SQLite

Check-in [f52765ee7b]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge enhancements and bug fixes from trunk.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | apple-osx
Files: files | file ages | folders
SHA1: f52765ee7bddf047ce32d7448ee0c409e27d349a
User & Date: drh 2016-05-02 15:00:23.726
Context
2016-05-03
02:43
Fix the build when SQLITE_ENABLE_DATA_PROTECTION is defined. (check-in: 8f05e1402d user: drh tags: apple-osx)
2016-05-02
15:00
Merge enhancements and bug fixes from trunk. (check-in: f52765ee7b user: drh tags: apple-osx)
13:57
Fix harmless LLVM compiler warnings in the srcck1.c utility program used during the build process. (check-in: e4af967533 user: drh tags: trunk)
2016-04-29
17:07
Fix the nolock VFS so that it supports shared memory. (check-in: ce11f8e8a3 user: drh tags: apple-osx)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/delete.c.
235
236
237
238
239
240
241


242
243
244
245
246
247
248
249
250
251
252
253
  int iKey;              /* Memory cell holding key of row to be deleted */
  i16 nKey;              /* Number of memory cells in the row key */
  int iEphCur = 0;       /* Ephemeral table holding all primary key values */
  int iRowSet = 0;       /* Register for rowset of rows to delete */
  int addrBypass = 0;    /* Address of jump over the delete logic */
  int addrLoop = 0;      /* Top of the delete loop */
  int addrEphOpen = 0;   /* Instruction to open the Ephemeral table */


 
#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* True if attempting to delete from a view */
  Trigger *pTrigger;           /* List of table triggers, if required */
  int bComplex;                /* True if there are either triggers or FKs */
#endif

  memset(&sContext, 0, sizeof(sContext));
  db = pParse->db;
  if( pParse->nErr || db->mallocFailed ){
    goto delete_from_cleanup;
  }







>
>




<







235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
  int iKey;              /* Memory cell holding key of row to be deleted */
  i16 nKey;              /* Number of memory cells in the row key */
  int iEphCur = 0;       /* Ephemeral table holding all primary key values */
  int iRowSet = 0;       /* Register for rowset of rows to delete */
  int addrBypass = 0;    /* Address of jump over the delete logic */
  int addrLoop = 0;      /* Top of the delete loop */
  int addrEphOpen = 0;   /* Instruction to open the Ephemeral table */
  int bComplex;          /* True if there are triggers or FKs or or
                         ** subqueries in the WHERE clause */
 
#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* True if attempting to delete from a view */
  Trigger *pTrigger;           /* List of table triggers, if required */

#endif

  memset(&sContext, 0, sizeof(sContext));
  db = pParse->db;
  if( pParse->nErr || db->mallocFailed ){
    goto delete_from_cleanup;
  }
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#ifndef SQLITE_OMIT_TRIGGER
  pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
  isView = pTab->pSelect!=0;
  bComplex = pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0);
#else
# define pTrigger 0
# define isView 0
# define bComplex 0
#endif
#ifdef SQLITE_OMIT_VIEW
# undef isView
# define isView 0
#endif

  /* If pTab is really a view, make sure it has been initialized.







<







268
269
270
271
272
273
274

275
276
277
278
279
280
281
#ifndef SQLITE_OMIT_TRIGGER
  pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
  isView = pTab->pSelect!=0;
  bComplex = pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0);
#else
# define pTrigger 0
# define isView 0

#endif
#ifdef SQLITE_OMIT_VIEW
# undef isView
# define isView 0
#endif

  /* If pTab is really a view, make sure it has been initialized.
370
371
372
373
374
375
376

377
378
379
380
381
382
383
      assert( pIdx->pSchema==pTab->pSchema );
      sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
    }
  }else
#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
  {
    u16 wcf = WHERE_ONEPASS_DESIRED|WHERE_DUPLICATES_OK;

    wcf |= (bComplex ? 0 : WHERE_ONEPASS_MULTIROW);
    if( HasRowid(pTab) ){
      /* For a rowid table, initialize the RowSet to an empty set */
      pPk = 0;
      nPk = 1;
      iRowSet = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);







>







370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
      assert( pIdx->pSchema==pTab->pSchema );
      sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
    }
  }else
#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
  {
    u16 wcf = WHERE_ONEPASS_DESIRED|WHERE_DUPLICATES_OK;
    if( pWhere && ExprHasProperty(pWhere, EP_Subquery) ) bComplex = 1;
    wcf |= (bComplex ? 0 : WHERE_ONEPASS_MULTIROW);
    if( HasRowid(pTab) ){
      /* For a rowid table, initialize the RowSet to an empty set */
      pPk = 0;
      nPk = 1;
      iRowSet = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
Changes to src/os_unix.c.
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603

