SQLite

Check-in [f33d15d95f]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Fixes to the MEM changes. The library now links. (CVS 1470)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: f33d15d95f195e26e1ef396158597a2caa06f374
User & Date: drh 2004-05-27 03:12:54.000
Context
2004-05-27
09:28
Various bugfixes. 68 Test cases still fail. (CVS 1471) (check-in: 67a140cf78 user: danielk1977 tags: trunk)
03:12
Fixes to the MEM changes. The library now links. (CVS 1470) (check-in: f33d15d95f user: drh tags: trunk)
01:53
More MEM changes in the vdbe.c. Still will not compile. (CVS 1469) (check-in: dbdd1a7f31 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/expr.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.128 2004/05/26 16:54:43 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

char const *sqlite3AffinityString(char affinity){
  switch( affinity ){
    case SQLITE_AFF_INTEGER: return "i";







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.129 2004/05/27 03:12:54 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

char const *sqlite3AffinityString(char affinity){
  switch( affinity ){
    case SQLITE_AFF_INTEGER: return "i";
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
      FuncDef *pDef;
      int nId;
      const char *zId;
      getFunctionName(pExpr, &zId, &nId);
      pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, 0);
      assert( pDef!=0 );
      nExpr = sqlite3ExprCodeExprList(pParse, pList);
      /* FIX ME: The following is a temporary hack. */
      if( 0==sqlite3StrNICmp(zId, "classof", nId) ){
        assert( nExpr==1 );
        sqlite3VdbeAddOp(v, OP_Class, nExpr, 0);
      }else{
        sqlite3VdbeOp3(v, OP_Function, nExpr, 0, (char*)pDef, P3_FUNCDEF);
      }
      break;
    }
    case TK_SELECT: {
      sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
      break;
    }
    case TK_IN: {







<
<
<
<
<
|
<







1220
1221
1222
1223
1224
1225
1226





1227

1228
1229
1230
1231
1232
1233
1234
      FuncDef *pDef;
      int nId;
      const char *zId;
      getFunctionName(pExpr, &zId, &nId);
      pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, 0);
      assert( pDef!=0 );
      nExpr = sqlite3ExprCodeExprList(pParse, pList);





      sqlite3VdbeOp3(v, OP_Function, nExpr, 0, (char*)pDef, P3_FUNCDEF);

      break;
    }
    case TK_SELECT: {
      sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
      break;
    }
    case TK_IN: {
Changes to src/func.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This file contains the C functions that implement various SQL
** functions of SQLite.  
**
** There is only one exported symbol in this file - the function
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
** All other code has file scope.
**
** $Id: func.c,v 1.58 2004/05/26 23:25:31 drh Exp $
*/
#include <ctype.h>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
#include "sqliteInt.h"
#include "vdbeInt.h"







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This file contains the C functions that implement various SQL
** functions of SQLite.  
**
** There is only one exported symbol in this file - the function
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
** All other code has file scope.
**
** $Id: func.c,v 1.59 2004/05/27 03:12:55 drh Exp $
*/
#include <ctype.h>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
#include "sqliteInt.h"
#include "vdbeInt.h"
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
  mask = (int)sqlite3_user_data(context);
  iBest = 0;
  for(i=1; i<argc; i++){
    if( (sqlite3MemCompare(argv[iBest], argv[i], 0)^mask)<0 ){
      iBest = i;
    }
  }
  sqlite3_result(context, argv[iBest]);
}

/*
** Return the type of the argument.
*/
static void typeofFunc(
  sqlite3_context *context,







|







42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
  mask = (int)sqlite3_user_data(context);
  iBest = 0;
  for(i=1; i<argc; i++){
    if( (sqlite3MemCompare(argv[iBest], argv[i], 0)^mask)<0 ){
      iBest = i;
    }
  }
  sqlite3_result_value(context, argv[iBest]);
}

/*
** Return the type of the argument.
*/
static void typeofFunc(
  sqlite3_context *context,
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
** Implementation of the length() function
*/
static void lengthFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  const char *z;
  int len;

  assert( argc==1 );
  switch( sqlite3_value_type(argv[0]) ){
    case SQLITE3_BLOB:
    case SQLITE3_INTEGER:
    case SQLITE3_FLOAT: {
      sqlite3_result_int32(context, sqlite3_value_bytes(argv[0]));
      break;
    }
    case SQLITE3_TEXT: {
      const char *z = sqlite3_value_text(argv[0]);
      for(len=0; *z; z++){ if( (0xc0&*z)!=0x80 ) len++; }
      sqlite3_result_int32(context, len);
      break;
    }
    default: {
      sqlite3_result_null(context);
      break;
    }
  }
}

/*
** Implementation of the abs() function
*/
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
  const char *z;
  assert( argc==1 );
  switch( sqlite3_value_type(argv[0]) ){
    case SQLITE3_INTEGER: {
      sqlite3_result_int64(context, -sqlite3_value_int64(argv[0]));
      break;
    }
    case SQLITE3_NULL: {







<







|





|













<







72
73
74
75
76
77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

106
107
108
109
110
111
112
** Implementation of the length() function
*/
static void lengthFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){

  int len;

  assert( argc==1 );
  switch( sqlite3_value_type(argv[0]) ){
    case SQLITE3_BLOB:
    case SQLITE3_INTEGER:
    case SQLITE3_FLOAT: {
      sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
      break;
    }
    case SQLITE3_TEXT: {
      const char *z = sqlite3_value_text(argv[0]);
      for(len=0; *z; z++){ if( (0xc0&*z)!=0x80 ) len++; }
      sqlite3_result_int(context, len);
      break;
    }
    default: {
      sqlite3_result_null(context);
      break;
    }
  }
}

/*
** Implementation of the abs() function
*/
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){

  assert( argc==1 );
  switch( sqlite3_value_type(argv[0]) ){
    case SQLITE3_INTEGER: {
      sqlite3_result_int64(context, -sqlite3_value_int64(argv[0]));
      break;
    }
    case SQLITE3_NULL: {
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  int i;
  for(i=0; i<argc; i++){
    if( SQLITE3_NULL!=sqlite3_value_type(argv[i]) ){
      sqlite3_result(context, argv[i]);
      break;
    }
  }
}

/*
** Implementation of random().  Return a random integer.  
*/
static void randomFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  int r;
  sqlite3Randomness(sizeof(r), &r);
  sqlite3_result_int32(context, r);
}

/*
** Implementation of the last_insert_rowid() SQL function.  The return
** value is the same as the sqlite3_last_insert_rowid() API function.
*/
static void last_insert_rowid(







|















|







222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  int i;
  for(i=0; i<argc; i++){
    if( SQLITE3_NULL!=sqlite3_value_type(argv[i]) ){
      sqlite3_result_value(context, argv[i]);
      break;
    }
  }
}

/*
** Implementation of random().  Return a random integer.  
*/
static void randomFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  int r;
  sqlite3Randomness(sizeof(r), &r);
  sqlite3_result_int(context, r);
}

/*
** Implementation of the last_insert_rowid() SQL function.  The return
** value is the same as the sqlite3_last_insert_rowid() API function.
*/
static void last_insert_rowid(
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
*/
static void change_count(
  sqlite3_context *context,
  int arg,
  sqlite3_value **argv
){
  sqlite *db = sqlite3_user_data(context);
  sqlite3_result_int32(context, sqlite3_changes(db));
}

/*
** Implementation of the last_statement_change_count() SQL function.  The
** return value is the same as the sqlite3_last_statement_changes() API
** function.
*/
static void last_statement_change_count(
  sqlite3_context *context, 
  int arg,
  sqlite3_value **argv
){
  sqlite *db = sqlite3_user_data(context);
  sqlite3_result_int32(context, sqlite3_last_statement_changes(db));
}

/*
** Implementation of the like() SQL function.  This function implements
** the build-in LIKE operator.  The first argument to the function is the
** string and the second argument is the pattern.  So, the SQL statements:
**
**       A LIKE B
**
** is implemented as like(A,B).
*/
static void likeFunc(
  sqlite3_context *context, 
  int argc, 
  sqlite3_value **argv
){
  const unsigned char *zA = sqlite3_value_text(argv[0]);
  const unsigned char *zB = sqlite3_value_text(argv[1]);
  if( zA && zB ){
    sqlite3_result_int32(context, sqlite3LikeCompare(zA, zB));
  }
}

