Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Fixes to the MEM changes. The library now links. (CVS 1470) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
f33d15d95f195e26e1ef396158597a2c |
User & Date: | drh 2004-05-27 03:12:54.000 |
Context
2004-05-27
| ||
09:28 | Various bugfixes. 68 Test cases still fail. (CVS 1471) (check-in: 67a140cf78 user: danielk1977 tags: trunk) | |
03:12 | Fixes to the MEM changes. The library now links. (CVS 1470) (check-in: f33d15d95f user: drh tags: trunk) | |
01:53 | More MEM changes in the vdbe.c. Still will not compile. (CVS 1469) (check-in: dbdd1a7f31 user: drh tags: trunk) | |
Changes
Changes to src/expr.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. ** ** $Id: expr.c,v 1.129 2004/05/27 03:12:54 drh Exp $ */ #include "sqliteInt.h" #include <ctype.h> char const *sqlite3AffinityString(char affinity){ switch( affinity ){ case SQLITE_AFF_INTEGER: return "i"; |
︙ | ︙ | |||
1220 1221 1222 1223 1224 1225 1226 | FuncDef *pDef; int nId; const char *zId; getFunctionName(pExpr, &zId, &nId); pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, 0); assert( pDef!=0 ); nExpr = sqlite3ExprCodeExprList(pParse, pList); | < < < < < | < | 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 | FuncDef *pDef; int nId; const char *zId; getFunctionName(pExpr, &zId, &nId); pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, 0); assert( pDef!=0 ); nExpr = sqlite3ExprCodeExprList(pParse, pList); sqlite3VdbeOp3(v, OP_Function, nExpr, 0, (char*)pDef, P3_FUNCDEF); break; } case TK_SELECT: { sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); break; } case TK_IN: { |
︙ | ︙ |
Changes to src/func.c.
︙ | ︙ | |||
12 13 14 15 16 17 18 | ** This file contains the C functions that implement various SQL ** functions of SQLite. ** ** There is only one exported symbol in this file - the function ** sqliteRegisterBuildinFunctions() found at the bottom of the file. ** All other code has file scope. ** | | | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ** This file contains the C functions that implement various SQL ** functions of SQLite. ** ** There is only one exported symbol in this file - the function ** sqliteRegisterBuildinFunctions() found at the bottom of the file. ** All other code has file scope. ** ** $Id: func.c,v 1.59 2004/05/27 03:12:55 drh Exp $ */ #include <ctype.h> #include <math.h> #include <stdlib.h> #include <assert.h> #include "sqliteInt.h" #include "vdbeInt.h" |
︙ | ︙ | |||
42 43 44 45 46 47 48 | mask = (int)sqlite3_user_data(context); iBest = 0; for(i=1; i<argc; i++){ if( (sqlite3MemCompare(argv[iBest], argv[i], 0)^mask)<0 ){ iBest = i; } } | | | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | mask = (int)sqlite3_user_data(context); iBest = 0; for(i=1; i<argc; i++){ if( (sqlite3MemCompare(argv[iBest], argv[i], 0)^mask)<0 ){ iBest = i; } } sqlite3_result_value(context, argv[iBest]); } /* ** Return the type of the argument. */ static void typeofFunc( sqlite3_context *context, |
︙ | ︙ | |||
72 73 74 75 76 77 78 | ** Implementation of the length() function */ static void lengthFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ | < | | < | 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | ** Implementation of the length() function */ static void lengthFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int len; assert( argc==1 ); switch( sqlite3_value_type(argv[0]) ){ case SQLITE3_BLOB: case SQLITE3_INTEGER: case SQLITE3_FLOAT: { sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); break; } case SQLITE3_TEXT: { const char *z = sqlite3_value_text(argv[0]); for(len=0; *z; z++){ if( (0xc0&*z)!=0x80 ) len++; } sqlite3_result_int(context, len); break; } default: { sqlite3_result_null(context); break; } } } /* ** Implementation of the abs() function */ static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ assert( argc==1 ); switch( sqlite3_value_type(argv[0]) ){ case SQLITE3_INTEGER: { sqlite3_result_int64(context, -sqlite3_value_int64(argv[0])); break; } case SQLITE3_NULL: { |
︙ | ︙ | |||
224 225 226 227 228 229 230 | sqlite3_context *context, int argc, sqlite3_value **argv ){ int i; for(i=0; i<argc; i++){ if( SQLITE3_NULL!=sqlite3_value_type(argv[i]) ){ | | | | 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 | sqlite3_context *context, int argc, sqlite3_value **argv ){ int i; for(i=0; i<argc; i++){ if( SQLITE3_NULL!=sqlite3_value_type(argv[i]) ){ sqlite3_result_value(context, argv[i]); break; } } } /* ** Implementation of random(). Return a random integer. */ static void randomFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int r; sqlite3Randomness(sizeof(r), &r); sqlite3_result_int(context, r); } /* ** Implementation of the last_insert_rowid() SQL function. The return ** value is the same as the sqlite3_last_insert_rowid() API function. */ static void last_insert_rowid( |
︙ | ︙ | |||
266 267 268 269 270 271 272 | */ static void change_count( sqlite3_context *context, int arg, sqlite3_value **argv ){ sqlite *db = sqlite3_user_data(context); | | | | | | | 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 | */ static void change_count( sqlite3_context *context, int arg, sqlite3_value **argv ){ sqlite *db = sqlite3_user_data(context); sqlite3_result_int(context, sqlite3_changes(db)); } /* ** Implementation of the last_statement_change_count() SQL function. The ** return value is the same as the sqlite3_last_statement_changes() API ** function. */ static void last_statement_change_count( sqlite3_context *context, int arg, sqlite3_value **argv ){ sqlite *db = sqlite3_user_data(context); sqlite3_result_int(context, sqlite3_last_statement_changes(db)); } /* ** Implementation of the like() SQL function. This function implements ** the build-in LIKE operator. The first argument to the function is the ** string and the second argument is the pattern. So, the SQL statements: ** ** A LIKE B ** ** is implemented as like(A,B). */ static void likeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *zA = sqlite3_value_text(argv[0]); const unsigned char *zB = sqlite3_value_text(argv[1]); if( zA && zB ){ sqlite3_result_int(context, sqlite3LikeCompare(zA, zB)); } } /* ** Implementation of the glob() SQL function. This function implements ** the build-in GLOB operator. The first argument to the function is the ** string and the second argument is the pattern. So, the SQL statements: ** ** A GLOB B ** ** is implemented as glob(A,B). */ static void globFunc(sqlite3_context *context, int arg, sqlite3_value **argv){ const unsigned char *zA = sqlite3_value_text(argv[0]); const unsigned char *zB = sqlite3_value_text(argv[1]); if( zA && zB ){ sqlite3_result_int(context, sqlite3GlobCompare(zA, zB)); } } /* ** Implementation of the NULLIF(x,y) function. The result is the first ** argument if the arguments are different. The result is NULL if the ** arguments are equal to each other. */ static void nullifFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ if( sqlite3MemCompare(argv[0], argv[1], 0)!=0 ){ sqlite3_result_value(context, argv[0]); } } /* ** Implementation of the VERSION(*) function. The result is the version ** of the SQLite library that is running. */ |
