SQLite

Check-in [f6211540c9]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge in the latest changes and fixes from trunk.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | overflow-pgno-cache
Files: files | file ages | folders
SHA1: f6211540c9d66a08dc580dd733e4f4a98968ae30
User & Date: drh 2014-03-31 22:03:32.269
Context
2014-03-31
23:57
Fix a compiler warning when SQLITE_DIRECT_OVERFLOW_READ is defined. Minor performance enhancement and size reduction. (check-in: 96385dc460 user: drh tags: overflow-pgno-cache)
22:03
Merge in the latest changes and fixes from trunk. (check-in: f6211540c9 user: drh tags: overflow-pgno-cache)
13:42
Avoid a (harmless) buffer overread that is possible on an OOM when MEMSYS5 is engaged. (check-in: b3296267fb user: drh tags: trunk)
2014-03-20
18:56
Only use the direct-overflow-read optimization if all data from the overflow page in question is being read. (check-in: d8e1f75ddf user: dan tags: overflow-pgno-cache)
Changes
Unified Diff Ignore Whitespace Patch
Changes to VERSION.
1
3.8.4.1
|
1
3.8.5
Changes to configure.
1
2
3
4
5
6
7
8
9
10
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.62 for sqlite 3.8.4.1.
#
# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
# 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.
## --------------------- ##
## M4sh Initialization.  ##


|







1
2
3
4
5
6
7
8
9
10
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.62 for sqlite 3.8.5.
#
# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
# 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.
## --------------------- ##
## M4sh Initialization.  ##
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
MFLAGS=
MAKEFLAGS=
SHELL=${CONFIG_SHELL-/bin/sh}

# Identity of this package.
PACKAGE_NAME='sqlite'
PACKAGE_TARNAME='sqlite'
PACKAGE_VERSION='3.8.4.1'
PACKAGE_STRING='sqlite 3.8.4.1'
PACKAGE_BUGREPORT=''

# Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>







|
|







739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
MFLAGS=
MAKEFLAGS=
SHELL=${CONFIG_SHELL-/bin/sh}

# Identity of this package.
PACKAGE_NAME='sqlite'
PACKAGE_TARNAME='sqlite'
PACKAGE_VERSION='3.8.5'
PACKAGE_STRING='sqlite 3.8.5'
PACKAGE_BUGREPORT=''

# Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
  # Omit some internal or obsolete options to make the list less imposing.
  # This message is too long to be a string in the A/UX 3.1 sh.
  cat <<_ACEOF
\`configure' configures sqlite 3.8.4.1 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.







|







1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
  # Omit some internal or obsolete options to make the list less imposing.
  # This message is too long to be a string in the A/UX 3.1 sh.
  cat <<_ACEOF
\`configure' configures sqlite 3.8.5 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
  --build=BUILD     configure for building on BUILD [guessed]
  --host=HOST       cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
  case $ac_init_help in
     short | recursive ) echo "Configuration of sqlite 3.8.4.1:";;
   esac
  cat <<\_ACEOF

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]







|







1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
  --build=BUILD     configure for building on BUILD [guessed]
  --host=HOST       cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
  case $ac_init_help in
     short | recursive ) echo "Configuration of sqlite 3.8.5:";;
   esac
  cat <<\_ACEOF

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
    cd "$ac_pwd" || { ac_status=$?; break; }
  done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
  cat <<\_ACEOF
sqlite configure 3.8.4.1
generated by GNU Autoconf 2.62

Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
  exit
fi
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by sqlite $as_me 3.8.4.1, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  $ $0 $@

_ACEOF
exec 5>>config.log
{







|













|







1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
    cd "$ac_pwd" || { ac_status=$?; break; }
  done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
  cat <<\_ACEOF
sqlite configure 3.8.5
generated by GNU Autoconf 2.62

Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
  exit
fi
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by sqlite $as_me 3.8.5, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  $ $0 $@

_ACEOF
exec 5>>config.log
{
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031

exec 6>&1

# Save the log message, to keep $[0] and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by sqlite $as_me 3.8.4.1, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  CONFIG_FILES    = $CONFIG_FILES
  CONFIG_HEADERS  = $CONFIG_HEADERS
  CONFIG_LINKS    = $CONFIG_LINKS
  CONFIG_COMMANDS = $CONFIG_COMMANDS
  $ $0 $@







|







14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031

exec 6>&1

# Save the log message, to keep $[0] and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by sqlite $as_me 3.8.5, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  CONFIG_FILES    = $CONFIG_FILES
  CONFIG_HEADERS  = $CONFIG_HEADERS
  CONFIG_LINKS    = $CONFIG_LINKS
  CONFIG_COMMANDS = $CONFIG_COMMANDS
  $ $0 $@
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
$config_commands

Report bugs to <bug-autoconf@gnu.org>."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_version="\\
sqlite config.status 3.8.4.1
configured by $0, generated by GNU Autoconf 2.62,
  with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"

Copyright (C) 2008 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."








|







14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
$config_commands

Report bugs to <bug-autoconf@gnu.org>."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_version="\\
sqlite config.status 3.8.5
configured by $0, generated by GNU Autoconf 2.62,
  with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"

Copyright (C) 2008 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."

Changes to ext/fts3/fts3.c.
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
    rc = fts3CreateTables(p);
  }

  /* Check to see if a legacy fts3 table has been "upgraded" by the
  ** addition of a %_stat table so that it can use incremental merge.
  */
  if( !isFts4 && !isCreate ){
    int rc2 = SQLITE_OK;
    fts3DbExec(&rc2, db, "SELECT 1 FROM %Q.'%q_stat' WHERE id=2",
               p->zDb, p->zName);
    if( rc2==SQLITE_OK ) p->bHasStat = 1;
  }

  /* Figure out the page-size for the database. This is required in order to
  ** estimate the cost of loading large doclists from the database.  */
  fts3DatabasePageSize(&rc, p);
  p->nNodeSize = p->nPgsz-35;








<
<
<
|







1406
1407
1408
1409
1410
1411
1412



1413
1414
1415
1416
1417
1418
1419
1420
    rc = fts3CreateTables(p);
  }

  /* Check to see if a legacy fts3 table has been "upgraded" by the
  ** addition of a %_stat table so that it can use incremental merge.
  */
  if( !isFts4 && !isCreate ){



    p->bHasStat = 2;
  }

  /* Figure out the page-size for the database. This is required in order to
  ** estimate the cost of loading large doclists from the database.  */
  fts3DatabasePageSize(&rc, p);
  p->nNodeSize = p->nPgsz-35;

3316
3317
3318
3319
3320
3321
3322



























3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
    if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, 8);
  }
  sqlite3Fts3SegmentsClose(p);
  return rc;
}

/*



























** Implementation of xBegin() method. This is a no-op.
*/
static int fts3BeginMethod(sqlite3_vtab *pVtab){
  Fts3Table *p = (Fts3Table*)pVtab;
  UNUSED_PARAMETER(pVtab);
  assert( p->pSegments==0 );
  assert( p->nPendingData==0 );
  assert( p->inTransaction!=1 );
  TESTONLY( p->inTransaction = 1 );
  TESTONLY( p->mxSavepoint = -1; );
  p->nLeafAdd = 0;
  return SQLITE_OK;
}

/*
** Implementation of xCommit() method. This is a no-op. The contents of
** the pending-terms hash-table have already been flushed into the database
** by fts3SyncMethod().
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|










|







3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
    if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, 8);
  }
  sqlite3Fts3SegmentsClose(p);
  return rc;
}

/*
** If it is currently unknown whether or not the FTS table has an %_stat
** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat
** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code
** if an error occurs.
*/
static int fts3SetHasStat(Fts3Table *p){
  int rc = SQLITE_OK;
  if( p->bHasStat==2 ){
    const char *zFmt ="SELECT 1 FROM %Q.sqlite_master WHERE tbl_name='%q_stat'";
    char *zSql = sqlite3_mprintf(zFmt, p->zDb, p->zName);
    if( zSql ){
      sqlite3_stmt *pStmt = 0;
      rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
      if( rc==SQLITE_OK ){
        int bHasStat = (sqlite3_step(pStmt)==SQLITE_ROW);
        rc = sqlite3_finalize(pStmt);
        if( rc==SQLITE_OK ) p->bHasStat = bHasStat;
      }
      sqlite3_free(zSql);
    }else{
      rc = SQLITE_NOMEM;
    }
  }
  return rc;
}

/*
** Implementation of xBegin() method. 
*/
static int fts3BeginMethod(sqlite3_vtab *pVtab){
  Fts3Table *p = (Fts3Table*)pVtab;
  UNUSED_PARAMETER(pVtab);
  assert( p->pSegments==0 );
  assert( p->nPendingData==0 );
  assert( p->inTransaction!=1 );
  TESTONLY( p->inTransaction = 1 );
  TESTONLY( p->mxSavepoint = -1; );
  p->nLeafAdd = 0;
  return fts3SetHasStat(p);
}

/*
** Implementation of xCommit() method. This is a no-op. The contents of
** the pending-terms hash-table have already been flushed into the database
** by fts3SyncMethod().
*/
3576
3577
3578
3579
3580
3581
3582




3583
3584
3585
3586
3587
3588
3589

3590

3591
3592
3593
3594
3595
3596
3597
  sqlite3_vtab *pVtab,            /* Virtual table handle */
  const char *zName               /* New name of table */
){
  Fts3Table *p = (Fts3Table *)pVtab;
  sqlite3 *db = p->db;            /* Database connection */
  int rc;                         /* Return Code */





  /* As it happens, the pending terms table is always empty here. This is
  ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction 
  ** always opens a savepoint transaction. And the xSavepoint() method 
  ** flushes the pending terms table. But leave the (no-op) call to
  ** PendingTermsFlush() in in case that changes.
  */
  assert( p->nPendingData==0 );

  rc = sqlite3Fts3PendingTermsFlush(p);


  if( p->zContentTbl==0 ){
    fts3DbExec(&rc, db,
      "ALTER TABLE %Q.'%q_content'  RENAME TO '%q_content';",
      p->zDb, p->zName, zName
    );
  }







>
>
>
>







>
|
>







3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
  sqlite3_vtab *pVtab,            /* Virtual table handle */
  const char *zName               /* New name of table */
){
  Fts3Table *p = (Fts3Table *)pVtab;
  sqlite3 *db = p->db;            /* Database connection */
  int rc;                         /* Return Code */

  /* At this point it must be known if the %_stat table exists or not.
  ** So bHasStat may not be 2.  */
  rc = fts3SetHasStat(p);
  
  /* As it happens, the pending terms table is always empty here. This is
  ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction 
  ** always opens a savepoint transaction. And the xSavepoint() method 
  ** flushes the pending terms table. But leave the (no-op) call to
  ** PendingTermsFlush() in in case that changes.
  */
  assert( p->nPendingData==0 );
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3PendingTermsFlush(p);
  }

  if( p->zContentTbl==0 ){
    fts3DbExec(&rc, db,
      "ALTER TABLE %Q.'%q_content'  RENAME TO '%q_content';",
      p->zDb, p->zName, zName
    );
  }
Changes to ext/fts3/fts3Int.h.
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
  sqlite3_stmt *aStmt[37];

  char *zReadExprlist;
  char *zWriteExprlist;

  int nNodeSize;                  /* Soft limit for node size */
  u8 bFts4;                       /* True for FTS4, false for FTS3 */
  u8 bHasStat;                    /* True if %_stat table exists */
  u8 bHasDocsize;                 /* True if %_docsize table exists */
  u8 bDescIdx;                    /* True if doclists are in reverse order */
  u8 bIgnoreSavepoint;            /* True to ignore xSavepoint invocations */
  int nPgsz;                      /* Page size for host database */
  char *zSegmentsTbl;             /* Name of %_segments table */
  sqlite3_blob *pSegments;        /* Blob handle open on %_segments table */








|







219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
  sqlite3_stmt *aStmt[37];

  char *zReadExprlist;
  char *zWriteExprlist;

  int nNodeSize;                  /* Soft limit for node size */
  u8 bFts4;                       /* True for FTS4, false for FTS3 */
  u8 bHasStat;                    /* True if %_stat table exists (2==unknown) */
  u8 bHasDocsize;                 /* True if %_docsize table exists */
  u8 bDescIdx;                    /* True if doclists are in reverse order */
  u8 bIgnoreSavepoint;            /* True to ignore xSavepoint invocations */
  int nPgsz;                      /* Page size for host database */
  char *zSegmentsTbl;             /* Name of %_segments table */
  sqlite3_blob *pSegments;        /* Blob handle open on %_segments table */

Changes to ext/fts3/fts3_write.c.
5266
5267
5268
5269
5270
5271
5272




5273
5274
5275
5276
5277
5278
5279
  Fts3Table *p = (Fts3Table *)pVtab;
  int rc = SQLITE_OK;             /* Return Code */
  int isRemove = 0;               /* True for an UPDATE or DELETE */
  u32 *aSzIns = 0;                /* Sizes of inserted documents */
  u32 *aSzDel = 0;                /* Sizes of deleted documents */
  int nChng = 0;                  /* Net change in number of documents */
  int bInsertDone = 0;





  assert( p->pSegments==0 );
  assert( 
      nArg==1                     /* DELETE operations */
   || nArg==(2 + p->nColumn + 3)  /* INSERT or UPDATE operations */
  );








>
>
>
>







5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
  Fts3Table *p = (Fts3Table *)pVtab;
  int rc = SQLITE_OK;             /* Return Code */
  int isRemove = 0;               /* True for an UPDATE or DELETE */
  u32 *aSzIns = 0;                /* Sizes of inserted documents */
  u32 *aSzDel = 0;                /* Sizes of deleted documents */
  int nChng = 0;                  /* Net change in number of documents */
  int bInsertDone = 0;

  /* At this point it must be known if the %_stat table exists or not.
  ** So bHasStat may not be 2.  */
  assert( p->bHasStat==0 || p->bHasStat==1 );

  assert( p->pSegments==0 );
  assert( 
      nArg==1                     /* DELETE operations */
   || nArg==(2 + p->nColumn + 3)  /* INSERT or UPDATE operations */
  );

Changes to ext/rtree/rtree.c.
2943
2944
2945
2946
2947
2948
2949
2950

2951
2952
2953
2954




2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969


2970
2971
2972
2973
2974
2975
2976

/*
** This function populates the pRtree->nRowEst variable with an estimate
** of the number of rows in the virtual table. If possible, this is based
** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
*/
static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){
  const char *zSql = "SELECT stat FROM sqlite_stat1 WHERE tbl= ? || '_rowid'";

  sqlite3_stmt *p;
  int rc;
  i64 nRow = 0;





  rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_text(p, 1, pRtree->zName, -1, SQLITE_STATIC);
    if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0);
    rc = sqlite3_finalize(p);
  }else if( rc!=SQLITE_NOMEM ){
    rc = SQLITE_OK;
  }

  if( rc==SQLITE_OK ){
    if( nRow==0 ){
      pRtree->nRowEst = RTREE_DEFAULT_ROWEST;
    }else{
      pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST);
    }


  }

  return rc;
}

static sqlite3_module rtreeModule = {
  0,                          /* iVersion */







|
>




>
>
>
>
|
|
<
|
|
|
|
|

|
|
|
|
|
|
>
>







2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961

2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982

/*
** This function populates the pRtree->nRowEst variable with an estimate
** of the number of rows in the virtual table. If possible, this is based
** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
*/
static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){
  const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'";
  char *zSql;
  sqlite3_stmt *p;
  int rc;
  i64 nRow = 0;

  zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName);
  if( zSql==0 ){
    rc = SQLITE_NOMEM;
  }else{
    rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0);
    if( rc==SQLITE_OK ){

      if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0);
      rc = sqlite3_finalize(p);
    }else if( rc!=SQLITE_NOMEM ){
      rc = SQLITE_OK;
    }

    if( rc==SQLITE_OK ){
      if( nRow==0 ){
        pRtree->nRowEst = RTREE_DEFAULT_ROWEST;
      }else{
        pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST);
      }
    }
    sqlite3_free(zSql);
  }

  return rc;
}

static sqlite3_module rtreeModule = {
  0,                          /* iVersion */
3231
3232
3233
3234
3235
3236
3237


3238
3239
3240
3241
3242
3243
3244
      sqlite3_free(zSql);
    }
  }

  if( rc==SQLITE_OK ){
    *ppVtab = (sqlite3_vtab *)pRtree;
  }else{


    rtreeRelease(pRtree);
  }
  return rc;
}


/*







>
>







3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
      sqlite3_free(zSql);
    }
  }

  if( rc==SQLITE_OK ){
    *ppVtab = (sqlite3_vtab *)pRtree;
  }else{
    assert( *ppVtab==0 );
    assert( pRtree->nBusy==1 );
    rtreeRelease(pRtree);
  }
  return rc;
}


/*
Changes to ext/rtree/rtreeC.test.
153
154
155
156
157
158
159
















































































































160
161
162
do_execsql_test 4.2 {
  SELECT a, b FROM t1 LEFT JOIN t2 ON (+a = +b);
} {1 1 2 {}}

do_execsql_test 4.3 {
  SELECT b, a FROM t2 LEFT JOIN t1 ON (+a = +b);
} {1 1 3 {}}

















































































































finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
do_execsql_test 4.2 {
  SELECT a, b FROM t1 LEFT JOIN t2 ON (+a = +b);
} {1 1 2 {}}

do_execsql_test 4.3 {
  SELECT b, a FROM t2 LEFT JOIN t1 ON (+a = +b);
} {1 1 3 {}}

#--------------------------------------------------------------------
# Test that the sqlite_stat1 data is used correctly.
#
reset_db
do_execsql_test 5.1 {
  CREATE TABLE t1(x PRIMARY KEY, y);
  CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2);

  INSERT INTO t1(x) VALUES(1);
  INSERT INTO t1(x) SELECT x+1 FROM t1;   --   2
  INSERT INTO t1(x) SELECT x+2 FROM t1;   --   4
  INSERT INTO t1(x) SELECT x+4 FROM t1;   --   8
  INSERT INTO t1(x) SELECT x+8 FROM t1;   --  16
  INSERT INTO t1(x) SELECT x+16 FROM t1;  --  32
  INSERT INTO t1(x) SELECT x+32 FROM t1;  --  64
  INSERT INTO t1(x) SELECT x+64 FROM t1;  -- 128
  INSERT INTO t1(x) SELECT x+128 FROM t1; -- 256
  INSERT INTO t1(x) SELECT x+256 FROM t1; -- 512
  INSERT INTO t1(x) SELECT x+512 FROM t1; --1024

  INSERT INTO rt SELECT x, x, x+1 FROM t1 WHERE x<=5;
}

# First test a query with no ANALYZE data at all. The outer loop is
# real table "t1".
#
do_eqp_test 5.2 {
  SELECT * FROM t1, rt WHERE x==id;
} {
  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 1:}
}

# Now create enough ANALYZE data to tell SQLite that virtual table "rt"
# contains very few rows. This causes it to move "rt" to the outer loop.
#
do_execsql_test 5.3 {
  ANALYZE;
  DELETE FROM sqlite_stat1 WHERE tbl='t1';
}
db close
sqlite3 db test.db
do_eqp_test 5.4 {
  SELECT * FROM t1, rt WHERE x==id;
} {
  0 0 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 2:} 
  0 1 0 {SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (x=?)}
}

# Delete the ANALYZE data. "t1" should be the outer loop again.
#
do_execsql_test 5.5 { DROP TABLE sqlite_stat1; }
db close
sqlite3 db test.db
do_eqp_test 5.6 {
  SELECT * FROM t1, rt WHERE x==id;
} {
  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 1:}
}

# This time create and attach a database that contains ANALYZE data for
# tables of the same names as those used internally by virtual table
# "rt". Check that the rtree module is not fooled into using this data.
# Table "t1" should remain the outer loop.
#
do_test 5.7 {
  db backup test.db2
  sqlite3 db2 test.db2
  db2 eval {
    ANALYZE;
    DELETE FROM sqlite_stat1 WHERE tbl='t1';
  }
  db2 close
  db close
  sqlite3 db test.db
  execsql { ATTACH 'test.db2' AS aux; }
} {}
do_eqp_test 5.8 {
  SELECT * FROM t1, rt WHERE x==id;
} {
  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 1:}
}

#--------------------------------------------------------------------
# Test that having a second connection drop the sqlite_stat1 table
# before it is required by rtreeConnect() does not cause problems.
#
ifcapable rtree {
  reset_db
  do_execsql_test 6.1 {
    CREATE TABLE t1(x);
    CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2);
    INSERT INTO t1 VALUES(1);
    INSERT INTO rt VALUES(1,2,3);
    ANALYZE;
  }
  db close
  sqlite3 db test.db
  do_execsql_test 6.2 { SELECT * FROM t1 } {1}
  
  do_test 6.3 {
    sqlite3 db2 test.db
    db2 eval { DROP TABLE sqlite_stat1 }
    db2 close
    execsql { SELECT * FROM rt }
  } {1 2.0 3.0}
  db close
}


finish_test

Changes to src/btree.c.
736
737
738
739
740
741
742
743








744
745
746
747




748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763

/*
** Determine whether or not a cursor has moved from the position it
** was last placed at.  Cursors can move when the row they are pointing
** at is deleted out from under them.
**
** This routine returns an error code if something goes wrong.  The
** integer *pHasMoved is set to one if the cursor has moved and 0 if not.








*/
int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
  int rc;





  rc = restoreCursorPosition(pCur);
  if( rc ){
    *pHasMoved = 1;
    return rc;
  }
  if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
    *pHasMoved = 1;
  }else{
    *pHasMoved = 0;
  }
  return SQLITE_OK;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Given a page number of a regular database page, return the page







|
>
>
>
>
>
>
>
>




>
>
>
>


|



|

|







736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775

/*
** Determine whether or not a cursor has moved from the position it
** was last placed at.  Cursors can move when the row they are pointing
** at is deleted out from under them.
**
** This routine returns an error code if something goes wrong.  The
** integer *pHasMoved is set as follows:
**
**    0:   The cursor is unchanged
**    1:   The cursor is still pointing at the same row, but the pointers
**         returned by sqlite3BtreeKeyFetch() or sqlite3BtreeDataFetch()
**         might now be invalid because of a balance() or other change to the
**         b-tree.
**    2:   The cursor is no longer pointing to the row.  The row might have
**         been deleted out from under the cursor.
*/
int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
  int rc;

  if( pCur->eState==CURSOR_VALID ){
    *pHasMoved = 0;
    return SQLITE_OK;
  }
  rc = restoreCursorPosition(pCur);
  if( rc ){
    *pHasMoved = 2;
    return rc;
  }
  if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
    *pHasMoved = 2;
  }else{
    *pHasMoved = 1;
  }
  return SQLITE_OK;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Given a page number of a regular database page, return the page
2151
2152
2153
2154
2155
2156
2157

2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169

2170
2171
2172
2173
2174
2175
2176
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetCachesize(pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}


/*
** Change the limit on the amount of the database file that may be
** memory mapped.
*/
int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}


/*
** Change the way data is synced to disk in order to increase or decrease
** how well the database resists damage due to OS crashes and power
** failures.  Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage)  Level 2 is the default.  There
** is a very low but non-zero probability of damage.  Level 3 reduces the







>












>







2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetCachesize(pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}

#if SQLITE_MAX_MMAP_SIZE>0
/*
** Change the limit on the amount of the database file that may be
** memory mapped.
*/
int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}
#endif /* SQLITE_MAX_MMAP_SIZE>0 */

/*
** Change the way data is synced to disk in order to increase or decrease
** how well the database resists damage due to OS crashes and power
** failures.  Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage)  Level 2 is the default.  There
** is a very low but non-zero probability of damage.  Level 3 reduces the
4186
4187
4188
4189
4190
4191
4192


4193
4194
4195
4196

4197
4198
4199
4200
4201
4202
4203
  u32 *pAmt            /* Write the number of available bytes here */
){
  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );


  if( pCur->info.nSize==0 ){
    btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
                   &pCur->info);
  }

  *pAmt = pCur->info.nLocal;
  return (void*)(pCur->info.pCell + pCur->info.nHeader);
}


/*
** For the entry that cursor pCur is point to, return as







>
>




>







4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
  u32 *pAmt            /* Write the number of available bytes here */
){
  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->info.nSize>0 );
#if 0
  if( pCur->info.nSize==0 ){
    btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
                   &pCur->info);
  }
#endif
  *pAmt = pCur->info.nLocal;
  return (void*)(pCur->info.pCell + pCur->info.nHeader);
}


/*
** For the entry that cursor pCur is point to, return as
4575
4576
4577
4578
4579
4580
4581

4582
4583
4584
4585
4586
4587
4588
      *pRes = -1;
      return SQLITE_OK;
    }
  }

  if( pIdxKey ){
    xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);

    assert( pIdxKey->default_rc==1 
         || pIdxKey->default_rc==0 
         || pIdxKey->default_rc==-1
    );
  }else{
    xRecordCompare = 0; /* All keys are integers */
  }







>







4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
      *pRes = -1;
      return SQLITE_OK;
    }
  }

  if( pIdxKey ){
    xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
    pIdxKey->isCorrupt = 0;
    assert( pIdxKey->default_rc==1 
         || pIdxKey->default_rc==0 
         || pIdxKey->default_rc==-1
    );
  }else{
    xRecordCompare = 0; /* All keys are integers */
  }
4698
4699
4700
4701
4702
4703
4704

4705
4706
4707
4708
4709
4710
4711
4712
4713

4714
4715
4716
4717
4718
4719
4720
          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = xRecordCompare(nCell, pCellKey, pIdxKey, 0);
          sqlite3_free(pCellKey);
        }

        if( c<0 ){
          lwr = idx+1;
        }else if( c>0 ){
          upr = idx-1;
        }else{
          assert( c==0 );
          *pRes = 0;
          rc = SQLITE_OK;
          pCur->aiIdx[pCur->iPage] = (u16)idx;

          goto moveto_finish;
        }
        if( lwr>upr ) break;
        assert( lwr+upr>=0 );
        idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
      }
    }







>









>







4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = xRecordCompare(nCell, pCellKey, pIdxKey, 0);
          sqlite3_free(pCellKey);
        }
        assert( pIdxKey->isCorrupt==0 || c==0 );
        if( c<0 ){
          lwr = idx+1;
        }else if( c>0 ){
          upr = idx-1;
        }else{
          assert( c==0 );
          *pRes = 0;
          rc = SQLITE_OK;
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          if( pIdxKey->isCorrupt ) rc = SQLITE_CORRUPT;
          goto moveto_finish;
        }
        if( lwr>upr ) break;
        assert( lwr+upr>=0 );
        idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
      }
    }
7427
7428
7429
7430
7431
7432
7433









7434
7435
7436
7437
7438
7439
7440
    ** a no-op).  */
    invalidateIncrblobCursors(p, 0, 1);
    rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
  }
  sqlite3BtreeLeave(p);
  return rc;
}










/*
** Erase all information in a table and add the root of the table to
** the freelist.  Except, the root of the principle table (the one on
** page 1) is never added to the freelist.
**
** This routine will fail with SQLITE_LOCKED if there are any open







>
>
>
>
>
>
>
>
>







7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
    ** a no-op).  */
    invalidateIncrblobCursors(p, 0, 1);
    rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Delete all information from the single table that pCur is open on.
**
** This routine only work for pCur on an ephemeral table.
*/
int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
  return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
}

/*
** Erase all information in a table and add the root of the table to
** the freelist.  Except, the root of the principle table (the one on
** page 1) is never added to the freelist.
**
** This routine will fail with SQLITE_LOCKED if there are any open
Changes to src/btree.h.
59
60
61
62
63
64
65

66

67
68
69
70
71
72
73
#define BTREE_OMIT_JOURNAL  1  /* Do not create or use a rollback journal */
#define BTREE_MEMORY        2  /* This is an in-memory DB */
#define BTREE_SINGLE        4  /* The file contains at most 1 b-tree */
#define BTREE_UNORDERED     8  /* Use of a hash implementation is OK */

int sqlite3BtreeClose(Btree*);
int sqlite3BtreeSetCacheSize(Btree*,int);

int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64);

int sqlite3BtreeSetPagerFlags(Btree*,unsigned);
int sqlite3BtreeSyncDisabled(Btree*);
int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
int sqlite3BtreeGetPageSize(Btree*);
int sqlite3BtreeMaxPageCount(Btree*,int);
u32 sqlite3BtreeLastPage(Btree*);
int sqlite3BtreeSecureDelete(Btree*,int);







>
|
>







59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#define BTREE_OMIT_JOURNAL  1  /* Do not create or use a rollback journal */
#define BTREE_MEMORY        2  /* This is an in-memory DB */
#define BTREE_SINGLE        4  /* The file contains at most 1 b-tree */
#define BTREE_UNORDERED     8  /* Use of a hash implementation is OK */

int sqlite3BtreeClose(Btree*);
int sqlite3BtreeSetCacheSize(Btree*,int);
#if SQLITE_MAX_MMAP_SIZE>0
  int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64);
#endif
int sqlite3BtreeSetPagerFlags(Btree*,unsigned);
int sqlite3BtreeSyncDisabled(Btree*);
int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
int sqlite3BtreeGetPageSize(Btree*);
int sqlite3BtreeMaxPageCount(Btree*,int);
u32 sqlite3BtreeLastPage(Btree*);
int sqlite3BtreeSecureDelete(Btree*,int);
109
110
111
112
113
114
115

116
117
118
119
120
121
122
** indices.)
*/
#define BTREE_INTKEY     1    /* Table has only 64-bit signed integer keys */
#define BTREE_BLOBKEY    2    /* Table has keys only - no data */

int sqlite3BtreeDropTable(Btree*, int, int*);
int sqlite3BtreeClearTable(Btree*, int, int*);

void sqlite3BtreeTripAllCursors(Btree*, int);

void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue);
int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);

int sqlite3BtreeNewDb(Btree *p);








>







111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
** indices.)
*/
#define BTREE_INTKEY     1    /* Table has only 64-bit signed integer keys */
#define BTREE_BLOBKEY    2    /* Table has keys only - no data */

int sqlite3BtreeDropTable(Btree*, int, int*);
int sqlite3BtreeClearTable(Btree*, int, int*);
int sqlite3BtreeClearTableOfCursor(BtCursor*);
void sqlite3BtreeTripAllCursors(Btree*, int);

void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue);
int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);

int sqlite3BtreeNewDb(Btree *p);

Changes to src/expr.c.
29
30
31
32
33
34
35

36
37
38
39
40
41
42
** SELECT * FROM t1 WHERE a;
** SELECT a AS b FROM t1 WHERE b;
** SELECT * FROM t1 WHERE (select a from t1);
*/
char sqlite3ExprAffinity(Expr *pExpr){
  int op;
  pExpr = sqlite3ExprSkipCollate(pExpr);

  op = pExpr->op;
  if( op==TK_SELECT ){
    assert( pExpr->flags&EP_xIsSelect );
    return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
  }
#ifndef SQLITE_OMIT_CAST
  if( op==TK_CAST ){







>







29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
** SELECT * FROM t1 WHERE a;
** SELECT a AS b FROM t1 WHERE b;
** SELECT * FROM t1 WHERE (select a from t1);
*/
char sqlite3ExprAffinity(Expr *pExpr){
  int op;
  pExpr = sqlite3ExprSkipCollate(pExpr);
  if( pExpr->flags & EP_Generic ) return SQLITE_AFF_NONE;
  op = pExpr->op;
  if( op==TK_SELECT ){
    assert( pExpr->flags&EP_xIsSelect );
    return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
  }
#ifndef SQLITE_OMIT_CAST
  if( op==TK_CAST ){
61
62
63
64
65
66
67
68




