Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge in performance enhancements from trunk. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | sessions |
Files: | files | file ages | folders |
SHA1: |
fc9ae839569eb28eb734c52d95676c59 |
User & Date: | drh 2013-11-26 18:00:29.602 |
Context
2013-11-27
| ||
21:53 | Merge all recent trunk changes. (check-in: 3a2a1bd478 user: drh tags: sessions) | |
2013-11-26
| ||
18:00 | Merge in performance enhancements from trunk. (check-in: fc9ae83956 user: drh tags: sessions) | |
16:51 | Fix a possible NULL pointer deference in the wordcount test program. (check-in: 6f91dca0de user: drh tags: trunk) | |
2013-11-14
| ||
19:18 | Merge the skip-scan optimization into the sessions branch. (check-in: 7596d1bf80 user: drh tags: sessions) | |
Changes
Changes to Makefile.in.
︙ | ︙ | |||
949 950 951 952 953 954 955 956 957 958 959 960 961 962 | showdb$(TEXE): $(TOP)/tool/showdb.c sqlite3.c $(LTLINK) -o $@ $(TOP)/tool/showdb.c sqlite3.c $(TLIBS) wordcount$(TEXE): $(TOP)/test/wordcount.c sqlite3.c $(LTLINK) -o $@ $(TOP)/test/wordcount.c sqlite3.c $(TLIBS) # Standard install and cleanup targets # lib_install: libsqlite3.la $(INSTALL) -d $(DESTDIR)$(libdir) $(LTINSTALL) libsqlite3.la $(DESTDIR)$(libdir) install: sqlite3$(BEXE) lib_install sqlite3.h sqlite3.pc ${HAVE_TCL:1=tcl_install} | > > > | 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 | showdb$(TEXE): $(TOP)/tool/showdb.c sqlite3.c $(LTLINK) -o $@ $(TOP)/tool/showdb.c sqlite3.c $(TLIBS) wordcount$(TEXE): $(TOP)/test/wordcount.c sqlite3.c $(LTLINK) -o $@ $(TOP)/test/wordcount.c sqlite3.c $(TLIBS) speedtest1$(TEXE): $(TOP)/test/wordcount.c sqlite3.lo $(LTLINK) -o $@ $(TOP)/test/speedtest1.c sqlite3.lo $(TLIBS) # Standard install and cleanup targets # lib_install: libsqlite3.la $(INSTALL) -d $(DESTDIR)$(libdir) $(LTINSTALL) libsqlite3.la $(DESTDIR)$(libdir) install: sqlite3$(BEXE) lib_install sqlite3.h sqlite3.pc ${HAVE_TCL:1=tcl_install} |
︙ | ︙ |
Changes to Makefile.msc.
︙ | ︙ | |||
1353 1354 1355 1356 1357 1358 1359 | $(NAWK) -f $(TOP)\tool\tostr.awk $(TOP)\tool\spaceanal.tcl >> $@ echo ; return zMainloop; } >> $@ sqlite3_analyzer.exe: sqlite3_analyzer.c $(LIBRESOBJS) $(LTLINK) -DBUILD_sqlite -DTCLSH=2 -I$(TCLINCDIR) sqlite3_analyzer.c \ /link $(LTLINKOPTS) $(LTLIBPATHS) $(LIBRESOBJS) $(LTLIBS) $(TLIBS) | | | | | > > > > | 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 | $(NAWK) -f $(TOP)\tool\tostr.awk $(TOP)\tool\spaceanal.tcl >> $@ echo ; return zMainloop; } >> $@ sqlite3_analyzer.exe: sqlite3_analyzer.c $(LIBRESOBJS) $(LTLINK) -DBUILD_sqlite -DTCLSH=2 -I$(TCLINCDIR) sqlite3_analyzer.c \ /link $(LTLINKOPTS) $(LTLIBPATHS) $(LIBRESOBJS) $(LTLIBS) $(TLIBS) showdb.exe: $(TOP)\tool\showdb.c sqlite3.c $(LTLINK) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -o $@ \ $(TOP)\tool\showdb.c sqlite3.c wordcount.exe: $(TOP)\test\wordcount.c sqlite3.c $(LTLINK) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -o $@ \ $(TOP)\test\wordcount.c sqlite3.c speedtest1.exe: $(TOP)\test\speedtest1.c sqlite3.c $(LTLINK) -DSQLITE_OMIT_LOAD_EXTENSION -o $@ \ $(TOP)\test\speedtest1.c sqlite3.c clean: del /Q *.lo *.ilk *.lib *.obj *.pdb sqlite3.exe libsqlite3.lib del /Q *.cod *.da *.bb *.bbg gmon.out del /Q sqlite3.h opcodes.c opcodes.h del /Q lemon.exe lempar.c parse.* del /Q mkkeywordhash.exe keywordhash.h |
︙ | ︙ |
Changes to addopcodes.awk.
︙ | ︙ | |||
24 25 26 27 28 29 30 | printf "#define TK_%-29s %4d\n", "ILLEGAL", ++max printf "#define TK_%-29s %4d\n", "SPACE", ++max printf "#define TK_%-29s %4d\n", "UNCLOSED_STRING", ++max printf "#define TK_%-29s %4d\n", "FUNCTION", ++max printf "#define TK_%-29s %4d\n", "COLUMN", ++max printf "#define TK_%-29s %4d\n", "AGG_FUNCTION", ++max printf "#define TK_%-29s %4d\n", "AGG_COLUMN", ++max | < | 24 25 26 27 28 29 30 31 32 33 | printf "#define TK_%-29s %4d\n", "ILLEGAL", ++max printf "#define TK_%-29s %4d\n", "SPACE", ++max printf "#define TK_%-29s %4d\n", "UNCLOSED_STRING", ++max printf "#define TK_%-29s %4d\n", "FUNCTION", ++max printf "#define TK_%-29s %4d\n", "COLUMN", ++max printf "#define TK_%-29s %4d\n", "AGG_FUNCTION", ++max printf "#define TK_%-29s %4d\n", "AGG_COLUMN", ++max printf "#define TK_%-29s %4d\n", "UMINUS", ++max printf "#define TK_%-29s %4d\n", "UPLUS", ++max } |
Changes to ext/fts3/fts3.c.
︙ | ︙ | |||
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | assert( q - (unsigned char *)p <= FTS3_VARINT_MAX ); return (int) (q - (unsigned char *)p); } #define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \ v = (v & mask1) | ( (*ptr++) << shift ); \ if( (v & mask2)==0 ){ var = v; return ret; } /* ** Read a 64-bit variable-length integer from memory starting at p[0]. ** Return the number of bytes read, or 0 on error. ** The value is stored in *v. */ int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){ const char *pStart = p; u32 a; u64 b; int shift; | > > > | | | | 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 | assert( q - (unsigned char *)p <= FTS3_VARINT_MAX ); return (int) (q - (unsigned char *)p); } #define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \ v = (v & mask1) | ( (*ptr++) << shift ); \ if( (v & mask2)==0 ){ var = v; return ret; } #define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \ v = (*ptr++); \ if( (v & mask2)==0 ){ var = v; return ret; } /* ** Read a 64-bit variable-length integer from memory starting at p[0]. ** Return the number of bytes read, or 0 on error. ** The value is stored in *v. */ int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){ const char *pStart = p; u32 a; u64 b; int shift; GETVARINT_INIT(a, p, 0, 0x00, 0x80, *v, 1); GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *v, 2); GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *v, 3); GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *v, 4); b = (a & 0x0FFFFFFF ); for(shift=28; shift<=63; shift+=7){ u64 c = *p++; b += (c&0x7F) << shift; if( (c & 0x80)==0 ) break; } *v = b; return (int)(p - pStart); } /* ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a ** 32-bit integer before it is returned. */ int sqlite3Fts3GetVarint32(const char *p, int *pi){ u32 a; #ifndef fts3GetVarint32 GETVARINT_INIT(a, p, 0, 0x00, 0x80, *pi, 1); #else a = (*p++); assert( a & 0x80 ); #endif GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *pi, 2); GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *pi, 3); |
︙ | ︙ |
Changes to main.mk.
︙ | ︙ | |||
637 638 639 640 641 642 643 644 645 646 647 648 649 650 | $(TCC) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -o showdb$(EXE) \ $(TOP)/tool/showdb.c sqlite3.c wordcount$(EXE): $(TOP)/test/wordcount.c sqlite3.c $(TCC) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -o wordcount$(EXE) \ $(TOP)/test/wordcount.c sqlite3.c # This target will fail if the SQLite amalgamation contains any exported # symbols that do not begin with "sqlite3_". It is run as part of the # releasetest.tcl script. # checksymbols: sqlite3.o nm -g --defined-only sqlite3.o | grep -v " sqlite3_" ; test $$? -ne 0 | > > > | 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 | $(TCC) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -o showdb$(EXE) \ $(TOP)/tool/showdb.c sqlite3.c wordcount$(EXE): $(TOP)/test/wordcount.c sqlite3.c $(TCC) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -o wordcount$(EXE) \ $(TOP)/test/wordcount.c sqlite3.c speedtest1$(EXE): $(TOP)/test/speedtest1.c sqlite3.o $(TCC) -o speedtest1$(EXE) $(TOP)/test/speedtest1.c sqlite3.o $(THREADLIB) # This target will fail if the SQLite amalgamation contains any exported # symbols that do not begin with "sqlite3_". It is run as part of the # releasetest.tcl script. # checksymbols: sqlite3.o nm -g --defined-only sqlite3.o | grep -v " sqlite3_" ; test $$? -ne 0 |
︙ | ︙ |
Changes to mkopcodeh.awk.
︙ | ︙ | |||
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | || name=="OP_Savepoint" \ || name=="OP_Checkpoint" \ || name=="OP_Vacuum" \ || name=="OP_JournalMode" \ || name=="OP_VUpdate" \ || name=="OP_VFilter" \ || name=="OP_Next" \ || name=="OP_SorterNext" \ || name=="OP_Prev" \ ){ cnt++ while( used[cnt] ) cnt++ op[name] = cnt used[cnt] = 1 def[cnt] = name } | > > | 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | || name=="OP_Savepoint" \ || name=="OP_Checkpoint" \ || name=="OP_Vacuum" \ || name=="OP_JournalMode" \ || name=="OP_VUpdate" \ || name=="OP_VFilter" \ || name=="OP_Next" \ || name=="OP_NextIfOpen" \ || name=="OP_SorterNext" \ || name=="OP_Prev" \ || name=="OP_PrevIfOpen" \ ){ cnt++ while( used[cnt] ) cnt++ op[name] = cnt used[cnt] = 1 def[cnt] = name } |
︙ | ︙ |
Changes to src/backup.c.
︙ | ︙ | |||
92 93 94 95 96 97 98 99 100 101 102 103 104 105 | }else{ pParse->db = pDb; if( sqlite3OpenTempDatabase(pParse) ){ sqlite3Error(pErrorDb, pParse->rc, "%s", pParse->zErrMsg); rc = SQLITE_ERROR; } sqlite3DbFree(pErrorDb, pParse->zErrMsg); sqlite3StackFree(pErrorDb, pParse); } if( rc ){ return 0; } } | > | 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | }else{ pParse->db = pDb; if( sqlite3OpenTempDatabase(pParse) ){ sqlite3Error(pErrorDb, pParse->rc, "%s", pParse->zErrMsg); rc = SQLITE_ERROR; } sqlite3DbFree(pErrorDb, pParse->zErrMsg); sqlite3ParserReset(pParse); sqlite3StackFree(pErrorDb, pParse); } if( rc ){ return 0; } } |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
4202 4203 4204 4205 4206 4207 4208 | ** ** The pointer returned by this routine looks directly into the cached ** page of the database. The data might change or move the next time ** any btree routine is called. */ static const unsigned char *fetchPayload( BtCursor *pCur, /* Cursor pointing to entry to read from */ | | | | 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 | ** ** The pointer returned by this routine looks directly into the cached ** page of the database. The data might change or move the next time ** any btree routine is called. */ static const unsigned char *fetchPayload( BtCursor *pCur, /* Cursor pointing to entry to read from */ u32 *pAmt, /* Write the number of available bytes here */ int skipKey /* read beginning at data if this is true */ ){ unsigned char *aPayload; MemPage *pPage; u32 nKey; u32 nLocal; assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]); assert( pCur->eState==CURSOR_VALID ); assert( cursorHoldsMutex(pCur) ); pPage = pCur->apPage[pCur->iPage]; assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); if( pCur->info.nSize==0 ){ btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage], &pCur->info); } aPayload = pCur->info.pCell; aPayload += pCur->info.nHeader; if( pPage->intKey ){ nKey = 0; |
︙ | ︙ | |||
4252 4253 4254 4255 4256 4257 4258 | ** including calls from other threads against the same cache. ** Hence, a mutex on the BtShared should be held prior to calling ** this routine. ** ** These routines is used to get quick access to key and data ** in the common case where no overflow pages are used. */ | | | | 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 | ** including calls from other threads against the same cache. ** Hence, a mutex on the BtShared should be held prior to calling ** this routine. ** ** These routines is used to get quick access to key and data ** in the common case where no overflow pages are used. */ const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){ const void *p = 0; assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( cursorHoldsMutex(pCur) ); if( ALWAYS(pCur->eState==CURSOR_VALID) ){ p = (const void*)fetchPayload(pCur, pAmt, 0); } return p; } const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){ const void *p = 0; assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( cursorHoldsMutex(pCur) ); if( ALWAYS(pCur->eState==CURSOR_VALID) ){ p = (const void*)fetchPayload(pCur, pAmt, 1); } return p; |
︙ | ︙ | |||
4643 4644 4645 4646 4647 4648 4649 | if( pCur->eState==CURSOR_INVALID ){ *pRes = -1; assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); return SQLITE_OK; } assert( pCur->apPage[0]->intKey || pIdxKey ); for(;;){ | | | | | < | < > | < | < < | < < < | > | > | | > | | > | < < | | > > > > | > > > > > > > > > > > > > | | 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 | if( pCur->eState==CURSOR_INVALID ){ *pRes = -1; assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); return SQLITE_OK; } assert( pCur->apPage[0]->intKey || pIdxKey ); for(;;){ int lwr, upr, idx, c; Pgno chldPg; MemPage *pPage = pCur->apPage[pCur->iPage]; u8 *pCell; /* Pointer to current cell in pPage */ /* pPage->nCell must be greater than zero. If this is the root-page ** the cursor would have been INVALID above and this for(;;) loop ** not run. If this is not the root-page, then the moveToChild() routine ** would have already detected db corruption. Similarly, pPage must ** be the right kind (index or table) of b-tree page. Otherwise ** a moveToChild() or moveToRoot() call would have detected corruption. */ assert( pPage->nCell>0 ); assert( pPage->intKey==(pIdxKey==0) ); lwr = 0; upr = pPage->nCell-1; assert( biasRight==0 || biasRight==1 ); idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ pCur->aiIdx[pCur->iPage] = (u16)idx; if( pPage->intKey ){ for(;;){ i64 nCellKey; pCell = findCell(pPage, idx) + pPage->childPtrSize; if( pPage->hasData ){ while( 0x80 <= *(pCell++) ){ if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; } } getVarint(pCell, (u64*)&nCellKey); if( nCellKey<intKey ){ lwr = idx+1; if( lwr>upr ){ c = -1; break; } }else if( nCellKey>intKey ){ upr = idx-1; if( lwr>upr ){ c = +1; break; } }else{ assert( nCellKey==intKey ); pCur->validNKey = 1; pCur->info.nKey = nCellKey; pCur->aiIdx[pCur->iPage] = (u16)idx; if( !pPage->leaf ){ lwr = idx; goto moveto_next_layer; }else{ *pRes = 0; rc = SQLITE_OK; goto moveto_finish; } } assert( lwr+upr>=0 ); idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ } }else{ for(;;){ int nCell; pCell = findCell(pPage, idx) + pPage->childPtrSize; /* The maximum supported page-size is 65536 bytes. This means that ** the maximum number of record bytes stored on an index B-Tree ** page is less than 16384 bytes and may be stored as a 2-byte ** varint. This information is used to attempt to avoid parsing ** the entire cell by checking for the cases where the record is ** stored entirely within the b-tree page by inspecting the first ** 2 bytes of the cell. */ nCell = pCell[0]; if( nCell<=pPage->max1bytePayload /* && (pCell+nCell)<pPage->aDataEnd */ ){ /* This branch runs if the record-size field of the cell is a ** single byte varint and the record fits entirely on the main ** b-tree page. */ testcase( pCell+nCell+1==pPage->aDataEnd ); |
︙ | ︙ | |||
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 | btreeParseCellPtr(pPage, pCellBody, &pCur->info); nCell = (int)pCur->info.nKey; pCellKey = sqlite3Malloc( nCell ); if( pCellKey==0 ){ rc = SQLITE_NOMEM; goto moveto_finish; } rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); if( rc ){ sqlite3_free(pCellKey); goto moveto_finish; } c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); sqlite3_free(pCellKey); } | > < | < | > | > > < < < < < < | < > > < < < < < < < < > > > > > > > < < | > > | 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 | btreeParseCellPtr(pPage, pCellBody, &pCur->info); nCell = (int)pCur->info.nKey; pCellKey = sqlite3Malloc( nCell ); if( pCellKey==0 ){ rc = SQLITE_NOMEM; goto moveto_finish; } pCur->aiIdx[pCur->iPage] = (u16)idx; rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); if( rc ){ sqlite3_free(pCellKey); goto moveto_finish; } c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); sqlite3_free(pCellKey); } if( c<0 ){ lwr = idx+1; }else if( c>0 ){ upr = idx-1; }else{ assert( c==0 ); *pRes = 0; rc = SQLITE_OK; pCur->aiIdx[pCur->iPage] = (u16)idx; goto moveto_finish; } if( lwr>upr ) break; assert( lwr+upr>=0 ); idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ } } assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); assert( pPage->isInit ); if( pPage->leaf ){ assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); pCur->aiIdx[pCur->iPage] = (u16)idx; *pRes = c; rc = SQLITE_OK; goto moveto_finish; } moveto_next_layer: if( lwr>=pPage->nCell ){ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); }else{ chldPg = get4byte(findCell(pPage, lwr)); } pCur->aiIdx[pCur->iPage] = (u16)lwr; rc = moveToChild(pCur, chldPg); if( rc ) break; } moveto_finish: pCur->info.nSize = 0; pCur->validNKey = 0; return rc; } /* ** Return TRUE if the cursor is not pointing at an entry of the table. ** |
︙ | ︙ |
Changes to src/btree.h.
︙ | ︙ | |||
174 175 176 177 178 179 180 | int sqlite3BtreeFirst(BtCursor*, int *pRes); int sqlite3BtreeLast(BtCursor*, int *pRes); int sqlite3BtreeNext(BtCursor*, int *pRes); int sqlite3BtreeEof(BtCursor*); int sqlite3BtreePrevious(BtCursor*, int *pRes); int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); | | | | 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | int sqlite3BtreeFirst(BtCursor*, int *pRes); int sqlite3BtreeLast(BtCursor*, int *pRes); int sqlite3BtreeNext(BtCursor*, int *pRes); int sqlite3BtreeEof(BtCursor*); int sqlite3BtreePrevious(BtCursor*, int *pRes); int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); const void *sqlite3BtreeKeyFetch(BtCursor*, u32 *pAmt); const void *sqlite3BtreeDataFetch(BtCursor*, u32 *pAmt); int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); void sqlite3BtreeSetCachedRowid(BtCursor*, sqlite3_int64); sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor*); char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); struct Pager *sqlite3BtreePager(Btree*); |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
146 147 148 149 150 151 152 | ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are ** set for each database that is used. Generate code to start a ** transaction on each used database and to verify the schema cookie ** on each used database. */ if( pParse->cookieGoto>0 ){ yDbMask mask; | | < < | | | | | < > > > > > > > > > > | | 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are ** set for each database that is used. Generate code to start a ** transaction on each used database and to verify the schema cookie ** on each used database. */ if( pParse->cookieGoto>0 ){ yDbMask mask; int iDb, i, addr; sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ if( (mask & pParse->cookieMask)==0 ) continue; sqlite3VdbeUsesBtree(v, iDb); sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); if( db->init.busy==0 ){ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); sqlite3VdbeAddOp3(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb], db->aDb[iDb].pSchema->iGeneration); } } #ifndef SQLITE_OMIT_VIRTUALTABLE for(i=0; i<pParse->nVtabLock; i++){ char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); } pParse->nVtabLock = 0; #endif /* Once all the cookies have been verified and transactions opened, ** obtain the required table-locks. This is a no-op unless the ** shared-cache feature is enabled. */ codeTableLocks(pParse); /* Initialize any AUTOINCREMENT data structures required. */ sqlite3AutoincrementBegin(pParse); /* Code constant expressions that where factored out of inner loops */ addr = pParse->cookieGoto; if( pParse->pConstExpr ){ ExprList *pEL = pParse->pConstExpr; pParse->cookieGoto = 0; for(i=0; i<pEL->nExpr; i++){ sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); } } /* Finally, jump back to the beginning of the executable code. */ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); } } /* Get the VDBE program ready for execution */ if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
223 224 225 226 227 228 229 | Parse *pParse, /* The parser context */ SrcList *pTabList, /* The table from which we should delete things */ Expr *pWhere /* The WHERE clause. May be null */ ){ Vdbe *v; /* The virtual database engine */ Table *pTab; /* The table from which records will be deleted */ const char *zDb; /* Name of database holding pTab */ | < > > > > > > > > > > > > > > > | | 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 | Parse *pParse, /* The parser context */ SrcList *pTabList, /* The table from which we should delete things */ Expr *pWhere /* The WHERE clause. May be null */ ){ Vdbe *v; /* The virtual database engine */ Table *pTab; /* The table from which records will be deleted */ const char *zDb; /* Name of database holding pTab */ int i; /* Loop counter */ WhereInfo *pWInfo; /* Information about the WHERE clause */ Index *pIdx; /* For looping over indices of the table */ int iTabCur; /* Cursor number for the table */ int iDataCur; /* VDBE cursor for the canonical data source */ int iIdxCur; /* Cursor number of the first index */ int nIdx; /* Number of indices */ sqlite3 *db; /* Main database structure */ AuthContext sContext; /* Authorization context */ NameContext sNC; /* Name context to resolve expressions in */ int iDb; /* Database number */ int memCnt = -1; /* Memory cell used for change counting */ int rcauth; /* Value returned by authorization callback */ int okOnePass; /* True for one-pass algorithm without the FIFO */ int aiCurOnePass[2]; /* The write cursors opened by WHERE_ONEPASS */ u8 *aToOpen = 0; /* Open cursor iTabCur+j if aToOpen[j] is true */ Index *pPk; /* The PRIMARY KEY index on the table */ int iPk = 0; /* First of nPk registers holding PRIMARY KEY value */ i16 nPk = 1; /* Number of columns in the PRIMARY KEY */ int iKey; /* Memory cell holding key of row to be deleted */ i16 nKey; /* Number of memory cells in the row key */ int iEphCur = 0; /* Ephemeral table holding all primary key values */ int iRowSet = 0; /* Register for rowset of rows to delete */ int addrBypass = 0; /* Address of jump over the delete logic */ int addrLoop = 0; /* Top of the delete loop */ int addrDelete = 0; /* Jump directly to the delete logic */ int addrEphOpen = 0; /* Instruction to open the Ephermeral table */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to delete from a view */ Trigger *pTrigger; /* List of table triggers, if required */ #endif memset(&sContext, 0, sizeof(sContext)); db = pParse->db; |
︙ | ︙ | |||
291 292 293 294 295 296 297 | rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb); assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE ); if( rcauth==SQLITE_DENY ){ goto delete_from_cleanup; } assert(!isView || pTrigger); | | | | 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb); assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE ); if( rcauth==SQLITE_DENY ){ goto delete_from_cleanup; } assert(!isView || pTrigger); /* Assign cursor numbers to the table and all its indices. */ assert( pTabList->nSrc==1 ); iTabCur = pTabList->a[0].iCursor = pParse->nTab++; for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ pParse->nTab++; } /* Start the view context */ if( isView ){ sqlite3AuthContextPush(pParse, &sContext, pTab->zName); |
︙ | ︙ | |||
368 369 370 371 372 373 374 | } for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->pSchema==pTab->pSchema ); sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb); } }else #endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */ | > | < | | | > > > | < < | | | | | | < | < | | > > > > > | > > < | | < < < > | > > > > > | < < < < | | | | > | < < < | > > > | > > | > | > | < > | < > > > | < | < | < | | | | < < | > > | < < < < | < < > > | < < | | > > | > | > | | | | > > > > > > > > > > > > > > > | > | > | | | | > > > > > > | | | > | | | 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 | } for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->pSchema==pTab->pSchema ); sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb); } }else #endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */ { if( HasRowid(pTab) ){ /* For a rowid table, initialize the RowSet to an empty set */ pPk = 0; nPk = 1; iRowSet = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet); }else{ /* For a WITHOUT ROWID table, create an ephermeral table used to ** hold all primary keys for rows to be deleted. */ pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); nPk = pPk->nKeyCol; iPk = pParse->nMem+1; pParse->nMem += nPk; iEphCur = pParse->nTab++; addrEphOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEphCur, nPk); sqlite3VdbeSetP4KeyInfo(pParse, pPk); } /* Construct a query to find the rowid or primary key for every row ** to be deleted, based on the WHERE clause. */ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED|WHERE_DUPLICATES_OK, iTabCur+1); if( pWInfo==0 ) goto delete_from_cleanup; okOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); /* Keep track of the number of rows to be deleted */ if( db->flags & SQLITE_CountRows ){ sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1); } /* Extract the rowid or primary key for the current row */ if( pPk ){ for(i=0; i<nPk; i++){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, pPk->aiColumn[i], iPk+i); } iKey = iPk; }else{ iKey = pParse->nMem + 1; iKey = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iTabCur, iKey, 0); if( iKey>pParse->nMem ) pParse->nMem = iKey; } if( okOnePass ){ /* For ONEPASS, no need to store the rowid/primary-key. There is only ** one, so just keep it in its register(s) and fall through to the ** delete code. */ nKey = nPk; /* OP_Found will use an unpacked key */ aToOpen = sqlite3DbMallocRaw(db, nIdx+2); if( aToOpen==0 ){ sqlite3WhereEnd(pWInfo); goto delete_from_cleanup; } memset(aToOpen, 1, nIdx+1); aToOpen[nIdx+1] = 0; if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iTabCur] = 0; if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iTabCur] = 0; if( addrEphOpen ) sqlite3VdbeChangeToNoop(v, addrEphOpen); addrDelete = sqlite3VdbeAddOp0(v, OP_Goto); /* Jump to DELETE logic */ }else if( pPk ){ /* Construct a composite key for the row to be deleted and remember it */ iKey = ++pParse->nMem; nKey = 0; /* Zero tells OP_Found to use a composite key */ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey, sqlite3IndexAffinityStr(v, pPk), P4_TRANSIENT); sqlite3VdbeAddOp2(v, OP_IdxInsert, iEphCur, iKey); }else{ /* Get the rowid of the row to be deleted and remember it in the RowSet */ nKey = 1; /* OP_Seek always uses a single rowid */ sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, iKey); } /* End of the WHERE loop */ sqlite3WhereEnd(pWInfo); if( okOnePass ){ /* Bypass the delete logic below if the WHERE loop found zero rows */ addrBypass = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBypass); sqlite3VdbeJumpHere(v, addrDelete); } /* Unless this is a view, open cursors for the table we are ** deleting from and all its indices. If this is a view, then the ** only effect this statement has is to fire the INSTEAD OF ** triggers. */ if( !isView ){ sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, iTabCur, aToOpen, &iDataCur, &iIdxCur); assert( pPk || iDataCur==iTabCur ); assert( pPk || iIdxCur==iDataCur+1 ); } /* Set up a loop over the rowids/primary-keys that were found in the ** where-clause loop above. */ if( okOnePass ){ /* Just one row. Hence the top-of-loop is a no-op */ assert( nKey==nPk ); /* OP_Found will use an unpacked key */ if( aToOpen[iDataCur-iTabCur] ){ assert( pPk!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey); } }else if( pPk ){ addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); sqlite3VdbeAddOp2(v, OP_RowKey, iEphCur, iKey); assert( nKey==0 ); /* OP_Found will use a composite key */ }else{ addrLoop = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, 0, iKey); assert( nKey==1 ); } /* Delete the row */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iKey, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, OE_Abort); sqlite3MayAbort(pParse); }else #endif { int count = (pParse->nested==0); /* True to count changes */ sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, iKey, nKey, count, OE_Default, okOnePass); } /* End of the loop over all rowids/primary-keys. */ if( okOnePass ){ sqlite3VdbeResolveLabel(v, addrBypass); }else if( pPk ){ sqlite3VdbeAddOp2(v, OP_Next, iEphCur, addrLoop+1); sqlite3VdbeJumpHere(v, addrLoop); }else{ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrLoop); sqlite3VdbeJumpHere(v, addrLoop); } /* Close the cursors open on the table and its indexes. */ if( !isView && !IsVirtual(pTab) ){ if( !pPk ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur); for(i=0, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ sqlite3VdbeAddOp1(v, OP_Close, iIdxCur + i); } } } /* End non-truncate path */ /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ if( pParse->nested==0 && pParse->pTriggerTab==0 ){ sqlite3AutoincrementEnd(pParse); |
︙ | ︙ | |||
513 514 515 516 517 518 519 520 521 522 523 524 525 526 | sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC); } delete_from_cleanup: sqlite3AuthContextPop(&sContext); sqlite3SrcListDelete(db, pTabList); sqlite3ExprDelete(db, pWhere); return; } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** thely may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView | > | 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 | sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC); } delete_from_cleanup: sqlite3AuthContextPop(&sContext); sqlite3SrcListDelete(db, pTabList); sqlite3ExprDelete(db, pWhere); sqlite3DbFree(db, aToOpen); return; } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** thely may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView |
︙ | ︙ | |||
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 | if( !bNoSeek ) sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk); /* If there are any triggers to fire, allocate a range of registers to ** use for the old.* references in the triggers. */ if( sqlite3FkRequired(pParse, pTab, 0, 0) || pTrigger ){ u32 mask; /* Mask of OLD.* columns in use */ int iCol; /* Iterator used while populating OLD.* */ /* TODO: Could use temporary registers here. Also could attempt to ** avoid copying the contents of the rowid register. */ mask = sqlite3TriggerColmask( pParse, pTrigger, 0, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onconf ); mask |= sqlite3FkOldmask(pParse, pTab); iOld = pParse->nMem+1; pParse->nMem += (1 + pTab->nCol); /* Populate the OLD.* pseudo-table register array. These values will be ** used by any BEFORE and AFTER triggers that exist. */ sqlite3VdbeAddOp2(v, OP_Copy, iPk, iOld); for(iCol=0; iCol<pTab->nCol; iCol++){ if( mask==0xffffffff || mask&(1<<iCol) ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, iCol, iOld+iCol+1); } } /* Invoke BEFORE DELETE trigger programs. */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_DELETE, 0, TRIGGER_BEFORE, pTab, iOld, onconf, iLabel ); | > > > | | < | > > | > | 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 | if( !bNoSeek ) sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk); /* If there are any triggers to fire, allocate a range of registers to ** use for the old.* references in the triggers. */ if( sqlite3FkRequired(pParse, pTab, 0, 0) || pTrigger ){ u32 mask; /* Mask of OLD.* columns in use */ int iCol; /* Iterator used while populating OLD.* */ int addrStart; /* Start of BEFORE trigger programs */ /* TODO: Could use temporary registers here. Also could attempt to ** avoid copying the contents of the rowid register. */ mask = sqlite3TriggerColmask( pParse, pTrigger, 0, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onconf ); mask |= sqlite3FkOldmask(pParse, pTab); iOld = pParse->nMem+1; pParse->nMem += (1 + pTab->nCol); /* Populate the OLD.* pseudo-table register array. These values will be ** used by any BEFORE and AFTER triggers that exist. */ sqlite3VdbeAddOp2(v, OP_Copy, iPk, iOld); for(iCol=0; iCol<pTab->nCol; iCol++){ if( mask==0xffffffff || mask&(1<<iCol) ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, iCol, iOld+iCol+1); } } /* Invoke BEFORE DELETE trigger programs. */ addrStart = sqlite3VdbeCurrentAddr(v); sqlite3CodeRowTrigger(pParse, pTrigger, TK_DELETE, 0, TRIGGER_BEFORE, pTab, iOld, onconf, iLabel ); /* If any BEFORE triggers were coded, then seek the cursor to the ** row to be deleted again. It may be that the BEFORE triggers moved ** the cursor or of already deleted the row that the cursor was ** pointing to. */ if( addrStart<sqlite3VdbeCurrentAddr(v) ){ sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk); } /* Do FK processing. This call checks that any FK constraints that ** refer to this table (i.e. constraints attached to other tables) ** are not violated by deleting this row. */ sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0); } |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