︙ | ︙ | |||
368 369 370 371 372 373 374 | switch( sqlite3_value_type(argv[0]) ){ case SQLITE3_NULL: { sqlite3_result_text(context, "NULL", 4, 0); break; } case SQLITE3_INTEGER: case SQLITE3_FLOAT: { | | | 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 | switch( sqlite3_value_type(argv[0]) ){ case SQLITE3_NULL: { sqlite3_result_text(context, "NULL", 4, 0); break; } case SQLITE3_INTEGER: case SQLITE3_FLOAT: { sqlite3_result_value(context, argv[0]); break; } case SQLITE3_BLOB: /*** FIX ME. Use a BLOB encoding ***/ case SQLITE3_TEXT: { int i,j,n; const char *zArg = sqlite3_value_text(argv[0]); char *z; |
︙ | ︙ | |||
573 574 575 576 577 578 579 | if( (argc==0 || SQLITE3_NULL!=sqlite3_value_type(argv[0])) && p ){ p->n++; } } static void countFinalize(sqlite3_context *context){ CountCtx *p; p = sqlite3_aggregate_context(context, sizeof(*p)); | | | 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 | if( (argc==0 || SQLITE3_NULL!=sqlite3_value_type(argv[0])) && p ){ p->n++; } } static void countFinalize(sqlite3_context *context){ CountCtx *p; p = sqlite3_aggregate_context(context, sizeof(*p)); sqlite3_result_int(context, p ? p->n : 0); } /* ** This function tracks state information for the min() and max() ** aggregate functions. */ typedef struct MinMaxCtx MinMaxCtx; |
︙ | ︙ | |||
619 620 621 622 623 624 625 | sqlite3VdbeMemCopy(pBest, pArg); } } static void minMaxFinalize(sqlite3_context *context){ sqlite3_value *pRes; pRes = (sqlite3_value *)sqlite3_aggregate_context(context, sizeof(Mem)); if( pRes->flags ){ | | | 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 | sqlite3VdbeMemCopy(pBest, pArg); } } static void minMaxFinalize(sqlite3_context *context){ sqlite3_value *pRes; pRes = (sqlite3_value *)sqlite3_aggregate_context(context, sizeof(Mem)); if( pRes->flags ){ sqlite3_result_value(context, pRes); } } /* ** This function registered all of the above C functions as SQL ** functions. This should be the only routine in this file with ** external linkage. |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the SQLite library ** presents to client programs. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the SQLite library ** presents to client programs. ** ** @(#) $Id: sqlite.h.in,v 1.83 2004/05/27 03:12:55 drh Exp $ */ #ifndef _SQLITE_H_ #define _SQLITE_H_ #include <stdarg.h> /* Needed for the definition of va_list */ /* ** Make sure we can call this stuff from C++. |
︙ | ︙ | |||
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 | sqlite3 *db, /* Database handle */ const void *zSql, /* SQL statement, UTF-16 encoded */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const void **pzTail /* OUT: Pointer to unused portion of zSql */ ); /* ** In the SQL strings input to sqlite3_prepare() and sqlite3_prepare16(), ** one or more literals can be replace by a wildcard "?" or ":N:" where ** N is an integer. These value of these wildcard literals can be set ** using the routines listed below. ** ** In every case, the first parameter is a pointer to the sqlite3_stmt ** structure returned from sqlite3_prepare(). The second parameter is the ** index of the wildcard. The first "?" has an index of 1. ":N:" wildcards ** use the index N. ** ** When the eCopy parameter is true, a copy of the value is made into ** memory obtained and managed by SQLite. When eCopy is false, SQLite ** assumes that the value is a constant and just stores a pointer to the ** value without making a copy. ** ** The sqlite3_bind_* routine must be called before sqlite3_step() after ** an sqlite3_prepare() or sqlite3_reset(). Unbound wildcards are interpreted ** as NULL. */ | > > > > > > > | | | | | | | | | 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 | sqlite3 *db, /* Database handle */ const void *zSql, /* SQL statement, UTF-16 encoded */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const void **pzTail /* OUT: Pointer to unused portion of zSql */ ); /* ** Pointers to the following two opaque structures are used to communicate ** with the implementations of user-defined functions. */ typedef struct sqlite3_context sqlite3_context; typedef struct Mem sqlite3_value; /* ** In the SQL strings input to sqlite3_prepare() and sqlite3_prepare16(), ** one or more literals can be replace by a wildcard "?" or ":N:" where ** N is an integer. These value of these wildcard literals can be set ** using the routines listed below. ** ** In every case, the first parameter is a pointer to the sqlite3_stmt ** structure returned from sqlite3_prepare(). The second parameter is the ** index of the wildcard. The first "?" has an index of 1. ":N:" wildcards ** use the index N. ** ** When the eCopy parameter is true, a copy of the value is made into ** memory obtained and managed by SQLite. When eCopy is false, SQLite ** assumes that the value is a constant and just stores a pointer to the ** value without making a copy. ** ** The sqlite3_bind_* routine must be called before sqlite3_step() after ** an sqlite3_prepare() or sqlite3_reset(). Unbound wildcards are interpreted ** as NULL. */ int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, int eCopy); int sqlite3_bind_double(sqlite3_stmt*, int, double); int sqlite3_bind_int(sqlite3_stmt*, int, int); int sqlite3_bind_int64(sqlite3_stmt*, int, long long int); int sqlite3_bind_null(sqlite3_stmt*, int); int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, int eCopy); int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int n, int eCopy); int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); /* ** Return the number of columns in the result set returned by the compiled ** SQL statement. This routine returns 0 if pStmt is an SQL statement ** that does not return data (for example an UPDATE). */ int sqlite3_column_count(sqlite3_stmt *pStmt); |