/*
** Implementation of the glob() SQL function.  This function implements
** the build-in GLOB operator.  The first argument to the function is the
** string and the second argument is the pattern.  So, the SQL statements:
**
**       A GLOB B
**
** is implemented as glob(A,B).
*/
static void globFunc(sqlite3_context *context, int arg, sqlite3_value **argv){
  const unsigned char *zA = sqlite3_value_text(argv[0]);
  const unsigned char *zB = sqlite3_value_text(argv[1]);
  if( zA && zB ){
    sqlite3_result_int32(context, sqlite3GlobCompare(zA, zB));
  }
}

/*
** Implementation of the NULLIF(x,y) function.  The result is the first
** argument if the arguments are different.  The result is NULL if the
** arguments are equal to each other.
*/
static void nullifFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  if( sqlite3MemCompare(argv[0], argv[1], 0)!=0 ){
    sqlite3_result(context, argv[0]);
  }
}

/*
** Implementation of the VERSION(*) function.  The result is the version
** of the SQLite library that is running.
*/







|













|



















|
















|














|







264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
*/
static void change_count(
  sqlite3_context *context,
  int arg,
  sqlite3_value **argv
){
  sqlite *db = sqlite3_user_data(context);
  sqlite3_result_int(context, sqlite3_changes(db));
}

/*
** Implementation of the last_statement_change_count() SQL function.  The
** return value is the same as the sqlite3_last_statement_changes() API
** function.
*/
static void last_statement_change_count(
  sqlite3_context *context, 
  int arg,
  sqlite3_value **argv
){
  sqlite *db = sqlite3_user_data(context);
  sqlite3_result_int(context, sqlite3_last_statement_changes(db));
}

/*
** Implementation of the like() SQL function.  This function implements
** the build-in LIKE operator.  The first argument to the function is the
** string and the second argument is the pattern.  So, the SQL statements:
**
**       A LIKE B
**
** is implemented as like(A,B).
*/
static void likeFunc(
  sqlite3_context *context, 
  int argc, 
  sqlite3_value **argv
){
  const unsigned char *zA = sqlite3_value_text(argv[0]);
  const unsigned char *zB = sqlite3_value_text(argv[1]);
  if( zA && zB ){
    sqlite3_result_int(context, sqlite3LikeCompare(zA, zB));
  }
}

/*
** Implementation of the glob() SQL function.  This function implements
** the build-in GLOB operator.  The first argument to the function is the
** string and the second argument is the pattern.  So, the SQL statements:
**
**       A GLOB B
**
** is implemented as glob(A,B).
*/
static void globFunc(sqlite3_context *context, int arg, sqlite3_value **argv){
  const unsigned char *zA = sqlite3_value_text(argv[0]);
  const unsigned char *zB = sqlite3_value_text(argv[1]);
  if( zA && zB ){
    sqlite3_result_int(context, sqlite3GlobCompare(zA, zB));
  }
}

/*
** Implementation of the NULLIF(x,y) function.  The result is the first
** argument if the arguments are different.  The result is NULL if the
** arguments are equal to each other.
*/
static void nullifFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  if( sqlite3MemCompare(argv[0], argv[1], 0)!=0 ){
    sqlite3_result_value(context, argv[0]);
  }
}

/*
** Implementation of the VERSION(*) function.  The result is the version
** of the SQLite library that is running.
*/
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
  switch( sqlite3_value_type(argv[0]) ){
    case SQLITE3_NULL: {
      sqlite3_result_text(context, "NULL", 4, 0);
      break;
    }
    case SQLITE3_INTEGER:
    case SQLITE3_FLOAT: {
      sqlite3_result(context, argv[0]);
      break;
    }
    case SQLITE3_BLOB:  /*** FIX ME.  Use a BLOB encoding ***/
    case SQLITE3_TEXT: {
      int i,j,n;
      const char *zArg = sqlite3_value_text(argv[0]);
      char *z;







|







366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
  switch( sqlite3_value_type(argv[0]) ){
    case SQLITE3_NULL: {
      sqlite3_result_text(context, "NULL", 4, 0);
      break;
    }
    case SQLITE3_INTEGER:
    case SQLITE3_FLOAT: {
      sqlite3_result_value(context, argv[0]);
      break;
    }
    case SQLITE3_BLOB:  /*** FIX ME.  Use a BLOB encoding ***/
    case SQLITE3_TEXT: {
      int i,j,n;
      const char *zArg = sqlite3_value_text(argv[0]);
      char *z;
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
  if( (argc==0 || SQLITE3_NULL!=sqlite3_value_type(argv[0])) && p ){
    p->n++;
  }
}   
static void countFinalize(sqlite3_context *context){
  CountCtx *p;
  p = sqlite3_aggregate_context(context, sizeof(*p));
  sqlite3_result_int32(context, p ? p->n : 0);
}

/*
** This function tracks state information for the min() and max()
** aggregate functions.
*/
typedef struct MinMaxCtx MinMaxCtx;







|







571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
  if( (argc==0 || SQLITE3_NULL!=sqlite3_value_type(argv[0])) && p ){
    p->n++;
  }
}   
static void countFinalize(sqlite3_context *context){
  CountCtx *p;
  p = sqlite3_aggregate_context(context, sizeof(*p));
  sqlite3_result_int(context, p ? p->n : 0);
}

/*
** This function tracks state information for the min() and max()
** aggregate functions.
*/
typedef struct MinMaxCtx MinMaxCtx;
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
    sqlite3VdbeMemCopy(pBest, pArg);
  }
}
static void minMaxFinalize(sqlite3_context *context){
  sqlite3_value *pRes;
  pRes = (sqlite3_value *)sqlite3_aggregate_context(context, sizeof(Mem));
  if( pRes->flags ){
    sqlite3_result(context, pRes);
  }
}

/*
** This function registered all of the above C functions as SQL
** functions.  This should be the only routine in this file with
** external linkage.







|







617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
    sqlite3VdbeMemCopy(pBest, pArg);
  }
}
static void minMaxFinalize(sqlite3_context *context){
  sqlite3_value *pRes;
  pRes = (sqlite3_value *)sqlite3_aggregate_context(context, sizeof(Mem));
  if( pRes->flags ){
    sqlite3_result_value(context, pRes);
  }
}

/*
** This function registered all of the above C functions as SQL
** functions.  This should be the only routine in this file with
** external linkage.
Changes to src/sqlite.h.in.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the SQLite library
** presents to client programs.
**
** @(#) $Id: sqlite.h.in,v 1.82 2004/05/26 23:25:31 drh Exp $
*/
#ifndef _SQLITE_H_
#define _SQLITE_H_
#include <stdarg.h>     /* Needed for the definition of va_list */

/*
** Make sure we can call this stuff from C++.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the SQLite library
** presents to client programs.
**
** @(#) $Id: sqlite.h.in,v 1.83 2004/05/27 03:12:55 drh Exp $
*/
#ifndef _SQLITE_H_
#define _SQLITE_H_
#include <stdarg.h>     /* Needed for the definition of va_list */

/*
** Make sure we can call this stuff from C++.
600
601
602
603
604
605
606







607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
  sqlite3 *db,            /* Database handle */
  const void *zSql,       /* SQL statement, UTF-16 encoded */
  int nBytes,             /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
);








/*
** In the SQL strings input to sqlite3_prepare() and sqlite3_prepare16(),
** one or more literals can be replace by a wildcard "?" or ":N:" where
** N is an integer.  These value of these wildcard literals can be set
** using the routines listed below.
**
** In every case, the first parameter is a pointer to the sqlite3_stmt
** structure returned from sqlite3_prepare().  The second parameter is the
** index of the wildcard.  The first "?" has an index of 1.  ":N:" wildcards
** use the index N.
**
** When the eCopy parameter is true, a copy of the value is made into
** memory obtained and managed by SQLite.  When eCopy is false, SQLite
** assumes that the value is a constant and just stores a pointer to the
** value without making a copy.
**
** The sqlite3_bind_* routine must be called before sqlite3_step() after
** an sqlite3_prepare() or sqlite3_reset().  Unbound wildcards are interpreted
** as NULL.
*/
void sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, int eCopy);
void sqlite3_bind_double(sqlite3_stmt*, int, double);
void sqlite3_bind_int(sqlite3_stmt*, int, int);
void sqlite3_bind_int64(sqlite3_stmt*, int, long long int);
void sqlite3_bind_null(sqlite3_stmt*, int);
void sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, int eCopy);
void sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int n, int eCopy);
void sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);