926 927 928 929 930 931 932 | Expr *pOldExpr = pOldItem->pExpr; pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); pItem->sortOrder = pOldItem->sortOrder; pItem->done = 0; pItem->bSpanIsTab = pOldItem->bSpanIsTab; | < | | 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 | Expr *pOldExpr = pOldItem->pExpr; pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); pItem->sortOrder = pOldItem->sortOrder; pItem->done = 0; pItem->bSpanIsTab = pOldItem->bSpanIsTab; pItem->u = pOldItem->u; } return pNew; } /* ** If cursors, triggers, views and subqueries are all omitted from ** the build, then none of the following routines, except for |
︙ | ︙ | |||
1188 1189 1190 1191 1192 1193 1194 | if( pWalker->u.i==3 && ExprHasProperty(pExpr, EP_FromJoin) ){ pWalker->u.i = 0; return WRC_Abort; } switch( pExpr->op ){ /* Consider functions to be constant if all their arguments are constant | | > | > > | 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 | if( pWalker->u.i==3 && ExprHasProperty(pExpr, EP_FromJoin) ){ pWalker->u.i = 0; return WRC_Abort; } switch( pExpr->op ){ /* Consider functions to be constant if all their arguments are constant ** and either pWalker->u.i==2 or the function as the SQLITE_FUNC_CONST ** flag. */ case TK_FUNCTION: if( pWalker->u.i==2 || ExprHasProperty(pExpr,EP_Constant) ){ return WRC_Continue; } /* Fall through */ case TK_ID: case TK_COLUMN: case TK_AGG_FUNCTION: case TK_AGG_COLUMN: testcase( pExpr->op==TK_ID ); testcase( pExpr->op==TK_COLUMN ); |
︙ | ︙ | |||
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 | Vdbe *v = pParse->pVdbe; /* The VM under construction */ int op; /* The opcode being coded */ int inReg = target; /* Results stored in register inReg */ int regFree1 = 0; /* If non-zero free this temporary register */ int regFree2 = 0; /* If non-zero free this temporary register */ int r1, r2, r3, r4; /* Various register numbers */ sqlite3 *db = pParse->db; /* The database connection */ assert( target>0 && target<=pParse->nMem ); if( v==0 ){ assert( pParse->db->mallocFailed ); return 0; } | > | 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 | Vdbe *v = pParse->pVdbe; /* The VM under construction */ int op; /* The opcode being coded */ int inReg = target; /* Results stored in register inReg */ int regFree1 = 0; /* If non-zero free this temporary register */ int regFree2 = 0; /* If non-zero free this temporary register */ int r1, r2, r3, r4; /* Various register numbers */ sqlite3 *db = pParse->db; /* The database connection */ Expr tempX; /* Temporary expression node */ assert( target>0 && target<=pParse->nMem ); if( v==0 ){ assert( pParse->db->mallocFailed ); return 0; } |
︙ | ︙ | |||
2571 2572 2573 2574 2575 2576 2577 | codeInteger(pParse, pLeft, 1, target); #ifndef SQLITE_OMIT_FLOATING_POINT }else if( pLeft->op==TK_FLOAT ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); codeReal(v, pLeft->u.zToken, 1, target); #endif }else{ | > > > | < | 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 | codeInteger(pParse, pLeft, 1, target); #ifndef SQLITE_OMIT_FLOATING_POINT }else if( pLeft->op==TK_FLOAT ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); codeReal(v, pLeft->u.zToken, 1, target); #endif }else{ tempX.op = TK_INTEGER; tempX.flags = EP_IntValue|EP_TokenOnly; tempX.u.iValue = 0; r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); testcase( regFree2==0 ); } inReg = target; break; } |
︙ | ︙ | |||
2617 2618 2619 2620 2621 2622 2623 | assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); }else{ inReg = pInfo->aFunc[pExpr->iAgg].iMem; } break; } | < < < | 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 | assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); }else{ inReg = pInfo->aFunc[pExpr->iAgg].iMem; } break; } case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ int nFarg; /* Number of function arguments */ FuncDef *pDef; /* The function definition object */ int nId; /* Length of the function name in bytes */ const char *zId; /* The function name */ int constMask = 0; /* Mask of function arguments that are constant */ int i; /* Loop counter */ u8 enc = ENC(db); /* The text encoding used by this database */ CollSeq *pColl = 0; /* A collating sequence */ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); if( ExprHasProperty(pExpr, EP_TokenOnly) ){ pFarg = 0; }else{ pFarg = pExpr->x.pList; } nFarg = pFarg ? pFarg->nExpr : 0; assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
︙ | ︙ | |||
2675 2676 2677 2678 2679 2680 2681 2682 | */ if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ assert( nFarg>=1 ); sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); break; } if( pFarg ){ | > > > > > > > > > > > > | > | < | > | > | 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 | */ if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ assert( nFarg>=1 ); sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); break; } for(i=0; i<nFarg; i++){ if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ constMask |= (1<<i); } if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); } } if( pFarg ){ if( constMask ){ r1 = pParse->nMem+1; pParse->nMem += nFarg; }else{ r1 = sqlite3GetTempRange(pParse, nFarg); } /* For length() and typeof() functions with a column argument, ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data ** loading. */ if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ u8 exprOp; assert( nFarg==1 ); assert( pFarg->a[0].pExpr!=0 ); exprOp = pFarg->a[0].pExpr->op; if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); pFarg->a[0].pExpr->op2 = pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); } } sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ sqlite3ExprCodeExprList(pParse, pFarg, r1, SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ }else{ r1 = 0; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Possibly overload the function if the first argument is ** a virtual table column. |
︙ | ︙ | |||
2722 2723 2724 2725 2726 2727 2728 | */ if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); }else if( nFarg>0 ){ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); } #endif | < < < < < < < < | | 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 | */ if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); }else if( nFarg>0 ){ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); } #endif if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ if( !pColl ) pColl = db->pDfltColl; sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, (char*)pDef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nFarg); if( nFarg && constMask==0 ){ sqlite3ReleaseTempRange(pParse, r1, nFarg); } break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_EXISTS: case TK_SELECT: { |
︙ | ︙ | |||
2888 2889 2890 2891 2892 2893 2894 | int endLabel; /* GOTO label for end of CASE stmt */ int nextCase; /* GOTO label for next WHEN clause */ int nExpr; /* 2x number of WHEN terms */ int i; /* Loop counter */ ExprList *pEList; /* List of WHEN terms */ struct ExprList_item *aListelem; /* Array of WHEN terms */ Expr opCompare; /* The X==Ei expression */ | < | < | | < | 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 | int endLabel; /* GOTO label for end of CASE stmt */ int nextCase; /* GOTO label for next WHEN clause */ int nExpr; /* 2x number of WHEN terms */ int i; /* Loop counter */ ExprList *pEList; /* List of WHEN terms */ struct ExprList_item *aListelem; /* Array of WHEN terms */ Expr opCompare; /* The X==Ei expression */ Expr *pX; /* The X expression */ Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); assert(pExpr->x.pList->nExpr > 0); pEList = pExpr->x.pList; aListelem = pEList->a; nExpr = pEList->nExpr; endLabel = sqlite3VdbeMakeLabel(v); if( (pX = pExpr->pLeft)!=0 ){ tempX = *pX; testcase( pX->op==TK_COLUMN ); exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); testcase( regFree1==0 ); opCompare.op = TK_EQ; opCompare.pLeft = &tempX; pTest = &opCompare; /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: ** The value in regFree1 might get SCopy-ed into the file result. ** So make sure that the regFree1 register is not reused for other ** purposes and possibly overwritten. */ regFree1 = 0; } for(i=0; i<nExpr-1; i=i+2){ sqlite3ExprCachePush(pParse); if( pX ){ assert( pTest!=0 ); opCompare.pRight = aListelem[i].pExpr; }else{ pTest = aListelem[i].pExpr; } nextCase = sqlite3VdbeMakeLabel(v); testcase( pTest->op==TK_COLUMN ); sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); sqlite3ExprCachePop(pParse, 1); sqlite3VdbeResolveLabel(v, nextCase); } if( (nExpr&1)!=0 ){ sqlite3ExprCachePush(pParse); |
︙ | ︙ | |||
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 | } #endif } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); return inReg; } /* ** Generate code to evaluate an expression and store the results ** into a register. Return the register number where the results ** are stored. ** ** If the register is a temporary register that can be deallocated, ** then write its number into *pReg. If the result register is not ** a temporary, then set *pReg to zero. */ int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | > | 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 | } #endif } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); return inReg; } /* ** Factor out the code of the given expression to initialization time. */ void sqlite3ExprCodeAtInit( Parse *pParse, /* Parsing context */ Expr *pExpr, /* The expression to code when the VDBE initializes */ int regDest, /* Store the value in this register */ u8 reusable /* True if this expression is reusable */ ){ ExprList *p; assert( ConstFactorOk(pParse) ); p = pParse->pConstExpr; pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); p = sqlite3ExprListAppend(pParse, p, pExpr); if( p ){ struct ExprList_item *pItem = &p->a[p->nExpr-1]; pItem->u.iConstExprReg = regDest; pItem->reusable = reusable; } pParse->pConstExpr = p; } /* ** Generate code to evaluate an expression and store the results ** into a register. Return the register number where the results ** are stored. ** ** If the register is a temporary register that can be deallocated, ** then write its number into *pReg. If the result register is not ** a temporary, then set *pReg to zero. ** ** If pExpr is a constant, then this routine might generate this ** code to fill the register in the initialization section of the ** VDBE program, in order to factor it out of the evaluation loop. */ int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ int r2; pExpr = sqlite3ExprSkipCollate(pExpr); if( ConstFactorOk(pParse) && pExpr->op!=TK_REGISTER && sqlite3ExprIsConstantNotJoin(pExpr) ){ ExprList *p = pParse->pConstExpr; int i; *pReg = 0; if( p ){ struct ExprList_item *pItem; for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ return pItem->u.iConstExprReg; } } } r2 = ++pParse->nMem; sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); }else{ int r1 = sqlite3GetTempReg(pParse); r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); if( r2==r1 ){ *pReg = r1; }else{ sqlite3ReleaseTempReg(pParse, r1); *pReg = 0; } } return r2; } /* ** Generate code that will evaluate expression pExpr and store the ** results in register target. The results are guaranteed to appear |
︙ | ︙ | |||
3036 3037 3038 3039 3040 3041 3042 | ** are reused. */ int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ Vdbe *v = pParse->pVdbe; int inReg; inReg = sqlite3ExprCode(pParse, pExpr, target); assert( target>0 ); | < | < | > > > | | | 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 | ** are reused. */ int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ Vdbe *v = pParse->pVdbe; int inReg; inReg = sqlite3ExprCode(pParse, pExpr, target); assert( target>0 ); /* The only place, other than this routine, where expressions can be ** converted to TK_REGISTER is internal subexpressions in BETWEEN and ** CASE operators. Neither ever calls this routine. And this routine ** is never called twice on the same expression. Hence it is impossible ** for the input to this routine to already be a register. Nevertheless, ** it seems prudent to keep the ALWAYS() in case the conditions above ** change with future modifications or enhancements. */ if( ALWAYS(pExpr->op!=TK_REGISTER) ){ int iMem; iMem = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); exprToRegister(pExpr, iMem); } return inReg; |
︙ | ︙ | |||
3173 3174 3175 3176 3177 3178 3179 | case TK_COLLATE: { sqlite3ExplainExpr(pOut, pExpr->pLeft); sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken); break; } case TK_AGG_FUNCTION: | < | 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 | case TK_COLLATE: { sqlite3ExplainExpr(pOut, pExpr->pLeft); sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken); break; } case TK_AGG_FUNCTION: case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ if( ExprHasProperty(pExpr, EP_TokenOnly) ){ pFarg = 0; }else{ pFarg = pExpr->x.pList; } |
︙ | ︙ | |||
3323 3324 3325 3326 3327 3328 3329 | sqlite3ExplainNL(pOut); } } sqlite3ExplainPop(pOut); } } #endif /* SQLITE_DEBUG */ | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < > > > > > > | > > > > > | | | < > | 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 | sqlite3ExplainNL(pOut); } } sqlite3ExplainPop(pOut); } } #endif /* SQLITE_DEBUG */ /* ** Generate code that pushes the value of every element of the given ** expression list into a sequence of registers beginning at target. ** ** Return the number of elements evaluated. ** ** The SQLITE_ECEL_DUP flag prevents the arguments from being ** filled using OP_SCopy. OP_Copy must be used instead. ** ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be ** factored out into initialization code. */ int sqlite3ExprCodeExprList( Parse *pParse, /* Parsing context */ ExprList *pList, /* The expression list to be coded */ int target, /* Where to write results */ u8 flags /* SQLITE_ECEL_* flags */ ){ struct ExprList_item *pItem; int i, n; u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; assert( pList!=0 ); assert( target>0 ); assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ n = pList->nExpr; if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; for(pItem=pList->a, i=0; i<n; i++, pItem++){ Expr *pExpr = pItem->pExpr; if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); }else{ int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); if( inReg!=target+i ){ sqlite3VdbeAddOp2(pParse->pVdbe, copyOp, inReg, target+i); } } } return n; } /* ** Generate code for a BETWEEN operator. |
︙ | ︙ | |||
3835 3836 3837 3838 3839 3840 3841 | ** expressions are the same. But if you get a 0 or 1 return, then you ** can be sure the expressions are the same. In the places where ** this routine is used, it does not hurt to get an extra 2 - that ** just might result in some slightly slower code. But returning ** an incorrect 0 or 1 could lead to a malfunction. */ int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ | > | < | | > > > < | > > > > > > > > | | | > | | < | < < < < < < < < | 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 | ** expressions are the same. But if you get a 0 or 1 return, then you ** can be sure the expressions are the same. In the places where ** this routine is used, it does not hurt to get an extra 2 - that ** just might result in some slightly slower code. But returning ** an incorrect 0 or 1 could lead to a malfunction. */ int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ u32 combinedFlags; if( pA==0 || pB==0 ){ return pB==pA ? 0 : 2; } combinedFlags = pA->flags | pB->flags; if( combinedFlags & EP_IntValue ){ if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ return 0; } return 2; } if( pA->op!=pB->op ){ if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ return 1; } if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ return 1; } return 2; } if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){ if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ return pA->op==TK_COLLATE ? 1 : 2; } } if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ if( combinedFlags & EP_xIsSelect ) return 2; if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; if( ALWAYS((combinedFlags & EP_Reduced)==0) ){ if( pA->iColumn!=pB->iColumn ) return 2; if( pA->iTable!=pB->iTable && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; } } return 0; } /* ** Compare two ExprList objects. Return 0 if they are identical and ** non-zero if they differ in any way. |
︙ | ︙ |
Changes to src/fkey.c.
︙ | ︙ | |||
544 545 546 547 548 549 550 551 552 553 554 555 556 557 | WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ int iFkIfZero = 0; /* Address of OP_FkIfZero */ Vdbe *v = sqlite3GetVdbe(pParse); assert( pIdx==0 || pIdx->pTable==pTab ); assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); assert( pIdx!=0 || pFKey->nCol==1 ); if( nIncr<0 ){ iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); } /* Create an Expr object representing an SQL expression like: ** | > | 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 | WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ int iFkIfZero = 0; /* Address of OP_FkIfZero */ Vdbe *v = sqlite3GetVdbe(pParse); assert( pIdx==0 || pIdx->pTable==pTab ); assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); assert( pIdx!=0 || pFKey->nCol==1 ); assert( pIdx!=0 || HasRowid(pTab) ); if( nIncr<0 ){ iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); } /* Create an Expr object representing an SQL expression like: ** |
︙ | ︙ | |||
596 597 598 599 600 601 602 603 604 605 606 607 608 609 | if( HasRowid(pTab) ){ pLeft = exprTableRegister(pParse, pTab, regData, -1); pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); }else{ Expr *pEq, *pAll = 0; Index *pPk = sqlite3PrimaryKeyIndex(pTab); for(i=0; i<pPk->nKeyCol; i++){ i16 iCol = pIdx->aiColumn[i]; pLeft = exprTableRegister(pParse, pTab, regData, iCol); pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol); pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); pAll = sqlite3ExprAnd(db, pAll, pEq); } | > | 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 | if( HasRowid(pTab) ){ pLeft = exprTableRegister(pParse, pTab, regData, -1); pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); }else{ Expr *pEq, *pAll = 0; Index *pPk = sqlite3PrimaryKeyIndex(pTab); assert( pIdx!=0 ); for(i=0; i<pPk->nKeyCol; i++){ i16 iCol = pIdx->aiColumn[i]; pLeft = exprTableRegister(pParse, pTab, regData, iCol); pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol); pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); pAll = sqlite3ExprAnd(db, pAll, pEq); } |
︙ | ︙ |
Changes to src/func.c.
︙ | ︙ | |||
1660 1661 1662 1663 1664 1665 1666 | FUNCTION(coalesce, 1, 0, 0, 0 ), FUNCTION(coalesce, 0, 0, 0, 0 ), FUNCTION2(coalesce, -1, 0, 0, noopFunc, SQLITE_FUNC_COALESCE), FUNCTION(hex, 1, 0, 0, hexFunc ), FUNCTION2(ifnull, 2, 0, 0, noopFunc, SQLITE_FUNC_COALESCE), FUNCTION2(unlikely, 1, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY), FUNCTION2(likelihood, 2, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY), | | | | | | | 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 | FUNCTION(coalesce, 1, 0, 0, 0 ), FUNCTION(coalesce, 0, 0, 0, 0 ), FUNCTION2(coalesce, -1, 0, 0, noopFunc, SQLITE_FUNC_COALESCE), FUNCTION(hex, 1, 0, 0, hexFunc ), FUNCTION2(ifnull, 2, 0, 0, noopFunc, SQLITE_FUNC_COALESCE), FUNCTION2(unlikely, 1, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY), FUNCTION2(likelihood, 2, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY), VFUNCTION(random, 0, 0, 0, randomFunc ), VFUNCTION(randomblob, 1, 0, 0, randomBlob ), FUNCTION(nullif, 2, 0, 1, nullifFunc ), FUNCTION(sqlite_version, 0, 0, 0, versionFunc ), FUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ), #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ), FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ), #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ FUNCTION(quote, 1, 0, 0, quoteFunc ), VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), VFUNCTION(changes, 0, 0, 0, changes ), VFUNCTION(total_changes, 0, 0, 0, total_changes ), FUNCTION(replace, 3, 0, 0, replaceFunc ), FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ), #ifdef SQLITE_SOUNDEX FUNCTION(soundex, 1, 0, 0, soundexFunc ), #endif #ifndef SQLITE_OMIT_LOAD_EXTENSION FUNCTION(load_extension, 1, 0, 0, loadExt ), |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
816 817 818 819 820 821 822 | regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } /* If this is not a view, open the table and and all indices */ if( !isView ){ int nIdx; | | | 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 | regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } /* If this is not a view, open the table and and all indices */ if( !isView ){ int nIdx; nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0, &iDataCur, &iIdxCur); aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); if( aRegIdx==0 ){ goto insert_cleanup; } for(i=0; i<nIdx; i++){ aRegIdx[i] = ++pParse->nMem; |
︙ | ︙ | |||
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 | ** pTab->pIndex list. */ int sqlite3OpenTableAndIndices( Parse *pParse, /* Parsing context */ Table *pTab, /* Table to be opened */ int op, /* OP_OpenRead or OP_OpenWrite */ int iBase, /* Use this for the table cursor, if there is one */ int *piDataCur, /* Write the database source cursor number here */ int *piIdxCur /* Write the first index cursor number here */ ){ int i; int iDb; Index *pIdx; Vdbe *v; assert( op==OP_OpenRead || op==OP_OpenWrite ); if( IsVirtual(pTab) ){ *piDataCur = 0; *piIdxCur = 1; return 0; } iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); v = sqlite3GetVdbe(pParse); assert( v!=0 ); if( iBase<0 ) iBase = pParse->nTab; | > > > < | > > | | | > > > | | | > | 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 | ** pTab->pIndex list. */ int sqlite3OpenTableAndIndices( Parse *pParse, /* Parsing context */ Table *pTab, /* Table to be opened */ int op, /* OP_OpenRead or OP_OpenWrite */ int iBase, /* Use this for the table cursor, if there is one */ u8 *aToOpen, /* If not NULL: boolean for each table and index */ int *piDataCur, /* Write the database source cursor number here */ int *piIdxCur /* Write the first index cursor number here */ ){ int i; int iDb; int iDataCur; Index *pIdx; Vdbe *v; assert( op==OP_OpenRead || op==OP_OpenWrite ); if( IsVirtual(pTab) ){ assert( aToOpen==0 ); *piDataCur = 0; *piIdxCur = 1; return 0; } iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); v = sqlite3GetVdbe(pParse); assert( v!=0 ); if( iBase<0 ) iBase = pParse->nTab; iDataCur = iBase++; if( piDataCur ) *piDataCur = iDataCur; if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); }else{ sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); } if( piIdxCur ) *piIdxCur = iBase; for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ int iIdxCur = iBase++; assert( pIdx->pSchema==pTab->pSchema ); if( pIdx->autoIndex==2 && !HasRowid(pTab) && piDataCur ){ *piDataCur = iIdxCur; } if( aToOpen==0 || aToOpen[i+1] ){ sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "%s", pIdx->zName)); } } if( iBase>pParse->nTab ) pParse->nTab = iBase; return i; } #ifdef SQLITE_TEST |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
510 511 512 513 514 515 516 517 518 519 520 521 522 523 | } sqlite3GlobalConfig.mxMmap = mxMmap; if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; if( szMmap>mxMmap) szMmap = mxMmap; sqlite3GlobalConfig.szMmap = szMmap; break; } default: { rc = SQLITE_ERROR; break; } } va_end(ap); | > > > > > > > | 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 | } sqlite3GlobalConfig.mxMmap = mxMmap; if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; if( szMmap>mxMmap) szMmap = mxMmap; sqlite3GlobalConfig.szMmap = szMmap; break; } #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) case SQLITE_CONFIG_WIN32_HEAPSIZE: { sqlite3GlobalConfig.nHeap = va_arg(ap, int); break; } #endif default: { rc = SQLITE_ERROR; break; } } va_end(ap); |
︙ | ︙ |
Changes to src/mem5.c.
︙ | ︙ | |||
205 206 207 208 209 210 211 | int i = ((u8 *)p-mem5.zPool)/mem5.szAtom; assert( i>=0 && i<mem5.nBlock ); iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE)); } return iSize; } | < < < < < < < < < < < < < < < < < < < | 205 206 207 208 209 210 211 212 213 214 215 216 217 218 | int i = ((u8 *)p-mem5.zPool)/mem5.szAtom; assert( i>=0 && i<mem5.nBlock ); iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE)); } return iSize; } /* ** Return a block of memory of at least nBytes in size. ** Return NULL if unable. Return NULL if nBytes==0. ** ** The caller guarantees that nByte is positive. ** ** The caller has obtained a mutex prior to invoking this |
︙ | ︙ | |||
269 270 271 272 273 274 275 | */ for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){} if( iBin>LOGMAX ){ testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte); return 0; } | > | | 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | */ for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){} if( iBin>LOGMAX ){ testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte); return 0; } i = mem5.aiFreelist[iBin]; memsys5Unlink(i, iBin); while( iBin>iLogsize ){ int newSize; iBin--; newSize = 1 << iBin; mem5.aCtrl[i+newSize] = CTRL_FREE | iBin; memsys5Link(i+newSize, iBin); |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
1397 1398 1399 1400 1401 1402 1403 | if( !pWinMemData ) return SQLITE_ERROR; assert( pWinMemData->magic1==WINMEM_MAGIC1 ); assert( pWinMemData->magic2==WINMEM_MAGIC2 ); #if !SQLITE_OS_WINRT && SQLITE_WIN32_HEAP_CREATE if( !pWinMemData->hHeap ){ | < | > > | > > > > > | | < > | 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 | if( !pWinMemData ) return SQLITE_ERROR; assert( pWinMemData->magic1==WINMEM_MAGIC1 ); assert( pWinMemData->magic2==WINMEM_MAGIC2 ); #if !SQLITE_OS_WINRT && SQLITE_WIN32_HEAP_CREATE if( !pWinMemData->hHeap ){ DWORD dwInitialSize = SQLITE_WIN32_HEAP_INIT_SIZE; DWORD dwMaximumSize = (DWORD)sqlite3GlobalConfig.nHeap; if( dwMaximumSize==0 ){ dwMaximumSize = SQLITE_WIN32_HEAP_MAX_SIZE; }else if( dwInitialSize>dwMaximumSize ){ dwInitialSize = dwMaximumSize; } pWinMemData->hHeap = osHeapCreate(SQLITE_WIN32_HEAP_FLAGS, dwInitialSize, dwMaximumSize); if( !pWinMemData->hHeap ){ sqlite3_log(SQLITE_NOMEM, "failed to HeapCreate (%lu), flags=%u, initSize=%lu, maxSize=%lu", osGetLastError(), SQLITE_WIN32_HEAP_FLAGS, dwInitialSize, dwMaximumSize); return SQLITE_NOMEM; } pWinMemData->bOwned = TRUE; assert( pWinMemData->bOwned ); } #else pWinMemData->hHeap = osGetProcessHeap(); |
︙ | ︙ | |||
4064 4065 4066 4067 4068 4069 4070 | /**************************************************************************** **************************** sqlite3_vfs methods **************************** ** ** This division contains the implementation of methods on the ** sqlite3_vfs object. */ | | | 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 | /**************************************************************************** **************************** sqlite3_vfs methods **************************** ** ** This division contains the implementation of methods on the ** sqlite3_vfs object. */ #if defined(__CYGWIN__) /* ** Convert a filename from whatever the underlying operating system ** supports for filenames into UTF-8. Space to hold the result is ** obtained from malloc and must be freed by the calling function. */ static char *winConvertToUtf8Filename(const void *zFilename){ char *zConverted = 0; |
︙ | ︙ | |||
4240 4241 4242 4243 4244 4245 4246 | "winGetTempname2", zDir); } if( winIsDir(zConverted) ){ /* At this point, we know the candidate directory exists and should ** be used. However, we may need to convert the string containing ** its name into UTF-8 (i.e. if it is UTF-16 right now). */ | < | | | | | | | | | | | < < < < < | 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 | "winGetTempname2", zDir); } if( winIsDir(zConverted) ){ /* At this point, we know the candidate directory exists and should ** be used. However, we may need to convert the string containing ** its name into UTF-8 (i.e. if it is UTF-16 right now). */ char *zUtf8 = winConvertToUtf8Filename(zConverted); if( !zUtf8 ){ sqlite3_free(zConverted); sqlite3_free(zBuf); OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n")); return SQLITE_IOERR_NOMEM; } sqlite3_snprintf(nMax, zBuf, "%s", zUtf8); sqlite3_free(zUtf8); sqlite3_free(zConverted); break; } sqlite3_free(zConverted); } } } #elif !SQLITE_OS_WINRT && !defined(__CYGWIN__) else if( osIsNT() ){ |
︙ | ︙ | |||
4941 4942 4943 4944 4945 4946 4947 | ** for converting the relative path name to an absolute ** one by prepending the data directory and a slash. */ char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 ); if( !zOut ){ return SQLITE_IOERR_NOMEM; } | | > | > > > > > | | | > | > > > > > | > > > > > > > > > > > > | 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 | ** for converting the relative path name to an absolute ** one by prepending the data directory and a slash. */ char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 ); if( !zOut ){ return SQLITE_IOERR_NOMEM; } if( cygwin_conv_path( (osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A) | CCP_RELATIVE, zRelative, zOut, pVfs->mxPathname+1)<0 ){ sqlite3_free(zOut); return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno, "winFullPathname1", zRelative); }else{ char *zUtf8 = winConvertToUtf8Filename(zOut); if( !zUtf8 ){ sqlite3_free(zOut); return SQLITE_IOERR_NOMEM; } sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s", sqlite3_data_directory, winGetDirSep(), zUtf8); sqlite3_free(zUtf8); sqlite3_free(zOut); } }else{ char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 ); if( !zOut ){ return SQLITE_IOERR_NOMEM; } if( cygwin_conv_path( (osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A), zRelative, zOut, pVfs->mxPathname+1)<0 ){ sqlite3_free(zOut); return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno, "winFullPathname2", zRelative); }else{ char *zUtf8 = winConvertToUtf8Filename(zOut); if( !zUtf8 ){ sqlite3_free(zOut); return SQLITE_IOERR_NOMEM; } sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zUtf8); sqlite3_free(zUtf8); sqlite3_free(zOut); } } return SQLITE_OK; #endif #if (SQLITE_OS_WINCE || SQLITE_OS_WINRT) && !defined(__CYGWIN__) SimulateIOError( return SQLITE_ERROR ); |
︙ | ︙ |
Changes to src/parse.y.