69
70
71
72
73
74
75
** Set the collating sequence for expression pExpr to be the collating
** sequence named by pToken.   Return a pointer to a new Expr node that
** implements the COLLATE operator.
**
** If a memory allocation error occurs, that fact is recorded in pParse->db
** and the pExpr parameter is returned unchanged.
*/
Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){




  if( pCollName->n>0 ){
    Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
    if( pNew ){
      pNew->pLeft = pExpr;
      pNew->flags |= EP_Collate|EP_Skip;
      pExpr = pNew;
    }







|
>
>
>
>







62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
** Set the collating sequence for expression pExpr to be the collating
** sequence named by pToken.   Return a pointer to a new Expr node that
** implements the COLLATE operator.
**
** If a memory allocation error occurs, that fact is recorded in pParse->db
** and the pExpr parameter is returned unchanged.
*/
Expr *sqlite3ExprAddCollateToken(
  Parse *pParse,           /* Parsing context */
  Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
  const Token *pCollName   /* Name of collating sequence */
){
  if( pCollName->n>0 ){
    Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
    if( pNew ){
      pNew->pLeft = pExpr;
      pNew->flags |= EP_Collate|EP_Skip;
      pExpr = pNew;
    }
114
115
116
117
118
119
120

121
122
123
124
125
126
127
*/
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
  sqlite3 *db = pParse->db;
  CollSeq *pColl = 0;
  Expr *p = pExpr;
  while( p ){
    int op = p->op;

    if( op==TK_CAST || op==TK_UPLUS ){
      p = p->pLeft;
      continue;
    }
    if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
      pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
      break;







>







119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
*/
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
  sqlite3 *db = pParse->db;
  CollSeq *pColl = 0;
  Expr *p = pExpr;
  while( p ){
    int op = p->op;
    if( p->flags & EP_Generic ) break;
    if( op==TK_CAST || op==TK_UPLUS ){
      p = p->pLeft;
      continue;
    }
    if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
      pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
      break;
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
  ExprList *pNew;
  struct ExprList_item *pItem, *pOldItem;
  int i;
  if( p==0 ) return 0;
  pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
  if( pNew==0 ) return 0;
  pNew->iECursor = 0;
  pNew->nExpr = i = p->nExpr;
  if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
  pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
  if( pItem==0 ){
    sqlite3DbFree(db, pNew);
    return 0;
  } 







<







951
952
953
954
955
956
957

958
959
960
961
962
963
964
ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
  ExprList *pNew;
  struct ExprList_item *pItem, *pOldItem;
  int i;
  if( p==0 ) return 0;
  pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
  if( pNew==0 ) return 0;

  pNew->nExpr = i = p->nExpr;
  if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
  pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
  if( pItem==0 ){
    sqlite3DbFree(db, pNew);
    return 0;
  } 
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
  pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
  pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
  pNew->iLimit = 0;
  pNew->iOffset = 0;
  pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->addrOpenEphm[2] = -1;
  pNew->nSelectRow = p->nSelectRow;
  pNew->pWith = withDup(db, p->pWith);
  return pNew;
}
#else
Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
  assert( p==0 );







<







1063
1064
1065
1066
1067
1068
1069

1070
1071
1072
1073
1074
1075
1076
  pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
  pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
  pNew->iLimit = 0;
  pNew->iOffset = 0;
  pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;

  pNew->nSelectRow = p->nSelectRow;
  pNew->pWith = withDup(db, p->pWith);
  return pNew;
}
#else
Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
  assert( p==0 );
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
    u32 savedNQueryLoop = pParse->nQueryLoop;
    int rMayHaveNull = 0;
    eType = IN_INDEX_EPH;
    if( prNotFound ){
      *prNotFound = rMayHaveNull = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
    }else{
      testcase( pParse->nQueryLoop>0 );
      pParse->nQueryLoop = 0;
      if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
        eType = IN_INDEX_ROWID;
      }
    }
    sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
    pParse->nQueryLoop = savedNQueryLoop;







<







1630
1631
1632
1633
1634
1635
1636

1637
1638
1639
1640
1641
1642
1643
    u32 savedNQueryLoop = pParse->nQueryLoop;
    int rMayHaveNull = 0;
    eType = IN_INDEX_EPH;
    if( prNotFound ){
      *prNotFound = rMayHaveNull = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
    }else{

      pParse->nQueryLoop = 0;
      if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
        eType = IN_INDEX_ROWID;
      }
    }
    sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
    pParse->nQueryLoop = savedNQueryLoop;
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
** Generate code to move content from registers iFrom...iFrom+nReg-1
** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
*/
void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
  int i;
  struct yColCache *p;
  assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
  sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1);
  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
    int x = p->iReg;
    if( x>=iFrom && x<iFrom+nReg ){
      p->iReg += iTo-iFrom;
    }
  }
}







|







2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
** Generate code to move content from registers iFrom...iFrom+nReg-1
** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
*/
void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
  int i;
  struct yColCache *p;
  assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
  sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
    int x = p->iReg;
    if( x>=iFrom && x<iFrom+nReg ){
      p->iReg += iTo-iFrom;
    }
  }
}
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
            testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
            pFarg->a[0].pExpr->op2 = 
                  pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
          }
        }

        sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
        sqlite3ExprCodeExprList(pParse, pFarg, r1, 
                                SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
        sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
      }else{
        r1 = 0;
      }
#ifndef SQLITE_OMIT_VIRTUALTABLE
      /* Possibly overload the function if the first argument is







|







2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
            testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
            pFarg->a[0].pExpr->op2 = 
                  pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
          }
        }

        sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
        sqlite3ExprCodeExprList(pParse, pFarg, r1,
                                SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
        sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
      }else{
        r1 = 0;
      }
#ifndef SQLITE_OMIT_VIRTUALTABLE
      /* Possibly overload the function if the first argument is
Changes to src/main.c.
796
797
798
799
800
801
802

803
804
805
806
807
808
809
      HashElem *p;
      for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
        Table *pTab = (Table *)sqliteHashData(p);
        if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab);
      }
    }
  }

  sqlite3BtreeLeaveAll(db);
#else
  UNUSED_PARAMETER(db);
#endif
}

/*







>







796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
      HashElem *p;
      for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
        Table *pTab = (Table *)sqliteHashData(p);
        if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab);
      }
    }
  }
  sqlite3VtabUnlockList(db);
  sqlite3BtreeLeaveAll(db);
#else
  UNUSED_PARAMETER(db);
#endif
}

/*
Changes to src/mem5.c.
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
  /* Round nByte up to the next valid power of two */
  for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}

  /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
  ** block.  If not, then split a block of the next larger power of
  ** two in order to create a new free block of size iLogsize.
  */
  for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
  if( iBin>LOGMAX ){
    testcase( sqlite3GlobalConfig.xLog!=0 );
    sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
    return 0;
  }
  i = mem5.aiFreelist[iBin];
  memsys5Unlink(i, iBin);







|







244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
  /* Round nByte up to the next valid power of two */
  for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}

  /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
  ** block.  If not, then split a block of the next larger power of
  ** two in order to create a new free block of size iLogsize.
  */
  for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){}
  if( iBin>LOGMAX ){
    testcase( sqlite3GlobalConfig.xLog!=0 );
    sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
    return 0;
  }
  i = mem5.aiFreelist[iBin];
  memsys5Unlink(i, iBin);
Changes to src/os_unix.c.
319
320
321
322
323
324
325

326
327
328
329
330
331
332
*/
static int posixFchown(int fd, uid_t uid, gid_t gid){
  return geteuid() ? 0 : fchown(fd,uid,gid);
}

/* Forward reference */
static int openDirectory(const char*, int*);


/*
** Many system calls are accessed through pointer-to-functions so that
** they may be overridden at runtime to facilitate fault injection during
** testing and sandboxing.  The following array holds the names and pointers
** to all overrideable system calls.
*/







>







319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
*/
static int posixFchown(int fd, uid_t uid, gid_t gid){
  return geteuid() ? 0 : fchown(fd,uid,gid);
}

/* Forward reference */
static int openDirectory(const char*, int*);
static int unixGetpagesize(void);

/*
** Many system calls are accessed through pointer-to-functions so that
** they may be overridden at runtime to facilitate fault injection during
** testing and sandboxing.  The following array holds the names and pointers
** to all overrideable system calls.
*/
441
442
443
444
445
446
447



448
449
450
451
452
453
454
#if HAVE_MREMAP
  { "mremap",       (sqlite3_syscall_ptr)mremap,          0 },
#else
  { "mremap",       (sqlite3_syscall_ptr)0,               0 },
#endif
#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[23].pCurrent)
#endif




}; /* End of the overrideable system calls */

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable







>
>
>







442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#if HAVE_MREMAP
  { "mremap",       (sqlite3_syscall_ptr)mremap,          0 },
#else
  { "mremap",       (sqlite3_syscall_ptr)0,               0 },
#endif
#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[23].pCurrent)
#endif

  { "getpagesize",  (sqlite3_syscall_ptr)unixGetpagesize, 0 },
#define osGetpagesize ((int(*)(void))aSyscall[24].pCurrent)

}; /* End of the overrideable system calls */

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable
4101
4102
4103
4104
4105
4106
4107






























4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118

4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
           pShmNode->sharedMask, pShmNode->exclMask));
  }
#endif

  return rc;        
}
































/*
** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
**
** This is not a VFS shared-memory method; it is a utility function called
** by VFS shared-memory methods.
*/
static void unixShmPurge(unixFile *pFd){
  unixShmNode *p = pFd->pInode->pShmNode;
  assert( unixMutexHeld() );
  if( p && p->nRef==0 ){

    int i;
    assert( p->pInode==pFd->pInode );
    sqlite3_mutex_free(p->mutex);
    for(i=0; i<p->nRegion; i++){
      if( p->h>=0 ){
        osMunmap(p->apRegion[i], p->szRegion);
      }else{
        sqlite3_free(p->apRegion[i]);
      }
    }
    sqlite3_free(p->apRegion);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











>



|







4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
           pShmNode->sharedMask, pShmNode->exclMask));
  }
#endif

  return rc;        
}

/*
** Return the system page size.
**
** This function should not be called directly by other code in this file. 
** Instead, it should be called via macro osGetpagesize().
*/
static int unixGetpagesize(void){
#if defined(_BSD_SOURCE)
  return getpagesize();
#else
  return (int)sysconf(_SC_PAGESIZE);
#endif
}

/*
** Return the minimum number of 32KB shm regions that should be mapped at
** a time, assuming that each mapping must be an integer multiple of the
** current system page-size.
**
** Usually, this is 1. The exception seems to be systems that are configured
** to use 64KB pages - in this case each mapping must cover at least two
** shm regions.
*/
static int unixShmRegionPerMap(void){
  int shmsz = 32*1024;            /* SHM region size */
  int pgsz = osGetpagesize();   /* System page size */
  assert( ((pgsz-1)&pgsz)==0 );   /* Page size must be a power of 2 */
  if( pgsz<shmsz ) return 1;
  return pgsz/shmsz;
}

/*
** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
**
** This is not a VFS shared-memory method; it is a utility function called
** by VFS shared-memory methods.
*/
static void unixShmPurge(unixFile *pFd){
  unixShmNode *p = pFd->pInode->pShmNode;
  assert( unixMutexHeld() );
  if( p && p->nRef==0 ){
    int nShmPerMap = unixShmRegionPerMap();
    int i;
    assert( p->pInode==pFd->pInode );
    sqlite3_mutex_free(p->mutex);
    for(i=0; i<p->nRegion; i+=nShmPerMap){
      if( p->h>=0 ){
        osMunmap(p->apRegion[i], p->szRegion);
      }else{
        sqlite3_free(p->apRegion[i]);
      }
    }
    sqlite3_free(p->apRegion);
4322
4323
4324
4325
4326
4327
4328


4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343



4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
  int bExtend,                    /* True to extend file if necessary */
  void volatile **pp              /* OUT: Mapped memory */
){
  unixFile *pDbFd = (unixFile*)fd;
  unixShm *p;
  unixShmNode *pShmNode;
  int rc = SQLITE_OK;



  /* If the shared-memory file has not yet been opened, open it now. */
  if( pDbFd->pShm==0 ){
    rc = unixOpenSharedMemory(pDbFd);
    if( rc!=SQLITE_OK ) return rc;
  }

  p = pDbFd->pShm;
  pShmNode = p->pShmNode;
  sqlite3_mutex_enter(pShmNode->mutex);
  assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
  assert( pShmNode->pInode==pDbFd->pInode );
  assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
  assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );




  if( pShmNode->nRegion<=iRegion ){
    char **apNew;                      /* New apRegion[] array */
    int nByte = (iRegion+1)*szRegion;  /* Minimum required file size */
    struct stat sStat;                 /* Used by fstat() */

    pShmNode->szRegion = szRegion;

    if( pShmNode->h>=0 ){
      /* The requested region is not mapped into this processes address space.
      ** Check to see if it has been allocated (i.e. if the wal-index file is







>
>















>
>
>
|

|







4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
  int bExtend,                    /* True to extend file if necessary */
  void volatile **pp              /* OUT: Mapped memory */
){
  unixFile *pDbFd = (unixFile*)fd;
  unixShm *p;
  unixShmNode *pShmNode;
  int rc = SQLITE_OK;
  int nShmPerMap = unixShmRegionPerMap();
  int nReqRegion;

  /* If the shared-memory file has not yet been opened, open it now. */
  if( pDbFd->pShm==0 ){
    rc = unixOpenSharedMemory(pDbFd);
    if( rc!=SQLITE_OK ) return rc;
  }

  p = pDbFd->pShm;
  pShmNode = p->pShmNode;
  sqlite3_mutex_enter(pShmNode->mutex);
  assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
  assert( pShmNode->pInode==pDbFd->pInode );
  assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
  assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );

  /* Minimum number of regions required to be mapped. */
  nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap;

  if( pShmNode->nRegion<nReqRegion ){
    char **apNew;                      /* New apRegion[] array */
    int nByte = nReqRegion*szRegion;   /* Minimum required file size */
    struct stat sStat;                 /* Used by fstat() */

    pShmNode->szRegion = szRegion;

    if( pShmNode->h>=0 ){
      /* The requested region is not mapped into this processes address space.
      ** Check to see if it has been allocated (i.e. if the wal-index file is
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402


4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420


4421

4422
4423
4424
4425
4426
4427
4428
4429
          }
        }
      }
    }

    /* Map the requested memory region into this processes address space. */
    apNew = (char **)sqlite3_realloc(
        pShmNode->apRegion, (iRegion+1)*sizeof(char *)
    );
    if( !apNew ){
      rc = SQLITE_IOERR_NOMEM;
      goto shmpage_out;
    }
    pShmNode->apRegion = apNew;
    while(pShmNode->nRegion<=iRegion){


      void *pMem;
      if( pShmNode->h>=0 ){
        pMem = osMmap(0, szRegion,
            pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, 
            MAP_SHARED, pShmNode->h, szRegion*(i64)pShmNode->nRegion
        );
        if( pMem==MAP_FAILED ){
          rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
          goto shmpage_out;
        }
      }else{
        pMem = sqlite3_malloc(szRegion);
        if( pMem==0 ){
          rc = SQLITE_NOMEM;
          goto shmpage_out;
        }
        memset(pMem, 0, szRegion);
      }


      pShmNode->apRegion[pShmNode->nRegion] = pMem;

      pShmNode->nRegion++;
    }
  }

shmpage_out:
  if( pShmNode->nRegion>iRegion ){
    *pp = pShmNode->apRegion[iRegion];
  }else{







|






|
>
>


|















>
>
|
>
|







4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
          }
        }
      }
    }

    /* Map the requested memory region into this processes address space. */
    apNew = (char **)sqlite3_realloc(
        pShmNode->apRegion, nReqRegion*sizeof(char *)
    );
    if( !apNew ){
      rc = SQLITE_IOERR_NOMEM;
      goto shmpage_out;
    }
    pShmNode->apRegion = apNew;
    while( pShmNode->nRegion<nReqRegion ){
      int nMap = szRegion*nShmPerMap;
      int i;
      void *pMem;
      if( pShmNode->h>=0 ){
        pMem = osMmap(0, nMap,
            pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, 
            MAP_SHARED, pShmNode->h, szRegion*(i64)pShmNode->nRegion
        );
        if( pMem==MAP_FAILED ){
          rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
          goto shmpage_out;
        }
      }else{
        pMem = sqlite3_malloc(szRegion);
        if( pMem==0 ){
          rc = SQLITE_NOMEM;
          goto shmpage_out;
        }
        memset(pMem, 0, szRegion);
      }

      for(i=0; i<nShmPerMap; i++){
        pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i];
      }
      pShmNode->nRegion += nShmPerMap;
    }
  }

shmpage_out:
  if( pShmNode->nRegion>iRegion ){
    *pp = pShmNode->apRegion[iRegion];
  }else{
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
    osMunmap(pFd->pMapRegion, pFd->mmapSizeActual);
    pFd->pMapRegion = 0;
    pFd->mmapSize = 0;
    pFd->mmapSizeActual = 0;
  }
}

/*
** Return the system page size.
*/
static int unixGetPagesize(void){
#if HAVE_MREMAP
  return 512;
#elif defined(_BSD_SOURCE)
  return getpagesize();
#else
  return (int)sysconf(_SC_PAGESIZE);
#endif
}

/*
** Attempt to set the size of the memory mapping maintained by file 
** descriptor pFd to nNew bytes. Any existing mapping is discarded.
**
** If successful, this function sets the following variables:
**
**       unixFile.pMapRegion







<
<
<
<
<
<
<
<
<
<
<
<
<







4674
4675
4676
4677
4678
4679
4680













4681
4682
4683
4684
4685
4686
4687
    osMunmap(pFd->pMapRegion, pFd->mmapSizeActual);
    pFd->pMapRegion = 0;
    pFd->mmapSize = 0;
    pFd->mmapSizeActual = 0;
  }
}














/*
** Attempt to set the size of the memory mapping maintained by file 
** descriptor pFd to nNew bytes. Any existing mapping is discarded.
**
** If successful, this function sets the following variables:
**
**       unixFile.pMapRegion
4678
4679
4680
4681
4682
4683
4684



4685
4686

4687
4688
4689
4690
4691
4692
4693
  assert( nNew>0 );
  assert( pFd->mmapSizeActual>=pFd->mmapSize );
  assert( MAP_FAILED!=0 );

  if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE;

  if( pOrig ){



    const int szSyspage = unixGetPagesize();
    i64 nReuse = (pFd->mmapSize & ~(szSyspage-1));

    u8 *pReq = &pOrig[nReuse];

    /* Unmap any pages of the existing mapping that cannot be reused. */
    if( nReuse!=nOrig ){
      osMunmap(pReq, nOrig-nReuse);
    }








>
>
>
|

>







4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
  assert( nNew>0 );
  assert( pFd->mmapSizeActual>=pFd->mmapSize );
  assert( MAP_FAILED!=0 );

  if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE;

  if( pOrig ){
#if HAVE_MREMAP
    i64 nReuse = pFd->mmapSize;
#else
    const int szSyspage = osGetpagesize();
    i64 nReuse = (pFd->mmapSize & ~(szSyspage-1));
#endif
    u8 *pReq = &pOrig[nReuse];

    /* Unmap any pages of the existing mapping that cannot be reused. */
    if( nReuse!=nOrig ){
      osMunmap(pReq, nOrig-nReuse);
    }

7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
    UNIXVFS("unix-proxy",    proxyIoFinder ),
#endif
  };
  unsigned int i;          /* Loop counter */

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==24 );

  /* Register all VFSes defined in the aVfs[] array */
  for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
    sqlite3_vfs_register(&aVfs[i], i==0);
  }
  return SQLITE_OK; 
}







|







7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
    UNIXVFS("unix-proxy",    proxyIoFinder ),
#endif
  };
  unsigned int i;          /* Loop counter */

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==25 );

  /* Register all VFSes defined in the aVfs[] array */
  for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
    sqlite3_vfs_register(&aVfs[i], i==0);
  }
  return SQLITE_OK; 
}
Changes to src/parse.y.
1016
1017
1018
1019
1020
1021
1022



























1023
1024
1025
1026
1027
1028
1029
      **      expr1 NOT IN ()
      **
      ** simplify to constants 0 (false) and 1 (true), respectively,
      ** regardless of the value of expr1.
      */
      A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]);
      sqlite3ExprDelete(pParse->db, X.pExpr);



























    }else{
      A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
      if( A.pExpr ){
        A.pExpr->x.pList = Y;
        sqlite3ExprSetHeight(pParse, A.pExpr);
      }else{
        sqlite3ExprListDelete(pParse->db, Y);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
      **      expr1 NOT IN ()
      **
      ** simplify to constants 0 (false) and 1 (true), respectively,
      ** regardless of the value of expr1.
      */
      A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]);
      sqlite3ExprDelete(pParse->db, X.pExpr);
    }else if( Y->nExpr==1 ){
      /* Expressions of the form:
      **
      **      expr1 IN (?1)
      **      expr1 NOT IN (?2)
      **
      ** with exactly one value on the RHS can be simplified to something
      ** like this:
      **
      **      expr1 == ?1
      **      expr1 <> ?2
      **
      ** But, the RHS of the == or <> is marked with the EP_Generic flag
      ** so that it may not contribute to the computation of comparison
      ** affinity or the collating sequence to use for comparison.  Otherwise,
      ** the semantics would be subtly different from IN or NOT IN.
      */
      Expr *pRHS = Y->a[0].pExpr;
      Y->a[0].pExpr = 0;
      sqlite3ExprListDelete(pParse->db, Y);
      /* pRHS cannot be NULL because a malloc error would have been detected
      ** before now and control would have never reached this point */
      if( ALWAYS(pRHS) ){
        pRHS->flags &= ~EP_Collate;
        pRHS->flags |= EP_Generic;
      }
      A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, X.pExpr, pRHS, 0);
    }else{
      A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
      if( A.pExpr ){
        A.pExpr->x.pList = Y;
        sqlite3ExprSetHeight(pParse, A.pExpr);
      }else{
        sqlite3ExprListDelete(pParse->db, Y);
Changes to src/pragma.c.
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
      /* Do the b-tree integrity checks */
      sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
      sqlite3VdbeChangeP5(v, (u8)i);
      addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
      sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
         sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
         P4_DYNAMIC);
      sqlite3VdbeAddOp2(v, OP_Move, 2, 4);
      sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2);
      sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
      sqlite3VdbeJumpHere(v, addr);

      /* Make sure all the indices are constructed correctly.
      */
      for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){







|







1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
      /* Do the b-tree integrity checks */
      sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
      sqlite3VdbeChangeP5(v, (u8)i);
      addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
      sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
         sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
         P4_DYNAMIC);
      sqlite3VdbeAddOp3(v, OP_Move, 2, 4, 1);
      sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2);
      sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
      sqlite3VdbeJumpHere(v, addr);

      /* Make sure all the indices are constructed correctly.
      */
      for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){
Changes to src/printf.c.
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
  d = digit;
  digit += '0';
  *val = (*val - d)*10.0;
  return (char)digit;
}
#endif /* SQLITE_OMIT_FLOATING_POINT */

/*
** Append N space characters to the given string buffer.
*/
void sqlite3AppendSpace(StrAccum *pAccum, int N){
  static const char zSpaces[] = "                             ";
  while( N>=(int)sizeof(zSpaces)-1 ){
    sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1);
    N -= sizeof(zSpaces)-1;
  }
  if( N>0 ){
    sqlite3StrAccumAppend(pAccum, zSpaces, N);
  }
}

/*
** Set the StrAccum object to an error mode.
*/
static void setStrAccumError(StrAccum *p, u8 eError){
  p->accError = eError;
  p->nAlloc = 0;
}







<
<
<
<
<
<
<
<
<
<
<
<
<
<







130
131
132
133
134
135
136














137
138
139
140
141
142
143
  d = digit;
  digit += '0';
  *val = (*val - d)*10.0;
  return (char)digit;
}
#endif /* SQLITE_OMIT_FLOATING_POINT */















/*
** Set the StrAccum object to an error mode.
*/
static void setStrAccumError(StrAccum *p, u8 eError){
  p->accError = eError;
  p->nAlloc = 0;
}
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    }
    useIntern = bFlags & SQLITE_PRINTF_INTERNAL;
  }else{
    bArgList = useIntern = 0;
  }
  for(; (c=(*fmt))!=0; ++fmt){
    if( c!='%' ){
      int amt;
      bufpt = (char *)fmt;
      amt = 1;
      while( (c=(*++fmt))!='%' && c!=0 ) amt++;
      sqlite3StrAccumAppend(pAccum, bufpt, amt);
      if( c==0 ) break;
    }
    if( (c=(*++fmt))==0 ){
      sqlite3StrAccumAppend(pAccum, "%", 1);
      break;
    }
    /* Find out what flags are present */







<

<
|
|







219
220
221
222
223
224
225

226

227
228
229
230
231
232
233
234
235
    }
    useIntern = bFlags & SQLITE_PRINTF_INTERNAL;
  }else{
    bArgList = useIntern = 0;
  }
  for(; (c=(*fmt))!=0; ++fmt){
    if( c!='%' ){

      bufpt = (char *)fmt;

      while( (c=(*++fmt))!='%' && c!=0 ){};
      sqlite3StrAccumAppend(pAccum, bufpt, (int)(fmt - bufpt));
      if( c==0 ) break;
    }
    if( (c=(*++fmt))==0 ){
      sqlite3StrAccumAppend(pAccum, "%", 1);
      break;
    }
    /* Find out what flags are present */
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
          if( x>=4 || (longvalue/10)%10==1 ){
            x = 0;
          }
          *(--bufpt) = zOrd[x*2+1];
          *(--bufpt) = zOrd[x*2];
        }
        {
          register const char *cset;      /* Use registers for speed */
          register int base;
          cset = &aDigits[infop->charset];
          base = infop->base;
          do{                                           /* Convert to ascii */
            *(--bufpt) = cset[longvalue%base];
            longvalue = longvalue/base;
          }while( longvalue>0 );
        }
        length = (int)(&zOut[nOut-1]-bufpt);
        for(idx=precision-length; idx>0; idx--){







<
<
|
|







402
403
404
405
406
407
408


409
410
411
412
413
414
415
416
417
          if( x>=4 || (longvalue/10)%10==1 ){
            x = 0;
          }
          *(--bufpt) = zOrd[x*2+1];
          *(--bufpt) = zOrd[x*2];
        }
        {


          const char *cset = &aDigits[infop->charset];
          u8 base = infop->base;
          do{                                           /* Convert to ascii */
            *(--bufpt) = cset[longvalue%base];
            longvalue = longvalue/base;
          }while( longvalue>0 );
        }
        length = (int)(&zOut[nOut-1]-bufpt);
        for(idx=precision-length; idx>0; idx--){
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753







































































754

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
      }
    }/* End switch over the format type */
    /*
    ** The text of the conversion is pointed to by "bufpt" and is
    ** "length" characters long.  The field width is "width".  Do
    ** the output.
    */
    if( !flag_leftjustify ){
      register int nspace;
      nspace = width-length;
      if( nspace>0 ){
        sqlite3AppendSpace(pAccum, nspace);
      }
    }
    if( length>0 ){
      sqlite3StrAccumAppend(pAccum, bufpt, length);
    }
    if( flag_leftjustify ){
      register int nspace;
      nspace = width-length;
      if( nspace>0 ){
        sqlite3AppendSpace(pAccum, nspace);
      }
    }
    if( zExtra ) sqlite3_free(zExtra);
  }/* End for loop over the format string */
} /* End of function */

/*







































































** Append N bytes of text from z to the StrAccum object.

*/
void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
  assert( z!=0 );
  assert( p->zText!=0 || p->nChar==0 || p->accError );
  assert( N>=0 );
  assert( p->accError==0 || p->nAlloc==0 );
  if( p->nChar+N >= p->nAlloc ){
    char *zNew;
    if( p->accError ){
      testcase(p->accError==STRACCUM_TOOBIG);
      testcase(p->accError==STRACCUM_NOMEM);
      return;
    }
    if( !p->useMalloc ){
      N = p->nAlloc - p->nChar - 1;
      setStrAccumError(p, STRACCUM_TOOBIG);
      if( N<=0 ){
        return;
      }
    }else{
      char *zOld = (p->zText==p->zBase ? 0 : p->zText);
      i64 szNew = p->nChar;
      szNew += N + 1;
      if( szNew > p->mxAlloc ){
        sqlite3StrAccumReset(p);
        setStrAccumError(p, STRACCUM_TOOBIG);
        return;
      }else{
        p->nAlloc = (int)szNew;
      }
      if( p->useMalloc==1 ){
        zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
      }else{
        zNew = sqlite3_realloc(zOld, p->nAlloc);
      }
      if( zNew ){
        if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
        p->zText = zNew;
      }else{
        sqlite3StrAccumReset(p);
        setStrAccumError(p, STRACCUM_NOMEM);
        return;
      }
    }
  }
  assert( p->zText );
  memcpy(&p->zText[p->nChar], z, N);
  p->nChar += N;
}

/*







<
<
|
<
|
<
<
<
|
<
<
<
<
<
|
|
<





>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>







|
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







707
708
709
710
711
712
713


714

715



716





717
718

719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804



805
































806
807
808
809
810
811
812
      }
    }/* End switch over the format type */
    /*
    ** The text of the conversion is pointed to by "bufpt" and is
    ** "length" characters long.  The field width is "width".  Do
    ** the output.
    */


    width -= length;

    if( width>0 && !flag_leftjustify ) sqlite3AppendSpace(pAccum, width);



    sqlite3StrAccumAppend(pAccum, bufpt, length);





    if( width>0 && flag_leftjustify ) sqlite3AppendSpace(pAccum, width);


    if( zExtra ) sqlite3_free(zExtra);
  }/* End for loop over the format string */
} /* End of function */

/*
** Enlarge the memory allocation on a StrAccum object so that it is
** able to accept at least N more bytes of text.
**
** Return the number of bytes of text that StrAccum is able to accept
** after the attempted enlargement.  The value returned might be zero.
*/
static int sqlite3StrAccumEnlarge(StrAccum *p, int N){
  char *zNew;
  assert( p->nChar+N >= p->nAlloc ); /* Only called if really needed */
  if( p->accError ){
    testcase(p->accError==STRACCUM_TOOBIG);
    testcase(p->accError==STRACCUM_NOMEM);
    return 0;
  }
  if( !p->useMalloc ){
    N = p->nAlloc - p->nChar - 1;
    setStrAccumError(p, STRACCUM_TOOBIG);
    return N;
  }else{
    char *zOld = (p->zText==p->zBase ? 0 : p->zText);
    i64 szNew = p->nChar;
    szNew += N + 1;
    if( szNew > p->mxAlloc ){
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_TOOBIG);
      return 0;
    }else{
      p->nAlloc = (int)szNew;
    }
    if( p->useMalloc==1 ){
      zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
    }else{
      zNew = sqlite3_realloc(zOld, p->nAlloc);
    }
    if( zNew ){
      if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
      p->zText = zNew;
    }else{
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_NOMEM);
      return 0;
    }
  }
  return N;
}

/*
** Append N space characters to the given string buffer.
*/
void sqlite3AppendSpace(StrAccum *p, int N){
  if( p->nChar+N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ) return;
  while( (N--)>0 ) p->zText[p->nChar++] = ' ';
}

/*
** The StrAccum "p" is not large enough to accept N new bytes of z[].
** So enlarge if first, then do the append.
**
** This is a helper routine to sqlite3StrAccumAppend() that does special-case
** work (enlarging the buffer) using tail recursion, so that the
** sqlite3StrAccumAppend() routine can use fast calling semantics.
*/
static void enlargeAndAppend(StrAccum *p, const char *z, int N){
  N = sqlite3StrAccumEnlarge(p, N);
  if( N>0 ){
    memcpy(&p->zText[p->nChar], z, N);
    p->nChar += N;
  }
}

/*
** Append N bytes of text from z to the StrAccum object.  Increase the
** size of the memory allocation for StrAccum if necessary.
*/
void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
  assert( z!=0 );
  assert( p->zText!=0 || p->nChar==0 || p->accError );
  assert( N>=0 );
  assert( p->accError==0 || p->nAlloc==0 );
  if( p->nChar+N >= p->nAlloc ){
    enlargeAndAppend(p,z,N);



    return;
































