc*';
} {
  0 0 0 {SCAN TABLE t400 (~500000 rows)} 
  0 1 1 {SCAN TABLE t401 (~1000000 rows)} 
  0 2 2 {SCAN TABLE t402 (~1000000 rows)}
}


# Verify that a performance regression encountered by firefox
# has been fixed.
#
do_execsql_test where3-5.0 {
  CREATE TABLE aaa (id INTEGER PRIMARY KEY, type INTEGER,
                    fk INTEGER DEFAULT NULL, parent INTEGER,







|





|





|





|





|





|





|





|





|





|





|





|















|
|





|
|

>
>
>
>
>
>

>











|
|
|





|
|
|





|
|
|

>







150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    CREATE TABLE tC(cpk integer primary key, cx);
    CREATE TABLE tD(dpk integer primary key, dx);
  }
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND bpk=ax
  }
} {tA * tB * tC * tD *}
do_test where3-2.1.1 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk
     WHERE cpk=bx AND bpk=ax
  }
} {tA * tB * tC * tD *}
do_test where3-2.1.2 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk
     WHERE bx=cpk AND bpk=ax
  }
} {tA * tB * tC * tD *}
do_test where3-2.1.3 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk
     WHERE bx=cpk AND ax=bpk
  }
} {tA * tB * tC * tD *}
do_test where3-2.1.4 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE bx=cpk AND ax=bpk
  }
} {tA * tB * tC * tD *}
do_test where3-2.1.5 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND ax=bpk
  }
} {tA * tB * tC * tD *}
do_test where3-2.2 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND apk=bx
  }
} {tB * tA * tC * tD *}
do_test where3-2.3 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND apk=bx
  }
} {tB * tA * tC * tD *}
do_test where3-2.4 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE apk=cx AND bpk=ax
  }
} {tC * tA * tB * tD *}
do_test where3-2.5 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=ax AND bpk=cx
  }
} {tA * tC * tB * tD *}
do_test where3-2.6 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE bpk=cx AND apk=bx
  }
} {tC * tB * tA * tD *}
do_test where3-2.7 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND apk=cx
  }
} {tB * tC * tA * tD *}

# Ticket [13f033c865f878953]
# If the outer loop must be a full table scan, do not let ANALYZE trick
# the planner into use a table for the outer loop that might be indexable
# if held until an inner loop.
# 
do_execsql_test where3-3.0 {
  CREATE TABLE t301(a INTEGER PRIMARY KEY,b,c);
  CREATE INDEX t301c ON t301(c);
  INSERT INTO t301 VALUES(1,2,3);
  CREATE TABLE t302(x, y);
  INSERT INTO t302 VALUES(4,5);
  ANALYZE;
  explain query plan SELECT * FROM t302, t301 WHERE t302.x=5 AND t301.a=t302.y;
} {
  0 0 0 {SCAN TABLE t302} 
  0 1 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)}
}
do_execsql_test where3-3.1 {
  explain query plan
  SELECT * FROM t301, t302 WHERE t302.x=5 AND t301.a=t302.y;
} {
  0 0 1 {SCAN TABLE t302} 
  0 1 0 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)}
}
do_execsql_test where3-3.2 {
  SELECT * FROM t301 WHERE c=3 AND a IS NULL;
} {}
do_execsql_test where3-3.3 {
  SELECT * FROM t301 WHERE c=3 AND a IS NOT NULL;
} {1 2 3}

if 0 {  # Query planner no longer does this
# Verify that when there are multiple tables in a join which must be
# full table scans that the query planner attempts put the table with
# the fewest number of output rows as the outer loop.
#
do_execsql_test where3-4.0 {
  CREATE TABLE t400(a INTEGER PRIMARY KEY, b, c);
  CREATE TABLE t401(p INTEGER PRIMARY KEY, q, r);
  CREATE TABLE t402(x INTEGER PRIMARY KEY, y, z);
  EXPLAIN QUERY PLAN
  SELECT * FROM t400, t401, t402 WHERE t402.z GLOB 'abc*';
} {
  0 0 2 {SCAN TABLE t402} 
  0 1 0 {SCAN TABLE t400} 
  0 2 1 {SCAN TABLE t401}
}
do_execsql_test where3-4.1 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t400, t401, t402 WHERE t401.r GLOB 'abc*';
} {
  0 0 1 {SCAN TABLE t401} 
  0 1 0 {SCAN TABLE t400} 
  0 2 2 {SCAN TABLE t402}
}
do_execsql_test where3-4.2 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t400, t401, t402 WHERE t400.c GLOB 'abc*';
} {
  0 0 0 {SCAN TABLE t400} 
  0 1 1 {SCAN TABLE t401} 
  0 2 2 {SCAN TABLE t402}
}
} ;# endif

# Verify that a performance regression encountered by firefox
# has been fixed.
#
do_execsql_test where3-5.0 {
  CREATE TABLE aaa (id INTEGER PRIMARY KEY, type INTEGER,
                    fk INTEGER DEFAULT NULL, parent INTEGER,
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
   SELECT bbb.title AS tag_title 
     FROM aaa JOIN bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 0 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?) (~10 rows)} 
  0 1 1 {SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.1 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM aaa JOIN aaa AS bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 0 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?) (~10 rows)} 
  0 1 1 {SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.2 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 1 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?) (~10 rows)} 
  0 1 0 {SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.3 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM aaa AS bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 1 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?) (~10 rows)} 
  0 1 0 {SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# Name resolution with NATURAL JOIN and USING
#
do_test where3-6.setup {
  db eval {







|
|











|
|











|
|











|
|







312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
   SELECT bbb.title AS tag_title 
     FROM aaa JOIN bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 0 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 1 {SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.1 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM aaa JOIN aaa AS bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 0 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 1 {SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.2 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 1 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 0 {SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.3 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM aaa AS bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 1 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 0 {SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# Name resolution with NATURAL JOIN and USING
#
do_test where3-6.setup {
  db eval {
419
420
421
422
423
424
425
426









































427


428
  do_test where3-6.$cnt.8 {
    set sql "SELECT * FROM t6w NATURAL JOIN t6x NATURAL JOIN t6y"
    append sql " JOIN t6z USING(a) "
    append sql $::predicate
    db eval $sql
  } {1 w-one x-one y-one z-one 9 w-nine x-nine y-nine z-nine}
}













































finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
  do_test where3-6.$cnt.8 {
    set sql "SELECT * FROM t6w NATURAL JOIN t6x NATURAL JOIN t6y"
    append sql " JOIN t6z USING(a) "
    append sql $::predicate
    db eval $sql
  } {1 w-one x-one y-one z-one 9 w-nine x-nine y-nine z-nine}
}

do_execsql_test where3-7-setup {
  CREATE TABLE t71(x1 INTEGER PRIMARY KEY, y1);
  CREATE TABLE t72(x2 INTEGER PRIMARY KEY, y2);
  CREATE TABLE t73(x3, y3);
  CREATE TABLE t74(x4, y4);
  INSERT INTO t71 VALUES(123,234);
  INSERT INTO t72 VALUES(234,345);
  INSERT INTO t73 VALUES(123,234);
  INSERT INTO t74 VALUES(234,345);
  INSERT INTO t74 VALUES(234,678);
} {}
foreach disabled_opt {none omit-noop-join all} {
  optimization_control db all 1
  optimization_control db $disabled_opt 0
  do_execsql_test where3-7.$disabled_opt.1 {
    SELECT x1 FROM t71 LEFT JOIN t72 ON x2=y1;
  } {123}
  do_execsql_test where3-7.$disabled_opt.2 {
    SELECT x1 FROM t71 LEFT JOIN t72 ON x2=y1 WHERE y2 IS NULL;
  } {}
  do_execsql_test where3-7.$disabled_opt.3 {
    SELECT x1 FROM t71 LEFT JOIN t72 ON x2=y1 WHERE y2 IS NOT NULL;
  } {123}
  do_execsql_test where3-7.$disabled_opt.4 {
    SELECT x1 FROM t71 LEFT JOIN t72 ON x2=y1 AND y2 IS NULL;
  } {123}
  do_execsql_test where3-7.$disabled_opt.5 {
    SELECT x1 FROM t71 LEFT JOIN t72 ON x2=y1 AND y2 IS NOT NULL;
  } {123}
  do_execsql_test where3-7.$disabled_opt.6 {
    SELECT x3 FROM t73 LEFT JOIN t72 ON x2=y3;
  } {123}
  do_execsql_test where3-7.$disabled_opt.7 {
    SELECT DISTINCT x3 FROM t73 LEFT JOIN t72 ON x2=y3;
  } {123}
  do_execsql_test where3-7.$disabled_opt.8 {
    SELECT x3 FROM t73 LEFT JOIN t74 ON x4=y3;
  } {123 123}
  do_execsql_test where3-7.$disabled_opt.9 {
    SELECT DISTINCT x3 FROM t73 LEFT JOIN t74 ON x4=y3;
  } {123}
}


finish_test
Changes to test/where7.test.
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
} {2 22 23 28 54 80 91 scan 0 sort 0}

# test case for the performance regression fixed by
# check-in 28ba6255282b on 2010-10-21 02:05:06
#
# The test case that follows is code from an actual
# application with identifiers change and unused columns
# remove.
#
do_execsql_test where7-3.1 {
  CREATE TABLE t301 (
      c8 INTEGER PRIMARY KEY,
      c6 INTEGER,
      c4 INTEGER,
      c7 INTEGER,







|







23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
} {2 22 23 28 54 80 91 scan 0 sort 0}