︙ | ︙ | |||
850 851 852 853 854 855 856 | } } expr(A) ::= ID(X) LP STAR RP(E). { A.pExpr = sqlite3ExprFunction(pParse, 0, &X); spanSet(&A,&X,&E); } term(A) ::= CTIME_KW(OP). { | < < | < < < | 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 | } } expr(A) ::= ID(X) LP STAR RP(E). { A.pExpr = sqlite3ExprFunction(pParse, 0, &X); spanSet(&A,&X,&E); } term(A) ::= CTIME_KW(OP). { A.pExpr = sqlite3ExprFunction(pParse, 0, &OP); spanSet(&A, &OP, &OP); } %include { /* This routine constructs a binary expression node out of two ExprSpan ** objects and uses the result to populate a new ExprSpan object. */ |
︙ | ︙ |
Changes to src/pragma.c.
︙ | ︙ | |||
1887 1888 1889 1890 1891 1892 1893 | if( pTab->pIndex==0 ) continue; pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); sqlite3ExprCacheClear(pParse); sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, | | | 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 | if( pTab->pIndex==0 ) continue; pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); sqlite3ExprCacheClear(pParse); sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 1, 0, &iDataCur, &iIdxCur); sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ } pParse->nMem = MAX(pParse->nMem, 8+j); sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); |
︙ | ︙ |
Changes to src/prepare.c.
︙ | ︙ | |||
519 520 521 522 523 524 525 526 527 528 529 530 531 532 | break; } } assert( i>=0 && i<db->nDb ); } return i; } /* ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. */ static int sqlite3Prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ | > > > > > > > | 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 | break; } } assert( i>=0 && i<db->nDb ); } return i; } /* ** Free all memory allocations in the pParse object */ void sqlite3ParserReset(Parse *pParse){ if( pParse ) sqlite3ExprListDelete(pParse->db, pParse->pConstExpr); } /* ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. */ static int sqlite3Prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ |
︙ | ︙ | |||
677 678 679 680 681 682 683 684 685 686 687 688 689 690 | TriggerPrg *pT = pParse->pTriggerPrg; pParse->pTriggerPrg = pT->pNext; sqlite3DbFree(db, pT); } end_prepare: sqlite3StackFree(db, pParse); rc = sqlite3ApiExit(db, rc); assert( (rc&db->errMask)==rc ); return rc; } static int sqlite3LockAndPrepare( sqlite3 *db, /* Database handle. */ | > | 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 | TriggerPrg *pT = pParse->pTriggerPrg; pParse->pTriggerPrg = pT->pNext; sqlite3DbFree(db, pT); } end_prepare: sqlite3ParserReset(pParse); sqlite3StackFree(db, pParse); rc = sqlite3ApiExit(db, rc); assert( (rc&db->errMask)==rc ); return rc; } static int sqlite3LockAndPrepare( sqlite3 *db, /* Database handle. */ |
︙ | ︙ |
Changes to src/resolve.c.
︙ | ︙ | |||
104 105 106 107 108 109 110 | pDup = sqlite3ExprDup(db, pOrig, 0); if( pDup==0 ) return; if( pOrig->op!=TK_COLUMN && zType[0]!='G' ){ incrAggFunctionDepth(pDup, nSubquery); pDup = sqlite3PExpr(pParse, TK_AS, pDup, 0, 0); if( pDup==0 ) return; ExprSetProperty(pDup, EP_Skip); | | | | | 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | pDup = sqlite3ExprDup(db, pOrig, 0); if( pDup==0 ) return; if( pOrig->op!=TK_COLUMN && zType[0]!='G' ){ incrAggFunctionDepth(pDup, nSubquery); pDup = sqlite3PExpr(pParse, TK_AS, pDup, 0, 0); if( pDup==0 ) return; ExprSetProperty(pDup, EP_Skip); if( pEList->a[iCol].u.x.iAlias==0 ){ pEList->a[iCol].u.x.iAlias = (u16)(++pParse->nAlias); } pDup->iTable = pEList->a[iCol].u.x.iAlias; } if( pExpr->op==TK_COLLATE ){ pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken); } /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This ** prevents ExprDelete() from deleting the Expr structure itself, |
︙ | ︙ | |||
663 664 665 666 667 668 669 | zColumn = pRight->pRight->u.zToken; } return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr); } /* Resolve function names */ | < < | 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 | zColumn = pRight->pRight->u.zToken; } return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr); } /* Resolve function names */ case TK_FUNCTION: { ExprList *pList = pExpr->x.pList; /* The argument list */ int n = pList ? pList->nExpr : 0; /* Number of arguments */ int no_such_func = 0; /* True if no such function exists */ int wrong_num_args = 0; /* True if wrong number of arguments */ int is_agg = 0; /* True if is an aggregate function */ int auth; /* Authorization to use the function */ int nId; /* Number of characters in function name */ const char *zId; /* The function name. */ FuncDef *pDef; /* Information about the function */ u8 enc = ENC(pParse->db); /* The database encoding */ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); notValidPartIdxWhere(pParse, pNC, "functions"); zId = pExpr->u.zToken; nId = sqlite3Strlen30(zId); pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); if( pDef==0 ){ pDef = sqlite3FindFunction(pParse->db, zId, nId, -2, enc, 0); |
︙ | ︙ | |||
721 722 723 724 725 726 727 728 729 730 731 732 733 734 | sqlite3ErrorMsg(pParse, "not authorized to use function: %s", pDef->zName); pNC->nErr++; } pExpr->op = TK_NULL; return WRC_Prune; } } #endif if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){ sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); pNC->nErr++; is_agg = 0; }else if( no_such_func && pParse->db->init.busy==0 ){ | > | 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 | sqlite3ErrorMsg(pParse, "not authorized to use function: %s", pDef->zName); pNC->nErr++; } pExpr->op = TK_NULL; return WRC_Prune; } if( pDef->funcFlags & SQLITE_FUNC_CONSTANT ) ExprSetProperty(pExpr,EP_Constant); } #endif if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){ sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); pNC->nErr++; is_agg = 0; }else if( no_such_func && pParse->db->init.busy==0 ){ |
︙ | ︙ | |||
972 973 974 975 976 977 978 | pItem->pExpr = pNew; }else{ assert( pItem->pExpr->op==TK_COLLATE ); assert( pItem->pExpr->pLeft==pE ); pItem->pExpr->pLeft = pNew; } sqlite3ExprDelete(db, pE); | | | | | 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 | pItem->pExpr = pNew; }else{ assert( pItem->pExpr->op==TK_COLLATE ); assert( pItem->pExpr->pLeft==pE ); pItem->pExpr->pLeft = pNew; } sqlite3ExprDelete(db, pE); pItem->u.x.iOrderByCol = (u16)iCol; pItem->done = 1; }else{ moreToDo = 1; } } pSelect = pSelect->pNext; } for(i=0; i<pOrderBy->nExpr; i++){ if( pOrderBy->a[i].done==0 ){ sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any " "column in the result set", i+1); return 1; } } return 0; } /* ** Check every term in the ORDER BY or GROUP BY clause pOrderBy of ** the SELECT statement pSelect. If any term is reference to a ** result set expression (as determined by the ExprList.a.u.x.iOrderByCol ** field) then convert that term into a copy of the corresponding result set ** column. ** ** If any errors are detected, add an error message to pParse and ** return non-zero. Return zero if no errors are seen. */ int sqlite3ResolveOrderGroupBy( Parse *pParse, /* Parsing context. Leave error messages here */ |
︙ | ︙ | |||
1021 1022 1023 1024 1025 1026 1027 | sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); return 1; } #endif pEList = pSelect->pEList; assert( pEList!=0 ); /* sqlite3SelectNew() guarantees this */ for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ | | | | | 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 | sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); return 1; } #endif pEList = pSelect->pEList; assert( pEList!=0 ); /* sqlite3SelectNew() guarantees this */ for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ if( pItem->u.x.iOrderByCol ){ if( pItem->u.x.iOrderByCol>pEList->nExpr ){ resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr); return 1; } resolveAlias(pParse, pEList, pItem->u.x.iOrderByCol-1, pItem->pExpr, zType,0); } } return 0; } /* ** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect. |
︙ | ︙ | |||
1075 1076 1077 1078 1079 1080 1081 | if( zType[0]!='G' ){ iCol = resolveAsName(pParse, pSelect->pEList, pE2); if( iCol>0 ){ /* If an AS-name match is found, mark this ORDER BY column as being ** a copy of the iCol-th result-set column. The subsequent call to ** sqlite3ResolveOrderGroupBy() will convert the expression to a ** copy of the iCol-th result-set expression. */ | | | | | | 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 | if( zType[0]!='G' ){ iCol = resolveAsName(pParse, pSelect->pEList, pE2); if( iCol>0 ){ /* If an AS-name match is found, mark this ORDER BY column as being ** a copy of the iCol-th result-set column. The subsequent call to ** sqlite3ResolveOrderGroupBy() will convert the expression to a ** copy of the iCol-th result-set expression. */ pItem->u.x.iOrderByCol = (u16)iCol; continue; } } if( sqlite3ExprIsInteger(pE2, &iCol) ){ /* The ORDER BY term is an integer constant. Again, set the column ** number so that sqlite3ResolveOrderGroupBy() will convert the ** order-by term to a copy of the result-set expression */ if( iCol<1 || iCol>0xffff ){ resolveOutOfRangeError(pParse, zType, i+1, nResult); return 1; } pItem->u.x.iOrderByCol = (u16)iCol; continue; } /* Otherwise, treat the ORDER BY term as an ordinary expression */ pItem->u.x.iOrderByCol = 0; if( sqlite3ResolveExprNames(pNC, pE) ){ return 1; } for(j=0; j<pSelect->pEList->nExpr; j++){ if( sqlite3ExprCompare(pE, pSelect->pEList->a[j].pExpr, -1)==0 ){ pItem->u.x.iOrderByCol = j+1; } } } return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType); } /* |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
595 596 597 598 599 600 601 | sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); } }else if( eDest!=SRT_Exists ){ /* If the destination is an EXISTS(...) expression, the actual ** values returned by the SELECT are not required. */ sqlite3ExprCacheClear(pParse); | | > | 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 | sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); } }else if( eDest!=SRT_Exists ){ /* If the destination is an EXISTS(...) expression, the actual ** values returned by the SELECT are not required. */ sqlite3ExprCacheClear(pParse); sqlite3ExprCodeExprList(pParse, pEList, regResult, (eDest==SRT_Output)?SQLITE_ECEL_DUP:0); } nColumn = nResultCol; /* If the DISTINCT keyword was present on the SELECT statement ** and this row has been seen before, then do not make this row ** part of the result. */ |
︙ | ︙ | |||
2368 2369 2370 2371 2372 2373 2374 | ** the ORDER BY clause covers every term of the result set. Add ** terms to the ORDER BY clause as necessary. */ if( op!=TK_ALL ){ for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ struct ExprList_item *pItem; for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ | | | | > | | | 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 | ** the ORDER BY clause covers every term of the result set. Add ** terms to the ORDER BY clause as necessary. */ if( op!=TK_ALL ){ for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ struct ExprList_item *pItem; for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ assert( pItem->u.x.iOrderByCol>0 ); if( pItem->u.x.iOrderByCol==i ) break; } if( j==nOrderBy ){ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); if( pNew==0 ) return SQLITE_NOMEM; pNew->flags |= EP_IntValue; pNew->u.iValue = i; pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; } } } /* Compute the comparison permutation and keyinfo that is used with ** the permutation used to determine if the next ** row of results comes from selectA or selectB. Also add explicit ** collations to the ORDER BY clause terms so that when the subqueries ** to the right and the left are evaluated, they use the correct ** collation. */ aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); if( aPermute ){ struct ExprList_item *pItem; for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ assert( pItem->u.x.iOrderByCol>0 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); aPermute[i] = pItem->u.x.iOrderByCol - 1; } pKeyMerge = sqlite3KeyInfoAlloc(db, nOrderBy, 1); if( pKeyMerge ){ for(i=0; i<nOrderBy; i++){ CollSeq *pColl; Expr *pTerm = pOrderBy->a[i].pExpr; if( pTerm->flags & EP_Collate ){ |
︙ | ︙ | |||
2974 2975 2976 2977 2978 2979 2980 | testcase( pSub1->pSrc->nSrc>1 ); } /* Restriction 18. */ if( p->pOrderBy ){ int ii; for(ii=0; ii<p->pOrderBy->nExpr; ii++){ | | | 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 | testcase( pSub1->pSrc->nSrc>1 ); } /* Restriction 18. */ if( p->pOrderBy ){ int ii; for(ii=0; ii<p->pOrderBy->nExpr; ii++){ if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; } } } /***** If we reach this point, flattening is permitted. *****/ /* Authorize the subquery */ |
︙ | ︙ | |||
3880 3881 3882 3883 3884 3885 3886 | int addrNext = 0; int regAgg; ExprList *pList = pF->pExpr->x.pList; assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); if( pList ){ nArg = pList->nExpr; regAgg = sqlite3GetTempRange(pParse, nArg); | | | 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 | int addrNext = 0; int regAgg; ExprList *pList = pF->pExpr->x.pList; assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); if( pList ){ nArg = pList->nExpr; regAgg = sqlite3GetTempRange(pParse, nArg); sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); }else{ nArg = 0; regAgg = 0; } if( pF->iDistinct>=0 ){ addrNext = sqlite3VdbeMakeLabel(v); assert( nArg==1 ); |
︙ | ︙ | |||
4381 4382 4383 4384 4385 4386 4387 | ** GROUP BY clause. */ if( pGroupBy ){ int k; /* Loop counter */ struct ExprList_item *pItem; /* For looping over expression in a list */ for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ | | | | 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 | ** GROUP BY clause. */ if( pGroupBy ){ int k; /* Loop counter */ struct ExprList_item *pItem; /* For looping over expression in a list */ for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ pItem->u.x.iAlias = 0; } for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ pItem->u.x.iAlias = 0; } if( p->nSelectRow>100 ) p->nSelectRow = 100; }else{ p->nSelectRow = 1; } |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
462 463 464 465 466 467 468 469 470 471 472 473 474 475 | const char *zDbFilename; /* name of the database file */ char *zFreeOnClose; /* Filename to free when closing */ const char *zVfs; /* Name of VFS to use */ sqlite3_stmt *pStmt; /* Current statement if any. */ FILE *pLog; /* Write log output here */ int *aiIndent; /* Array of indents used in MODE_Explain */ int nIndent; /* Size of array aiIndent[] */ }; /* ** These are the allowed modes. */ #define MODE_Line 0 /* One column per line. Blank line between records */ #define MODE_Column 1 /* One record per line in neat columns */ | > | 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 | const char *zDbFilename; /* name of the database file */ char *zFreeOnClose; /* Filename to free when closing */ const char *zVfs; /* Name of VFS to use */ sqlite3_stmt *pStmt; /* Current statement if any. */ FILE *pLog; /* Write log output here */ int *aiIndent; /* Array of indents used in MODE_Explain */ int nIndent; /* Size of array aiIndent[] */ int iIndent; /* Index of current op in aiIndent[] */ }; /* ** These are the allowed modes. */ #define MODE_Line 0 /* One column per line. Blank line between records */ #define MODE_Column 1 /* One record per line in neat columns */ |
︙ | ︙ | |||
767 768 769 770 771 772 773 | }else{ w = 10; } if( p->mode==MODE_Explain && azArg[i] && strlen30(azArg[i])>w ){ w = strlen30(azArg[i]); } if( i==1 && p->aiIndent && p->pStmt ){ | < | | > | 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 | }else{ w = 10; } if( p->mode==MODE_Explain && azArg[i] && strlen30(azArg[i])>w ){ w = strlen30(azArg[i]); } if( i==1 && p->aiIndent && p->pStmt ){ if( p->iIndent<p->nIndent ){ fprintf(p->out, "%*.s", p->aiIndent[p->iIndent], ""); } p->iIndent++; } if( w<0 ){ fprintf(p->out,"%*.*s%s",-w,-w, azArg[i] ? azArg[i] : p->nullvalue, i==nArg-1 ? "\n": " "); }else{ fprintf(p->out,"%-*.*s%s",w,w, azArg[i] ? azArg[i] : p->nullvalue, i==nArg-1 ? "\n": " "); |
︙ | ︙ | |||
1169 1170 1171 1172 1173 1174 1175 | ** ** The indenting rules are: ** ** * For each "Next", "Prev", "VNext" or "VPrev" instruction, indent ** all opcodes that occur between the p2 jump destination and the opcode ** itself by 2 spaces. ** | | | > | | | | > > > > > > > > | | | > > | 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 | ** ** The indenting rules are: ** ** * For each "Next", "Prev", "VNext" or "VPrev" instruction, indent ** all opcodes that occur between the p2 jump destination and the opcode ** itself by 2 spaces. ** ** * For each "Goto", if the jump destination is earlier in the program ** and ends on one of: ** Yield SeekGt SeekLt RowSetRead ** then indent all opcodes between the earlier instruction ** and "Goto" by 2 spaces. */ static void explain_data_prepare(struct callback_data *p, sqlite3_stmt *pSql){ const char *zSql; /* The text of the SQL statement */ const char *z; /* Used to check if this is an EXPLAIN */ int *abYield = 0; /* True if op is an OP_Yield */ int nAlloc = 0; /* Allocated size of p->aiIndent[], abYield */ int iOp; /* Index of operation in p->aiIndent[] */ const char *azNext[] = { "Next", "Prev", "VPrev", "VNext", "SorterNext", 0 }; const char *azYield[] = { "Yield", "SeekLt", "SeekGt", "RowSetRead", 0 }; const char *azGoto[] = { "Goto", 0 }; /* Try to figure out if this is really an EXPLAIN statement. If this ** cannot be verified, return early. */ zSql = sqlite3_sql(pSql); if( zSql==0 ) return; for(z=zSql; *z==' ' || *z=='\t' || *z=='\n' || *z=='\f' || *z=='\r'; z++); if( sqlite3_strnicmp(z, "explain", 7) ) return; for(iOp=0; SQLITE_ROW==sqlite3_step(pSql); iOp++){ int i; int iAddr = sqlite3_column_int(pSql, 0); const char *zOp = (const char*)sqlite3_column_text(pSql, 1); /* Set p2 to the P2 field of the current opcode. Then, assuming that ** p2 is an instruction address, set variable p2op to the index of that ** instruction in the aiIndent[] array. p2 and p2op may be different if ** the current instruction is part of a sub-program generated by an ** SQL trigger or foreign key. */ int p2 = sqlite3_column_int(pSql, 3); int p2op = (p2 + (iOp-iAddr)); /* Grow the p->aiIndent array as required */ if( iOp>=nAlloc ){ nAlloc += 100; p->aiIndent = (int*)sqlite3_realloc(p->aiIndent, nAlloc*sizeof(int)); abYield = (int*)sqlite3_realloc(abYield, nAlloc*sizeof(int)); } abYield[iOp] = str_in_array(zOp, azYield); p->aiIndent[iOp] = 0; p->nIndent = iOp+1; if( str_in_array(zOp, azNext) ){ for(i=p2op; i<iOp; i++) p->aiIndent[i] += 2; } if( str_in_array(zOp, azGoto) && p2op<p->nIndent && abYield[p2op] ){ for(i=p2op; i<iOp; i++) p->aiIndent[i] += 2; } } p->iIndent = 0; sqlite3_free(abYield); sqlite3_reset(pSql); } /* ** Free the array allocated by explain_data_prepare(). */ static void explain_data_delete(struct callback_data *p){ sqlite3_free(p->aiIndent); p->aiIndent = 0; p->nIndent = 0; p->iIndent = 0; } /* ** Execute a statement or set of statements. Print ** any result rows/columns depending on the current mode ** set via the supplied callback. ** |
︙ | ︙ | |||
1291 1292 1293 1294 1295 1296 1297 | if( zExplain && zExplain[0] ){ fprintf(pArg->out, "%s", zExplain); } } /* If the shell is currently in ".explain" mode, gather the extra ** data required to add indents to the output.*/ | | | 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 | if( zExplain && zExplain[0] ){ fprintf(pArg->out, "%s", zExplain); } } /* If the shell is currently in ".explain" mode, gather the extra ** data required to add indents to the output.*/ if( pArg && pArg->mode==MODE_Explain ){ explain_data_prepare(pArg, pStmt); } /* perform the first step. this will tell us if we ** have a result set or not and how wide it is. */ rc = sqlite3_step(pStmt); |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
361 362 363 364 365 366 367 | ** is not changed. ** ** Restrictions: ** ** <ul> ** <li> The application must insure that the 1st parameter to sqlite3_exec() ** is a valid and open [database connection]. | | | 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | ** is not changed. ** ** Restrictions: ** ** <ul> ** <li> The application must insure that the 1st parameter to sqlite3_exec() ** is a valid and open [database connection]. ** <li> The application must not close the [database connection] specified by ** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running. ** <li> The application must not modify the SQL statement text passed into ** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running. ** </ul> */ int sqlite3_exec( sqlite3*, /* An open database */ |
︙ | ︙ | |||
438 439 440 441 442 443 444 | ** address this, newer versions of SQLite (version 3.3.8 and later) include ** support for additional result codes that provide more detailed information ** about errors. The extended result codes are enabled or disabled ** on a per database connection basis using the ** [sqlite3_extended_result_codes()] API. ** ** Some of the available extended result codes are listed here. | | | 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 | ** address this, newer versions of SQLite (version 3.3.8 and later) include ** support for additional result codes that provide more detailed information ** about errors. The extended result codes are enabled or disabled ** on a per database connection basis using the ** [sqlite3_extended_result_codes()] API. ** ** Some of the available extended result codes are listed here. ** One may expect the number of extended result codes will increase ** over time. Software that uses extended result codes should expect ** to see new result codes in future releases of SQLite. ** ** The SQLITE_OK result code will never be extended. It will always ** be exactly zero. */ #define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) |
︙ | ︙ | |||
1376 1377 1378 1379 1380 1381 1382 | ** a memory allocation given a particular requested size. Most memory ** allocators round up memory allocations at least to the next multiple ** of 8. Some allocators round up to a larger multiple or to a power of 2. ** Every memory allocation request coming in through [sqlite3_malloc()] ** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0, ** that causes the corresponding memory allocation to fail. ** | | | 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 | ** a memory allocation given a particular requested size. Most memory ** allocators round up memory allocations at least to the next multiple ** of 8. Some allocators round up to a larger multiple or to a power of 2. ** Every memory allocation request coming in through [sqlite3_malloc()] ** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0, ** that causes the corresponding memory allocation to fail. ** ** The xInit method initializes the memory allocator. For example, ** it might allocate any require mutexes or initialize internal data ** structures. The xShutdown method is invoked (indirectly) by ** [sqlite3_shutdown()] and should deallocate any resources acquired ** by xInit. The pAppData pointer is used as the only parameter to ** xInit and xShutdown. ** ** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes |
︙ | ︙ | |||
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 | ** either the [PRAGMA mmap_size] command, or by using the ** [SQLITE_FCNTL_MMAP_SIZE] file control. ^(The maximum allowed mmap size ** cannot be changed at run-time. Nor may the maximum allowed mmap size ** exceed the compile-time maximum mmap size set by the ** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^ ** ^If either argument to this option is negative, then that argument is ** changed to its compile-time default. ** </dl> */ #define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */ #define SQLITE_CONFIG_MULTITHREAD 2 /* nil */ #define SQLITE_CONFIG_SERIALIZED 3 /* nil */ #define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */ #define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */ | > > > > > > > | 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 | ** either the [PRAGMA mmap_size] command, or by using the ** [SQLITE_FCNTL_MMAP_SIZE] file control. ^(The maximum allowed mmap size ** cannot be changed at run-time. Nor may the maximum allowed mmap size ** exceed the compile-time maximum mmap size set by the ** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^ ** ^If either argument to this option is negative, then that argument is ** changed to its compile-time default. ** ** [[SQLITE_CONFIG_WIN32_HEAPSIZE]] ** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE ** <dd>^This option is only available if SQLite is compiled for Windows ** with the [SQLITE_WIN32_MALLOC] pre-processor macro defined. ** SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value ** that specifies the maximum size of the created heap. ** </dl> */ #define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */ #define SQLITE_CONFIG_MULTITHREAD 2 /* nil */ #define SQLITE_CONFIG_SERIALIZED 3 /* nil */ #define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */ #define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */ |
︙ | ︙ | |||
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 | #define SQLITE_CONFIG_LOG 16 /* xFunc, void* */ #define SQLITE_CONFIG_URI 17 /* int */ #define SQLITE_CONFIG_PCACHE2 18 /* sqlite3_pcache_methods2* */ #define SQLITE_CONFIG_GETPCACHE2 19 /* sqlite3_pcache_methods2* */ #define SQLITE_CONFIG_COVERING_INDEX_SCAN 20 /* int */ #define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */ #define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */ /* ** CAPI3REF: Database Connection Configuration Options ** ** These constants are the available integer configuration options that ** can be passed as the second argument to the [sqlite3_db_config()] interface. ** | > | 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 | #define SQLITE_CONFIG_LOG 16 /* xFunc, void* */ #define SQLITE_CONFIG_URI 17 /* int */ #define SQLITE_CONFIG_PCACHE2 18 /* sqlite3_pcache_methods2* */ #define SQLITE_CONFIG_GETPCACHE2 19 /* sqlite3_pcache_methods2* */ #define SQLITE_CONFIG_COVERING_INDEX_SCAN 20 /* int */ #define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */ #define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */ #define SQLITE_CONFIG_WIN32_HEAPSIZE 23 /* int nByte */ /* ** CAPI3REF: Database Connection Configuration Options ** ** These constants are the available integer configuration options that ** can be passed as the second argument to the [sqlite3_db_config()] interface. ** |
︙ | ︙ | |||
3102 3103 3104 3105 3106 3107 3108 | ** then the statement will be automatically recompiled, as if there had been ** a schema change, on the first [sqlite3_step()] call following any change ** to the [sqlite3_bind_text | bindings] of that [parameter]. ** ^The specific value of WHERE-clause [parameter] might influence the ** choice of query plan if the parameter is the left-hand side of a [LIKE] ** or [GLOB] operator or if the parameter is compared to an indexed column ** and the [SQLITE_ENABLE_STAT3] compile-time option is enabled. | < | 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 | ** then the statement will be automatically recompiled, as if there had been ** a schema change, on the first [sqlite3_step()] call following any change ** to the [sqlite3_bind_text | bindings] of that [parameter]. ** ^The specific value of WHERE-clause [parameter] might influence the ** choice of query plan if the parameter is the left-hand side of a [LIKE] ** or [GLOB] operator or if the parameter is compared to an indexed column ** and the [SQLITE_ENABLE_STAT3] compile-time option is enabled. ** </li> ** </ol> */ int sqlite3_prepare( sqlite3 *db, /* Database handle */ const char *zSql, /* SQL statement, UTF-8 encoded */ int nByte, /* Maximum length of zSql in bytes. */ |
︙ | ︙ | |||