/*
** Return the number of columns in the result set returned by the compiled
** SQL statement. This routine returns 0 if pStmt is an SQL statement
** that does not return data (for example an UPDATE).
*/
int sqlite3_column_count(sqlite3_stmt *pStmt);







>
>
>
>
>
>
>




















|
|
|
|
|
|
|
|







600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
  sqlite3 *db,            /* Database handle */
  const void *zSql,       /* SQL statement, UTF-16 encoded */
  int nBytes,             /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
);

/*
** Pointers to the following two opaque structures are used to communicate
** with the implementations of user-defined functions.
*/
typedef struct sqlite3_context sqlite3_context;
typedef struct Mem sqlite3_value;

/*
** In the SQL strings input to sqlite3_prepare() and sqlite3_prepare16(),
** one or more literals can be replace by a wildcard "?" or ":N:" where
** N is an integer.  These value of these wildcard literals can be set
** using the routines listed below.
**
** In every case, the first parameter is a pointer to the sqlite3_stmt
** structure returned from sqlite3_prepare().  The second parameter is the
** index of the wildcard.  The first "?" has an index of 1.  ":N:" wildcards
** use the index N.
**
** When the eCopy parameter is true, a copy of the value is made into
** memory obtained and managed by SQLite.  When eCopy is false, SQLite
** assumes that the value is a constant and just stores a pointer to the
** value without making a copy.
**
** The sqlite3_bind_* routine must be called before sqlite3_step() after
** an sqlite3_prepare() or sqlite3_reset().  Unbound wildcards are interpreted
** as NULL.
*/
int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, int eCopy);
int sqlite3_bind_double(sqlite3_stmt*, int, double);
int sqlite3_bind_int(sqlite3_stmt*, int, int);
int sqlite3_bind_int64(sqlite3_stmt*, int, long long int);
int sqlite3_bind_null(sqlite3_stmt*, int);
int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, int eCopy);
int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int n, int eCopy);
int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);

/*
** Return the number of columns in the result set returned by the compiled
** SQL statement. This routine returns 0 if pStmt is an SQL statement
** that does not return data (for example an UPDATE).
*/
int sqlite3_column_count(sqlite3_stmt *pStmt);
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
*/
int sqlite3_data_count(sqlite3_stmt *pStmt);

/*
** Values are stored in the database in one of the following fundamental
** types.
*/
#define SQLITE_INTEGER  1
#define SQLITE_FLOAT    2
#define SQLITE_TEXT     3
#define SQLITE_BLOB     4
#define SQLITE_NULL     5

/*
** The next group of routines returns information about the information
** in a single column of the current result row of a query.  In every
** case the first parameter is a pointer to the SQL statement that is being
** executed (the sqlite_stmt* that was returned from sqlite3_prepare()) and
** the second argument is the index of the column for which information 







|
|
|
|
|







741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
*/
int sqlite3_data_count(sqlite3_stmt *pStmt);

/*
** Values are stored in the database in one of the following fundamental
** types.
*/
#define SQLITE3_INTEGER  1
#define SQLITE3_FLOAT    2
#define SQLITE3_TEXT     3
#define SQLITE3_BLOB     4
#define SQLITE3_NULL     5

/*
** The next group of routines returns information about the information
** in a single column of the current result row of a query.  In every
** case the first parameter is a pointer to the SQL statement that is being
** executed (the sqlite_stmt* that was returned from sqlite3_prepare()) and
** the second argument is the index of the column for which information 
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
** _int()      Return an INTEGER value in the host computer's native
**             integer representation.  This might be either a 32- or 64-bit
**             integer depending on the host.
** _int64()    Return an INTEGER value as a 64-bit signed integer.
** _text()     Return the value as UTF-8 text.
** _text16()   Return the value as UTF-16 text.
*/
void *sqlite3_column_blob(sqlite3_stmt*, int iCol)
int sqlite3_column_bytes(sqlite3_stmt*, int iCol)
int sqlite3_column_bytes16(sqlite3_stmt*, int iCol)
double sqlite3_column_double(sqlite3_stmt*, int iCol)
int sqlite3_column_int(sqlite3_stmt*, int iCol)
long long int sqlite3_column_int64(sqlite3_stmt*, int iCol)
const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol)
const void *sqlite3_column_text16(sqlite3_stmt*, int iCol)
int sqlite3_column_type(sqlite3_stmt*, int iCol);

/*
** The sqlite3_finalize() function is called to delete a compiled
** SQL statement obtained by a previous call to sqlite3_prepare()
** or sqlite3_prepare16(). If the statement was executed successfully, or
** not executed at all, then SQLITE_OK is returned. If execution of the







|
|
|
|
|
|
|
|







804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
** _int()      Return an INTEGER value in the host computer's native
**             integer representation.  This might be either a 32- or 64-bit
**             integer depending on the host.
** _int64()    Return an INTEGER value as a 64-bit signed integer.
** _text()     Return the value as UTF-8 text.
** _text16()   Return the value as UTF-16 text.
*/
const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
double sqlite3_column_double(sqlite3_stmt*, int iCol);
int sqlite3_column_int(sqlite3_stmt*, int iCol);
long long int sqlite3_column_int64(sqlite3_stmt*, int iCol);
const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
int sqlite3_column_type(sqlite3_stmt*, int iCol);

/*
** The sqlite3_finalize() function is called to delete a compiled
** SQL statement obtained by a previous call to sqlite3_prepare()
** or sqlite3_prepare16(). If the statement was executed successfully, or
** not executed at all, then SQLITE_OK is returned. If execution of the
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
** statement obtained by a previous call to sqlite3_prepare() or
** sqlite3_prepare16() back to it's initial state, ready to be re-executed.
** Any SQL statement variables that had values bound to them using
** the sqlite3_bind_*() API retain their values.
*/
int sqlite3_reset(sqlite3_stmt *pStmt);

/*
** Pointers to the following two opaque structures are used to communicate
** with the implementations of user-defined functions.
*/
typedef struct sqlite3_context sqlite3_context;
typedef struct Mem sqlite3_value;

/*
** The following two functions are used to add user functions or aggregates
** implemented in C to the SQL langauge interpreted by SQLite. The
** difference only between the two is that the second parameter, the
** name of the (scalar) function or aggregate, is encoded in UTF-8 for
** sqlite3_create_function() and UTF-16 for sqlite3_create_function16().
**







<
<
<
<
<
<
<







839
840
841
842
843
844
845







846
847
848
849
850
851
852
** statement obtained by a previous call to sqlite3_prepare() or
** sqlite3_prepare16() back to it's initial state, ready to be re-executed.
** Any SQL statement variables that had values bound to them using
** the sqlite3_bind_*() API retain their values.
*/
int sqlite3_reset(sqlite3_stmt *pStmt);








/*
** The following two functions are used to add user functions or aggregates
** implemented in C to the SQL langauge interpreted by SQLite. The
** difference only between the two is that the second parameter, the
** name of the (scalar) function or aggregate, is encoded in UTF-8 for
** sqlite3_create_function() and UTF-16 for sqlite3_create_function16().
**
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
** The next group of routines returns information about parameters to
** a user-defined function.  Function implementations use these routines
** to access their parameters.  These routines are the same as the
** sqlite3_column_* routines except that these routines take a single
** sqlite3_value* pointer instead of an sqlite3_stmt* and an integer
** column number.
*/
void *sqlite3_value_blob(sqlite3_value*)
int sqlite3_value_bytes(sqlite3_value*)
int sqlite3_value_bytes16(sqlite3_value*)
double sqlite3_value_double(sqlite3_value*)
int sqlite3_value_int(sqlite3_value*)
long long int sqlite3_value_int64(sqlite3_value*)
const unsigned char *sqlite3_value_text(sqlite3_value*)
const void *sqlite3_value_text16(sqlite3_value*)
int sqlite3_value_type(sqlite3_value*);

/*
** Aggregate functions use the following routine to allocate
** a structure for storing their state.  The first time this routine
** is called for a particular aggregate, a new structure of size nBytes
** is allocated, zeroed, and returned.  On subsequent calls (for the







|
|
|
|
|
|
|
|







905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
** The next group of routines returns information about parameters to
** a user-defined function.  Function implementations use these routines
** to access their parameters.  These routines are the same as the
** sqlite3_column_* routines except that these routines take a single
** sqlite3_value* pointer instead of an sqlite3_stmt* and an integer
** column number.
*/
const void *sqlite3_value_blob(sqlite3_value*);
int sqlite3_value_bytes(sqlite3_value*);
int sqlite3_value_bytes16(sqlite3_value*);
double sqlite3_value_double(sqlite3_value*);
int sqlite3_value_int(sqlite3_value*);
long long int sqlite3_value_int64(sqlite3_value*);
const unsigned char *sqlite3_value_text(sqlite3_value*);
const void *sqlite3_value_text16(sqlite3_value*);
int sqlite3_value_type(sqlite3_value*);

/*
** Aggregate functions use the following routine to allocate
** a structure for storing their state.  The first time this routine
** is called for a particular aggregate, a new structure of size nBytes
** is allocated, zeroed, and returned.  On subsequent calls (for the
Changes to src/util.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Utility functions used throughout sqlite.
**
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
** $Id: util.c,v 1.89 2004/05/27 01:53:56 drh Exp $
*/
#include "sqliteInt.h"
#include <stdarg.h>
#include <ctype.h>

/*
** If malloc() ever fails, this global variable gets set to 1.