  }
  assert( p->zText );
  memcpy(&p->zText[p->nChar], z, N);
  p->nChar += N;
}

/*
Changes to src/select.c.
10
11
12
13
14
15
16




























17
18
19
20
21
22
23
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
*/
#include "sqliteInt.h"






























/*
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.
*/
static void clearSelect(sqlite3 *db, Select *p){
  sqlite3ExprListDelete(db, p->pEList);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
*/
#include "sqliteInt.h"

/*
** An instance of the following object is used to record information about
** how to process the DISTINCT keyword, to simplify passing that information
** into the selectInnerLoop() routine.
*/
typedef struct DistinctCtx DistinctCtx;
struct DistinctCtx {
  u8 isTnct;      /* True if the DISTINCT keyword is present */
  u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
  int tabTnct;    /* Ephemeral table used for DISTINCT processing */
  int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
};

/*
** An instance of the following object is used to record information about
** the ORDER BY (or GROUP BY) clause of query is being coded.
*/
typedef struct SortCtx SortCtx;
struct SortCtx {
  ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
  int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
  int iECursor;         /* Cursor number for the sorter */
  int regReturn;        /* Register holding block-output return address */
  int labelBkOut;       /* Start label for the block-output subroutine */
  int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
  u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
};
#define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */

/*
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.
*/
static void clearSelect(sqlite3 *db, Select *p){
  sqlite3ExprListDelete(db, p->pEList);
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
  pNew->selFlags = selFlags;
  pNew->op = TK_SELECT;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  assert( pOffset==0 || pLimit!=0 );
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->addrOpenEphm[2] = -1;
  if( db->mallocFailed ) {
    clearSelect(db, pNew);
    if( pNew!=&standin ) sqlite3DbFree(db, pNew);
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }







<







111
112
113
114
115
116
117

118
119
120
121
122
123
124
  pNew->selFlags = selFlags;
  pNew->op = TK_SELECT;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  assert( pOffset==0 || pLimit!=0 );
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;

  if( db->mallocFailed ) {
    clearSelect(db, pNew);
    if( pNew!=&standin ) sqlite3DbFree(db, pNew);
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
415
416
417
418
419
420
421








422
423
424
425
426
427
428
429
430
431
432
433
434
435

436
437
438
439
440
441







442























443
444
445
446
447

448
449

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
                     isOuter, &p->pWhere);
      }
    }
  }
  return 0;
}









/*
** Insert code into "v" that will push the record on the top of the
** stack into the sorter.
*/
static void pushOntoSorter(
  Parse *pParse,         /* Parser context */
  ExprList *pOrderBy,    /* The ORDER BY clause */
  Select *pSelect,       /* The whole SELECT statement */
  int regData            /* Register holding data to be sorted */
){
  Vdbe *v = pParse->pVdbe;
  int nExpr = pOrderBy->nExpr;
  int regBase = sqlite3GetTempRange(pParse, nExpr+2);
  int regRecord = sqlite3GetTempReg(pParse);

  int op;
  sqlite3ExprCacheClear(pParse);
  sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
  sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
  sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);







  if( pSelect->selFlags & SF_UseSorter ){























    op = OP_SorterInsert;
  }else{
    op = OP_IdxInsert;
  }
  sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord);

  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);

  if( pSelect->iLimit ){
    int addr1, addr2;
    int iLimit;
    if( pSelect->iOffset ){
      iLimit = pSelect->iOffset+1;
    }else{
      iLimit = pSelect->iLimit;
    }
    addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
    addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
    sqlite3VdbeJumpHere(v, addr1);
    sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
    sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
    sqlite3VdbeJumpHere(v, addr2);
  }
}

/*
** Add code to implement the OFFSET
*/
static void codeOffset(
  Vdbe *v,          /* Generate code into this VM */
  int iOffset,      /* Register holding the offset counter */
  int iContinue     /* Jump here to skip the current record */
){
  if( iOffset>0 && iContinue!=0 ){
    int addr;
    sqlite3VdbeAddOp2(v, OP_AddImm, iOffset, -1);
    addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
    VdbeComment((v, "skip OFFSET records"));
    sqlite3VdbeJumpHere(v, addr);
  }







>
>
>
>
>
>
>
>

|
|



|




|


>


|
|

|
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




|
>
|
|
>












|
|












|







442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
                     isOuter, &p->pWhere);
      }
    }
  }
  return 0;
}

/* Forward reference */
static KeyInfo *keyInfoFromExprList(
  Parse *pParse,       /* Parsing context */
  ExprList *pList,     /* Form the KeyInfo object from this ExprList */
  int iStart,          /* Begin with this column of pList */
  int nExtra           /* Add this many extra columns to the end */
);

/*
** Insert code into "v" that will push the record in register regData
** into the sorter.
*/
static void pushOntoSorter(
  Parse *pParse,         /* Parser context */
  SortCtx *pSort,        /* Information about the ORDER BY clause */
  Select *pSelect,       /* The whole SELECT statement */
  int regData            /* Register holding data to be sorted */
){
  Vdbe *v = pParse->pVdbe;
  int nExpr = pSort->pOrderBy->nExpr;
  int regBase = sqlite3GetTempRange(pParse, nExpr+2);
  int regRecord = sqlite3GetTempReg(pParse);
  int nOBSat = pSort->nOBSat;
  int op;
  sqlite3ExprCacheClear(pParse);
  sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, 0);
  sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
  sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nExpr+2-nOBSat, regRecord);
  if( nOBSat>0 ){
    int regPrevKey;   /* The first nOBSat columns of the previous row */
    int addrFirst;    /* Address of the OP_IfNot opcode */
    int addrJmp;      /* Address of the OP_Jump opcode */
    VdbeOp *pOp;      /* Opcode that opens the sorter */
    int nKey;         /* Number of sorting key columns, including OP_Sequence */
    KeyInfo *pKI;     /* Original KeyInfo on the sorter table */

    regPrevKey = pParse->nMem+1;
    pParse->nMem += pSort->nOBSat;
    nKey = nExpr - pSort->nOBSat + 1;
    addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); VdbeCoverage(v);
    sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
    pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
    if( pParse->db->mallocFailed ) return;
    pOp->p2 = nKey + 1;
    pKI = pOp->p4.pKeyInfo;
    memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
    sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
    pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1);
    addrJmp = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
    pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
    pSort->regReturn = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
    sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
    sqlite3VdbeJumpHere(v, addrFirst);
    sqlite3VdbeAddOp3(v, OP_Move, regBase, regPrevKey, pSort->nOBSat);
    sqlite3VdbeJumpHere(v, addrJmp);
  }
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    op = OP_SorterInsert;
  }else{
    op = OP_IdxInsert;
  }
  sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
  if( nOBSat==0 ){
    sqlite3ReleaseTempReg(pParse, regRecord);
    sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
  }
  if( pSelect->iLimit ){
    int addr1, addr2;
    int iLimit;
    if( pSelect->iOffset ){
      iLimit = pSelect->iOffset+1;
    }else{
      iLimit = pSelect->iLimit;
    }
    addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
    addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
    sqlite3VdbeJumpHere(v, addr1);
    sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
    sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
    sqlite3VdbeJumpHere(v, addr2);
  }
}

/*
** Add code to implement the OFFSET
*/
static void codeOffset(
  Vdbe *v,          /* Generate code into this VM */
  int iOffset,      /* Register holding the offset counter */
  int iContinue     /* Jump here to skip the current record */
){
  if( iOffset>0 ){
    int addr;
    sqlite3VdbeAddOp2(v, OP_AddImm, iOffset, -1);
    addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
    VdbeComment((v, "skip OFFSET records"));
    sqlite3VdbeJumpHere(v, addr);
  }
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

581

582
583
584
585
586
587
588
    return 1;
  }else{
    return 0;
  }
}
#endif

/*
** An instance of the following object is used to record information about
** how to process the DISTINCT keyword, to simplify passing that information
** into the selectInnerLoop() routine.
*/
typedef struct DistinctCtx DistinctCtx;
struct DistinctCtx {
  u8 isTnct;      /* True if the DISTINCT keyword is present */
  u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
  int tabTnct;    /* Ephemeral table used for DISTINCT processing */
  int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
};

/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
** If srcTab is negative, then the pEList expressions
** are evaluated in order to get the data for this row.  If srcTab is
** zero or more, then data is pulled from srcTab and pEList is used only 
** to get number columns and the datatype for each column.
*/
static void selectInnerLoop(
  Parse *pParse,          /* The parser context */
  Select *p,              /* The complete select statement being coded */
  ExprList *pEList,       /* List of values being extracted */
  int srcTab,             /* Pull data from this table */
  ExprList *pOrderBy,     /* If not NULL, sort results using this key */
  DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
  SelectDest *pDest,      /* How to dispose of the results */
  int iContinue,          /* Jump here to continue with next row */
  int iBreak              /* Jump here to break out of the inner loop */
){
  Vdbe *v = pParse->pVdbe;
  int i;
  int hasDistinct;        /* True if the DISTINCT keyword is present */
  int regResult;              /* Start of memory holding result set */
  int eDest = pDest->eDest;   /* How to dispose of results */
  int iParm = pDest->iSDParm; /* First argument to disposal method */
  int nResultCol;             /* Number of result columns */

  assert( v );
  assert( pEList!=0 );
  hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;

  if( pOrderBy==0 && !hasDistinct ){

    codeOffset(v, p->iOffset, iContinue);
  }

  /* Pull the requested columns.
  */
  nResultCol = pEList->nExpr;








<
<
<
<
<
<
<
<
<
<
<
<
<














|
















>
|
>







598
599
600
601
602
603
604













605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    return 1;
  }else{
    return 0;
  }
}
#endif














/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
** If srcTab is negative, then the pEList expressions
** are evaluated in order to get the data for this row.  If srcTab is
** zero or more, then data is pulled from srcTab and pEList is used only 
** to get number columns and the datatype for each column.
*/
static void selectInnerLoop(
  Parse *pParse,          /* The parser context */
  Select *p,              /* The complete select statement being coded */
  ExprList *pEList,       /* List of values being extracted */
  int srcTab,             /* Pull data from this table */
  SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
  DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
  SelectDest *pDest,      /* How to dispose of the results */
  int iContinue,          /* Jump here to continue with next row */
  int iBreak              /* Jump here to break out of the inner loop */
){
  Vdbe *v = pParse->pVdbe;
  int i;
  int hasDistinct;        /* True if the DISTINCT keyword is present */
  int regResult;              /* Start of memory holding result set */
  int eDest = pDest->eDest;   /* How to dispose of results */
  int iParm = pDest->iSDParm; /* First argument to disposal method */
  int nResultCol;             /* Number of result columns */

  assert( v );
  assert( pEList!=0 );
  hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
  if( pSort && pSort->pOrderBy==0 ) pSort = 0;
  if( pSort==0 && !hasDistinct ){
    assert( iContinue!=0 );
    codeOffset(v, p->iOffset, iContinue);
  }

  /* Pull the requested columns.
  */
  nResultCol = pEList->nExpr;

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

      default: {
        assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
        codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
        break;
      }
    }
    if( pOrderBy==0 ){
      codeOffset(v, p->iOffset, iContinue);
    }
  }

  switch( eDest ){
    /* In this mode, write each query result to the key of the temporary
    ** table iParm.







|







721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

      default: {
        assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
        codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
        break;
      }
    }
    if( pSort==0 ){
      codeOffset(v, p->iOffset, iContinue);
    }
  }

  switch( eDest ){
    /* In this mode, write each query result to the key of the temporary
    ** table iParm.
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
      sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
      break;
    }
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

    /* Store the result as data using a unique key.
    */

    case SRT_DistTable:
    case SRT_Table:
    case SRT_EphemTab: {
      int r1 = sqlite3GetTempReg(pParse);
      testcase( eDest==SRT_Table );
      testcase( eDest==SRT_EphemTab );
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
#ifndef SQLITE_OMIT_CTE
      if( eDest==SRT_DistTable ){
        /* If the destination is DistTable, then cursor (iParm+1) is open
        ** on an ephemeral index. If the current row is already present
        ** in the index, do not write it to the output. If not, add the
        ** current row to the index and proceed with writing it to the
        ** output table as well.  */
        int addr = sqlite3VdbeCurrentAddr(v) + 4;
        sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
        sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
        assert( pOrderBy==0 );
      }
#endif
      if( pOrderBy ){
        pushOntoSorter(pParse, pOrderBy, p, r1);
      }else{
        int r2 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
        sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
        sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
        sqlite3ReleaseTempReg(pParse, r2);
      }
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {
      assert( nResultCol==1 );
      pDest->affSdst =
                  sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
      if( pOrderBy ){
        /* At first glance you would think we could optimize out the
        ** ORDER BY in this case since the order of entries in the set
        ** does not matter.  But there might be a LIMIT clause, in which
        ** case the order does matter */
        pushOntoSorter(pParse, pOrderBy, p, regResult);
      }else{
        int r1 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
        sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
        sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
        sqlite3ReleaseTempReg(pParse, r1);
      }







>
|







|
|







|


|
|




















|




|







752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
      sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
      break;
    }
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

    /* Store the result as data using a unique key.
    */
    case SRT_Fifo:
    case SRT_DistFifo:
    case SRT_Table:
    case SRT_EphemTab: {
      int r1 = sqlite3GetTempReg(pParse);
      testcase( eDest==SRT_Table );
      testcase( eDest==SRT_EphemTab );
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
#ifndef SQLITE_OMIT_CTE
      if( eDest==SRT_DistFifo ){
        /* If the destination is DistFifo, then cursor (iParm+1) is open
        ** on an ephemeral index. If the current row is already present
        ** in the index, do not write it to the output. If not, add the
        ** current row to the index and proceed with writing it to the
        ** output table as well.  */
        int addr = sqlite3VdbeCurrentAddr(v) + 4;
        sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
        sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
        assert( pSort==0 );
      }
#endif
      if( pSort ){
        pushOntoSorter(pParse, pSort, p, r1);
      }else{
        int r2 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
        sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
        sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
        sqlite3ReleaseTempReg(pParse, r2);
      }
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {
      assert( nResultCol==1 );
      pDest->affSdst =
                  sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
      if( pSort ){
        /* At first glance you would think we could optimize out the
        ** ORDER BY in this case since the order of entries in the set
        ** does not matter.  But there might be a LIMIT clause, in which
        ** case the order does matter */
        pushOntoSorter(pParse, pSort, p, regResult);
      }else{
        int r1 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
        sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
        sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
        sqlite3ReleaseTempReg(pParse, r1);
      }
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell and break out
    ** of the scan loop.
    */
    case SRT_Mem: {
      assert( nResultCol==1 );
      if( pOrderBy ){
        pushOntoSorter(pParse, pOrderBy, p, regResult);
      }else{
        sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
        /* The LIMIT clause will jump out of the loop for us */
      }
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    case SRT_Coroutine:       /* Send data to a co-routine */
    case SRT_Output: {        /* Return the results */
      testcase( eDest==SRT_Coroutine );
      testcase( eDest==SRT_Output );
      if( pOrderBy ){
        int r1 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
        pushOntoSorter(pParse, pOrderBy, p, r1);
        sqlite3ReleaseTempReg(pParse, r1);
      }else if( eDest==SRT_Coroutine ){
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
      }else{
        sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
        sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
      }







|
|












|


|







825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell and break out
    ** of the scan loop.
    */
    case SRT_Mem: {
      assert( nResultCol==1 );
      if( pSort ){
        pushOntoSorter(pParse, pSort, p, regResult);
      }else{
        sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
        /* The LIMIT clause will jump out of the loop for us */
      }
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    case SRT_Coroutine:       /* Send data to a co-routine */
    case SRT_Output: {        /* Return the results */
      testcase( eDest==SRT_Coroutine );
      testcase( eDest==SRT_Output );
      if( pSort ){
        int r1 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
        pushOntoSorter(pParse, pSort, p, r1);
        sqlite3ReleaseTempReg(pParse, r1);
      }else if( eDest==SRT_Coroutine ){
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
      }else{
        sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
        sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
      }
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
#endif
  }

  /* Jump to the end of the loop if the LIMIT is reached.  Except, if
  ** there is a sorter, in which case the sorter has already limited
  ** the output for us.
  */
  if( pOrderBy==0 && p->iLimit ){
    sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
  }
}

/*
** Allocate a KeyInfo object sufficient for an index of N key columns and
** X extra columns.







|







919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
#endif
  }

  /* Jump to the end of the loop if the LIMIT is reached.  Except, if
  ** there is a sorter, in which case the sorter has already limited
  ** the output for us.
  */
  if( pSort==0 && p->iLimit ){
    sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
  }
}

/*
** Allocate a KeyInfo object sufficient for an index of N key columns and
** X extra columns.
932
933
934
935
936
937
938
939





940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
** then the KeyInfo structure is appropriate for initializing a virtual
** index to implement a DISTINCT test.
**
** Space to hold the KeyInfo structure is obtain from malloc.  The calling
** function is responsible for seeing that this structure is eventually
** freed.
*/
static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList, int nExtra){





  int nExpr;
  KeyInfo *pInfo;
  struct ExprList_item *pItem;
  sqlite3 *db = pParse->db;
  int i;

  nExpr = pList->nExpr;
  pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra, 1);
  if( pInfo ){
    assert( sqlite3KeyInfoIsWriteable(pInfo) );
    for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
      CollSeq *pColl;
      pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
      if( !pColl ) pColl = db->pDfltColl;
      pInfo->aColl[i] = pColl;
      pInfo->aSortOrder[i] = pItem->sortOrder;
    }
  }
  return pInfo;
}

#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*







|
>
>
>
>
>







|


|



|
|







990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
** then the KeyInfo structure is appropriate for initializing a virtual
** index to implement a DISTINCT test.
**
** Space to hold the KeyInfo structure is obtain from malloc.  The calling
** function is responsible for seeing that this structure is eventually
** freed.
*/
static KeyInfo *keyInfoFromExprList(
  Parse *pParse,       /* Parsing context */
  ExprList *pList,     /* Form the KeyInfo object from this ExprList */
  int iStart,          /* Begin with this column of pList */
  int nExtra           /* Add this many extra columns to the end */
){
  int nExpr;
  KeyInfo *pInfo;
  struct ExprList_item *pItem;
  sqlite3 *db = pParse->db;
  int i;

  nExpr = pList->nExpr;
  pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1);
  if( pInfo ){
    assert( sqlite3KeyInfoIsWriteable(pInfo) );
    for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
      CollSeq *pColl;
      pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
      if( !pColl ) pColl = db->pDfltColl;
      pInfo->aColl[i-iStart] = pColl;
      pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
    }
  }
  return pInfo;
}

#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060

1061
1062
1063

1064
1065
1066
1067
1068
1069
1070
1071
1072

1073






1074
1075
1076
1077
1078
1079
1080
1081
1082

1083
1084
1085
1086

1087
1088
1089
1090
1091
1092
1093

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
** then the results were placed in a sorter.  After the loop is terminated
** we need to run the sorter and output the results.  The following
** routine generates the code needed to do that.
*/
static void generateSortTail(
  Parse *pParse,    /* Parsing context */
  Select *p,        /* The SELECT statement */
  Vdbe *v,          /* Generate code into this VDBE */
  int nColumn,      /* Number of columns of data */
  SelectDest *pDest /* Write the sorted results here */
){

  int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
  int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
  int addr;

  int iTab;
  int pseudoTab = 0;
  ExprList *pOrderBy = p->pOrderBy;

  int eDest = pDest->eDest;
  int iParm = pDest->iSDParm;

  int regRow;
  int regRowid;








  iTab = pOrderBy->iECursor;
  regRow = sqlite3GetTempReg(pParse);
  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    pseudoTab = pParse->nTab++;
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
    regRowid = 0;
  }else{
    regRowid = sqlite3GetTempReg(pParse);
  }

  if( p->selFlags & SF_UseSorter ){
    int regSortOut = ++pParse->nMem;
    int ptab2 = pParse->nTab++;
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2);

    addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
    VdbeCoverage(v);
    codeOffset(v, p->iOffset, addrContinue);
    sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
    sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow);
    sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
  }else{

    addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
    codeOffset(v, p->iOffset, addrContinue);
    sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow);
  }
  switch( eDest ){
    case SRT_Table:
    case SRT_EphemTab: {
      testcase( eDest==SRT_Table );
      testcase( eDest==SRT_EphemTab );
      sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);







|



>



>


|
<


<


>

>
>
>
>
>
>
|








>
|


|
>




|


>


|







1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131

1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
** then the results were placed in a sorter.  After the loop is terminated
** we need to run the sorter and output the results.  The following
** routine generates the code needed to do that.
*/
static void generateSortTail(
  Parse *pParse,    /* Parsing context */
  Select *p,        /* The SELECT statement */
  SortCtx *pSort,   /* Information on the ORDER BY clause */
  int nColumn,      /* Number of columns of data */
  SelectDest *pDest /* Write the sorted results here */
){
  Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
  int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
  int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
  int addr;
  int addrOnce = 0;
  int iTab;
  int pseudoTab = 0;
  ExprList *pOrderBy = pSort->pOrderBy;

  int eDest = pDest->eDest;
  int iParm = pDest->iSDParm;

  int regRow;
  int regRowid;
  int nKey;

  if( pSort->labelBkOut ){
    sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
    sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
    addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
  }
  iTab = pSort->iECursor;
  regRow = sqlite3GetTempReg(pParse);
  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    pseudoTab = pParse->nTab++;
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
    regRowid = 0;
  }else{
    regRowid = sqlite3GetTempReg(pParse);
  }
  nKey = pOrderBy->nExpr - pSort->nOBSat;
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    int regSortOut = ++pParse->nMem;
    int ptab2 = pParse->nTab++;
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, nKey+2);
    if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
    addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
    VdbeCoverage(v);
    codeOffset(v, p->iOffset, addrContinue);
    sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
    sqlite3VdbeAddOp3(v, OP_Column, ptab2, nKey+1, regRow);
    sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
  }else{
    if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
    addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
    codeOffset(v, p->iOffset, addrContinue);
    sqlite3VdbeAddOp3(v, OP_Column, iTab, nKey+1, regRow);
  }
  switch( eDest ){
    case SRT_Table:
    case SRT_EphemTab: {
      testcase( eDest==SRT_Table );
      testcase( eDest==SRT_EphemTab );
      sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

1156
1157
1158
1159
1160
1161
1162
  }
  sqlite3ReleaseTempReg(pParse, regRow);
  sqlite3ReleaseTempReg(pParse, regRowid);

  /* The bottom of the loop
  */
  sqlite3VdbeResolveLabel(v, addrContinue);
  if( p->selFlags & SF_UseSorter ){
    sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
  }else{
    sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
  }

  sqlite3VdbeResolveLabel(v, addrBreak);
  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
  }
}

/*







|




>







1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
  }
  sqlite3ReleaseTempReg(pParse, regRow);
  sqlite3ReleaseTempReg(pParse, regRowid);

  /* The bottom of the loop
  */
  sqlite3VdbeResolveLabel(v, addrContinue);
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
  }else{
    sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
  }
  if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
  sqlite3VdbeResolveLabel(v, addrBreak);
  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
  }
}

/*
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
  Select *pSetup = p->pPrior;   /* The setup query */
  int addrTop;                  /* Top of the loop */
  int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
  int iCurrent = 0;             /* The Current table */
  int regCurrent;               /* Register holding Current table */
  int iQueue;                   /* The Queue table */
  int iDistinct = 0;            /* To ensure unique results if UNION */
  int eDest = SRT_Table;        /* How to write to Queue */
  SelectDest destQueue;         /* SelectDest targetting the Queue table */
  int i;                        /* Loop counter */
  int rc;                       /* Result code */
  ExprList *pOrderBy;           /* The ORDER BY clause */
  Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
  int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */








|







1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
  Select *pSetup = p->pPrior;   /* The setup query */
  int addrTop;                  /* Top of the loop */
  int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
  int iCurrent = 0;             /* The Current table */
  int regCurrent;               /* Register holding Current table */
  int iQueue;                   /* The Queue table */
  int iDistinct = 0;            /* To ensure unique results if UNION */
  int eDest = SRT_Fifo;         /* How to write to Queue */
  SelectDest destQueue;         /* SelectDest targetting the Queue table */
  int i;                        /* Loop counter */
  int rc;                       /* Result code */
  ExprList *pOrderBy;           /* The ORDER BY clause */
  Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
  int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */

1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
      iCurrent = pSrc->a[i].iCursor;
      break;
    }
  }

  /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
  ** the Distinct table must be exactly one greater than Queue in order
  ** for the SRT_DistTable and SRT_DistQueue destinations to work. */
  iQueue = pParse->nTab++;
  if( p->op==TK_UNION ){
    eDest = pOrderBy ? SRT_DistQueue : SRT_DistTable;
    iDistinct = pParse->nTab++;
  }else{
    eDest = pOrderBy ? SRT_Queue : SRT_Table;
  }
  sqlite3SelectDestInit(&destQueue, eDest, iQueue);

  /* Allocate cursors for Current, Queue, and Distinct. */
  regCurrent = ++pParse->nMem;
  sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
  if( pOrderBy ){







|


|


|







1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
      iCurrent = pSrc->a[i].iCursor;
      break;
    }
  }

  /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
  ** the Distinct table must be exactly one greater than Queue in order
  ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
  iQueue = pParse->nTab++;
  if( p->op==TK_UNION ){
    eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
    iDistinct = pParse->nTab++;
  }else{
    eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
  }
  sqlite3SelectDestInit(&destQueue, eDest, iQueue);

  /* Allocate cursors for Current, Queue, and Distinct. */
  regCurrent = ++pParse->nMem;
  sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
  if( pOrderBy ){
1934
1935
1936
1937
1938
1939
1940

1941
1942
1943
1944
1945
1946
1947
  p->pPrior = pSetup;

  /* Keep running the loop until the Queue is empty */
  sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
  sqlite3VdbeResolveLabel(v, addrBreak);

end_of_recursive_query:

  p->pOrderBy = pOrderBy;
  p->pLimit = pLimit;
  p->pOffset = pOffset;
  return;
}
#endif /* SQLITE_OMIT_CTE */








>







2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
  p->pPrior = pSetup;

  /* Keep running the loop until the Queue is empty */
  sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
  sqlite3VdbeResolveLabel(v, addrBreak);

end_of_recursive_query:
  sqlite3ExprListDelete(pParse->db, p->pOrderBy);
  p->pOrderBy = pOrderBy;
  p->pLimit = pLimit;
  p->pOffset = pOffset;
  return;
}
#endif /* SQLITE_OMIT_CTE */

4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
      Expr *pE = pFunc->pExpr;
      assert( !ExprHasProperty(pE, EP_xIsSelect) );
      if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
        sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
           "argument");
        pFunc->iDistinct = -1;
      }else{
        KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0);
        sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
                          (char*)pKeyInfo, P4_KEYINFO);
      }
    }
  }
}








|







4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
      Expr *pE = pFunc->pExpr;
      assert( !ExprHasProperty(pE, EP_xIsSelect) );
      if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
        sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
           "argument");
        pFunc->iDistinct = -1;
      }else{
        KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
        sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
                          (char*)pKeyInfo, P4_KEYINFO);
      }
    }
  }
}

4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472

4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488




4489
4490
4491


4492
4493
4494
4495
4496
4497
4498

4499
4500
4501
4502
4503
4504
4505
4506
  int i, j;              /* Loop counters */
  WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
  Vdbe *v;               /* The virtual machine under construction */
  int isAgg;             /* True for select lists like "count(*)" */
  ExprList *pEList;      /* List of columns to extract. */
  SrcList *pTabList;     /* List of tables to select from */
  Expr *pWhere;          /* The WHERE clause.  May be NULL */
  ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
  ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
  Expr *pHaving;         /* The HAVING clause.  May be NULL */
  int rc = 1;            /* Value to return from this function */
  int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
  DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */

  AggInfo sAggInfo;      /* Information used by aggregate queries */
  int iEnd;              /* Address of the end of the query */
  sqlite3 *db;           /* The database connection */

#ifndef SQLITE_OMIT_EXPLAIN
  int iRestoreSelectId = pParse->iSelectId;
  pParse->iSelectId = pParse->iNextSelectId++;
#endif

  db = pParse->db;
  if( p==0 || db->mallocFailed || pParse->nErr ){
    return 1;
  }
  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
  memset(&sAggInfo, 0, sizeof(sAggInfo));





  if( IgnorableOrderby(pDest) ){
    assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 
           pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);


    /* If ORDER BY makes no difference in the output then neither does
    ** DISTINCT so it can be removed too. */
    sqlite3ExprListDelete(db, p->pOrderBy);
    p->pOrderBy = 0;
    p->selFlags &= ~SF_Distinct;
  }
  sqlite3SelectPrep(pParse, p, 0);

  pOrderBy = p->pOrderBy;
  pTabList = p->pSrc;
  pEList = p->pEList;
  if( pParse->nErr || db->mallocFailed ){
    goto select_end;
  }
  isAgg = (p->selFlags & SF_Aggregate)!=0;
  assert( pEList!=0 );







<



<

>
















>
>
>
>


|
>
>







>
|







4535
4536
4537
4538
4539
4540
4541

4542
4543
4544

4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
  int i, j;              /* Loop counters */
  WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
  Vdbe *v;               /* The virtual machine under construction */
  int isAgg;             /* True for select lists like "count(*)" */
  ExprList *pEList;      /* List of columns to extract. */
  SrcList *pTabList;     /* List of tables to select from */
  Expr *pWhere;          /* The WHERE clause.  May be NULL */

  ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
  Expr *pHaving;         /* The HAVING clause.  May be NULL */
  int rc = 1;            /* Value to return from this function */

  DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
  SortCtx sSort;         /* Info on how to code the ORDER BY clause */
  AggInfo sAggInfo;      /* Information used by aggregate queries */
  int iEnd;              /* Address of the end of the query */
  sqlite3 *db;           /* The database connection */

#ifndef SQLITE_OMIT_EXPLAIN
  int iRestoreSelectId = pParse->iSelectId;
  pParse->iSelectId = pParse->iNextSelectId++;
#endif

  db = pParse->db;
  if( p==0 || db->mallocFailed || pParse->nErr ){
    return 1;
  }
  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
  memset(&sAggInfo, 0, sizeof(sAggInfo));

  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
  if( IgnorableOrderby(pDest) ){
    assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 
           pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
           pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
           pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
    /* If ORDER BY makes no difference in the output then neither does
    ** DISTINCT so it can be removed too. */
    sqlite3ExprListDelete(db, p->pOrderBy);
    p->pOrderBy = 0;
    p->selFlags &= ~SF_Distinct;
  }
  sqlite3SelectPrep(pParse, p, 0);
  memset(&sSort, 0, sizeof(sSort));
  sSort.pOrderBy = p->pOrderBy;
  pTabList = p->pSrc;
  pEList = p->pEList;
  if( pParse->nErr || db->mallocFailed ){
    goto select_end;
  }
  isAgg = (p->selFlags & SF_Aggregate)!=0;
  assert( pEList!=0 );
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
    }
    if( /*pParse->nErr ||*/ db->mallocFailed ){
      goto select_end;
    }
    pParse->nHeight -= sqlite3SelectExprHeight(p);
    pTabList = p->pSrc;
    if( !IgnorableOrderby(pDest) ){
      pOrderBy = p->pOrderBy;
    }
  }
  pEList = p->pEList;
#endif
  pWhere = p->pWhere;
  pGroupBy = p->pGroupBy;
  pHaving = p->pHaving;







|







4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
    }
    if( /*pParse->nErr ||*/ db->mallocFailed ){
      goto select_end;
    }
    pParse->nHeight -= sqlite3SelectExprHeight(p);
    pTabList = p->pSrc;
    if( !IgnorableOrderby(pDest) ){
      sSort.pOrderBy = p->pOrderBy;
    }
  }
  pEList = p->pEList;
#endif
  pWhere = p->pWhere;
  pGroupBy = p->pGroupBy;
  pHaving = p->pHaving;
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743