︙ | ︙ | |||
734 735 736 737 738 739 740 | */ int sqlite3_data_count(sqlite3_stmt *pStmt); /* ** Values are stored in the database in one of the following fundamental ** types. */ | | | | | | | 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 | */ int sqlite3_data_count(sqlite3_stmt *pStmt); /* ** Values are stored in the database in one of the following fundamental ** types. */ #define SQLITE3_INTEGER 1 #define SQLITE3_FLOAT 2 #define SQLITE3_TEXT 3 #define SQLITE3_BLOB 4 #define SQLITE3_NULL 5 /* ** The next group of routines returns information about the information ** in a single column of the current result row of a query. In every ** case the first parameter is a pointer to the SQL statement that is being ** executed (the sqlite_stmt* that was returned from sqlite3_prepare()) and ** the second argument is the index of the column for which information |
︙ | ︙ | |||
797 798 799 800 801 802 803 | ** _int() Return an INTEGER value in the host computer's native ** integer representation. This might be either a 32- or 64-bit ** integer depending on the host. ** _int64() Return an INTEGER value as a 64-bit signed integer. ** _text() Return the value as UTF-8 text. ** _text16() Return the value as UTF-16 text. */ | | | | | | | | | | 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 | ** _int() Return an INTEGER value in the host computer's native ** integer representation. This might be either a 32- or 64-bit ** integer depending on the host. ** _int64() Return an INTEGER value as a 64-bit signed integer. ** _text() Return the value as UTF-8 text. ** _text16() Return the value as UTF-16 text. */ const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); int sqlite3_column_bytes(sqlite3_stmt*, int iCol); int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); double sqlite3_column_double(sqlite3_stmt*, int iCol); int sqlite3_column_int(sqlite3_stmt*, int iCol); long long int sqlite3_column_int64(sqlite3_stmt*, int iCol); const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); int sqlite3_column_type(sqlite3_stmt*, int iCol); /* ** The sqlite3_finalize() function is called to delete a compiled ** SQL statement obtained by a previous call to sqlite3_prepare() ** or sqlite3_prepare16(). If the statement was executed successfully, or ** not executed at all, then SQLITE_OK is returned. If execution of the |
︙ | ︙ | |||
832 833 834 835 836 837 838 | ** statement obtained by a previous call to sqlite3_prepare() or ** sqlite3_prepare16() back to it's initial state, ready to be re-executed. ** Any SQL statement variables that had values bound to them using ** the sqlite3_bind_*() API retain their values. */ int sqlite3_reset(sqlite3_stmt *pStmt); | < < < < < < < | 839 840 841 842 843 844 845 846 847 848 849 850 851 852 | ** statement obtained by a previous call to sqlite3_prepare() or ** sqlite3_prepare16() back to it's initial state, ready to be re-executed. ** Any SQL statement variables that had values bound to them using ** the sqlite3_bind_*() API retain their values. */ int sqlite3_reset(sqlite3_stmt *pStmt); /* ** The following two functions are used to add user functions or aggregates ** implemented in C to the SQL langauge interpreted by SQLite. The ** difference only between the two is that the second parameter, the ** name of the (scalar) function or aggregate, is encoded in UTF-8 for ** sqlite3_create_function() and UTF-16 for sqlite3_create_function16(). ** |
︙ | ︙ | |||
905 906 907 908 909 910 911 | ** The next group of routines returns information about parameters to ** a user-defined function. Function implementations use these routines ** to access their parameters. These routines are the same as the ** sqlite3_column_* routines except that these routines take a single ** sqlite3_value* pointer instead of an sqlite3_stmt* and an integer ** column number. */ | | | | | | | | | | 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 | ** The next group of routines returns information about parameters to ** a user-defined function. Function implementations use these routines ** to access their parameters. These routines are the same as the ** sqlite3_column_* routines except that these routines take a single ** sqlite3_value* pointer instead of an sqlite3_stmt* and an integer ** column number. */ const void *sqlite3_value_blob(sqlite3_value*); int sqlite3_value_bytes(sqlite3_value*); int sqlite3_value_bytes16(sqlite3_value*); double sqlite3_value_double(sqlite3_value*); int sqlite3_value_int(sqlite3_value*); long long int sqlite3_value_int64(sqlite3_value*); const unsigned char *sqlite3_value_text(sqlite3_value*); const void *sqlite3_value_text16(sqlite3_value*); int sqlite3_value_type(sqlite3_value*); /* ** Aggregate functions use the following routine to allocate ** a structure for storing their state. The first time this routine ** is called for a particular aggregate, a new structure of size nBytes ** is allocated, zeroed, and returned. On subsequent calls (for the |
︙ | ︙ |
Changes to src/util.c.
︙ | ︙ | |||
10 11 12 13 14 15 16 | ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** | | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** ** $Id: util.c,v 1.90 2004/05/27 03:12:55 drh Exp $ */ #include "sqliteInt.h" #include <stdarg.h> #include <ctype.h> /* ** If malloc() ever fails, this global variable gets set to 1. |
︙ | ︙ | |||
736 737 738 739 740 741 742 | /* ** If zNum represents an integer that will fit in 64-bits, then set ** *pValue to that integer and return true. Otherwise return false. */ int sqlite3GetInt64(const char *zNum, i64 *pValue){ if( sqlite3FitsIn64Bits(zNum) ){ | | | 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 | /* ** If zNum represents an integer that will fit in 64-bits, then set ** *pValue to that integer and return true. Otherwise return false. */ int sqlite3GetInt64(const char *zNum, i64 *pValue){ if( sqlite3FitsIn64Bits(zNum) ){ sqlite3atoi64(zNum, pValue); return 1; } return 0; } /* This comparison routine is what we use for comparison operations ** between numeric values in an SQL expression. "Numeric" is a little |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.338 2004/05/27 03:12:55 drh Exp $ */ #include "sqliteInt.h" #include "os.h" #include <ctype.h> #include "vdbeInt.h" /* |