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Utility functions used throughout sqlite.
**
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
** $Id: util.c,v 1.90 2004/05/27 03:12:55 drh Exp $
*/
#include "sqliteInt.h"
#include <stdarg.h>
#include <ctype.h>

/*
** If malloc() ever fails, this global variable gets set to 1.
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

/*
** If zNum represents an integer that will fit in 64-bits, then set
** *pValue to that integer and return true.  Otherwise return false.
*/
int sqlite3GetInt64(const char *zNum, i64 *pValue){
  if( sqlite3FitsIn64Bits(zNum) ){
    sqlite3atoi64(zNum, pValue, TEXT_Utf8);
    return 1;
  }
  return 0;
}

/* This comparison routine is what we use for comparison operations
** between numeric values in an SQL expression.  "Numeric" is a little







|







736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

/*
** If zNum represents an integer that will fit in 64-bits, then set
** *pValue to that integer and return true.  Otherwise return false.
*/
int sqlite3GetInt64(const char *zNum, i64 *pValue){
  if( sqlite3FitsIn64Bits(zNum) ){
    sqlite3atoi64(zNum, pValue);
    return 1;
  }
  return 0;
}

/* This comparison routine is what we use for comparison operations
** between numeric values in an SQL expression.  "Numeric" is a little
Changes to src/vdbe.c.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.337 2004/05/27 01:53:56 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*







|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.338 2004/05/27 03:12:55 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
76
77
78
79
80
81
82
83

84
85
86
87
88
89
90
#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); }

/*
** Convert the given stack entity into a string if it isn't one
** already. Return non-zero if a malloc() fails.
*/
#define Stringify(P, enc) \
      (!((P)->flags&(MEM_Str|MEM_Blob)) && sqlite3VdbeMemStringify(P,enc))


/*
** Convert the given stack entity into a string that has been obtained
** from sqliteMalloc().  This is different from Stringify() above in that
** Stringify() will use the NBFS bytes of static string space if the string
** will fit but this routine always mallocs for space.
** Return non-zero if we run out of memory.







|
>







76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); }

/*
** Convert the given stack entity into a string if it isn't one
** already. Return non-zero if a malloc() fails.
*/
#define Stringify(P, enc) \
   if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
     { goto no_mem; }

/*
** Convert the given stack entity into a string that has been obtained
** from sqliteMalloc().  This is different from Stringify() above in that
** Stringify() will use the NBFS bytes of static string space if the string
** will fit but this routine always mallocs for space.
** Return non-zero if we run out of memory.
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

    case SQLITE_AFF_TEXT:
      /* Only attempt the conversion if there is an integer or real
      ** representation (blob and NULL do not get converted) but no string
      ** representation.
      */
      if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
        Stringify(pRec, enc);
      }
      pRec->flags &= ~(MEM_Real|MEM_Int);

      break;

    case SQLITE_AFF_NONE:
      /* Affinity NONE. Do nothing. */







|







306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

    case SQLITE_AFF_TEXT:
      /* Only attempt the conversion if there is an integer or real
      ** representation (blob and NULL do not get converted) but no string
      ** representation.
      */
      if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
        sqlite3VdbeMemStringify(pRec, enc);
      }
      pRec->flags &= ~(MEM_Real|MEM_Int);

      break;

    case SQLITE_AFF_NONE:
      /* Affinity NONE. Do nothing. */
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445


446
447
448
449
450
451
452

453
454
455
456
457
458
459

  if( zData ){
    pMem->z = &zData[offset];
    pMem->n = amt;
    pMem->flags = MEM_Blob|MEM_Ephem;
  }else{
    int rc;
    if( amt>NBFS ){
      zData = (char *)sqliteMallocRaw(amt);
      if( !zData ){
        return SQLITE_NOMEM;
      }
      pMem->flags = MEM_Blob|MEM_Dyn;
    }else{
      zData = &(pMem->zShort[0]);
      pMem->flags = MEM_Blob|MEM_Short;
    }
    pMem->z = zData;



    if( key ){
      rc = sqlite3BtreeKey(pCur, offset, amt, zData);
    }else{
      rc = sqlite3BtreeData(pCur, offset, amt, zData);
    }


    if( rc!=SQLITE_OK ){
      if( amt>NBFS ){
        sqliteFree(zData);
      }
      return rc;
    }
  }







|
|



|


|


>
>






|
>







429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

  if( zData ){
    pMem->z = &zData[offset];
    pMem->n = amt;
    pMem->flags = MEM_Blob|MEM_Ephem;
  }else{
    int rc;
    if( amt>NBFS-2 ){
      zData = (char *)sqliteMallocRaw(amt+2);
      if( !zData ){
        return SQLITE_NOMEM;
      }
      pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
    }else{
      zData = &(pMem->zShort[0]);
      pMem->flags = MEM_Blob|MEM_Short|MEM_Term;
    }
    pMem->z = zData;
    pMem->enc = 0;
    pMem->type = SQLITE3_BLOB;

    if( key ){
      rc = sqlite3BtreeKey(pCur, offset, amt, zData);
    }else{
      rc = sqlite3BtreeData(pCur, offset, amt, zData);
    }
    zData[amt] = 0;
    zData[amt+1] = 0;
    if( rc!=SQLITE_OK ){
      if( amt>NBFS ){
        sqliteFree(zData);
      }
      return rc;
    }
  }
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753


754



755

756
757
758
759
760



761
762
763

764
765
766
767
768
769
770
771
772
773


774






775

776
777
778



779
780
781
782
783
784
785
    return SQLITE_ERROR;
  }else{
    p->rc = SQLITE_OK;
    return SQLITE_DONE;
  }
}

/* Opcode: String * * P3
**
** The string value P3 is pushed onto the stack.  If P3==0 then a
** NULL is pushed onto the stack.
*/
/* Opcode: Real * * P3
**
** The string value P3 is converted to a real and pushed on to the stack.
*/
/* Opcode: Integer P1 * P3
**
** The integer value P1 is pushed onto the stack.  If P3 is not zero
** then it is assumed to be a string representation of the same integer.
** If P1 is zero and P3 is not zero, then the value is derived from P3.
*/
case OP_Integer:
case OP_Real:
case OP_String: {
  char *z = pOp->p3;
  u8 op = pOp->opcode;

  pTos++;
  pTos->flags = 0;
 
  /* If this is an OP_Real or OP_Integer opcode, set the pTos->r or pTos->i
  ** values respectively.
  */
  if( op==OP_Real ){
    assert( z );
    assert( sqlite3IsNumber(z, 0, TEXT_Utf8) );
    pTos->r = sqlite3AtoF(z, 0);
    pTos->flags = MEM_Real;
  }else if( op==OP_Integer ){
    pTos->flags = MEM_Int;
    pTos->i = pOp->p1;
    if( pTos->i==0 && pOp->p3 ){


      sqlite3GetInt64(pOp->p3, &pTos->i);



    }

  }

  if( z ){
    /* FIX ME: For now the code in expr.c always puts UTF-8 in P3. It
    ** should transform text to the native encoding before doing so.



    */
    if( db->enc!=TEXT_Utf8 ){
      rc = sqlite3utfTranslate(z, -1, TEXT_Utf8, (void **)&pTos->z, 

          &pTos->n, db->enc);
      if( rc!=SQLITE_OK ){
        assert( !pTos->z );
        goto abort_due_to_error;
      }
      pTos->flags |= MEM_Str | MEM_Dyn | MEM_Term;
    }else{
      pTos->z = z;
      pTos->n = strlen(z) + 1;
      pTos->flags |= MEM_Str | MEM_Static | MEM_Term;


    }






  }else if( op==OP_String ){

    pTos->flags = MEM_Null;
  }




  break;
}

/* Opcode: Variable P1 * *
**
** Push the value of variable P1 onto the stack.  A variable is
** an unknown in the original SQL string as handed to sqlite3_compile().