# test case for the performance regression fixed by
# check-in 28ba6255282b on 2010-10-21 02:05:06
#
# The test case that follows is code from an actual
# application with identifiers change and unused columns
# removed.
#
do_execsql_test where7-3.1 {
  CREATE TABLE t301 (
      c8 INTEGER PRIMARY KEY,
      c6 INTEGER,
      c4 INTEGER,
      c7 INTEGER,
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
  );
  CREATE INDEX t302_c3 on t302(c3);
  CREATE INDEX t302_c8_c3 on t302(c8, c3);
  CREATE INDEX t302_c5 on t302(c5);
  
  EXPLAIN QUERY PLAN
  SELECT t302.c1 
    FROM t302 JOIN t301 ON t302.c8 = t301.c8
    WHERE t302.c2 = 19571
      AND t302.c3 > 1287603136
      AND (t301.c4 = 1407449685622784
           OR t301.c8 = 1407424651264000)
   ORDER BY t302.c5 LIMIT 200;
} {
  0 0 1 {SEARCH TABLE t301 USING COVERING INDEX t301_c4 (c4=?) (~10 rows)} 
  0 0 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 1 0 {SEARCH TABLE t302 USING INDEX t302_c8_c3 (c8=? AND c3>?) (~2 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

finish_test







|






|
|
|




23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
  );
  CREATE INDEX t302_c3 on t302(c3);
  CREATE INDEX t302_c8_c3 on t302(c8, c3);
  CREATE INDEX t302_c5 on t302(c5);
  
  EXPLAIN QUERY PLAN
  SELECT t302.c1 
    FROM t302 JOIN t301 ON t302.c8 = +t301.c8
    WHERE t302.c2 = 19571
      AND t302.c3 > 1287603136
      AND (t301.c4 = 1407449685622784
           OR t301.c8 = 1407424651264000)
   ORDER BY t302.c5 LIMIT 200;
} {
  0 0 1 {SEARCH TABLE t301 USING COVERING INDEX t301_c4 (c4=?)} 
  0 0 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)} 
  0 1 0 {SEARCH TABLE t302 USING INDEX t302_c8_c3 (c8=? AND c3>?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

finish_test
Changes to test/where8.test.
208
209
210
211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    SELECT a, d FROM t1, t2 WHERE (a = 2 OR a = 3) AND d = a
  }
} {2 2 3 3 0 0}

do_test where8-3.5 {
  execsql_status {
    SELECT a, d FROM t1, t2 WHERE (a = 2 OR a = 3) AND (d = a OR e = 'sixteen')

  }
} {2 2 2 4 3 3 3 4 0 0}

do_test where8-3.6 {
  # The first part of the WHERE clause in this query, (a=2 OR a=3) is
  # transformed into "a IN (2, 3)". This is why the sort is required.
  #
  execsql_status {
    SELECT a, d 
    FROM t1, t2 
    WHERE (a = 2 OR a = 3) AND (d = a OR e = 'sixteen')
    ORDER BY t1.rowid
  }
} {2 2 2 4 3 3 3 4 0 1}
do_test where8-3.7 {
  execsql_status {
    SELECT a, d 
    FROM t1, t2 
    WHERE a = 2 AND (d = a OR e = 'sixteen')
    ORDER BY t1.rowid
  }
} {2 2 2 4 0 0}
do_test where8-3.8 {
  execsql_status {
    SELECT a, d 
    FROM t1, t2 
    WHERE (a = 2 OR b = 'three') AND (d = a OR e = 'sixteen')
    ORDER BY t1.rowid
  }







>

|



















|







208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    SELECT a, d FROM t1, t2 WHERE (a = 2 OR a = 3) AND d = a
  }
} {2 2 3 3 0 0}

do_test where8-3.5 {
  execsql_status {
    SELECT a, d FROM t1, t2 WHERE (a = 2 OR a = 3) AND (d = a OR e = 'sixteen')
     ORDER BY +a, +d;
  }
} {2 2 2 4 3 3 3 4 0 1}

do_test where8-3.6 {
  # The first part of the WHERE clause in this query, (a=2 OR a=3) is
  # transformed into "a IN (2, 3)". This is why the sort is required.
  #
  execsql_status {
    SELECT a, d 
    FROM t1, t2 
    WHERE (a = 2 OR a = 3) AND (d = a OR e = 'sixteen')
    ORDER BY t1.rowid
  }
} {2 2 2 4 3 3 3 4 0 1}
do_test where8-3.7 {
  execsql_status {
    SELECT a, d 
    FROM t1, t2 
    WHERE a = 2 AND (d = a OR e = 'sixteen')
    ORDER BY t1.rowid
  }
} {/2 2 2 4 0 [01]/}
do_test where8-3.8 {
  execsql_status {
    SELECT a, d 
    FROM t1, t2 
    WHERE (a = 2 OR b = 'three') AND (d = a OR e = 'sixteen')
    ORDER BY t1.rowid
  }
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    SELECT a, d FROM t1, t2 WHERE (a=d OR b=e) AND a<5 ORDER BY a
  }
} {1 1 2 2 3 3 4 2 4 4 0 0}
do_test where8-3.12 {
  execsql_status {
    SELECT a, d FROM t1, t2 WHERE (a=d OR b=e) AND +a<5 ORDER BY a
  }
} {1 1 2 2 3 3 4 2 4 4 0 0}
do_test where8-3.13 {
  execsql_status {
    SELECT a, d FROM t1, t2 WHERE (a=d OR b=e) AND +a<5
  }
} {1 1 2 2 3 3 4 2 4 4 9 0}

do_test where8-3.14 {







|







265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    SELECT a, d FROM t1, t2 WHERE (a=d OR b=e) AND a<5 ORDER BY a
  }
} {1 1 2 2 3 3 4 2 4 4 0 0}
do_test where8-3.12 {
  execsql_status {
    SELECT a, d FROM t1, t2 WHERE (a=d OR b=e) AND +a<5 ORDER BY a
  }
} {1 1 2 2 3 3 4 2 4 4 9 0}
do_test where8-3.13 {
  execsql_status {
    SELECT a, d FROM t1, t2 WHERE (a=d OR b=e) AND +a<5
  }
} {1 1 2 2 3 3 4 2 4 4 9 0}

do_test where8-3.14 {
Changes to test/where9.test.
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

ifcapable explain {
  do_execsql_test where9-3.1 {
    EXPLAIN QUERY PLAN
    SELECT t2.a FROM t1, t2
    WHERE t1.a=80 AND ((t1.c=t2.c AND t1.d=t2.d) OR t1.f=t2.f)
  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?) (~2 rows)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?) (~10 rows)}
  }
  do_execsql_test where9-3.2 {
    EXPLAIN QUERY PLAN
    SELECT coalesce(t2.a,9999)
    FROM t1 LEFT JOIN t2 ON (t1.c+1=t2.c AND t1.d=t2.d) OR (t1.f||'x')=t2.f
    WHERE t1.a=80
  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?) (~2 rows)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?) (~10 rows)}
  }
} 

# Make sure that INDEXED BY and multi-index OR clauses play well with
# one another.
#
do_test where9-4.1 {







|
|
|







|
|
|







358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

ifcapable explain {
  do_execsql_test where9-3.1 {
    EXPLAIN QUERY PLAN
    SELECT t2.a FROM t1, t2
    WHERE t1.a=80 AND ((t1.c=t2.c AND t1.d=t2.d) OR t1.f=t2.f)
  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)} 
    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?)}
  }
  do_execsql_test where9-3.2 {
    EXPLAIN QUERY PLAN
    SELECT coalesce(t2.a,9999)
    FROM t1 LEFT JOIN t2 ON (t1.c+1=t2.c AND t1.d=t2.d) OR (t1.f||'x')=t2.f
    WHERE t1.a=80
  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)} 
    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?)}
  }
} 

# Make sure that INDEXED BY and multi-index OR clauses play well with
# one another.
#
do_test where9-4.1 {
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
do_test where9-4.5 {
  catchsql {
    SELECT a FROM t1 INDEXED BY t1b
     WHERE +b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {cannot use index: t1b}}
do_test where9-4.6 {
  count_steps {
    SELECT a FROM t1 NOT INDEXED
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {92 93 97 scan 98 sort 1}
do_test where9-4.7 {
  catchsql {
    SELECT a FROM t1 INDEXED BY t1c
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {cannot use index: t1c}}
do_test where9-4.8 {
  catchsql {
    SELECT a FROM t1 INDEXED BY t1d
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {cannot use index: t1d}}

ifcapable explain {
  # The (c=31031 OR d IS NULL) clause is preferred over b>1000 because
  # the former is an equality test which is expected to return fewer rows.
  #
  do_execsql_test where9-5.1 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c=?) (~3 rows)} 
    0 0 0 {SEARCH TABLE t1 USING INDEX t1d (d=?) (~3 rows)}
  }

  # In contrast, b=1000 is preferred over any OR-clause.
  #
  do_execsql_test where9-5.2 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b=1000 AND (c=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~5 rows)}
  }

  # Likewise, inequalities in an AND are preferred over inequalities in
  # an OR.
  #
  do_execsql_test where9-5.3 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c>=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>?) (~125000 rows)}
  }
}

############################################################################
# Make sure OR-clauses work correctly on UPDATE and DELETE statements.