4744




4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
  /* If there is both a GROUP BY and an ORDER BY clause and they are
  ** identical, then disable the ORDER BY clause since the GROUP BY
  ** will cause elements to come out in the correct order.  This is
  ** an optimization - the correct answer should result regardless.
  ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
  ** to disable this optimization for testing purposes.
  */
  if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy, -1)==0
         && OptimizationEnabled(db, SQLITE_GroupByOrder) ){
    pOrderBy = 0;
  }

  /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 
  ** if the select-list is the same as the ORDER BY list, then this query
  ** can be rewritten as a GROUP BY. In other words, this:
  **
  **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
  **
  ** is transformed to:
  **
  **     SELECT xyz FROM ... GROUP BY xyz
  **
  ** The second form is preferred as a single index (or temp-table) may be 
  ** used for both the ORDER BY and DISTINCT processing. As originally 
  ** written the query must use a temp-table for at least one of the ORDER 
  ** BY and DISTINCT, and an index or separate temp-table for the other.
  */
  if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 
   && sqlite3ExprListCompare(pOrderBy, p->pEList, -1)==0
  ){
    p->selFlags &= ~SF_Distinct;
    p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
    pGroupBy = p->pGroupBy;
    pOrderBy = 0;
    /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
    ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
    ** original setting of the SF_Distinct flag, not the current setting */
    assert( sDistinct.isTnct );
  }

  /* If there is an ORDER BY clause, then this sorting
  ** index might end up being unused if the data can be 
  ** extracted in pre-sorted order.  If that is the case, then the
  ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
  ** we figure out that the sorting index is not needed.  The addrSortIndex
  ** variable is used to facilitate that change.
  */
  if( pOrderBy ){
    KeyInfo *pKeyInfo;
    pKeyInfo = keyInfoFromExprList(pParse, pOrderBy, 0);
    pOrderBy->iECursor = pParse->nTab++;
    p->addrOpenEphm[2] = addrSortIndex =
      sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
                           pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
                           (char*)pKeyInfo, P4_KEYINFO);
  }else{
    addrSortIndex = -1;
  }

  /* If the output is destined for a temporary table, open that table.
  */
  if( pDest->eDest==SRT_EphemTab ){
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
  }

  /* Set the limiter.
  */
  iEnd = sqlite3VdbeMakeLabel(v);
  p->nSelectRow = LARGEST_INT64;
  computeLimitRegisters(pParse, p, iEnd);
  if( p->iLimit==0 && addrSortIndex>=0 ){
    sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
    p->selFlags |= SF_UseSorter;
  }

  /* Open a virtual index to use for the distinct set.
  */
  if( p->selFlags & SF_Distinct ){
    sDistinct.tabTnct = pParse->nTab++;
    sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
                                sDistinct.tabTnct, 0, 0,
                                (char*)keyInfoFromExprList(pParse, p->pEList, 0),
                                P4_KEYINFO);
    sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
    sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
  }else{
    sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
  }

  if( !isAgg && pGroupBy==0 ){
    /* No aggregate functions and no GROUP BY clause */
    u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);

    /* Begin the database scan. */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pOrderBy, p->pEList,
                               wctrlFlags, 0);
    if( pWInfo==0 ) goto select_end;
    if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
      p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
    }
    if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
      sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
    }

    if( pOrderBy && sqlite3WhereIsOrdered(pWInfo) ) pOrderBy = 0;





    /* If sorting index that was created by a prior OP_OpenEphemeral 
    ** instruction ended up not being needed, then change the OP_OpenEphemeral
    ** into an OP_Noop.
    */
    if( addrSortIndex>=0 && pOrderBy==0 ){
      sqlite3VdbeChangeToNoop(v, addrSortIndex);
      p->addrOpenEphm[2] = -1;
    }

    /* Use the standard inner loop. */
    selectInnerLoop(pParse, p, pEList, -1, pOrderBy, &sDistinct, pDest,
                    sqlite3WhereContinueLabel(pWInfo),
                    sqlite3WhereBreakLabel(pWInfo));

    /* End the database scan loop.
    */
    sqlite3WhereEnd(pWInfo);
  }else{







|

|


















|




|













|

|
|
|

|


|













|
|
|








|












|
|







>
|
>
>
>
>





|
|
<



|







4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837

4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
  /* If there is both a GROUP BY and an ORDER BY clause and they are
  ** identical, then disable the ORDER BY clause since the GROUP BY
  ** will cause elements to come out in the correct order.  This is
  ** an optimization - the correct answer should result regardless.
  ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
  ** to disable this optimization for testing purposes.
  */
  if( sqlite3ExprListCompare(p->pGroupBy, sSort.pOrderBy, -1)==0
         && OptimizationEnabled(db, SQLITE_GroupByOrder) ){
    sSort.pOrderBy = 0;
  }

  /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 
  ** if the select-list is the same as the ORDER BY list, then this query
  ** can be rewritten as a GROUP BY. In other words, this:
  **
  **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
  **
  ** is transformed to:
  **
  **     SELECT xyz FROM ... GROUP BY xyz
  **
  ** The second form is preferred as a single index (or temp-table) may be 
  ** used for both the ORDER BY and DISTINCT processing. As originally 
  ** written the query must use a temp-table for at least one of the ORDER 
  ** BY and DISTINCT, and an index or separate temp-table for the other.
  */
  if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 
   && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
  ){
    p->selFlags &= ~SF_Distinct;
    p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
    pGroupBy = p->pGroupBy;
    sSort.pOrderBy = 0;
    /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
    ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
    ** original setting of the SF_Distinct flag, not the current setting */
    assert( sDistinct.isTnct );
  }

  /* If there is an ORDER BY clause, then this sorting
  ** index might end up being unused if the data can be 
  ** extracted in pre-sorted order.  If that is the case, then the
  ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
  ** we figure out that the sorting index is not needed.  The addrSortIndex
  ** variable is used to facilitate that change.
  */
  if( sSort.pOrderBy ){
    KeyInfo *pKeyInfo;
    pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0);
    sSort.iECursor = pParse->nTab++;
    sSort.addrSortIndex =
      sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
                           sSort.iECursor, sSort.pOrderBy->nExpr+2, 0,
                           (char*)pKeyInfo, P4_KEYINFO);
  }else{
    sSort.addrSortIndex = -1;
  }

  /* If the output is destined for a temporary table, open that table.
  */
  if( pDest->eDest==SRT_EphemTab ){
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
  }

  /* Set the limiter.
  */
  iEnd = sqlite3VdbeMakeLabel(v);
  p->nSelectRow = LARGEST_INT64;
  computeLimitRegisters(pParse, p, iEnd);
  if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
    sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
    sSort.sortFlags |= SORTFLAG_UseSorter;
  }

  /* Open a virtual index to use for the distinct set.
  */
  if( p->selFlags & SF_Distinct ){
    sDistinct.tabTnct = pParse->nTab++;
    sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
                                sDistinct.tabTnct, 0, 0,
                                (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
                                P4_KEYINFO);
    sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
    sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
  }else{
    sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
  }

  if( !isAgg && pGroupBy==0 ){
    /* No aggregate functions and no GROUP BY clause */
    u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);

    /* Begin the database scan. */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
                               p->pEList, wctrlFlags, 0);
    if( pWInfo==0 ) goto select_end;
    if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
      p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
    }
    if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
      sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
    }
    if( sSort.pOrderBy ){
      sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
      if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
        sSort.pOrderBy = 0;
      }
    }

    /* If sorting index that was created by a prior OP_OpenEphemeral 
    ** instruction ended up not being needed, then change the OP_OpenEphemeral
    ** into an OP_Noop.
    */
    if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
      sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);

    }

    /* Use the standard inner loop. */
    selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
                    sqlite3WhereContinueLabel(pWInfo),
                    sqlite3WhereBreakLabel(pWInfo));

    /* End the database scan loop.
    */
    sqlite3WhereEnd(pWInfo);
  }else{
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
    sNC.pParse = pParse;
    sNC.pSrcList = pTabList;
    sNC.pAggInfo = &sAggInfo;
    sAggInfo.mnReg = pParse->nMem+1;
    sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
    sAggInfo.pGroupBy = pGroupBy;
    sqlite3ExprAnalyzeAggList(&sNC, pEList);
    sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
    if( pHaving ){
      sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
    }
    sAggInfo.nAccumulator = sAggInfo.nColumn;
    for(i=0; i<sAggInfo.nFunc; i++){
      assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
      sNC.ncFlags |= NC_InAggFunc;







|







4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
    sNC.pParse = pParse;
    sNC.pSrcList = pTabList;
    sNC.pAggInfo = &sAggInfo;
    sAggInfo.mnReg = pParse->nMem+1;
    sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
    sAggInfo.pGroupBy = pGroupBy;
    sqlite3ExprAnalyzeAggList(&sNC, pEList);
    sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
    if( pHaving ){
      sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
    }
    sAggInfo.nAccumulator = sAggInfo.nColumn;
    for(i=0; i<sAggInfo.nFunc; i++){
      assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
      sNC.ncFlags |= NC_InAggFunc;
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853

      /* If there is a GROUP BY clause we might need a sorting index to
      ** implement it.  Allocate that sorting index now.  If it turns out
      ** that we do not need it after all, the OP_SorterOpen instruction
      ** will be converted into a Noop.  
      */
      sAggInfo.sortingIdx = pParse->nTab++;
      pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0);
      addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 
          sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 
          0, (char*)pKeyInfo, P4_KEYINFO);

      /* Initialize memory locations used by GROUP BY aggregate processing
      */
      iUseFlag = ++pParse->nMem;







|







4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938

      /* If there is a GROUP BY clause we might need a sorting index to
      ** implement it.  Allocate that sorting index now.  If it turns out
      ** that we do not need it after all, the OP_SorterOpen instruction
      ** will be converted into a Noop.  
      */
      sAggInfo.sortingIdx = pParse->nTab++;
      pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0);
      addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 
          sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 
          0, (char*)pKeyInfo, P4_KEYINFO);

      /* Initialize memory locations used by GROUP BY aggregate processing
      */
      iUseFlag = ++pParse->nMem;
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 
                                 WHERE_GROUPBY, 0);
      if( pWInfo==0 ) goto select_end;
      if( sqlite3WhereIsOrdered(pWInfo) ){
        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenEphemeral table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        groupBySort = 0;
      }else{
        /* Rows are coming out in undetermined order.  We have to push







|


|







4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
                                 WHERE_GROUPBY, 0);
      if( pWInfo==0 ) goto select_end;
      if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenEphemeral table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        groupBySort = 0;
      }else{
        /* Rows are coming out in undetermined order.  We have to push
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
      sqlite3VdbeResolveLabel(v, addrOutputRow);
      addrOutputRow = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
      VdbeComment((v, "Groupby result generator entry point"));
      sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
      finalizeAggFunctions(pParse, &sAggInfo);
      sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
      selectInnerLoop(pParse, p, p->pEList, -1, pOrderBy,
                      &sDistinct, pDest,
                      addrOutputRow+1, addrSetAbort);
      sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
      VdbeComment((v, "end groupby result generator"));

      /* Generate a subroutine that will reset the group-by accumulator
      */







|







5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
      sqlite3VdbeResolveLabel(v, addrOutputRow);
      addrOutputRow = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
      VdbeComment((v, "Groupby result generator entry point"));
      sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
      finalizeAggFunctions(pParse, &sAggInfo);
      sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
      selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
                      &sDistinct, pDest,
                      addrOutputRow+1, addrSetAbort);
      sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
      VdbeComment((v, "end groupby result generator"));

      /* Generate a subroutine that will reset the group-by accumulator
      */
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
        pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
        if( pWInfo==0 ){
          sqlite3ExprListDelete(db, pDel);
          goto select_end;
        }
        updateAccumulator(pParse, &sAggInfo);
        assert( pMinMax==0 || pMinMax->nExpr==1 );
        if( sqlite3WhereIsOrdered(pWInfo) ){
          sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
          VdbeComment((v, "%s() by index",
                (flag==WHERE_ORDERBY_MIN?"min":"max")));
        }
        sqlite3WhereEnd(pWInfo);
        finalizeAggFunctions(pParse, &sAggInfo);
      }

      pOrderBy = 0;
      sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
      selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 
                      pDest, addrEnd, addrEnd);
      sqlite3ExprListDelete(db, pDel);
    }
    sqlite3VdbeResolveLabel(v, addrEnd);
    
  } /* endif aggregate query */

  if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
    explainTempTable(pParse, "DISTINCT");
  }

  /* If there is an ORDER BY clause, then we need to sort the results
  ** and send them to the callback one by one.
  */
  if( pOrderBy ){
    explainTempTable(pParse, "ORDER BY");
    generateSortTail(pParse, p, v, pEList->nExpr, pDest);
  }

  /* Jump here to skip this query
  */
  sqlite3VdbeResolveLabel(v, iEnd);

  /* The SELECT was successfully coded.   Set the return code to 0







|








|
















|
|
|







5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
        pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
        if( pWInfo==0 ){
          sqlite3ExprListDelete(db, pDel);
          goto select_end;
        }
        updateAccumulator(pParse, &sAggInfo);
        assert( pMinMax==0 || pMinMax->nExpr==1 );
        if( sqlite3WhereIsOrdered(pWInfo)>0 ){
          sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
          VdbeComment((v, "%s() by index",
                (flag==WHERE_ORDERBY_MIN?"min":"max")));
        }
        sqlite3WhereEnd(pWInfo);
        finalizeAggFunctions(pParse, &sAggInfo);
      }

      sSort.pOrderBy = 0;
      sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
      selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 
                      pDest, addrEnd, addrEnd);
      sqlite3ExprListDelete(db, pDel);
    }
    sqlite3VdbeResolveLabel(v, addrEnd);
    
  } /* endif aggregate query */

  if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
    explainTempTable(pParse, "DISTINCT");
  }

  /* If there is an ORDER BY clause, then we need to sort the results
  ** and send them to the callback one by one.
  */
  if( sSort.pOrderBy ){
    explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
    generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
  }

  /* Jump here to skip this query
  */
  sqlite3VdbeResolveLabel(v, iEnd);

  /* The SELECT was successfully coded.   Set the return code to 0
Changes to src/shell.c.
1191
1192
1193
1194
1195
1196
1197
1198

1199
1200
1201
1202
1203
1204
1205
static void explain_data_prepare(struct callback_data *p, sqlite3_stmt *pSql){
  const char *zSql;               /* The text of the SQL statement */
  const char *z;                  /* Used to check if this is an EXPLAIN */
  int *abYield = 0;               /* True if op is an OP_Yield */
  int nAlloc = 0;                 /* Allocated size of p->aiIndent[], abYield */
  int iOp;                        /* Index of operation in p->aiIndent[] */

  const char *azNext[] = { "Next", "Prev", "VPrev", "VNext", "SorterNext", 0 };

  const char *azYield[] = { "Yield", "SeekLt", "SeekGt", "RowSetRead", "Rewind", 0 };
  const char *azGoto[] = { "Goto", 0 };

  /* Try to figure out if this is really an EXPLAIN statement. If this
  ** cannot be verified, return early.  */
  zSql = sqlite3_sql(pSql);
  if( zSql==0 ) return;







|
>







1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
static void explain_data_prepare(struct callback_data *p, sqlite3_stmt *pSql){
  const char *zSql;               /* The text of the SQL statement */
  const char *z;                  /* Used to check if this is an EXPLAIN */
  int *abYield = 0;               /* True if op is an OP_Yield */
  int nAlloc = 0;                 /* Allocated size of p->aiIndent[], abYield */
  int iOp;                        /* Index of operation in p->aiIndent[] */

  const char *azNext[] = { "Next", "Prev", "VPrev", "VNext", "SorterNext",
                           "NextIfOpen", "PrevIfOpen", 0 };
  const char *azYield[] = { "Yield", "SeekLt", "SeekGt", "RowSetRead", "Rewind", 0 };
  const char *azGoto[] = { "Goto", 0 };

  /* Try to figure out if this is really an EXPLAIN statement. If this
  ** cannot be verified, return early.  */
  zSql = sqlite3_sql(pSql);
  if( zSql==0 ) return;
Changes to src/sqliteInt.h.
1623
1624
1625
1626
1627
1628
1629

1630
1631
1632
1633
1634
1635
1636
** The r1 and r2 member variables are only used by the optimized comparison
** functions vdbeRecordCompareInt() and vdbeRecordCompareString().
*/
struct UnpackedRecord {
  KeyInfo *pKeyInfo;  /* Collation and sort-order information */
  u16 nField;         /* Number of entries in apMem[] */
  i8 default_rc;      /* Comparison result if keys are equal */

  Mem *aMem;          /* Values */
  int r1;             /* Value to return if (lhs > rhs) */
  int r2;             /* Value to return if (rhs < lhs) */
};


/*







>







1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
** The r1 and r2 member variables are only used by the optimized comparison
** functions vdbeRecordCompareInt() and vdbeRecordCompareString().
*/
struct UnpackedRecord {
  KeyInfo *pKeyInfo;  /* Collation and sort-order information */
  u16 nField;         /* Number of entries in apMem[] */
  i8 default_rc;      /* Comparison result if keys are equal */
  u8 isCorrupt;       /* Corruption detected by xRecordCompare() */
  Mem *aMem;          /* Values */
  int r1;             /* Value to return if (lhs > rhs) */
  int r2;             /* Value to return if (rhs < lhs) */
};


/*
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
#define EP_Agg       0x000002 /* Contains one or more aggregate functions */
#define EP_Resolved  0x000004 /* IDs have been resolved to COLUMNs */
#define EP_Error     0x000008 /* Expression contains one or more errors */
#define EP_Distinct  0x000010 /* Aggregate function with DISTINCT keyword */
#define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */
#define EP_DblQuoted 0x000040 /* token.z was originally in "..." */
#define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */
#define EP_Collate   0x000100 /* Tree contains a TK_COLLATE opeartor */
      /* unused      0x000200 */
#define EP_IntValue  0x000400 /* Integer value contained in u.iValue */
#define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */
#define EP_Skip      0x001000 /* COLLATE, AS, or UNLIKELY */
#define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
#define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
#define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
#define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */







|
|







1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
#define EP_Agg       0x000002 /* Contains one or more aggregate functions */
#define EP_Resolved  0x000004 /* IDs have been resolved to COLUMNs */
#define EP_Error     0x000008 /* Expression contains one or more errors */
#define EP_Distinct  0x000010 /* Aggregate function with DISTINCT keyword */
#define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */
#define EP_DblQuoted 0x000040 /* token.z was originally in "..." */
#define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */
#define EP_Collate   0x000100 /* Tree contains a TK_COLLATE operator */
#define EP_Generic   0x000200 /* Ignore COLLATE or affinity on this tree */
#define EP_IntValue  0x000400 /* Integer value contained in u.iValue */
#define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */
#define EP_Skip      0x001000 /* COLLATE, AS, or UNLIKELY */
#define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
#define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
#define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
#define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
** column expression as it exists in a SELECT statement.  However, if
** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
** form is used for name resolution with nested FROM clauses.
*/
struct ExprList {
  int nExpr;             /* Number of expressions on the list */
  int iECursor;          /* VDBE Cursor associated with this ExprList */
  struct ExprList_item { /* For each expression in the list */
    Expr *pExpr;            /* The list of expressions */
    char *zName;            /* Token associated with this expression */
    char *zSpan;            /* Original text of the expression */
    u8 sortOrder;           /* 1 for DESC or 0 for ASC */
    unsigned done :1;       /* A flag to indicate when processing is finished */
    unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */







<







1955
1956
1957
1958
1959
1960
1961

1962
1963
1964
1965
1966
1967
1968
** column expression as it exists in a SELECT statement.  However, if
** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
** form is used for name resolution with nested FROM clauses.
*/
struct ExprList {
  int nExpr;             /* Number of expressions on the list */

  struct ExprList_item { /* For each expression in the list */
    Expr *pExpr;            /* The list of expressions */
    char *zName;            /* Token associated with this expression */
    char *zSpan;            /* Original text of the expression */
    u8 sortOrder;           /* 1 for DESC or 0 for ASC */
    unsigned done :1;       /* A flag to indicate when processing is finished */
    unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
** sequences for the ORDER BY clause.
*/
struct Select {
  ExprList *pEList;      /* The fields of the result */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  u16 selFlags;          /* Various SF_* values */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
  int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
  u64 nSelectRow;        /* Estimated number of result rows */
  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
  Select *pPrior;        /* Prior select in a compound select statement */







|







2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
** sequences for the ORDER BY clause.
*/
struct Select {
  ExprList *pEList;      /* The fields of the result */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  u16 selFlags;          /* Various SF_* values */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
  int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
  u64 nSelectRow;        /* Estimated number of result rows */
  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
  Select *pPrior;        /* Prior select in a compound select statement */
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
*/
#define SF_Distinct        0x0001  /* Output should be DISTINCT */
#define SF_Resolved        0x0002  /* Identifiers have been resolved */
#define SF_Aggregate       0x0004  /* Contains aggregate functions */
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
#define SF_UseSorter       0x0040  /* Sort using a sorter */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
#define SF_Materialize     0x0100  /* NOT USED */
#define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */
#define SF_MaybeConvert    0x0400  /* Need convertCompoundSelectToSubquery() */
#define SF_Recursive       0x0800  /* The recursive part of a recursive CTE */
#define SF_Compound        0x1000  /* Part of a compound query */


/*







|

|







2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
*/
#define SF_Distinct        0x0001  /* Output should be DISTINCT */
#define SF_Resolved        0x0002  /* Identifiers have been resolved */
#define SF_Aggregate       0x0004  /* Contains aggregate functions */
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
                    /*     0x0040  NOT USED */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
                    /*     0x0100  NOT USED */
#define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */
#define SF_MaybeConvert    0x0400  /* Need convertCompoundSelectToSubquery() */
#define SF_Recursive       0x0800  /* The recursive part of a recursive CTE */
#define SF_Compound        0x1000  /* Part of a compound query */


/*
2257
2258
2259
2260
2261
2262
2263
2264
2265


2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283




2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
**     SRT_Coroutine   Generate a co-routine that returns a new row of
**                     results each time it is invoked.  The entry point
**                     of the co-routine is stored in register pDest->iSDParm
**                     and the result row is stored in pDest->nDest registers
**                     starting with pDest->iSdst.
**
**     SRT_Table       Store results in temporary table pDest->iSDParm.
**                     This is like SRT_EphemTab except that the table
**                     is assumed to already be open.


**
**     SRT_DistTable   Store results in a temporary table pDest->iSDParm.
**                     But also use temporary table pDest->iSDParm+1 as
**                     a record of all prior results and ignore any duplicate
**                     rows.  Name means:  "Distinct Table".
**
**     SRT_Queue       Store results in priority queue pDest->iSDParm (really
**                     an index).  Append a sequence number so that all entries
**                     are distinct.
**
**     SRT_DistQueue   Store results in priority queue pDest->iSDParm only if
**                     the same record has never been stored before.  The
**                     index at pDest->iSDParm+1 hold all prior stores.
*/
#define SRT_Union        1  /* Store result as keys in an index */
#define SRT_Except       2  /* Remove result from a UNION index */
#define SRT_Exists       3  /* Store 1 if the result is not empty */
#define SRT_Discard      4  /* Do not save the results anywhere */





/* The ORDER BY clause is ignored for all of the above */
#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)

#define SRT_Output       5  /* Output each row of result */
#define SRT_Mem          6  /* Store result in a memory cell */
#define SRT_Set          7  /* Store results as keys in an index */
#define SRT_EphemTab     8  /* Create transient tab and store like SRT_Table */
#define SRT_Coroutine    9  /* Generate a single row of result */
#define SRT_Table       10  /* Store result as data with an automatic rowid */
#define SRT_DistTable   11  /* Like SRT_Table, but unique results only */
#define SRT_Queue       12  /* Store result in an queue */
#define SRT_DistQueue   13  /* Like SRT_Queue, but unique results only */

/*
** An instance of this object describes where to put of the results of
** a SELECT statement.
*/
struct SelectDest {
  u8 eDest;            /* How to dispose of the results.  On of SRT_* above. */







|
|
>
>

|


|













>
>
>
>


|

|
|
|
|
|
|
<
<
<







2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299



2300
2301
2302
2303
2304
2305
2306
**     SRT_Coroutine   Generate a co-routine that returns a new row of
**                     results each time it is invoked.  The entry point
**                     of the co-routine is stored in register pDest->iSDParm
**                     and the result row is stored in pDest->nDest registers
**                     starting with pDest->iSdst.
**
**     SRT_Table       Store results in temporary table pDest->iSDParm.
**     SRT_Fifo        This is like SRT_EphemTab except that the table
**                     is assumed to already be open.  SRT_Fifo has
**                     the additional property of being able to ignore
**                     the ORDER BY clause.
**
**     SRT_DistFifo    Store results in a temporary table pDest->iSDParm.
**                     But also use temporary table pDest->iSDParm+1 as
**                     a record of all prior results and ignore any duplicate
**                     rows.  Name means:  "Distinct Fifo".
**
**     SRT_Queue       Store results in priority queue pDest->iSDParm (really
**                     an index).  Append a sequence number so that all entries
**                     are distinct.
**
**     SRT_DistQueue   Store results in priority queue pDest->iSDParm only if
**                     the same record has never been stored before.  The
**                     index at pDest->iSDParm+1 hold all prior stores.
*/
#define SRT_Union        1  /* Store result as keys in an index */
#define SRT_Except       2  /* Remove result from a UNION index */
#define SRT_Exists       3  /* Store 1 if the result is not empty */
#define SRT_Discard      4  /* Do not save the results anywhere */
#define SRT_Fifo         5  /* Store result as data with an automatic rowid */
#define SRT_DistFifo     6  /* Like SRT_Fifo, but unique results only */
#define SRT_Queue        7  /* Store result in an queue */
#define SRT_DistQueue    8  /* Like SRT_Queue, but unique results only */

/* The ORDER BY clause is ignored for all of the above */
#define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue)

#define SRT_Output       9  /* Output each row of result */
#define SRT_Mem         10  /* Store result in a memory cell */
#define SRT_Set         11  /* Store results as keys in an index */
#define SRT_EphemTab    12  /* Create transient tab and store like SRT_Table */
#define SRT_Coroutine   13  /* Generate a single row of result */
#define SRT_Table       14  /* Store result as data with an automatic rowid */




/*
** An instance of this object describes where to put of the results of
** a SELECT statement.
*/
struct SelectDest {
  u8 eDest;            /* How to dispose of the results.  On of SRT_* above. */
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
  char *zErrMsg;       /* An error message */
  Vdbe *pVdbe;         /* An engine for executing database bytecode */
  int rc;              /* Return code from execution */
  u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
  u8 checkSchema;      /* Causes schema cookie check after an error */
  u8 nested;           /* Number of nested calls to the parser/code generator */
  u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
  u8 nColCache;        /* Number of entries in aColCache[] */
  u8 iColCache;        /* Next entry in aColCache[] to replace */
  u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
  u8 mayAbort;         /* True if statement may throw an ABORT exception */
  u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
  u8 okConstFactor;    /* OK to factor out constants */
  int aTempReg[8];     /* Holding area for temporary registers */
  int nRangeReg;       /* Size of the temporary register block */
  int iRangeReg;       /* First register in temporary register block */







<
<







2390
2391
2392
2393
2394
2395
2396


2397
2398
2399
2400
2401
2402
2403
  char *zErrMsg;       /* An error message */
  Vdbe *pVdbe;         /* An engine for executing database bytecode */
  int rc;              /* Return code from execution */
  u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
  u8 checkSchema;      /* Causes schema cookie check after an error */
  u8 nested;           /* Number of nested calls to the parser/code generator */
  u8 nTempReg;         /* Number of temporary registers in aTempReg[] */


  u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
  u8 mayAbort;         /* True if statement may throw an ABORT exception */
  u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
  u8 okConstFactor;    /* OK to factor out constants */
  int aTempReg[8];     /* Holding area for temporary registers */
  int nRangeReg;       /* Size of the temporary register block */
  int iRangeReg;       /* First register in temporary register block */
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
#endif

const char *sqlite3ErrStr(int);
int sqlite3ReadSchema(Parse *pParse);
CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, Token*);
Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
Expr *sqlite3ExprSkipCollate(Expr*);
int sqlite3CheckCollSeq(Parse *, CollSeq *);
int sqlite3CheckObjectName(Parse *, const char *);
void sqlite3VdbeSetChanges(sqlite3 *, int);
int sqlite3AddInt64(i64*,i64);
int sqlite3SubInt64(i64*,i64);







|







3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
#endif

const char *sqlite3ErrStr(int);
int sqlite3ReadSchema(Parse *pParse);
CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*);
Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
Expr *sqlite3ExprSkipCollate(Expr*);
int sqlite3CheckCollSeq(Parse *, CollSeq *);
int sqlite3CheckObjectName(Parse *, const char *);
void sqlite3VdbeSetChanges(sqlite3 *, int);
int sqlite3AddInt64(i64*,i64);
int sqlite3SubInt64(i64*,i64);
Changes to src/test_syscall.c.
63
64
65
66
67
68
69





70
71
72
73
74
75
76
**
**   test_syscall exists SYSTEM-CALL
**     Return true if the named system call exists. Or false otherwise.
**
**   test_syscall list
**     Return a list of all system calls. The list is constructed using
**     the xNextSystemCall() VFS method.