6604



6605
6606
6607
6608
6609
6610
6611
     0,
     0,
     "/var/tmp",
     "/usr/tmp",
     "/tmp",
     "."
  };
  unsigned int i;
  struct stat buf;
  const char *zDir = sqlite3_temp_directory;

  if( !azDirs[0] ) azDirs[0] = getenv("SQLITE_TMPDIR");
  if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
  for(i=0; i<=sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
    if( zDir==0 ) continue;
    if( osStat(zDir, &buf) ) continue;
    if( !S_ISDIR(buf.st_mode) ) continue;
    if( osAccess(zDir, 03) ) continue;

    return zDir;



  }
  return 0;
}

/*
** Create a temporary file name in zBuf.  zBuf must be allocated
** by the calling process and must be big enough to hold at least







|





|
|
|
|
|
>
|
>
>
>







6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
     0,
     0,
     "/var/tmp",
     "/usr/tmp",
     "/tmp",
     "."
  };
  unsigned int i = 0;
  struct stat buf;
  const char *zDir = sqlite3_temp_directory;

  if( !azDirs[0] ) azDirs[0] = getenv("SQLITE_TMPDIR");
  if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
  while(1){
    if( zDir!=0
     && osStat(zDir, &buf)==0
     && S_ISDIR(buf.st_mode)
     && osAccess(zDir, 03)==0
    ){
      return zDir;
    }
    if( i>=sizeof(azDirs)/sizeof(azDirs[0]) ) break;
    zDir = azDirs[i++];
  }
  return 0;
}

/*
** Create a temporary file name in zBuf.  zBuf must be allocated
** by the calling process and must be big enough to hold at least
Changes to src/vdbe.c.
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
** omitted.
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program.  So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {
  const char *zType;
  const char *zLogFmt;
  VdbeFrame *pFrame;
  int pcx;

  pcx = (int)(pOp - aOp);
  if( pOp->p1==SQLITE_OK && p->pFrame ){
    /* Halt the sub-program. Return control to the parent frame. */
    pFrame = p->pFrame;







<
<







946
947
948
949
950
951
952


953
954
955
956
957
958
959
** omitted.
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program.  So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {


  VdbeFrame *pFrame;
  int pcx;

  pcx = (int)(pOp - aOp);
  if( pOp->p1==SQLITE_OK && p->pFrame ){
    /* Halt the sub-program. Return control to the parent frame. */
    pFrame = p->pFrame;
976
977
978
979
980
981
982

983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
    aMem = p->aMem;
    pOp = &aOp[pcx];
    break;
  }
  p->rc = pOp->p1;
  p->errorAction = (u8)pOp->p2;
  p->pc = pcx;

  if( p->rc ){
    if( pOp->p5 ){
      static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
                                             "FOREIGN KEY" };
      assert( pOp->p5>=1 && pOp->p5<=4 );
      testcase( pOp->p5==1 );
      testcase( pOp->p5==2 );
      testcase( pOp->p5==3 );
      testcase( pOp->p5==4 );
      zType = azType[pOp->p5-1];
    }else{
      zType = 0;
    }
    assert( zType!=0 || pOp->p4.z!=0 );
    zLogFmt = "abort at %d in [%s]: %s";
    if( zType && pOp->p4.z ){
      sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z);
    }else if( pOp->p4.z ){
      sqlite3VdbeError(p, "%s", pOp->p4.z);

    }else{
      sqlite3VdbeError(p, "%s constraint failed", zType);
    }
    sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg);
  }
  rc = sqlite3VdbeHalt(p);
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
  if( rc==SQLITE_BUSY ){
    p->rc = rc = SQLITE_BUSY;
  }else{
    assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
    assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
  }
  goto vdbe_return;
}