3832 3833 3834 3835 3836 3837 3838 | ** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16() ** with calls to sqlite3_column_bytes(). ** ** ^The pointers returned are valid until a type conversion occurs as ** described above, or until [sqlite3_step()] or [sqlite3_reset()] or ** [sqlite3_finalize()] is called. ^The memory space used to hold strings ** and BLOBs is freed automatically. Do <b>not</b> pass the pointers returned | | | 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 | ** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16() ** with calls to sqlite3_column_bytes(). ** ** ^The pointers returned are valid until a type conversion occurs as ** described above, or until [sqlite3_step()] or [sqlite3_reset()] or ** [sqlite3_finalize()] is called. ^The memory space used to hold strings ** and BLOBs is freed automatically. Do <b>not</b> pass the pointers returned ** from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into ** [sqlite3_free()]. ** ** ^(If a memory allocation error occurs during the evaluation of any ** of these routines, a default value is returned. The default value ** is either the integer 0, the floating point number 0.0, or a NULL ** pointer. Subsequent calls to [sqlite3_errcode()] will return ** [SQLITE_NOMEM].)^ |
︙ | ︙ | |||
4910 4911 4912 4913 4914 4915 4916 | int sqlite3_release_memory(int); /* ** CAPI3REF: Free Memory Used By A Database Connection ** ** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap ** memory as possible from database connection D. Unlike the | | | | 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 | int sqlite3_release_memory(int); /* ** CAPI3REF: Free Memory Used By A Database Connection ** ** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap ** memory as possible from database connection D. Unlike the ** [sqlite3_release_memory()] interface, this interface is in effect even ** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is ** omitted. ** ** See also: [sqlite3_release_memory()] */ int sqlite3_db_release_memory(sqlite3*); /* |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 | #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) #else #define OptimizationDisabled(db, mask) 0 #define OptimizationEnabled(db, mask) 1 #endif /* ** Possible values for the sqlite.magic field. ** The numbers are obtained at random and have no special meaning, other ** than being distinct from one another. */ #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ | > > > > > > > | 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 | #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) #else #define OptimizationDisabled(db, mask) 0 #define OptimizationEnabled(db, mask) 1 #endif /* ** Return true if it OK to factor constant expressions into the initialization ** code. The argument is a Parse object for the code generator. */ #define ConstFactorOk(P) \ ((P)->cookieGoto>0 && OptimizationEnabled((P)->db,SQLITE_FactorOutConst)) /* ** Possible values for the sqlite.magic field. ** The numbers are obtained at random and have no special meaning, other ** than being distinct from one another. */ #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ |
︙ | ︙ | |||
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 | #define SQLITE_FUNC_EPHEM 0x010 /* Ephemeral. Delete with VDBE */ #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ /* ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are ** used to create the initializers for the FuncDef structures. ** ** FUNCTION(zName, nArg, iArg, bNC, xFunc) ** Used to create a scalar function definition of a function zName ** implemented by C function xFunc that accepts nArg arguments. The ** value passed as iArg is cast to a (void*) and made available ** as the user-data (sqlite3_user_data()) for the function. If ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. ** ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) ** Used to create an aggregate function definition implemented by ** the C functions xStep and xFinal. The first four parameters ** are interpreted in the same way as the first 4 parameters to ** FUNCTION(). ** ** LIKEFUNC(zName, nArg, pArg, flags) ** Used to create a scalar function definition of a function zName ** that accepts nArg arguments and is implemented by a call to C ** function likeFunc. Argument pArg is cast to a (void *) and made ** available as the function user-data (sqlite3_user_data()). The ** FuncDef.flags variable is set to the value passed as the flags ** parameter. */ #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ | > > > > > > > | | > | | 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 | #define SQLITE_FUNC_EPHEM 0x010 /* Ephemeral. Delete with VDBE */ #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */ /* ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are ** used to create the initializers for the FuncDef structures. ** ** FUNCTION(zName, nArg, iArg, bNC, xFunc) ** Used to create a scalar function definition of a function zName ** implemented by C function xFunc that accepts nArg arguments. The ** value passed as iArg is cast to a (void*) and made available ** as the user-data (sqlite3_user_data()) for the function. If ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. ** ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. ** ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) ** Used to create an aggregate function definition implemented by ** the C functions xStep and xFinal. The first four parameters ** are interpreted in the same way as the first 4 parameters to ** FUNCTION(). ** ** LIKEFUNC(zName, nArg, pArg, flags) ** Used to create a scalar function definition of a function zName ** that accepts nArg arguments and is implemented by a call to C ** function likeFunc. Argument pArg is cast to a (void *) and made ** available as the function user-data (sqlite3_user_data()). The ** FuncDef.flags variable is set to the value passed as the flags ** parameter. */ #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ pArg, 0, xFunc, 0, 0, #zName, 0, 0} #define LIKEFUNC(zName, nArg, arg, flags) \ {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} /* ** All current savepoints are stored in a linked list starting at ** sqlite3.pSavepoint. The first element in the list is the most recently |
︙ | ︙ | |||
1833 1834 1835 1836 1837 1838 1839 | #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ #define EP_Error 0x000008 /* Expression contains one or more errors */ #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE opeartor */ | | > | 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 | #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ #define EP_Error 0x000008 /* Expression contains one or more errors */ #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE opeartor */ /* unused 0x000200 */ #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ #define EP_Constant 0x080000 /* Node is a constant */ /* ** These macros can be used to test, set, or clear bits in the ** Expr.flags field. */ #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) |
︙ | ︙ | |||
1904 1905 1906 1907 1908 1909 1910 | struct ExprList_item { /* For each expression in the list */ Expr *pExpr; /* The list of expressions */ char *zName; /* Token associated with this expression */ char *zSpan; /* Original text of the expression */ u8 sortOrder; /* 1 for DESC or 0 for ASC */ unsigned done :1; /* A flag to indicate when processing is finished */ unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ | > > > | | > > > | 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 | struct ExprList_item { /* For each expression in the list */ Expr *pExpr; /* The list of expressions */ char *zName; /* Token associated with this expression */ char *zSpan; /* Original text of the expression */ u8 sortOrder; /* 1 for DESC or 0 for ASC */ unsigned done :1; /* A flag to indicate when processing is finished */ unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ unsigned reusable :1; /* Constant expression is reusable */ union { struct { u16 iOrderByCol; /* For ORDER BY, column number in result set */ u16 iAlias; /* Index into Parse.aAlias[] for zName */ } x; int iConstExprReg; /* Register in which Expr value is cached */ } u; } *a; /* Alloc a power of two greater or equal to nExpr */ }; /* ** An instance of this structure is used by the parser to record both ** the parse tree for an expression and the span of input text for an ** expression. |
︙ | ︙ | |||
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 | int iTable; /* Table cursor number */ int iColumn; /* Table column number */ u8 tempReg; /* iReg is a temp register that needs to be freed */ int iLevel; /* Nesting level */ int iReg; /* Reg with value of this column. 0 means none. */ int lru; /* Least recently used entry has the smallest value */ } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ yDbMask writeMask; /* Start a write transaction on these databases */ yDbMask cookieMask; /* Bitmask of schema verified databases */ int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ int regRowid; /* Register holding rowid of CREATE TABLE entry */ int regRoot; /* Register holding root page number for new objects */ int nMaxArg; /* Max args passed to user function by sub-program */ | > | 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 | int iTable; /* Table cursor number */ int iColumn; /* Table column number */ u8 tempReg; /* iReg is a temp register that needs to be freed */ int iLevel; /* Nesting level */ int iReg; /* Reg with value of this column. 0 means none. */ int lru; /* Least recently used entry has the smallest value */ } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ ExprList *pConstExpr;/* Constant expressions */ yDbMask writeMask; /* Start a write transaction on these databases */ yDbMask cookieMask; /* Bitmask of schema verified databases */ int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ int regRowid; /* Register holding rowid of CREATE TABLE entry */ int regRoot; /* Register holding root page number for new objects */ int nMaxArg; /* Max args passed to user function by sub-program */ |
︙ | ︙ | |||
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 | void sqlite3ExprCacheStore(Parse*, int, int, int); void sqlite3ExprCachePush(Parse*); void sqlite3ExprCachePop(Parse*, int); void sqlite3ExprCacheRemove(Parse*, int, int); void sqlite3ExprCacheClear(Parse*); void sqlite3ExprCacheAffinityChange(Parse*, int, int); int sqlite3ExprCode(Parse*, Expr*, int); int sqlite3ExprCodeTemp(Parse*, Expr*, int*); int sqlite3ExprCodeTarget(Parse*, Expr*, int); int sqlite3ExprCodeAndCache(Parse*, Expr*, int); | > < | > > | 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 | void sqlite3ExprCacheStore(Parse*, int, int, int); void sqlite3ExprCachePush(Parse*); void sqlite3ExprCachePop(Parse*, int); void sqlite3ExprCacheRemove(Parse*, int, int); void sqlite3ExprCacheClear(Parse*); void sqlite3ExprCacheAffinityChange(Parse*, int, int); int sqlite3ExprCode(Parse*, Expr*, int); void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); int sqlite3ExprCodeTemp(Parse*, Expr*, int*); int sqlite3ExprCodeTarget(Parse*, Expr*, int); int sqlite3ExprCodeAndCache(Parse*, Expr*, int); int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ void sqlite3ExprIfTrue(Parse*, Expr*, int, int); void sqlite3ExprIfFalse(Parse*, Expr*, int, int); Table *sqlite3FindTable(sqlite3*,const char*, const char*); Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); Index *sqlite3FindIndex(sqlite3*,const char*, const char*); void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); |
︙ | ︙ | |||
2945 2946 2947 2948 2949 2950 2951 | int sqlite3IsRowid(const char*); void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*); void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, u8,u8,int,int*); void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); | | | 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 | int sqlite3IsRowid(const char*); void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*); void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, u8,u8,int,int*); void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); void sqlite3BeginWriteOperation(Parse*, int, int); void sqlite3MultiWrite(Parse*); void sqlite3MayAbort(Parse*); void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); void sqlite3UniqueConstraint(Parse*, int, Index*); void sqlite3RowidConstraint(Parse*, int, Table*); Expr *sqlite3ExprDup(sqlite3*,Expr*,int); |
︙ | ︙ | |||
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 | int sqlite3VtabCallDestroy(sqlite3*, int, const char *); int sqlite3VtabBegin(sqlite3 *, VTable *); FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); int sqlite3Reprepare(Vdbe*); void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); int sqlite3TempInMemory(const sqlite3*); const char *sqlite3JournalModename(int); #ifndef SQLITE_OMIT_WAL int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); | > | 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 | int sqlite3VtabCallDestroy(sqlite3*, int, const char *); int sqlite3VtabBegin(sqlite3 *, VTable *); FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); void sqlite3ParserReset(Parse*); int sqlite3Reprepare(Vdbe*); void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); int sqlite3TempInMemory(const sqlite3*); const char *sqlite3JournalModename(int); #ifndef SQLITE_OMIT_WAL int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); |
︙ | ︙ |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
421 422 423 424 425 426 427 | /* ** Find an SqlFunc structure with the given name. Or create a new ** one if an existing one cannot be found. Return a pointer to the ** structure. */ static SqlFunc *findSqlFunc(SqliteDb *pDb, const char *zName){ SqlFunc *p, *pNew; | | | < | | | 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 | /* ** Find an SqlFunc structure with the given name. Or create a new ** one if an existing one cannot be found. Return a pointer to the ** structure. */ static SqlFunc *findSqlFunc(SqliteDb *pDb, const char *zName){ SqlFunc *p, *pNew; int nName = strlen30(zName); pNew = (SqlFunc*)Tcl_Alloc( sizeof(*pNew) + nName + 1 ); pNew->zName = (char*)&pNew[1]; memcpy(pNew->zName, zName, nName+1); for(p=pDb->pFunc; p; p=p->pNext){ if( sqlite3_stricmp(p->zName, pNew->zName)==0 ){ Tcl_Free((char*)pNew); return p; } } pNew->interp = pDb->interp; pNew->pDb = pDb; pNew->pScript = 0; |
︙ | ︙ | |||
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 | ){ const char *zSql = zIn; /* Pointer to first SQL statement in zIn */ sqlite3_stmt *pStmt; /* Prepared statement object */ SqlPreparedStmt *pPreStmt; /* Pointer to cached statement */ int nSql; /* Length of zSql in bytes */ int nVar; /* Number of variables in statement */ int iParm = 0; /* Next free entry in apParm */ int i; Tcl_Interp *interp = pDb->interp; *ppPreStmt = 0; /* Trim spaces from the start of zSql and calculate the remaining length. */ | > | | 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 | ){ const char *zSql = zIn; /* Pointer to first SQL statement in zIn */ sqlite3_stmt *pStmt; /* Prepared statement object */ SqlPreparedStmt *pPreStmt; /* Pointer to cached statement */ int nSql; /* Length of zSql in bytes */ int nVar; /* Number of variables in statement */ int iParm = 0; /* Next free entry in apParm */ char c; int i; Tcl_Interp *interp = pDb->interp; *ppPreStmt = 0; /* Trim spaces from the start of zSql and calculate the remaining length. */ while( (c = zSql[0])==' ' || c=='\t' || c=='\r' || c=='\n' ){ zSql++; } nSql = strlen30(zSql); for(pPreStmt = pDb->stmtList; pPreStmt; pPreStmt=pPreStmt->pNext){ int n = pPreStmt->nSql; if( nSql>=n && memcmp(pPreStmt->zSql, zSql, n)==0 && (zSql[n]==0 || zSql[n-1]==';') |
︙ | ︙ |
Changes to src/test_config.c.
︙ | ︙ | |||
58 59 60 61 62 63 64 65 66 67 68 69 70 71 | #endif #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT Tcl_SetVar2(interp, "sqlite_options", "curdir", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "curdir", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_DEBUG Tcl_SetVar2(interp, "sqlite_options", "debug", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "debug", "0", TCL_GLOBAL_ONLY); #endif | > > > > > > | 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | #endif #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT Tcl_SetVar2(interp, "sqlite_options", "curdir", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "curdir", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_WIN32_MALLOC Tcl_SetVar2(interp, "sqlite_options", "win32malloc", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "win32malloc", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_DEBUG Tcl_SetVar2(interp, "sqlite_options", "debug", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "debug", "0", TCL_GLOBAL_ONLY); #endif |
︙ | ︙ |
Changes to src/test_malloc.c.
︙ | ︙ | |||
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 | zBuf = realloc(zBuf, nByte); rc = sqlite3_config(SQLITE_CONFIG_HEAP, zBuf, nByte, nMinAlloc); } Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_VOLATILE); return TCL_OK; } /* ** Usage: sqlite3_config_error [DB] ** ** Invoke sqlite3_config() or sqlite3_db_config() with invalid ** opcodes and verify that they return errors. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 | zBuf = realloc(zBuf, nByte); rc = sqlite3_config(SQLITE_CONFIG_HEAP, zBuf, nByte, nMinAlloc); } Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_VOLATILE); return TCL_OK; } /* ** Usage: sqlite3_config_heap_size NBYTE */ static int test_config_heap_size( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ int nByte; /* Size to pass to sqlite3_config() */ int rc; /* Return code of sqlite3_config() */ Tcl_Obj * CONST *aArg = &objv[1]; int nArg = objc-1; if( nArg!=1 ){ Tcl_WrongNumArgs(interp, 1, objv, "NBYTE"); return TCL_ERROR; } if( Tcl_GetIntFromObj(interp, aArg[0], &nByte) ) return TCL_ERROR; rc = sqlite3_config(SQLITE_CONFIG_WIN32_HEAPSIZE, nByte); Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_VOLATILE); return TCL_OK; } /* ** Usage: sqlite3_config_error [DB] ** ** Invoke sqlite3_config() or sqlite3_db_config() with invalid ** opcodes and verify that they return errors. */ |
︙ | ︙ | |||
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 | { "sqlite3_config_scratch", test_config_scratch ,0 }, { "sqlite3_config_pagecache", test_config_pagecache ,0 }, { "sqlite3_config_alt_pcache", test_alt_pcache ,0 }, { "sqlite3_status", test_status ,0 }, { "sqlite3_db_status", test_db_status ,0 }, { "install_malloc_faultsim", test_install_malloc_faultsim ,0 }, { "sqlite3_config_heap", test_config_heap ,0 }, { "sqlite3_config_memstatus", test_config_memstatus ,0 }, { "sqlite3_config_lookaside", test_config_lookaside ,0 }, { "sqlite3_config_error", test_config_error ,0 }, { "sqlite3_config_uri", test_config_uri ,0 }, { "sqlite3_config_cis", test_config_cis ,0 }, { "sqlite3_db_config_lookaside",test_db_config_lookaside ,0 }, { "sqlite3_dump_memsys3", test_dump_memsys3 ,3 }, | > | 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 | { "sqlite3_config_scratch", test_config_scratch ,0 }, { "sqlite3_config_pagecache", test_config_pagecache ,0 }, { "sqlite3_config_alt_pcache", test_alt_pcache ,0 }, { "sqlite3_status", test_status ,0 }, { "sqlite3_db_status", test_db_status ,0 }, { "install_malloc_faultsim", test_install_malloc_faultsim ,0 }, { "sqlite3_config_heap", test_config_heap ,0 }, { "sqlite3_config_heap_size", test_config_heap_size ,0 }, { "sqlite3_config_memstatus", test_config_memstatus ,0 }, { "sqlite3_config_lookaside", test_config_lookaside ,0 }, { "sqlite3_config_error", test_config_error ,0 }, { "sqlite3_config_uri", test_config_uri ,0 }, { "sqlite3_config_cis", test_config_cis ,0 }, { "sqlite3_db_config_lookaside",test_db_config_lookaside ,0 }, { "sqlite3_dump_memsys3", test_dump_memsys3 ,3 }, |
︙ | ︙ |
Changes to src/trigger.c.
︙ | ︙ | |||
920 921 922 923 924 925 926 927 928 929 930 931 932 933 | pPrg->aColmask[0] = pSubParse->oldmask; pPrg->aColmask[1] = pSubParse->newmask; sqlite3VdbeDelete(v); } assert( !pSubParse->pAinc && !pSubParse->pZombieTab ); assert( !pSubParse->pTriggerPrg && !pSubParse->nMaxArg ); sqlite3StackFree(db, pSubParse); return pPrg; } /* ** Return a pointer to a TriggerPrg object containing the sub-program for | > | 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 | pPrg->aColmask[0] = pSubParse->oldmask; pPrg->aColmask[1] = pSubParse->newmask; sqlite3VdbeDelete(v); } assert( !pSubParse->pAinc && !pSubParse->pZombieTab ); assert( !pSubParse->pTriggerPrg && !pSubParse->nMaxArg ); sqlite3ParserReset(pSubParse); sqlite3StackFree(db, pSubParse); return pPrg; } /* ** Return a pointer to a TriggerPrg object containing the sub-program for |
︙ | ︙ |
Changes to src/update.c.
︙ | ︙ | |||
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | Table *pTab; /* The table to be updated */ int addrTop = 0; /* VDBE instruction address of the start of the loop */ WhereInfo *pWInfo; /* Information about the WHERE clause */ Vdbe *v; /* The virtual database engine */ Index *pIdx; /* For looping over indices */ Index *pPk; /* The PRIMARY KEY index for WITHOUT ROWID tables */ int nIdx; /* Number of indices that need updating */ int iDataCur; /* Cursor for the canonical data btree */ int iIdxCur; /* Cursor for the first index */ sqlite3 *db; /* The database structure */ int *aRegIdx = 0; /* One register assigned to each index to be updated */ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the ** an expression for the i-th column of the table. ** aXRef[i]==-1 if the i-th column is not changed. */ u8 chngPk; /* PRIMARY KEY changed in a WITHOUT ROWID table */ u8 chngRowid; /* Rowid changed in a normal table */ u8 chngKey; /* Either chngPk or chngRowid */ Expr *pRowidExpr = 0; /* Expression defining the new record number */ | > > < | 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | Table *pTab; /* The table to be updated */ int addrTop = 0; /* VDBE instruction address of the start of the loop */ WhereInfo *pWInfo; /* Information about the WHERE clause */ Vdbe *v; /* The virtual database engine */ Index *pIdx; /* For looping over indices */ Index *pPk; /* The PRIMARY KEY index for WITHOUT ROWID tables */ int nIdx; /* Number of indices that need updating */ int iBaseCur; /* Base cursor number */ int iDataCur; /* Cursor for the canonical data btree */ int iIdxCur; /* Cursor for the first index */ sqlite3 *db; /* The database structure */ int *aRegIdx = 0; /* One register assigned to each index to be updated */ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the ** an expression for the i-th column of the table. ** aXRef[i]==-1 if the i-th column is not changed. */ u8 *aToOpen; /* 1 for tables and indices to be opened */ u8 chngPk; /* PRIMARY KEY changed in a WITHOUT ROWID table */ u8 chngRowid; /* Rowid changed in a normal table */ u8 chngKey; /* Either chngPk or chngRowid */ Expr *pRowidExpr = 0; /* Expression defining the new record number */ AuthContext sContext; /* The authorization context */ NameContext sNC; /* The name-context to resolve expressions in */ int iDb; /* Database containing the table being updated */ int okOnePass; /* True for one-pass algorithm without the FIFO */ int hasFK; /* True if foreign key processing is required */ int labelBreak; /* Jump here to break out of UPDATE loop */ int labelContinue; /* Jump here to continue next step of UPDATE loop */ |
︙ | ︙ | |||
172 173 174 175 176 177 178 | if( sqlite3ViewGetColumnNames(pParse, pTab) ){ goto update_cleanup; } if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ goto update_cleanup; } | < < < | > > > > > > > > > > > | 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | if( sqlite3ViewGetColumnNames(pParse, pTab) ){ goto update_cleanup; } if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ goto update_cleanup; } /* Allocate a cursors for the main database table and for all indices. ** The index cursors might not be used, but if they are used they ** need to occur right after the database cursor. So go ahead and ** allocate enough space, just in case. */ pTabList->a[0].iCursor = iBaseCur = iDataCur = pParse->nTab++; iIdxCur = iDataCur+1; pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ if( pIdx->autoIndex==2 && pPk!=0 ){ iDataCur = pParse->nTab; pTabList->a[0].iCursor = iDataCur; } pParse->nTab++; } /* Allocate space for aXRef[], aRegIdx[], and aToOpen[]. ** Initialize aXRef[] and aToOpen[] to their default values. */ aXRef = sqlite3DbMallocRaw(db, sizeof(int) * (pTab->nCol+nIdx) + nIdx+2 ); if( aXRef==0 ) goto update_cleanup; aRegIdx = aXRef+pTab->nCol; aToOpen = (u8*)(aRegIdx+nIdx); memset(aToOpen, 1, nIdx+1); aToOpen[nIdx+1] = 0; for(i=0; i<pTab->nCol; i++) aXRef[i] = -1; /* Initialize the name-context */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; /* Resolve the column names in all the expressions of the |
︙ | ︙ | |||
249 250 251 252 253 254 255 256 257 258 | } #endif } assert( (chngRowid & chngPk)==0 ); assert( chngRowid==0 || chngRowid==1 ); assert( chngPk==0 || chngPk==1 ); chngKey = chngRowid + chngPk; hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngKey); | > > > > > | | | < < < < < > | 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | } #endif } assert( (chngRowid & chngPk)==0 ); assert( chngRowid==0 || chngRowid==1 ); assert( chngPk==0 || chngPk==1 ); chngKey = chngRowid + chngPk; /* The SET expressions are not actually used inside the WHERE loop. ** So reset the colUsed mask */ pTabList->a[0].colUsed = 0; hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngKey); /* There is one entry in the aRegIdx[] array for each index on the table ** being updated. Fill in aRegIdx[] with a register number that will hold ** the key for accessing each index. */ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int reg; if( chngKey || hasFK || pIdx->pPartIdxWhere || pIdx==pPk ){ reg = ++pParse->nMem; }else{ reg = 0; for(i=0; i<pIdx->nKeyCol; i++){ if( aXRef[pIdx->aiColumn[i]]>=0 ){ reg = ++pParse->nMem; break; } } } if( reg==0 ) aToOpen[j+1] = 0; aRegIdx[j] = reg; } /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto update_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); |
︙ | ︙ | |||
397 398 399 400 401 402 403 | if( !isView ){ /* ** Open every index that needs updating. Note that if any ** index could potentially invoke a REPLACE conflict resolution ** action, then we need to open all indices because we might need ** to be deleting some records. */ | < < < < | < | < < < < | < | < < < < | < < | < < > > > > > > | 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 | if( !isView ){ /* ** Open every index that needs updating. Note that if any ** index could potentially invoke a REPLACE conflict resolution ** action, then we need to open all indices because we might need ** to be deleting some records. */ if( onError==OE_Replace ){ memset(aToOpen, 1, nIdx+1); }else{ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->onError==OE_Replace ){ memset(aToOpen, 1, nIdx+1); break; } } } if( okOnePass ){ if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0; if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0; } sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, iBaseCur, aToOpen, 0, 0); } /* Top of the update loop */ if( okOnePass ){ if( aToOpen[iDataCur-iBaseCur] ){ assert( pPk!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey); } labelContinue = labelBreak; sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak); }else if( pPk ){ labelContinue = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); addrTop = sqlite3VdbeAddOp2(v, OP_RowKey, iEph, regKey); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey, 0); |
︙ | ︙ | |||
638 639 640 641 642 643 644 | sqlite3VdbeAddOp2(v, OP_Goto, 0, labelContinue); } sqlite3VdbeResolveLabel(v, labelBreak); /* Close all tables */ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ assert( aRegIdx ); | | | 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 | sqlite3VdbeAddOp2(v, OP_Goto, 0, labelContinue); } sqlite3VdbeResolveLabel(v, labelBreak); /* Close all tables */ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ assert( aRegIdx ); if( aToOpen[i+1] ){ sqlite3VdbeAddOp2(v, OP_Close, iIdxCur+i, 0); } } if( iDataCur<iIdxCur ) sqlite3VdbeAddOp2(v, OP_Close, iDataCur, 0); /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into |
︙ | ︙ | |||
665 666 667 668 669 670 671 | sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC); } update_cleanup: sqlite3AuthContextPop(&sContext); | < | | 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 | sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC); } update_cleanup: sqlite3AuthContextPop(&sContext); sqlite3DbFree(db, aXRef); /* Also frees aRegIdx[] and aToOpen[] */ sqlite3SrcListDelete(db, pTabList); sqlite3ExprListDelete(db, pChanges); sqlite3ExprDelete(db, pWhere); return; } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** thely may interfere with compilation of other functions in this file |
︙ | ︙ |
Changes to src/util.c.