︙ | ︙ | |||
76 77 78 79 80 81 82 | #define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); } /* ** Convert the given stack entity into a string if it isn't one ** already. Return non-zero if a malloc() fails. */ #define Stringify(P, enc) \ | | > | 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | #define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); } /* ** Convert the given stack entity into a string if it isn't one ** already. Return non-zero if a malloc() fails. */ #define Stringify(P, enc) \ if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ { goto no_mem; } /* ** Convert the given stack entity into a string that has been obtained ** from sqliteMalloc(). This is different from Stringify() above in that ** Stringify() will use the NBFS bytes of static string space if the string ** will fit but this routine always mallocs for space. ** Return non-zero if we run out of memory. |
︙ | ︙ | |||
305 306 307 308 309 310 311 | case SQLITE_AFF_TEXT: /* Only attempt the conversion if there is an integer or real ** representation (blob and NULL do not get converted) but no string ** representation. */ if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ | | | 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 | case SQLITE_AFF_TEXT: /* Only attempt the conversion if there is an integer or real ** representation (blob and NULL do not get converted) but no string ** representation. */ if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ sqlite3VdbeMemStringify(pRec, enc); } pRec->flags &= ~(MEM_Real|MEM_Int); break; case SQLITE_AFF_NONE: /* Affinity NONE. Do nothing. */ |
︙ | ︙ | |||
428 429 430 431 432 433 434 | if( zData ){ pMem->z = &zData[offset]; pMem->n = amt; pMem->flags = MEM_Blob|MEM_Ephem; }else{ int rc; | | | | | > > | > | 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 | if( zData ){ pMem->z = &zData[offset]; pMem->n = amt; pMem->flags = MEM_Blob|MEM_Ephem; }else{ int rc; if( amt>NBFS-2 ){ zData = (char *)sqliteMallocRaw(amt+2); if( !zData ){ return SQLITE_NOMEM; } pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; }else{ zData = &(pMem->zShort[0]); pMem->flags = MEM_Blob|MEM_Short|MEM_Term; } pMem->z = zData; pMem->enc = 0; pMem->type = SQLITE3_BLOB; if( key ){ rc = sqlite3BtreeKey(pCur, offset, amt, zData); }else{ rc = sqlite3BtreeData(pCur, offset, amt, zData); } zData[amt] = 0; zData[amt+1] = 0; if( rc!=SQLITE_OK ){ if( amt>NBFS ){ sqliteFree(zData); } return rc; } } |
︙ | ︙ | |||
711 712 713 714 715 716 717 | return SQLITE_ERROR; }else{ p->rc = SQLITE_OK; return SQLITE_DONE; } } | < < < < < < < < < | < < < < < < | < < < < < < < < < | > > | > > > | > | < < < > > > | < < > | < < < < | < | | | > > | > > > > > > | > | < | > > > | 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 | return SQLITE_ERROR; }else{ p->rc = SQLITE_OK; return SQLITE_DONE; } } /* Opcode: Integer P1 * P3 ** ** The integer value P1 is pushed onto the stack. If P3 is not zero ** then it is assumed to be a string representation of the same integer. ** If P1 is zero and P3 is not zero, then the value is derived from P3. */ case OP_Integer: { pTos++; if( pOp->p3==0 ){ pTos->flags = MEM_Int; pTos->i = pOp->p1; pTos->type = SQLITE3_INTEGER; }else{ pTos->flags = MEM_Str|MEM_Static|MEM_Term; pTos->z = pOp->p3; pTos->n = strlen(pTos->z); pTos->enc = TEXT_Utf8; Integerify(pTos, 0); } break; } /* Opcode: Real * * P3 ** ** The string value P3 is converted to a real and pushed on to the stack. */ case OP_Real: { pTos++; pTos->flags = MEM_Str|MEM_Static|MEM_Term; pTos->z = pOp->p3; pTos->n = strlen(pTos->z); pTos->enc = TEXT_Utf8; Realify(pTos, 0); break; } /* Opcode: String * * P3 ** ** The string value P3 is pushed onto the stack. If P3==0 then a ** NULL is pushed onto the stack. */ case OP_String: { pTos++; pTos->flags = MEM_Str|MEM_Static|MEM_Term; pTos->enc = TEXT_Utf8; pTos->z = pOp->p3; pTos->n = strlen(pTos->z); sqlite3VdbeChangeEncoding(pTos, db->enc); break; } /* Opcode: Variable P1 * * ** ** Push the value of variable P1 onto the stack. A variable is ** an unknown in the original SQL string as handed to sqlite3_compile(). |
︙ | ︙ | |||
885 886 887 888 889 890 891 | pTos++; memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS); if( pTos->flags & (MEM_Str|MEM_Blob) ){ if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){ pTos->flags &= ~MEM_Dyn; pTos->flags |= MEM_Ephem; }else if( pTos->flags & MEM_Short ){ | | | > | | 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 | pTos++; memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS); if( pTos->flags & (MEM_Str|MEM_Blob) ){ if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){ pTos->flags &= ~MEM_Dyn; pTos->flags |= MEM_Ephem; }else if( pTos->flags & MEM_Short ){ memcpy(pTos->zShort, pFrom->zShort, pTos->n+2); pTos->z = pTos->zShort; }else if( (pTos->flags & MEM_Static)==0 ){ pTos->z = sqliteMallocRaw(pFrom->n+2); if( sqlite3_malloc_failed ) goto no_mem; memcpy(pTos->z, pFrom->z, pFrom->n); memcpy(&pTos->z[pTos->n], "\0", 2); pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short); pTos->flags |= MEM_Dyn|MEM_Term; } } break; } /* Opcode: Pull P1 * * ** |
︙ | ︙ | |||
988 989 990 991 992 993 994 | */ case OP_Callback: { int i; assert( p->nResColumn==pOp->p1 ); for(i=0; i<pOp->p1; i++){ Mem *pVal = &pTos[0-i]; | < | 980 981 982 983 984 985 986 987 988 989 990 991 992 993 | */ case OP_Callback: { int i; assert( p->nResColumn==pOp->p1 ); for(i=0; i<pOp->p1; i++){ Mem *pVal = &pTos[0-i]; sqlite3VdbeMemNulTerminate(pVal); } p->resOnStack = 1; p->nCallback++; p->popStack = pOp->p1; p->pc = pc + 1; |
︙ | ︙ | |||
1085 1086 1087 1088 1089 1090 1091 | assert( j==nByte-1 ); if( pOp->p2==0 ){ popStack(&pTos, nField); } pTos++; pTos->n = j; | | | 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 | assert( j==nByte-1 ); if( pOp->p2==0 ){ popStack(&pTos, nField); } pTos++; pTos->n = j; pTos->flags = MEM_Str|MEM_Dyn|MEM_Term; pTos->enc = db->enc; pTos->type = SQLITE3_TEXT; pTos->z = zNew; } break; } |
︙ | ︙ | |||