do_test where9-6.2.1 {







|















|







|








|
|







|








|







416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
do_test where9-4.5 {
  catchsql {
    SELECT a FROM t1 INDEXED BY t1b
     WHERE +b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {no query solution}}
do_test where9-4.6 {
  count_steps {
    SELECT a FROM t1 NOT INDEXED
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {92 93 97 scan 98 sort 1}
do_test where9-4.7 {
  catchsql {
    SELECT a FROM t1 INDEXED BY t1c
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {no query solution}}
do_test where9-4.8 {
  catchsql {
    SELECT a FROM t1 INDEXED BY t1d
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {no query solution}}

ifcapable explain {
  # The (c=31031 OR d IS NULL) clause is preferred over b>1000 because
  # the former is an equality test which is expected to return fewer rows.
  #
  do_execsql_test where9-5.1 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c=?)} 
    0 0 0 {SEARCH TABLE t1 USING INDEX t1d (d=?)}
  }

  # In contrast, b=1000 is preferred over any OR-clause.
  #
  do_execsql_test where9-5.2 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b=1000 AND (c=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}
  }

  # Likewise, inequalities in an AND are preferred over inequalities in
  # an OR.
  #
  do_execsql_test where9-5.3 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c>=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>?)}
  }
}

############################################################################
# Make sure OR-clauses work correctly on UPDATE and DELETE statements.

do_test where9-6.2.1 {
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778












779
780
781
782

















783






784


785
786
787
788
789
790
791
    ROLLBACK;
  }
} {99 85 86 87 88 89 93 94 95 96 98 99 190 191 192 197}

do_test where9-6.8.1 {
  catchsql {
    DELETE FROM t1 INDEXED BY t1b
     WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
  }
} {1 {cannot use index: t1b}}
do_test where9-6.8.2 {
  catchsql {
    UPDATE t1 INDEXED BY t1b SET a=a+100












     WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
  }

















} {1 {cannot use index: t1b}}









############################################################################
# Test cases where terms inside an OR series are combined with AND terms
# external to the OR clause.  In other words, cases where
#
#              x AND (y OR z)
#
# is able to use indices on x,y and x,z, or indices y,x and z,x.







|



|



>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
|
>
>







764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
    ROLLBACK;
  }
} {99 85 86 87 88 89 93 94 95 96 98 99 190 191 192 197}

do_test where9-6.8.1 {
  catchsql {
    DELETE FROM t1 INDEXED BY t1b
     WHERE (+b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
  }
} {1 {no query solution}}
do_test where9-6.8.2 {
  catchsql {
    UPDATE t1 INDEXED BY t1b SET a=a+100
     WHERE (+b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
  }
} {1 {no query solution}}
ifcapable stat4||stat3 {
  # When STAT3 is enabled, the "b NOT NULL" terms get translated
  # into b>NULL, which can be satified by the index t1b.  It is a very
  # expensive way to do the query, but it works, and so a solution is possible.
  do_test where9-6.8.3-stat4 {
    catchsql {
      UPDATE t1 INDEXED BY t1b SET a=a+100
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }
  } {0 {}}
  do_test where9-6.8.4-stat4 {
    catchsql {
      DELETE FROM t1 INDEXED BY t1b
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }
  } {0 {}}
} else {
  do_test where9-6.8.3 {
    catchsql {
      UPDATE t1 INDEXED BY t1b SET a=a+100
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }
  } {1 {no query solution}}
  do_test where9-6.8.4 {
    catchsql {
      DELETE FROM t1 INDEXED BY t1b
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }
  } {1 {no query solution}}
}
############################################################################
# Test cases where terms inside an OR series are combined with AND terms
# external to the OR clause.  In other words, cases where
#
#              x AND (y OR z)
#
# is able to use indices on x,y and x,z, or indices y,x and z,x.
809
810
811
812
813
814
815





816
817
818
819
820
821
822
    CREATE INDEX t5yd ON t5(y, d);
    CREATE INDEX t5ye ON t5(y, e);
    CREATE INDEX t5yf ON t5(y, f);
    CREATE INDEX t5yg ON t5(y, g);
    CREATE TABLE t6(a, b, c, e, d, f, g, x, y);
    INSERT INTO t6 SELECT * FROM t5;
    ANALYZE t5;





  }
} {}
do_test where9-7.1.1 {
  count_steps {
    SELECT a FROM t5 WHERE x='y' AND (b=913 OR c=27027) ORDER BY a;
  }
} {79 81 83 scan 0 sort 1}







>
>
>
>
>







846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
    CREATE INDEX t5yd ON t5(y, d);
    CREATE INDEX t5ye ON t5(y, e);
    CREATE INDEX t5yf ON t5(y, f);
    CREATE INDEX t5yg ON t5(y, g);
    CREATE TABLE t6(a, b, c, e, d, f, g, x, y);
    INSERT INTO t6 SELECT * FROM t5;
    ANALYZE t5;
  }
  ifcapable stat3 {
    sqlite3 db2 test.db
    db2 eval { DROP TABLE IF EXISTS sqlite_stat3 }
    db2 close
  }
} {}
do_test where9-7.1.1 {
  count_steps {
    SELECT a FROM t5 WHERE x='y' AND (b=913 OR c=27027) ORDER BY a;
  }
} {79 81 83 scan 0 sort 1}
909
910
911
912
913
914
915
916
























917
    SELECT 5 FROM x9 WHERE y IS NULL;
    SELECT 6 FROM t91 LEFT JOIN t92 ON a=2 OR b=3 WHERE y IS NULL;
    SELECT 7 FROM t91 LEFT JOIN t92 ON a=2 AND b=3 WHERE y IS NULL;
    SELECT 8 FROM t91 LEFT JOIN t92 ON a=22 OR b=33 WHERE y IS NULL;
    SELECT 9 FROM t91 LEFT JOIN t92 ON a=22 AND b=33 WHERE y IS NULL;
  }
} {1 2 3 4 8 9}

























finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
    SELECT 5 FROM x9 WHERE y IS NULL;
    SELECT 6 FROM t91 LEFT JOIN t92 ON a=2 OR b=3 WHERE y IS NULL;
    SELECT 7 FROM t91 LEFT JOIN t92 ON a=2 AND b=3 WHERE y IS NULL;
    SELECT 8 FROM t91 LEFT JOIN t92 ON a=22 OR b=33 WHERE y IS NULL;
    SELECT 9 FROM t91 LEFT JOIN t92 ON a=22 AND b=33 WHERE y IS NULL;
  }
} {1 2 3 4 8 9}

# Fix for ticket [bc878246eafe0f52c519e29049b2fe4a99491b27]
# Incorrect result when OR is used in a join to the right of a LEFT JOIN
#
do_test where9-10.1 {
  db eval {
    CREATE TABLE t101 (id INTEGER PRIMARY KEY);
    INSERT INTO t101 VALUES (1);
    SELECT * FROM t101 AS t0
         LEFT JOIN t101 AS t1 ON t1.id BETWEEN 10 AND 20
         JOIN t101 AS t2 ON (t2.id = t0.id OR (t2.id<>555 AND t2.id=t1.id));
  }
} {1 {} 1}
do_test where9-10.2 {
  db eval {
    CREATE TABLE t102 (id TEXT UNIQUE NOT NULL);
    INSERT INTO t102 VALUES ('1');
    SELECT * FROM t102 AS t0
         LEFT JOIN t102 AS t1 ON t1.id GLOB 'abc%'
         JOIN t102 AS t2 ON (t2.id = t0.id OR (t2.id<>555 AND t2.id=t1.id));
  }
} {1 {} 1}



finish_test
Changes to test/whereA.test.
64
65
66
67
68
69
70






71
72
73
74
75
76
77
  sqlite3 db test.db
  db eval {
    PRAGMA reverse_unordered_selects=1;
    VACUUM;
    SELECT * FROM t1;
  }
} {3 4.53 {} 2 hello world 1 2 3}







do_test whereA-2.1 {
  db eval {
    PRAGMA reverse_unordered_selects=0;
    SELECT * FROM t1 WHERE a>0;
  }
} {1 2 3 2 hello world 3 4.53 {}}







>
>
>
>
>
>







64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  sqlite3 db test.db
  db eval {
    PRAGMA reverse_unordered_selects=1;
    VACUUM;
    SELECT * FROM t1;
  }
} {3 4.53 {} 2 hello world 1 2 3}
do_execsql_test whereA-1.8 {
  SELECT * FROM t1 WHERE b=2 AND a IS NULL;
} {}
do_execsql_test whereA-1.9 {
  SELECT * FROM t1 WHERE b=2 AND a IS NOT NULL;
} {1 2 3}

do_test whereA-2.1 {
  db eval {
    PRAGMA reverse_unordered_selects=0;
    SELECT * FROM t1 WHERE a>0;
  }
} {1 2 3 2 hello world 3 4.53 {}}
Changes to test/whereC.test.
63
64
65
66
67
68
69
70
  do_execsql_test 1.$tn.1 $sql $res
  do_execsql_test 1.$tn.2 "$sql ORDER BY i ASC"  [lsort -integer -inc  $res]
  do_execsql_test 1.$tn.3 "$sql ORDER BY i DESC" [lsort -integer -dec  $res]
}


finish_test








<
63
64
65
66
67
68
69

  do_execsql_test 1.$tn.1 $sql $res
  do_execsql_test 1.$tn.2 "$sql ORDER BY i ASC"  [lsort -integer -inc  $res]
  do_execsql_test 1.$tn.3 "$sql ORDER BY i DESC" [lsort -integer -dec  $res]
}


finish_test

Changes to test/whereD.test.
181
182
183
184
185
186
187

































188
189
  }
} {1 2 3 3 6 9 4 5 6 {} {} {}}
do_test 4.3 {
  db eval {
    SELECT * FROM t41 AS x LEFT JOIN t42 AS y ON (y.d=x.c) OR (y.d=x.b);
  }
} {1 2 3 3 6 9 4 5 6 {} {} {}}


