>




<




<
<
<
<
<
<
<
|
|
|
>

|

|




|







974
975
976
977
978
979
980
981
982
983
984
985

986
987
988
989







990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
    aMem = p->aMem;
    pOp = &aOp[pcx];
    break;
  }
  p->rc = pOp->p1;
  p->errorAction = (u8)pOp->p2;
  p->pc = pcx;
  assert( pOp->p5>=0 && pOp->p5<=4 );
  if( p->rc ){
    if( pOp->p5 ){
      static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
                                             "FOREIGN KEY" };

      testcase( pOp->p5==1 );
      testcase( pOp->p5==2 );
      testcase( pOp->p5==3 );
      testcase( pOp->p5==4 );







      sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
      if( pOp->p4.z ){
        p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
      }
    }else{
      sqlite3VdbeError(p, "%s", pOp->p4.z);
    }
    sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
  }
  rc = sqlite3VdbeHalt(p);
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
  if( rc==SQLITE_BUSY ){
    p->rc = SQLITE_BUSY;
  }else{
    assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
    assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
  }
  goto vdbe_return;
}
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1092
1093
1094
1095

1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107


1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
  pOut = out2Prerelease(p, pOp);
  pOp->opcode = OP_String;
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( rc ){
      assert( rc==SQLITE_TOOBIG ); /* This is the only possible error here */
      goto too_big;
    }
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
    assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
    assert( VdbeMemDynamic(pOut)==0 );
    pOut->szMalloc = 0;
    pOut->flags |= MEM_Static;
    if( pOp->p4type==P4_DYNAMIC ){
      sqlite3DbFree(db, pOp->p4.z);
    }
    pOp->p4type = P4_DYNAMIC;
    pOp->p4.z = pOut->z;
    pOp->p1 = pOut->n;
  }

#endif
  if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

  /* Fall through to the next case, OP_String */
}
  
/* Opcode: String P1 P2 P3 P4 P5
** Synopsis: r[P2]='P4' (len=P1)
**
** The string value P4 of length P1 (bytes) is stored in register P2.
**
** If P5!=0 and the content of register P3 is greater than zero, then
** the datatype of the register P2 is converted to BLOB.  The content is
** the same sequence of bytes, it is merely interpreted as a BLOB instead
** of a string, as if it had been CAST.


*/
case OP_String: {          /* out2 */
  assert( pOp->p4.z!=0 );
  pOut = out2Prerelease(p, pOp);
  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
  pOut->z = pOp->p4.z;
  pOut->n = pOp->p1;
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
  if( pOp->p5 ){
    assert( pOp->p3>0 );
    assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
    pIn3 = &aMem[pOp->p3];
    assert( pIn3->flags & MEM_Int );
    if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
  }
#endif
  break;
}

/* Opcode: Null P1 P2 P3 * *
** Synopsis:  r[P2..P3]=NULL







<
|
<
<












>




>








|


|
>
>










|
<



|







1061
1062
1063
1064
1065
1066
1067

1068


1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
  pOut = out2Prerelease(p, pOp);
  pOp->opcode = OP_String;
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);

    assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );


    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
    assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
    assert( VdbeMemDynamic(pOut)==0 );
    pOut->szMalloc = 0;
    pOut->flags |= MEM_Static;
    if( pOp->p4type==P4_DYNAMIC ){
      sqlite3DbFree(db, pOp->p4.z);
    }
    pOp->p4type = P4_DYNAMIC;
    pOp->p4.z = pOut->z;
    pOp->p1 = pOut->n;
  }
  testcase( rc==SQLITE_TOOBIG );
#endif
  if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }
  assert( rc==SQLITE_OK );
  /* Fall through to the next case, OP_String */
}
  
/* Opcode: String P1 P2 P3 P4 P5
** Synopsis: r[P2]='P4' (len=P1)
**
** The string value P4 of length P1 (bytes) is stored in register P2.
**
** If P3 is not zero and the content of register P3 is equal to P5, then
** the datatype of the register P2 is converted to BLOB.  The content is
** the same sequence of bytes, it is merely interpreted as a BLOB instead
** of a string, as if it had been CAST.  In other words:
**
** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
*/
case OP_String: {          /* out2 */
  assert( pOp->p4.z!=0 );
  pOut = out2Prerelease(p, pOp);
  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
  pOut->z = pOp->p4.z;
  pOut->n = pOp->p1;
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
  if( pOp->p3>0 ){

    assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
    pIn3 = &aMem[pOp->p3];
    assert( pIn3->flags & MEM_Int );
    if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
  }
#endif
  break;
}

/* Opcode: Null P1 P2 P3 * *
** Synopsis:  r[P2..P3]=NULL
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
  pIn1->u.i--;
  VdbeBranchTaken(pIn1->u.i==0, 2);
  if( pIn1->u.i==0 ) goto jump_to_p2;
  break;
}


/* Opcode: JumpZeroIncr P1 P2 * * *
** Synopsis: if (r[P1]++)==0 ) goto P2
**
** The register P1 must contain an integer.  If register P1 is initially
** zero, then jump to P2.  Increment register P1 regardless of whether or
** not the jump is taken.
*/
case OP_JumpZeroIncr: {        /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  VdbeBranchTaken(pIn1->u.i==0, 2);
  if( (pIn1->u.i++)==0 ) goto jump_to_p2;
  break;
}

/* Opcode: AggStep0 * P2 P3 P4 P5
** Synopsis: accum=r[P3] step(r[P2@P5])
**
** Execute the step function for an aggregate.  The
** function has P5 arguments.   P4 is a pointer to the FuncDef
** structure that specifies the function.  Register P3 is the
** accumulator.