︙ | ︙ | |||
508 509 510 511 512 513 514 | } zStart = zNum; while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ u = u*10 + c - '0'; } if( u>LARGEST_INT64 ){ | | | 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 | } zStart = zNum; while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ u = u*10 + c - '0'; } if( u>LARGEST_INT64 ){ *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; }else if( neg ){ *pNum = -(i64)u; }else{ *pNum = (i64)u; } testcase( i==18 ); testcase( i==19 ); |
︙ | ︙ | |||
539 540 541 542 543 544 545 | }else if( c>0 ){ /* zNum is greater than 9223372036854775808 so it overflows */ return 1; }else{ /* zNum is exactly 9223372036854775808. Fits if negative. The ** special case 2 overflow if positive */ assert( u-1==LARGEST_INT64 ); | < | 539 540 541 542 543 544 545 546 547 548 549 550 551 552 | }else if( c>0 ){ /* zNum is greater than 9223372036854775808 so it overflows */ return 1; }else{ /* zNum is exactly 9223372036854775808. Fits if negative. The ** special case 2 overflow if positive */ assert( u-1==LARGEST_INT64 ); return neg ? 0 : 2; } } } /* ** If zNum represents an integer that will fit in 32-bits, then set |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
218 219 220 221 222 223 224 | ** cursor 1 is managed by memory cell (p->nMem-1), etc. */ Mem *pMem = &p->aMem[p->nMem-iCur]; int nByte; VdbeCursor *pCx = 0; nByte = | | | < < < < | | 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | ** cursor 1 is managed by memory cell (p->nMem-1), etc. */ Mem *pMem = &p->aMem[p->nMem-iCur]; int nByte; VdbeCursor *pCx = 0; nByte = ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + (isBtreeCursor?sqlite3BtreeCursorSize():0); assert( iCur<p->nCursor ); if( p->apCsr[iCur] ){ sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); p->apCsr[iCur] = 0; } if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){ p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; memset(pCx, 0, sizeof(VdbeCursor)); pCx->iDb = iDb; pCx->nField = nField; if( isBtreeCursor ){ pCx->pCursor = (BtCursor*) &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; sqlite3BtreeCursorZero(pCx->pCursor); } } return pCx; } /* |
︙ | ︙ | |||
1091 1092 1093 1094 1095 1096 1097 | */ case OP_Move: { char *zMalloc; /* Holding variable for allocated memory */ int n; /* Number of registers left to copy */ int p1; /* Register to copy from */ int p2; /* Register to copy to */ | | | < > | | 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 | */ case OP_Move: { char *zMalloc; /* Holding variable for allocated memory */ int n; /* Number of registers left to copy */ int p1; /* Register to copy from */ int p2; /* Register to copy to */ n = pOp->p3; p1 = pOp->p1; p2 = pOp->p2; assert( n>=0 && p1>0 && p2>0 ); assert( p1+n<=p2 || p2+n<=p1 ); pIn1 = &aMem[p1]; pOut = &aMem[p2]; do{ assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); assert( memIsValid(pIn1) ); memAboutToChange(p, pOut); zMalloc = pOut->zMalloc; pOut->zMalloc = 0; sqlite3VdbeMemMove(pOut, pIn1); #ifdef SQLITE_DEBUG if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){ pOut->pScopyFrom += p1 - pOp->p2; } #endif pIn1->zMalloc = zMalloc; REGISTER_TRACE(p2++, pOut); pIn1++; pOut++; }while( n-- ); break; } /* Opcode: Copy P1 P2 P3 * * ** Synopsis: r[P2@P3]=r[P1@P3] ** ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. |
︙ | ︙ | |||
1328 1329 1330 1331 1332 1333 1334 | ** Synopsis: r[P3]=r[P2]-r[P1] ** ** Subtract the value in register P1 from the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Divide P1 P2 P3 * * | | | | | | | 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 | ** Synopsis: r[P3]=r[P2]-r[P1] ** ** Subtract the value in register P1 from the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Divide P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]/r[P1] ** ** Divide the value in register P1 by the value in register P2 ** and store the result in register P3 (P3=P2/P1). If the value in ** register P1 is zero, then the result is NULL. If either input is ** NULL, the result is NULL. */ /* Opcode: Remainder P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]%r[P1] ** ** Compute the remainder after integer register P2 is divided by ** register P1 and store the result in register P3. ** If the value in register P1 is zero the result is NULL. ** If either operand is NULL, the result is NULL. */ case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ |
︙ | ︙ | |||
1497 1498 1499 1500 1501 1502 1503 | Deephemeralize(pArg); sqlite3VdbeMemStoreType(pArg); REGISTER_TRACE(pOp->p2+i, pArg); } assert( pOp->p4type==P4_FUNCDEF ); ctx.pFunc = pOp->p4.pFunc; | < < < < | > > > | 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 | Deephemeralize(pArg); sqlite3VdbeMemStoreType(pArg); REGISTER_TRACE(pOp->p2+i, pArg); } assert( pOp->p4type==P4_FUNCDEF ); ctx.pFunc = pOp->p4.pFunc; ctx.iOp = pc; ctx.pVdbe = p; /* The output cell may already have a buffer allocated. Move ** the pointer to ctx.s so in case the user-function can use ** the already allocated buffer instead of allocating a new one. */ memcpy(&ctx.s, pOut, sizeof(Mem)); pOut->flags = MEM_Null; pOut->xDel = 0; pOut->zMalloc = 0; MemSetTypeFlag(&ctx.s, MEM_Null); ctx.fErrorOrAux = 0; if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ assert( pOp>aOp ); assert( pOp[-1].p4type==P4_COLLSEQ ); assert( pOp[-1].opcode==OP_CollSeq ); |
︙ | ︙ | |||
1543 1544 1545 1546 1547 1548 1549 | rc = ctx.isError; } sqlite3VdbeDeleteAuxData(p, pc, pOp->p1); } /* Copy the result of the function into register P3 */ sqlite3VdbeChangeEncoding(&ctx.s, encoding); | > | | 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 | rc = ctx.isError; } sqlite3VdbeDeleteAuxData(p, pc, pOp->p1); } /* Copy the result of the function into register P3 */ sqlite3VdbeChangeEncoding(&ctx.s, encoding); assert( pOut->flags==MEM_Null ); memcpy(pOut, &ctx.s, sizeof(Mem)); if( sqlite3VdbeMemTooBig(pOut) ){ goto too_big; } #if 0 /* The app-defined function has done something that as caused this ** statement to expire. (Perhaps the function called sqlite3_exec() |
︙ | ︙ | |||
1668 1669 1670 1671 1672 1673 1674 | ** Force the value in register P1 to be an integer. If the value ** in P1 is not an integer and cannot be converted into an integer ** without data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. */ case OP_MustBeInt: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; | > | | | | | | | > | < < | > > | 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 | ** Force the value in register P1 to be an integer. If the value ** in P1 is not an integer and cannot be converted into an integer ** without data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. */ case OP_MustBeInt: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_Int)==0 ){ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); if( (pIn1->flags & MEM_Int)==0 ){ if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ pc = pOp->p2 - 1; break; } } } MemSetTypeFlag(pIn1, MEM_Int); break; } #ifndef SQLITE_OMIT_FLOATING_POINT /* Opcode: RealAffinity P1 * * * * ** ** If register P1 holds an integer convert it to a real value. |
︙ | ︙ | |||
1803 1804 1805 1806 1807 1808 1809 | sqlite3VdbeMemRealify(pIn1); } break; } #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */ /* Opcode: Lt P1 P2 P3 P4 P5 | | | 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 | sqlite3VdbeMemRealify(pIn1); } break; } #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */ /* Opcode: Lt P1 P2 P3 P4 P5 ** Synopsis: if r[P1]<r[P3] goto P2 ** ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then ** jump to address P2. ** ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL ** bit is clear then fall through if either operand is NULL. |
︙ | ︙ | |||
2257 2258 2259 2260 2261 2262 2263 | ** ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when ** the result is guaranteed to only be used as the argument of a length() ** or typeof() function, respectively. The loading of large blobs can be ** skipped for length() and all content loading can be skipped for typeof(). */ case OP_Column: { | < < < < < | > | < | < < < < < < | < < < < < < < < < < < < | > > > | | > | > | | > < < < < | < < < < < < < < < < < < < < | | | | | | | | | | | < < | < < < < | | | > | > > | > > > | > > > | | | | > | < < < < > | | | < | < > | > > > | < < | | | < < < < < | < > | < < < | | < | | < < < < < | | | | | | | | | | < < < < < > > > > > | | > | < | | | < < > < < < < < < | > | < < | | | < < < < < | < > | | | | | < < < < < < < > | < < > > > > | | > | | | | | | | > | | > | | | | > > > > > > > > > > > > > | > | < < | < > | | | > | | | | | | | > | | | | | | > | > | < > | | | | | | | | | < < < < < < < < < < | | | | < | | | | | | | | | | | > > | 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 | ** ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when ** the result is guaranteed to only be used as the argument of a length() ** or typeof() function, respectively. The loading of large blobs can be ** skipped for length() and all content loading can be skipped for typeof(). */ case OP_Column: { i64 payloadSize64; /* Number of bytes in the record */ int p2; /* column number to retrieve */ VdbeCursor *pC; /* The VDBE cursor */ BtCursor *pCrsr; /* The BTree cursor */ u32 *aType; /* aType[i] holds the numeric type of the i-th column */ u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ int len; /* The length of the serialized data for the column */ int i; /* Loop counter */ Mem *pDest; /* Where to write the extracted value */ Mem sMem; /* For storing the record being decoded */ const u8 *zData; /* Part of the record being decoded */ const u8 *zHdr; /* Next unparsed byte of the header */ const u8 *zEndHdr; /* Pointer to first byte after the header */ u32 offset; /* Offset into the data */ u32 szField; /* Number of bytes in the content of a field */ u32 avail; /* Number of bytes of available data */ u32 t; /* A type code from the record header */ Mem *pReg; /* PseudoTable input register */ p2 = pOp->p2; assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( p2<pC->nField ); aType = pC->aType; aOffset = aType + pC->nField; #ifndef SQLITE_OMIT_VIRTUALTABLE assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */ #endif pCrsr = pC->pCursor; assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */ assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */ /* If the cursor cache is stale, bring it up-to-date */ rc = sqlite3VdbeCursorMoveto(pC); if( rc ) goto abort_due_to_error; if( pC->cacheStatus!=p->cacheCtr || (pOp->p5&OPFLAG_CLEARCACHE)!=0 ){ if( pC->nullRow ){ if( pCrsr==0 ){ assert( pC->pseudoTableReg>0 ); pReg = &aMem[pC->pseudoTableReg]; if( pC->multiPseudo ){ sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem); Deephemeralize(pDest); goto op_column_out; } assert( pReg->flags & MEM_Blob ); assert( memIsValid(pReg) ); pC->payloadSize = pC->szRow = avail = pReg->n; pC->aRow = (u8*)pReg->z; }else{ MemSetTypeFlag(pDest, MEM_Null); goto op_column_out; } }else{ assert( pCrsr ); if( pC->isTable==0 ){ assert( sqlite3BtreeCursorIsValid(pCrsr) ); VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the ** payload size, so it is impossible for payloadSize64 to be ** larger than 32 bits. */ assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail); pC->payloadSize = (u32)payloadSize64; }else{ assert( sqlite3BtreeCursorIsValid(pCrsr) ); VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize); assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail); } assert( avail<=65536 ); /* Maximum page size is 64KiB */ if( pC->payloadSize <= (u32)avail ){ pC->szRow = pC->payloadSize; }else{ pC->szRow = avail; } if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } } pC->cacheStatus = p->cacheCtr; pC->iHdrOffset = getVarint32(pC->aRow, offset); pC->nHdrParsed = 0; aOffset[0] = offset; if( avail<offset ){ /* pC->aRow does not have to hold the entire row, but it does at least ** need to cover the header of the record. If pC->aRow does not contain ** the complete header, then set it to zero, forcing the header to be ** dynamically allocated. */ pC->aRow = 0; pC->szRow = 0; } /* Make sure a corrupt database has not given us an oversize header. ** Do this now to avoid an oversize memory allocation. ** ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte ** types use so much data space that there can only be 4096 and 32 of ** them, respectively. So the maximum header length results from a ** 3-byte type for each of the maximum of 32768 columns plus three ** extra bytes for the header length itself. 32768*3 + 3 = 98307. */ if( offset > 98307 || offset > pC->payloadSize ){ rc = SQLITE_CORRUPT_BKPT; goto op_column_error; } } /* Make sure at least the first p2+1 entries of the header have been ** parsed and valid information is in aOffset[] and aType[]. */ if( pC->nHdrParsed<=p2 ){ /* If there is more header available for parsing in the record, try ** to extract additional fields up through the p2+1-th field */ if( pC->iHdrOffset<aOffset[0] ){ /* Make sure zData points to enough of the record to cover the header. */ if( pC->aRow==0 ){ memset(&sMem, 0, sizeof(sMem)); rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem); if( rc!=SQLITE_OK ){ goto op_column_error; } zData = (u8*)sMem.z; }else{ zData = pC->aRow; } /* Fill in aType[i] and aOffset[i] values through the p2-th field. */ i = pC->nHdrParsed; offset = aOffset[i]; zHdr = zData + pC->iHdrOffset; zEndHdr = zData + aOffset[0]; assert( i<=p2 && zHdr<zEndHdr ); do{ if( zHdr[0]<0x80 ){ t = zHdr[0]; zHdr++; }else{ zHdr += sqlite3GetVarint32(zHdr, &t); } aType[i] = t; szField = sqlite3VdbeSerialTypeLen(t); offset += szField; if( offset<szField ){ /* True if offset overflows */ zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ break; } i++; aOffset[i] = offset; }while( i<=p2 && zHdr<zEndHdr ); pC->nHdrParsed = i; pC->iHdrOffset = (u32)(zHdr - zData); if( pC->aRow==0 ){ sqlite3VdbeMemRelease(&sMem); sMem.flags = MEM_Null; } /* If we have read more header data than was contained in the header, ** or if the end of the last field appears to be past the end of the ** record, or if the end of the last field appears to be before the end ** of the record (when all fields present), then we must be dealing ** with a corrupt database. */ if( (zHdr > zEndHdr) || (offset > pC->payloadSize) || (zHdr==zEndHdr && offset!=pC->payloadSize) ){ rc = SQLITE_CORRUPT_BKPT; goto op_column_error; } } /* If after trying to extra new entries from the header, nHdrParsed is ** still not up to p2, that means that the record has fewer than p2 ** columns. So the result will be either the default value or a NULL. */ if( pC->nHdrParsed<=p2 ){ if( pOp->p4type==P4_MEM ){ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); }else{ MemSetTypeFlag(pDest, MEM_Null); } goto op_column_out; } } /* Extract the content for the p2+1-th column. Control can only ** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are ** all valid. */ assert( p2<pC->nHdrParsed ); assert( rc==SQLITE_OK ); if( pC->szRow>=aOffset[p2+1] ){ /* This is the common case where the desired content fits on the original ** page - where the content is not on an overflow page */ VdbeMemRelease(pDest); sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest); }else{ /* This branch happens only when content is on overflow pages */ t = aType[p2]; if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) || (len = sqlite3VdbeSerialTypeLen(t))==0 ){ /* Content is irrelevant for the typeof() function and for ** the length(X) function if X is a blob. So we might as well use ** bogus content rather than reading content from disk. NULL works ** for text and blob and whatever is in the payloadSize64 variable ** will work for everything else. Content is also irrelevant if ** the content length is 0. */ zData = t<=13 ? (u8*)&payloadSize64 : 0; sMem.zMalloc = 0; }else{ memset(&sMem, 0, sizeof(sMem)); sqlite3VdbeMemMove(&sMem, pDest); rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable, &sMem); if( rc!=SQLITE_OK ){ goto op_column_error; } zData = (u8*)sMem.z; } sqlite3VdbeSerialGet(zData, t, pDest); /* If we dynamically allocated space to hold the data (in the ** sqlite3VdbeMemFromBtree() call above) then transfer control of that ** dynamically allocated space over to the pDest structure. ** This prevents a memory copy. */ if( sMem.zMalloc ){ assert( sMem.z==sMem.zMalloc ); assert( !(pDest->flags & MEM_Dyn) ); assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z ); pDest->flags &= ~(MEM_Ephem|MEM_Static); pDest->flags |= MEM_Term; pDest->z = sMem.z; pDest->zMalloc = sMem.zMalloc; } } pDest->enc = encoding; op_column_out: rc = sqlite3VdbeMemMakeWriteable(pDest); op_column_error: UPDATE_MAX_BLOBSIZE(pDest); REGISTER_TRACE(pOp->p3, pDest); break; } /* Opcode: Affinity P1 P2 * P4 * ** Synopsis: affinity(r[P1@P2]) |
︙ | ︙ | |||
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 | assert( pKeyInfo->enc==ENC(db) ); assert( pKeyInfo->db==db ); nField = pKeyInfo->nField+pKeyInfo->nXField; }else if( pOp->p4type==P4_INT32 ){ nField = pOp->p4.i; } assert( pOp->p1>=0 ); pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); if( pCur==0 ) goto no_mem; pCur->nullRow = 1; pCur->isOrdered = 1; rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); pCur->pKeyInfo = pKeyInfo; assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR)); /* Since it performs no memory allocation or IO, the only value that ** sqlite3BtreeCursor() may return is SQLITE_OK. */ assert( rc==SQLITE_OK ); | > > | < | 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 | assert( pKeyInfo->enc==ENC(db) ); assert( pKeyInfo->db==db ); nField = pKeyInfo->nField+pKeyInfo->nXField; }else if( pOp->p4type==P4_INT32 ){ nField = pOp->p4.i; } assert( pOp->p1>=0 ); assert( nField>=0 ); testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); if( pCur==0 ) goto no_mem; pCur->nullRow = 1; pCur->isOrdered = 1; rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); pCur->pKeyInfo = pKeyInfo; assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR)); /* Since it performs no memory allocation or IO, the only value that ** sqlite3BtreeCursor() may return is SQLITE_OK. */ assert( rc==SQLITE_OK ); /* Set the VdbeCursor.isTable variable. Previous versions of ** SQLite used to check if the root-page flags were sane at this point ** and report database corruption if they were not, but this check has ** since moved into the btree layer. */ pCur->isTable = pOp->p4type!=P4_KEYINFO; break; } /* Opcode: OpenEphemeral P1 P2 * P4 P5 ** Synopsis: nColumn=P2 ** ** Open a new cursor P1 to a transient table. |
︙ | ︙ | |||
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 | static const int vfsFlags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TRANSIENT_DB; assert( pOp->p1>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); | > | 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 | static const int vfsFlags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TRANSIENT_DB; assert( pOp->p1>=0 ); assert( pOp->p2>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); |
︙ | ︙ | |||
3408 3409 3410 3411 3412 3413 3414 | pCx->isTable = 0; }else{ rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); pCx->isTable = 1; } } pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); | < > > < | 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 | pCx->isTable = 0; }else{ rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); pCx->isTable = 1; } } pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); break; } /* Opcode: SorterOpen P1 * * P4 * ** ** This opcode works like OP_OpenEphemeral except that it opens ** a transient index that is specifically designed to sort large ** tables using an external merge-sort algorithm. */ case OP_SorterOpen: { VdbeCursor *pCx; assert( pOp->p1>=0 ); assert( pOp->p2>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); if( pCx==0 ) goto no_mem; pCx->pKeyInfo = pOp->p4.pKeyInfo; assert( pCx->pKeyInfo->db==db ); assert( pCx->pKeyInfo->enc==ENC(db) ); rc = sqlite3VdbeSorterInit(db, pCx); break; } /* Opcode: OpenPseudo P1 P2 P3 * P5 ** Synopsis: content in r[P2@P3] ** |
︙ | ︙ | |||
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 | ** P3 is the number of fields in the records that will be stored by ** the pseudo-table. */ case OP_OpenPseudo: { VdbeCursor *pCx; assert( pOp->p1>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; pCx->pseudoTableReg = pOp->p2; pCx->isTable = 1; | > < | 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 | ** P3 is the number of fields in the records that will be stored by ** the pseudo-table. */ case OP_OpenPseudo: { VdbeCursor *pCx; assert( pOp->p1>=0 ); assert( pOp->p3>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; pCx->pseudoTableReg = pOp->p2; pCx->isTable = 1; pCx->multiPseudo = pOp->p5; break; } /* Opcode: Close P1 * * * * ** ** Close a cursor previously opened as P1. If P1 is not |
︙ | ︙ | |||
3575 3576 3577 3578 3579 3580 3581 | pc = pOp->p2 - 1; break; } /* If we reach this point, then the P3 value must be a floating ** point number. */ assert( (pIn3->flags & MEM_Real)!=0 ); | | > > | 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 | pc = pOp->p2 - 1; break; } /* If we reach this point, then the P3 value must be a floating ** point number. */ assert( (pIn3->flags & MEM_Real)!=0 ); if( (iKey==SMALLEST_INT64 && pIn3->r<(double)iKey) || (iKey==LARGEST_INT64 && pIn3->r>(double)iKey) ){ /* The P3 value is too large in magnitude to be expressed as an ** integer. */ res = 1; if( pIn3->r<0 ){ if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt ); rc = sqlite3BtreeFirst(pC->pCursor, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; |
︙ | ︙ | |||
4155 4156 4157 4158 4159 4160 4161 | nZero = pData->u.nZero; }else{ nZero = 0; } sqlite3BtreeSetCachedRowid(pC->pCursor, 0); rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, pData->z, pData->n, nZero, | | | 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 | nZero = pData->u.nZero; }else{ nZero = 0; } sqlite3BtreeSetCachedRowid(pC->pCursor, 0); rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, pData->z, pData->n, nZero, (pOp->p5 & OPFLAG_APPEND)!=0, seekResult ); pC->rowidIsValid = 0; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; /* Invoke the update-hook if required. */ if( rc==SQLITE_OK && db->xUpdateCallback && op ){ |
︙ | ︙ | |||
4315 4316 4317 4318 4319 4320 4321 | ** Write into register P2 the current sorter data for sorter cursor P1. */ case OP_SorterData: { VdbeCursor *pC; pOut = &aMem[pOp->p2]; pC = p->apCsr[pOp->p1]; | | | 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 | ** Write into register P2 the current sorter data for sorter cursor P1. */ case OP_SorterData: { VdbeCursor *pC; pOut = &aMem[pOp->p2]; pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); rc = sqlite3VdbeSorterRowkey(pC, pOut); break; } /* Opcode: RowData P1 P2 * * * ** Synopsis: r[P2]=data ** |
︙ | ︙ | |||
4355 4356 4357 4358 4359 4360 4361 | pOut = &aMem[pOp->p2]; memAboutToChange(p, pOut); /* Note that RowKey and RowData are really exactly the same instruction */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; | | | | | | 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 | pOut = &aMem[pOp->p2]; memAboutToChange(p, pOut); /* Note that RowKey and RowData are really exactly the same instruction */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( isSorter(pC)==0 ); assert( pC->isTable || pOp->opcode!=OP_RowData ); assert( pC->isTable==0 || pOp->opcode==OP_RowData ); assert( pC!=0 ); assert( pC->nullRow==0 ); assert( pC->pseudoTableReg==0 ); assert( pC->pCursor!=0 ); pCrsr = pC->pCursor; assert( sqlite3BtreeCursorIsValid(pCrsr) ); /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or ** OP_Rewind/Op_Next with no intervening instructions that might invalidate ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always ** a no-op and can never fail. But we leave it in place as a safety. */ assert( pC->deferredMoveto==0 ); rc = sqlite3VdbeCursorMoveto(pC); if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; if( pC->isTable==0 ){ assert( !pC->isTable ); VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64); assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } n = (u32)n64; }else{ VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n); assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } } if( sqlite3VdbeMemGrow(pOut, n, 0) ){ goto no_mem; } pOut->n = n; MemSetTypeFlag(pOut, MEM_Blob); if( pC->isTable==0 ){ rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); }else{ rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); } pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ UPDATE_MAX_BLOBSIZE(pOut); REGISTER_TRACE(pOp->p2, pOut); |
︙ | ︙ | |||
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 | VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); pC->nullRow = 1; pC->rowidIsValid = 0; assert( pC->pCursor || pC->pVtabCursor ); if( pC->pCursor ){ sqlite3BtreeClearCursor(pC->pCursor); } break; } | > | 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 | VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); pC->nullRow = 1; pC->rowidIsValid = 0; pC->cacheStatus = CACHE_STALE; assert( pC->pCursor || pC->pVtabCursor ); if( pC->pCursor ){ sqlite3BtreeClearCursor(pC->pCursor); } break; } |
︙ | ︙ | |||
4542 4543 4544 4545 4546 4547 4548 | VdbeCursor *pC; BtCursor *pCrsr; int res; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); | | < | > | > > > > > | > > > > > > | < < > > > > > > > > > > < < < < < | < < < | | | | > > | < < > > > > | 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 | VdbeCursor *pC; BtCursor *pCrsr; int res; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); res = 1; if( isSorter(pC) ){ rc = sqlite3VdbeSorterRewind(db, pC, &res); }else{ pCrsr = pC->pCursor; assert( pCrsr ); rc = sqlite3BtreeFirst(pCrsr, &res); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; pC->rowidIsValid = 0; } pC->nullRow = (u8)res; assert( pOp->p2>0 && pOp->p2<p->nOp ); if( res ){ pc = pOp->p2 - 1; } break; } /* Opcode: Next P1 P2 * * P5 ** ** Advance cursor P1 so that it points to the next key/data pair in its ** table or index. If there are no more key/value pairs then fall through ** to the following instruction. But if the cursor advance was successful, ** jump immediately to P2. ** ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have ** been opened prior to this opcode or the program will segfault. ** ** P4 is always of type P4_ADVANCE. The function pointer points to ** sqlite3BtreeNext(). ** ** If P5 is positive and the jump is taken, then event counter ** number P5-1 in the prepared statement is incremented. ** ** See also: Prev, NextIfOpen */ /* Opcode: NextIfOpen P1 P2 * * P5 ** ** This opcode works just like OP_Next except that if cursor P1 is not ** open it behaves a no-op. */ /* Opcode: Prev P1 P2 * * P5 ** ** Back up cursor P1 so that it points to the previous key/data pair in its ** table or index. If there is no previous key/value pairs then fall through ** to the following instruction. But if the cursor backup was successful, ** jump immediately to P2. ** ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is ** not open then the behavior is undefined. ** ** P4 is always of type P4_ADVANCE. The function pointer points to ** sqlite3BtreePrevious(). ** ** If P5 is positive and the jump is taken, then event counter ** number P5-1 in the prepared statement is incremented. */ /* Opcode: PrevIfOpen P1 P2 * * P5 ** ** This opcode works just like OP_Prev except that if cursor P1 is not ** open it behaves a no-op. */ case OP_SorterNext: { /* jump */ VdbeCursor *pC; int res; pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); rc = sqlite3VdbeSorterNext(db, pC, &res); goto next_tail; case OP_PrevIfOpen: /* jump */ case OP_NextIfOpen: /* jump */ if( p->apCsr[pOp->p1]==0 ) break; /* Fall through */ case OP_Prev: /* jump */ case OP_Next: /* jump */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( pOp->p5<ArraySize(p->aCounter) ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->deferredMoveto==0 ); assert( pC->pCursor ); assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); rc = pOp->p4.xAdvance(pC->pCursor, &res); next_tail: pC->cacheStatus = CACHE_STALE; if( res==0 ){ pC->nullRow = 0; pc = pOp->p2 - 1; p->aCounter[pOp->p5]++; #ifdef SQLITE_TEST sqlite3_search_count++; #endif }else{ pC->nullRow = 1; } pC->rowidIsValid = 0; goto check_for_interrupt; } /* Opcode: IdxInsert P1 P2 P3 * P5 ** Synopsis: key=r[P2] |
︙ | ︙ | |||
4655 4656 4657 4658 4659 4660 4661 | BtCursor *pCrsr; int nKey; const char *zKey; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); | | | 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 | BtCursor *pCrsr; int nKey; const char *zKey; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); pIn2 = &aMem[pOp->p2]; assert( pIn2->flags & MEM_Blob ); pCrsr = pC->pCursor; if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; assert( pCrsr!=0 ); assert( pC->isTable==0 ); rc = ExpandBlob(pIn2); |
︙ | ︙ | |||
5906 5907 5908 5909 5910 5911 5912 | /* Initialize sqlite3_vtab_cursor base class */ pVtabCursor->pVtab = pVtab; /* Initialize vdbe cursor object */ pCur = allocateCursor(p, pOp->p1, 0, -1, 0); if( pCur ){ pCur->pVtabCursor = pVtabCursor; | < | 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 | /* Initialize sqlite3_vtab_cursor base class */ pVtabCursor->pVtab = pVtab; /* Initialize vdbe cursor object */ pCur = allocateCursor(p, pOp->p1, 0, -1, 0); if( pCur ){ pCur->pVtabCursor = pVtabCursor; }else{ db->mallocFailed = 1; pModule->xClose(pVtabCursor); } } break; } |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
32 33 34 35 36 37 38 | ** of the following structure. */ typedef struct VdbeOp Op; /* ** Boolean values */ | | > > > | | | < | < | > | > | < | < | < | < < < | | | | > > > > | 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | ** of the following structure. */ typedef struct VdbeOp Op; /* ** Boolean values */ typedef unsigned Bool; /* Opaque type used by code in vdbesort.c */ typedef struct VdbeSorter VdbeSorter; /* Opaque type used by the explainer */ typedef struct Explain Explain; /* Elements of the linked list at Vdbe.pAuxData */ typedef struct AuxData AuxData; /* ** A cursor is a pointer into a single BTree within a database file. ** The cursor can seek to a BTree entry with a particular key, or ** loop over all entries of the Btree. You can also insert new BTree ** entries or retrieve the key or data from the entry that the cursor ** is currently pointing to. ** ** Cursors can also point to virtual tables, sorters, or "pseudo-tables". ** A pseudo-table is a single-row table implemented by registers. ** ** Every cursor that the virtual machine has open is represented by an ** instance of the following structure. */ struct VdbeCursor { BtCursor *pCursor; /* The cursor structure of the backend */ Btree *pBt; /* Separate file holding temporary table */ KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */ int seekResult; /* Result of previous sqlite3BtreeMoveto() */ int pseudoTableReg; /* Register holding pseudotable content. */ i16 nField; /* Number of fields in the header */ u16 nHdrParsed; /* Number of header fields parsed so far */ i8 iDb; /* Index of cursor database in db->aDb[] (or -1) */ u8 nullRow; /* True if pointing to a row with no data */ u8 rowidIsValid; /* True if lastRowid is valid */ u8 deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */ Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */ Bool isTable:1; /* True if a table requiring integer keys */ Bool isOrdered:1; /* True if the underlying table is BTREE_UNORDERED */ Bool multiPseudo:1; /* Multi-register pseudo-cursor */ sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */ i64 seqCount; /* Sequence counter */ i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */ i64 lastRowid; /* Rowid being deleted by OP_Delete */ VdbeSorter *pSorter; /* Sorter object for OP_SorterOpen cursors */ /* Cached information about the header for the data record that the ** cursor is currently pointing to. Only valid if cacheStatus matches ** Vdbe.cacheCtr. Vdbe.cacheCtr will never take on the value of ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that ** the cache is out of date. ** ** aRow might point to (ephemeral) data for the current row, or it might ** be NULL. */ u32 cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */ u32 payloadSize; /* Total number of bytes in the record */ u32 szRow; /* Byte available in aRow */ u32 iHdrOffset; /* Offset to next unparsed byte of the header */ const u8 *aRow; /* Data for the current row, if all on one page */ u32 aType[1]; /* Type values for all entries in the record */ /* 2*nField extra array elements allocated for aType[], beyond the one ** static element declared in the structure. nField total array slots for ** aType[] and nField+1 array slots for aOffset[] */ }; typedef struct VdbeCursor VdbeCursor; /* ** When a sub-program is executed (OP_Program), a structure of this type ** is allocated to store the current value of the program counter, as ** well as the current memory cell array and various other frame specific |
︙ | ︙ | |||
438 439 440 441 442 443 444 | int sqlite3VdbeMemStringify(Mem*, int); i64 sqlite3VdbeIntValue(Mem*); int sqlite3VdbeMemIntegerify(Mem*); double sqlite3VdbeRealValue(Mem*); void sqlite3VdbeIntegerAffinity(Mem*); int sqlite3VdbeMemRealify(Mem*); int sqlite3VdbeMemNumerify(Mem*); | | | 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 | int sqlite3VdbeMemStringify(Mem*, int); i64 sqlite3VdbeIntValue(Mem*); int sqlite3VdbeMemIntegerify(Mem*); double sqlite3VdbeRealValue(Mem*); void sqlite3VdbeIntegerAffinity(Mem*); int sqlite3VdbeMemRealify(Mem*); int sqlite3VdbeMemNumerify(Mem*); int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,int,Mem*); void sqlite3VdbeMemRelease(Mem *p); void sqlite3VdbeMemReleaseExternal(Mem *p); #define VdbeMemRelease(X) \ if((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame)) \ sqlite3VdbeMemReleaseExternal(X); int sqlite3VdbeMemFinalize(Mem*, FuncDef*); const char *sqlite3OpcodeName(int); |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
450 451 452 453 454 455 456 457 458 459 460 461 | assert( pOp[-1].opcode==OP_Integer ); n = pOp[-1].p1; if( n>nMaxArgs ) nMaxArgs = n; break; } #endif case OP_Next: case OP_SorterNext: { pOp->p4.xAdvance = sqlite3BtreeNext; pOp->p4type = P4_ADVANCE; break; } | > > | | 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 | assert( pOp[-1].opcode==OP_Integer ); n = pOp[-1].p1; if( n>nMaxArgs ) nMaxArgs = n; break; } #endif case OP_Next: case OP_NextIfOpen: case OP_SorterNext: { pOp->p4.xAdvance = sqlite3BtreeNext; pOp->p4type = P4_ADVANCE; break; } case OP_Prev: case OP_PrevIfOpen: { pOp->p4.xAdvance = sqlite3BtreePrevious; pOp->p4type = P4_ADVANCE; break; } } pOp->opflags = sqlite3OpcodeProperty[opcode]; |
︙ | ︙ | |||
1671 1672 1673 1674 1675 1676 1677 | ** the call above. */ }else if( pCx->pCursor ){ sqlite3BtreeCloseCursor(pCx->pCursor); } #ifndef SQLITE_OMIT_VIRTUALTABLE if( pCx->pVtabCursor ){ sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; | | | 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 | ** the call above. */ }else if( pCx->pCursor ){ sqlite3BtreeCloseCursor(pCx->pCursor); } #ifndef SQLITE_OMIT_VIRTUALTABLE if( pCx->pVtabCursor ){ sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; const sqlite3_module *pModule = pVtabCursor->pVtab->pModule; p->inVtabMethod = 1; pModule->xClose(pVtabCursor); p->inVtabMethod = 0; } #endif } |
︙ | ︙ | |||
2655 2656 2657 2658 2659 2660 2661 | if( res!=0 ) return SQLITE_CORRUPT_BKPT; p->rowidIsValid = 1; #ifdef SQLITE_TEST sqlite3_search_count++; #endif p->deferredMoveto = 0; p->cacheStatus = CACHE_STALE; | | | 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 | if( res!=0 ) return SQLITE_CORRUPT_BKPT; p->rowidIsValid = 1; #ifdef SQLITE_TEST sqlite3_search_count++; #endif p->deferredMoveto = 0; p->cacheStatus = CACHE_STALE; }else if( p->pCursor ){ int hasMoved; int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved); if( rc ) return rc; if( hasMoved ){ p->cacheStatus = CACHE_STALE; p->nullRow = 1; } |
︙ | ︙ | |||
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 | case 8: /* Integer 0 */ case 9: { /* Integer 1 */ pMem->u.i = serial_type-8; pMem->flags = MEM_Int; return 0; } default: { u32 len = (serial_type-12)/2; pMem->z = (char *)buf; pMem->n = len; pMem->xDel = 0; | > | < < < < | 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 | case 8: /* Integer 0 */ case 9: { /* Integer 1 */ pMem->u.i = serial_type-8; pMem->flags = MEM_Int; return 0; } default: { static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; u32 len = (serial_type-12)/2; pMem->z = (char *)buf; pMem->n = len; pMem->xDel = 0; pMem->flags = aFlag[serial_type&1]; return len; } } return 0; } /* |
︙ | ︙ | |||
3113 3114 3115 3116 3117 3118 3119 | */ /* mem1.u.i = 0; // not needed, here to silence compiler warning */ idx1 = getVarint32(aKey1, szHdr1); d1 = szHdr1; assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField ); assert( pKeyInfo->aSortOrder!=0 ); | | > | 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 | */ /* mem1.u.i = 0; // not needed, here to silence compiler warning */ idx1 = getVarint32(aKey1, szHdr1); d1 = szHdr1; assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField ); assert( pKeyInfo->aSortOrder!=0 ); assert( idx1<szHdr1 && i<pPKey2->nField ); do{ u32 serial_type1; /* Read the serial types for the next element in each key. */ idx1 += getVarint32( aKey1+idx1, serial_type1 ); /* Verify that there is enough key space remaining to avoid ** a buffer overread. The "d1+serial_type1+2" subexpression will |
︙ | ︙ | |||
3146 3147 3148 3149 3150 3151 3152 | assert( mem1.zMalloc==0 ); /* See comment below */ if( pKeyInfo->aSortOrder[i] ){ rc = -rc; /* Invert the result for DESC sort order. */ } return rc; } i++; | | | 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 | assert( mem1.zMalloc==0 ); /* See comment below */ if( pKeyInfo->aSortOrder[i] ){ rc = -rc; /* Invert the result for DESC sort order. */ } return rc; } i++; }while( idx1<szHdr1 && i<pPKey2->nField ); /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.zMalloc==0 ); |
︙ | ︙ | |||
3204 3205 3206 3207 3208 3209 3210 | assert( sqlite3BtreeCursorIsValid(pCur) ); VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); /* Read in the complete content of the index entry */ memset(&m, 0, sizeof(m)); | | | 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 | assert( sqlite3BtreeCursorIsValid(pCur) ); VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); /* Read in the complete content of the index entry */ memset(&m, 0, sizeof(m)); rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); if( rc ){ return rc; } /* The index entry must begin with a header size */ (void)getVarint32((u8*)m.z, szHdr); testcase( szHdr==3 ); |
︙ | ︙ | |||
3282 3283 3284 3285 3286 3287 3288 | /* nCellKey will always be between 0 and 0xffffffff because of the say ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if( nCellKey<=0 || nCellKey>0x7fffffff ){ *res = 0; return SQLITE_CORRUPT_BKPT; } memset(&m, 0, sizeof(m)); | | | 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 | /* nCellKey will always be between 0 and 0xffffffff because of the say ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if( nCellKey<=0 || nCellKey>0x7fffffff ){ *res = 0; return SQLITE_CORRUPT_BKPT; } memset(&m, 0, sizeof(m)); rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m); if( rc ){ return rc; } assert( pUnpacked->flags & UNPACKED_PREFIX_MATCH ); *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); sqlite3VdbeMemRelease(&m); return SQLITE_OK; |
︙ | ︙ |
Changes to src/vdbeblob.c.