*/

#include "sqliteInt.h"
#include "sqlite3.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>







>
>
>
>
>







63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
**
**   test_syscall exists SYSTEM-CALL
**     Return true if the named system call exists. Or false otherwise.
**
**   test_syscall list
**     Return a list of all system calls. The list is constructed using
**     the xNextSystemCall() VFS method.
**
**   test_syscall pagesize PGSZ
**     If PGSZ is a power of two greater than 256, install a wrapper around
**     OS function getpagesize() that reports the system page size as PGSZ.
**     Or, if PGSZ is less than zero, remove any wrapper already installed.
*/

#include "sqliteInt.h"
#include "sqlite3.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
85
86
87
88
89
90
91


92
93
94
95
96
97
98
99
#include <sys/types.h>
#include <errno.h>

static struct TestSyscallGlobal {
  int bPersist;                   /* 1 for persistent errors, 0 for transient */
  int nCount;                     /* Fail after this many more calls */
  int nFail;                      /* Number of failures that have occurred */


} gSyscall = { 0, 0 };

static int ts_open(const char *, int, int);
static int ts_close(int fd);
static int ts_access(const char *zPath, int mode);
static char *ts_getcwd(char *zPath, size_t nPath);
static int ts_stat(const char *zPath, struct stat *p);
static int ts_fstat(int fd, struct stat *p);







>
>
|







90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include <sys/types.h>
#include <errno.h>

static struct TestSyscallGlobal {
  int bPersist;                   /* 1 for persistent errors, 0 for transient */
  int nCount;                     /* Fail after this many more calls */
  int nFail;                      /* Number of failures that have occurred */
  int pgsz;
  sqlite3_syscall_ptr orig_getpagesize;
} gSyscall = { 0, 0, 0, 0, 0 };

static int ts_open(const char *, int, int);
static int ts_close(int fd);
static int ts_access(const char *zPath, int mode);
static char *ts_getcwd(char *zPath, size_t nPath);
static int ts_stat(const char *zPath, struct stat *p);
static int ts_fstat(int fd, struct stat *p);
645
646
647
648
649
650
651







































652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

671
672
673
674
675
676
677
    return TCL_ERROR;
  }

  pVfs = sqlite3_vfs_find(0);
  Tcl_SetObjResult(interp, Tcl_NewStringObj(pVfs->zName, -1));
  return TCL_OK;
}








































static int test_syscall(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  struct SyscallCmd {
    const char *zName;
    Tcl_ObjCmdProc *xCmd;
  } aCmd[] = {
    { "fault",      test_syscall_fault },
    { "install",    test_syscall_install },
    { "uninstall",  test_syscall_uninstall },
    { "reset",      test_syscall_reset },
    { "errno",      test_syscall_errno },
    { "exists",     test_syscall_exists },
    { "list",       test_syscall_list },
    { "defaultvfs", test_syscall_defaultvfs },

    { 0, 0 }
  };
  int iCmd;
  int rc;

  if( objc<2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "SUB-COMMAND ...");







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



















>







652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
    return TCL_ERROR;
  }

  pVfs = sqlite3_vfs_find(0);
  Tcl_SetObjResult(interp, Tcl_NewStringObj(pVfs->zName, -1));
  return TCL_OK;
}

static int ts_getpagesize(void){
  return gSyscall.pgsz;
}

static int test_syscall_pagesize(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite3_vfs *pVfs = sqlite3_vfs_find(0);
  int pgsz;
  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 2, objv, "PGSZ");
    return TCL_ERROR;
  }
  if( Tcl_GetIntFromObj(interp, objv[2], &pgsz) ){
    return TCL_ERROR;
  }

  if( pgsz<0 ){
    if( gSyscall.orig_getpagesize ){
      pVfs->xSetSystemCall(pVfs, "getpagesize", gSyscall.orig_getpagesize);
    }
  }else{
    if( pgsz<512 || (pgsz & (pgsz-1)) ){
      Tcl_AppendResult(interp, "pgsz out of range", 0);
      return TCL_ERROR;
    }
    gSyscall.orig_getpagesize = pVfs->xGetSystemCall(pVfs, "getpagesize");
    gSyscall.pgsz = pgsz;
    pVfs->xSetSystemCall(
        pVfs, "getpagesize", (sqlite3_syscall_ptr)ts_getpagesize
    );
  }

  return TCL_OK;
}

static int test_syscall(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  struct SyscallCmd {
    const char *zName;
    Tcl_ObjCmdProc *xCmd;
  } aCmd[] = {
    { "fault",      test_syscall_fault },
    { "install",    test_syscall_install },
    { "uninstall",  test_syscall_uninstall },
    { "reset",      test_syscall_reset },
    { "errno",      test_syscall_errno },
    { "exists",     test_syscall_exists },
    { "list",       test_syscall_list },
    { "defaultvfs", test_syscall_defaultvfs },
    { "pagesize",   test_syscall_pagesize },
    { 0, 0 }
  };
  int iCmd;
  int rc;

  if( objc<2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "SUB-COMMAND ...");
Changes to src/vdbe.c.
305
306
307
308
309
310
311























312
313
314
315
316
317
318
void sqlite3ValueApplyAffinity(
  sqlite3_value *pVal, 
  u8 affinity, 
  u8 enc
){
  applyAffinity((Mem *)pVal, affinity, enc);
}
























#ifdef SQLITE_DEBUG
/*
** Write a nice string representation of the contents of cell pMem
** into buffer zBuf, length nBuf.
*/
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
void sqlite3ValueApplyAffinity(
  sqlite3_value *pVal, 
  u8 affinity, 
  u8 enc
){
  applyAffinity((Mem *)pVal, affinity, enc);
}

/*
** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
** none.  
**
** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
** But it does set pMem->r and pMem->u.i appropriately.
*/
static u16 numericType(Mem *pMem){
  if( pMem->flags & (MEM_Int|MEM_Real) ){
    return pMem->flags & (MEM_Int|MEM_Real);
  }
  if( pMem->flags & (MEM_Str|MEM_Blob) ){
    if( sqlite3AtoF(pMem->z, &pMem->r, pMem->n, pMem->enc)==0 ){
      return 0;
    }
    if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
      return MEM_Int;
    }
    return MEM_Real;
  }
  return 0;
}

#ifdef SQLITE_DEBUG
/*
** Write a nice string representation of the contents of cell pMem
** into buffer zBuf, length nBuf.
*/
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Move P1 P2 P3 * *
** Synopsis:  r[P2@P3]=r[P1@P3]
**
** Move the values in register P1..P1+P3 over into
** registers P2..P2+P3.  Registers P1..P1+P3 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3 and P2..P2+P3 to overlap.

*/
case OP_Move: {
  char *zMalloc;   /* Holding variable for allocated memory */
  int n;           /* Number of registers left to copy */
  int p1;          /* Register to copy from */
  int p2;          /* Register to copy to */

  n = pOp->p3;
  p1 = pOp->p1;
  p2 = pOp->p2;
  assert( n>=0 && p1>0 && p2>0 );
  assert( p1+n<=p2 || p2+n<=p1 );

  pIn1 = &aMem[p1];
  pOut = &aMem[p2];
  do{
    assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
    assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );







|
|

|
>










|







1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Move P1 P2 P3 * *
** Synopsis:  r[P2@P3]=r[P1@P3]
**
** Move the P3 values in register P1..P1+P3-1 over into
** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
** for P3 to be less than 1.
*/
case OP_Move: {
  char *zMalloc;   /* Holding variable for allocated memory */
  int n;           /* Number of registers left to copy */
  int p1;          /* Register to copy from */
  int p2;          /* Register to copy to */

  n = pOp->p3;
  p1 = pOp->p1;
  p2 = pOp->p2;
  assert( n>0 && p1>0 && p2>0 );
  assert( p1+n<=p2 || p2+n<=p1 );

  pIn1 = &aMem[p1];
  pOut = &aMem[p2];
  do{
    assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
    assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
#endif
    pIn1->flags = MEM_Undefined;
    pIn1->xDel = 0;
    pIn1->zMalloc = zMalloc;
    REGISTER_TRACE(p2++, pOut);
    pIn1++;
    pOut++;
  }while( n-- );
  break;
}

/* Opcode: Copy P1 P2 P3 * *
** Synopsis: r[P2@P3+1]=r[P1@P3+1]
**
** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.







|







1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
#endif
    pIn1->flags = MEM_Undefined;
    pIn1->xDel = 0;
    pIn1->zMalloc = zMalloc;
    REGISTER_TRACE(p2++, pOut);
    pIn1++;
    pOut++;
  }while( --n );
  break;
}

/* Opcode: Copy P1 P2 P3 * *
** Synopsis: r[P2@P3+1]=r[P1@P3+1]
**
** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1346
1347
1348
1349
1350
1351
1352
1353


1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
*/
case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
  char bIntint;   /* Started out as two integer operands */
  int flags;      /* Combined MEM_* flags from both inputs */


  i64 iA;         /* Integer value of left operand */
  i64 iB;         /* Integer value of right operand */
  double rA;      /* Real value of left operand */
  double rB;      /* Real value of right operand */

  pIn1 = &aMem[pOp->p1];
  applyNumericAffinity(pIn1);
  pIn2 = &aMem[pOp->p2];
  applyNumericAffinity(pIn2);
  pOut = &aMem[pOp->p3];
  flags = pIn1->flags | pIn2->flags;
  if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
  if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
    iA = pIn1->u.i;
    iB = pIn2->u.i;
    bIntint = 1;
    switch( pOp->opcode ){
      case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
      case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
      case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;







|
>
>






|

|



|







1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
*/
case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
  char bIntint;   /* Started out as two integer operands */
  u16 flags;      /* Combined MEM_* flags from both inputs */
  u16 type1;      /* Numeric type of left operand */
  u16 type2;      /* Numeric type of right operand */
  i64 iA;         /* Integer value of left operand */
  i64 iB;         /* Integer value of right operand */
  double rA;      /* Real value of left operand */
  double rB;      /* Real value of right operand */

  pIn1 = &aMem[pOp->p1];
  type1 = numericType(pIn1);
  pIn2 = &aMem[pOp->p2];
  type2 = numericType(pIn2);
  pOut = &aMem[pOp->p3];
  flags = pIn1->flags | pIn2->flags;
  if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
  if( (type1 & type2 & MEM_Int)!=0 ){
    iA = pIn1->u.i;
    iB = pIn2->u.i;
    bIntint = 1;
    switch( pOp->opcode ){
      case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
      case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
      case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
    MemSetTypeFlag(pOut, MEM_Int);
#else
    if( sqlite3IsNaN(rB) ){
      goto arithmetic_result_is_null;
    }
    pOut->r = rB;
    MemSetTypeFlag(pOut, MEM_Real);
    if( (flags & MEM_Real)==0 && !bIntint ){
      sqlite3VdbeIntegerAffinity(pOut);
    }
#endif
  }
  break;

arithmetic_result_is_null:







|







1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
    MemSetTypeFlag(pOut, MEM_Int);
#else
    if( sqlite3IsNaN(rB) ){
      goto arithmetic_result_is_null;
    }
    pOut->r = rB;
    MemSetTypeFlag(pOut, MEM_Real);
    if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
      sqlite3VdbeIntegerAffinity(pOut);
    }
#endif
  }
  break;

arithmetic_result_is_null:
1991
1992
1993
1994
1995
1996
1997

1998
1999
2000
2001
2002
2003
2004
  assert( pOp->p4type==P4_INTARRAY );
  assert( pOp->p4.ai );
  aPermute = pOp->p4.ai;
  break;
}

/* Opcode: Compare P1 P2 P3 P4 P5

**
** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
** the comparison for use by the next OP_Jump instruct.
**
** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
** determined by the most recent OP_Permutation operator.  If the







>







2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
  assert( pOp->p4type==P4_INTARRAY );
  assert( pOp->p4.ai );
  aPermute = pOp->p4.ai;
  break;
}

/* Opcode: Compare P1 P2 P3 P4 P5
** Synopsis: r[P1@P3] <-> r[P2@P3]
**
** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
** the comparison for use by the next OP_Jump instruct.
**
** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
** determined by the most recent OP_Permutation operator.  If the
3326
3327
3328
3329
3330
3331
3332

3333
3334
3335
3336
3337
3338
3339
      SQLITE_OPEN_DELETEONCLOSE |
      SQLITE_OPEN_TRANSIENT_DB;
  assert( pOp->p1>=0 );
  assert( pOp->p2>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;

  rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 
                        BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
  if( rc==SQLITE_OK ){
    rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
  }
  if( rc==SQLITE_OK ){
    /* If a transient index is required, create it by calling







>







3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
      SQLITE_OPEN_DELETEONCLOSE |
      SQLITE_OPEN_TRANSIENT_DB;
  assert( pOp->p1>=0 );
  assert( pOp->p2>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->isEphemeral = 1;
  rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 
                        BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
  if( rc==SQLITE_OK ){
    rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
  }
  if( rc==SQLITE_OK ){
    /* If a transient index is required, create it by calling
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
    assert( pC->rowidIsValid==0 );
  }
  pC->seekResult = res;
  break;
}

/* Opcode: Sequence P1 P2 * * *
** Synopsis: r[P2]=rowid
**
** Find the next available sequence number for cursor P1.
** Write the sequence number into register P2.
** The sequence number on the cursor is incremented after this
** instruction.  
*/
case OP_Sequence: {           /* out2-prerelease */







|







3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
    assert( pC->rowidIsValid==0 );
  }
  pC->seekResult = res;
  break;
}

/* Opcode: Sequence P1 P2 * * *
** Synopsis: r[P2]=cursor[P1].ctr++
**
** Find the next available sequence number for cursor P1.
** Write the sequence number into register P2.
** The sequence number on the cursor is incremented after this
** instruction.  
*/
case OP_Sequence: {           /* out2-prerelease */
4507
4508
4509
4510
4511
4512
4513

4514
4515
4516
4517
4518
4519
4520
*/
case OP_SorterNext: {  /* jump */
  VdbeCursor *pC;
  int res;

  pC = p->apCsr[pOp->p1];
  assert( isSorter(pC) );

  rc = sqlite3VdbeSorterNext(db, pC, &res);
  goto next_tail;
case OP_PrevIfOpen:    /* jump */
case OP_NextIfOpen:    /* jump */
  if( p->apCsr[pOp->p1]==0 ) break;
  /* Fall through */
case OP_Prev:          /* jump */







>







4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
*/
case OP_SorterNext: {  /* jump */
  VdbeCursor *pC;
  int res;

  pC = p->apCsr[pOp->p1];
  assert( isSorter(pC) );
  res = 0;
  rc = sqlite3VdbeSorterNext(db, pC, &res);
  goto next_tail;
case OP_PrevIfOpen:    /* jump */
case OP_NextIfOpen:    /* jump */
  if( p->apCsr[pOp->p1]==0 ) break;
  /* Fall through */
case OP_Prev:          /* jump */
4864
4865
4866
4867
4868
4869
4870























4871
4872
4873
4874
4875
4876
4877
      assert( memIsValid(&aMem[pOp->p3]) );
      memAboutToChange(p, &aMem[pOp->p3]);
      aMem[pOp->p3].u.i += nChange;
    }
  }
  break;
}
























/* Opcode: CreateTable P1 P2 * * *
** Synopsis: r[P2]=root iDb=P1
**
** Allocate a new table in the main database file if P1==0 or in the
** auxiliary database file if P1==1 or in an attached database if
** P1>1.  Write the root page number of the new table into







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
      assert( memIsValid(&aMem[pOp->p3]) );
      memAboutToChange(p, &aMem[pOp->p3]);
      aMem[pOp->p3].u.i += nChange;
    }
  }
  break;
}

/* Opcode: ResetSorter P1 * * * *
**
** Delete all contents from the ephemeral table or sorter
** that is open on cursor P1.
**
** This opcode only works for cursors used for sorting and
** opened with OP_OpenEphemeral or OP_SorterOpen.
*/
case OP_ResetSorter: {
  VdbeCursor *pC;
 
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  if( pC->pSorter ){
    sqlite3VdbeSorterReset(db, pC->pSorter);
  }else{
    assert( pC->isEphemeral );
    rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
  }
  break;
}

/* Opcode: CreateTable P1 P2 * * *
** Synopsis: r[P2]=root iDb=P1
**
** Allocate a new table in the main database file if P1==0 or in the
** auxiliary database file if P1==1 or in an attached database if
** P1>1.  Write the root page number of the new table into
Changes to src/vdbe.h.
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8);
void sqlite3VdbeSetVarmask(Vdbe*, int);
#ifndef SQLITE_OMIT_TRACE
  char *sqlite3VdbeExpandSql(Vdbe*, const char*);
#endif

void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);
int sqlite3VdbeRecordCompare(int,const void*,const UnpackedRecord*,int);
UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **);

typedef int (*RecordCompare)(int,const void*,const UnpackedRecord*,int);
RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*);

#ifndef SQLITE_OMIT_TRIGGER
void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
#endif

/* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on







|


|







207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8);
void sqlite3VdbeSetVarmask(Vdbe*, int);
#ifndef SQLITE_OMIT_TRACE
  char *sqlite3VdbeExpandSql(Vdbe*, const char*);
#endif

void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);
int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*,int);
UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **);

typedef int (*RecordCompare)(int,const void*,UnpackedRecord*,int);
RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*);

#ifndef SQLITE_OMIT_TRIGGER
void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
#endif

/* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on
Changes to src/vdbeInt.h.
68
69
70
71
72
73
74

75
76
77
78
79
80
81
  int pseudoTableReg;   /* Register holding pseudotable content. */
  i16 nField;           /* Number of fields in the header */
  u16 nHdrParsed;       /* Number of header fields parsed so far */
  i8 iDb;               /* Index of cursor database in db->aDb[] (or -1) */
  u8 nullRow;           /* True if pointing to a row with no data */
  u8 rowidIsValid;      /* True if lastRowid is valid */
  u8 deferredMoveto;    /* A call to sqlite3BtreeMoveto() is needed */

  Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */
  Bool isTable:1;       /* True if a table requiring integer keys */
  Bool isOrdered:1;     /* True if the underlying table is BTREE_UNORDERED */
  sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  i64 lastRowid;        /* Rowid being deleted by OP_Delete */







>







68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  int pseudoTableReg;   /* Register holding pseudotable content. */
  i16 nField;           /* Number of fields in the header */
  u16 nHdrParsed;       /* Number of header fields parsed so far */
  i8 iDb;               /* Index of cursor database in db->aDb[] (or -1) */
  u8 nullRow;           /* True if pointing to a row with no data */
  u8 rowidIsValid;      /* True if lastRowid is valid */
  u8 deferredMoveto;    /* A call to sqlite3BtreeMoveto() is needed */
  Bool isEphemeral:1;   /* True for an ephemeral table */
  Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */
  Bool isTable:1;       /* True if a table requiring integer keys */
  Bool isOrdered:1;     /* True if the underlying table is BTREE_UNORDERED */
  sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  i64 lastRowid;        /* Rowid being deleted by OP_Delete */
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
u32 sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(VdbeCursor*,const UnpackedRecord*,int*);
int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
int sqlite3VdbeHalt(Vdbe*);
int sqlite3VdbeChangeEncoding(Mem *, int);
int sqlite3VdbeMemTooBig(Mem*);







|







388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
u32 sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
int sqlite3VdbeHalt(Vdbe*);
int sqlite3VdbeChangeEncoding(Mem *, int);
int sqlite3VdbeMemTooBig(Mem*);
433
434
435
436
437
438
439

440
441
442
443
444
445
446
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);
int sqlite3VdbeFrameRestore(VdbeFrame *);
int sqlite3VdbeTransferError(Vdbe *p);

int sqlite3VdbeSorterInit(sqlite3 *, VdbeCursor *);

void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *);
int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *, int *);
int sqlite3VdbeSorterRewind(sqlite3 *, const VdbeCursor *, int *);
int sqlite3VdbeSorterWrite(sqlite3 *, const VdbeCursor *, Mem *);
int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *);








>







434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);
int sqlite3VdbeFrameRestore(VdbeFrame *);
int sqlite3VdbeTransferError(Vdbe *p);

int sqlite3VdbeSorterInit(sqlite3 *, VdbeCursor *);
void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *);
void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *);
int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *, int *);
int sqlite3VdbeSorterRewind(sqlite3 *, const VdbeCursor *, int *);
int sqlite3VdbeSorterWrite(sqlite3 *, const VdbeCursor *, Mem *);
int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *);

Changes to src/vdbeaux.c.
779
780
781
782
783
784
785
786


787
788
789
790
791
792
793
  }
  assert( p->nOp>0 );
  assert( addr<p->nOp );
  if( addr<0 ){
    addr = p->nOp - 1;
  }
  pOp = &p->aOp[addr];
  assert( pOp->p4type==P4_NOTUSED || pOp->p4type==P4_INT32 );


  freeP4(db, pOp->p4type, pOp->p4.p);
  pOp->p4.p = 0;
  if( n==P4_INT32 ){
    /* Note: this cast is safe, because the origin data point was an int
    ** that was cast to a (const char *). */
    pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
    pOp->p4type = P4_INT32;







|
>
>







779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
  }
  assert( p->nOp>0 );
  assert( addr<p->nOp );
  if( addr<0 ){
    addr = p->nOp - 1;
  }
  pOp = &p->aOp[addr];
  assert( pOp->p4type==P4_NOTUSED
       || pOp->p4type==P4_INT32
       || pOp->p4type==P4_KEYINFO );
  freeP4(db, pOp->p4type, pOp->p4.p);
  pOp->p4.p = 0;
  if( n==P4_INT32 ){
    /* Note: this cast is safe, because the origin data point was an int
    ** that was cast to a (const char *). */
    pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
    pOp->p4type = P4_INT32;
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
    p->cacheStatus = CACHE_STALE;
  }else if( p->pCursor ){
    int hasMoved;
    int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
    if( rc ) return rc;
    if( hasMoved ){
      p->cacheStatus = CACHE_STALE;
      p->nullRow = 1;
    }
  }
  return SQLITE_OK;
}

/*
** The following functions:







|







2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
    p->cacheStatus = CACHE_STALE;
  }else if( p->pCursor ){
    int hasMoved;
    int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
    if( rc ) return rc;
    if( hasMoved ){
      p->cacheStatus = CACHE_STALE;
      if( hasMoved==2 ) p->nullRow = 1;
    }
  }
  return SQLITE_OK;
}

/*
** The following functions:
3399
3400
3401
3402
3403
3404
3405



3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
**
** If argument bSkip is non-zero, it is assumed that the caller has already
** determined that the first fields of the keys are equal.
**
** Key1 and Key2 do not have to contain the same number of fields. If all 
** fields that appear in both keys are equal, then pPKey2->default_rc is 
** returned.



*/
int sqlite3VdbeRecordCompare(
  int nKey1, const void *pKey1,   /* Left key */
  const UnpackedRecord *pPKey2,   /* Right key */
  int bSkip                       /* If true, skip the first field */
){
  u32 d1;                         /* Offset into aKey[] of next data element */
  int i;                          /* Index of next field to compare */
  u32 szHdr1;                     /* Size of record header in bytes */
  u32 idx1;                       /* Offset of first type in header */
  int rc = 0;                     /* Return value */







>
>
>



|







3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
**
** If argument bSkip is non-zero, it is assumed that the caller has already
** determined that the first fields of the keys are equal.
**
** Key1 and Key2 do not have to contain the same number of fields. If all 
** fields that appear in both keys are equal, then pPKey2->default_rc is 
** returned.
**
** If database corruption is discovered, set pPKey2->isCorrupt to non-zero
** and return 0.
*/
int sqlite3VdbeRecordCompare(
  int nKey1, const void *pKey1,   /* Left key */
  UnpackedRecord *pPKey2,         /* Right key */
  int bSkip                       /* If true, skip the first field */
){
  u32 d1;                         /* Offset into aKey[] of next data element */
  int i;                          /* Index of next field to compare */
  u32 szHdr1;                     /* Size of record header in bytes */
  u32 idx1;                       /* Offset of first type in header */
  int rc = 0;                     /* Return value */
3428
3429
3430
3431
3432
3433
3434




3435
3436
3437
3438
3439
3440
3441
    szHdr1 = aKey1[0];
    d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
    i = 1;
    pRhs++;
  }else{
    idx1 = getVarint32(aKey1, szHdr1);
    d1 = szHdr1;




    i = 0;
  }

  VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
  assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 
       || CORRUPT_DB );
  assert( pPKey2->pKeyInfo->aSortOrder!=0 );







>
>
>
>







3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
    szHdr1 = aKey1[0];
    d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
    i = 1;
    pRhs++;
  }else{
    idx1 = getVarint32(aKey1, szHdr1);
    d1 = szHdr1;
    if( d1>(unsigned)nKey1 ){ 
      pPKey2->isCorrupt = (u8)SQLITE_CORRUPT_BKPT;
      return 0;  /* Corruption */
    }
    i = 0;
  }

  VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
  assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 
       || CORRUPT_DB );
  assert( pPKey2->pKeyInfo->aSortOrder!=0 );
3504
3505
3506
3507
3508
3509
3510

3511
3512
3513
3514
3515
3516
3517
3518
      }else if( !(serial_type & 0x01) ){
        rc = +1;
      }else{
        mem1.n = (serial_type - 12) / 2;
        testcase( (d1+mem1.n)==(unsigned)nKey1 );
        testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
        if( (d1+mem1.n) > (unsigned)nKey1 ){

          rc = 1;                /* Corruption */
        }else if( pKeyInfo->aColl[i] ){
          mem1.enc = pKeyInfo->enc;
          mem1.db = pKeyInfo->db;
          mem1.flags = MEM_Str;
          mem1.z = (char*)&aKey1[d1];
          rc = vdbeCompareMemString(&mem1, pRhs, pKeyInfo->aColl[i]);
        }else{







>
|







3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
      }else if( !(serial_type & 0x01) ){
        rc = +1;
      }else{
        mem1.n = (serial_type - 12) / 2;
        testcase( (d1+mem1.n)==(unsigned)nKey1 );
        testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
        if( (d1+mem1.n) > (unsigned)nKey1 ){
          pPKey2->isCorrupt = (u8)SQLITE_CORRUPT_BKPT;
          return 0;                /* Corruption */
        }else if( pKeyInfo->aColl[i] ){
          mem1.enc = pKeyInfo->enc;
          mem1.db = pKeyInfo->db;
          mem1.flags = MEM_Str;
          mem1.z = (char*)&aKey1[d1];
          rc = vdbeCompareMemString(&mem1, pRhs, pKeyInfo->aColl[i]);
        }else{
3530
3531
3532
3533
3534
3535
3536

3537
3538
3539
3540
3541
3542
3543
3544
      if( serial_type<12 || (serial_type & 0x01) ){
        rc = -1;
      }else{
        int nStr = (serial_type - 12) / 2;
        testcase( (d1+nStr)==(unsigned)nKey1 );
        testcase( (d1+nStr+1)==(unsigned)nKey1 );
        if( (d1+nStr) > (unsigned)nKey1 ){

          rc = 1;                /* Corruption */
        }else{
          int nCmp = MIN(nStr, pRhs->n);
          rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
          if( rc==0 ) rc = nStr - pRhs->n;
        }
      }
    }







>
|







3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
      if( serial_type<12 || (serial_type & 0x01) ){
        rc = -1;
      }else{
        int nStr = (serial_type - 12) / 2;
        testcase( (d1+nStr)==(unsigned)nKey1 );
        testcase( (d1+nStr+1)==(unsigned)nKey1 );
        if( (d1+nStr) > (unsigned)nKey1 ){
          pPKey2->isCorrupt = (u8)SQLITE_CORRUPT_BKPT;
          return 0;                /* Corruption */
        }else{
          int nCmp = MIN(nStr, pRhs->n);
          rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
          if( rc==0 ) rc = nStr - pRhs->n;
        }
      }
    }
3583
3584
3585
3586
3587
3588
3589



3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605

3606
3607
3608
3609
3610
3611
3612
}

/*
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is an integer, and (b) the 
** size-of-header varint at the start of (pKey1/nKey1) fits in a single
** byte (i.e. is less than 128).



*/
static int vdbeRecordCompareInt(
  int nKey1, const void *pKey1, /* Left key */
  const UnpackedRecord *pPKey2, /* Right key */
  int bSkip                     /* Ignored */
){
  const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
  int serial_type = ((const u8*)pKey1)[1];
  int res;
  u32 y;
  u64 x;
  i64 v = pPKey2->aMem[0].u.i;
  i64 lhs;
  UNUSED_PARAMETER(bSkip);

  assert( bSkip==0 );

  switch( serial_type ){
    case 1: { /* 1-byte signed integer */
      lhs = ONE_BYTE_INT(aKey);
      testcase( lhs<0 );
      break;
    }
    case 2: { /* 2-byte signed integer */







>
>
>



|












>







3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
}

/*
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is an integer, and (b) the 
** size-of-header varint at the start of (pKey1/nKey1) fits in a single
** byte (i.e. is less than 128).
**
** To avoid concerns about buffer overreads, this routine is only used
** on schemas where the maximum valid header size is 63 bytes or less.
*/
static int vdbeRecordCompareInt(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2,       /* Right key */
  int bSkip                     /* Ignored */
){
  const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
  int serial_type = ((const u8*)pKey1)[1];
  int res;
  u32 y;
  u64 x;
  i64 v = pPKey2->aMem[0].u.i;
  i64 lhs;
  UNUSED_PARAMETER(bSkip);

  assert( bSkip==0 );
  assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
  switch( serial_type ){
    case 1: { /* 1-byte signed integer */
      lhs = ONE_BYTE_INT(aKey);
      testcase( lhs<0 );
      break;
    }
    case 2: { /* 2-byte signed integer */
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711



3712
3713
3714
3715
3716
3717
3718
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is a string, that (b) the first field
** uses the collation sequence BINARY and (c) that the size-of-header varint 
** at the start of (pKey1/nKey1) fits in a single byte.
*/
static int vdbeRecordCompareString(
  int nKey1, const void *pKey1, /* Left key */
  const UnpackedRecord *pPKey2, /* Right key */
  int bSkip
){
  const u8 *aKey1 = (const u8*)pKey1;
  int serial_type;
  int res;
  UNUSED_PARAMETER(bSkip);

  assert( bSkip==0 );
  getVarint32(&aKey1[1], serial_type);

  if( serial_type<12 ){
    res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
  }else if( !(serial_type & 0x01) ){ 
    res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
  }else{
    int nCmp;
    int nStr;
    int szHdr = aKey1[0];

    nStr = (serial_type-12) / 2;
    if( (szHdr + nStr) > nKey1 ) return 0;    /* Corruption */



    nCmp = MIN( pPKey2->aMem[0].n, nStr );
    res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);

    if( res==0 ){
      res = nStr - pPKey2->aMem[0].n;
      if( res==0 ){
        if( pPKey2->nField>1 ){







|




















|
>
>
>







3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is a string, that (b) the first field
** uses the collation sequence BINARY and (c) that the size-of-header varint 
** at the start of (pKey1/nKey1) fits in a single byte.
*/
static int vdbeRecordCompareString(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2,       /* Right key */
  int bSkip
){
  const u8 *aKey1 = (const u8*)pKey1;
  int serial_type;
  int res;
  UNUSED_PARAMETER(bSkip);

  assert( bSkip==0 );
  getVarint32(&aKey1[1], serial_type);

  if( serial_type<12 ){
    res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
  }else if( !(serial_type & 0x01) ){ 
    res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
  }else{
    int nCmp;
    int nStr;
    int szHdr = aKey1[0];

    nStr = (serial_type-12) / 2;
    if( (szHdr + nStr) > nKey1 ){
      pPKey2->isCorrupt = (u8)SQLITE_CORRUPT_BKPT;
      return 0;    /* Corruption */
    }
    nCmp = MIN( pPKey2->aMem[0].n, nStr );
    res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);

    if( res==0 ){
      res = nStr - pPKey2->aMem[0].n;
      if( res==0 ){
        if( pPKey2->nField>1 ){
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
** pUnpacked is either created without a rowid or is truncated so that it
** omits the rowid at the end.  The rowid at the end of the index entry
** is ignored as well.  Hence, this routine only compares the prefixes 
** of the keys prior to the final rowid, not the entire key.
*/
int sqlite3VdbeIdxKeyCompare(
  VdbeCursor *pC,                  /* The cursor to compare against */
  const UnpackedRecord *pUnpacked, /* Unpacked version of key */
  int *res                         /* Write the comparison result here */
){
  i64 nCellKey = 0;
  int rc;
  BtCursor *pCur = pC->pCursor;
  Mem m;








|







3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
** pUnpacked is either created without a rowid or is truncated so that it
** omits the rowid at the end.  The rowid at the end of the index entry
** is ignored as well.  Hence, this routine only compares the prefixes 
** of the keys prior to the final rowid, not the entire key.
*/
int sqlite3VdbeIdxKeyCompare(
  VdbeCursor *pC,                  /* The cursor to compare against */
  UnpackedRecord *pUnpacked,       /* Unpacked version of key */
  int *res                         /* Write the comparison result here */
){
  i64 nCellKey = 0;
  int rc;
  BtCursor *pCur = pC->pCursor;
  Mem m;

Changes to src/vdbesort.c.
499
500
501
502
503
504
505



























506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
  SorterRecord *p;
  SorterRecord *pNext;
  for(p=pRecord; p; p=pNext){
    pNext = p->pNext;
    sqlite3DbFree(db, p);
  }
}




























/*
** Free any cursor components allocated by sqlite3VdbeSorterXXX routines.
*/
void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){
  VdbeSorter *pSorter = pCsr->pSorter;
  if( pSorter ){
    if( pSorter->aIter ){
      int i;
      for(i=0; i<pSorter->nTree; i++){
        vdbeSorterIterZero(db, &pSorter->aIter[i]);
      }
      sqlite3DbFree(db, pSorter->aIter);
    }
    if( pSorter->pTemp1 ){
      sqlite3OsCloseFree(pSorter->pTemp1);
    }
    vdbeSorterRecordFree(db, pSorter->pRecord);
    sqlite3DbFree(db, pSorter->pUnpacked);
    sqlite3DbFree(db, pSorter);
    pCsr->pSorter = 0;
  }
}

/*







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







<
<
<
<
<
|
<
<
<
<
<







499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539





540





541
542
543
544
545
546
547
  SorterRecord *p;
  SorterRecord *pNext;
  for(p=pRecord; p; p=pNext){
    pNext = p->pNext;
    sqlite3DbFree(db, p);
  }
}