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







5964
5965
5966
5967
5968
5969
5970















5971
5972
5973
5974
5975
5976
5977
  pIn1->u.i--;
  VdbeBranchTaken(pIn1->u.i==0, 2);
  if( pIn1->u.i==0 ) goto jump_to_p2;
  break;
}

















/* Opcode: AggStep0 * P2 P3 P4 P5
** Synopsis: accum=r[P3] step(r[P2@P5])
**
** Execute the step function for an aggregate.  The
** function has P5 arguments.   P4 is a pointer to the FuncDef
** structure that specifies the function.  Register P3 is the
** accumulator.
Changes to src/where.c.
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
      sqlite3VdbeGoto(v, pLevel->addrSkip);
      VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
      sqlite3VdbeJumpHere(v, pLevel->addrSkip);
      sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
    }
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
    if( pLevel->addrLikeRep ){
      int op;
      if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){
        op = OP_DecrJumpZero;
      }else{
        op = OP_JumpZeroIncr;
      }
      sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep);
      VdbeCoverage(v);
    }
#endif
    if( pLevel->iLeftJoin ){
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
      assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
           || (pLoop->wsFlags & WHERE_INDEXED)!=0 );







<
<
|
<
<
<
|







4603
4604
4605
4606
4607
4608
4609


4610



4611
4612
4613
4614
4615
4616
4617
4618
      sqlite3VdbeGoto(v, pLevel->addrSkip);
      VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
      sqlite3VdbeJumpHere(v, pLevel->addrSkip);
      sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
    }
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
    if( pLevel->addrLikeRep ){


      sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),



                        pLevel->addrLikeRep);
      VdbeCoverage(v);
    }
#endif
    if( pLevel->iLeftJoin ){
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
      assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
           || (pLoop->wsFlags & WHERE_INDEXED)!=0 );
Changes to src/whereInt.h.
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
  int addrBrk;          /* Jump here to break out of the loop */
  int addrNxt;          /* Jump here to start the next IN combination */
  int addrSkip;         /* Jump here for next iteration of skip-scan */
  int addrCont;         /* Jump here to continue with the next loop cycle */
  int addrFirst;        /* First instruction of interior of the loop */
  int addrBody;         /* Beginning of the body of this loop */
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
  int iLikeRepCntr;     /* LIKE range processing counter register */
  int addrLikeRep;      /* LIKE range processing address */
#endif
  u8 iFrom;             /* Which entry in the FROM clause */
  u8 op, p3, p5;        /* Opcode, P3 & P5 of the opcode that ends the loop */
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on pWLoop->wsFlags */
    struct {







|







66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
  int addrBrk;          /* Jump here to break out of the loop */
  int addrNxt;          /* Jump here to start the next IN combination */
  int addrSkip;         /* Jump here for next iteration of skip-scan */
  int addrCont;         /* Jump here to continue with the next loop cycle */
  int addrFirst;        /* First instruction of interior of the loop */
  int addrBody;         /* Beginning of the body of this loop */
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
  u32 iLikeRepCntr;     /* LIKE range processing counter register (times 2) */
  int addrLikeRep;      /* LIKE range processing address */
#endif
  u8 iFrom;             /* Which entry in the FROM clause */
  u8 op, p3, p5;        /* Opcode, P3 & P5 of the opcode that ends the loop */
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on pWLoop->wsFlags */
    struct {
Changes to src/wherecode.c.
556
557
558
559
560
561
562
563
564
565

566
567
568
569
570
571
572
  }
  *pzAff = zAff;
  return regBase;
}

#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
/*
** If the most recently coded instruction is a constant range contraint
** that originated from the LIKE optimization, then change the P3 to be
** pLoop->iLikeRepCntr and set P5.