︙ | ︙ | |||
62 63 64 65 66 67 68 | ** triggering asserts related to mutexes. */ assert( v->aVar[0].flags&MEM_Int ); v->aVar[0].u.i = iRow; rc = sqlite3_step(p->pStmt); if( rc==SQLITE_ROW ){ | > | | | | 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | ** triggering asserts related to mutexes. */ assert( v->aVar[0].flags&MEM_Int ); v->aVar[0].u.i = iRow; rc = sqlite3_step(p->pStmt); if( rc==SQLITE_ROW ){ VdbeCursor *pC = v->apCsr[0]; u32 type = pC->aType[p->iCol]; if( type<12 ){ zErr = sqlite3MPrintf(p->db, "cannot open value of type %s", type==0?"null": type==7?"real": "integer" ); rc = SQLITE_ERROR; sqlite3_finalize(p->pStmt); p->pStmt = 0; }else{ p->iOffset = pC->aType[p->iCol + pC->nField]; p->nByte = sqlite3VdbeSerialTypeLen(type); p->pCsr = pC->pCursor; sqlite3BtreeEnterCursor(p->pCsr); sqlite3BtreeCacheOverflow(p->pCsr); sqlite3BtreeLeaveCursor(p->pCsr); } } if( rc==SQLITE_ROW ){ |
︙ | ︙ | |||
328 329 330 331 332 333 334 335 336 337 338 339 340 341 | *ppBlob = (sqlite3_blob *)pBlob; }else{ if( pBlob && pBlob->pStmt ) sqlite3VdbeFinalize((Vdbe *)pBlob->pStmt); sqlite3DbFree(db, pBlob); } sqlite3Error(db, rc, (zErr ? "%s" : 0), zErr); sqlite3DbFree(db, zErr); sqlite3StackFree(db, pParse); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* | > | 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 | *ppBlob = (sqlite3_blob *)pBlob; }else{ if( pBlob && pBlob->pStmt ) sqlite3VdbeFinalize((Vdbe *)pBlob->pStmt); sqlite3DbFree(db, pBlob); } sqlite3Error(db, rc, (zErr ? "%s" : 0), zErr); sqlite3DbFree(db, zErr); sqlite3ParserReset(pParse); sqlite3StackFree(db, pParse); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
299 300 301 302 303 304 305 | p->z = 0; p->zMalloc = 0; p->xDel = 0; } /* ** Convert a 64-bit IEEE double into a 64-bit signed integer. | | | < < < < < < < | | < < < < | | 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | p->z = 0; p->zMalloc = 0; p->xDel = 0; } /* ** Convert a 64-bit IEEE double into a 64-bit signed integer. ** If the double is out of range of a 64-bit signed integer then ** return the closest available 64-bit signed integer. */ static i64 doubleToInt64(double r){ #ifdef SQLITE_OMIT_FLOATING_POINT /* When floating-point is omitted, double and int64 are the same thing */ return r; #else /* ** Many compilers we encounter do not define constants for the ** minimum and maximum 64-bit integers, or they define them ** inconsistently. And many do not understand the "LL" notation. ** So we define our own static constants here using nothing ** larger than a 32-bit integer constant. */ static const i64 maxInt = LARGEST_INT64; static const i64 minInt = SMALLEST_INT64; if( r<=(double)minInt ){ return minInt; }else if( r>=(double)maxInt ){ return maxInt; }else{ return (i64)r; } #endif } /* |
︙ | ︙ | |||
413 414 415 416 417 418 419 | ** ** (1) the round-trip conversion real->int->real is a no-op, and ** (2) The integer is neither the largest nor the smallest ** possible integer (ticket #3922) ** ** The second and third terms in the following conditional enforces ** the second condition under the assumption that addition overflow causes | | < < < < < < | 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 | ** ** (1) the round-trip conversion real->int->real is a no-op, and ** (2) The integer is neither the largest nor the smallest ** possible integer (ticket #3922) ** ** The second and third terms in the following conditional enforces ** the second condition under the assumption that addition overflow causes ** values to wrap around. */ if( pMem->r==(double)pMem->u.i && pMem->u.i>SMALLEST_INT64 && pMem->u.i<LARGEST_INT64 ){ pMem->flags |= MEM_Int; } } /* ** Convert pMem to type integer. Invalidate any prior representations. |
︙ | ︙ | |||
892 893 894 895 896 897 898 | ** is overwritten without being freed. ** ** If this routine fails for any reason (malloc returns NULL or unable ** to read from the disk) then the pMem is left in an inconsistent state. */ int sqlite3VdbeMemFromBtree( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ | | | | | | | 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 | ** is overwritten without being freed. ** ** If this routine fails for any reason (malloc returns NULL or unable ** to read from the disk) then the pMem is left in an inconsistent state. */ int sqlite3VdbeMemFromBtree( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ u32 offset, /* Offset from the start of data to return bytes from. */ u32 amt, /* Number of bytes to return. */ int key, /* If true, retrieve from the btree key, not data. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ char *zData; /* Data from the btree layer */ u32 available = 0; /* Number of bytes available on the local btree page */ int rc = SQLITE_OK; /* Return code */ assert( sqlite3BtreeCursorIsValid(pCur) ); /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() ** that both the BtShared and database handle mutexes are held. */ assert( (pMem->flags & MEM_RowSet)==0 ); if( key ){ zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); }else{ zData = (char *)sqlite3BtreeDataFetch(pCur, &available); } assert( zData!=0 ); if( offset+amt<=available ){ sqlite3VdbeMemRelease(pMem); pMem->z = &zData[offset]; pMem->flags = MEM_Blob|MEM_Ephem; }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; pMem->enc = 0; pMem->type = SQLITE_BLOB; if( key ){ rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); }else{ rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); } pMem->z[amt] = 0; pMem->z[amt+1] = 0; if( rc!=SQLITE_OK ){ sqlite3VdbeMemRelease(pMem); } } pMem->n = (int)amt; return rc; } /* This function is only available internally, it is not part of the ** external API. It works in a similar way to sqlite3_value_text(), ** except the data returned is in the encoding specified by the second |
︙ | ︙ |
Changes to src/vtab.c.
︙ | ︙ | |||
734 735 736 737 738 739 740 741 742 743 744 745 746 747 | } pParse->declareVtab = 0; if( pParse->pVdbe ){ sqlite3VdbeFinalize(pParse->pVdbe); } sqlite3DeleteTable(db, pParse->pNewTable); sqlite3StackFree(db, pParse); } assert( (rc&0xff)==rc ); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; | > | 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 | } pParse->declareVtab = 0; if( pParse->pVdbe ){ sqlite3VdbeFinalize(pParse->pVdbe); } sqlite3DeleteTable(db, pParse->pNewTable); sqlite3ParserReset(pParse); sqlite3StackFree(db, pParse); } assert( (rc&0xff)==rc ); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
665 666 667 668 669 670 671 | ** be the name of an indexed column with TEXT affinity. */ return 0; } assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ pRight = pList->a[0].pExpr; op = pRight->op; | < < < | 665 666 667 668 669 670 671 672 673 674 675 676 677 678 | ** be the name of an indexed column with TEXT affinity. */ return 0; } assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ pRight = pList->a[0].pExpr; op = pRight->op; if( op==TK_VARIABLE ){ Vdbe *pReprepare = pParse->pReprepare; int iCol = pRight->iColumn; pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_NONE); if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ z = (char *)sqlite3_value_text(pVal); } |
︙ | ︙ | |||
2405 2406 2407 2408 2409 2410 2411 | pIn += pLevel->u.in.nIn - 1; pIn->iCur = iTab; if( eType==IN_INDEX_ROWID ){ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); }else{ pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); } | | | 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 | pIn += pLevel->u.in.nIn - 1; pIn->iCur = iTab; if( eType==IN_INDEX_ROWID ){ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); }else{ pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); } pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; sqlite3VdbeAddOp1(v, OP_IsNull, iReg); }else{ pLevel->u.in.nIn = 0; } #endif } disableTerm(pLevel, pTerm); |
︙ | ︙ | |||
2755 2756 2757 2758 2759 2760 2761 | pLoop = pLevel->pWLoop; pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; iCur = pTabItem->iCursor; pLevel->notReady = notReady & ~getMask(&pWInfo->sMaskSet, iCur); bRev = (pWInfo->revMask>>iLevel)&1; omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; | | | 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 | pLoop = pLevel->pWLoop; pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; iCur = pTabItem->iCursor; pLevel->notReady = notReady & ~getMask(&pWInfo->sMaskSet, iCur); bRev = (pWInfo->revMask>>iLevel)&1; omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); /* Create labels for the "break" and "continue" instructions ** for the current loop. Jump to addrBrk to break out of a loop. ** Jump to cont to go immediately to the next iteration of the ** loop. ** ** When there is an IN operator, we also have a "addrNxt" label that |
︙ | ︙ | |||
2983 2984 2985 2986 2987 2988 2989 | }; static const u8 aEndOp[] = { OP_Noop, /* 0: (!end_constraints) */ OP_IdxGE, /* 1: (end_constraints && !bRev) */ OP_IdxLT /* 2: (end_constraints && bRev) */ }; u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ | < | | | | 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 | }; static const u8 aEndOp[] = { OP_Noop, /* 0: (!end_constraints) */ OP_IdxGE, /* 1: (end_constraints && !bRev) */ OP_IdxLT /* 2: (end_constraints && bRev) */ }; u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ int regBase; /* Base register holding constraint values */ int r1; /* Temp register */ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ int startEq; /* True if range start uses ==, >= or <= */ int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ Index *pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ char *zStartAff; /* Affinity for start of range constraint */ char cEndAff = 0; /* Affinity for end of range constraint */ pIdx = pLoop->u.btree.pIndex; iIdxCur = pLevel->iIdxCur; assert( nEq>=pLoop->u.btree.nSkip ); /* If this loop satisfies a sort order (pOrderBy) request that ** was passed to this function to implement a "SELECT min(x) ..." ** query, then the caller will only allow the loop to run for ** a single iteration. This means that the first row returned ** should not have a NULL value stored in 'x'. If column 'x' is ** the first one after the nEq equality constraints in the index, ** this requires some special handling. */ if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 && (pWInfo->bOBSat!=0) && (pIdx->nKeyCol>nEq) ){ assert( pLoop->u.btree.nSkip==0 ); isMinQuery = 1; nExtraReg = 1; } /* Find any inequality constraint terms for the start and end ** of the range. */ |
︙ | ︙ | |||
3039 3040 3041 3042 3043 3044 3045 | } /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); | > | | 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 | } /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); if( zStartAff ) cEndAff = zStartAff[nEq]; addrNxt = pLevel->addrNxt; /* If we are doing a reverse order scan on an ascending index, or ** a forward order scan on a descending index, interchange the ** start and end terms (pRangeStart and pRangeEnd). */ if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) |
︙ | ︙ | |||
3109 3110 3111 3112 3113 3114 3115 | if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); sqlite3ExprCode(pParse, pRight, regBase+nEq); if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){ sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); } | < | < < < < < | > | | < < < | 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 | if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); sqlite3ExprCode(pParse, pRight, regBase+nEq); if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){ sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); } if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) ){ codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); } nConstraint++; testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); } sqlite3DbFree(db, zStartAff); /* Top of the loop body */ pLevel->p2 = sqlite3VdbeCurrentAddr(v); /* Check if the index cursor is past the end of the range. */ op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; testcase( op==OP_Noop ); |
︙ | ︙ | |||
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 | */ r1 = sqlite3GetTempReg(pParse); testcase( pLoop->wsFlags & WHERE_BTM_LIMIT ); testcase( pLoop->wsFlags & WHERE_TOP_LIMIT ); if( (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 && (j = pIdx->aiColumn[nEq])>=0 && pIdx->pTable->aCol[j].notNull==0 ){ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); VdbeComment((v, "%s", pIdx->pTable->aCol[j].zName)); sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont); } sqlite3ReleaseTempReg(pParse, r1); | > | 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 | */ r1 = sqlite3GetTempReg(pParse); testcase( pLoop->wsFlags & WHERE_BTM_LIMIT ); testcase( pLoop->wsFlags & WHERE_TOP_LIMIT ); if( (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 && (j = pIdx->aiColumn[nEq])>=0 && pIdx->pTable->aCol[j].notNull==0 && (nEq || (pLoop->wsFlags & WHERE_BTM_LIMIT)==0) ){ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); VdbeComment((v, "%s", pIdx->pTable->aCol[j].zName)); sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont); } sqlite3ReleaseTempReg(pParse, r1); |
︙ | ︙ | |||
3467 3468 3469 3470 3471 3472 3473 | assert( !ExprHasProperty(pE, EP_FromJoin) ); assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0); if( pAlt==0 ) continue; if( pAlt->wtFlags & (TERM_CODED) ) continue; testcase( pAlt->eOperator & WO_EQ ); testcase( pAlt->eOperator & WO_IN ); | | | 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 | assert( !ExprHasProperty(pE, EP_FromJoin) ); assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0); if( pAlt==0 ) continue; if( pAlt->wtFlags & (TERM_CODED) ) continue; testcase( pAlt->eOperator & WO_EQ ); testcase( pAlt->eOperator & WO_IN ); VdbeModuleComment((v, "begin transitive constraint")); pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); if( pEAlt ){ *pEAlt = *pAlt->pExpr; pEAlt->pLeft = pE->pLeft; sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); sqlite3StackFree(db, pEAlt); } |
︙ | ︙ | |||
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 | saved_nSkip = pNew->u.btree.nSkip; saved_nLTerm = pNew->nLTerm; saved_wsFlags = pNew->wsFlags; saved_prereq = pNew->prereq; saved_nOut = pNew->nOut; pNew->rSetup = 0; rLogSize = estLog(sqlite3LogEst(pProbe->aiRowEst[0])); if( pTerm==0 && saved_nEq==saved_nSkip && saved_nEq+1<pProbe->nKeyCol | > > > > > | | 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 | saved_nSkip = pNew->u.btree.nSkip; saved_nLTerm = pNew->nLTerm; saved_wsFlags = pNew->wsFlags; saved_prereq = pNew->prereq; saved_nOut = pNew->nOut; pNew->rSetup = 0; rLogSize = estLog(sqlite3LogEst(pProbe->aiRowEst[0])); /* Consider using a skip-scan if there are no WHERE clause constraints ** available for the left-most terms of the index, and if the average ** number of repeats in the left-most terms is at least 50. */ if( pTerm==0 && saved_nEq==saved_nSkip && saved_nEq+1<pProbe->nKeyCol && pProbe->aiRowEst[saved_nEq+1]>50 /* TUNING: Minimum for skip-scan */ ){ LogEst nIter; pNew->u.btree.nEq++; pNew->u.btree.nSkip++; pNew->aLTerm[pNew->nLTerm++] = 0; pNew->wsFlags |= WHERE_SKIPSCAN; nIter = sqlite3LogEst(pProbe->aiRowEst[0]/pProbe->aiRowEst[saved_nEq+1]); |
︙ | ︙ | |||
5423 5424 5425 5426 5427 5428 5429 | #endif /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ initMaskSet(pMaskSet); whereClauseInit(&pWInfo->sWC, pWInfo); | < | 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 | #endif /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ initMaskSet(pMaskSet); whereClauseInit(&pWInfo->sWC, pWInfo); whereSplit(&pWInfo->sWC, pWhere, TK_AND); sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ /* Special case: a WHERE clause that is constant. Evaluate the ** expression and either jump over all of the code or fall thru. */ if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ |
︙ | ︙ | |||
5738 5739 5740 5741 5742 5743 5744 | explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags); pLevel->addrBody = sqlite3VdbeCurrentAddr(v); notReady = codeOneLoopStart(pWInfo, ii, notReady); pWInfo->iContinue = pLevel->addrCont; } /* Done. */ | | | 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 | explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags); pLevel->addrBody = sqlite3VdbeCurrentAddr(v); notReady = codeOneLoopStart(pWInfo, ii, notReady); pWInfo->iContinue = pLevel->addrCont; } /* Done. */ VdbeModuleComment((v, "Begin WHERE-core")); return pWInfo; /* Jump here if malloc fails */ whereBeginError: if( pWInfo ){ pParse->nQueryLoop = pWInfo->savedNQueryLoop; whereInfoFree(db, pWInfo); |
︙ | ︙ | |||
5765 5766 5767 5768 5769 5770 5771 | WhereLevel *pLevel; WhereLoop *pLoop; SrcList *pTabList = pWInfo->pTabList; sqlite3 *db = pParse->db; /* Generate loop termination code. */ | | | 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 | WhereLevel *pLevel; WhereLoop *pLoop; SrcList *pTabList = pWInfo->pTabList; sqlite3 *db = pParse->db; /* Generate loop termination code. */ VdbeModuleComment((v, "End WHERE-core")); sqlite3ExprCacheClear(pParse); for(i=pWInfo->nLevel-1; i>=0; i--){ int addr; pLevel = &pWInfo->a[i]; pLoop = pLevel->pWLoop; sqlite3VdbeResolveLabel(v, pLevel->addrCont); if( pLevel->op!=OP_Noop ){ |
︙ | ︙ | |||
5811 5812 5813 5814 5815 5816 5817 | if( pLevel->op==OP_Return ){ sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); }else{ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); } sqlite3VdbeJumpHere(v, addr); } | | | 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 | if( pLevel->op==OP_Return ){ sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); }else{ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); } sqlite3VdbeJumpHere(v, addr); } VdbeModuleComment((v, "End WHERE-loop%d: %s", i, pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); } /* The "break" point is here, just past the end of the outer loop. ** Set it. */ sqlite3VdbeResolveLabel(v, pWInfo->iBreak); |
︙ | ︙ |
Changes to test/analyze9.test.
︙ | ︙ | |||
801 802 803 804 805 806 807 808 | reset_db execsql { CREATE TABLE t1(a, UNIQUE(a)); INSERT INTO t1 VALUES($two); ANALYZE; } set nByte2 [lindex [sqlite3_db_status db SCHEMA_USED 0] 1] | > | | 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 | reset_db execsql { CREATE TABLE t1(a, UNIQUE(a)); INSERT INTO t1 VALUES($two); ANALYZE; } set nByte2 [lindex [sqlite3_db_status db SCHEMA_USED 0] 1] puts -nonewline " (nByte=$nByte nByte2=$nByte2)" expr {$nByte2 > $nByte+900 && $nByte2 < $nByte+1100} } {1} #------------------------------------------------------------------------- # Test that stat4 data may be used with partial indexes. # do_test 17.1 { reset_db |
︙ | ︙ |
Changes to test/atof1.test.
︙ | ︙ | |||
11 12 13 14 15 16 17 | # # Tests of the sqlite3AtoF() function. # set testdir [file dirname $argv0] source $testdir/tester.tcl | | | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | # # Tests of the sqlite3AtoF() function. # set testdir [file dirname $argv0] source $testdir/tester.tcl if {![info exists __GNUC__] || [regexp arm $tcl_platform(machine)]} { finish_test return } expr srand(1) for {set i 1} {$i<20000} {incr i} { set pow [expr {int((rand()-0.5)*100)}] |
︙ | ︙ |
Changes to test/autoinc.test.
︙ | ︙ | |||
212 213 214 215 216 217 218 | do_test autoinc-2.27 { execsql { SELECT * FROM sqlite_sequence; } } {t1 1238} do_test autoinc-2.28 { execsql { | | | 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | do_test autoinc-2.27 { execsql { SELECT * FROM sqlite_sequence; } } {t1 1238} do_test autoinc-2.28 { execsql { UPDATE sqlite_sequence SET seq='-12345678901234567890' WHERE name='t1'; INSERT INTO t1 VALUES(NULL,6); SELECT * FROM t1; } } {235 1 1235 2 1236 3 1237 4 1238 5 1239 6} do_test autoinc-2.29 { execsql { |
︙ | ︙ |
Changes to test/default.test.
︙ | ︙ | |||
60 61 62 63 64 65 66 67 | execsql { INSERT INTO t4 DEFAULT VALUES; PRAGMA table_info(t4); } } {0 c {} 0 'abc' 0} } finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | execsql { INSERT INTO t4 DEFAULT VALUES; PRAGMA table_info(t4); } } {0 c {} 0 'abc' 0} } do_execsql_test default-3.1 { CREATE TABLE t3( a INTEGER PRIMARY KEY AUTOINCREMENT, b INT DEFAULT 12345 UNIQUE NOT NULL CHECK( b>=0 AND b<99999 ), c VARCHAR(123,456) DEFAULT 'hello' NOT NULL ON CONFLICT REPLACE, d REAL, e FLOATING POINT(5,10) DEFAULT 4.36, f NATIONAL CHARACTER(15) COLLATE RTRIM, g LONG INTEGER DEFAULT( 3600*12 ) ); INSERT INTO t3 VALUES(null, 5, 'row1', '5.25', 'xyz', 321, '432'); SELECT a, typeof(a), b, typeof(b), c, typeof(c), d, typeof(d), e, typeof(e), f, typeof(f), g, typeof(g) FROM t3; } {1 integer 5 integer row1 text 5.25 real xyz text 321 text 432 integer} do_execsql_test default-3.2 { DELETE FROM t3; INSERT INTO t3 DEFAULT VALUES; SELECT * FROM t3; } {2 12345 hello {} 4.36 {} 43200} do_execsql_test default-3.3 { CREATE TABLE t300( a INT DEFAULT 2147483647, b INT DEFAULT 2147483648, c INT DEFAULT +9223372036854775807, d INT DEFAULT -2147483647, e INT DEFAULT -2147483648, f INT DEFAULT -9223372036854775808, g INT DEFAULT (-(-9223372036854775808)), h INT DEFAULT (-(-9223372036854775807)) ); INSERT INTO t300 DEFAULT VALUES; SELECT * FROM t300; } {2147483647 2147483648 9223372036854775807 -2147483647 -2147483648 -9223372036854775808 9.22337203685478e+18 9223372036854775807} finish_test |
Changes to test/e_expr.test.
︙ | ︙ | |||
1077 1078 1079 1080 1081 1082 1083 | SELECT 'abc' REGEXP 'def' } {1 {no such function: REGEXP}} } # EVIDENCE-OF: R-33693-50180 The REGEXP operator is a special syntax for # the regexp() user function. # | | | | | 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 | SELECT 'abc' REGEXP 'def' } {1 {no such function: REGEXP}} } # EVIDENCE-OF: R-33693-50180 The REGEXP operator is a special syntax for # the regexp() user function. # # EVIDENCE-OF: R-65524-61849 If an application-defined SQL function # named "regexp" is added at run-time, then the "X REGEXP Y" operator # will be implemented as a call to "regexp(Y,X)". # proc regexpfunc {args} { eval lappend ::regexpargs $args return 1 } db func regexp -argcount 2 regexpfunc set ::regexpargs [list] |
︙ | ︙ | |||
1602 1603 1604 1605 1606 1607 1608 | do_expr_test e_expr-31.1.3 { CAST(-1.99999 AS INTEGER) } integer -1 do_expr_test e_expr-31.1.4 { CAST(-0.99999 AS INTEGER) } integer 0 # EVIDENCE-OF: R-49503-28105 If a REAL is too large to be represented as # an INTEGER then the result of the cast is the largest negative # integer: -9223372036854775808. # | | | | 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 | do_expr_test e_expr-31.1.3 { CAST(-1.99999 AS INTEGER) } integer -1 do_expr_test e_expr-31.1.4 { CAST(-0.99999 AS INTEGER) } integer 0 # EVIDENCE-OF: R-49503-28105 If a REAL is too large to be represented as # an INTEGER then the result of the cast is the largest negative # integer: -9223372036854775808. # do_expr_test e_expr-31.2.1 { CAST(2e+50 AS INT) } integer 9223372036854775807 do_expr_test e_expr-31.2.2 { CAST(-2e+50 AS INT) } integer -9223372036854775808 do_expr_test e_expr-31.2.3 { CAST(-9223372036854775809.0 AS INT) } integer -9223372036854775808 do_expr_test e_expr-31.2.4 { CAST(9223372036854775809.0 AS INT) } integer 9223372036854775807 # EVIDENCE-OF: R-09295-61337 Casting a TEXT or BLOB value into NUMERIC # first does a forced conversion into REAL but then further converts the # result into INTEGER if and only if the conversion from REAL to INTEGER # is lossless and reversible. # |
︙ | ︙ |
Changes to test/func.test.
︙ | ︙ | |||
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 | db eval {SELECT sum(length(x)) FROM t29} } {1000009} do_test func-29.6 { set x [lindex [sqlite3_db_status db CACHE_MISS 1] 1] if {$x<5} {set x 1} set x } {1} # EVIDENCE-OF: R-29701-50711 The unicode(X) function returns the numeric # unicode code point corresponding to the first character of the string # X. # # EVIDENCE-OF: R-55469-62130 The char(X1,X2,...,XN) function returns a # string composed of characters having the unicode code point values of | > > > > > > > > > > > > > > > > > > | 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 | db eval {SELECT sum(length(x)) FROM t29} } {1000009} do_test func-29.6 { set x [lindex [sqlite3_db_status db CACHE_MISS 1] 1] if {$x<5} {set x 1} set x } {1} # The OP_Column opcode has an optimization that avoids loading content # for fields with content-length=0 when the content offset is on an overflow # page. Make sure the optimization works. # do_execsql_test func-29.10 { CREATE TABLE t29b(a,b,c,d,e,f,g,h,i); INSERT INTO t29b VALUES(1, hex(randomblob(2000)), null, 0, 1, '', zeroblob(0),'x',x'01'); SELECT typeof(c), typeof(d), typeof(e), typeof(f), typeof(g), typeof(h), typeof(i) FROM t29b; } {null integer integer text blob text blob} do_execsql_test func-29.11 { SELECT length(f), length(g), length(h), length(i) FROM t29b; } {0 0 1 1} do_execsql_test func-29.12 { SELECT quote(f), quote(g), quote(h), quote(i) FROM t29b; } {'' X'' 'x' X'01'} # EVIDENCE-OF: R-29701-50711 The unicode(X) function returns the numeric # unicode code point corresponding to the first character of the string # X. # # EVIDENCE-OF: R-55469-62130 The char(X1,X2,...,XN) function returns a # string composed of characters having the unicode code point values of |
︙ | ︙ |
Added test/func5.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # 2013-11-21 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #************************************************************************* # # Verify that constant string expressions that get factored into initializing # code are not reused between function parameters and other values in the # VDBE program, as the function might have changed the encoding. # set testdir [file dirname $argv0] source $testdir/tester.tcl do_execsql_test func5-1.1 { PRAGMA encoding=UTF16le; CREATE TABLE t1(x,a,b,c); INSERT INTO t1 VALUES(1,'ab','cd',1); INSERT INTO t1 VALUES(2,'gh','ef',5); INSERT INTO t1 VALUES(3,'pqr','fuzzy',99); INSERT INTO t1 VALUES(4,'abcdefg','xy',22); INSERT INTO t1 VALUES(5,'shoe','mayer',2953); SELECT x FROM t1 WHERE c=instr('abcdefg',b) OR a='abcdefg' ORDER BY +x; } {2 4} do_execsql_test func5-1.2 { SELECT x FROM t1 WHERE a='abcdefg' OR c=instr('abcdefg',b) ORDER BY +x; } {2 4} finish_test |
Changes to test/misc7.test.