1235 1236 1237 1238 1239 1240 1241 | n = pOp->p1; apVal = p->apArg; assert( apVal || n==0 ); pArg = &pTos[1-n]; for(i=0; i<n; i++, pArg++){ | < | 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 | n = pOp->p1; apVal = p->apArg; assert( apVal || n==0 ); pArg = &pTos[1-n]; for(i=0; i<n; i++, pArg++){ apVal[i] = pArg; } ctx.pFunc = (FuncDef*)pOp->p3; ctx.s.flags = MEM_Null; ctx.s.z = 0; ctx.isError = 0; |
︙ | ︙ | |||
1261 1262 1263 1264 1265 1266 1267 | } /* If the function returned an error, throw an exception */ if( ctx.isError ){ sqlite3SetString(&p->zErrMsg, (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0); rc = SQLITE_ERROR; } | < < < < < | 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 | } /* If the function returned an error, throw an exception */ if( ctx.isError ){ sqlite3SetString(&p->zErrMsg, (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0); rc = SQLITE_ERROR; } break; } /* Opcode: BitAnd * * * ** ** Pop the top two elements from the stack. Convert both elements ** to integers. Push back onto the stack the bit-wise AND of the |
︙ | ︙ | |||
1410 1411 1412 1413 1414 1415 1416 | if( r!=pTos->r ){ goto mismatch; } pTos->i = i; }else if( pTos->flags & MEM_Str ){ i64 v; if( sqlite3VdbeChangeEncoding(pTos, TEXT_Utf8) | | | 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 | if( r!=pTos->r ){ goto mismatch; } pTos->i = i; }else if( pTos->flags & MEM_Str ){ i64 v; if( sqlite3VdbeChangeEncoding(pTos, TEXT_Utf8) || sqlite3VdbeMemNulTerminate(pTos) ){ goto no_mem; } if( !sqlite3atoi64(pTos->z, &v) ){ double r; if( !sqlite3IsNumber(pTos->z, 0, TEXT_Utf8) ){ goto mismatch; } |
︙ | ︙ | |||
1769 1770 1771 1772 1773 1774 1775 | int i, cnt; cnt = pOp->p1; if( cnt<0 ) cnt = -cnt; assert( &pTos[1-cnt] >= p->aStack ); for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){} if( i>=cnt ) pc = pOp->p2-1; if( pOp->p1>0 ) popStack(&pTos, cnt); | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 | int i, cnt; cnt = pOp->p1; if( cnt<0 ) cnt = -cnt; assert( &pTos[1-cnt] >= p->aStack ); for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){} if( i>=cnt ) pc = pOp->p2-1; if( pOp->p1>0 ) popStack(&pTos, cnt); break; } /* Opcode: SetNumColumns P1 P2 * ** ** Before the OP_Column opcode can be executed on a cursor, this ** opcode must be called to set the number of fields in the table. |
︙ | ︙ | |||
2273 2274 2275 2276 2277 2278 2279 | assert( offset==nByte ); /* Pop the consumed values off the stack and push on the new key. */ if( addRowid||(pOp->p2==0) ){ popStack(&pTos, nField+addRowid); } pTos++; | | | 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 | assert( offset==nByte ); /* Pop the consumed values off the stack and push on the new key. */ if( addRowid||(pOp->p2==0) ){ popStack(&pTos, nField+addRowid); } pTos++; pTos->flags = MEM_Blob|MEM_Dyn; pTos->z = zKey; pTos->n = nByte; /* If P2 is non-zero, and if the key contains a NULL value, and if this ** was an OP_MakeIdxKey instruction, not OP_MakeKey, jump to P2. */ if( pOp->p2 && containsNull && addRowid ){ |
︙ | ︙ | |||
3216 3217 3218 3219 3220 3221 3222 | sqliteFree(pC->pData); pC->iKey = iKey; pC->nData = pTos->n; if( pTos->flags & MEM_Dyn ){ pC->pData = pTos->z; pTos->flags = MEM_Null; }else{ | | > > | 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 | sqliteFree(pC->pData); pC->iKey = iKey; pC->nData = pTos->n; if( pTos->flags & MEM_Dyn ){ pC->pData = pTos->z; pTos->flags = MEM_Null; }else{ pC->pData = sqliteMallocRaw( pC->nData+2 ); if( pC->pData ){ memcpy(pC->pData, pTos->z, pC->nData); } pC->pData[pC->nData] = 0; pC->pData[pC->nData+1] = 0; } pC->nullRow = 0; }else{ rc = sqlite3BtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n); } pC->recnoIsValid = 0; pC->deferredMoveto = 0; |
︙ | ︙ | |||
3996 3997 3998 3999 4000 4001 4002 | aRoot[j] = 0; popStack(&pTos, nRoot); pTos++; z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot); if( z==0 || z[0]==0 ){ if( z ) sqliteFree(z); pTos->z = "ok"; | | | | | | < | < | 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 | aRoot[j] = 0; popStack(&pTos, nRoot); pTos++; z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot); if( z==0 || z[0]==0 ){ if( z ) sqliteFree(z); pTos->z = "ok"; pTos->n = 2; pTos->flags = MEM_Str | MEM_Static | MEM_Term; }else{ pTos->z = z; pTos->n = strlen(z); pTos->flags = MEM_Str | MEM_Dyn | MEM_Term; } pTos->enc = TEXT_Utf8; sqlite3VdbeChangeEncoding(pTos, db->enc); sqliteFree(aRoot); break; } /* Opcode: ListWrite * * * ** ** Write the integer on the top of the stack |
︙ | ︙ | |||
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 | /* Opcode: FileColumn P1 * * ** ** Push onto the stack the P1-th column of the most recently read line ** from the input file. */ case OP_FileColumn: { int i = pOp->p1; char *z; assert( i>=0 && i<p->nField ); if( p->azField ){ z = p->azField[i]; }else{ z = 0; } pTos++; if( z ){ pTos->n = strlen(z) + 1; pTos->z = z; | > | < > | 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 | /* Opcode: FileColumn P1 * * ** ** Push onto the stack the P1-th column of the most recently read line ** from the input file. */ case OP_FileColumn: { #if 0 /* Will be deleting this soon */ int i = pOp->p1; char *z; assert( i>=0 && i<p->nField ); if( p->azField ){ z = p->azField[i]; }else{ z = 0; } pTos++; if( z ){ pTos->n = strlen(z) + 1; pTos->z = z; pTos->flags = MEM_Str | MEM_Ephem | MEM_Term; }else{ pTos->flags = MEM_Null; } #endif break; } /* Opcode: MemStore P1 P2 * ** ** Write the top of the stack into memory location P1. ** P1 should be a small integer since space is allocated |
︙ | ︙ | |||
4476 4477 4478 4479 4480 4481 4482 | pMem = &p->aMem[i]; Release(pMem); *pMem = *pTos; if( pMem->flags & MEM_Dyn ){ if( pOp->p2 ){ pTos->flags = MEM_Null; }else{ | | > > | 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 | pMem = &p->aMem[i]; Release(pMem); *pMem = *pTos; if( pMem->flags & MEM_Dyn ){ if( pOp->p2 ){ pTos->flags = MEM_Null; }else{ pMem->z = sqliteMallocRaw( pMem->n+2 ); if( pMem->z==0 ) goto no_mem; memcpy(pMem->z, pTos->z, pMem->n); memcpy(&pMem->z[pMem->n], "\000", 2); pMem->flags |= MEM_Term; } }else if( pMem->flags & MEM_Short ){ pMem->z = pMem->zShort; } if( pOp->p2 ){ Release(pTos); pTos--; |
︙ | ︙ | |||