**
** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
** scan loop run twice, once for strings and a second time for BLOBs.
** The OP_String opcodes on the second pass convert the upper and lower
** bound string contants to blobs.  This routine makes the necessary changes
** to the OP_String opcodes for that to happen.







|
|
|
>







556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
  }
  *pzAff = zAff;
  return regBase;
}

#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
/*
** If the most recently coded instruction is a constant range constraint
** (a string literal) that originated from the LIKE optimization, then 
** set P3 and P5 on the OP_String opcode so that the string will be cast
** to a BLOB at appropriate times.
**
** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
** scan loop run twice, once for strings and a second time for BLOBs.
** The OP_String opcodes on the second pass convert the upper and lower
** bound string contants to blobs.  This routine makes the necessary changes
** to the OP_String opcodes for that to happen.
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
  if( pTerm->wtFlags & TERM_LIKEOPT ){
    VdbeOp *pOp;
    assert( pLevel->iLikeRepCntr>0 );
    pOp = sqlite3VdbeGetOp(v, -1);
    assert( pOp!=0 );
    assert( pOp->opcode==OP_String8 
            || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
    pOp->p3 = pLevel->iLikeRepCntr;
    pOp->p5 = 1;
  }
}
#else
# define whereLikeOptimizationStringFixup(A,B,C)
#endif

#ifdef SQLITE_ENABLE_CURSOR_HINTS







|
|







584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
  if( pTerm->wtFlags & TERM_LIKEOPT ){
    VdbeOp *pOp;
    assert( pLevel->iLikeRepCntr>0 );
    pOp = sqlite3VdbeGetOp(v, -1);
    assert( pOp!=0 );
    assert( pOp->opcode==OP_String8 
            || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
    pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
    pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
  }
}
#else
# define whereLikeOptimizationStringFixup(A,B,C)
#endif

#ifdef SQLITE_ENABLE_CURSOR_HINTS
1171
1172
1173
1174
1175
1176
1177
1178





1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
    if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
      pRangeEnd = pLoop->aLTerm[j++];
      nExtraReg = 1;
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
      if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
        assert( pRangeStart!=0 );                     /* LIKE opt constraints */
        assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
        pLevel->iLikeRepCntr = ++pParse->nMem;





        testcase( bRev );
        testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
        sqlite3VdbeAddOp2(v, OP_Integer,
                          bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC),
                          pLevel->iLikeRepCntr);
        VdbeComment((v, "LIKE loop counter"));
        pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
      }
#endif
      if( pRangeStart==0
       && (j = pIdx->aiColumn[nEq])>=0 
       && pIdx->pTable->aCol[j].notNull==0
      ){
        bSeekPastNull = 1;







|
>
>
>
>
>


<
|
|
<
|







1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186

1187
1188

1189
1190
1191
1192
1193
1194
1195
1196
    if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
      pRangeEnd = pLoop->aLTerm[j++];
      nExtraReg = 1;
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
      if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
        assert( pRangeStart!=0 );                     /* LIKE opt constraints */
        assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
        pLevel->iLikeRepCntr = (u32)++pParse->nMem;
        sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
        VdbeComment((v, "LIKE loop counter"));
        pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
        /* iLikeRepCntr actually stores 2x the counter register number.  The
        ** bottom bit indicates whether the search order is ASC or DESC. */
        testcase( bRev );
        testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );

        assert( (bRev & ~1)==0 );
        pLevel->iLikeRepCntr <<=1;

        pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
      }
#endif
      if( pRangeStart==0
       && (j = pIdx->aiColumn[nEq])>=0 
       && pIdx->pTable->aCol[j].notNull==0
      ){
        bSeekPastNull = 1;
1692
1693
1694
1695
1696
1697
1698





1699
1700
1701
1702

1703
1704
1705
1706
1707
1708
1709
1710
    }
    pE = pTerm->pExpr;
    assert( pE!=0 );
    if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
      continue;
    }
    if( pTerm->wtFlags & TERM_LIKECOND ){





#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
      continue;
#else
      assert( pLevel->iLikeRepCntr>0 );

      skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr);
      VdbeCoverage(v);
#endif
    }
    sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
    if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
    pTerm->wtFlags |= TERM_CODED;
  }







>
>
>
>
>



|
>
|







1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
    }
    pE = pTerm->pExpr;
    assert( pE!=0 );
    if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
      continue;
    }
    if( pTerm->wtFlags & TERM_LIKECOND ){
      /* If the TERM_LIKECOND flag is set, that means that the range search
      ** is sufficient to guarantee that the LIKE operator is true, so we
      ** can skip the call to the like(A,B) function.  But this only works
      ** for strings.  So do not skip the call to the function on the pass
      ** that compares BLOBs. */
#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
      continue;
#else
      u32 x = pLevel->iLikeRepCntr;
      assert( x>0 );
      skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)? OP_IfNot : OP_If, (int)(x>>1));
      VdbeCoverage(v);
#endif
    }
    sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
    if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
    pTerm->wtFlags |= TERM_CODED;
  }
Changes to test/delete4.test.
156
157
158
159
160
161
162