/*
** Reset a sorting cursor back to its original empty state.
*/
void sqlite3VdbeSorterReset(sqlite3 *db, VdbeSorter *pSorter){
  if( pSorter->aIter ){
    int i;
    for(i=0; i<pSorter->nTree; i++){
      vdbeSorterIterZero(db, &pSorter->aIter[i]);
    }
    sqlite3DbFree(db, pSorter->aIter);
    pSorter->aIter = 0;
  }
  if( pSorter->pTemp1 ){
    sqlite3OsCloseFree(pSorter->pTemp1);
    pSorter->pTemp1 = 0;
  }
  vdbeSorterRecordFree(db, pSorter->pRecord);
  pSorter->pRecord = 0;
  pSorter->iWriteOff = 0;
  pSorter->iReadOff = 0;
  pSorter->nInMemory = 0;
  pSorter->nTree = 0;
  pSorter->nPMA = 0;
  pSorter->aTree = 0;
}


/*
** Free any cursor components allocated by sqlite3VdbeSorterXXX routines.
*/
void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){
  VdbeSorter *pSorter = pCsr->pSorter;
  if( pSorter ){





    sqlite3VdbeSorterReset(db, pSorter);





    sqlite3DbFree(db, pSorter->pUnpacked);
    sqlite3DbFree(db, pSorter);
    pCsr->pSorter = 0;
  }
}

/*
952
953
954
955
956
957
958


959



960


961



962







963


964
965





















966

967
968
969
970
971
972
973
*/
int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc;                         /* Return code */

  if( pSorter->aTree ){
    int iPrev = pSorter->aTree[1];/* Index of iterator to advance */


    int i;                        /* Index of aTree[] to recalculate */






    rc = vdbeSorterIterNext(db, &pSorter->aIter[iPrev]);



    for(i=(pSorter->nTree+iPrev)/2; rc==SQLITE_OK && i>0; i=i/2){







      rc = vdbeSorterDoCompare(pCsr, i);


    }






















    *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0);

  }else{
    SorterRecord *pFree = pSorter->pRecord;
    pSorter->pRecord = pFree->pNext;
    pFree->pNext = 0;
    vdbeSorterRecordFree(db, pFree);
    *pbEof = !pSorter->pRecord;
    rc = SQLITE_OK;







>
>
|
>
>
>

>
>
|
>
>
>
|
>
>
>
>
>
>
>
|
>
>
|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>







969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
*/
int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc;                         /* Return code */

  if( pSorter->aTree ){
    int iPrev = pSorter->aTree[1];/* Index of iterator to advance */
    rc = vdbeSorterIterNext(db, &pSorter->aIter[iPrev]);
    if( rc==SQLITE_OK ){
      int i;                      /* Index of aTree[] to recalculate */
      VdbeSorterIter *pIter1;     /* First iterator to compare */
      VdbeSorterIter *pIter2;     /* Second iterator to compare */
      u8 *pKey2;                  /* To pIter2->aKey, or 0 if record cached */

      /* Find the first two iterators to compare. The one that was just
      ** advanced (iPrev) and the one next to it in the array.  */
      pIter1 = &pSorter->aIter[(iPrev & 0xFFFE)];
      pIter2 = &pSorter->aIter[(iPrev | 0x0001)];
      pKey2 = pIter2->aKey;

      for(i=(pSorter->nTree+iPrev)/2; i>0; i=i/2){
        /* Compare pIter1 and pIter2. Store the result in variable iRes. */
        int iRes;
        if( pIter1->pFile==0 ){
          iRes = +1;
        }else if( pIter2->pFile==0 ){
          iRes = -1;
        }else{
          vdbeSorterCompare(pCsr, 0, 
              pIter1->aKey, pIter1->nKey, pKey2, pIter2->nKey, &iRes
          );
        }

        /* If pIter1 contained the smaller value, set aTree[i] to its index.
        ** Then set pIter2 to the next iterator to compare to pIter1. In this
        ** case there is no cache of pIter2 in pSorter->pUnpacked, so set
        ** pKey2 to point to the record belonging to pIter2.
        **
        ** Alternatively, if pIter2 contains the smaller of the two values,
        ** set aTree[i] to its index and update pIter1. If vdbeSorterCompare()
        ** was actually called above, then pSorter->pUnpacked now contains
        ** a value equivalent to pIter2. So set pKey2 to NULL to prevent
        ** vdbeSorterCompare() from decoding pIter2 again.  */
        if( iRes<=0 ){
          pSorter->aTree[i] = (int)(pIter1 - pSorter->aIter);
          pIter2 = &pSorter->aIter[ pSorter->aTree[i ^ 0x0001] ];
          pKey2 = pIter2->aKey;
        }else{
          if( pIter1->pFile ) pKey2 = 0;
          pSorter->aTree[i] = (int)(pIter2 - pSorter->aIter);
          pIter1 = &pSorter->aIter[ pSorter->aTree[i ^ 0x0001] ];
        }

      }
      *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0);
    }
  }else{
    SorterRecord *pFree = pSorter->pRecord;
    pSorter->pRecord = pFree->pNext;
    pFree->pNext = 0;
    vdbeSorterRecordFree(db, pFree);
    *pbEof = !pSorter->pRecord;
    rc = SQLITE_OK;
Changes to src/where.c.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
}

/*
** Return TRUE if the WHERE clause returns rows in ORDER BY order.
** Return FALSE if the output needs to be sorted.
*/
int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
  return pWInfo->bOBSat!=0;
}

/*
** Return the VDBE address or label to jump to in order to continue
** immediately with the next row of a WHERE clause.
*/
int sqlite3WhereContinueLabel(WhereInfo *pWInfo){

  return pWInfo->iContinue;
}

/*
** Return the VDBE address or label to jump to in order to break
** out of a WHERE loop.
*/







|







>







35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
}

/*
** Return TRUE if the WHERE clause returns rows in ORDER BY order.
** Return FALSE if the output needs to be sorted.
*/
int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
  return pWInfo->nOBSat;
}

/*
** Return the VDBE address or label to jump to in order to continue
** immediately with the next row of a WHERE clause.
*/
int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
  assert( pWInfo->iContinue!=0 );
  return pWInfo->iContinue;
}

/*
** Return the VDBE address or label to jump to in order to break
** out of a WHERE loop.
*/
3032
3033
3034
3035
3036
3037
3038



3039
3040
3041
3042
3043
3044
3045
3046
3047
    ** was passed to this function to implement a "SELECT min(x) ..." 
    ** query, then the caller will only allow the loop to run for
    ** a single iteration. This means that the first row returned
    ** should not have a NULL value stored in 'x'. If column 'x' is
    ** the first one after the nEq equality constraints in the index,
    ** this requires some special handling.
    */



    if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
     && (pWInfo->bOBSat!=0)
     && (pIdx->nKeyCol>nEq)
    ){
      assert( pLoop->u.btree.nSkip==0 );
      bSeekPastNull = 1;
      nExtraReg = 1;
    }








>
>
>

|







3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
    ** was passed to this function to implement a "SELECT min(x) ..." 
    ** query, then the caller will only allow the loop to run for
    ** a single iteration. This means that the first row returned
    ** should not have a NULL value stored in 'x'. If column 'x' is
    ** the first one after the nEq equality constraints in the index,
    ** this requires some special handling.
    */
    assert( pWInfo->pOrderBy==0
         || pWInfo->pOrderBy->nExpr==1
         || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
    if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
     && pWInfo->nOBSat>0
     && (pIdx->nKeyCol>nEq)
    ){
      assert( pLoop->u.btree.nSkip==0 );
      bSeekPastNull = 1;
      nExtraReg = 1;
    }

3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
      pLevel->op = OP_Noop;
    }else if( bRev ){
      pLevel->op = OP_Prev;
    }else{
      pLevel->op = OP_Next;
    }
    pLevel->p1 = iIdxCur;
    assert( (WHERE_UNQ_WANTED>>16)==1 );
    pLevel->p3 = (pLoop->wsFlags>>16)&1;
    if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }else{
      assert( pLevel->p5==0 );
    }
  }else








<
|







3208
3209
3210
3211
3212
3213
3214

3215
3216
3217
3218
3219
3220
3221
3222
      pLevel->op = OP_Noop;
    }else if( bRev ){
      pLevel->op = OP_Prev;
    }else{
      pLevel->op = OP_Next;
    }
    pLevel->p1 = iIdxCur;

    pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
    if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }else{
      assert( pLevel->p5==0 );
    }
  }else

4006
4007
4008
4009
4010
4011
4012


4013
4014
4015
4016
4017
4018
4019
      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
        nIn = 46;  assert( 46==sqlite3LogEst(25) );
      }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
        /* "x IN (value, value, ...)" */
        nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
      }


      pNew->rRun += nIn;
      pNew->u.btree.nEq++;
      pNew->nOut = nRowEst + nInMul + nIn;
    }else if( pTerm->eOperator & (WO_EQ) ){
      assert(
        (pNew->wsFlags & (WHERE_COLUMN_NULL|WHERE_COLUMN_IN|WHERE_SKIPSCAN))!=0
        || nInMul==0







>
>







4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
        nIn = 46;  assert( 46==sqlite3LogEst(25) );
      }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
        /* "x IN (value, value, ...)" */
        nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
      }
      assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
                        ** changes "x IN (?)" into "x=?". */
      pNew->rRun += nIn;
      pNew->u.btree.nEq++;
      pNew->nOut = nRowEst + nInMul + nIn;
    }else if( pTerm->eOperator & (WO_EQ) ){
      assert(
        (pNew->wsFlags & (WHERE_COLUMN_NULL|WHERE_COLUMN_IN|WHERE_SKIPSCAN))!=0
        || nInMul==0
4319
4320
4321
4322
4323
4324
4325




4326
4327
4328
4329
4330



4331
4332
4333
4334
4335
4336










4337
4338
4339
4340
4341
4342
4343
4344
         && (pProbe->szIdxRow<pTab->szTabRow)
         && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
         && sqlite3GlobalConfig.bUseCis
         && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
          )
      ){
        pNew->iSortIdx = b ? iSortIdx : 0;




        if( m==0 ){
          /* TUNING: Cost of a covering index scan is K*(N + log2(N)).
          **  +  The extra factor K of between 1.1 and 3.0 that depends
          **     on the relative sizes of the table and the index.  K
          **     is smaller for smaller indices, thus favoring them.



          */
          pNew->rRun = sqlite3LogEstAdd(rSize,rLogSize) + 1 +
                        (15*pProbe->szIdxRow)/pTab->szTabRow;
        }else{
          /* TUNING: Cost of scanning a non-covering index is (N+1)*log2(N)
          ** which we will simplify to just N*log2(N) */










          pNew->rRun = rSize + rLogSize;
        }
        whereLoopOutputAdjust(pWC, pNew);
        rc = whereLoopInsert(pBuilder, pNew);
        pNew->nOut = rSize;
        if( rc ) break;
      }
    }







>
>
>
>





>
>
>

<
|

|
|
>
>
>
>
>
>
>
>
>
>
|







4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343

4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
         && (pProbe->szIdxRow<pTab->szTabRow)
         && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
         && sqlite3GlobalConfig.bUseCis
         && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
          )
      ){
        pNew->iSortIdx = b ? iSortIdx : 0;
        /* TUNING:  The base cost of an index scan is N + log2(N).
        ** The log2(N) is for the initial seek to the beginning and the N
        ** is for the scan itself. */
        pNew->rRun = sqlite3LogEstAdd(rSize, rLogSize);
        if( m==0 ){
          /* TUNING: Cost of a covering index scan is K*(N + log2(N)).
          **  +  The extra factor K of between 1.1 and 3.0 that depends
          **     on the relative sizes of the table and the index.  K
          **     is smaller for smaller indices, thus favoring them.
          **     The upper bound on K (3.0) matches the penalty factor
          **     on a full table scan that tries to encourage the use of
          **     indexed lookups over full scans.
          */

          pNew->rRun +=  1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
        }else{
          /* TUNING: The cost of scanning a non-covering index is multiplied
          ** by log2(N) to account for the binary search of the main table
          ** that must happen for each row of the index.
          ** TODO: Should there be a multiplier here, analogous to the 3x
          ** multiplier for a fulltable scan or covering index scan, to
          ** further discourage the use of an index scan?  Or is the log2(N)
          ** term sufficient discouragement?
          ** TODO: What if some or all of the WHERE clause terms can be
          ** computed without reference to the original table.  Then the
          ** penality should reduce to logK where K is the number of output
          ** rows.
          */
          pNew->rRun += rLogSize;
        }
        whereLoopOutputAdjust(pWC, pNew);
        rc = whereLoopInsert(pBuilder, pNew);
        pNew->nOut = rSize;
        if( rc ) break;
      }
    }
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
    if( i>=nConstraint ){
      pNew->nLTerm = mxTerm+1;
      assert( pNew->nLTerm<=pNew->nLSlot );
      pNew->u.vtab.idxNum = pIdxInfo->idxNum;
      pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
      pIdxInfo->needToFreeIdxStr = 0;
      pNew->u.vtab.idxStr = pIdxInfo->idxStr;
      pNew->u.vtab.isOrdered = (u8)((pIdxInfo->nOrderBy!=0)
                                     && pIdxInfo->orderByConsumed);
      pNew->rSetup = 0;
      pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
      pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
      whereLoopInsert(pBuilder, pNew);
      if( pNew->u.vtab.needFree ){
        sqlite3_free(pNew->u.vtab.idxStr);
        pNew->u.vtab.needFree = 0;







|
|







4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
    if( i>=nConstraint ){
      pNew->nLTerm = mxTerm+1;
      assert( pNew->nLTerm<=pNew->nLSlot );
      pNew->u.vtab.idxNum = pIdxInfo->idxNum;
      pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
      pIdxInfo->needToFreeIdxStr = 0;
      pNew->u.vtab.idxStr = pIdxInfo->idxStr;
      pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
                                      pIdxInfo->nOrderBy : 0);
      pNew->rSetup = 0;
      pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
      pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
      whereLoopInsert(pBuilder, pNew);
      if( pNew->u.vtab.needFree ){
        sqlite3_free(pNew->u.vtab.idxStr);
        pNew->u.vtab.needFree = 0;
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
  whereLoopClear(db, pNew);
  return rc;
}

/*
** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
** parameters) to see if it outputs rows in the requested ORDER BY
** (or GROUP BY) without requiring a separate sort operation.  Return:
** 
**    0:  ORDER BY is not satisfied.  Sorting required
**    1:  ORDER BY is satisfied.      Omit sorting
**   -1:  Unknown at this time
**
** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
** strict.  With GROUP BY and DISTINCT the only requirement is that
** equivalent rows appear immediately adjacent to one another.  GROUP BY
** and DISTINT do not require rows to appear in any particular order as long
** as equivelent rows are grouped together.  Thus for GROUP BY and DISTINCT
** the pOrderBy terms can be matched in any order.  With ORDER BY, the 
** pOrderBy terms must be matched in strict left-to-right order.
*/
static int wherePathSatisfiesOrderBy(
  WhereInfo *pWInfo,    /* The WHERE clause */
  ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
  WherePath *pPath,     /* The WherePath to check */
  u16 wctrlFlags,       /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */
  u16 nLoop,            /* Number of entries in pPath->aLoop[] */
  WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
  Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */







|

|
|
|









|







4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
  whereLoopClear(db, pNew);
  return rc;
}

/*
** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
** parameters) to see if it outputs rows in the requested ORDER BY
** (or GROUP BY) without requiring a separate sort operation.  Return N:
** 
**   N>0:   N terms of the ORDER BY clause are satisfied
**   N==0:  No terms of the ORDER BY clause are satisfied
**   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.   
**
** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
** strict.  With GROUP BY and DISTINCT the only requirement is that
** equivalent rows appear immediately adjacent to one another.  GROUP BY
** and DISTINT do not require rows to appear in any particular order as long
** as equivelent rows are grouped together.  Thus for GROUP BY and DISTINCT
** the pOrderBy terms can be matched in any order.  With ORDER BY, the 
** pOrderBy terms must be matched in strict left-to-right order.
*/
static i8 wherePathSatisfiesOrderBy(
  WhereInfo *pWInfo,    /* The WHERE clause */
  ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
  WherePath *pPath,     /* The WherePath to check */
  u16 wctrlFlags,       /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */
  u16 nLoop,            /* Number of entries in pPath->aLoop[] */
  WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
  Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
4862
4863
4864
4865
4866
4867
4868











4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
          if( iColumn>=0 ){
            pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
            if( !pColl ) pColl = db->pDfltColl;
            if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
          }
          isMatch = 1;
          break;











        }
        if( isMatch ){
          if( iColumn<0 ){
            testcase( distinctColumns==0 );
            distinctColumns = 1;
          }
          obSat |= MASKBIT(i);
          if( (pWInfo->wctrlFlags & WHERE_GROUPBY)==0 ){
            /* Make sure the sort order is compatible in an ORDER BY clause.
            ** Sort order is irrelevant for a GROUP BY clause. */
            if( revSet ){
              if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) return 0;
            }else{
              rev = revIdx ^ pOrderBy->a[i].sortOrder;
              if( rev ) *pRevMask |= MASKBIT(iLoop);
              revSet = 1;
            }
          }
        }else{
          /* No match found */
          if( j==0 || j<nKeyCol ){
            testcase( isOrderDistinct!=0 );
            isOrderDistinct = 0;
          }
          break;







>
>
>
>
>
>
>
>
>
>
>







<
<
<
<
<
<
<
<
<
<
<







4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907











4908
4909
4910
4911
4912
4913
4914
          if( iColumn>=0 ){
            pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
            if( !pColl ) pColl = db->pDfltColl;
            if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
          }
          isMatch = 1;
          break;
        }
        if( isMatch && (pWInfo->wctrlFlags & WHERE_GROUPBY)==0 ){
          /* Make sure the sort order is compatible in an ORDER BY clause.
          ** Sort order is irrelevant for a GROUP BY clause. */
          if( revSet ){
            if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
          }else{
            rev = revIdx ^ pOrderBy->a[i].sortOrder;
            if( rev ) *pRevMask |= MASKBIT(iLoop);
            revSet = 1;
          }
        }
        if( isMatch ){
          if( iColumn<0 ){
            testcase( distinctColumns==0 );
            distinctColumns = 1;
          }
          obSat |= MASKBIT(i);











        }else{
          /* No match found */
          if( j==0 || j<nKeyCol ){
            testcase( isOrderDistinct!=0 );
            isOrderDistinct = 0;
          }
          break;
4911
4912
4913
4914
4915
4916
4917
4918
4919






4920
4921
4922
4923
4924
4925
4926
        if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
        if( (mTerm&~orderDistinctMask)==0 ){
          obSat |= MASKBIT(i);
        }
      }
    }
  } /* End the loop over all WhereLoops from outer-most down to inner-most */
  if( obSat==obDone ) return 1;
  if( !isOrderDistinct ) return 0;






  return -1;
}

#ifdef WHERETRACE_ENABLED
/* For debugging use only: */
static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
  static char zName[65];







|
|
>
>
>
>
>
>







4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
        if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
        if( (mTerm&~orderDistinctMask)==0 ){
          obSat |= MASKBIT(i);
        }
      }
    }
  } /* End the loop over all WhereLoops from outer-most down to inner-most */
  if( obSat==obDone ) return (i8)nOrderBy;
  if( !isOrderDistinct ){
    for(i=nOrderBy-1; i>0; i--){
      Bitmask m = MASKBIT(i) - 1;
      if( (obSat&m)==m ) return i;
    }
    return 0;
  }
  return -1;
}

#ifdef WHERETRACE_ENABLED
/* For debugging use only: */
static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
  static char zName[65];
4949
4950
4951
4952
4953
4954
4955

4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
  int mxChoice;             /* Maximum number of simultaneous paths tracked */
  int nLoop;                /* Number of terms in the join */
  Parse *pParse;            /* Parsing context */
  sqlite3 *db;              /* The database connection */
  int iLoop;                /* Loop counter over the terms of the join */
  int ii, jj;               /* Loop counters */
  int mxI = 0;              /* Index of next entry to replace */

  LogEst rCost;             /* Cost of a path */
  LogEst nOut;              /* Number of outputs */
  LogEst mxCost = 0;        /* Maximum cost of a set of paths */
  LogEst mxOut = 0;         /* Maximum nOut value on the set of paths */
  LogEst rSortCost;         /* Cost to do a sort */
  int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
  WherePath *aFrom;         /* All nFrom paths at the previous level */
  WherePath *aTo;           /* The nTo best paths at the current level */
  WherePath *pFrom;         /* An element of aFrom[] that we are working on */
  WherePath *pTo;           /* An element of aTo[] that we are working on */
  WhereLoop *pWLoop;        /* One of the WhereLoop objects */
  WhereLoop **pX;           /* Used to divy up the pSpace memory */







>




<







4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987

4988
4989
4990
4991
4992
4993
4994
  int mxChoice;             /* Maximum number of simultaneous paths tracked */
  int nLoop;                /* Number of terms in the join */
  Parse *pParse;            /* Parsing context */
  sqlite3 *db;              /* The database connection */
  int iLoop;                /* Loop counter over the terms of the join */
  int ii, jj;               /* Loop counters */
  int mxI = 0;              /* Index of next entry to replace */
  int nOrderBy;             /* Number of ORDER BY clause terms */
  LogEst rCost;             /* Cost of a path */
  LogEst nOut;              /* Number of outputs */
  LogEst mxCost = 0;        /* Maximum cost of a set of paths */
  LogEst mxOut = 0;         /* Maximum nOut value on the set of paths */

  int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
  WherePath *aFrom;         /* All nFrom paths at the previous level */
  WherePath *aTo;           /* The nTo best paths at the current level */
  WherePath *pFrom;         /* An element of aFrom[] that we are working on */
  WherePath *pTo;           /* An element of aTo[] that we are working on */
  WhereLoop *pWLoop;        /* One of the WhereLoop objects */
  WhereLoop **pX;           /* Used to divy up the pSpace memory */
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004

5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038

5039


5040
5041




5042










5043

5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
  ** of computing an automatic index is not paid back within the first 25
  ** rows, then do not use the automatic index. */
  aFrom[0].nRow = MIN(pParse->nQueryLoop, 46);  assert( 46==sqlite3LogEst(25) );
  nFrom = 1;

  /* Precompute the cost of sorting the final result set, if the caller
  ** to sqlite3WhereBegin() was concerned about sorting */
  rSortCost = 0;
  if( pWInfo->pOrderBy==0 || nRowEst==0 ){
    aFrom[0].isOrderedValid = 1;

  }else{
    /* TUNING: Estimated cost of sorting is 48*N*log2(N) where N is the
    ** number of output rows. The 48 is the expected size of a row to sort. 
    ** FIXME:  compute a better estimate of the 48 multiplier based on the
    ** result set expressions. */
    rSortCost = nRowEst + estLog(nRowEst);
    WHERETRACE(0x002,("---- sort cost=%-3d\n", rSortCost));
  }

  /* Compute successively longer WherePaths using the previous generation
  ** of WherePaths as the basis for the next.  Keep track of the mxChoice
  ** best paths at each generation */
  for(iLoop=0; iLoop<nLoop; iLoop++){
    nTo = 0;
    for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
      for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
        Bitmask maskNew;
        Bitmask revMask = 0;
        u8 isOrderedValid = pFrom->isOrderedValid;
        u8 isOrdered = pFrom->isOrdered;
        if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
        if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
        /* At this point, pWLoop is a candidate to be the next loop. 
        ** Compute its cost */
        rCost = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
        rCost = sqlite3LogEstAdd(rCost, pFrom->rCost);
        nOut = pFrom->nRow + pWLoop->nOut;
        maskNew = pFrom->maskLoop | pWLoop->maskSelf;
        if( !isOrderedValid ){
          switch( wherePathSatisfiesOrderBy(pWInfo,
                       pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
                       iLoop, pWLoop, &revMask) ){
            case 1:  /* Yes.  pFrom+pWLoop does satisfy the ORDER BY clause */
              isOrdered = 1;

              isOrderedValid = 1;


              break;
            case 0:  /* No.  pFrom+pWLoop will require a separate sort */




              isOrdered = 0;










              isOrderedValid = 1;

              rCost = sqlite3LogEstAdd(rCost, rSortCost);
              break;
            default: /* Cannot tell yet.  Try again on the next iteration */
              break;
          }
        }else{
          revMask = pFrom->revLoop;
        }
        /* Check to see if pWLoop should be added to the mxChoice best so far */
        for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
          if( pTo->maskLoop==maskNew
           && pTo->isOrderedValid==isOrderedValid
           && ((pTo->rCost<=rCost && pTo->nRow<=nOut) ||
                (pTo->rCost>=rCost && pTo->nRow>=nOut))
          ){
            testcase( jj==nTo-1 );
            break;
          }
        }
        if( jj>=nTo ){
          if( nTo>=mxChoice && rCost>=mxCost ){
#ifdef WHERETRACE_ENABLED /* 0x4 */
            if( sqlite3WhereTrace&0x4 ){
              sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d order=%c\n",
                  wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
                  isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
            }
#endif
            continue;
          }
          /* Add a new Path to the aTo[] set */
          if( nTo<mxChoice ){
            /* Increase the size of the aTo set by one */
            jj = nTo++;
          }else{
            /* New path replaces the prior worst to keep count below mxChoice */
            jj = mxI;
          }
          pTo = &aTo[jj];
#ifdef WHERETRACE_ENABLED /* 0x4 */
          if( sqlite3WhereTrace&0x4 ){
            sqlite3DebugPrintf("New    %s cost=%-3d,%3d order=%c\n",
                wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
                isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
          }
#endif
        }else{
          if( pTo->rCost<=rCost && pTo->nRow<=nOut ){
#ifdef WHERETRACE_ENABLED /* 0x4 */
            if( sqlite3WhereTrace&0x4 ){
              sqlite3DebugPrintf(
                  "Skip   %s cost=%-3d,%3d order=%c",
                  wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
                  isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
              sqlite3DebugPrintf("   vs %s cost=%-3d,%d order=%c\n",
                  wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
                  pTo->isOrderedValid ? (pTo->isOrdered ? 'Y' : 'N') : '?');
            }
#endif
            testcase( pTo->rCost==rCost );
            continue;
          }
          testcase( pTo->rCost==rCost+1 );
          /* A new and better score for a previously created equivalent path */
#ifdef WHERETRACE_ENABLED /* 0x4 */
          if( sqlite3WhereTrace&0x4 ){
            sqlite3DebugPrintf(
                "Update %s cost=%-3d,%3d order=%c",
                wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
                isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
            sqlite3DebugPrintf("  was %s cost=%-3d,%3d order=%c\n",
                wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
                pTo->isOrderedValid ? (pTo->isOrdered ? 'Y' : 'N') : '?');
          }
#endif
        }
        /* pWLoop is a winner.  Add it to the set of best so far */
        pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
        pTo->revLoop = revMask;
        pTo->nRow = nOut;
        pTo->rCost = rCost;
        pTo->isOrderedValid = isOrderedValid;
        pTo->isOrdered = isOrdered;
        memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
        pTo->aLoop[iLoop] = pWLoop;
        if( nTo>=mxChoice ){
          mxI = 0;
          mxCost = aTo[0].rCost;
          mxOut = aTo[0].nRow;







<

|
>

|
|
<
<
<
<











<
|








|
|

|
<
|
>
|
>
>
|
|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
|
>
|
<
<
<







|













|

















|









|


|












|


|








<







5022
5023
5024
5025
5026
5027
5028

5029
5030
5031
5032
5033
5034




5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045

5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058

5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083



5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160

5161
5162
5163
5164
5165
5166
5167
  ** of computing an automatic index is not paid back within the first 25
  ** rows, then do not use the automatic index. */
  aFrom[0].nRow = MIN(pParse->nQueryLoop, 46);  assert( 46==sqlite3LogEst(25) );
  nFrom = 1;

  /* Precompute the cost of sorting the final result set, if the caller
  ** to sqlite3WhereBegin() was concerned about sorting */

  if( pWInfo->pOrderBy==0 || nRowEst==0 ){
    aFrom[0].isOrdered = 0;
    nOrderBy = 0;
  }else{
    aFrom[0].isOrdered = -1;
    nOrderBy = pWInfo->pOrderBy->nExpr;




  }

  /* Compute successively longer WherePaths using the previous generation
  ** of WherePaths as the basis for the next.  Keep track of the mxChoice
  ** best paths at each generation */
  for(iLoop=0; iLoop<nLoop; iLoop++){
    nTo = 0;
    for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
      for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
        Bitmask maskNew;
        Bitmask revMask = 0;

        i8 isOrdered = pFrom->isOrdered;
        if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
        if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
        /* At this point, pWLoop is a candidate to be the next loop. 
        ** Compute its cost */
        rCost = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
        rCost = sqlite3LogEstAdd(rCost, pFrom->rCost);
        nOut = pFrom->nRow + pWLoop->nOut;
        maskNew = pFrom->maskLoop | pWLoop->maskSelf;
        if( isOrdered<0 ){
          isOrdered = wherePathSatisfiesOrderBy(pWInfo,
                       pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
                       iLoop, pWLoop, &revMask);

          if( isOrdered>=0 && isOrdered<nOrderBy ){
            /* TUNING: Estimated cost of sorting is N*log(N).
            ** If the order-by clause has X terms but only the last Y terms
            ** are out of order, then block-sorting will reduce the sorting
            ** cost to N*log(N)*log(Y/X).  The log(Y/X) term is computed
            ** by rScale.
            ** TODO: Should the sorting cost get a small multiplier to help
            ** discourage the use of sorting and encourage the use of index
            ** scans instead?
            */
            LogEst rScale, rSortCost;
            assert( nOrderBy>0 );
            rScale = sqlite3LogEst((nOrderBy-isOrdered)*100/nOrderBy) - 66;
            rSortCost = nRowEst + estLog(nRowEst) + rScale;
            /* TUNING: The cost of implementing DISTINCT using a B-TREE is
            ** also N*log(N) but it has a larger constant of proportionality.
            ** Multiply by 3.0. */
            if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
              rSortCost += 16;
            }
            WHERETRACE(0x002,
               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
                rSortCost, (nOrderBy-isOrdered), nOrderBy, rCost,
                sqlite3LogEstAdd(rCost,rSortCost)));
            rCost = sqlite3LogEstAdd(rCost, rSortCost);



          }
        }else{
          revMask = pFrom->revLoop;
        }
        /* Check to see if pWLoop should be added to the mxChoice best so far */
        for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
          if( pTo->maskLoop==maskNew
           && ((pTo->isOrdered^isOrdered)&80)==0
           && ((pTo->rCost<=rCost && pTo->nRow<=nOut) ||
                (pTo->rCost>=rCost && pTo->nRow>=nOut))
          ){
            testcase( jj==nTo-1 );
            break;
          }
        }
        if( jj>=nTo ){
          if( nTo>=mxChoice && rCost>=mxCost ){
#ifdef WHERETRACE_ENABLED /* 0x4 */
            if( sqlite3WhereTrace&0x4 ){
              sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d order=%c\n",
                  wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
                  isOrdered>=0 ? isOrdered+'0' : '?');
            }
#endif
            continue;
          }
          /* Add a new Path to the aTo[] set */
          if( nTo<mxChoice ){
            /* Increase the size of the aTo set by one */
            jj = nTo++;
          }else{
            /* New path replaces the prior worst to keep count below mxChoice */
            jj = mxI;
          }
          pTo = &aTo[jj];
#ifdef WHERETRACE_ENABLED /* 0x4 */
          if( sqlite3WhereTrace&0x4 ){
            sqlite3DebugPrintf("New    %s cost=%-3d,%3d order=%c\n",
                wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
                isOrdered>=0 ? isOrdered+'0' : '?');
          }
#endif
        }else{
          if( pTo->rCost<=rCost && pTo->nRow<=nOut ){
#ifdef WHERETRACE_ENABLED /* 0x4 */
            if( sqlite3WhereTrace&0x4 ){
              sqlite3DebugPrintf(
                  "Skip   %s cost=%-3d,%3d order=%c",
                  wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
                  isOrdered>=0 ? isOrdered+'0' : '?');
              sqlite3DebugPrintf("   vs %s cost=%-3d,%d order=%c\n",
                  wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
                  pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
            }
#endif
            testcase( pTo->rCost==rCost );
            continue;
          }
          testcase( pTo->rCost==rCost+1 );
          /* A new and better score for a previously created equivalent path */
#ifdef WHERETRACE_ENABLED /* 0x4 */
          if( sqlite3WhereTrace&0x4 ){
            sqlite3DebugPrintf(
                "Update %s cost=%-3d,%3d order=%c",
                wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
                isOrdered>=0 ? isOrdered+'0' : '?');
            sqlite3DebugPrintf("  was %s cost=%-3d,%3d order=%c\n",
                wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
                pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
          }
#endif
        }
        /* pWLoop is a winner.  Add it to the set of best so far */
        pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
        pTo->revLoop = revMask;
        pTo->nRow = nOut;
        pTo->rCost = rCost;

        pTo->isOrdered = isOrdered;
        memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
        pTo->aLoop[iLoop] = pWLoop;
        if( nTo>=mxChoice ){
          mxI = 0;
          mxCost = aTo[0].rCost;
          mxOut = aTo[0].nRow;
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158