4587 4588 4589 4590 4591 4592 4593 | assert( pRec>=p->aStack ); apVal = p->apArg; assert( apVal || n==0 ); for(i=0; i<n; i++, pRec++){ apVal[i] = pRec; | < | 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 | assert( pRec>=p->aStack ); apVal = p->apArg; assert( apVal || n==0 ); for(i=0; i<n; i++, pRec++){ apVal[i] = pRec; } i = pTos->i; assert( i>=0 && i<p->agg.nMem ); ctx.pFunc = (FuncDef*)pOp->p3; pMem = &p->agg.pCurrent->aMem[i]; ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */ ctx.pAgg = pMem->z; |
︙ | ︙ | |||
4665 4666 4667 4668 4669 4670 4671 | Release(pMem); *pMem = *pTos; if( pMem->flags & MEM_Dyn ){ pTos->flags = MEM_Null; }else if( pMem->flags & MEM_Short ){ pMem->z = pMem->zShort; } | < < < | 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 | Release(pMem); *pMem = *pTos; if( pMem->flags & MEM_Dyn ){ pTos->flags = MEM_Null; }else if( pMem->flags & MEM_Short ){ pMem->z = pMem->zShort; } pTos--; break; } /* Opcode: AggGet * P2 * ** ** Push a new entry onto the stack which is a copy of the P2-th field |
︙ | ︙ | |||
4692 4693 4694 4695 4696 4697 4698 | pMem = &pFocus->aMem[i]; *pTos = *pMem; if( pTos->flags & (MEM_Str|MEM_Blob) ){ pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short); pTos->flags |= MEM_Ephem; } if( pTos->flags&MEM_Str ){ | < | | 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 | pMem = &pFocus->aMem[i]; *pTos = *pMem; if( pTos->flags & (MEM_Str|MEM_Blob) ){ pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short); pTos->flags |= MEM_Ephem; } if( pTos->flags&MEM_Str ){ sqlite3VdbeChangeEncoding(pTos, db->enc); } break; } /* Opcode: AggNext * P2 * ** ** Make the next aggregate value the current aggregate. The prior |
︙ | ︙ | |||
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 | int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); assert( x!=0 ); /* Strings must define a string subtype */ assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ assert( pTos->z!=0 ); /* Strings must have a value */ /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort ); assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort ); }else{ /* Cannot define a string subtype for non-string objects */ assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); } /* MEM_Null excludes all other types */ assert( (pTos->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0 || (pTos->flags&MEM_Null)==0 ); | > > | 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 | int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); assert( x!=0 ); /* Strings must define a string subtype */ assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ assert( pTos->z!=0 ); /* Strings must have a value */ /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort ); assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort ); assert( (pTos->flags & MEM_Term)==0 || (pTos->flags & MEM_Str)==0 || db->enc!=TEXT_Utf8 || strlen(pTos->z)==pTos->n ); }else{ /* Cannot define a string subtype for non-string objects */ assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); } /* MEM_Null excludes all other types */ assert( (pTos->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0 || (pTos->flags&MEM_Null)==0 ); |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
348 349 350 351 352 353 354 | int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int*); int sqlite3VdbeIdxRowid(BtCursor *, i64 *); int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*); int sqlite3VdbeKeyCompare(void*,int,const void*,int, const void*); int sqlite3VdbeRowCompare(void*,int,const void*,int, const void*); int sqlite3VdbeExec(Vdbe*); int sqlite3VdbeList(Vdbe*); | | | | | > | | 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int*); int sqlite3VdbeIdxRowid(BtCursor *, i64 *); int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*); int sqlite3VdbeKeyCompare(void*,int,const void*,int, const void*); int sqlite3VdbeRowCompare(void*,int,const void*,int, const void*); int sqlite3VdbeExec(Vdbe*); int sqlite3VdbeList(Vdbe*); int sqlite3VdbeChangeEncoding(Mem *, int); int sqlite3VdbeMemCopy(Mem*, const Mem*); int sqlite3VdbeMemNulTerminate(Mem*); int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, int); void sqlite3VdbeMemSetInt64(Mem*, long long int); void sqlite3VdbeMemSetDouble(Mem*, double); void sqlite3VdbeMemSetNull(Mem*); int sqlite3VdbeMemMakeWriteable(Mem*); int sqlite3VdbeMemDynamicify(Mem*); int sqlite3VdbeMemStringify(Mem*, int); int sqlite3VdbeMemIntegerify(Mem*); int sqlite3VdbeMemRealify(Mem*); |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
40 41 42 43 44 45 46 | if( (p->flags & MEM_Blob)!=0 || sqlite3_value_text16(pVal) ){ return ((Mem *)pVal)->n; } return 0; } double sqlite3_value_double(sqlite3_value *pVal){ Mem *pMem = (Mem *)pVal; | | | | | | | | > > > | | | | | | 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | if( (p->flags & MEM_Blob)!=0 || sqlite3_value_text16(pVal) ){ return ((Mem *)pVal)->n; } return 0; } double sqlite3_value_double(sqlite3_value *pVal){ Mem *pMem = (Mem *)pVal; sqlite3VdbeMemRealify(pMem); return pMem->r; } int sqlite3_value_int(sqlite3_value *pVal){ Mem *pMem = (Mem *)pVal; sqlite3VdbeMemIntegerify(pMem); return (int)pVal->i; } long long int sqlite3_value_int64(sqlite3_value *pVal){ Mem *pMem = (Mem *)pVal; sqlite3VdbeMemIntegerify(pMem); return pVal->i; } const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ if( pVal->flags&MEM_Null ){ /* For a NULL return a NULL Pointer */ return 0; } if( pVal->flags&MEM_Str ){ /* If there is already a string representation, make sure it is in ** encoded in UTF-8. */ sqlite3VdbeChangeEncoding(pVal, TEXT_Utf8); }else if( !(pVal->flags&MEM_Blob) ){ /* Otherwise, unless this is a blob, convert it to a UTF-8 string */ sqlite3VdbeMemStringify(pVal, TEXT_Utf8); } return pVal->z; } const void *sqlite3_value_text16(sqlite3_value* pVal){ if( pVal->flags&MEM_Null ){ /* For a NULL return a NULL Pointer */ return 0; } if( pVal->flags&MEM_Str ){ /* If there is already a string representation, make sure it is in ** encoded in UTF-16 machine byte order. */ sqlite3VdbeChangeEncoding(pVal, TEXT_Utf16); }else if( !