163
164
  INSERT INTO t1(a,b,c) SELECT a+2, 1, c FROM t1;
  INSERT INTO t1(a,b,c) SELECT a+10, 2, c FROM t1 WHERE b=1;
  INSERT INTO t1(a,b,c) SELECT a+20, 3, c FROM t1 WHERE b=1;
  PRAGMA reverse_unordered_selects = ON;
  DELETE FROM t1 WHERE b=2;
  SELECT a FROM t1 WHERE b=2;
} {}
























finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
  INSERT INTO t1(a,b,c) SELECT a+2, 1, c FROM t1;
  INSERT INTO t1(a,b,c) SELECT a+10, 2, c FROM t1 WHERE b=1;
  INSERT INTO t1(a,b,c) SELECT a+20, 3, c FROM t1 WHERE b=1;
  PRAGMA reverse_unordered_selects = ON;
  DELETE FROM t1 WHERE b=2;
  SELECT a FROM t1 WHERE b=2;
} {}

# 2016-05-02
# Ticket https://www.sqlite.org/src/tktview/dc6ebeda93960877
# A subquery in the WHERE clause of a one-pass DELETE can cause an
# incorrect answer.
#
db close
forcedelete test.db
sqlite3 db test.db
do_execsql_test 6.0 {
  CREATE TABLE t2(x INT);
  INSERT INTO t2(x) VALUES(1),(2),(3),(4),(5);
  DELETE FROM t2 WHERE EXISTS(SELECT 1 FROM t2 AS v WHERE v.x=t2.x-1);
  SELECT x FROM t2;
} {1}
do_execsql_test 6.1 {
  DROP TABLE IF EXISTS t2;
  CREATE TABLE t2(x INT);
  INSERT INTO t2(x) VALUES(1),(2),(3),(4),(5);
  DELETE FROM t2 WHERE EXISTS(SELECT 1 FROM t2 AS v WHERE v.x=t2.x+1);
  SELECT x FROM t2;
} {5}


finish_test
Changes to test/tester.tcl.
517
518
519
520
521
522
523



524

525
526
527
528
529
530
531
      }
      {^-q$} {
        set cmdlinearg(output) test-out.txt
        set cmdlinearg(verbose) 2
      }

      default {



        lappend leftover [file normalize $a]

      }
    }
  }
  set testdir [file normalize $testdir]
  set cmdlinearg(TESTFIXTURE_HOME) [pwd]
  set cmdlinearg(INFO_SCRIPT) [file normalize [info script]]
  set argv0 [file normalize $argv0]







>
>
>
|
>







517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
      }
      {^-q$} {
        set cmdlinearg(output) test-out.txt
        set cmdlinearg(verbose) 2
      }

      default {
        if {[file tail $a]==$a} {
          lappend leftover $a
        } else {
          lappend leftover [file normalize $a]
        }
      }
    }
  }
  set testdir [file normalize $testdir]
  set cmdlinearg(TESTFIXTURE_HOME) [pwd]
  set cmdlinearg(INFO_SCRIPT) [file normalize [info script]]
  set argv0 [file normalize $argv0]
Changes to tool/lemon.c.
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574



3575
3576
3577
3578
3579
3580
3581
  if( rp->code==0 ){
    static char newlinestr[2] = { '\n', '\0' };
    rp->code = newlinestr;
    rp->line = rp->ruleline;
  }


  if( rp->lhsalias==0 ){
    /* There is no LHS value symbol. */
    lhsdirect = 1;
  }else if( rp->nrhs==0 ){
    /* If there are no RHS symbols, then writing directly to the LHS is ok */
    lhsdirect = 1;
  }else if( rp->rhsalias[0]==0 ){
    /* The left-most RHS symbol has not value.  LHS direct is ok.  But
    ** we have to call the distructor on the RHS symbol first. */
    lhsdirect = 1;
    if( has_destructor(rp->rhs[0],lemp) ){
      append_str(0,0,0,0);
      append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
                 rp->rhs[0]->index,1-rp->nrhs);
      rp->codePrefix = Strsafe(append_str(0,0,0,0));
    }