<
<
<
<
<
<
<
<
<






|
<
<
<
<
<

<
|
<
<
<
<
<
<
<
<
<


|
>
>
|
>
>
>
|
>
|

<
<
<
>
>
>
|
<
<
>
|
<
<
<
<
|
<
|
|
|
>
>
|
>
>
>
>
>
>
|
>
|
<
|
>
>
>







715
716
717
718
719
720
721









722
723
724
725
726
727
728





729

730









731
732
733
734
735
736
737
738
739
740
741
742
743



744
745
746
747


748
749




750

751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

766
767
768
769
770
771
772
773
774
775
776
    return SQLITE_ERROR;
  }else{
    p->rc = SQLITE_OK;
    return SQLITE_DONE;
  }
}










/* Opcode: Integer P1 * P3
**
** The integer value P1 is pushed onto the stack.  If P3 is not zero
** then it is assumed to be a string representation of the same integer.
** If P1 is zero and P3 is not zero, then the value is derived from P3.
*/
case OP_Integer: {





  pTos++;

  if( pOp->p3==0 ){









    pTos->flags = MEM_Int;
    pTos->i = pOp->p1;
    pTos->type = SQLITE3_INTEGER;
  }else{
    pTos->flags = MEM_Str|MEM_Static|MEM_Term;
    pTos->z = pOp->p3;
    pTos->n = strlen(pTos->z);
    pTos->enc = TEXT_Utf8;
    Integerify(pTos, 0);
  }
  break;
}




/* Opcode: Real * * P3
**
** The string value P3 is converted to a real and pushed on to the stack.
*/


case OP_Real: {
  pTos++;




  pTos->flags = MEM_Str|MEM_Static|MEM_Term;

  pTos->z = pOp->p3;
  pTos->n = strlen(pTos->z);
  pTos->enc = TEXT_Utf8;
  Realify(pTos, 0);
  break;
}
  
/* Opcode: String * * P3
**
** The string value P3 is pushed onto the stack.  If P3==0 then a
** NULL is pushed onto the stack.
*/
case OP_String: {
  pTos++;
  pTos->flags = MEM_Str|MEM_Static|MEM_Term;

  pTos->enc = TEXT_Utf8;
  pTos->z = pOp->p3;
  pTos->n = strlen(pTos->z);
  sqlite3VdbeChangeEncoding(pTos, db->enc);
  break;
}

/* Opcode: Variable P1 * *
**
** Push the value of variable P1 onto the stack.  A variable is
** an unknown in the original SQL string as handed to sqlite3_compile().
885
886
887
888
889
890
891
892
893
894
895
896
897

898
899
900
901
902
903
904
905
906
  pTos++;
  memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
  if( pTos->flags & (MEM_Str|MEM_Blob) ){
    if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
      pTos->flags &= ~MEM_Dyn;
      pTos->flags |= MEM_Ephem;
    }else if( pTos->flags & MEM_Short ){
      memcpy(pTos->zShort, pFrom->zShort, pTos->n);
      pTos->z = pTos->zShort;
    }else if( (pTos->flags & MEM_Static)==0 ){
      pTos->z = sqliteMallocRaw(pFrom->n);
      if( sqlite3_malloc_failed ) goto no_mem;
      memcpy(pTos->z, pFrom->z, pFrom->n);

      pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short);
      pTos->flags |= MEM_Dyn;
    }
  }
  break;
}

/* Opcode: Pull P1 * *
**







|


|


>

|







876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
  pTos++;
  memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
  if( pTos->flags & (MEM_Str|MEM_Blob) ){
    if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
      pTos->flags &= ~MEM_Dyn;
      pTos->flags |= MEM_Ephem;
    }else if( pTos->flags & MEM_Short ){
      memcpy(pTos->zShort, pFrom->zShort, pTos->n+2);
      pTos->z = pTos->zShort;
    }else if( (pTos->flags & MEM_Static)==0 ){
      pTos->z = sqliteMallocRaw(pFrom->n+2);
      if( sqlite3_malloc_failed ) goto no_mem;
      memcpy(pTos->z, pFrom->z, pFrom->n);
      memcpy(&pTos->z[pTos->n], "\0", 2);
      pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short);
      pTos->flags |= MEM_Dyn|MEM_Term;
    }
  }
  break;
}

/* Opcode: Pull P1 * *
**
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
*/
case OP_Callback: {
  int i;
  assert( p->nResColumn==pOp->p1 );

  for(i=0; i<pOp->p1; i++){
    Mem *pVal = &pTos[0-i];
    SetEncodingFlags(pVal, db->enc);
    sqlite3VdbeMemNulTerminate(pVal);
  }

  p->resOnStack = 1;
  p->nCallback++;
  p->popStack = pOp->p1;
  p->pc = pc + 1;







<







980
981
982
983
984
985
986

987
988
989
990
991
992
993
*/
case OP_Callback: {
  int i;
  assert( p->nResColumn==pOp->p1 );

  for(i=0; i<pOp->p1; i++){
    Mem *pVal = &pTos[0-i];

    sqlite3VdbeMemNulTerminate(pVal);
  }

  p->resOnStack = 1;
  p->nCallback++;
  p->popStack = pOp->p1;
  p->pc = pc + 1;
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
    assert( j==nByte-1 );

    if( pOp->p2==0 ){
      popStack(&pTos, nField);
    }
    pTos++;
    pTos->n = j;
    pTos->flags = MEM_Str|MEM_Dyn|MEM_Term
    pTos->enc = db->enc;
    pTos->type = SQLITE3_TEXT;
    pTos->z = zNew;
  }
  break;
}








|







1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
    assert( j==nByte-1 );

    if( pOp->p2==0 ){
      popStack(&pTos, nField);
    }
    pTos++;
    pTos->n = j;
    pTos->flags = MEM_Str|MEM_Dyn|MEM_Term;
    pTos->enc = db->enc;
    pTos->type = SQLITE3_TEXT;
    pTos->z = zNew;
  }
  break;
}

1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

  n = pOp->p1;
  apVal = p->apArg;
  assert( apVal || n==0 );

  pArg = &pTos[1-n];
  for(i=0; i<n; i++, pArg++){
    SetEncodingFlags(pArg, db->enc);
    apVal[i] = pArg;
  }

  ctx.pFunc = (FuncDef*)pOp->p3;
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.isError = 0;







<







1226
1227
1228
1229
1230
1231
1232

1233
1234
1235
1236
1237
1238
1239

  n = pOp->p1;
  apVal = p->apArg;
  assert( apVal || n==0 );

  pArg = &pTos[1-n];
  for(i=0; i<n; i++, pArg++){

    apVal[i] = pArg;
  }

  ctx.pFunc = (FuncDef*)pOp->p3;
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.isError = 0;
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
  }
  /* If the function returned an error, throw an exception */
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, 
       (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0);
    rc = SQLITE_ERROR;
  }

  if( pTos->flags&MEM_Str ){
    SetEncoding(pTos, encToFlags(db->enc)|MEM_Term);
  }

  break;
}

/* Opcode: BitAnd * * *
**
** Pop the top two elements from the stack.  Convert both elements
** to integers.  Push back onto the stack the bit-wise AND of the