(pVal->flags&MEM_Blob) ){ /* Otherwise, unless this is a blob, convert it to a UTF-16 string */ sqlite3VdbeMemStringify(pVal, TEXT_Utf16); } return (const void *)(pVal->z); } int sqlite3_value_type(sqlite3_value* pVal){ return pVal->type; #if 0 int f = ((Mem *)pVal)->flags; if( f&MEM_Null ){ return SQLITE3_NULL; } if( f&MEM_Int ){ return SQLITE3_INTEGER; } if( f&MEM_Real ){ return SQLITE3_FLOAT; } if( f&MEM_Str ){ return SQLITE3_TEXT; } if( f&MEM_Blob ){ return SQLITE3_BLOB; } assert(0); #endif } /**************************** sqlite3_result_ ******************************* ** The following routines are used by user-defined functions to specify ** the function result. */ void sqlite3_result_blob( sqlite3_context *pCtx, const void *z, int n, int eCopy ){ assert( n>0 ); sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, eCopy); } void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ sqlite3VdbeMemSetDouble(&pCtx->s, rVal); } void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ pCtx->isError = 1; sqlite3VdbeMemSetStr(&pCtx->s, z, n, TEXT_Utf8, 1); } void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ pCtx->isError = 1; sqlite3VdbeMemSetStr(&pCtx->s, z, n, TEXT_Utf16, 1); } void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); } void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ sqlite3VdbeMemSetInt64(&pCtx->s, iVal); } void sqlite3_result_null(sqlite3_context *pCtx){ sqlite3VdbeMemSetNull(&pCtx->s); } void sqlite3_result_text( sqlite3_context *pCtx, const char *z, int n, int eCopy ){ sqlite3VdbeMemSetStr(&pCtx->s, z, n, TEXT_Utf8, eCopy); } void sqlite3_result_text16( sqlite3_context *pCtx, const void *z, int n, int eCopy ){ sqlite3VdbeMemSetStr(&pCtx->s, z, n, TEXT_Utf16, eCopy); } void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ sqlite3VdbeMemCopy(&pCtx->s, pValue); } /* |
︙ | ︙ | |||
438 439 440 441 442 443 444 | return SQLITE_OK; } /* ** Bind a blob value to an SQL statement variable. */ int sqlite3_bind_blob( | | < | | | 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 | return SQLITE_OK; } /* ** Bind a blob value to an SQL statement variable. */ int sqlite3_bind_blob( sqlite3_stmt *pStmt, int i, const void *zData, int nData, int eCopy ){ Vdbe *p = (Vdbe *)pStmt; Mem *pVar; int rc; rc = vdbeUnbind(p, i); if( rc ){ return rc; } pVar = &p->apVar[i-1]; rc = sqlite3VdbeMemSetStr(pVar, zData, nData, 0, eCopy); return rc; } int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, i); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetDouble(&p->apVar[i-1], rValue); } return SQLITE_OK; } int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ return sqlite3_bind_int64(p, i, (long long int)iValue); } int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, long long int iValue){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, i); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetInt64(&p->apVar[i-1], iValue); } return rc; } int sqlite3_bind_null(sqlite3_stmt* p, int i){ return vdbeUnbind((Vdbe *)p, i); } int sqlite3_bind_text( |
︙ | ︙ | |||
501 502 503 504 505 506 507 | return rc; } pVar = &p->apVar[i-1]; rc = sqlite3VdbeMemSetStr(pVar, zData, nData, TEXT_Utf8, eCopy); if( rc ){ return rc; } | | | | | | 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 | return rc; } pVar = &p->apVar[i-1]; rc = sqlite3VdbeMemSetStr(pVar, zData, nData, TEXT_Utf8, eCopy); if( rc ){ return rc; } rc = sqlite3VdbeChangeEncoding(pVar, p->db->enc); return rc; } int sqlite3_bind_text16( sqlite3_stmt *pStmt, int i, const void *zData, int nData, int eCopy ){ Vdbe *p = (Vdbe *)pStmt; Mem *pVar; int rc, txt_enc; rc = vdbeUnbind(p, i); if( rc ){ return rc; } pVar = &p->apVar[i-1]; /* There may or may not be a byte order mark at the start of the UTF-16. ** Either way set 'txt_enc' to the TEXT_Utf16* value indicating the ** actual byte order used by this string. If the string does happen ** to contain a BOM, then move zData so that it points to the first ** byte after the BOM. */ txt_enc = sqlite3UtfReadBom(zData, nData); if( txt_enc ){ zData = (void *)(((u8 *)zData) + 2); nData -= 2; }else{ txt_enc = SQLITE3_BIGENDIAN?TEXT_Utf16be:TEXT_Utf16le; } rc = sqlite3VdbeMemSetStr(pVar, zData, nData, txt_enc, eCopy); if( rc ){ return rc; } rc = sqlite3VdbeChangeEncoding(pVar, p->db->enc); return rc; } |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
567 568 569 570 571 572 573 | } rc = SQLITE_ERROR; sqlite3SetString(&p->zErrMsg, sqlite3_error_string(p->rc), (char*)0); }else{ Op *pOp = &p->aOp[i]; Mem *pMem = p->aStack; pMem->flags = MEM_Int; | | | | | | 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 | } rc = SQLITE_ERROR; sqlite3SetString(&p->zErrMsg, sqlite3_error_string(p->rc), (char*)0); }else{ Op *pOp = &p->aOp[i]; Mem *pMem = p->aStack; pMem->flags = MEM_Int; pMem->type = SQLITE3_INTEGER; pMem->i = i; /* Program counter */ pMem++; pMem->flags = MEM_Static|MEM_Str|MEM_Term; pMem->z = sqlite3OpcodeNames[pOp->opcode]; /* Opcode */ pMem->n = strlen(pMem->z); pMem->type = SQLITE3_TEXT; pMem->enc = TEXT_Utf8; pMem++; pMem->flags = MEM_Int; pMem->i = pOp->p1; /* P1 */ pMem->type = SQLITE3_INTEGER; pMem++; pMem->flags = MEM_Int; pMem->i = pOp->p2; /* P2 */ pMem->type = SQLITE3_INTEGER; pMem++; pMem->flags = MEM_Short|MEM_Str|MEM_Term; /* P3 */ pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort)); pMem->type = SQLITE3_TEXT; pMem->enc = TEXT_Utf8; p->nResColumn = 5; p->pTos = pMem; p->rc = SQLITE_OK; p->resOnStack = 1; rc = SQLITE_ROW; |
︙ | ︙ | |||
882 883 884 885 886 887 888 | for(i=0; i<p->nResColumn; i++){ p->aColName[i].flags = MEM_Null; } } pColName = &(p->aColName[idx]); if( N==0 ){ | | | | 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 | for(i=0; i<p->nResColumn; i++){ p->aColName[i].flags = MEM_Null; } } pColName = &(p->aColName[idx]); if( N==0 ){ rc = sqlite3VdbeMemSetStr(pColName, zName, -1, TEXT_Utf8, 1); }else{ rc = sqlite3VdbeMemSetStr(pColName, zName, N, TEXT_Utf8, N>0); } if( rc==SQLITE_OK && N==P3_DYNAMIC ){ pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn; } return rc; } |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