#ifdef WHERETRACE_ENABLED  /* >=2 */
    if( sqlite3WhereTrace>=2 ){
      sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
      for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
        sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
           wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
           pTo->isOrderedValid ? (pTo->isOrdered ? 'Y' : 'N') : '?');
        if( pTo->isOrderedValid && pTo->isOrdered ){
          sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
        }else{
          sqlite3DebugPrintf("\n");
        }
      }
    }
#endif







|
|







5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193

#ifdef WHERETRACE_ENABLED  /* >=2 */
    if( sqlite3WhereTrace>=2 ){
      sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
      for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
        sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
           wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
           pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
        if( pTo->isOrdered>0 ){
          sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
        }else{
          sqlite3DebugPrintf("\n");
        }
      }
    }
#endif
5187
5188
5189
5190
5191
5192
5193

5194
5195

5196
5197

5198

5199
5200

5201
5202
5203
5204
5205
5206
5207
   && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
   && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
   && nRowEst
  ){
    Bitmask notUsed;
    int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
                 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);

    if( rc==1 ) pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
  }

  if( pFrom->isOrdered ){
    if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){

      pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;

    }else{
      pWInfo->bOBSat = 1;

      pWInfo->revMask = pFrom->revLoop;
    }
  }
  pWInfo->nRowOut = pFrom->nRow;

  /* Free temporary memory and return success */
  sqlite3DbFree(db, pSpace);







>
|
|
>
|

>
|
>

|
>







5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
   && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
   && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
   && nRowEst
  ){
    Bitmask notUsed;
    int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
                 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
    if( rc==pWInfo->pResultSet->nExpr ){
      pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
    }
  }
  if( pWInfo->pOrderBy ){
    if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
      if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
        pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
      }
    }else{
      pWInfo->nOBSat = pFrom->isOrdered;
      if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0;
      pWInfo->revMask = pFrom->revLoop;
    }
  }
  pWInfo->nRowOut = pFrom->nRow;

  /* Free temporary memory and return success */
  sqlite3DbFree(db, pSpace);
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
  }
  if( pLoop->wsFlags ){
    pLoop->nOut = (LogEst)1;
    pWInfo->a[0].pWLoop = pLoop;
    pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur);
    pWInfo->a[0].iTabCur = iCur;
    pWInfo->nRowOut = 1;
    if( pWInfo->pOrderBy ) pWInfo->bOBSat =  1;
    if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
    }
#ifdef SQLITE_DEBUG
    pLoop->cId = '0';
#endif
    return 1;







|







5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
  }
  if( pLoop->wsFlags ){
    pLoop->nOut = (LogEst)1;
    pWInfo->a[0].pWLoop = pLoop;
    pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur);
    pWInfo->a[0].iTabCur = iCur;
    pWInfo->nRowOut = 1;
    if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
    if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
    }
#ifdef SQLITE_DEBUG
    pLoop->cId = '0';
#endif
    return 1;
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
** be used to compute the appropriate cursor depending on which index is
** used.
*/
WhereInfo *sqlite3WhereBegin(
  Parse *pParse,        /* The parser context */
  SrcList *pTabList,    /* FROM clause: A list of all tables to be scanned */
  Expr *pWhere,         /* The WHERE clause */
  ExprList *pOrderBy,   /* An ORDER BY clause, or NULL */
  ExprList *pResultSet, /* Result set of the query */
  u16 wctrlFlags,       /* One of the WHERE_* flags defined in sqliteInt.h */
  int iIdxCur           /* If WHERE_ONETABLE_ONLY is set, index cursor number */
){
  int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
  int nTabList;              /* Number of elements in pTabList */
  WhereInfo *pWInfo;         /* Will become the return value of this function */







|







5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
** be used to compute the appropriate cursor depending on which index is
** used.
*/
WhereInfo *sqlite3WhereBegin(
  Parse *pParse,        /* The parser context */
  SrcList *pTabList,    /* FROM clause: A list of all tables to be scanned */
  Expr *pWhere,         /* The WHERE clause */
  ExprList *pOrderBy,   /* An ORDER BY (or GROUP BY) clause, or NULL */
  ExprList *pResultSet, /* Result set of the query */
  u16 wctrlFlags,       /* One of the WHERE_* flags defined in sqliteInt.h */
  int iIdxCur           /* If WHERE_ONETABLE_ONLY is set, index cursor number */
){
  int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
  int nTabList;              /* Number of elements in pTabList */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
5404
5405
5406
5407
5408
5409
5410




5411
5412
5413
5414
5415
5416
5417
  sqlite3 *db;               /* Database connection */
  int rc;                    /* Return code */


  /* Variable initialization */
  db = pParse->db;
  memset(&sWLB, 0, sizeof(sWLB));




  sWLB.pOrderBy = pOrderBy;

  /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
  ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
  if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
    wctrlFlags &= ~WHERE_WANT_DISTINCT;
  }







>
>
>
>







5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
  sqlite3 *db;               /* Database connection */
  int rc;                    /* Return code */


  /* Variable initialization */
  db = pParse->db;
  memset(&sWLB, 0, sizeof(sWLB));

  /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
  testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
  if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
  sWLB.pOrderBy = pOrderBy;

  /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
  ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
  if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
    wctrlFlags &= ~WHERE_WANT_DISTINCT;
  }
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
  }
  pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
  pWInfo->nLevel = nTabList;
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->pOrderBy = pOrderBy;
  pWInfo->pResultSet = pResultSet;
  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
  pWInfo->wctrlFlags = wctrlFlags;
  pWInfo->savedNQueryLoop = pParse->nQueryLoop;
  pMaskSet = &pWInfo->sMaskSet;
  sWLB.pWInfo = pWInfo;
  sWLB.pWC = &pWInfo->sWC;
  sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
  assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );







|







5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
  }
  pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
  pWInfo->nLevel = nTabList;
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->pOrderBy = pOrderBy;
  pWInfo->pResultSet = pResultSet;
  pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
  pWInfo->wctrlFlags = wctrlFlags;
  pWInfo->savedNQueryLoop = pParse->nQueryLoop;
  pMaskSet = &pWInfo->sMaskSet;
  sWLB.pWInfo = pWInfo;
  sWLB.pWC = &pWInfo->sWC;
  sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
  assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
      sWLB.pWC->a[ii].wtFlags |= TERM_CODED;
    }
  }

  /* Special case: No FROM clause
  */
  if( nTabList==0 ){
    if( pOrderBy ) pWInfo->bOBSat = 1;
    if( wctrlFlags & WHERE_WANT_DISTINCT ){
      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
    }
  }

  /* Assign a bit from the bitmask to every term in the FROM clause.
  **







|







5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
      sWLB.pWC->a[ii].wtFlags |= TERM_CODED;
    }
  }

  /* Special case: No FROM clause
  */
  if( nTabList==0 ){
    if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
    if( wctrlFlags & WHERE_WANT_DISTINCT ){
      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
    }
  }

  /* Assign a bit from the bitmask to every term in the FROM clause.
  **
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
  if( pParse->nErr || NEVER(db->mallocFailed) ){
    goto whereBeginError;
  }
#ifdef WHERETRACE_ENABLED /* !=0 */
  if( sqlite3WhereTrace ){
    int ii;
    sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
    if( pWInfo->bOBSat ){
      sqlite3DebugPrintf(" ORDERBY=0x%llx", pWInfo->revMask);
    }
    switch( pWInfo->eDistinct ){
      case WHERE_DISTINCT_UNIQUE: {
        sqlite3DebugPrintf("  DISTINCT=unique");
        break;
      }
      case WHERE_DISTINCT_ORDERED: {







|
|







5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
  if( pParse->nErr || NEVER(db->mallocFailed) ){
    goto whereBeginError;
  }
#ifdef WHERETRACE_ENABLED /* !=0 */
  if( sqlite3WhereTrace ){
    int ii;
    sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
    if( pWInfo->nOBSat>0 ){
      sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
    }
    switch( pWInfo->eDistinct ){
      case WHERE_DISTINCT_UNIQUE: {
        sqlite3DebugPrintf("  DISTINCT=unique");
        break;
      }
      case WHERE_DISTINCT_ORDERED: {
Changes to src/whereInt.h.
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
      u16 nEq;               /* Number of equality constraints */
      u16 nSkip;             /* Number of initial index columns to skip */
      Index *pIndex;         /* Index used, or NULL */
    } btree;
    struct {               /* Information for virtual tables */
      int idxNum;            /* Index number */
      u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
      u8 isOrdered;          /* True if satisfies ORDER BY */
      u16 omitMask;          /* Terms that may be omitted */
      char *idxStr;          /* Index identifier string */
    } vtab;
  } u;
  u32 wsFlags;          /* WHERE_* flags describing the plan */
  u16 nLTerm;           /* Number of entries in aLTerm[] */
  /**** whereLoopXfer() copies fields above ***********************/







|







117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
      u16 nEq;               /* Number of equality constraints */
      u16 nSkip;             /* Number of initial index columns to skip */
      Index *pIndex;         /* Index used, or NULL */
    } btree;
    struct {               /* Information for virtual tables */
      int idxNum;            /* Index number */
      u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
      i8 isOrdered;          /* True if satisfies ORDER BY */
      u16 omitMask;          /* Terms that may be omitted */
      char *idxStr;          /* Index identifier string */
    } vtab;
  } u;
  u32 wsFlags;          /* WHERE_* flags describing the plan */
  u16 nLTerm;           /* Number of entries in aLTerm[] */
  /**** whereLoopXfer() copies fields above ***********************/
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
** at the end is the choosen query plan.
*/
struct WherePath {
  Bitmask maskLoop;     /* Bitmask of all WhereLoop objects in this path */
  Bitmask revLoop;      /* aLoop[]s that should be reversed for ORDER BY */
  LogEst nRow;          /* Estimated number of rows generated by this path */
  LogEst rCost;         /* Total cost of this path */
  u8 isOrdered;         /* True if this path satisfies ORDER BY */
  u8 isOrderedValid;    /* True if the isOrdered field is valid */
  WhereLoop **aLoop;    /* Array of WhereLoop objects implementing this path */
};

/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
** clause subexpression is separated from the others by AND operators,







|
<







179
180
181
182
183
184
185
186

187
188
189
190
191
192
193
** at the end is the choosen query plan.
*/
struct WherePath {
  Bitmask maskLoop;     /* Bitmask of all WhereLoop objects in this path */
  Bitmask revLoop;      /* aLoop[]s that should be reversed for ORDER BY */
  LogEst nRow;          /* Estimated number of rows generated by this path */
  LogEst rCost;         /* Total cost of this path */
  i8 isOrdered;         /* No. of ORDER BY terms satisfied. -1 for unknown */

  WhereLoop **aLoop;    /* Array of WhereLoop objects implementing this path */
};

/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
** clause subexpression is separated from the others by AND operators,
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
  SrcList *pTabList;        /* List of tables in the join */
  ExprList *pOrderBy;       /* The ORDER BY clause or NULL */
  ExprList *pResultSet;     /* Result set. DISTINCT operates on these */
  WhereLoop *pLoops;        /* List of all WhereLoop objects */
  Bitmask revMask;          /* Mask of ORDER BY terms that need reversing */
  LogEst nRowOut;           /* Estimated number of output rows */
  u16 wctrlFlags;           /* Flags originally passed to sqlite3WhereBegin() */
  u8 bOBSat;                /* ORDER BY satisfied by indices */
  u8 okOnePass;             /* Ok to use one-pass algorithm for UPDATE/DELETE */
  u8 untestedTerms;         /* Not all WHERE terms resolved by outer loop */
  u8 eDistinct;             /* One of the WHERE_DISTINCT_* values below */
  u8 nLevel;                /* Number of nested loop */
  int iTop;                 /* The very beginning of the WHERE loop */
  int iContinue;            /* Jump here to continue with next record */
  int iBreak;               /* Jump here to break out of the loop */







|







393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
  SrcList *pTabList;        /* List of tables in the join */
  ExprList *pOrderBy;       /* The ORDER BY clause or NULL */
  ExprList *pResultSet;     /* Result set. DISTINCT operates on these */
  WhereLoop *pLoops;        /* List of all WhereLoop objects */
  Bitmask revMask;          /* Mask of ORDER BY terms that need reversing */
  LogEst nRowOut;           /* Estimated number of output rows */
  u16 wctrlFlags;           /* Flags originally passed to sqlite3WhereBegin() */
  i8 nOBSat;                /* Number of ORDER BY terms satisfied by indices */
  u8 okOnePass;             /* Ok to use one-pass algorithm for UPDATE/DELETE */
  u8 untestedTerms;         /* Not all WHERE terms resolved by outer loop */
  u8 eDistinct;             /* One of the WHERE_DISTINCT_* values below */
  u8 nLevel;                /* Number of nested loop */
  int iTop;                 /* The very beginning of the WHERE loop */
  int iContinue;            /* Jump here to continue with next record */
  int iBreak;               /* Jump here to break out of the loop */
Changes to test/corruptG.test.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
sqlite3 db test.db

# Try to use the file.
do_test 1.2 {
  catchsql {
    SELECT c FROM t1 WHERE a>'abc';
  }
} {0 {}}
do_test 1.3 {
  catchsql {
     PRAGMA integrity_check
  }
} {0 ok}
do_test 1.4 {
  catchsql {
    SELECT c FROM t1 ORDER BY a;
  }
} {1 {database disk image is malformed}}

# Corrupt the same file in a slightly different way.  Make the record header
# sane, but corrupt one of the serial_type value to indicate a huge payload
# such that the payload begins in allocated space but overflows the buffer.
#
db close
hexio_write test.db [expr {$idxroot*512-15}] 0513ff7f01
sqlite3 db test.db

do_test 2.1 {
  catchsql {
    SELECT rowid FROM t1 WHERE a='abc' and b='xyz123456789XYZ';
  }
  # The following test result is brittle.  The point above is to try to
  # force a buffer overread by a corrupt database file.  If we get an
  # incorrect answer from a corrupt database file, that is OK.  If the
  # result below changes, that just means that "undefined behavior" has
  # changed.
} {/0 .*/}

finish_test







|




|


















<
|
<
<
<
<


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74




75
76
sqlite3 db test.db

# Try to use the file.
do_test 1.2 {
  catchsql {
    SELECT c FROM t1 WHERE a>'abc';
  }
} {1 {database disk image is malformed}}
do_test 1.3 {
  catchsql {
     PRAGMA integrity_check
  }
} {1 {database disk image is malformed}}
do_test 1.4 {
  catchsql {
    SELECT c FROM t1 ORDER BY a;
  }
} {1 {database disk image is malformed}}

# Corrupt the same file in a slightly different way.  Make the record header
# sane, but corrupt one of the serial_type value to indicate a huge payload
# such that the payload begins in allocated space but overflows the buffer.
#
db close
hexio_write test.db [expr {$idxroot*512-15}] 0513ff7f01
sqlite3 db test.db

do_test 2.1 {
  catchsql {
    SELECT rowid FROM t1 WHERE a='abc' and b='xyz123456789XYZ';
  }

} {1 {database disk image is malformed}}





finish_test
Changes to test/corruptI.test.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42



43

44
45


46
47
48
49





50



51







52






# Initialize the database.
#
do_execsql_test 1.1 {
  PRAGMA page_size=1024;
  PRAGMA auto_vacuum=0;
  CREATE TABLE t1(a);
  CREATE INDEX i1 ON t1(a);
  INSERT INTO t1 VALUES('a');
} {}
db close

do_test 1.2 {
  set offset [hexio_get_int [hexio_read test.db [expr 2*1024 + 8] 2]]
  set off [expr 2*1024 + $offset + 1]
  hexio_write test.db $off FF06





  breakpoint



  sqlite3 db test.db
  catchsql { SELECT * FROM t1 WHERE a = 10 }
} {1 {database disk image is malformed}}










finish_test





















|






|
>
>
>

>
|
|
>
>




>
>
>
>
>
|
>
>
>
|
>
>
>
>
>
>
>

>
>
>
>
>
>
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Initialize the database.
#
do_execsql_test 1.1 {
  PRAGMA page_size=1024;
  PRAGMA auto_vacuum=0;
  CREATE TABLE t1(a);
  CREATE INDEX i1 ON t1(a);
  INSERT INTO t1 VALUES('abcdefghijklmnop');
} {}
db close

do_test 1.2 {
  set offset [hexio_get_int [hexio_read test.db [expr 2*1024 + 8] 2]]
  set off [expr 2*1024 + $offset + 1]
  hexio_write test.db $off 7f06
  sqlite3 db test.db
  catchsql { SELECT * FROM t1 WHERE a = 10 }
} {0 {}}

do_test 1.3 {
  db close
  set offset [hexio_get_int [hexio_read test.db [expr 2*1024 + 8] 2]]
  set off [expr 2*1024 + $offset + 1]
  hexio_write test.db $off FFFF7f02
  sqlite3 db test.db
  catchsql { SELECT * FROM t1 WHERE a = 10 }
} {1 {database disk image is malformed}}

do_test 2.0 {
  execsql {
    CREATE TABLE r(x);
    INSERT INTO r VALUES('ABCDEFGHIJK');
    CREATE INDEX r1 ON r(x);
  }
  set pg [db one {SELECT rootpage FROM sqlite_master WHERE name = 'r1'}]
} {5}

do_test 2.1 {
  db close
  set offset [hexio_get_int [hexio_read test.db [expr (5-1)*1024 + 8] 2]]
  set off [expr (5-1)*1024 + $offset + 1]
  hexio_write test.db $off FFFF0004
  sqlite3 db test.db
  catchsql { SELECT * FROM r WHERE x >= 10.0 }
} {1 {database disk image is malformed}}

do_test 2.2 {
  catchsql { SELECT * FROM r WHERE x >= 10 }
} {1 {database disk image is malformed}}


finish_test
Changes to test/distinct.test.
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
  INSERT INTO t1 VALUES('a', 'b', 'c');
  INSERT INTO t1 VALUES('A', 'B', 'C');
}

foreach {tn sql temptables res} {
  1   "a, b FROM t1"                                       {}      {A B a b}
  2   "b, a FROM t1"                                       {}      {B A b a}
  3   "a, b, c FROM t1"                                    {hash}  {a b c A B C}
  4   "a, b, c FROM t1 ORDER BY a, b, c"                   {btree} {A B C a b c}
  5   "b FROM t1 WHERE a = 'a'"                            {}      {b}
  6   "b FROM t1 ORDER BY +b COLLATE binary"          {btree hash} {B b}
  7   "a FROM t1"                                          {}      {A a}
  8   "b COLLATE nocase FROM t1"                           {}      {b}
  9   "b COLLATE nocase FROM t1 ORDER BY b COLLATE nocase" {}      {b}
} {







|







158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
  INSERT INTO t1 VALUES('a', 'b', 'c');
  INSERT INTO t1 VALUES('A', 'B', 'C');
}

foreach {tn sql temptables res} {
  1   "a, b FROM t1"                                       {}      {A B a b}
  2   "b, a FROM t1"                                       {}      {B A b a}
  3   "a, b, c FROM t1"                                    {hash}  {A B C a b c}
  4   "a, b, c FROM t1 ORDER BY a, b, c"                   {btree} {A B C a b c}
  5   "b FROM t1 WHERE a = 'a'"                            {}      {b}
  6   "b FROM t1 ORDER BY +b COLLATE binary"          {btree hash} {B b}
  7   "a FROM t1"                                          {}      {A a}
  8   "b COLLATE nocase FROM t1"                           {}      {b}
  9   "b COLLATE nocase FROM t1 ORDER BY b COLLATE nocase" {}      {b}
} {
Changes to test/fts3ao.test.
214
215
216
217
218
219
220




























221
222
  SELECT count(*) FROM sqlite_master WHERE name LIKE 't8%';
} {6 0}
do_execsql_test 5.2 {
  ALTER TABLE t7 RENAME TO t8;
  SELECT count(*) FROM sqlite_master WHERE name LIKE 't7%';
  SELECT count(*) FROM sqlite_master WHERE name LIKE 't8%';
} {0 6}





























finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
  SELECT count(*) FROM sqlite_master WHERE name LIKE 't8%';
} {6 0}
do_execsql_test 5.2 {
  ALTER TABLE t7 RENAME TO t8;
  SELECT count(*) FROM sqlite_master WHERE name LIKE 't7%';
  SELECT count(*) FROM sqlite_master WHERE name LIKE 't8%';
} {0 6}

# At one point this was causing a memory leak.
#
foreach {tn sql} {
  1 {}
  2 { INSERT INTO ft(ft) VALUES('merge=2,2'); }
} {
  reset_db
  do_execsql_test 6.$tn.1 "
    CREATE TABLE t1(x);
    CREATE VIRTUAL TABLE ft USING fts3;
    INSERT INTO ft VALUES('hello world');
    $sql
  "

  db close
  sqlite3 db test.db
  do_execsql_test 6.$tn.2 { SELECT * FROM t1 } {}

  do_test 6.$tn.3 {
    sqlite3 db2 test.db
    db2 eval { DROP TABLE t1 }
    db2 close
    set stmt [sqlite3_prepare db { SELECT * FROM ft } -1 dummy]
    sqlite3_finalize $stmt
  } {SQLITE_OK}
  db close
}

finish_test
Changes to test/fts3d.test.
350
351
352
353
354
355
356











357
358
359
} {fts_content fts_segdir fts_segments}
do_test fts3d-6.5 {
  db eval {
    ALTER TABLE fts RENAME TO xyz;
    SELECT name FROM sqlite_master WHERE name GLOB '???_*' ORDER BY 1;
  }
} {xyz_content xyz_segdir xyz_segments}











 

finish_test







>
>
>
>
>
>
>
>
>
>
>



350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
} {fts_content fts_segdir fts_segments}
do_test fts3d-6.5 {
  db eval {
    ALTER TABLE fts RENAME TO xyz;
    SELECT name FROM sqlite_master WHERE name GLOB '???_*' ORDER BY 1;
  }
} {xyz_content xyz_segdir xyz_segments}

# ALTER TABLE RENAME on an FTS3 table following an incr-merge op.
#
do_test fts3d-6.6 {
  execsql { INSERT INTO xyz(xyz) VALUES('merge=2,2') }
  sqlite3 db test.db
  execsql { 
    ALTER TABLE xyz RENAME TO ott;
    SELECT name FROM sqlite_master WHERE name GLOB '???_*' ORDER BY 1;
  }
} {ott_content ott_segdir ott_segments ott_stat}
 

finish_test
Changes to test/in4.test.
154
155
156
157
158
159
160

















































































































































































161
162
} {}
do_test in4-3.11 {
  execsql { SELECT * FROM t3 WHERE x IN (1, 2) OR y IN ()}
} {1 1 1}
do_test in4-3.12 {
  execsql { SELECT * FROM t3 WHERE x IN (1, 2) AND y IN ()}
} {}


















































































































































































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
} {}
do_test in4-3.11 {
  execsql { SELECT * FROM t3 WHERE x IN (1, 2) OR y IN ()}
} {1 1 1}
do_test in4-3.12 {
  execsql { SELECT * FROM t3 WHERE x IN (1, 2) AND y IN ()}
} {}

# Tests for "... IN (?)" and "... NOT IN (?)".  In other words, tests
# for when the RHS of IN is a single expression.  This should work the
# same as the == and <> operators.
#
do_execsql_test in4-3.21 {
  SELECT * FROM t3 WHERE x=10 AND y IN (10);
} {10 10 10}
do_execsql_test in4-3.22 {
  SELECT * FROM t3 WHERE x IN (10) AND y=10;
} {10 10 10}
do_execsql_test in4-3.23 {
  SELECT * FROM t3 WHERE x IN (10) AND y IN (10);
} {10 10 10}
do_execsql_test in4-3.24 {
  SELECT * FROM t3 WHERE x=1 AND y NOT IN (10);
} {1 1 1}
do_execsql_test in4-3.25 {
  SELECT * FROM t3 WHERE x  NOT IN (10) AND y=1;
} {1 1 1}
do_execsql_test in4-3.26 {
  SELECT * FROM t3 WHERE x NOT IN (10) AND y NOT IN (10);
} {1 1 1}

# The query planner recognizes that "x IN (?)" only generates a
# single match and can use this information to optimize-out ORDER BY
# clauses.
#
do_execsql_test in4-3.31 {
  DROP INDEX t3i1;
  CREATE UNIQUE INDEX t3xy ON t3(x,y);

  SELECT *, '|' FROM t3 A, t3 B
   WHERE A.x=10 AND A.y IN (10)
     AND B.x=1 AND B.y IN (1);
} {10 10 10 1 1 1 |}
do_execsql_test in4-3.32 {
  EXPLAIN QUERY PLAN
  SELECT *, '|' FROM t3 A, t3 B
   WHERE A.x=10 AND A.y IN (10)
     AND B.x=1 AND B.y IN (1);
} {~/B-TREE/}  ;# No separate sorting pass
do_execsql_test in4-3.33 {
  SELECT *, '|' FROM t3 A, t3 B
   WHERE A.x IN (10) AND A.y=10
     AND B.x IN (1) AND B.y=1;
} {10 10 10 1 1 1 |}
do_execsql_test in4-3.34 {
  EXPLAIN QUERY PLAN
  SELECT *, '|' FROM t3 A, t3 B
   WHERE A.x IN (10) AND A.y=10
     AND B.x IN (1) AND B.y=1;
} {~/B-TREE/}  ;# No separate sorting pass

# An expression of the form "x IN (?,?)" creates an ephemeral table to
# hold the list of values on the RHS.  But "x IN (?)" does not create
# an ephemeral table.
#
do_execsql_test in4-3.41 {
  SELECT * FROM t3 WHERE x IN (10,11);
} {10 10 10}
do_execsql_test in4-3.42 {
  EXPLAIN
  SELECT * FROM t3 WHERE x IN (10,11);
} {/OpenEphemeral/}
do_execsql_test in4-3.43 {
  SELECT * FROM t3 WHERE x IN (10);
} {10 10 10}
do_execsql_test in4-3.44 {
  EXPLAIN
  SELECT * FROM t3 WHERE x IN (10);
} {~/OpenEphemeral/}
do_execsql_test in4-3.45 {
  SELECT * FROM t3 WHERE x NOT IN (10,11);
} {1 1 1}
do_execsql_test in4-3.46 {
  EXPLAIN
  SELECT * FROM t3 WHERE x NOT IN (10,11);
} {/OpenEphemeral/}
do_execsql_test in4-3.47 {
  SELECT * FROM t3 WHERE x NOT IN (10);
} {1 1 1}
do_execsql_test in4-3.48 {
  EXPLAIN
  SELECT * FROM t3 WHERE x NOT IN (10);
} {~/OpenEphemeral/}

# Make sure that when "x IN (?)" is converted into "x==?" that collating
# sequence and affinity computations do not get messed up.
#
do_execsql_test in4-4.1 {
  CREATE TABLE t4a(a TEXT, b TEXT COLLATE nocase, c);
  INSERT INTO t4a VALUES('ABC','abc',1);
  INSERT INTO t4a VALUES('def','xyz',2);
  INSERT INTO t4a VALUES('ghi','ghi',3);
  SELECT c FROM t4a WHERE a=b ORDER BY c;
} {3}
do_execsql_test in4-4.2 {
  SELECT c FROM t4a WHERE b=a ORDER BY c;
} {1 3}
do_execsql_test in4-4.3 {
  SELECT c FROM t4a WHERE (a||'')=b ORDER BY c;
} {1 3}
do_execsql_test in4-4.4 {
  SELECT c FROM t4a WHERE (a||'')=(b||'') ORDER BY c;
} {3}
do_execsql_test in4-4.5 {
  SELECT c FROM t4a WHERE a IN (b) ORDER BY c;
} {3}
do_execsql_test in4-4.6 {
  SELECT c FROM t4a WHERE (a||'') IN (b) ORDER BY c;
} {3}


do_execsql_test in4-4.11 {
  CREATE TABLE t4b(a TEXT, b NUMERIC, c);
  INSERT INTO t4b VALUES('1.0',1,4);
  SELECT c FROM t4b WHERE a=b;
} {4}
do_execsql_test in4-4.12 {
  SELECT c FROM t4b WHERE b=a;
} {4}
do_execsql_test in4-4.13 {
  SELECT c FROM t4b WHERE +a=b;
} {4}
do_execsql_test in4-4.14 {
  SELECT c FROM t4b WHERE a=+b;
} {}
do_execsql_test in4-4.15 {
  SELECT c FROM t4b WHERE +b=a;
} {}
do_execsql_test in4-4.16 {
  SELECT c FROM t4b WHERE b=+a;
} {4}
do_execsql_test in4-4.17 {
  SELECT c FROM t4b WHERE a IN (b);
} {}
do_execsql_test in4-4.18 {
  SELECT c FROM t4b WHERE b IN (a);
} {4}
do_execsql_test in4-4.19 {
  SELECT c FROM t4b WHERE +b IN (a);
} {}

do_execsql_test in4-5.1 {
  CREATE TABLE t5(c INTEGER PRIMARY KEY, d TEXT COLLATE nocase);
  INSERT INTO t5 VALUES(17, 'fuzz');
  SELECT 1 FROM t5 WHERE 'fuzz' IN (d);  -- match
  SELECT 2 FROM t5 WHERE 'FUZZ' IN (d);  -- no match
  SELECT 3 FROM t5 WHERE d IN ('fuzz');  -- match
  SELECT 4 FROM t5 WHERE d IN ('FUZZ');  -- match
} {1 3 4}

# An expression of the form "x IN (y)" can be used as "x=y" by the
# query planner when computing transitive constraints or to run the
# query using an index on y.
#
do_execsql_test in4-6.1 {
  CREATE TABLE t6a(a INTEGER PRIMARY KEY, b);
  INSERT INTO t6a VALUES(1,2),(3,4),(5,6);
  CREATE TABLE t6b(c INTEGER PRIMARY KEY, d);
  INSERT INTO t6b VALUES(4,44),(5,55),(6,66);

  SELECT * FROM t6a, t6b WHERE a=3 AND b IN (c);
} {3 4 4 44}
do_execsql_test in4-6.1-eqp {
  EXPLAIN QUERY PLAN
  SELECT * FROM t6a, t6b WHERE a=3 AND b IN (c);
} {~/SCAN/}
do_execsql_test in4-6.2 {
  SELECT * FROM t6a, t6b WHERE a=3 AND c IN (b);
} {3 4 4 44}
do_execsql_test in4-6.2-eqp {
  EXPLAIN QUERY PLAN
  SELECT * FROM t6a, t6b WHERE a=3 AND c IN (b);
} {~/SCAN/}


finish_test
Changes to test/limit.test.
611
612
613
614
615
616
617




















618
619
} {32}
do_test limit-13.72 {
  db eval {SELECT z FROM v13c LIMIT 2 OFFSET 7}
} {32}
do_test limit-13.81 {
  db eval {SELECT z FROM v13c LIMIT 1 OFFSET 8}
} {}





