<
<
<
<
<







1251
1252
1253
1254
1255
1256
1257





1258
1259
1260
1261
1262
1263
1264
  }
  /* If the function returned an error, throw an exception */
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, 
       (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0);
    rc = SQLITE_ERROR;
  }





  break;
}

/* Opcode: BitAnd * * *
**
** Pop the top two elements from the stack.  Convert both elements
** to integers.  Push back onto the stack the bit-wise AND of the
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
    if( r!=pTos->r ){
      goto mismatch;
    }
    pTos->i = i;
  }else if( pTos->flags & MEM_Str ){
    i64 v;
    if( sqlite3VdbeChangeEncoding(pTos, TEXT_Utf8)
       || sqlite3VdbeNulTerminate(pTos) ){
      goto no_mem;
    }
    if( !sqlite3atoi64(pTos->z, &v) ){
      double r;
      if( !sqlite3IsNumber(pTos->z, 0, TEXT_Utf8) ){
        goto mismatch;
      }







|







1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
    if( r!=pTos->r ){
      goto mismatch;
    }
    pTos->i = i;
  }else if( pTos->flags & MEM_Str ){
    i64 v;
    if( sqlite3VdbeChangeEncoding(pTos, TEXT_Utf8)
       || sqlite3VdbeMemNulTerminate(pTos) ){
      goto no_mem;
    }
    if( !sqlite3atoi64(pTos->z, &v) ){
      double r;
      if( !sqlite3IsNumber(pTos->z, 0, TEXT_Utf8) ){
        goto mismatch;
      }
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
  int i, cnt;
  cnt = pOp->p1;
  if( cnt<0 ) cnt = -cnt;
  assert( &pTos[1-cnt] >= p->aStack );
  for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
  if( i>=cnt ) pc = pOp->p2-1;
  if( pOp->p1>0 ) popStack(&pTos, cnt);
  break;
}

/* Opcode: Class * * *
**
** Pop a single value from the top of the stack and push on one of the
** following strings, according to the storage class of the value just
** popped:
**
** "NULL", "INTEGER", "REAL", "TEXT", "BLOB"
**
** This opcode is probably temporary.
*/
case OP_Class: {
  int flags = pTos->flags;
  int i;

  struct {
    int mask;
    char * zClass;
    char * zClass16;
  } classes[] = {
    {MEM_Null, "NULL", "\0N\0U\0L\0L\0\0\0"},
    {MEM_Int, "INTEGER", "\0I\0N\0T\0E\0G\0E\0R\0\0\0"},
    {MEM_Real, "REAL", "\0R\0E\0A\0L\0\0\0"},
    {MEM_Str, "TEXT", "\0T\0E\0X\0T\0\0\0"},
    {MEM_Blob, "BLOB", "\0B\0L\0O\0B\0\0\0"}
  };

  Release(pTos);
  pTos->flags = MEM_Str|MEM_Static|MEM_Term;

  for(i=0; i<5; i++){
    if( classes[i].mask&flags ){
      switch( db->enc ){
        case TEXT_Utf8: 
          pTos->z = classes[i].zClass;
          break;
        case TEXT_Utf16be: 
          pTos->z = classes[i].zClass16;
          break;
        case TEXT_Utf16le: 
          pTos->z = &(classes[i].zClass16[1]);
          break;
        default:
          assert(0);
      }
      break;
    }
  }
  assert( i<5 );

  if( db->enc==TEXT_Utf8 ){
    pTos->n = strlen(pTos->z) + 1;
  }else{
    pTos->n = sqlite3utf16ByteLen(pTos->z, -1) + 2;
  }

  break;
}

/* Opcode: SetNumColumns P1 P2 *
**
** Before the OP_Column opcode can be executed on a cursor, this
** opcode must be called to set the number of fields in the table.







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1754
1755
1756
1757
1758
1759
1760


























































1761
1762
1763
1764
1765
1766
1767
  int i, cnt;
  cnt = pOp->p1;
  if( cnt<0 ) cnt = -cnt;
  assert( &pTos[1-cnt] >= p->aStack );
  for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
  if( i>=cnt ) pc = pOp->p2-1;
  if( pOp->p1>0 ) popStack(&pTos, cnt);


























































  break;
}

/* Opcode: SetNumColumns P1 P2 *
**
** Before the OP_Column opcode can be executed on a cursor, this
** opcode must be called to set the number of fields in the table.
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
  assert( offset==nByte );

  /* Pop the consumed values off the stack and push on the new key. */
  if( addRowid||(pOp->p2==0) ){
    popStack(&pTos, nField+addRowid);
  }
  pTos++;
  pTos->flags = MEM_Blob|MEM_Dyn; /* TODO: should eventually be MEM_Blob */
  pTos->z = zKey;
  pTos->n = nByte;

  /* If P2 is non-zero, and if the key contains a NULL value, and if this
  ** was an OP_MakeIdxKey instruction, not OP_MakeKey, jump to P2.
  */
  if( pOp->p2 && containsNull && addRowid ){







|







2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
  assert( offset==nByte );

  /* Pop the consumed values off the stack and push on the new key. */
  if( addRowid||(pOp->p2==0) ){
    popStack(&pTos, nField+addRowid);
  }
  pTos++;
  pTos->flags = MEM_Blob|MEM_Dyn;
  pTos->z = zKey;
  pTos->n = nByte;

  /* If P2 is non-zero, and if the key contains a NULL value, and if this
  ** was an OP_MakeIdxKey instruction, not OP_MakeKey, jump to P2.
  */
  if( pOp->p2 && containsNull && addRowid ){
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226


3227
3228
3229
3230
3231
3232
3233
      sqliteFree(pC->pData);
      pC->iKey = iKey;
      pC->nData = pTos->n;
      if( pTos->flags & MEM_Dyn ){
        pC->pData = pTos->z;
        pTos->flags = MEM_Null;
      }else{
        pC->pData = sqliteMallocRaw( pC->nData );
        if( pC->pData ){
          memcpy(pC->pData, pTos->z, pC->nData);
        }


      }
      pC->nullRow = 0;
    }else{
      rc = sqlite3BtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
    }
    pC->recnoIsValid = 0;
    pC->deferredMoveto = 0;







|



>
>







3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
      sqliteFree(pC->pData);
      pC->iKey = iKey;
      pC->nData = pTos->n;
      if( pTos->flags & MEM_Dyn ){
        pC->pData = pTos->z;
        pTos->flags = MEM_Null;
      }else{
        pC->pData = sqliteMallocRaw( pC->nData+2 );
        if( pC->pData ){
          memcpy(pC->pData, pTos->z, pC->nData);
        }
        pC->pData[pC->nData] = 0;
        pC->pData[pC->nData+1] = 0;
      }
      pC->nullRow = 0;
    }else{
      rc = sqlite3BtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
    }
    pC->recnoIsValid = 0;
    pC->deferredMoveto = 0;
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
  aRoot[j] = 0;
  popStack(&pTos, nRoot);
  pTos++;
  z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
  if( z==0 || z[0]==0 ){
    if( z ) sqliteFree(z);
    pTos->z = "ok";
    pTos->n = 3;
    pTos->flags = MEM_Str | MEM_Static;
  }else{
    pTos->z = z;
    pTos->n = strlen(z) + 1;
    pTos->flags = MEM_Str | MEM_Dyn;
  }
  if( db->enc!=TEXT_Utf8 ){
    SetEncodingFlags(pTos, TEXT_Utf8);
    SetEncoding(pTos, encToFlags(db->enc)|MEM_Term);
  }
  sqliteFree(aRoot);
  break;
}

/* Opcode: ListWrite * * *
**
** Write the integer on the top of the stack







|
|


|
|

|
<
|
<







3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939

3940

3941
3942
3943
3944
3945
3946
3947
  aRoot[j] = 0;
  popStack(&pTos, nRoot);
  pTos++;
  z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
  if( z==0 || z[0]==0 ){
    if( z ) sqliteFree(z);
    pTos->z = "ok";
    pTos->n = 2;
    pTos->flags = MEM_Str | MEM_Static | MEM_Term;
  }else{
    pTos->z = z;
    pTos->n = strlen(z);
    pTos->flags = MEM_Str | MEM_Dyn | MEM_Term;
  }
  pTos->enc = TEXT_Utf8;

  sqlite3VdbeChangeEncoding(pTos, db->enc);

  sqliteFree(aRoot);
  break;
}

/* Opcode: ListWrite * * *
**
** Write the integer on the top of the stack
4415
4416
4417
4418
4419
4420
4421

4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438

4439
4440
4441
4442
4443
4444
4445

/* Opcode: FileColumn P1 * *
**
** Push onto the stack the P1-th column of the most recently read line
** from the input file.
*/
case OP_FileColumn: {

  int i = pOp->p1;
  char *z;
  assert( i>=0 && i<p->nField );
  if( p->azField ){
    z = p->azField[i];
  }else{
    z = 0;
  }
  pTos++;
  if( z ){
    pTos->n = strlen(z) + 1;
    pTos->z = z;
    pTos->flags = MEM_Utf8 | MEM_Str | MEM_Ephem | MEM_Term;
    SetEncoding(pTos, encToFlags(db->enc)|MEM_Term);
  }else{
    pTos->flags = MEM_Null;
  }

  break;
}

/* Opcode: MemStore P1 P2 *
**
** Write the top of the stack into memory location P1.
** P1 should be a small integer since space is allocated