31 32 33 34 35 36 37 | ** desiredEnc. ** ** SQLITE_OK is returned if the conversion is successful (or not required). ** SQLITE_NOMEM may be returned if a malloc() fails during conversion ** between formats. */ int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ | < < | | | | | > | | > | | | 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 | ** desiredEnc. ** ** SQLITE_OK is returned if the conversion is successful (or not required). ** SQLITE_NOMEM may be returned if a malloc() fails during conversion ** between formats. */ int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ /* If this is not a string, or if it is a string but the encoding is ** already correct, do nothing. */ if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ return SQLITE_OK; } if( pMem->enc==TEXT_Utf8 || desiredEnc==TEXT_Utf8 ){ /* If the current encoding does not match the desired encoding, then ** we will need to do some translation between encodings. */ char *z; int n; int rc = sqlite3utfTranslate(pMem->z, pMem->n, pMem->enc, (void **)&z, &n, desiredEnc); if( rc!=SQLITE_OK ){ return rc; } /* Result of sqlite3utfTranslate is currently always dynamically ** allocated and nul terminated. This might be altered as a performance ** enhancement later. */ pMem->z = z; pMem->n = n; pMem->flags &= ~(MEM_Ephem | MEM_Short | MEM_Static); pMem->flags |= MEM_Str | MEM_Dyn | MEM_Term; }else{ /* Must be translating between UTF-16le and UTF-16be. */ int i; u8 *pFrom, *pTo; sqlite3VdbeMemMakeWriteable(pMem); for(i=0, pFrom=pMem->z, pTo=&pMem->z[1]; i<pMem->n; i+=2, pFrom++, pTo++){ u8 temp = *pFrom; *pFrom = *pTo; *pTo = temp; } } pMem->enc = desiredEnc; return SQLITE_OK; } /* ** Make the given Mem object MEM_Dyn. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ int sqlite3VdbeMemDynamicify(Mem *pMem){ int n; u8 *z; if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){ return SQLITE_OK; } assert( (pMem->flags & MEM_Dyn)==0 ); assert( pMem->flags & (MEM_Str|MEM_Blob) ); z = sqliteMallocRaw( n+2 ); if( z==0 ){ return SQLITE_NOMEM; } pMem->flags |= MEM_Dyn|MEM_Term; memcpy(z, pMem->z, n ); z[n] = 0; z[n+1] = 0; pMem->z = z; pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short); return SQLITE_OK; } /* ** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes ** of the Mem.z[] array can be modified. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ int sqlite3VdbeMemMakeWriteable(Mem *pMem){ int n; u8 *z; if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){ return SQLITE_OK; } assert( (pMem->flags & MEM_Dyn)==0 ); assert( pMem->flags & (MEM_Str|MEM_Blob) ); if( (n = pMem->n)+2<sizeof(pMem->zShort) ){ z = pMem->zShort; pMem->flags |= MEM_Short|MEM_Term; }else{ z = sqliteMallocRaw( n+2 ); if( z==0 ){ return SQLITE_NOMEM; } pMem->flags |= MEM_Dyn|MEM_Term; } memcpy(z, pMem->z, n ); z[n] = 0; z[n+1] = 0; pMem->z = z; pMem->flags &= ~(MEM_Ephem|MEM_Static); return SQLITE_OK; } /* ** Make sure the given Mem is \u0000 terminated. */ int sqlite3VdbeMemNulTerminate(Mem *pMem){ if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & (MEM_Str|MEM_Blob))==0 ){ return SQLITE_OK; /* Nothing to do */ } /* Only static or ephemeral strings can be unterminated */ assert( (pMem->flags & (MEM_Static|MEM_Ephem))!=0 ); return sqlite3VdbeMemMakeWriteable(pMem); } /* ** Add MEM_Str to the set of representations for the given Mem. ** A NULL is converted into an empty string. Numbers are converted ** using sqlite3_snprintf(). Converting a BLOB to a string is a ** no-op. |
︙ | ︙ | |||
182 183 184 185 186 187 188 | if( fg & MEM_Real ){ sqlite3_snprintf(NBFS, z, "%.15g", pMem->r); }else{ assert( fg & MEM_Int ); sqlite3_snprintf(NBFS, z, "%lld", pMem->i); } pMem->n = strlen(z); | | | > > > > > > > > > | | > | | | | < | < < < < < < < | 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | if( fg & MEM_Real ){ sqlite3_snprintf(NBFS, z, "%.15g", pMem->r); }else{ assert( fg & MEM_Int ); sqlite3_snprintf(NBFS, z, "%lld", pMem->i); } pMem->n = strlen(z); pMem->z = z; pMem->enc = TEXT_Utf8; pMem->flags |= MEM_Str | MEM_Short | MEM_Term; sqlite3VdbeChangeEncoding(pMem, enc); } return rc; } /* ** Release any memory held by the Mem */ static void releaseMem(Mem *p){ if( p->flags & MEM_Dyn ){ sqliteFree(p); } } /* ** Convert the Mem to have representation MEM_Int only. All ** prior representations are invalidated. NULL is converted into 0. */ int sqlite3VdbeMemIntegerify(Mem *pMem){ if( pMem->flags & MEM_Int ){ /* Do nothing */ }else if( pMem->flags & MEM_Real ){ pMem->i = (i64)pMem->r; }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ if( sqlite3VdbeChangeEncoding(pMem, TEXT_Utf8) || sqlite3VdbeMemNulTerminate(pMem) ){ return SQLITE_NOMEM; } assert( pMem->z ); sqlite3atoi64(pMem->z, &pMem->i); }else{ pMem->i = 0; } releaseMem(pMem); pMem->flags = MEM_Int; pMem->type = SQLITE3_INTEGER; return SQLITE_OK; } /* ** Add MEM_Real to the set of representations for pMem. Prior ** prior representations other than MEM_Null retained. NULL is ** converted into 0.0. */ int sqlite3VdbeMemRealify(Mem *pMem){ if( pMem->flags & MEM_Int ){ pMem->r = pMem->r; pMem->flags |= MEM_Real; }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ if( sqlite3VdbeChangeEncoding(pMem, TEXT_Utf8) || sqlite3VdbeMemNulTerminate(pMem) ){ return SQLITE_NOMEM; } assert( pMem->z ); pMem->r = sqlite3AtoF(pMem->z, 0); releaseMem(pMem); pMem->flags = MEM_Real; pMem->type = SQLITE3_FLOAT; }else{ pMem->r = 0.0; pMem->flags = MEM_Real; pMem->type = SQLITE3_FLOAT; } return SQLITE_OK; } /* ** Delete any previous value and set the value stored in *pMem to NULL. */ void sqlite3VdbeMemSetNull(Mem *pMem){ releaseMem(pMem); |
︙ | ︙ | |||
304 305 306 307 308 309 310 | int sqlite3VdbeMemSetStr( Mem *pMem, /* Memory cell to set to string value */ const char *z, /* String pointer */ int n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ int eCopy /* True if this function should make a copy of z */ ){ | < < | 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | int sqlite3VdbeMemSetStr( Mem *pMem, /* Memory cell to set to string value */ const char *z, /* String pointer */ int n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ int eCopy /* True if this function should make a copy of z */ ){ releaseMem(pMem); if( !z ){ pMem->flags = MEM_Null; pMem->type = SQLITE3_NULL; return SQLITE_OK; } |
︙ | ︙ | |||
346 347 348 349 350 351 352 | } break; default: assert(0); } if( eCopy ){ | | > | 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 | } break; default: assert(0); } if( eCopy ){ return sqlite3VdbeMemMakeWriteable(pMem); } return SQLITE_OK; } /* ** Compare the values contained by the two memory cells, returning ** negative, zero or positive if pMem1 is less than, equal to, or greater ** than pMem2. Sorting order is NULL's first, followed by numbers (integers ** and reals) sorted numerically, followed by text ordered by the collating |
︙ | ︙ |