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
  }
} {1 2 3 3 6 9 4 5 6 {} {} {}}
do_test 4.3 {
  db eval {
    SELECT * FROM t41 AS x LEFT JOIN t42 AS y ON (y.d=x.c) OR (y.d=x.b);
  }
} {1 2 3 3 6 9 4 5 6 {} {} {}}

# Ticket [bc1aea7b725f276177]
# Incorrect result on LEFT JOIN with OR constraints and an ORDER BY clause.
#
do_execsql_test 4.4 {
  CREATE TABLE t44(a INTEGER, b INTEGER);
  INSERT INTO t44 VALUES(1,2);
  INSERT INTO t44 VALUES(3,4);
  SELECT *
    FROM t44 AS x
       LEFT JOIN (SELECT a AS c, b AS d FROM t44) AS y ON a=c
   WHERE d=4 OR d IS NULL;
} {3 4 3 4}
do_execsql_test 4.5 {
  SELECT *
    FROM t44 AS x
       LEFT JOIN (SELECT a AS c, b AS d FROM t44) AS y ON a=c
   WHERE d=4 OR d IS NULL
   ORDER BY a;
} {3 4 3 4}
do_execsql_test 4.6 {
  CREATE TABLE t46(c INTEGER, d INTEGER);
  INSERT INTO t46 SELECT a, b FROM t44;
  SELECT * FROM t44 LEFT JOIN t46 ON a=c
   WHERE d=4 OR d IS NULL;
} {3 4 3 4}
do_execsql_test 4.7 {
  SELECT * FROM t44 LEFT JOIN t46 ON a=c
   WHERE d=4 OR d IS NULL
   ORDER BY a;
} {3 4 3 4}



finish_test
Changes to test/whereE.test.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
  INSERT INTO t2 SELECT x+32, (x+32)*11 FROM t2;
  INSERT INTO t2 SELECT x+64, (x+32)*11 FROM t2;
  ALTER TABLE t2 ADD COLUMN z;
  UPDATE t2 SET z=2;
  CREATE UNIQUE INDEX t2zx ON t2(z,x);

  EXPLAIN QUERY PLAN SELECT x FROM t1, t2 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1 .*SEARCH TABLE t2 .*/}
do_execsql_test 1.2 {
  EXPLAIN QUERY PLAN SELECT x FROM t2, t1 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1 .*SEARCH TABLE t2 .*/}
do_execsql_test 1.3 {
  ANALYZE;
  EXPLAIN QUERY PLAN SELECT x FROM t1, t2 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1 .*SEARCH TABLE t2 .*/}
do_execsql_test 1.4 {
  EXPLAIN QUERY PLAN SELECT x FROM t2, t1 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1 .*SEARCH TABLE t2 .*/}

finish_test







|


|



|


|


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
  INSERT INTO t2 SELECT x+32, (x+32)*11 FROM t2;
  INSERT INTO t2 SELECT x+64, (x+32)*11 FROM t2;
  ALTER TABLE t2 ADD COLUMN z;
  UPDATE t2 SET z=2;
  CREATE UNIQUE INDEX t2zx ON t2(z,x);

  EXPLAIN QUERY PLAN SELECT x FROM t1, t2 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1.*SEARCH TABLE t2.*/}
do_execsql_test 1.2 {
  EXPLAIN QUERY PLAN SELECT x FROM t2, t1 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1.*SEARCH TABLE t2.*/}
do_execsql_test 1.3 {
  ANALYZE;
  EXPLAIN QUERY PLAN SELECT x FROM t1, t2 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1.*SEARCH TABLE t2.*/}
do_execsql_test 1.4 {
  EXPLAIN QUERY PLAN SELECT x FROM t2, t1 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1.*SEARCH TABLE t2.*/}

finish_test
Changes to test/whereF.test.
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#
# In order to make them more predictable, automatic indexes are turned off for
# the tests in this file.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix x

do_execsql_test 1.0 {
  PRAGMA automatic_index = 0;
  CREATE TABLE t1(a, b, c);
  CREATE TABLE t2(d, e, f);
  CREATE UNIQUE INDEX i1 ON t1(a);
  CREATE UNIQUE INDEX i2 ON t2(d);
} {}

foreach {tn sql} {
  1 "SELECT * FROM t1,           t2 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
  2 "SELECT * FROM t2,           t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
  3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
} {
  do_test 1.$tn {
    db eval "EXPLAIN QUERY PLAN $sql"
   } {/.*SCAN TABLE t2 .*SEARCH TABLE t1 .*/}
}

do_execsql_test 2.0 {
  DROP TABLE t1;
  DROP TABLE t2;
  CREATE TABLE t1(a, b, c);
  CREATE TABLE t2(d, e, f);

  CREATE UNIQUE INDEX i1 ON t1(a);
  CREATE UNIQUE INDEX i2 ON t1(b);
  CREATE UNIQUE INDEX i3 ON t2(d);
} {}

foreach {tn sql} {
  1 "SELECT * FROM t1,           t2 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
  2 "SELECT * FROM t2,           t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
  3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
} {
  do_test 2.$tn {
    db eval "EXPLAIN QUERY PLAN $sql"
   } {/.*SCAN TABLE t2 .*SEARCH TABLE t1 .*/}
}

do_execsql_test 3.0 {
  DROP TABLE t1;
  DROP TABLE t2;
  CREATE TABLE t1(a, b, c);
  CREATE TABLE t2(d, e, f);







|
















|




















|







42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#
# In order to make them more predictable, automatic indexes are turned off for
# the tests in this file.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix whereF

do_execsql_test 1.0 {
  PRAGMA automatic_index = 0;
  CREATE TABLE t1(a, b, c);
  CREATE TABLE t2(d, e, f);
  CREATE UNIQUE INDEX i1 ON t1(a);
  CREATE UNIQUE INDEX i2 ON t2(d);
} {}

foreach {tn sql} {
  1 "SELECT * FROM t1,           t2 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
  2 "SELECT * FROM t2,           t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
  3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
} {
  do_test 1.$tn {
    db eval "EXPLAIN QUERY PLAN $sql"
   } {/.*SCAN TABLE t2\y.*SEARCH TABLE t1\y.*/}
}

do_execsql_test 2.0 {
  DROP TABLE t1;
  DROP TABLE t2;
  CREATE TABLE t1(a, b, c);
  CREATE TABLE t2(d, e, f);

  CREATE UNIQUE INDEX i1 ON t1(a);
  CREATE UNIQUE INDEX i2 ON t1(b);
  CREATE UNIQUE INDEX i3 ON t2(d);
} {}

foreach {tn sql} {
  1 "SELECT * FROM t1,           t2 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
  2 "SELECT * FROM t2,           t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
  3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
} {
  do_test 2.$tn {
    db eval "EXPLAIN QUERY PLAN $sql"
   } {/.*SCAN TABLE t2\y.*SEARCH TABLE t1\y.*/}
}

do_execsql_test 3.0 {
  DROP TABLE t1;
  DROP TABLE t2;
  CREATE TABLE t1(a, b, c);
  CREATE TABLE t2(d, e, f);
105
106
107
108
109
110
111
112
113
114







115
     WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)}

  3 {SELECT t1.a, t1.b, t2.d, t2.e FROM t2 CROSS JOIN t1 
     WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)}
} {
  do_test 3.$tn {
    db eval "EXPLAIN QUERY PLAN $sql"
   } {/.*SCAN TABLE t2 .*SEARCH TABLE t1 .*/}
}








finish_test







|


>
>
>
>
>
>
>

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
     WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)}

  3 {SELECT t1.a, t1.b, t2.d, t2.e FROM t2 CROSS JOIN t1 
     WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)}
} {
  do_test 3.$tn {
    db eval "EXPLAIN QUERY PLAN $sql"
   } {/.*SCAN TABLE t2\y.*SEARCH TABLE t1\y.*/}
}

do_execsql_test 4.0 {
  CREATE TABLE t4(a,b,c,d,e, PRIMARY KEY(a,b,c));
  CREATE INDEX t4adc ON t4(a,d,c);
  CREATE UNIQUE INDEX t4aebc ON t4(a,e,b,c);
  EXPLAIN QUERY PLAN SELECT rowid FROM t4 WHERE a=? AND b=?;
} {/a=. AND b=./}

finish_test
Added test/wild001.test.














































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# 2013-07-01
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# 
# This is a test case from content taken "from the wild".  In this
# particular instance, the query was provided with permission by
# Elan Feingold on 2013-06-27.  His message on the SQLite mailing list
# on that date reads:
#
#------------------------------------------------------------------------------
# > Can you send (1) the schema (2) the query that is giving problems, and (3)
# > the content of the sqlite_stat1 table after you have run ANALYZE?   If you
# > can combine all of the above into a script, that would be great!
# >
# > If you send (1..3) above and you give us written permission to include the
# > query in our test suite, that would be off-the-chain terrific.
#
# Please find items 1..3 in this file: http://www.plexapp.com/elan/sqlite_bug.txt
# 
# You have our permission to include the query in your test suite.
# 
# Thanks for an amazing product.
#-----------------------------------------------------------------------------
#
# This test case merely creates the schema and populates SQLITE_STAT1 and
# SQLITE_STAT3 then runs an EXPLAIN QUERY PLAN to ensure that the right plan
# is discovered.  This test case may need to be adjusted for future revisions
# of the query planner manage to select a better query plan.  The query plan
# shown here is known to be very fast with the original data.
#
# This test should work the same with and without SQLITE_ENABLE_STAT3
#
###############################################################################