  }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
    /* The LHS symbol and the left-most RHS symbol are the same, so 
    ** direct writing is allowed */
    lhsdirect = 1;
    lhsused = 1;
    used[0] = 1;
    if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){







<
<
<
|



|








>
>
>







3552
3553
3554
3555
3556
3557
3558



3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
  if( rp->code==0 ){
    static char newlinestr[2] = { '\n', '\0' };
    rp->code = newlinestr;
    rp->line = rp->ruleline;
  }





  if( rp->nrhs==0 ){
    /* If there are no RHS symbols, then writing directly to the LHS is ok */
    lhsdirect = 1;
  }else if( rp->rhsalias[0]==0 ){
    /* The left-most RHS symbol has no value.  LHS direct is ok.  But
    ** we have to call the distructor on the RHS symbol first. */
    lhsdirect = 1;
    if( has_destructor(rp->rhs[0],lemp) ){
      append_str(0,0,0,0);
      append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
                 rp->rhs[0]->index,1-rp->nrhs);
      rp->codePrefix = Strsafe(append_str(0,0,0,0));
    }
  }else if( rp->lhsalias==0 ){
    /* There is no LHS value symbol. */
    lhsdirect = 1;
  }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
    /* The LHS symbol and the left-most RHS symbol are the same, so 
    ** direct writing is allowed */
    lhsdirect = 1;
    lhsused = 1;
    used[0] = 1;
    if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
    append_str("  yymsp[%d].minor.yy%d = ", 0, 1-rp->nrhs, rp->lhs->dtnum);
    append_str(zLhs, 0, 0, 0);
    append_str(";\n", 0, 0, 0);
  }

  /* Suffix code generation complete */
  cp = append_str(0,0,0,0);
  if( cp ) rp->codeSuffix = Strsafe(cp);

  return rc;
}

/* 
** Generate code which executes when the rule "rp" is reduced.  Write
** the code to "out".  Make sure lineno stays up-to-date.







|







3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
    append_str("  yymsp[%d].minor.yy%d = ", 0, 1-rp->nrhs, rp->lhs->dtnum);
    append_str(zLhs, 0, 0, 0);
    append_str(";\n", 0, 0, 0);
  }

  /* Suffix code generation complete */
  cp = append_str(0,0,0,0);
  if( cp && cp[0] ) rp->codeSuffix = Strsafe(cp);

  return rc;
}

/* 
** Generate code which executes when the rule "rp" is reduced.  Write
** the code to "out".  Make sure lineno stays up-to-date.
4393
4394
4395
4396
4397
4398
4399
4400







4401
4402
4403
4404
4405
4406
4407
  if( i ){
    fprintf(out,"        YYMINORTYPE yylhsminor;\n"); lineno++;
  }
  /* First output rules other than the default: rule */
  for(rp=lemp->rule; rp; rp=rp->next){
    struct rule *rp2;               /* Other rules with the same action */
    if( rp->code==0 ) continue;
    if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */







    fprintf(out,"      case %d: /* ", rp->iRule);
    writeRuleText(out, rp);
    fprintf(out, " */\n"); lineno++;
    for(rp2=rp->next; rp2; rp2=rp2->next){
      if( rp2->code==rp->code && rp2->codePrefix==rp->codePrefix
             && rp2->codeSuffix==rp->codeSuffix ){
        fprintf(out,"      case %d: /* ", rp2->iRule);







|
>
>
>
>
>
>
>







4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
  if( i ){
    fprintf(out,"        YYMINORTYPE yylhsminor;\n"); lineno++;
  }
  /* First output rules other than the default: rule */
  for(rp=lemp->rule; rp; rp=rp->next){
    struct rule *rp2;               /* Other rules with the same action */
    if( rp->code==0 ) continue;
    if( rp->code[0]=='\n'
     && rp->code[1]==0
     && rp->codePrefix==0
     && rp->codeSuffix==0
    ){
      /* No actions, so this will be part of the "default:" rule */
      continue;
    }
    fprintf(out,"      case %d: /* ", rp->iRule);
    writeRuleText(out, rp);
    fprintf(out, " */\n"); lineno++;
    for(rp2=rp->next; rp2; rp2=rp2->next){
      if( rp2->code==rp->code && rp2->codePrefix==rp->codePrefix
             && rp2->codeSuffix==rp->codeSuffix ){
        fprintf(out,"      case %d: /* ", rp2->iRule);
4416
4417
4418
4419
4420
4421
4422