︙ | ︙ | |||
351 352 353 354 355 356 357 | BEGIN; PRAGMA cache_size = 10; INSERT INTO t3 VALUES( randstr(100, 100), randstr(100, 100) ); UPDATE t3 SET a = b; COMMIT; }} msg] | | | 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | BEGIN; PRAGMA cache_size = 10; INSERT INTO t3 VALUES( randstr(100, 100), randstr(100, 100) ); UPDATE t3 SET a = b; COMMIT; }} msg] if {!$rc || ($rc && [string first "UNIQUE" $msg]==0)} { set msg } else { error $msg } } sqlite3 db test.db |
︙ | ︙ |
Added test/run-wordcount.sh.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | #!/bin/sh # # This script runs the wordcount program in different ways, comparing # the output from each. # # Select the source text to be analyzed. # if test "x$1" = "x"; then echo "Usage: $0 FILENAME [ARGS...]"; exit 1; fi # Do test runs # rm -f wcdb1.db ./wordcount --timer --summary wcdb1.db $* --insert >wc-out.txt mv wc-out.txt wc-baseline.txt rm -f wcdb2.db ./wordcount --timer --summary wcdb2.db $* --insert --without-rowid >wc-out.txt if cmp -s wc-out.txt wc-baseline.txt; then echo hi >/dev/null; else echo ERROR:; diff -u wc-baseline.txt wc-out.txt; fi rm -f wcdb1.db ./wordcount --timer --summary wcdb1.db $* --replace >wc-out.txt if cmp -s wc-out.txt wc-baseline.txt; then echo hi >/dev/null; else echo ERROR:; diff -u wc-baseline.txt wc-out.txt; fi rm -f wcdb2.db ./wordcount --timer --summary wcdb2.db $* --replace --without-rowid >wc-out.txt if cmp -s wc-out.txt wc-baseline.txt; then echo hi >/dev/null; else echo ERROR:; diff -u wc-baseline.txt wc-out.txt; fi rm -f wcdb1.db ./wordcount --timer --summary wcdb1.db $* --select >wc-out.txt if cmp -s wc-out.txt wc-baseline.txt; then echo hi >/dev/null; else echo ERROR:; diff -u wc-baseline.txt wc-out.txt; fi rm -f wcdb2.db ./wordcount --timer --summary wcdb2.db $* --select --without-rowid >wc-out.txt if cmp -s wc-out.txt wc-baseline.txt; then echo hi >/dev/null; else echo ERROR:; diff -u wc-baseline.txt wc-out.txt; fi ./wordcount --timer --summary wcdb1.db $* --query >wc-out.txt mv wc-out.txt wc-baseline.txt ./wordcount --timer --summary wcdb2.db $* --query --without-rowid >wc-out.txt if cmp -s wc-out.txt wc-baseline.txt; then echo hi >/dev/null; else echo ERROR:; diff -u wc-baseline.txt wc-out.txt; fi ./wordcount --timer --summary wcdb1.db $* --delete >wc-out.txt mv wc-out.txt wc-baseline.txt ./wordcount --timer --summary wcdb2.db $* --delete --without-rowid >wc-out.txt if cmp -s wc-out.txt wc-baseline.txt; then echo hi >/dev/null; else echo ERROR:; diff -u wc-baseline.txt wc-out.txt; fi # Clean up temporary files created. # rm -rf wcdb1.db wcdb2.db wc-out.txt wc-baseline.txt |
Added test/speedtest1.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 | /* ** A program for performance testing. ** ** The available command-line options are described below: */ static const char zHelp[] = "Usage: %s [--options] DATABASE\n" "Options:\n" " --autovacuum Enable AUTOVACUUM mode\n" " --cachesize N Set the cache size to N\n" " --exclusive Enable locking_mode=EXCLUSIVE\n" " --heap SZ MIN Memory allocator uses SZ bytes & min allocation MIN\n" " --incrvacuum Enable incremenatal vacuum mode\n" " --journalmode M Set the journal_mode to MODE\n" " --key KEY Set the encryption key to KEY\n" " --lookaside N SZ Configure lookaside for N slots of SZ bytes each\n" " --nosync Set PRAGMA synchronous=OFF\n" " --notnull Add NOT NULL constraints to table columns\n" " --pagesize N Set the page size to N\n" " --pcache N SZ Configure N pages of pagecache each of size SZ bytes\n" " --primarykey Use PRIMARY KEY instead of UNIQUE where appropriate\n" " --reprepare Reprepare each statement upon every invocation\n" " --scratch N SZ Configure scratch memory for N slots of SZ bytes each\n" " --sqlonly No-op. Only show the SQL that would have been run.\n" " --size N Relative test size. Default=100\n" " --stats Show statistics at the end\n" " --testset T Run test-set T\n" " --trace Turn on SQL tracing\n" " --utf16be Set text encoding to UTF-16BE\n" " --utf16le Set text encoding to UTF-16LE\n" " --without-rowid Use WITHOUT ROWID where appropriate\n" ; #include "sqlite3.h" #include <assert.h> #include <stdio.h> #include <stdlib.h> #include <stdarg.h> #include <string.h> #include <ctype.h> /* All global state is held in this structure */ static struct Global { sqlite3 *db; /* The open database connection */ sqlite3_stmt *pStmt; /* Current SQL statement */ sqlite3_int64 iStart; /* Start-time for the current test */ sqlite3_int64 iTotal; /* Total time */ int bWithoutRowid; /* True for --without-rowid */ int bReprepare; /* True to reprepare the SQL on each rerun */ int bSqlOnly; /* True to print the SQL once only */ int szTest; /* Scale factor for test iterations */ const char *zWR; /* Might be WITHOUT ROWID */ const char *zNN; /* Might be NOT NULL */ const char *zPK; /* Might be UNIQUE or PRIMARY KEY */ unsigned int x, y; /* Pseudo-random number generator state */ int nResult; /* Size of the current result */ char zResult[3000]; /* Text of the current result */ } g; /* Print an error message and exit */ static void fatal_error(const char *zMsg, ...){ va_list ap; va_start(ap, zMsg); vfprintf(stderr, zMsg, ap); va_end(ap); exit(1); } /* ** Return the value of a hexadecimal digit. Return -1 if the input ** is not a hex digit. */ static int hexDigitValue(char c){ if( c>='0' && c<='9' ) return c - '0'; if( c>='a' && c<='f' ) return c - 'a' + 10; if( c>='A' && c<='F' ) return c - 'A' + 10; return -1; } /* ** Interpret zArg as an integer value, possibly with suffixes. */ static int integerValue(const char *zArg){ sqlite3_int64 v = 0; static const struct { char *zSuffix; int iMult; } aMult[] = { { "KiB", 1024 }, { "MiB", 1024*1024 }, { "GiB", 1024*1024*1024 }, { "KB", 1000 }, { "MB", 1000000 }, { "GB", 1000000000 }, { "K", 1000 }, { "M", 1000000 }, { "G", 1000000000 }, }; int i; int isNeg = 0; if( zArg[0]=='-' ){ isNeg = 1; zArg++; }else if( zArg[0]=='+' ){ zArg++; } if( zArg[0]=='0' && zArg[1]=='x' ){ int x; zArg += 2; while( (x = hexDigitValue(zArg[0]))>=0 ){ v = (v<<4) + x; zArg++; } }else{ while( isdigit(zArg[0]) ){ v = v*10 + zArg[0] - '0'; zArg++; } } for(i=0; i<sizeof(aMult)/sizeof(aMult[0]); i++){ if( sqlite3_stricmp(aMult[i].zSuffix, zArg)==0 ){ v *= aMult[i].iMult; break; } } if( v>=2147483648 ) fatal_error("parameter to large - max 2147483648"); return isNeg? -v : v; } /* Return the current wall-clock time, in milliseconds */ sqlite3_int64 speedtest1_timestamp(void){ static sqlite3_vfs *clockVfs = 0; sqlite3_int64 t; if( clockVfs==0 ) clockVfs = sqlite3_vfs_find(0); if( clockVfs->iVersion>=1 && clockVfs->xCurrentTimeInt64!=0 ){ clockVfs->xCurrentTimeInt64(clockVfs, &t); }else{ double r; clockVfs->xCurrentTime(clockVfs, &r); t = (sqlite3_int64)(r*86400000.0); } return t; } /* Return a pseudo-random unsigned integer */ unsigned int speedtest1_random(void){ g.x = (g.x>>1) ^ ((1+~(g.x&1)) & 0xd0000001); g.y = g.y*1103515245 + 12345; return g.x ^ g.y; } /* Map the value in within the range of 1...limit into another ** number in a way that is chatic and invertable. */ unsigned swizzle(unsigned in, unsigned limit){ unsigned out = 0; while( limit ){ out = (out<<1) | (in&1); in >>= 1; limit >>= 1; } return out; } /* Round up a number so that it is a power of two minus one */ unsigned roundup_allones(unsigned limit){ unsigned m = 1; while( m<limit ) m = (m<<1)+1; return m; } /* The speedtest1_numbername procedure below converts its argment (an integer) ** into a string which is the English-language name for that number. ** The returned string should be freed with sqlite3_free(). ** ** Example: ** ** speedtest1_numbername(123) -> "one hundred twenty three" */ int speedtest1_numbername(unsigned int n, char *zOut, int nOut){ static const char *ones[] = { "zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen" }; static const char *tens[] = { "", "ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety" }; int i = 0; if( n>=1000000000 ){ i += speedtest1_numbername(n/1000000000, zOut+i, nOut-i); sqlite3_snprintf(nOut-i, zOut+i, " billion"); i += (int)strlen(zOut+i); n = n % 1000000000; } if( n>=1000000 ){ if( i && i<nOut-1 ) zOut[i++] = ' '; i += speedtest1_numbername(n/1000000, zOut+i, nOut-i); sqlite3_snprintf(nOut-i, zOut+i, " million"); i += (int)strlen(zOut+i); n = n % 1000000; } if( n>=1000 ){ if( i && i<nOut-1 ) zOut[i++] = ' '; i += speedtest1_numbername(n/1000, zOut+i, nOut-i); sqlite3_snprintf(nOut-i, zOut+i, " thousand"); i += (int)strlen(zOut+i); n = n % 1000; } if( n>=100 ){ if( i && i<nOut-1 ) zOut[i++] = ' '; sqlite3_snprintf(nOut-i, zOut+i, "%s hundred", ones[n/100]); i += (int)strlen(zOut+i); n = n % 100; } if( n>=20 ){ if( i && i<nOut-1 ) zOut[i++] = ' '; sqlite3_snprintf(nOut-i, zOut+i, "%s", tens[n/10]); i += (int)strlen(zOut+i); n = n % 10; } if( n>0 ){ if( i && i<nOut-1 ) zOut[i++] = ' '; sqlite3_snprintf(nOut-i, zOut+i, "%s", ones[n]); i += (int)strlen(zOut+i); } if( i==0 ){ sqlite3_snprintf(nOut-i, zOut+i, "zero"); i += (int)strlen(zOut+i); } return i; } /* Start a new test case */ #define NAMEWIDTH 60 static const char zDots[] = "......................................................................."; void speedtest1_begin_test(int iTestNum, const char *zTestName, ...){ int n = (int)strlen(zTestName); char *zName; va_list ap; va_start(ap, zTestName); zName = sqlite3_vmprintf(zTestName, ap); va_end(ap); n = (int)strlen(zName); if( n>NAMEWIDTH ){ zName[NAMEWIDTH] = 0; n = NAMEWIDTH; } if( g.bSqlOnly ){ printf("/* %4d - %s%.*s */\n", iTestNum, zName, NAMEWIDTH-n, zDots); }else{ printf("%4d - %s%.*s ", iTestNum, zName, NAMEWIDTH-n, zDots); fflush(stdout); } sqlite3_free(zName); g.nResult = 0; g.iStart = speedtest1_timestamp(); g.x = 2903710987; g.y = 1157229256; } /* Complete a test case */ void speedtest1_end_test(void){ sqlite3_int64 iElapseTime = speedtest1_timestamp() - g.iStart; if( !g.bSqlOnly ){ g.iTotal += iElapseTime; printf("%4d.%03ds\n", (int)(iElapseTime/1000), (int)(iElapseTime%1000)); } if( g.pStmt ){ sqlite3_finalize(g.pStmt); g.pStmt = 0; } } /* Report end of testing */ void speedtest1_final(void){ if( !g.bSqlOnly ){ printf(" TOTAL%.*s %4d.%03ds\n", NAMEWIDTH-5, zDots, (int)(g.iTotal/1000), (int)(g.iTotal%1000)); } } /* Run SQL */ void speedtest1_exec(const char *zFormat, ...){ va_list ap; char *zSql; va_start(ap, zFormat); zSql = sqlite3_vmprintf(zFormat, ap); va_end(ap); if( g.bSqlOnly ){ int n = (int)strlen(zSql); while( n>0 && (zSql[n-1]==';' || isspace(zSql[n-1])) ){ n--; } printf("%.*s;\n", n, zSql); }else{ char *zErrMsg = 0; int rc = sqlite3_exec(g.db, zSql, 0, 0, &zErrMsg); if( zErrMsg ) fatal_error("SQL error: %s\n%s\n", zErrMsg, zSql); if( rc!=SQLITE_OK ) fatal_error("exec error: %s\n", sqlite3_errmsg(g.db)); } sqlite3_free(zSql); } /* Prepare an SQL statement */ void speedtest1_prepare(const char *zFormat, ...){ va_list ap; char *zSql; va_start(ap, zFormat); zSql = sqlite3_vmprintf(zFormat, ap); va_end(ap); if( g.bSqlOnly ){ int n = (int)strlen(zSql); while( n>0 && (zSql[n-1]==';' || isspace(zSql[n-1])) ){ n--; } printf("%.*s;\n", n, zSql); }else{ int rc; if( g.pStmt ) sqlite3_finalize(g.pStmt); rc = sqlite3_prepare_v2(g.db, zSql, -1, &g.pStmt, 0); if( rc ){ fatal_error("SQL error: %s\n", sqlite3_errmsg(g.db)); } } sqlite3_free(zSql); } /* Run an SQL statement previously prepared */ void speedtest1_run(void){ int i, n, len; if( g.bSqlOnly ) return; assert( g.pStmt ); g.nResult = 0; while( sqlite3_step(g.pStmt)==SQLITE_ROW ){ n = sqlite3_column_count(g.pStmt); for(i=0; i<n; i++){ const char *z = (const char*)sqlite3_column_text(g.pStmt, i); if( z==0 ) z = "nil"; len = (int)strlen(z); if( g.nResult+len<sizeof(g.zResult)-2 ){ if( g.nResult>0 ) g.zResult[g.nResult++] = ' '; memcpy(g.zResult + g.nResult, z, len+1); g.nResult += len; } } } if( g.bReprepare ){ sqlite3_stmt *pNew; sqlite3_prepare_v2(g.db, sqlite3_sql(g.pStmt), -1, &pNew, 0); sqlite3_finalize(g.pStmt); g.pStmt = pNew; }else{ sqlite3_reset(g.pStmt); } } /* The sqlite3_trace() callback function */ static void traceCallback(void *NotUsed, const char *zSql){ int n = (int)strlen(zSql); while( n>0 && (zSql[n-1]==';' || isspace(zSql[n-1])) ) n--; fprintf(stderr,"%.*s;\n", n, zSql); } /* Substitute random() function that gives the same random ** sequence on each run, for repeatability. */ static void randomFunc( sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ sqlite3_result_int64(context, (sqlite3_int64)speedtest1_random()); } /* ** The main and default testset */ void testset_main(void){ int i; /* Loop counter */ int n; /* iteration count */ int sz; /* Size of the tables */ int maxb; /* Maximum swizzled value */ unsigned x1, x2; /* Parameters */ int len; /* Length of the zNum[] string */ char zNum[2000]; /* A number name */ sz = n = g.szTest*500; maxb = roundup_allones(sz); speedtest1_begin_test(100, "%d INSERTs into table with no index", n); speedtest1_exec("BEGIN"); speedtest1_exec("CREATE TABLE t1(a INTEGER %s, b INTEGER %s, c TEXT %s);", g.zNN, g.zNN, g.zNN); speedtest1_prepare("INSERT INTO t1 VALUES(?1,?2,?3); -- %d times", n); for(i=1; i<=n; i++){ x1 = swizzle(i,maxb); speedtest1_numbername(x1, zNum, sizeof(zNum)); sqlite3_bind_int64(g.pStmt, 1, (sqlite3_int64)x1); sqlite3_bind_int(g.pStmt, 2, i); sqlite3_bind_text(g.pStmt, 3, zNum, -1, SQLITE_STATIC); speedtest1_run(); } speedtest1_exec("COMMIT"); speedtest1_end_test(); n = sz; speedtest1_begin_test(110, "%d ordered INSERTS with one index/PK", n); speedtest1_exec("BEGIN"); speedtest1_exec("CREATE TABLE t2(a INTEGER %s %s, b INTEGER %s, c TEXT %s) %s", g.zNN, g.zPK, g.zNN, g.zNN, g.zWR); speedtest1_prepare("INSERT INTO t2 VALUES(?1,?2,?3); -- %d times", n); for(i=1; i<=n; i++){ x1 = swizzle(i,maxb); speedtest1_numbername(x1, zNum, sizeof(zNum)); sqlite3_bind_int(g.pStmt, 1, i); sqlite3_bind_int64(g.pStmt, 2, (sqlite3_int64)x1); sqlite3_bind_text(g.pStmt, 3, zNum, -1, SQLITE_STATIC); speedtest1_run(); } speedtest1_exec("COMMIT"); speedtest1_end_test(); n = sz; speedtest1_begin_test(120, "%d unordered INSERTS with one index/PK", n); speedtest1_exec("BEGIN"); speedtest1_exec("CREATE TABLE t3(a INTEGER %s %s, b INTEGER %s, c TEXT %s) %s", g.zNN, g.zPK, g.zNN, g.zNN, g.zWR); speedtest1_prepare("INSERT INTO t3 VALUES(?1,?2,?3); -- %d times", n); for(i=1; i<=n; i++){ x1 = swizzle(i,maxb); speedtest1_numbername(x1, zNum, sizeof(zNum)); sqlite3_bind_int(g.pStmt, 2, i); sqlite3_bind_int64(g.pStmt, 1, (sqlite3_int64)x1); sqlite3_bind_text(g.pStmt, 3, zNum, -1, SQLITE_STATIC); speedtest1_run(); } speedtest1_exec("COMMIT"); speedtest1_end_test(); n = g.szTest/2; speedtest1_begin_test(130, "%d SELECTS, numeric BETWEEN, unindexed", n); speedtest1_exec("BEGIN"); speedtest1_prepare( "SELECT count(*), avg(b), sum(length(c)) FROM t1\n" " WHERE b BETWEEN ?1 AND ?2; -- %d times", n ); for(i=1; i<=n; i++){ x1 = speedtest1_random()%maxb; x2 = speedtest1_random()%10 + sz/5000 + x1; sqlite3_bind_int(g.pStmt, 1, x1); sqlite3_bind_int(g.pStmt, 2, x2); speedtest1_run(); } speedtest1_exec("COMMIT"); speedtest1_end_test(); n = g.szTest/5; speedtest1_begin_test(140, "%d SELECTS, LIKE, unindexed", n); speedtest1_exec("BEGIN"); speedtest1_prepare( "SELECT count(*), avg(b), sum(length(c)) FROM t1\n" " WHERE c LIKE ?1; -- %d times", n ); for(i=1; i<=n; i++){ x1 = speedtest1_random()%maxb; zNum[0] = '%'; len = speedtest1_numbername(i, zNum+1, sizeof(zNum)-2); zNum[len] = '%'; zNum[len+1] = 0; sqlite3_bind_text(g.pStmt, 1, zNum, len, SQLITE_STATIC); speedtest1_run(); } speedtest1_exec("COMMIT"); speedtest1_end_test(); speedtest1_begin_test(150, "CREATE INDEX five times"); speedtest1_exec( "BEGIN;\n" "CREATE UNIQUE INDEX t1b ON t1(b);\n" "CREATE INDEX t1c ON t1(c);\n" "CREATE UNIQUE INDEX t2b ON t2(b);\n" "CREATE INDEX t2c ON t2(c DESC);\n" "CREATE INDEX t3bc ON t3(b,c);\n" "COMMIT;\n" ); speedtest1_end_test(); n = sz/5; speedtest1_begin_test(160, "%d SELECTS, numeric BETWEEN, indexed", n); speedtest1_exec("BEGIN"); speedtest1_prepare( "SELECT count(*), avg(b), sum(length(c)) FROM t1\n" " WHERE b BETWEEN ?1 AND ?2; -- %d times", n ); for(i=1; i<=n; i++){ x1 = speedtest1_random()%maxb; x2 = speedtest1_random()%10 + sz/5000 + x1; sqlite3_bind_int(g.pStmt, 1, x1); sqlite3_bind_int(g.pStmt, 2, x2); speedtest1_run(); } speedtest1_exec("COMMIT"); speedtest1_end_test(); n = sz/5; speedtest1_begin_test(161, "%d SELECTS, numeric BETWEEN, PK", n); speedtest1_exec("BEGIN"); speedtest1_prepare( "SELECT count(*), avg(b), sum(length(c)) FROM t2\n" " WHERE a BETWEEN ?1 AND ?2; -- %d times", n ); for(i=1; i<=n; i++){ x1 = speedtest1_random()%maxb; x2 = speedtest1_random()%10 + sz/5000 + x1; sqlite3_bind_int(g.pStmt, 1, x1); sqlite3_bind_int(g.pStmt, 2, x2); speedtest1_run(); } speedtest1_exec("COMMIT"); speedtest1_end_test(); n = sz/5; speedtest1_begin_test(170, "%d SELECTS, text BETWEEN, indexed", n); speedtest1_exec("BEGIN"); speedtest1_prepare( "SELECT count(*), avg(b), sum(length(c)) FROM t1\n" " WHERE c BETWEEN ?1 AND (?1||'~'); -- %d times", n ); for(i=1; i<=n; i++){ x1 = swizzle(i, maxb); len = speedtest1_numbername(x1, zNum, sizeof(zNum)-1); sqlite3_bind_text(g.pStmt, 1, zNum, len, SQLITE_STATIC); speedtest1_run(); } speedtest1_exec("COMMIT"); speedtest1_end_test(); n = sz; speedtest1_begin_test(180, "%d INSERTS with three indexes", n); speedtest1_exec("BEGIN"); speedtest1_exec( "CREATE TABLE t4(\n" " a INTEGER %s %s,\n" " b INTEGER %s,\n" " c TEXT %s\n" ") %s", g.zNN, g.zPK, g.zNN, g.zNN, g.zWR); speedtest1_exec("CREATE INDEX t4b ON t4(b)"); speedtest1_exec("CREATE INDEX t4c ON t4(c)"); speedtest1_exec("INSERT INTO t4 SELECT * FROM t1"); speedtest1_exec("COMMIT"); speedtest1_end_test(); n = sz; speedtest1_begin_test(190, "DELETE and REFILL one table", n); speedtest1_exec( "DELETE FROM t2;" "INSERT INTO t2 SELECT * FROM t1;" ); speedtest1_end_test(); speedtest1_begin_test(200, "VACUUM"); speedtest1_exec("VACUUM"); speedtest1_end_test(); speedtest1_begin_test(210, "ALTER TABLE ADD COLUMN, and query"); speedtest1_exec("ALTER TABLE t2 ADD COLUMN d DEFAULT 123"); speedtest1_exec("SELECT sum(d) FROM t2"); speedtest1_end_test(); n = sz/5; speedtest1_begin_test(230, "%d UPDATES, numeric BETWEEN, indexed", n); speedtest1_exec("BEGIN"); speedtest1_prepare( "UPDATE t2 SET d=b*2 WHERE b BETWEEN ?1 AND ?2; -- %d times", n ); for(i=1; i<=n; i++){ x1 = speedtest1_random()%maxb; x2 = speedtest1_random()%10 + sz/5000 + x1; sqlite3_bind_int(g.pStmt, 1, x1); sqlite3_bind_int(g.pStmt, 2, x2); speedtest1_run(); } speedtest1_exec("COMMIT"); speedtest1_end_test(); n = sz; speedtest1_begin_test(240, "%d UPDATES of individual rows", n); speedtest1_exec("BEGIN"); speedtest1_prepare( "UPDATE t2 SET d=b*3 WHERE a=?1; -- %d times", n ); for(i=1; i<=n; i++){ x1 = speedtest1_random()%sz + 1; sqlite3_bind_int(g.pStmt, 1, x1); speedtest1_run(); } speedtest1_exec("COMMIT"); speedtest1_end_test(); speedtest1_begin_test(250, "One big UPDATE of the whole %d-row table", sz); speedtest1_exec("UPDATE t2 SET d=b*4"); speedtest1_end_test(); speedtest1_begin_test(260, "Query added column after filling"); speedtest1_exec("SELECT sum(d) FROM t2"); speedtest1_end_test(); n = sz/5; speedtest1_begin_test(270, "%d DELETEs, numeric BETWEEN, indexed", n); speedtest1_exec("BEGIN"); speedtest1_prepare( "DELETE FROM t2 WHERE b BETWEEN ?1 AND ?2; -- %d times", n ); for(i=1; i<=n; i++){ x1 = speedtest1_random()%maxb + 1; x2 = speedtest1_random()%10 + sz/5000 + x1; sqlite3_bind_int(g.pStmt, 1, x1); sqlite3_bind_int(g.pStmt, 2, x2); speedtest1_run(); } speedtest1_exec("COMMIT"); speedtest1_end_test(); n = sz; speedtest1_begin_test(280, "%d DELETEs of individual rows", n); speedtest1_exec("BEGIN"); speedtest1_prepare( "DELETE FROM t3 WHERE a=?1; -- %d times", n ); for(i=1; i<=n; i++){ x1 = speedtest1_random()%sz + 1; sqlite3_bind_int(g.pStmt, 1, x1); speedtest1_run(); } speedtest1_exec("COMMIT"); speedtest1_end_test(); speedtest1_begin_test(290, "Refill two %d-row tables using REPLACE", sz); speedtest1_exec("REPLACE INTO t2(a,b,c) SELECT a,b,c FROM t1"); speedtest1_exec("REPLACE INTO t3(a,b,c) SELECT a,b,c FROM t1"); speedtest1_end_test(); n = sz/5; speedtest1_begin_test(290, "%d four-ways joins", n); speedtest1_exec("BEGIN"); speedtest1_prepare( "SELECT t1.c FROM t1, t2, t3, t4\n" " WHERE t4.a BETWEEN ?1 AND ?2\n" " AND t3.a=t4.b\n" " AND t2.a=t3.b\n" " AND t1.c=t2.c" ); for(i=1; i<=n; i++){ x1 = speedtest1_random()%sz + 1; x2 = speedtest1_random()%10 + x1 + 4; sqlite3_bind_int(g.pStmt, 1, x1); sqlite3_bind_int(g.pStmt, 2, x2); speedtest1_run(); } speedtest1_exec("COMMIT"); speedtest1_end_test(); speedtest1_begin_test(980, "PRAGMA integrity_check"); speedtest1_exec("PRAGMA integrity_check"); speedtest1_end_test(); speedtest1_begin_test(990, "ANALYZE"); speedtest1_exec("ANALYZE"); speedtest1_end_test(); } /* ** A testset used for debugging speedtest1 itself. */ void testset_debug1(void){ unsigned i, n; unsigned x1, x2; char zNum[2000]; /* A number name */ n = g.szTest; for(i=1; i<=n; i++){ x1 = swizzle(i, n); x2 = swizzle(x1, n); speedtest1_numbername(x1, zNum, sizeof(zNum)); printf("%5d %5d %5d %s\n", i, x1, x2, zNum); } } int main(int argc, char **argv){ int doAutovac = 0; /* True for --autovacuum */ int cacheSize = 0; /* Desired cache size. 0 means default */ int doExclusive = 0; /* True for --exclusive */ int nHeap = 0, mnHeap = 0; /* Heap size from --heap */ int doIncrvac = 0; /* True for --incrvacuum */ const char *zJMode = 0; /* Journal mode */ const char *zKey = 0; /* Encryption key */ int nLook = 0, szLook = 0; /* --lookaside configuration */ int noSync = 0; /* True for --nosync */ int pageSize = 0; /* Desired page size. 0 means default */ int nPCache = 0, szPCache = 0;/* --pcache configuration */ int nScratch = 0, szScratch=0;/* --scratch configuration */ int showStats = 0; /* True for --stats */ const char *zTSet = "main"; /* Which --testset torun */ int doTrace = 0; /* True for --trace */ const char *zEncoding = 0; /* --utf16be or --utf16le */ const char *zDbName = 0; /* Name of the test database */ void *pHeap = 0; /* Allocated heap space */ void *pLook = 0; /* Allocated lookaside space */ void *pPCache = 0; /* Allocated storage for pcache */ void *pScratch = 0; /* Allocated storage for scratch */ int iCur, iHi; /* Stats values, current and "highwater" */ int i; /* Loop counter */ int rc; /* API return code */ /* Process command-line arguments */ g.zWR = ""; g.zNN = ""; g.zPK = "UNIQUE"; g.szTest = 100; for(i=1; i<argc; i++){ const char *z = argv[i]; if( z[0]=='-' ){ do{ z++; }while( z[0]=='-' ); if( strcmp(z,"autovacuum")==0 ){ doAutovac = 1; }else if( strcmp(z,"cachesize")==0 ){ if( i>=argc-1 ) fatal_error("missing argument on %s\n", argv[i]); i++; cacheSize = integerValue(argv[i]); }else if( strcmp(z,"exclusive")==0 ){ doExclusive = 1; }else if( strcmp(z,"heap")==0 ){ if( i>=argc-2 ) fatal_error("missing arguments on %s\n", argv[i]); nHeap = integerValue(argv[i+1]); mnHeap = integerValue(argv[i+2]); i += 2; }else if( strcmp(z,"incrvacuum")==0 ){ doIncrvac = 1; }else if( strcmp(z,"journal")==0 ){ if( i>=argc-1 ) fatal_error("missing argument on %s\n", argv[i]); zJMode = argv[++i]; }else if( strcmp(z,"key")==0 ){ if( i>=argc-1 ) fatal_error("missing argument on %s\n", argv[i]); zKey = argv[++i]; }else if( strcmp(z,"lookaside")==0 ){ if( i>=argc-2 ) fatal_error("missing arguments on %s\n", argv[i]); nLook = integerValue(argv[i+1]); szLook = integerValue(argv[i+2]); i += 2; }else if( strcmp(z,"nosync")==0 ){ noSync = 1; }else if( strcmp(z,"notnull")==0 ){ g.zNN = "NOT NULL"; }else if( strcmp(z,"pagesize")==0 ){ if( i>=argc-1 ) fatal_error("missing argument on %s\n", argv[i]); pageSize = integerValue(argv[++i]); }else if( strcmp(z,"pcache")==0 ){ if( i>=argc-2 ) fatal_error("missing arguments on %s\n", argv[i]); nPCache = integerValue(argv[i+1]); szPCache = integerValue(argv[i+2]); i += 2; }else if( strcmp(z,"primarykey")==0 ){ g.zPK = "PRIMARY KEY"; }else if( strcmp(z,"reprepare")==0 ){ g.bReprepare = 1; }else if( strcmp(z,"scratch")==0 ){ if( i>=argc-2 ) fatal_error("missing arguments on %s\n", argv[i]); nScratch = integerValue(argv[i+1]); szScratch = integerValue(argv[i+2]); i += 2; }else if( strcmp(z,"sqlonly")==0 ){ g.bSqlOnly = 1; }else if( strcmp(z,"size")==0 ){ if( i>=argc-1 ) fatal_error("missing argument on %s\n", argv[i]); g.szTest = integerValue(argv[++i]); }else if( strcmp(z,"stats")==0 ){ showStats = 1; }else if( strcmp(z,"testset")==0 ){ if( i>=argc-1 ) fatal_error("missing argument on %s\n", argv[i]); zTSet = argv[++i]; }else if( strcmp(z,"trace")==0 ){ doTrace = 1; }else if( strcmp(z,"utf16le")==0 ){ zEncoding = "utf16le"; }else if( strcmp(z,"utf16be")==0 ){ zEncoding = "utf16be"; }else if( strcmp(z,"without-rowid")==0 ){ g.zWR = "WITHOUT ROWID"; g.zPK = "PRIMARY KEY"; }else if( strcmp(z, "help")==0 || strcmp(z,"?")