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}

do_execsql_test wild001.01 {
  CREATE TABLE "items" ("id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, "secid" integer, "parent_id" integer, "metadata_type" integer, "guid" varchar(255), "media_item_count" integer, "title" varchar(255), "title_sort" varchar(255) COLLATE NOCASE, "original_title" varchar(255), "studio" varchar(255), "rating" float, "rating_count" integer, "tagline" varchar(255), "summary" text, "trivia" text, "quotes" text, "content_rating" varchar(255), "content_rating_age" integer, "index" integer, "absolute_index" integer, "duration" integer, "user_thumb_url" varchar(255), "user_art_url" varchar(255), "user_banner_url" varchar(255), "user_music_url" varchar(255), "user_fields" varchar(255), "tags_genre" varchar(255), "tags_collection" varchar(255), "tags_director" varchar(255), "tags_writer" varchar(255), "tags_star" varchar(255), "originally_available_at" datetime, "available_at" datetime, "expires_at" datetime, "refreshed_at" datetime, "year" integer, "added_at" datetime, "created_at" datetime, "updated_at" datetime, "deleted_at" datetime, "tags_country" varchar(255), "extra_data" varchar(255), "hash" varchar(255));
  CREATE INDEX "i_secid" ON "items" ("secid" );
  CREATE INDEX "i_parent_id" ON "items" ("parent_id" );
  CREATE INDEX "i_created_at" ON "items" ("created_at" );
  CREATE INDEX "i_index" ON "items" ("index" );
  CREATE INDEX "i_title" ON "items" ("title" );
  CREATE INDEX "i_title_sort" ON "items" ("title_sort" );
  CREATE INDEX "i_guid" ON "items" ("guid" );
  CREATE INDEX "i_metadata_type" ON "items" ("metadata_type" );
  CREATE INDEX "i_deleted_at" ON "items" ("deleted_at" );
  CREATE INDEX "i_secid_ex1" ON "items" ("secid", "metadata_type", "added_at" );
  CREATE INDEX "i_hash" ON "items" ("hash" );
  CREATE TABLE "settings" ("id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, "account_id" integer, "guid" varchar(255), "rating" float, "view_offset" integer, "view_count" integer, "last_viewed_at" datetime, "created_at" datetime, "updated_at" datetime);
  CREATE INDEX "s_account_id" ON "settings" ("account_id" );
  CREATE INDEX "s_guid" ON "settings" ("guid" );
  ANALYZE;
  INSERT INTO sqlite_stat1 VALUES('settings','s_guid','4740 1');
  INSERT INTO sqlite_stat1 VALUES('settings','s_account_id','4740 4740');
  INSERT INTO sqlite_stat1 VALUES('items','i_hash','27316 2');
  INSERT INTO sqlite_stat1 VALUES('items','i_secid_ex1','27316 6829 4553 3');
  INSERT INTO sqlite_stat1 VALUES('items','i_deleted_at','27316 27316');
  INSERT INTO sqlite_stat1 VALUES('items','i_metadata_type','27316 6829');
  INSERT INTO sqlite_stat1 VALUES('items','i_guid','27316 2');
  INSERT INTO sqlite_stat1 VALUES('items','i_title_sort','27316 2');
  INSERT INTO sqlite_stat1 VALUES('items','i_title','27316 2');
  INSERT INTO sqlite_stat1 VALUES('items','i_index','27316 144');
  INSERT INTO sqlite_stat1 VALUES('items','i_created_at','27316 2');
  INSERT INTO sqlite_stat1 VALUES('items','i_parent_id','27316 15');
  INSERT INTO sqlite_stat1 VALUES('items','i_secid','27316 6829');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,150,150,'com.plexapp.agents.thetvdb://153021/2/9?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,198,198,'com.plexapp.agents.thetvdb://194031/1/10?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,526,526,'com.plexapp.agents.thetvdb://71256/12/92?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,923,923,'com.plexapp.agents.thetvdb://71256/15/16?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,1008,1008,'com.plexapp.agents.thetvdb://71256/15/93?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,1053,1053,'com.plexapp.agents.thetvdb://71256/16/21?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,1068,1068,'com.plexapp.agents.thetvdb://71256/16/35?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,1235,1235,'com.plexapp.agents.thetvdb://71256/17/44?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,1255,1255,'com.plexapp.agents.thetvdb://71256/17/62?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,1573,1573,'com.plexapp.agents.thetvdb://71663/20/9?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,1580,1580,'com.plexapp.agents.thetvdb://71663/21/16?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,2000,2000,'com.plexapp.agents.thetvdb://73141/9/8?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,2107,2107,'com.plexapp.agents.thetvdb://73244/6/17?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,2256,2256,'com.plexapp.agents.thetvdb://74845/4/7?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,2408,2408,'com.plexapp.agents.thetvdb://75978/2/21?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,2634,2634,'com.plexapp.agents.thetvdb://79126/1/1?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,2962,2962,'com.plexapp.agents.thetvdb://79274/3/94?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,3160,3160,'com.plexapp.agents.thetvdb://79274/5/129?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,3161,3161,'com.plexapp.agents.thetvdb://79274/5/12?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,3688,3688,'com.plexapp.agents.thetvdb://79274/8/62?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,3714,3714,'com.plexapp.agents.thetvdb://79274/8/86?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,4002,4002,'com.plexapp.agents.thetvdb://79590/13/17?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,4215,4215,'com.plexapp.agents.thetvdb://80727/3/6?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_guid',1,4381,4381,'com.plexapp.agents.thetvdb://83462/3/24?lang=en');
  INSERT INTO sqlite_stat3 VALUES('settings','s_account_id',4740,0,0,1);
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,1879,1879,'1113f632ccd52ec8b8d7ca3d6d56da4701e48018');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,2721,2721,'1936154b97bb5567163edaebc2806830ae419ccf');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,3035,3035,'1c122331d4b7bfa0dc2c003ab5fb4f7152b9987a');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',2,3393,3393,'1f81bdbc9acc3321dc592b1a109ca075731b549a');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,6071,6070,'393cf7713efb4519c7a3d1d5403f0d945d15a16a');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,7462,7461,'4677dd37011f8bd9ae7fbbdd3af6dcd8a5b4ab2d');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',2,8435,8434,'4ffa339485334e81a5e12e03a63b6508d76401cf');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',2,8716,8714,'52a093852e6599dd5004857b7ff5b5b82c7cdb25');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,9107,9104,'561183e39f866d97ec728e9ff16ac4ad01466111');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',2,10942,10939,'66e99b72e29610f49499ae09ee04a376210d1f08');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,12143,12139,'71f0602427e173dc2c551535f73fdb6885fe4302');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',2,14962,14958,'8ca8e4dfba696019830c19ab8a32c7ece9d8534b');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,15179,15174,'8ebf1a5cf33f8ada1fc5853ac06ac4d7e074f825');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,15375,15370,'908bc211bebdf21c79d2d2b54ebaa442ac1f5cae');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,18215,18210,'ab29e4e18ec5a14fef95aa713d69e31c045a22c1');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,18615,18610,'ae84c008cc0c338bf4f28d798a88575746452f6d');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,18649,18644,'aec7c901353e115aa5307e94018ba7507bec3a45');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',2,19517,19512,'b75025fbf2e9c504e3c1197ff1b69250402a31f8');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,21251,21245,'c7d32f0e3a8f3a0a3dbd00833833d2ccee62f0fd');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',2,23616,23610,'dd5ff61479a9bd4100de802515d9dcf72d46f07a');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,24287,24280,'e3db00034301b7555419d4ef6f64769298d5845e');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,24949,24942,'ea336abd197ecd7013854a25a4f4eb9dea7927c6');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',1,25574,25567,'f018ea5182ec3f32768ca1c3cefbf3ad160ec20b');
  INSERT INTO sqlite_stat3 VALUES('items','i_hash',2,26139,26132,'f53709a8d81c12cb0f4f8d58004a25dd063de67c');
  INSERT INTO sqlite_stat3 VALUES('items','i_secid_ex1',25167,0,0,2);
  INSERT INTO sqlite_stat3 VALUES('items','i_secid_ex1',736,25167,1,3);
  INSERT INTO sqlite_stat3 VALUES('items','i_secid_ex1',15,25903,2,4);
  INSERT INTO sqlite_stat3 VALUES('items','i_secid_ex1',1398,25918,3,5);
  INSERT INTO sqlite_stat3 VALUES('items','i_deleted_at',27316,0,0,NULL);
  INSERT INTO sqlite_stat3 VALUES('items','i_metadata_type',2149,0,0,1);
  INSERT INTO sqlite_stat3 VALUES('items','i_metadata_type',411,2149,1,2);
  INSERT INTO sqlite_stat3 VALUES('items','i_metadata_type',1440,2560,2,3);
  INSERT INTO sqlite_stat3 VALUES('items','i_metadata_type',23316,4000,3,4);
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,215,215,'com.plexapp.agents.imdb://tt0065702?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',2,711,711,'com.plexapp.agents.imdb://tt0198781?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',2,987,986,'com.plexapp.agents.imdb://tt0454876?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',2,1004,1002,'com.plexapp.agents.imdb://tt0464154?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',2,1056,1053,'com.plexapp.agents.imdb://tt0499549?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',2,1120,1116,'com.plexapp.agents.imdb://tt0903624?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',2,1250,1245,'com.plexapp.agents.imdb://tt1268799?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',2,1270,1264,'com.plexapp.agents.imdb://tt1320261?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',2,1376,1369,'com.plexapp.agents.imdb://tt1772341?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,3035,3027,'com.plexapp.agents.thetvdb://153021/3/14?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,6071,6063,'com.plexapp.agents.thetvdb://71173/1/18?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,6342,6334,'com.plexapp.agents.thetvdb://71256/13/4?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,9107,9099,'com.plexapp.agents.thetvdb://72389/2/19?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,11740,11732,'com.plexapp.agents.thetvdb://73893/2/13?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,12143,12135,'com.plexapp.agents.thetvdb://73976/4/23?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,15179,15171,'com.plexapp.agents.thetvdb://75897/16/12?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,17408,17400,'com.plexapp.agents.thetvdb://76808/2/16?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,17984,17976,'com.plexapp.agents.thetvdb://77068/1/16?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,18215,18207,'com.plexapp.agents.thetvdb://77259/1/1?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,21251,21243,'com.plexapp.agents.thetvdb://78957/8/2?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,24287,24279,'com.plexapp.agents.thetvdb://80337/5/8?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,25513,25505,'com.plexapp.agents.thetvdb://82226/6?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,25548,25540,'com.plexapp.agents.thetvdb://82339/2/10?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_guid',1,26770,26762,'com.plexapp.agents.thetvdb://86901/1/3?lang=en');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',1524,0,0,'');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',2,3034,1391,'Attack of the Giant Squid');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',51,4742,2895,'Brad Sherwood');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',11,4912,2996,'Brian Williams');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',39,5847,3857,'Chip Esten');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',1,6071,4015,'Chuck Versus the DeLorean');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',12,7625,5436,'Denny Siegel');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',30,8924,6618,'Episode 1');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',29,9015,6629,'Episode 2');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',32,9082,6643,'Episode 3');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',28,9135,6654,'Episode 4');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',26,9183,6665,'Episode 5');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',27,9229,6677,'Episode 6');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',22,9266,6688,'Episode 7');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',20,9298,6699,'Episode 8');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',55,11750,8817,'Greg Proops');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',1,12143,9120,'Hardware Jungle');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',33,14712,11435,'Kathy Greenwood');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',3,15179,11840,'Last Call');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',1,18215,14601,'Nature or Nurture?');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',12,18241,14623,'Neil DeGrasse Tyson');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',68,19918,16144,'Pilot');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',7,21251,17298,'Reza Aslan');
  INSERT INTO sqlite_stat3 VALUES('items','i_title_sort',1,24287,20035,'Technoviking');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',1524,0,0,'');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',1,3035,1429,'Anderson Can''t Dance');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',51,4782,2991,'Brad Sherwood');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',11,4936,3079,'Brian Williams');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',39,5694,3783,'Chip Esten');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',1,6071,4100,'Clive Warren');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',12,7144,5078,'Denny Siegel');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',30,8249,6097,'Episode 1');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',29,8340,6108,'Episode 2');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',32,8407,6122,'Episode 3');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',28,8460,6133,'Episode 4');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',26,8508,6144,'Episode 5');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',27,8554,6156,'Episode 6');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',22,8591,6167,'Episode 7');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',20,8623,6178,'Episode 8');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',1,9107,6537,'Fat Albert and the Cosby Kids');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',55,10539,7843,'Greg Proops');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',1,12143,9276,'Iron Age Remains');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',33,13118,10143,'Kathy Greenwood');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',1,15179,11972,'Mink');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',68,17411,14035,'Pilot');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',2,18214,14727,'Reflections');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',4,21250,17481,'The Apartment');
  INSERT INTO sqlite_stat3 VALUES('items','i_title',1,24287,20283,'The Simpsons Already Did It');
  INSERT INTO sqlite_stat3 VALUES('items','i_index',4315,95,2,1);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',1553,4410,3,2);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',1485,5963,4,3);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',1414,7448,5,4);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',1367,8862,6,5);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',1328,10229,7,6);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',1161,11557,8,7);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',1108,12718,9,8);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',1033,13826,10,9);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',1014,14859,11,10);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',929,15873,12,11);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',906,16802,13,12);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',844,17708,14,13);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',690,18552,15,14);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',655,19242,16,15);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',625,19897,17,16);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',579,20522,18,17);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',555,21101,19,18);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',526,21656,20,19);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',501,22182,21,20);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',459,22683,22,21);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',439,23142,23,22);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',315,23581,24,23);
  INSERT INTO sqlite_stat3 VALUES('items','i_index',192,24177,26,25);
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',1851,0,0,NULL);
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',373,1857,2,'2011-10-22 14:54:39');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',595,2230,3,'2011-10-22 14:54:41');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',337,2825,4,'2011-10-22 14:54:43');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',361,3378,8,'2011-10-22 14:54:54');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',160,3739,9,'2011-10-22 14:54:56');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',315,4000,11,'2011-10-22 14:54:59');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',321,4334,13,'2011-10-22 14:55:02');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',1292,4723,16,'2011-10-22 14:55:06');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',161,6015,17,'2011-10-22 14:55:07');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',1,9107,2677,'2012-09-04 18:07:50');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',313,9717,3270,'2012-10-18 16:50:21');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',450,10030,3271,'2012-10-18 16:50:22');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',389,10668,3275,'2012-10-18 16:50:26');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',796,11057,3276,'2012-10-18 16:51:06');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',161,12041,3280,'2012-10-19 19:52:37');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',135,13281,4186,'2013-02-19 00:56:10');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',1063,13416,4187,'2013-02-19 00:56:11');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',797,14479,4188,'2013-02-19 00:56:13');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',147,15276,4189,'2013-02-19 00:56:15');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',346,15423,4190,'2013-02-19 00:56:16');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',1,18215,6436,'2013-05-05 14:09:54');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',2,21251,8122,'2013-05-24 15:25:45');
  INSERT INTO sqlite_stat3 VALUES('items','i_created_at',1,24287,11116,'2013-05-26 14:17:39');
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',2560,0,0,NULL);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',18,3022,31,2350);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',10,6068,285,8150);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',158,6346,315,8949);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',34,9094,562,18831);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',20,12139,794,22838);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',134,14033,886,24739);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',159,14167,887,24740);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',161,14326,888,24741);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',161,14487,889,24742);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',124,14648,890,24743);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',157,14772,891,24744);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',126,15043,894,24747);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',40,15169,895,24748);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',161,15243,898,24753);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',138,15404,899,24754);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',160,15542,900,24755);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',161,15702,901,24756);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',161,15863,902,24757);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',124,16024,903,24758);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',155,16148,904,24759);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',26,18208,1043,29704);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',2,21251,1282,32952);
  INSERT INTO sqlite_stat3 VALUES('items','i_parent_id',13,24279,1583,36068);
  INSERT INTO sqlite_stat3 VALUES('items','i_secid',25167,0,0,2);
  INSERT INTO sqlite_stat3 VALUES('items','i_secid',736,25167,1,3);
  INSERT INTO sqlite_stat3 VALUES('items','i_secid',15,25903,2,4);
  INSERT INTO sqlite_stat3 VALUES('items','i_secid',1398,25918,3,5);
  ANALYZE sqlite_master;
  