4423
4424
4425
4426
4427
4428
4429
  }
  /* Finally, output the default: rule.  We choose as the default: all
  ** empty actions. */
  fprintf(out,"      default:\n"); lineno++;
  for(rp=lemp->rule; rp; rp=rp->next){
    if( rp->code==0 ) continue;
    assert( rp->code[0]=='\n' && rp->code[1]==0 );


    fprintf(out,"      /* (%d) ", rp->iRule);
    writeRuleText(out, rp);
    fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->iRule); lineno++;
  }
  fprintf(out,"        break;\n"); lineno++;
  tplt_xfer(lemp->name,in,out,&lineno);








>
>







4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
  }
  /* Finally, output the default: rule.  We choose as the default: all
  ** empty actions. */
  fprintf(out,"      default:\n"); lineno++;
  for(rp=lemp->rule; rp; rp=rp->next){
    if( rp->code==0 ) continue;
    assert( rp->code[0]=='\n' && rp->code[1]==0 );
    assert( rp->codePrefix==0 );
    assert( rp->codeSuffix==0 );
    fprintf(out,"      /* (%d) ", rp->iRule);
    writeRuleText(out, rp);
    fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->iRule); lineno++;
  }
  fprintf(out,"        break;\n"); lineno++;
  tplt_xfer(lemp->name,in,out,&lineno);

Changes to tool/srcck1.c.
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

/* Search for instances of assert(...), ALWAYS(...), NEVER(...), and/or
** testcase(...) where the argument contains side effects.
**
** Print error messages whenever a side effect is found.  Return the number
** of problems seen.
*/
static unsigned int findAllSideEffects(const unsigned char *z){
  unsigned int lineno = 1;   /* Line number */
  unsigned int i;
  unsigned int nErr = 0;
  unsigned char c, prevC = 0;
  for(i=0; (c = z[i])!=0; prevC=c, i++){
    if( c=='\n' ){ lineno++; continue; }
    if( isalpha(c) && !isalpha(prevC) ){
      if( strncmp(&z[i],"assert(",7)==0
       || strncmp(&z[i],"ALWAYS(",7)==0
       || strncmp(&z[i],"NEVER(",6)==0
       || strncmp(&z[i],"testcase(",9)==0
      ){
        unsigned int n;
        unsigned const char *z2 = &z[i+5];
        while( z2[0]!='(' ){ z2++; }
        z2++;
        n = findCloseParen(z2);
        if( hasSideEffect(z2, n) ){
          nErr++;
          fprintf(stderr, "side-effect line %u: %.*s\n", lineno,
                  (int)(&z2[n+1] - &z[i]), &z[i]);
        }
      }
    }
  }
  return nErr;
}

int main(int argc, char **argv){
  unsigned char *z;
  unsigned int nErr = 0;
  if( argc!=2 ){
    fprintf(stderr, "Usage: %s FILENAME\n", argv[0]);
    return 1;
  }
  z = readFile(argv[1]);
  nErr = findAllSideEffects(z);







|



|









|















|







107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

/* Search for instances of assert(...), ALWAYS(...), NEVER(...), and/or
** testcase(...) where the argument contains side effects.
**
** Print error messages whenever a side effect is found.  Return the number
** of problems seen.
*/
static unsigned int findAllSideEffects(const char *z){
  unsigned int lineno = 1;   /* Line number */
  unsigned int i;
  unsigned int nErr = 0;
  char c, prevC = 0;
  for(i=0; (c = z[i])!=0; prevC=c, i++){
    if( c=='\n' ){ lineno++; continue; }
    if( isalpha(c) && !isalpha(prevC) ){
      if( strncmp(&z[i],"assert(",7)==0
       || strncmp(&z[i],"ALWAYS(",7)==0
       || strncmp(&z[i],"NEVER(",6)==0
       || strncmp(&z[i],"testcase(",9)==0
      ){
        unsigned int n;
        const char *z2 = &z[i+5];
        while( z2[0]!='(' ){ z2++; }
        z2++;
        n = findCloseParen(z2);
        if( hasSideEffect(z2, n) ){
          nErr++;
          fprintf(stderr, "side-effect line %u: %.*s\n", lineno,
                  (int)(&z2[n+1] - &z[i]), &z[i]);
        }
      }
    }
  }
  return nErr;
}

int main(int argc, char **argv){
  char *z;
  unsigned int nErr = 0;
  if( argc!=2 ){
    fprintf(stderr, "Usage: %s FILENAME\n", argv[0]);
    return 1;
  }
  z = readFile(argv[1]);
  nErr = findAllSideEffects(z);