>












|
<



>







4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362

4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373

/* Opcode: FileColumn P1 * *
**
** Push onto the stack the P1-th column of the most recently read line
** from the input file.
*/
case OP_FileColumn: {
#if 0   /* Will be deleting this soon */
  int i = pOp->p1;
  char *z;
  assert( i>=0 && i<p->nField );
  if( p->azField ){
    z = p->azField[i];
  }else{
    z = 0;
  }
  pTos++;
  if( z ){
    pTos->n = strlen(z) + 1;
    pTos->z = z;
    pTos->flags = MEM_Str | MEM_Ephem | MEM_Term;

  }else{
    pTos->flags = MEM_Null;
  }
#endif
  break;
}

/* Opcode: MemStore P1 P2 *
**
** Write the top of the stack into memory location P1.
** P1 should be a small integer since space is allocated
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485


4486
4487
4488
4489
4490
4491
4492
  pMem = &p->aMem[i];
  Release(pMem);
  *pMem = *pTos;
  if( pMem->flags & MEM_Dyn ){
    if( pOp->p2 ){
      pTos->flags = MEM_Null;
    }else{
      pMem->z = sqliteMallocRaw( pMem->n );
      if( pMem->z==0 ) goto no_mem;
      memcpy(pMem->z, pTos->z, pMem->n);


    }
  }else if( pMem->flags & MEM_Short ){
    pMem->z = pMem->zShort;
  }
  if( pOp->p2 ){
    Release(pTos);
    pTos--;







|


>
>







4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
  pMem = &p->aMem[i];
  Release(pMem);
  *pMem = *pTos;
  if( pMem->flags & MEM_Dyn ){
    if( pOp->p2 ){
      pTos->flags = MEM_Null;
    }else{
      pMem->z = sqliteMallocRaw( pMem->n+2 );
      if( pMem->z==0 ) goto no_mem;
      memcpy(pMem->z, pTos->z, pMem->n);
      memcpy(&pMem->z[pMem->n], "\000", 2);
      pMem->flags |= MEM_Term;
    }
  }else if( pMem->flags & MEM_Short ){
    pMem->z = pMem->zShort;
  }
  if( pOp->p2 ){
    Release(pTos);
    pTos--;
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
  assert( pRec>=p->aStack );

  apVal = p->apArg;
  assert( apVal || n==0 );

  for(i=0; i<n; i++, pRec++){
      apVal[i] = pRec;
      SetEncodingFlags(pRec, db->enc);
  }
  i = pTos->i;
  assert( i>=0 && i<p->agg.nMem );
  ctx.pFunc = (FuncDef*)pOp->p3;
  pMem = &p->agg.pCurrent->aMem[i];
  ctx.s.z = pMem->zShort;  /* Space used for small aggregate contexts */
  ctx.pAgg = pMem->z;







<







4517
4518
4519
4520
4521
4522
4523

4524
4525
4526
4527
4528
4529
4530
  assert( pRec>=p->aStack );

  apVal = p->apArg;
  assert( apVal || n==0 );

  for(i=0; i<n; i++, pRec++){
      apVal[i] = pRec;

  }
  i = pTos->i;
  assert( i>=0 && i<p->agg.nMem );
  ctx.pFunc = (FuncDef*)pOp->p3;
  pMem = &p->agg.pCurrent->aMem[i];
  ctx.s.z = pMem->zShort;  /* Space used for small aggregate contexts */
  ctx.pAgg = pMem->z;
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
  Release(pMem);
  *pMem = *pTos;
  if( pMem->flags & MEM_Dyn ){
    pTos->flags = MEM_Null;
  }else if( pMem->flags & MEM_Short ){
    pMem->z = pMem->zShort;
  }
  SetEncodingFlags(pMem, db->enc);
  SetEncoding(pMem, MEM_Utf8|MEM_Term);
  Release(pTos);
  pTos--;
  break;
}

/* Opcode: AggGet * P2 *
**
** Push a new entry onto the stack which is a copy of the P2-th field







<
<
<







4594
4595
4596
4597
4598
4599
4600



4601
4602
4603
4604
4605
4606
4607
  Release(pMem);
  *pMem = *pTos;
  if( pMem->flags & MEM_Dyn ){
    pTos->flags = MEM_Null;
  }else if( pMem->flags & MEM_Short ){
    pMem->z = pMem->zShort;
  }



  pTos--;
  break;
}

/* Opcode: AggGet * P2 *
**
** Push a new entry onto the stack which is a copy of the P2-th field
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
  pMem = &pFocus->aMem[i];
  *pTos = *pMem;
  if( pTos->flags & (MEM_Str|MEM_Blob) ){
    pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
    pTos->flags |= MEM_Ephem;
  }
  if( pTos->flags&MEM_Str ){
    SetEncodingFlags(pTos, TEXT_Utf8);
    SetEncoding(pTos, encToFlags(db->enc)|MEM_Term);
  }
  break;
}

/* Opcode: AggNext * P2 *
**
** Make the next aggregate value the current aggregate.  The prior







<
|







4618
4619
4620
4621
4622
4623
4624

4625
4626
4627
4628
4629
4630
4631
4632
  pMem = &pFocus->aMem[i];
  *pTos = *pMem;
  if( pTos->flags & (MEM_Str|MEM_Blob) ){
    pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
    pTos->flags |= MEM_Ephem;
  }
  if( pTos->flags&MEM_Str ){

    sqlite3VdbeChangeEncoding(pTos, db->enc);
  }
  break;
}

/* Opcode: AggNext * P2 *
**
** Make the next aggregate value the current aggregate.  The prior
4808
4809
4810
4811
4812
4813
4814


4815
4816
4817
4818
4819
4820
4821
        int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
        assert( x!=0 );            /* Strings must define a string subtype */
        assert( (x & (x-1))==0 );  /* Only one string subtype can be defined */
        assert( pTos->z!=0 );      /* Strings must have a value */
        /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
        assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort );
        assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort );


      }else{
        /* Cannot define a string subtype for non-string objects */
        assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
      }
      /* MEM_Null excludes all other types */
      assert( (pTos->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
              || (pTos->flags&MEM_Null)==0 );







>
>







4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
        int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
        assert( x!=0 );            /* Strings must define a string subtype */
        assert( (x & (x-1))==0 );  /* Only one string subtype can be defined */
        assert( pTos->z!=0 );      /* Strings must have a value */
        /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
        assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort );
        assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort );
        assert( (pTos->flags & MEM_Term)==0 || (pTos->flags & MEM_Str)==0
                 || db->enc!=TEXT_Utf8 || strlen(pTos->z)==pTos->n );
      }else{
        /* Cannot define a string subtype for non-string objects */
        assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
      }
      /* MEM_Null excludes all other types */
      assert( (pTos->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
              || (pTos->flags&MEM_Null)==0 );
Changes to src/vdbeInt.h.
348
349
350
351
352
353
354
355
356
357
358
359
360

361
362
363
364
365
int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int*);
int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
int sqlite3VdbeKeyCompare(void*,int,const void*,int, const void*);
int sqlite3VdbeRowCompare(void*,int,const void*,int, const void*);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
int sqlite3VdbeSetEncoding(Mem *, u8);
int sqlite3VdbeMemCopy(Mem*, const Mem*);
int sqlite3VdbeMemNulTerminate(Mem *);
int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, int);
int sqlite3VdbeMemSetInt64(Mem*, long long int);
int sqlite3VdbeMemSetDouble(Mem*, double);

int sqlite3VdbeMemMakeWriteable(Mem*);
int sqlite3VdbeMemDynamicify(Mem*);
int sqlite3VdbeMemStringify(Mem*);
int sqlite3VdbeMemIntegerify(Mem*);
int sqlite3VdbeMemRealify(Mem*);







|

|

|
|
>


|


348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int*);
int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
int sqlite3VdbeKeyCompare(void*,int,const void*,int, const void*);
int sqlite3VdbeRowCompare(void*,int,const void*,int, const void*);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
int sqlite3VdbeChangeEncoding(Mem *, int);
int sqlite3VdbeMemCopy(Mem*, const Mem*);
int sqlite3VdbeMemNulTerminate(Mem*);
int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, int);
void sqlite3VdbeMemSetInt64(Mem*, long long int);
void sqlite3VdbeMemSetDouble(Mem*, double);
void sqlite3VdbeMemSetNull(Mem*);
int sqlite3VdbeMemMakeWriteable(Mem*);
int sqlite3VdbeMemDynamicify(Mem*);
int sqlite3VdbeMemStringify(Mem*, int);
int sqlite3VdbeMemIntegerify(Mem*);
int sqlite3VdbeMemRealify(Mem*);
Changes to src/vdbeapi.c.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96