  explain query plan
  select items.title
    from items
         join items as child on child.parent_id=items.id
         join items as grandchild on grandchild.parent_id=child.id
         join settings
                    on settings.guid=grandchild.guid
                   and settings.account_id=1
   where items.metadata_type=2
     and items.secid=2
     and settings.last_viewed_at is not null
   group by items.id
   order by settings.last_viewed_at desc
   limit 10;
} [list \
 0 0 3 {SEARCH TABLE settings USING INDEX s_account_id (account_id=?)} \
 0 1 2 {SEARCH TABLE items AS grandchild USING INDEX i_guid (guid=?)} \
 0 2 1 {SEARCH TABLE items AS child USING INTEGER PRIMARY KEY (rowid=?)} \
 0 3 0 {SEARCH TABLE items USING INTEGER PRIMARY KEY (rowid=?)} \
 0 0 0 {USE TEMP B-TREE FOR GROUP BY} \
 0 0 0 {USE TEMP B-TREE FOR ORDER BY}]


finish_test
Added test/win32longpath.test.












































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# 2013 August 27
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is testing the file name handling provided
# by the "win32-longpath" VFS.
#

if {$tcl_platform(platform)!="windows"} return

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix win32longpath

db close
set path [file nativename [get_pwd]]
sqlite3 db [file join $path test.db] -vfs win32-longpath

do_test 1.1 {
  db eval {
    BEGIN EXCLUSIVE;
    CREATE TABLE t1(x);
    INSERT INTO t1 VALUES(1);
    INSERT INTO t1 VALUES(2);
    INSERT INTO t1 VALUES(3);
    INSERT INTO t1 VALUES(4);
    SELECT x FROM t1 ORDER BY x;
    COMMIT;
  }
} {1 2 3 4}

set longPath(1) \\\\?\\$path\\[pid]
make_win32_dir $longPath(1)

set longPath(2) $longPath(1)\\[string repeat X 255]
make_win32_dir $longPath(2)

set longPath(3) $longPath(2)\\[string repeat Y 255]
make_win32_dir $longPath(3)

set fileName $longPath(3)\\test.db

do_test 1.2 {
  list [catch {sqlite3 db2 [string range $fileName 4 end]} msg] $msg
} {1 {unable to open database file}}

sqlite3 db3 $fileName -vfs win32-longpath

do_test 1.3 {
  db3 eval {
    BEGIN EXCLUSIVE;
    CREATE TABLE t1(x);
    INSERT INTO t1 VALUES(5);
    INSERT INTO t1 VALUES(6);
    INSERT INTO t1 VALUES(7);
    INSERT INTO t1 VALUES(8);
    SELECT x FROM t1 ORDER BY x;
    COMMIT;
  }
} {5 6 7 8}

db3 close
# puts "  Database exists \{[exists_win32_path $fileName]\}"

sqlite3 db3 $fileName -vfs win32-longpath

do_test 1.4 {
  db3 eval {
    PRAGMA journal_mode = WAL;
  }
} {wal}

do_test 1.5 {
  db3 eval {
    BEGIN EXCLUSIVE;
    INSERT INTO t1 VALUES(9);
    INSERT INTO t1 VALUES(10);
    INSERT INTO t1 VALUES(11);
    INSERT INTO t1 VALUES(12);
    SELECT x FROM t1 ORDER BY x;
    COMMIT;
  }
} {5 6 7 8 9 10 11 12}

db3 close
# puts "  Database exists \{[exists_win32_path $fileName]\}"

do_delete_win32_file $fileName
# puts "  Files remaining \{[find_win32_file $longPath(3)\\*]\}"

do_remove_win32_dir $longPath(3)
do_remove_win32_dir $longPath(2)
do_remove_win32_dir $longPath(1)

finish_test
Changes to tool/mkautoconfamal.sh.
19
20
21
22
23
24
25










26
27
28
29
30
31
32
#
set -e
set -u

TMPSPACE=./mkpkg_tmp_dir
VERSION=`cat $TOP/VERSION`











rm -rf $TMPSPACE
cp -R $TOP/autoconf $TMPSPACE

cp sqlite3.c          $TMPSPACE
cp sqlite3.h          $TMPSPACE
cp sqlite3ext.h       $TMPSPACE
cp $TOP/sqlite3.1     $TMPSPACE