==0 ){ printf(zHelp, argv[0]); exit(0); }else{ fatal_error("unknown option: %s\nUse \"%s -?\" for help\n", argv[i], argv[0]); } }else if( zDbName==0 ){ zDbName = argv[i]; }else{ fatal_error("surplus argument: %s\nUse \"%s -?\" for help\n", argv[i], argv[0]); } } #if 0 if( zDbName==0 ){ fatal_error(zHelp, argv[0]); } #endif if( nHeap>0 ){ pHeap = malloc( nHeap ); if( pHeap==0 ) fatal_error("cannot allocate %d-byte heap\n", nHeap); rc = sqlite3_config(SQLITE_CONFIG_HEAP, pHeap, nHeap, mnHeap); if( rc ) fatal_error("heap configuration failed: %d\n", rc); } if( nPCache>0 && szPCache>0 ){ pPCache = malloc( nPCache*(sqlite3_int64)szPCache ); if( pPCache==0 ) fatal_error("cannot allocate %lld-byte pcache\n", nPCache*(sqlite3_int64)szPCache); rc = sqlite3_config(SQLITE_CONFIG_PAGECACHE, pPCache, szPCache, nPCache); if( rc ) fatal_error("pcache configuration failed: %d\n", rc); } if( nScratch>0 && szScratch>0 ){ pScratch = malloc( nScratch*(sqlite3_int64)szScratch ); if( pScratch==0 ) fatal_error("cannot allocate %lld-byte scratch\n", nScratch*(sqlite3_int64)szScratch); rc = sqlite3_config(SQLITE_CONFIG_SCRATCH, pScratch, szScratch, nScratch); if( rc ) fatal_error("scratch configuration failed: %d\n", rc); } if( nLook>0 ){ sqlite3_config(SQLITE_CONFIG_LOOKASIDE, 0, 0); } /* Open the database and the input file */ if( sqlite3_open(zDbName, &g.db) ){ fatal_error("Cannot open database file: %s\n", zDbName); } if( nLook>0 && szLook>0 ){ pLook = malloc( nLook*szLook ); rc = sqlite3_db_config(g.db, SQLITE_DBCONFIG_LOOKASIDE, pLook, szLook,nLook); if( rc ) fatal_error("lookaside configuration failed: %d\n", rc); } /* Set database connection options */ sqlite3_create_function(g.db, "random", 0, SQLITE_UTF8, 0, randomFunc, 0, 0); if( doTrace ) sqlite3_trace(g.db, traceCallback, 0); if( zKey ){ speedtest1_exec("PRAGMA key('%s')", zKey); } if( zEncoding ){ speedtest1_exec("PRAGMA encoding=%s", zEncoding); } if( doAutovac ){ speedtest1_exec("PRAGMA auto_vacuum=FULL"); }else if( doIncrvac ){ speedtest1_exec("PRAGMA auto_vacuum=INCREMENTAL"); } if( pageSize ){ speedtest1_exec("PRAGMA page_size=%d", pageSize); } if( cacheSize ){ speedtest1_exec("PRAGMA cache_size=%d", cacheSize); } if( noSync ) speedtest1_exec("PRAGMA synchronous=OFF"); if( doExclusive ){ speedtest1_exec("PRAGMA locking_mode=EXCLUSIVE"); } if( zJMode ){ speedtest1_exec("PRAGMA journal_mode=%s", zJMode); } if( strcmp(zTSet,"main")==0 ){ testset_main(); }else if( strcmp(zTSet,"debug1")==0 ){ testset_debug1(); }else{ fatal_error("unknown testset: \"%s\"\n", zTSet); } speedtest1_final(); /* Database connection statistics printed after both prepared statements ** have been finalized */ if( showStats ){ sqlite3_db_status(g.db, SQLITE_DBSTATUS_LOOKASIDE_USED, &iCur, &iHi, 0); printf("-- Lookaside Slots Used: %d (max %d)\n", iCur,iHi); sqlite3_db_status(g.db, SQLITE_DBSTATUS_LOOKASIDE_HIT, &iCur, &iHi, 0); printf("-- Successful lookasides: %d\n", iHi); sqlite3_db_status(g.db, SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE, &iCur,&iHi,0); printf("-- Lookaside size faults: %d\n", iHi); sqlite3_db_status(g.db, SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL, &iCur,&iHi,0); printf("-- Lookaside OOM faults: %d\n", iHi); sqlite3_db_status(g.db, SQLITE_DBSTATUS_CACHE_USED, &iCur, &iHi, 0); printf("-- Pager Heap Usage: %d bytes\n", iCur); sqlite3_db_status(g.db, SQLITE_DBSTATUS_CACHE_HIT, &iCur, &iHi, 1); printf("-- Page cache hits: %d\n", iCur); sqlite3_db_status(g.db, SQLITE_DBSTATUS_CACHE_MISS, &iCur, &iHi, 1); printf("-- Page cache misses: %d\n", iCur); sqlite3_db_status(g.db, SQLITE_DBSTATUS_CACHE_WRITE, &iCur, &iHi, 1); printf("-- Page cache writes: %d\n", iCur); sqlite3_db_status(g.db, SQLITE_DBSTATUS_SCHEMA_USED, &iCur, &iHi, 0); printf("-- Schema Heap Usage: %d bytes\n", iCur); sqlite3_db_status(g.db, SQLITE_DBSTATUS_STMT_USED, &iCur, &iHi, 0); printf("-- Statement Heap Usage: %d bytes\n", iCur); } sqlite3_close(g.db); /* Global memory usage statistics printed after the database connection ** has closed. Memory usage should be zero at this point. */ if( showStats ){ sqlite3_status(SQLITE_STATUS_MEMORY_USED, &iCur, &iHi, 0); printf("-- Memory Used (bytes): %d (max %d)\n", iCur,iHi); sqlite3_status(SQLITE_STATUS_MALLOC_COUNT, &iCur, &iHi, 0); printf("-- Outstanding Allocations: %d (max %d)\n", iCur,iHi); sqlite3_status(SQLITE_STATUS_PAGECACHE_OVERFLOW, &iCur, &iHi, 0); printf("-- Pcache Overflow Bytes: %d (max %d)\n", iCur,iHi); sqlite3_status(SQLITE_STATUS_SCRATCH_OVERFLOW, &iCur, &iHi, 0); printf("-- Scratch Overflow Bytes: %d (max %d)\n", iCur,iHi); sqlite3_status(SQLITE_STATUS_MALLOC_SIZE, &iCur, &iHi, 0); printf("-- Largest Allocation: %d bytes\n",iHi); sqlite3_status(SQLITE_STATUS_PAGECACHE_SIZE, &iCur, &iHi, 0); printf("-- Largest Pcache Allocation: %d bytes\n",iHi); sqlite3_status(SQLITE_STATUS_SCRATCH_SIZE, &iCur, &iHi, 0); printf("-- Largest Scratch Allocation: %d bytes\n", iHi); } /* Release memory */ free( pLook ); free( pPCache ); free( pScratch ); free( pHeap ); return 0; } |
Added test/win32heap.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | # 2013 November 22 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is recovery from transient manditory locks # that sometimes appear on database files due to anti-virus software. # if {$tcl_platform(platform)!="windows"} return set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable !win32malloc { finish_test return } set testprefix win32heap do_test 1.1 { catch {db close} sqlite3_shutdown sqlite3_config_heap_size 1048576 sqlite3_initialize } {SQLITE_OK} do_test 1.2 { sqlite3 db test.db catchsql { CREATE TABLE t1(x); } } {0 {}} do_test 1.3 { catchsql { INSERT INTO t1 (x) VALUES(RANDOMBLOB(1048576)); } } {1 {out of memory}} do_test 1.4 { catchsql { SELECT COUNT(*) FROM t1; } } {0 0} do_test 1.5 { catch {db close} sqlite3_shutdown sqlite3_config_heap_size 0 sqlite3_initialize } {SQLITE_OK} do_test 1.6 { sqlite3 db test.db catchsql { INSERT INTO t1 (x) VALUES(RANDOMBLOB(1048576)); } } {0 {}} do_test 1.7 { catchsql { SELECT COUNT(*) FROM t1; } } {0 1} finish_test |
Changes to test/wordcount.c.
︙ | ︙ | |||
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ** ** --without-rowid Use a WITHOUT ROWID table to store the words. ** --insert Use INSERT mode (the default) ** --replace Use REPLACE mode ** --select Use SELECT mode ** --update Use UPDATE mode ** --delete Use DELETE mode ** --nocase Add the NOCASE collating sequence to the words. ** --trace Enable sqlite3_trace() output. ** --summary Show summary information on the collected data. ** --stats Show sqlite3_status() results at the end. ** --pagesize NNN Use a page size of NNN ** --cachesize NNN Use a cache size of NNN ** --commit NNN Commit after every NNN operations ** --nosync Use PRAGMA synchronous=OFF ** --journal MMMM Use PRAGMA journal_mode=MMMM ** ** Modes: ** ** Insert mode means: ** (1) INSERT OR IGNORE INTO wordcount VALUES($new,1) ** (2) UPDATE wordcount SET cnt=cnt+1 WHERE word=$new -- if (1) is a noop ** | > > | 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | ** ** --without-rowid Use a WITHOUT ROWID table to store the words. ** --insert Use INSERT mode (the default) ** --replace Use REPLACE mode ** --select Use SELECT mode ** --update Use UPDATE mode ** --delete Use DELETE mode ** --query Use QUERY mode ** --nocase Add the NOCASE collating sequence to the words. ** --trace Enable sqlite3_trace() output. ** --summary Show summary information on the collected data. ** --stats Show sqlite3_status() results at the end. ** --pagesize NNN Use a page size of NNN ** --cachesize NNN Use a cache size of NNN ** --commit NNN Commit after every NNN operations ** --nosync Use PRAGMA synchronous=OFF ** --journal MMMM Use PRAGMA journal_mode=MMMM ** --timer Time the operation of this program ** ** Modes: ** ** Insert mode means: ** (1) INSERT OR IGNORE INTO wordcount VALUES($new,1) ** (2) UPDATE wordcount SET cnt=cnt+1 WHERE word=$new -- if (1) is a noop ** |
︙ | ︙ | |||
47 48 49 50 51 52 53 | ** (1) SELECT 1 FROM wordcount WHERE word=$new ** (2) INSERT INTO wordcount VALUES($new,1) -- if (1) returns nothing ** (3) UPDATE wordcount SET cnt=cnt+1 WHERE word=$new --if (1) return TRUE ** ** Delete mode means: ** (1) DELETE FROM wordcount WHERE word=$new ** | > > > | | | | | > > > > > > > > > > > > > > > > | 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | ** (1) SELECT 1 FROM wordcount WHERE word=$new ** (2) INSERT INTO wordcount VALUES($new,1) -- if (1) returns nothing ** (3) UPDATE wordcount SET cnt=cnt+1 WHERE word=$new --if (1) return TRUE ** ** Delete mode means: ** (1) DELETE FROM wordcount WHERE word=$new ** ** Query mode means: ** (1) SELECT cnt FROM wordcount WHERE word=$new ** ** Note that delete mode and query mode are only useful for preexisting ** databases. The wordcount table is created using IF NOT EXISTS so this ** utility can be run multiple times on the same database file. The ** --without-rowid, --nocase, and --pagesize parameters are only effective ** when creating a new database and are harmless no-ops on preexisting ** databases. ** ****************************************************************************** ** ** Compile as follows: ** ** gcc -I. wordcount.c sqlite3.c -ldl -lpthreads ** ** Or: ** ** gcc -I. -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION \ ** wordcount.c sqlite3.c */ #include <stdio.h> #include <string.h> #include <ctype.h> #include <stdlib.h> #include <stdarg.h> #include "sqlite3.h" /* Return the current wall-clock time */ static sqlite3_int64 realTime(void){ static sqlite3_vfs *clockVfs = 0; sqlite3_int64 t; if( clockVfs==0 ) clockVfs = sqlite3_vfs_find(0); if( clockVfs->iVersion>=1 && clockVfs->xCurrentTimeInt64!=0 ){ clockVfs->xCurrentTimeInt64(clockVfs, &t); }else{ double r; clockVfs->xCurrentTime(clockVfs, &r); t = (sqlite3_int64)(r*86400000.0); } return t; } /* Print an error message and exit */ static void fatal_error(const char *zMsg, ...){ va_list ap; va_start(ap, zMsg); vfprintf(stderr, zMsg, ap); va_end(ap); |
︙ | ︙ | |||
91 92 93 94 95 96 97 | /* An sqlite3_exec() callback that prints results on standard output, ** each column separated by a single space. */ static int printResult(void *NotUsed, int nArg, char **azArg, char **azNm){ int i; printf("--"); for(i=0; i<nArg; i++){ | | | 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | /* An sqlite3_exec() callback that prints results on standard output, ** each column separated by a single space. */ static int printResult(void *NotUsed, int nArg, char **azArg, char **azNm){ int i; printf("--"); for(i=0; i<nArg; i++){ printf(" %s", azArg[i] ? azArg[i] : "(null)"); } printf("\n"); return 0; } /* |
︙ | ︙ | |||
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | /* Define operating modes */ #define MODE_INSERT 0 #define MODE_REPLACE 1 #define MODE_SELECT 2 #define MODE_UPDATE 3 #define MODE_DELETE 4 int main(int argc, char **argv){ const char *zFileToRead = 0; /* Input file. NULL for stdin */ const char *zDbName = 0; /* Name of the database file to create */ int useWithoutRowid = 0; /* True for --without-rowid */ int iMode = MODE_INSERT; /* One of MODE_xxxxx */ int useNocase = 0; /* True for --nocase */ int doTrace = 0; /* True for --trace */ int showStats = 0; /* True for --stats */ int showSummary = 0; /* True for --summary */ int cacheSize = 0; /* Desired cache size. 0 means default */ int pageSize = 0; /* Desired page size. 0 means default */ int commitInterval = 0; /* How often to commit. 0 means never */ int noSync = 0; /* True for --nosync */ const char *zJMode = 0; /* Journal mode */ int nOp = 0; /* Operation counter */ int i, j; /* Loop counters */ sqlite3 *db; /* The SQLite database connection */ char *zSql; /* Constructed SQL statement */ sqlite3_stmt *pInsert = 0; /* The INSERT statement */ sqlite3_stmt *pUpdate = 0; /* The UPDATE statement */ sqlite3_stmt *pSelect = 0; /* The SELECT statement */ sqlite3_stmt *pDelete = 0; /* The DELETE statement */ FILE *in; /* The open input file */ int rc; /* Return code from an SQLite interface */ int iCur, iHiwtr; /* Statistics values, current and "highwater" */ char zInput[2000]; /* A single line of input */ /* Process command-line arguments */ for(i=1; i<argc; i++){ const char *z = argv[i]; if( z[0]=='-' ){ do{ z++; }while( z[0]=='-' ); if( strcmp(z,"without-rowid")==0 ){ useWithoutRowid = 1; }else if( strcmp(z,"replace")==0 ){ iMode = MODE_REPLACE; }else if( strcmp(z,"select")==0 ){ iMode = MODE_SELECT; }else if( strcmp(z,"insert")==0 ){ iMode = MODE_INSERT; }else if( strcmp(z,"update")==0 ){ iMode = MODE_UPDATE; }else if( strcmp(z,"delete")==0 ){ iMode = MODE_DELETE; }else if( strcmp(z,"nocase")==0 ){ useNocase = 1; }else if( strcmp(z,"trace")==0 ){ doTrace = 1; }else if( strcmp(z,"nosync")==0 ){ noSync = 1; }else if( strcmp(z,"stats")==0 ){ showStats = 1; }else if( strcmp(z,"summary")==0 ){ showSummary = 1; }else if( strcmp(z,"cachesize")==0 && i<argc-1 ){ i++; cacheSize = atoi(argv[i]); }else if( strcmp(z,"pagesize")==0 && i<argc-1 ){ i++; pageSize = atoi(argv[i]); }else if( strcmp(z,"commit")==0 && i<argc-1 ){ | > > > > > > > > | 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | /* Define operating modes */ #define MODE_INSERT 0 #define MODE_REPLACE 1 #define MODE_SELECT 2 #define MODE_UPDATE 3 #define MODE_DELETE 4 #define MODE_QUERY 5 int main(int argc, char **argv){ const char *zFileToRead = 0; /* Input file. NULL for stdin */ const char *zDbName = 0; /* Name of the database file to create */ int useWithoutRowid = 0; /* True for --without-rowid */ int iMode = MODE_INSERT; /* One of MODE_xxxxx */ int useNocase = 0; /* True for --nocase */ int doTrace = 0; /* True for --trace */ int showStats = 0; /* True for --stats */ int showSummary = 0; /* True for --summary */ int showTimer = 0; /* True for --timer */ int cacheSize = 0; /* Desired cache size. 0 means default */ int pageSize = 0; /* Desired page size. 0 means default */ int commitInterval = 0; /* How often to commit. 0 means never */ int noSync = 0; /* True for --nosync */ const char *zJMode = 0; /* Journal mode */ int nOp = 0; /* Operation counter */ int i, j; /* Loop counters */ sqlite3 *db; /* The SQLite database connection */ char *zSql; /* Constructed SQL statement */ sqlite3_stmt *pInsert = 0; /* The INSERT statement */ sqlite3_stmt *pUpdate = 0; /* The UPDATE statement */ sqlite3_stmt *pSelect = 0; /* The SELECT statement */ sqlite3_stmt *pDelete = 0; /* The DELETE statement */ FILE *in; /* The open input file */ int rc; /* Return code from an SQLite interface */ int iCur, iHiwtr; /* Statistics values, current and "highwater" */ sqlite3_int64 sumCnt = 0; /* Sum in QUERY mode */ sqlite3_int64 startTime; char zInput[2000]; /* A single line of input */ /* Process command-line arguments */ for(i=1; i<argc; i++){ const char *z = argv[i]; if( z[0]=='-' ){ do{ z++; }while( z[0]=='-' ); if( strcmp(z,"without-rowid")==0 ){ useWithoutRowid = 1; }else if( strcmp(z,"replace")==0 ){ iMode = MODE_REPLACE; }else if( strcmp(z,"select")==0 ){ iMode = MODE_SELECT; }else if( strcmp(z,"insert")==0 ){ iMode = MODE_INSERT; }else if( strcmp(z,"update")==0 ){ iMode = MODE_UPDATE; }else if( strcmp(z,"delete")==0 ){ iMode = MODE_DELETE; }else if( strcmp(z,"query")==0 ){ iMode = MODE_QUERY; }else if( strcmp(z,"nocase")==0 ){ useNocase = 1; }else if( strcmp(z,"trace")==0 ){ doTrace = 1; }else if( strcmp(z,"nosync")==0 ){ noSync = 1; }else if( strcmp(z,"stats")==0 ){ showStats = 1; }else if( strcmp(z,"summary")==0 ){ showSummary = 1; }else if( strcmp(z,"timer")==0 ){ showTimer = i; }else if( strcmp(z,"cachesize")==0 && i<argc-1 ){ i++; cacheSize = atoi(argv[i]); }else if( strcmp(z,"pagesize")==0 && i<argc-1 ){ i++; pageSize = atoi(argv[i]); }else if( strcmp(z,"commit")==0 && i<argc-1 ){ |
︙ | ︙ | |||
246 247 248 249 250 251 252 253 254 255 256 257 258 259 | }else{ fatal_error("surplus argument: %s\n", argv[i]); } } if( zDbName==0 ){ fatal_error("Usage: %s [--options] DATABASE [INPUTFILE]\n", argv[0]); } /* Open the database and the input file */ if( sqlite3_open(zDbName, &db) ){ fatal_error("Cannot open database file: %s\n", zDbName); } if( zFileToRead ){ in = fopen(zFileToRead, "rb"); | > | 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 | }else{ fatal_error("surplus argument: %s\n", argv[i]); } } if( zDbName==0 ){ fatal_error("Usage: %s [--options] DATABASE [INPUTFILE]\n", argv[0]); } startTime = realTime(); /* Open the database and the input file */ if( sqlite3_open(zDbName, &db) ){ fatal_error("Cannot open database file: %s\n", zDbName); } if( zFileToRead ){ in = fopen(zFileToRead, "rb"); |
︙ | ︙ | |||
299 300 301 302 303 304 305 306 307 308 309 310 311 312 | if( zSql==0 ) fatal_error("out of memory\n"); rc = sqlite3_exec(db, zSql, 0, 0, 0); if( rc ) fatal_error("Could not create the wordcount table: %s.\n", sqlite3_errmsg(db)); sqlite3_free(zSql); /* Prepare SQL statements that will be needed */ if( iMode==MODE_SELECT ){ rc = sqlite3_prepare_v2(db, "SELECT 1 FROM wordcount WHERE word=?1", -1, &pSelect, 0); if( rc ) fatal_error("Could not prepare the SELECT statement: %s\n", sqlite3_errmsg(db)); rc = sqlite3_prepare_v2(db, | > > > > > > > | 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 | if( zSql==0 ) fatal_error("out of memory\n"); rc = sqlite3_exec(db, zSql, 0, 0, 0); if( rc ) fatal_error("Could not create the wordcount table: %s.\n", sqlite3_errmsg(db)); sqlite3_free(zSql); /* Prepare SQL statements that will be needed */ if( iMode==MODE_QUERY ){ rc = sqlite3_prepare_v2(db, "SELECT cnt FROM wordcount WHERE word=?1", -1, &pSelect, 0); if( rc ) fatal_error("Could not prepare the SELECT statement: %s\n", sqlite3_errmsg(db)); } if( iMode==MODE_SELECT ){ rc = sqlite3_prepare_v2(db, "SELECT 1 FROM wordcount WHERE word=?1", -1, &pSelect, 0); if( rc ) fatal_error("Could not prepare the SELECT statement: %s\n", sqlite3_errmsg(db)); rc = sqlite3_prepare_v2(db, |
︙ | ︙ | |||
381 382 383 384 385 386 387 388 389 390 391 392 393 394 | if( sqlite3_step(pInsert)!=SQLITE_DONE ){ fatal_error("Insert failed: %s\n", sqlite3_errmsg(db)); } sqlite3_reset(pInsert); }else{ fatal_error("SELECT failed: %s\n", sqlite3_errmsg(db)); } }else{ sqlite3_bind_text(pInsert, 1, zInput+i, j-i, SQLITE_STATIC); if( sqlite3_step(pInsert)!=SQLITE_DONE ){ fatal_error("INSERT failed: %s\n", sqlite3_errmsg(db)); } sqlite3_reset(pInsert); if( iMode==MODE_UPDATE | > > > > > > | 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 | if( sqlite3_step(pInsert)!=SQLITE_DONE ){ fatal_error("Insert failed: %s\n", sqlite3_errmsg(db)); } sqlite3_reset(pInsert); }else{ fatal_error("SELECT failed: %s\n", sqlite3_errmsg(db)); } }else if( iMode==MODE_QUERY ){ sqlite3_bind_text(pSelect, 1, zInput+i, j-i, SQLITE_STATIC); if( sqlite3_step(pSelect)==SQLITE_ROW ){ sumCnt += sqlite3_column_int64(pSelect, 0); } sqlite3_reset(pSelect); }else{ sqlite3_bind_text(pInsert, 1, zInput+i, j-i, SQLITE_STATIC); if( sqlite3_step(pInsert)!=SQLITE_DONE ){ fatal_error("INSERT failed: %s\n", sqlite3_errmsg(db)); } sqlite3_reset(pInsert); if( iMode==MODE_UPDATE |
︙ | ︙ | |||
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 | } sqlite3_exec(db, "COMMIT", 0, 0, 0); if( zFileToRead ) fclose(in); sqlite3_finalize(pInsert); sqlite3_finalize(pUpdate); sqlite3_finalize(pSelect); sqlite3_finalize(pDelete); if( showSummary ){ sqlite3_create_function(db, "checksum", -1, SQLITE_UTF8, 0, 0, checksumStep, checksumFinalize); sqlite3_exec(db, "SELECT 'count(*): ', count(*) FROM wordcount;\n" "SELECT 'sum(cnt): ', sum(cnt) FROM wordcount;\n" "SELECT 'max(cnt): ', max(cnt) FROM wordcount;\n" "SELECT 'avg(cnt): ', avg(cnt) FROM wordcount;\n" "SELECT 'sum(cnt=1):', sum(cnt=1) FROM wordcount;\n" "SELECT 'top 10: ', group_concat(word, ', ') FROM " | > > > > > > > > > > > > > > > > > > > | | 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | } sqlite3_exec(db, "COMMIT", 0, 0, 0); if( zFileToRead ) fclose(in); sqlite3_finalize(pInsert); sqlite3_finalize(pUpdate); sqlite3_finalize(pSelect); sqlite3_finalize(pDelete); if( iMode==MODE_QUERY ){ printf("sum of cnt: %lld\n", sumCnt); rc = sqlite3_prepare_v2(db,"SELECT sum(cnt*cnt) FROM wordcount", -1, &pSelect, 0); if( rc==SQLITE_OK && sqlite3_step(pSelect)==SQLITE_ROW ){ printf("double-check: %lld\n", sqlite3_column_int64(pSelect, 0)); } sqlite3_finalize(pSelect); } if( showTimer ){ sqlite3_int64 elapseTime = realTime() - startTime; fprintf(stderr, "%3d.%03d wordcount", (int)(elapseTime/1000), (int)(elapseTime%1000)); for(i=1; i<argc; i++) if( i!=showTimer ) fprintf(stderr, " %s", argv[i]); fprintf(stderr, "\n"); } if( showSummary ){ sqlite3_create_function(db, "checksum", -1, SQLITE_UTF8, 0, 0, checksumStep, checksumFinalize); sqlite3_exec(db, "SELECT 'count(*): ', count(*) FROM wordcount;\n" "SELECT 'sum(cnt): ', sum(cnt) FROM wordcount;\n" "SELECT 'max(cnt): ', max(cnt) FROM wordcount;\n" "SELECT 'avg(cnt): ', avg(cnt) FROM wordcount;\n" "SELECT 'sum(cnt=1):', sum(cnt=1) FROM wordcount;\n" "SELECT 'top 10: ', group_concat(word, ', ') FROM " "(SELECT word FROM wordcount ORDER BY cnt DESC, word LIMIT 10);\n" "SELECT 'checksum: ', checksum(word, cnt) FROM " "(SELECT word, cnt FROM wordcount ORDER BY word);\n" "PRAGMA integrity_check;\n", printResult, 0, 0); } /* Database connection statistics printed after both prepared statements |
︙ | ︙ |
Changes to tool/build-all-msvc.bat.
︙ | ︙ | |||
488 489 490 491 492 493 494 | GOTO :EOF :fn_SetErrorLevel VERIFY MAYBE 2> NUL GOTO :EOF :fn_CopyVariable | < > | 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 | GOTO :EOF :fn_SetErrorLevel VERIFY MAYBE 2> NUL GOTO :EOF :fn_CopyVariable IF NOT DEFINED %1 GOTO :EOF IF "%2" == "" GOTO :EOF SETLOCAL SET __ECHO_CMD=ECHO %%%1%% FOR /F "delims=" %%V IN ('%__ECHO_CMD%') DO ( SET VALUE=%%V ) ENDLOCAL && SET %2=%VALUE% GOTO :EOF |
︙ | ︙ |