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
} {32}
do_test limit-13.72 {
  db eval {SELECT z FROM v13c LIMIT 2 OFFSET 7}
} {32}
do_test limit-13.81 {
  db eval {SELECT z FROM v13c LIMIT 1 OFFSET 8}
} {}

do_execsql_test limit-14.1 {
  SELECT 123 LIMIT 1 OFFSET 0
} {123}
do_execsql_test limit-14.2 {
  SELECT 123 LIMIT 1 OFFSET 1
} {}
do_execsql_test limit-14.3 {
  SELECT 123 LIMIT 0 OFFSET 0
} {}
do_execsql_test limit-14.4 {
  SELECT 123 LIMIT 0 OFFSET 1
} {}
do_execsql_test limit-14.6 {
  SELECT 123 LIMIT -1 OFFSET 0
} {123}
do_execsql_test limit-14.7 {
  SELECT 123 LIMIT -1 OFFSET 1
} {}


finish_test
Changes to test/orderby5.test.
60
61
62
63
64
65
66





67







68




69
70


71
72
73
74
75
76
77
  EXPLAIN QUERY PLAN
  SELECT DISTINCT c, b, a FROM t1 WHERE a=0;
} {~/B-TREE/}
do_execsql_test 1.7 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT c, b, a FROM t1 WHERE +a=0;
} {/B-TREE/}





do_execsql_test 2.1 {







  EXPLAIN QUERY PLAN




  SELECT * FROM t1 WHERE a=0 ORDER BY a, b, c;
} {~/B-TREE/}


do_execsql_test 2.2 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE +a=0 ORDER BY a, b, c;
} {/B-TREE/}
do_execsql_test 2.3 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY b, a, c;







>
>
>
>
>
|
>
>
>
>
>
>
>

>
>
>
>

|
>
>







60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
  EXPLAIN QUERY PLAN
  SELECT DISTINCT c, b, a FROM t1 WHERE a=0;
} {~/B-TREE/}
do_execsql_test 1.7 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT c, b, a FROM t1 WHERE +a=0;
} {/B-TREE/}

# In some cases, it is faster to do repeated index lookups than it is to
# sort.  But in other cases, it is faster to sort than to do repeated index
# lookups.
#
do_execsql_test 2.1a {
  CREATE TABLE t2(a,b,c);
  CREATE INDEX t2bc ON t2(b,c);
  ANALYZE;
  INSERT INTO sqlite_stat1 VALUES('t1','t1bc','1000000 10 9');
  INSERT INTO sqlite_stat1 VALUES('t2','t2bc','100 10 5');
  ANALYZE sqlite_master;

  EXPLAIN QUERY PLAN
  SELECT * FROM t2 WHERE a=0 ORDER BY a, b, c;
} {~/B-TREE/}
do_execsql_test 2.1b {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY a, b, c;
} {/B-TREE/}


do_execsql_test 2.2 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE +a=0 ORDER BY a, b, c;
} {/B-TREE/}
do_execsql_test 2.3 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY b, a, c;
Added test/orderby6.test.














































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# 2014-03-21
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing that the block-sort optimization.
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix orderby6

# Run all tests twice.  Once with a normal table and a second time
# with a WITHOUT ROWID table
#
foreach {tn rowidclause} {1 {} 2 {WITHOUT ROWID}} {

  # Construct a table with 1000 rows and a split primary key
  #
  reset_db
  do_test $tn.1 {
    db eval "CREATE TABLE t1(a,b,c,PRIMARY KEY(b,c)) $rowidclause;"
    db eval {
      WITH RECURSIVE
       cnt(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM cnt WHERE x<1000)
     INSERT INTO t1 SELECT x, x%40, x/40 FROM cnt;
    }
  } {}

  # Run various ORDER BY queries that can benefit from block-sort.
  # Compare the output to the same output using a full-sort enforced
  # by adding + to each term of the ORDER BY clause.
  #
  do_execsql_test $tn.2 {
    SELECT b,a,c FROM t1 ORDER BY b,a,c;
  } [db eval {SELECT b,a,c FROM t1 ORDER BY +b,+a,+c}]
  do_execsql_test $tn.3 {
    SELECT b,a,c FROM t1 ORDER BY b,c DESC,a;
  } [db eval {SELECT b,a,c FROM t1 ORDER BY +b,+c DESC,+a}]
  do_execsql_test $tn.4 {
    SELECT b,a,c FROM t1 ORDER BY b DESC,c,a;
  } [db eval {SELECT b,a,c FROM t1 ORDER BY +b DESC,+c,+a}]
  do_execsql_test $tn.5 {
    SELECT b,a,c FROM t1 ORDER BY b DESC,a,c;
  } [db eval {SELECT b,a,c FROM t1 ORDER BY +b DESC,+a,+c}]

  # LIMIT and OFFSET clauses on block-sort queries.
  #
  do_execsql_test $tn.11 {
    SELECT a FROM t1 ORDER BY b, a LIMIT 10 OFFSET 20;
  } {840 880 920 960 1000 1 41 81 121 161}
  do_execsql_test $tn.11x {
    SELECT a FROM t1 ORDER BY +b, a LIMIT 10 OFFSET 20;
  } {840 880 920 960 1000 1 41 81 121 161}

  do_execsql_test $tn.12 {
    SELECT a FROM t1 ORDER BY b DESC, a LIMIT 10 OFFSET 20;
  } {839 879 919 959 999 38 78 118 158 198}
  do_execsql_test $tn.12 {
    SELECT a FROM t1 ORDER BY +b DESC, a LIMIT 10 OFFSET 20;
  } {839 879 919 959 999 38 78 118 158 198}

  do_execsql_test $tn.13 {
    SELECT a FROM t1 ORDER BY b, a DESC LIMIT 10 OFFSET 45;
  } {161 121 81 41 1 962 922 882 842 802}
  do_execsql_test $tn.13x {
    SELECT a FROM t1 ORDER BY +b, a DESC LIMIT 10 OFFSET 45;
  } {161 121 81 41 1 962 922 882 842 802}

  do_execsql_test $tn.14 {
    SELECT a FROM t1 ORDER BY b DESC, a LIMIT 10 OFFSET 45;
  } {838 878 918 958 998 37 77 117 157 197}
  do_execsql_test $tn.14x {
    SELECT a FROM t1 ORDER BY +b DESC, a LIMIT 10 OFFSET 45;
  } {838 878 918 958 998 37 77 117 157 197}

  # Many test cases where the LIMIT+OFFSET window is in various
  # alignments with block-sort boundaries.
  #
  foreach {tx limit offset orderby} {
     1  10 24 {+b,+a}
     2  10 25 {+b,+a}
     3  10 26 {+b,+a}
     4  10 39 {+b,+a}
     5  10 40 {+b,+a}
     6  10 41 {+b,+a}
     7  27 24 {+b,+a}
     8  27 49 {+b,+a}
     11 10 24 {+b DESC,+a}
     12 10 25 {+b DESC,+a}
     13 10 26 {+b DESC,+a}
     14 10 39 {+b DESC,+a}
     15 10 40 {+b DESC,+a}
     16 10 41 {+b DESC,+a}
     17 27 24 {+b DESC,+a}
     18 27 49 {+b DESC,+a}
     21 10 24 {+b,+a DESC}
     22 10 25 {+b,+a DESC}
     23 10 26 {+b,+a DESC}
     24 10 39 {+b,+a DESC}
     25 10 40 {+b,+a DESC}
     26 10 41 {+b,+a DESC}
     27 27 24 {+b,+a DESC}
     28 27 49 {+b,+a DESC}
     31 10 24 {+b DESC,+a DESC}
     32 10 25 {+b DESC,+a DESC}
     33 10 26 {+b DESC,+a DESC}
     34 10 39 {+b DESC,+a DESC}
     35 10 40 {+b DESC,+a DESC}
     36 10 41 {+b DESC,+a DESC}
     37 27 24 {+b DESC,+a DESC}
     38 27 49 {+b DESC,+a DESC}
  } {
    set sql1 "SELECT a FROM t1 ORDER BY $orderby LIMIT $limit OFFSET $offset;"
    set sql2 [string map {+ {}} $sql1]
    # puts $sql2\n$sql1\n[db eval $sql2]
    do_test $tn.21.$tx {db eval $::sql2} [db eval $sql1]
  }

  ########################################################################
  # A second test table, t2, has many columns open to sorting.
  do_test $tn.31 {
    db eval "CREATE TABLE t2(a,b,c,d,e,f,PRIMARY KEY(b,c,d,e,f)) $rowidclause;"
    db eval {
      WITH RECURSIVE
       cnt(x) AS (VALUES(0) UNION ALL SELECT x+1 FROM cnt WHERE x<242)
     INSERT INTO t2 SELECT x,  x%3, (x/3)%3, (x/9)%3, (x/27)%3, (x/81)%3
                      FROM cnt;
    }
  } {}

  do_execsql_test $tn.32 {
    SELECT a FROM t2 ORDER BY b,c,d,e,f;
  } [db eval {SELECT a FROM t2 ORDER BY +b,+c,+d,+e,+f;}]
  do_execsql_test $tn.33 {
    SELECT a FROM t2 ORDER BY b,c,d,e,+f;
  } [db eval {SELECT a FROM t2 ORDER BY +b,+c,+d,+e,+f;}]
  do_execsql_test $tn.34 {
    SELECT a FROM t2 ORDER BY b,c,d,+e,+f;
  } [db eval {SELECT a FROM t2 ORDER BY +b,+c,+d,+e,+f;}]
  do_execsql_test $tn.35 {
    SELECT a FROM t2 ORDER BY b,c,+d,+e,+f;
  } [db eval {SELECT a FROM t2 ORDER BY +b,+c,+d,+e,+f;}]
  do_execsql_test $tn.36 {
    SELECT a FROM t2 ORDER BY b,+c,+d,+e,+f;
  } [db eval {SELECT a FROM t2 ORDER BY +b,+c,+d,+e,+f;}]

  do_execsql_test $tn.37 {
    SELECT a FROM t2 ORDER BY b,c,d,e,f DESC;
  } [db eval {SELECT a FROM t2 ORDER BY +b,+c,+d,+e,+f DESC;}]
  do_execsql_test $tn.38 {
    SELECT a FROM t2 ORDER BY b,c,d,e DESC,f;
  } [db eval {SELECT a FROM t2 ORDER BY +b,+c,+d,+e DESC,+f;}]
  do_execsql_test $tn.39 {
    SELECT a FROM t2 ORDER BY b,c,d DESC,e,f;
  } [db eval {SELECT a FROM t2 ORDER BY +b,+c,+d DESC,+e,+f;}]
  do_execsql_test $tn.40 {
    SELECT a FROM t2 ORDER BY b,c DESC,d,e,f;
  } [db eval {SELECT a FROM t2 ORDER BY +b,+c DESC,+d,+e,+f;}]
  do_execsql_test $tn.41 {
    SELECT a FROM t2 ORDER BY b DESC,c,d,e,f;
  } [db eval {SELECT a FROM t2 ORDER BY +b DESC,+c,+d,+e,+f;}]

  do_execsql_test $tn.42 {
    SELECT a FROM t2 ORDER BY b DESC,c DESC,d,e,f LIMIT 31;
  } [db eval {SELECT a FROM t2 ORDER BY +b DESC,+c DESC,+d,+e,+f LIMIT 31}]
  do_execsql_test $tn.43 {
    SELECT a FROM t2 ORDER BY b,c,d,e,f DESC LIMIT 8 OFFSET 7;
  } [db eval {SELECT a FROM t2 ORDER BY +b,+c,+d,+e,+f DESC LIMIT 8 OFFSET 7}]


}



finish_test
Changes to test/speedtest1.c.
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501







































502
503
504
505
506
507
508
    sqlite3_bind_text(g.pStmt, 3, zNum, -1, SQLITE_STATIC);
    speedtest1_run();
  }
  speedtest1_exec("COMMIT");
  speedtest1_end_test();


  n = g.szTest/2;
  speedtest1_begin_test(130, "%d SELECTS, numeric BETWEEN, unindexed", n);
  speedtest1_exec("BEGIN");
  speedtest1_prepare(
    "SELECT count(*), avg(b), sum(length(c)) FROM t1\n"
    " WHERE b BETWEEN ?1 AND ?2; -- %d times", n
  );
  for(i=1; i<=n; i++){
    x1 = speedtest1_random()%maxb;
    x2 = speedtest1_random()%10 + sz/5000 + x1;
    sqlite3_bind_int(g.pStmt, 1, x1);
    sqlite3_bind_int(g.pStmt, 2, x2);
    speedtest1_run();
  }
  speedtest1_exec("COMMIT");
  speedtest1_end_test();


  n = g.szTest/5;
  speedtest1_begin_test(140, "%d SELECTS, LIKE, unindexed", n);
  speedtest1_exec("BEGIN");
  speedtest1_prepare(
    "SELECT count(*), avg(b), sum(length(c)) FROM t1\n"
    " WHERE c LIKE ?1; -- %d times", n
  );







































  for(i=1; i<=n; i++){
    x1 = speedtest1_random()%maxb;
    zNum[0] = '%';
    len = speedtest1_numbername(i, zNum+1, sizeof(zNum)-2);
    zNum[len] = '%';
    zNum[len+1] = 0;
    sqlite3_bind_text(g.pStmt, 1, zNum, len, SQLITE_STATIC);







|

















|






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    sqlite3_bind_text(g.pStmt, 3, zNum, -1, SQLITE_STATIC);
    speedtest1_run();
  }
  speedtest1_exec("COMMIT");
  speedtest1_end_test();


  n = 25;
  speedtest1_begin_test(130, "%d SELECTS, numeric BETWEEN, unindexed", n);
  speedtest1_exec("BEGIN");
  speedtest1_prepare(
    "SELECT count(*), avg(b), sum(length(c)) FROM t1\n"
    " WHERE b BETWEEN ?1 AND ?2; -- %d times", n
  );
  for(i=1; i<=n; i++){
    x1 = speedtest1_random()%maxb;
    x2 = speedtest1_random()%10 + sz/5000 + x1;
    sqlite3_bind_int(g.pStmt, 1, x1);
    sqlite3_bind_int(g.pStmt, 2, x2);
    speedtest1_run();
  }
  speedtest1_exec("COMMIT");
  speedtest1_end_test();


  n = 10;
  speedtest1_begin_test(140, "%d SELECTS, LIKE, unindexed", n);
  speedtest1_exec("BEGIN");
  speedtest1_prepare(
    "SELECT count(*), avg(b), sum(length(c)) FROM t1\n"
    " WHERE c LIKE ?1; -- %d times", n
  );
  for(i=1; i<=n; i++){
    x1 = speedtest1_random()%maxb;
    zNum[0] = '%';
    len = speedtest1_numbername(i, zNum+1, sizeof(zNum)-2);
    zNum[len] = '%';
    zNum[len+1] = 0;
    sqlite3_bind_text(g.pStmt, 1, zNum, len, SQLITE_STATIC);
    speedtest1_run();
  }
  speedtest1_exec("COMMIT");
  speedtest1_end_test();


  n = 10;
  speedtest1_begin_test(142, "%d SELECTS w/ORDER BY, unindexed", n);
  speedtest1_exec("BEGIN");
  speedtest1_prepare(
    "SELECT a, b, c FROM t1 WHERE c LIKE ?1\n"
    " ORDER BY a; -- %d times", n
  );
  for(i=1; i<=n; i++){
    x1 = speedtest1_random()%maxb;
    zNum[0] = '%';
    len = speedtest1_numbername(i, zNum+1, sizeof(zNum)-2);
    zNum[len] = '%';
    zNum[len+1] = 0;
    sqlite3_bind_text(g.pStmt, 1, zNum, len, SQLITE_STATIC);
    speedtest1_run();
  }
  speedtest1_exec("COMMIT");
  speedtest1_end_test();

  n = 10; //g.szTest/5;
  speedtest1_begin_test(145, "%d SELECTS w/ORDER BY and LIMIT, unindexed", n);
  speedtest1_exec("BEGIN");
  speedtest1_prepare(
    "SELECT a, b, c FROM t1 WHERE c LIKE ?1\n"
    " ORDER BY a LIMIT 10; -- %d times", n
  );
  for(i=1; i<=n; i++){
    x1 = speedtest1_random()%maxb;
    zNum[0] = '%';
    len = speedtest1_numbername(i, zNum+1, sizeof(zNum)-2);
    zNum[len] = '%';
    zNum[len+1] = 0;
    sqlite3_bind_text(g.pStmt, 1, zNum, len, SQLITE_STATIC);
Changes to test/syscall.test.
57
58
59
60
61
62
63

64
65
66
67
68
69
70
# Tests for the xNextSystemCall method.
#
foreach s {
    open close access getcwd stat fstat ftruncate
    fcntl read pread write pwrite fchmod fallocate
    pread64 pwrite64 unlink openDirectory mkdir rmdir 
    statvfs fchown umask mmap munmap mremap

} {
  if {[test_syscall exists $s]} {lappend syscall_list $s}
}
do_test 3.1 { lsort [test_syscall list] } [lsort $syscall_list]

#-------------------------------------------------------------------------
# This test verifies that if a call to open() fails and errno is set to







>







57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Tests for the xNextSystemCall method.
#
foreach s {
    open close access getcwd stat fstat ftruncate
    fcntl read pread write pwrite fchmod fallocate
    pread64 pwrite64 unlink openDirectory mkdir rmdir 
    statvfs fchown umask mmap munmap mremap
    getpagesize
} {
  if {[test_syscall exists $s]} {lappend syscall_list $s}
}
do_test 3.1 { lsort [test_syscall list] } [lsort $syscall_list]

#-------------------------------------------------------------------------
# This test verifies that if a call to open() fails and errno is set to
Added test/tkt-a8a0d2996a.test.


























































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# 2014-03-24
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# 
# Tests to verify that arithmetic operators do not change the type of
# input operands.  Ticket [a8a0d2996a]
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix tkt-a8a0d2996a

do_execsql_test 1.0 {
  CREATE TABLE t(x,y);
  INSERT INTO t VALUES('1','1');
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x+0 AND y=='1';
} {text text}
do_execsql_test 1.1 {
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x-0 AND y=='1';
} {text text}
do_execsql_test 1.2 {
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x*1 AND y=='1';
} {text text}
do_execsql_test 1.3 {
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x/1 AND y=='1';
} {text text}
do_execsql_test 1.4 {
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x%4 AND y=='1';
} {text text}

do_execsql_test 2.0 {
  UPDATE t SET x='1xyzzy';
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x+0 AND y=='1';
} {text text}
do_execsql_test 2.1 {
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x-0 AND y=='1';
} {text text}
do_execsql_test 2.2 {
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x*1 AND y=='1';
} {text text}
do_execsql_test 2.3 {
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x/1 AND y=='1';
} {text text}
do_execsql_test 2.4 {
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x%4 AND y=='1';
} {text text}


do_execsql_test 3.0 {
  UPDATE t SET x='1.0';
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x+0 AND y=='1';
} {text text}
do_execsql_test 3.1 {
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x-0 AND y=='1';
} {text text}
do_execsql_test 3.2 {
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x*1 AND y=='1';
} {text text}
do_execsql_test 3.3 {
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x/1 AND y=='1';
} {text text}
do_execsql_test 3.4 {
  SELECT typeof(x), typeof(y) FROM t WHERE 1=x%4 AND y=='1';
} {text text}

do_execsql_test 4.0 {
  SELECT 1+1.;
} {2.0}
do_execsql_test 4.1 {
  SELECT '1.23e64'/'1.0000e+62';
} {123.0}
do_execsql_test 4.2 {
  SELECT '100x'+'-2y';
} {98}
do_execsql_test 4.3 {
  SELECT '100x'+'4.5y';
} {104.5}
do_execsql_test 4.4 {
  SELECT '-9223372036854775807x'-'1x';
} {-9.22337203685478e+18}
do_execsql_test 4.5 {
  SELECT '9223372036854775806x'+'1x';
} {9.22337203685478e+18}
do_execsql_test 4.6 {
  SELECT '1234x'/'10y';
} {123.4}
Changes to test/vtab_shared.test.
11
12
13
14
15
16
17

18
19
20
21
22
23
24
# This file tests interactions between the virtual table and
# shared-schema functionality.
#
# $Id: vtab_shared.test,v 1.3 2009/07/24 17:58:53 danielk1977 Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl


ifcapable !vtab||!shared_cache {
  finish_test
  return
}

db close







>







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# This file tests interactions between the virtual table and
# shared-schema functionality.
#
# $Id: vtab_shared.test,v 1.3 2009/07/24 17:58:53 danielk1977 Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix vtab_shared

ifcapable !vtab||!shared_cache {
  finish_test
  return
}

db close
224
225
226
227
228
229
230













































231
232

    INSERT INTO t3 VALUES(4, 5, 6);
    SELECT * FROM t3;
  }
} {1 2 3 4 5 6}

db close
db2 close













































sqlite3_enable_shared_cache 0
finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


>
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    INSERT INTO t3 VALUES(4, 5, 6);
    SELECT * FROM t3;
  }
} {1 2 3 4 5 6}

db close
db2 close

#---------------------------------------------------------------
# Test calling sqlite3_close() with vtabs on the disconnect list.
#
ifcapable rtree {
  reset_db
  do_test 2.1.1 {
    sqlite3 db  test.db
    sqlite3 db2 test.db
  
    # Create a virtual table using [db]. 
    execsql {
      CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2);
      INSERT INTO rt VALUES(1, 2 ,3);
      SELECT * FROM rt;
    }
  
    # Drop the virtual table using [db2]. The sqlite3_vtab object belonging
    # to [db] is moved to the sqlite3.pDisconnect list.
    execsql { DROP TABLE rt } db2
  
    # Immediately close [db]. At one point this would fail due to the 
    # unfinalized statements held by the un-xDisconnect()ed sqlite3_vtab.
    db close
  } {}
  db2 close
}

ifcapable fts3 {
  # Same test as above, except using fts3 instead of rtree.
  reset_db
  do_test 2.2.1 {
    sqlite3 db  test.db
    sqlite3 db2 test.db
    execsql {
      CREATE VIRTUAL TABLE ft USING fts3;
      INSERT INTO ft VALUES('hello world');
      SELECT * FROM ft;
    } 
    execsql { DROP TABLE ft } db2
    db close
  } {}
  db2 close
}

sqlite3_enable_shared_cache 0
finish_test

Added test/wal64k.test.






































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# 2010 April 13
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the operation of the library in
# "PRAGMA journal_mode=WAL" mode.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix wal64k

ifcapable !wal {finish_test ; return }

if {$tcl_platform(platform) != "unix"} {
  finish_test
  return
}

db close
test_syscall pagesize 65536
sqlite3 db test.db

do_execsql_test 1.0 { 
  PRAGMA journal_mode = WAL;
  CREATE TABLE t1(x);
  CREATE INDEX i1 ON t1(x);
} {wal}
do_test 1.1 { file size test.db-shm } {65536}

do_test 1.2 {
  execsql BEGIN
  while {[file size test.db-shm]==65536} {
    execsql { INSERT INTO t1 VALUES( randstr(900,1100) ) }
  }
  execsql COMMIT
  file size test.db-shm
} {131072}

integrity_check 1.3

db close
test_syscall pagesize -1
finish_test
Changes to test/whereG.test.
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

do_eqp_test whereG-1.5 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE cname LIKE '%bach%'
     AND composer.cid=track.cid
     AND album.aid=track.aid;
} {/.*track.*composer.*album.*/}
do_execsql_test whereG-1.6 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE cname LIKE '%bach%'
     AND composer.cid=track.cid
     AND album.aid=track.aid;
} {{Mass in B Minor, BWV 232}}

do_eqp_test whereG-1.7 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE cname LIKE '%bach%'
     AND unlikely(composer.cid=track.cid)
     AND unlikely(album.aid=track.aid);
} {/.*track.*composer.*album.*/}
do_execsql_test whereG-1.8 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE cname LIKE '%bach%'
     AND unlikely(composer.cid=track.cid)
     AND unlikely(album.aid=track.aid);
} {{Mass in B Minor, BWV 232}}







|














|







91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

do_eqp_test whereG-1.5 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE cname LIKE '%bach%'
     AND composer.cid=track.cid
     AND album.aid=track.aid;
} {/.*track.*(composer.*album|album.*composer).*/}
do_execsql_test whereG-1.6 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE cname LIKE '%bach%'
     AND composer.cid=track.cid
     AND album.aid=track.aid;
} {{Mass in B Minor, BWV 232}}

do_eqp_test whereG-1.7 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE cname LIKE '%bach%'
     AND unlikely(composer.cid=track.cid)
     AND unlikely(album.aid=track.aid);
} {/.*track.*(composer.*album|album.*composer).*/}
do_execsql_test whereG-1.8 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE cname LIKE '%bach%'
     AND unlikely(composer.cid=track.cid)
     AND unlikely(album.aid=track.aid);
} {{Mass in B Minor, BWV 232}}
Changes to test/with2.test.
381
382
383
384
385
386
387



























388
389
390
391
do_execsql_test 7.5 {
  SELECT * FROM t6 WHERE y IN (
    WITH ss(x) AS ( VALUES(7) UNION ALL SELECT x+7 FROM ss WHERE x<49 )
    SELECT x FROM ss
  )
} {14 28 42}






























finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
do_execsql_test 7.5 {
  SELECT * FROM t6 WHERE y IN (
    WITH ss(x) AS ( VALUES(7) UNION ALL SELECT x+7 FROM ss WHERE x<49 )
    SELECT x FROM ss
  )
} {14 28 42}

#-------------------------------------------------------------------------
# At one point the following was causing an assertion failure and a 
# memory leak.
#
do_execsql_test 8.1 {
  CREATE TABLE t7(y);
  INSERT INTO t7 VALUES(NULL);
  CREATE VIEW v AS SELECT * FROM t7 ORDER BY y;
}

do_execsql_test 8.2 {
  WITH q(a) AS (
    SELECT 1
    UNION 
    SELECT a+1 FROM q, v WHERE a<5
  )
  SELECT * FROM q;
} {1 2 3 4 5}

do_execsql_test 8.3 {
  WITH q(a) AS (
    SELECT 1
    UNION ALL
    SELECT a+1 FROM q, v WHERE a<5
  )
  SELECT * FROM q;
} {1 2 3 4 5}


finish_test

Changes to tool/logest.c.
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
** integers and LogEst values and back again and for doing simple
** arithmetic operations (multiple and add) on LogEst values.
**
** Usage:
**
**      ./LogEst ARGS
**
** Arguments:
**
**    'x'    Multiple the top two elements of the stack
**    '+'    Add the top two elements of the stack
**    NUM    Convert NUM from integer to LogEst and push onto the stack
**   ^NUM    Interpret NUM as a LogEst and push onto stack.
**
** Examples:
**
** To convert 123 from LogEst to integer:
** 
**         ./LogEst ^123
**
** To convert 123456 from integer to LogEst:







|
<
<
<
<
<
<







13
14
15
16
17
18
19
20






21
22
23
24
25
26
27
** integers and LogEst values and back again and for doing simple
** arithmetic operations (multiple and add) on LogEst values.
**
** Usage:
**
**      ./LogEst ARGS
**
** See the showHelp() routine for a description of valid arguments.






** Examples:
**
** To convert 123 from LogEst to integer:
** 
**         ./LogEst ^123
**
** To convert 123456 from integer to LogEst:
92
93
94
95
96
97
98
99
100
101
102
103
104





105















106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123











124
125


126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
  if( x<1.0 ) return -logEstFromDouble(1/x);
  if( x<1024.0 ) return logEstFromInteger((sqlite3_uint64)(1024.0*x)) - 100;
  if( x<=2000000000.0 ) return logEstFromInteger((sqlite3_uint64)x);
  memcpy(&a, &x, 8);
  e = (a>>52) - 1022;
  return e*10;
}

int isFloat(const char *z){
  while( z[0] ){
    if( z[0]=='.' || z[0]=='E' || z[0]=='e' ) return 1;
    z++;
  }





  return 0;















}

int main(int argc, char **argv){
  int i;
  int n = 0;
  LogEst a[100];
  for(i=1; i<argc; i++){
    const char *z = argv[i];
    if( z[0]=='+' ){
      if( n>=2 ){
        a[n-2] = logEstAdd(a[n-2],a[n-1]);
        n--;
      }
    }else if( z[0]=='x' ){
      if( n>=2 ){
        a[n-2] = logEstMultiply(a[n-2],a[n-1]);
        n--;
      }











    }else if( z[0]=='^' ){
      a[n++] = atoi(z+1);


    }else if( isFloat(z) ){
      a[n++] = logEstFromDouble(atof(z));
    }else{
      a[n++] = logEstFromInteger(atoi(z));

    }
  }
  for(i=n-1; i>=0; i--){
    if( a[i]<0 ){
      printf("%d (%f)\n", a[i], 1.0/(double)logEstToInt(-a[i]));
    }else{
      sqlite3_uint64 x = logEstToInt(a[i]+100)*100/1024;
      printf("%d (%lld.%02lld)\n", a[i], x/100, x%100);
    }
  }
  return 0;
}








|
|
|
<
|
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>








|




|




>
>
>
>
>
>
>
>
>
>
>


>
>
|


<
>




|


|




86
87
88
89
90
91
92
93
94
95
96

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

155
156
157
158
159
160
161
162
163
164
165
166
167
  if( x<1.0 ) return -logEstFromDouble(1/x);
  if( x<1024.0 ) return logEstFromInteger((sqlite3_uint64)(1024.0*x)) - 100;
  if( x<=2000000000.0 ) return logEstFromInteger((sqlite3_uint64)x);
  memcpy(&a, &x, 8);
  e = (a>>52) - 1022;
  return e*10;
}

int isInteger(const char *z){
  while( z[0]>='0' && z[0]<='9' ) z++;
  return z[0]==0;

}

int isFloat(const char *z){
  char c;
  while( ((c=z[0])>='0' && c<='9') || c=='.' || c=='E' || c=='e'
          || c=='+' || c=='-'  ) z++;
  return z[0]==0;
}

static void showHelp(const char *zArgv0){
  printf("Usage: %s ARGS...\n", zArgv0);
  printf("Arguments:\n"
    "  NUM    Convert NUM from integer to LogEst and push onto the stack\n"
    " ^NUM    Interpret NUM as a LogEst and push onto stack\n"
    "  x      Multiple the top two elements of the stack\n"
    "  +      Add the top two elements of the stack\n"
    "  dup    Dupliate the top element on the stack\n"
    "  inv    Take the reciprocal of the top of stack.  N = 1/N.\n"
    "  log    Find the LogEst of the number on top of stack\n"
    "  nlogn  Compute NlogN where N is the top of stack\n"
  );
  exit(1);
}

int main(int argc, char **argv){
  int i;
  int n = 0;
  LogEst a[100];
  for(i=1; i<argc; i++){
    const char *z = argv[i];
    if( strcmp(z,"+")==0 ){
      if( n>=2 ){
        a[n-2] = logEstAdd(a[n-2],a[n-1]);
        n--;
      }
    }else if( strcmp(z,"x")==0 ){
      if( n>=2 ){
        a[n-2] = logEstMultiply(a[n-2],a[n-1]);
        n--;
      }
    }else if( strcmp(z,"dup")==0 ){
      if( n>0 ){
        a[n] = a[n-1];
        n++;
      }
    }else if( strcmp(z,"log")==0 ){
      if( n>0 ) a[n-1] = logEstFromInteger(a[n-1]) - 33;
    }else if( strcmp(z,"nlogn")==0 ){
      if( n>0 ) a[n-1] += logEstFromInteger(a[n-1]) - 33;
    }else if( strcmp(z,"inv")==0 ){
      if( n>0 ) a[n-1] = -a[n-1];
    }else if( z[0]=='^' ){
      a[n++] = atoi(z+1);
    }else if( isInteger(z) ){
      a[n++] = logEstFromInteger(atoi(z));
    }else if( isFloat(z) && z[0]!='-' ){
      a[n++] = logEstFromDouble(atof(z));
    }else{

      showHelp(argv[0]);
    }
  }
  for(i=n-1; i>=0; i--){
    if( a[i]<0 ){
      printf("%5d (%f)\n", a[i], 1.0/(double)logEstToInt(-a[i]));
    }else{
      sqlite3_uint64 x = logEstToInt(a[i]+100)*100/1024;
      printf("%5d (%lld.%02lld)\n", a[i], x/100, x%100);
    }
  }
  return 0;
}