>
>
>
>
>
>
>
>
>
>







19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#
set -e
set -u

TMPSPACE=./mkpkg_tmp_dir
VERSION=`cat $TOP/VERSION`

# Set global variable $ARTIFACT to the "3xxyyzz" string incorporated 
# into artifact filenames. And $VERSION2 to the "3.x.y[.z]" form.
xx=`echo $VERSION|sed 's/3\.\([0-9]*\)\..*/\1/'`
yy=`echo $VERSION|sed 's/3\.[^.]*\.\([0-9]*\).*/\1/'`
zz=0
set +e
  zz=`echo $VERSION|sed 's/3\.[^.]*\.[^.]*\.\([0-9]*\).*/\1/'|grep -v '\.'`
set -e
ARTIFACT=`printf "3%.2d%.2d%.2d" $xx $yy $zz`

rm -rf $TMPSPACE
cp -R $TOP/autoconf $TMPSPACE

cp sqlite3.c          $TMPSPACE
cp sqlite3.h          $TMPSPACE
cp sqlite3ext.h       $TMPSPACE
cp $TOP/sqlite3.1     $TMPSPACE
62
63
64
65
66
67
68
69



70

cd tea
autoconf
rm -rf autom4te.cache

cd ../
./configure && make dist
mv sqlite-$VERSION.tar.gz ../sqlite-amalgamation-$VERSION.tar.gz











|
>
>
>

72
73
74
75
76
77
78
79
80
81
82
83

cd tea
autoconf
rm -rf autom4te.cache

cd ../
./configure && make dist
tar -xzf sqlite-$VERSION.tar.gz
mv sqlite-$VERSION sqlite-autoconf-$ARTIFACT
tar -czf sqlite-autoconf-$ARTIFACT.tar.gz sqlite-autoconf-$ARTIFACT
mv sqlite-autoconf-$ARTIFACT.tar.gz ..

Changes to tool/mksqlite3c.tcl.
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
  set nstar [expr {60 - $n}]
  set stars [string range $s78 0 $nstar]
  puts $out "/************** $text $stars/"
}

# Read the source file named $filename and write it into the
# sqlite3.c output file.  If any #include statements are seen,
# process them approprately.
#
proc copy_file {filename} {
  global seen_hdr available_hdr out addstatic linemacros
  set ln 0
  set tail [file tail $filename]
  section_comment "Begin file $tail"
  if {$linemacros} {puts $out "#line 1 \"$filename\""}







|







133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
  set nstar [expr {60 - $n}]
  set stars [string range $s78 0 $nstar]
  puts $out "/************** $text $stars/"
}

# Read the source file named $filename and write it into the
# sqlite3.c output file.  If any #include statements are seen,
# process them appropriately.
#
proc copy_file {filename} {
  global seen_hdr available_hdr out addstatic linemacros
  set ln 0
  set tail [file tail $filename]
  section_comment "Begin file $tail"
  if {$linemacros} {puts $out "#line 1 \"$filename\""}
165
166
167
168
169
170
171




172


173
174
175
176
177
178
179
180
          copy_file tsrc/$hdr
          section_comment "Continuing where we left off in $tail"
          if {$linemacros} {puts $out "#line [expr {$ln+1}] \"$filename\""}
        }
      } elseif {![info exists seen_hdr($hdr)]} {
        set seen_hdr($hdr) 1
        puts $out $line




      } else {


        puts $out "/* $line */"
      }
    } elseif {[regexp {^#ifdef __cplusplus} $line]} {
      puts $out "#if 0"
    } elseif {!$linemacros && [regexp {^#line} $line]} {
      # Skip #line directives.
    } elseif {$addstatic && ![regexp {^(static|typedef)} $line]} {
      regsub {^SQLITE_API } $line {} line







>
>
>
>

>
>
|







165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
          copy_file tsrc/$hdr
          section_comment "Continuing where we left off in $tail"
          if {$linemacros} {puts $out "#line [expr {$ln+1}] \"$filename\""}
        }
      } elseif {![info exists seen_hdr($hdr)]} {
        set seen_hdr($hdr) 1
        puts $out $line
      } elseif {[regexp {/\*\s+amalgamator:\s+keep\s+\*/} $line]} {
        # This include file must be kept because there was a "keep"
        # directive inside of a line comment.
        puts $out $line
      } else {
        # Comment out the entire line, replacing any nested comment
        # begin/end markers with the harmless substring "**".
        puts $out "/* [string map [list /* ** */ **] $line] */"
      }
    } elseif {[regexp {^#ifdef __cplusplus} $line]} {
      puts $out "#if 0"
    } elseif {!$linemacros && [regexp {^#line} $line]} {
      # Skip #line directives.
    } elseif {$addstatic && ![regexp {^(static|typedef)} $line]} {
      regsub {^SQLITE_API } $line {} line
Changes to tool/spaceanal.tcl.
242
243
244
245
246
247
248
249

250










251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

# Quote a string for use in an SQL query. Examples:
#
# [quote {hello world}]   == {'hello world'}
# [quote {hello world's}] == {'hello world''s'}
#
proc quote {txt} {
  regsub -all ' $txt '' q

  return '$q'










}

# Generate a single line of output in the statistics section of the
# report.
#
proc statline {title value {extra {}}} {
  set len [string length $title]
  set dots [string range {......................................} $len end]
  set len [string length $value]
  set sp2 [string range {          } $len end]
  if {$extra ne ""} {
    set extra " $extra"
  }
  puts "$title$dots $value$sp2$extra"
}







|
>
|
>
>
>
>
>
>
>
>
>
>







|







242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

# Quote a string for use in an SQL query. Examples:
#
# [quote {hello world}]   == {'hello world'}
# [quote {hello world's}] == {'hello world''s'}
#
proc quote {txt} {
  return [string map {' ''} $txt]
}

# Output a title line
#
proc titleline {title} {
  if {$title==""} {
    puts [string repeat * 79]
  } else {
    set len [string length $title]
    set stars [string repeat * [expr 79-$len-5]]
    puts "*** $title $stars"
  }
}

# Generate a single line of output in the statistics section of the
# report.
#
proc statline {title value {extra {}}} {
  set len [string length $title]
  set dots [string repeat . [expr 50-$len]]
  set len [string length $value]
  set sp2 [string range {          } $len end]
  if {$extra ne ""} {
    set extra " $extra"
  }
  puts "$title$dots $value$sp2$extra"
}
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
      int(sum(gap_cnt)) AS gap_cnt,
      int(sum(compressed_size)) AS compressed_size
    FROM space_used WHERE $where" {} {}

  # Output the sub-report title, nicely decorated with * characters.
  #
  puts ""
  set len [string length $title]
  set stars [string repeat * [expr 65-$len]]
  puts "*** $title $stars"
  puts ""

  # Calculate statistics and store the results in TCL variables, as follows:
  #
  # total_pages: Database pages consumed.
  # total_pages_percent: Pages consumed as a percentage of the file.
  # storage: Bytes consumed.







<
<
|







326
327
328
329
330
331
332


333
334
335
336
337
338
339
340
      int(sum(gap_cnt)) AS gap_cnt,
      int(sum(compressed_size)) AS compressed_size
    FROM space_used WHERE $where" {} {}

  # Output the sub-report title, nicely decorated with * characters.
  #
  puts ""


  titleline $title
  puts ""

  # Calculate statistics and store the results in TCL variables, as follows:
  #
  # total_pages: Database pages consumed.
  # total_pages_percent: Pages consumed as a percentage of the file.
  # storage: Bytes consumed.
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
set user_payload [mem one {SELECT int(sum(payload)) FROM space_used
     WHERE NOT is_index AND name NOT LIKE 'sqlite_master'}]
set user_percent [percent $user_payload $file_bytes]

# Output the summary statistics calculated above.
#
puts "/** Disk-Space Utilization Report For $root_filename"
catch {
  puts "*** As of [clock format [clock seconds] -format {%Y-%b-%d %H:%M:%S}]"
}
puts ""
statline {Page size in bytes} $pageSize
statline {Pages in the whole file (measured)} $file_pgcnt
statline {Pages in the whole file (calculated)} $file_pgcnt2
statline {Pages that store data} $inuse_pgcnt $inuse_percent
statline {Pages on the freelist (per header)} $free_pgcnt2 $free_percent2
statline {Pages on the freelist (calculated)} $free_pgcnt $free_percent







<
<
<







495
496
497
498
499
500
501



502
503
504
505
506
507
508
set user_payload [mem one {SELECT int(sum(payload)) FROM space_used
     WHERE NOT is_index AND name NOT LIKE 'sqlite_master'}]
set user_percent [percent $user_payload $file_bytes]

# Output the summary statistics calculated above.
#
puts "/** Disk-Space Utilization Report For $root_filename"



puts ""
statline {Page size in bytes} $pageSize
statline {Pages in the whole file (measured)} $file_pgcnt
statline {Pages in the whole file (calculated)} $file_pgcnt2
statline {Pages that store data} $inuse_pgcnt $inuse_percent
statline {Pages on the freelist (per header)} $free_pgcnt2 $free_percent2
statline {Pages on the freelist (calculated)} $free_pgcnt $free_percent
513
514
515
516
517
518
519
520
521
522
523
524
525
526











527
528
529
530
531
532
533
534
535
536
  statline {Size of the file in bytes} $file_bytes
}
statline {Bytes of user payload stored} $user_payload $user_percent

# Output table rankings
#
puts ""
puts "*** Page counts for all tables with their indices ********************"
puts ""
mem eval {SELECT tblname, count(*) AS cnt, 
              int(sum(int_pages+leaf_pages+ovfl_pages)) AS size
          FROM space_used GROUP BY tblname ORDER BY size+0 DESC, tblname} {} {
  statline [string toupper $tblname] $size [percent $size $file_pgcnt]
}











if {$isCompressed} {
  puts ""
  puts "*** Bytes of disk space used after compression ***********************"
  puts ""
  set csum 0
  mem eval {SELECT tblname,
                  int(sum(compressed_size)) +
                         $compressOverhead*sum(int_pages+leaf_pages+ovfl_pages)
                        AS csize
          FROM space_used GROUP BY tblname ORDER BY csize+0 DESC, tblname} {} {







|






>
>
>
>
>
>
>
>
>
>
>


|







519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
  statline {Size of the file in bytes} $file_bytes
}
statline {Bytes of user payload stored} $user_payload $user_percent

# Output table rankings
#
puts ""
titleline "Page counts for all tables with their indices"
puts ""
mem eval {SELECT tblname, count(*) AS cnt, 
              int(sum(int_pages+leaf_pages+ovfl_pages)) AS size
          FROM space_used GROUP BY tblname ORDER BY size+0 DESC, tblname} {} {
  statline [string toupper $tblname] $size [percent $size $file_pgcnt]
}
puts ""
titleline "Page counts for all tables and indices separately"
puts ""
mem eval {
  SELECT
       upper(name) AS nm,
       int(int_pages+leaf_pages+ovfl_pages) AS size
    FROM space_used
   ORDER BY size+0 DESC, name} {} {
  statline $nm $size [percent $size $file_pgcnt]
}
if {$isCompressed} {
  puts ""
  titleline "Bytes of disk space used after compression"
  puts ""
  set csum 0
  mem eval {SELECT tblname,
                  int(sum(compressed_size)) +
                         $compressOverhead*sum(int_pages+leaf_pages+ovfl_pages)
                        AS csize
          FROM space_used GROUP BY tblname ORDER BY csize+0 DESC, tblname} {} {
550
551
552
553
554
555
556
557
558
559
560



561
562

563





564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
}
subreport {All tables} {NOT is_index}
if {$nindex>0} {
  subreport {All indices} {is_index}
}
foreach tbl [mem eval {SELECT name FROM space_used WHERE NOT is_index
                       ORDER BY name}] {
  regsub ' $tbl '' qn
  set name [string toupper $tbl]
  set n [mem eval "SELECT count(*) FROM space_used WHERE tblname='$qn'"]
  if {$n>1} {



    subreport "Table $name and all its indices" "tblname='$qn'"
    subreport "Table $name w/o any indices" "name='$qn'"

    subreport "Indices of table $name" "tblname='$qn' AND is_index"





  } else {
    subreport "Table $name" "name='$qn'"
  }
}

# Output instructions on what the numbers above mean.
#
puts {
*** Definitions ******************************************************

Page size in bytes

    The number of bytes in a single page of the database file.  
    Usually 1024.

Number of pages in the whole file
}







|

|

>
>
>


>
|
>
>
>
>
>







|
|
|







567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
}
subreport {All tables} {NOT is_index}
if {$nindex>0} {
  subreport {All indices} {is_index}
}
foreach tbl [mem eval {SELECT name FROM space_used WHERE NOT is_index
                       ORDER BY name}] {
  set qn [quote $tbl]
  set name [string toupper $tbl]
  set n [mem eval {SELECT count(*) FROM space_used WHERE tblname=$tbl}]
  if {$n>1} {
    set idxlist [mem eval "SELECT name FROM space_used
                            WHERE tblname='$qn' AND is_index
                            ORDER BY 1"]
    subreport "Table $name and all its indices" "tblname='$qn'"
    subreport "Table $name w/o any indices" "name='$qn'"
    if {[llength $idxlist]>1} {
      subreport "Indices of table $name" "tblname='$qn' AND is_index"
    }
    foreach idx $idxlist {
      set qidx [quote $idx]
      subreport "Index [string toupper $idx] of table $name" "name='$qidx'"
    }
  } else {
    subreport "Table $name" "name='$qn'"
  }
}

# Output instructions on what the numbers above mean.
#
puts ""
titleline Definitions
puts {
Page size in bytes

    The number of bytes in a single page of the database file.  
    Usually 1024.

Number of pages in the whole file
}
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
    pages.  The percentage at the right is the number of unused bytes 
    divided by the total number of bytes.
}

# Output a dump of the in-memory database. This can be used for more
# complex offline analysis.
#
puts "**********************************************************************"
puts "The entire text of this report can be sourced into any SQL database"
puts "engine for further analysis.  All of the text above is an SQL comment."
puts "The data used to generate this report follows:"
puts "*/"
puts "BEGIN;"
puts $tabledef
unset -nocomplain x







|







744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
    pages.  The percentage at the right is the number of unused bytes 
    divided by the total number of bytes.
}

# Output a dump of the in-memory database. This can be used for more
# complex offline analysis.
#
titleline {}
puts "The entire text of this report can be sourced into any SQL database"
puts "engine for further analysis.  All of the text above is an SQL comment."
puts "The data used to generate this report follows:"
puts "*/"
puts "BEGIN;"
puts $tabledef
unset -nocomplain x
Added tool/wherecosttest.c.






























































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/*
** 2013-06-10
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains a simple command-line utility for converting from
** integers and WhereCost values and back again and for doing simple
** arithmetic operations (multiple and add) on WhereCost values.
**
** Usage:
**
**      ./wherecosttest ARGS
**
** Arguments:
**
**    'x'    Multiple the top two elements of the stack
**    '+'    Add the top two elements of the stack
**    NUM    Convert NUM from integer to WhereCost and push onto the stack
**   ^NUM    Interpret NUM as a WhereCost and push onto stack.
**
** Examples:
**
** To convert 123 from WhereCost to integer:
** 
**         ./wherecosttest ^123
**
** To convert 123456 from integer to WhereCost:
**
**         ./wherecosttest 123456
**
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

typedef unsigned short int WhereCost;  /* 10 times log2() */

WhereCost whereCostMultiply(WhereCost a, WhereCost b){ return a+b; }
WhereCost whereCostAdd(WhereCost a, WhereCost b){
  static const unsigned char x[] = {
     10, 10,                         /* 0,1 */
      9, 9,                          /* 2,3 */
      8, 8,                          /* 4,5 */
      7, 7, 7,                       /* 6,7,8 */
      6, 6, 6,                       /* 9,10,11 */
      5, 5, 5,                       /* 12-14 */
      4, 4, 4, 4,                    /* 15-18 */
      3, 3, 3, 3, 3, 3,              /* 19-24 */
      2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
  };
  if( a<b ){ WhereCost t = a; a = b; b = t; }
  if( a>b+49 ) return a;
  if( a>b+31 ) return a+1;
  return a+x[a-b];
}
WhereCost whereCostFromInteger(int x){
  static WhereCost a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
  WhereCost y = 40;
  if( x<8 ){
    if( x<2 ) return 0;
    while( x<8 ){  y -= 10; x <<= 1; }
  }else{
    while( x>255 ){ y += 40; x >>= 4; }
    while( x>15 ){  y += 10; x >>= 1; }
  }
  return a[x&7] + y - 10;
}
static unsigned long int whereCostToInt(WhereCost x){
  unsigned long int n;
  if( x<10 ) return 1;
  n = x%10;
  x /= 10;
  if( n>=5 ) n -= 2;
  else if( n>=1 ) n -= 1;
  if( x>=3 ) return (n+8)<<(x-3);
  return (n+8)>>(3-x);
}

int main(int argc, char **argv){
  int i;
  int n = 0;
  WhereCost a[100];
  for(i=1; i<argc; i++){
    const char *z = argv[i];
    if( z[0]=='+' ){
      if( n>=2 ){
        a[n-2] = whereCostAdd(a[n-2],a[n-1]);
        n--;
      }
    }else if( z[0]=='x' ){
      if( n>=2 ){
        a[n-2] = whereCostMultiply(a[n-2],a[n-1]);
        n--;
      }
    }else if( z[0]=='^' ){
      a[n++] = atoi(z+1);
    }else{
      a[n++] = whereCostFromInteger(atoi(z));
    }
  }
  for(i=n-1; i>=0; i--){
    printf("%d (%lu)\n", a[i], whereCostToInt(a[i]));
  }
  return 0;
}