97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
  if( (p->flags & MEM_Blob)!=0 || sqlite3_value_text16(pVal) ){
    return ((Mem *)pVal)->n;
  }
  return 0;
}
double sqlite3_value_double(sqlite3_value *pVal){
  Mem *pMem = (Mem *)pVal;
  Realify(pMem, flagsToEnc(pMem->flags));
  return pMem->r;
}
int sqlite3_value_int(sqlite3_value *pVal){
  Mem *pMem = (Mem *)pVal;
  Integerify(pMem, flagsToEnc(pMem->flags));
  return (int)pVal->i;
}
long long int sqlite3_value_int64(sqlite3_value *pVal){
  Mem *pMem = (Mem *)pVal;
  Integerify(pMem, flagsToEnc(pMem->flags));
  return pVal->i;
}
const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
  if( pVal->flags&MEM_Null ){
    /* For a NULL return a NULL Pointer */
    return 0;
  }

  if( pVal->flags&MEM_Str ){
    /* If there is already a string representation, make sure it is in
    ** encoded in UTF-8.
    */
    SetEncoding(pVal, MEM_Utf8|MEM_Term);
  }else if( !(pVal->flags&MEM_Blob) ){
    /* Otherwise, unless this is a blob, convert it to a UTF-8 string */
    Stringify(pVal, TEXT_Utf8);
  }

  return pVal->z;
}
const void *sqlite3_value_text16(sqlite3_value* pVal){
  if( pVal->flags&MEM_Null ){
    /* For a NULL return a NULL Pointer */
    return 0;
  }

  if( pVal->flags&MEM_Str ){
    /* If there is already a string representation, make sure it is in
    ** encoded in UTF-16 machine byte order.
    */
    SetEncoding(pVal, encToFlags(TEXT_Utf16)|MEM_Term);
  }else if( !(pVal->flags&MEM_Blob) ){
    /* Otherwise, unless this is a blob, convert it to a UTF-16 string */
    Stringify(pVal, TEXT_Utf16);
  }

  return (const void *)(pVal->z);
}
int sqlite3_value_type(sqlite3_value* pVal){


  int f = ((Mem *)pVal)->flags;
  if( f&MEM_Null ){
    return SQLITE3_NULL;
  }
  if( f&MEM_Int ){
    return SQLITE3_INTEGER;
  }
  if( f&MEM_Real ){
    return SQLITE3_FLOAT;
  }
  if( f&MEM_Str ){
    return SQLITE3_TEXT;
  }
  if( f&MEM_Blob ){
    return SQLITE3_BLOB;
  }
  assert(0);

}

/**************************** sqlite3_result_  *******************************
** The following routines are used by user-defined functions to specify
** the function result.
*/
void sqlite3_result_blob(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  int eCopy
){
  assert( n>0 );
  MemSetStr(&pCtx->s, z, n, 0, eCopy);
}
void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
  sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
}
void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
  pCtx->isError = 1;
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, TEXT_Utf8, 1);
}
void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
  pCtx->isError = 1;
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, TEXT_Utf16, 1);
}
void sqlite3_result_int32(sqlite3_context *pCtx, int iVal){
  sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
}
void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
  sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
}
void sqlite3_result_null(sqlite3_context *pCtx){
  sqilte3VdbeMemSetNull(&pCtx->s);
}
void sqlite3_result_text(
  sqlite3_context *pCtx, 
  const char *z, 
  int n,
  int eCopy
){
  MemSetStr(&pCtx->s, z, n, TEXT_Utf8, eCopy);
}
void sqlite3_result_text16(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  int eCopy
){
  MemSetStr(&pCtx->s, z, n, TEXT_Utf16, eCopy);
}
void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
  sqlite3VdbeMemCopy(&pCtx->s, pValue);
}


/*







|




|




|












|


|














|


|





>
>

















>













|












|






|







|







|







40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
  if( (p->flags & MEM_Blob)!=0 || sqlite3_value_text16(pVal) ){
    return ((Mem *)pVal)->n;
  }
  return 0;
}
double sqlite3_value_double(sqlite3_value *pVal){
  Mem *pMem = (Mem *)pVal;
  sqlite3VdbeMemRealify(pMem);
  return pMem->r;
}
int sqlite3_value_int(sqlite3_value *pVal){
  Mem *pMem = (Mem *)pVal;
  sqlite3VdbeMemIntegerify(pMem);
  return (int)pVal->i;
}
long long int sqlite3_value_int64(sqlite3_value *pVal){
  Mem *pMem = (Mem *)pVal;
  sqlite3VdbeMemIntegerify(pMem);
  return pVal->i;
}
const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
  if( pVal->flags&MEM_Null ){
    /* For a NULL return a NULL Pointer */
    return 0;
  }

  if( pVal->flags&MEM_Str ){
    /* If there is already a string representation, make sure it is in
    ** encoded in UTF-8.
    */
    sqlite3VdbeChangeEncoding(pVal, TEXT_Utf8);
  }else if( !(pVal->flags&MEM_Blob) ){
    /* Otherwise, unless this is a blob, convert it to a UTF-8 string */
    sqlite3VdbeMemStringify(pVal, TEXT_Utf8);
  }

  return pVal->z;
}
const void *sqlite3_value_text16(sqlite3_value* pVal){
  if( pVal->flags&MEM_Null ){
    /* For a NULL return a NULL Pointer */
    return 0;
  }

  if( pVal->flags&MEM_Str ){
    /* If there is already a string representation, make sure it is in
    ** encoded in UTF-16 machine byte order.
    */
    sqlite3VdbeChangeEncoding(pVal, TEXT_Utf16);
  }else if( !(pVal->flags&MEM_Blob) ){
    /* Otherwise, unless this is a blob, convert it to a UTF-16 string */
    sqlite3VdbeMemStringify(pVal, TEXT_Utf16);
  }

  return (const void *)(pVal->z);
}
int sqlite3_value_type(sqlite3_value* pVal){
  return pVal->type;
#if 0
  int f = ((Mem *)pVal)->flags;
  if( f&MEM_Null ){
    return SQLITE3_NULL;
  }
  if( f&MEM_Int ){
    return SQLITE3_INTEGER;
  }
  if( f&MEM_Real ){
    return SQLITE3_FLOAT;
  }
  if( f&MEM_Str ){
    return SQLITE3_TEXT;
  }
  if( f&MEM_Blob ){
    return SQLITE3_BLOB;
  }
  assert(0);
#endif
}

/**************************** sqlite3_result_  *******************************
** The following routines are used by user-defined functions to specify
** the function result.
*/
void sqlite3_result_blob(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  int eCopy
){
  assert( n>0 );
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, eCopy);
}
void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
  sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
}
void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
  pCtx->isError = 1;
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, TEXT_Utf8, 1);
}
void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
  pCtx->isError = 1;
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, TEXT_Utf16, 1);
}
void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
  sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
}
void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
  sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
}
void sqlite3_result_null(sqlite3_context *pCtx){
  sqlite3VdbeMemSetNull(&pCtx->s);
}
void sqlite3_result_text(
  sqlite3_context *pCtx, 
  const char *z, 
  int n,
  int eCopy
){
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, TEXT_Utf8, eCopy);
}
void sqlite3_result_text16(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  int eCopy
){
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, TEXT_Utf16, eCopy);
}
void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
  sqlite3VdbeMemCopy(&pCtx->s, pValue);
}


/*
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
  return SQLITE_OK;
}

/*
** Bind a blob value to an SQL statement variable.
*/
int sqlite3_bind_blob(
  sqlite3_stmt *p, 
  int i, 
  const void *zData, 
  int nData, 
  int eCopy
){
  Vdbe *p = (Vdbe *)pStmt;
  Mem *pVar;
  int rc;

  rc = vdbeUnbind(p, i);
  if( rc ){
    return rc;
  }
  pVar = &p->apVar[i-1];
  rc = sqlite3VdbeMemSetStr(pVar, zData, nData, 0, eCopy);
  return rc;
}
int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
  Mem *pVar;
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
    sqlite3VdbeMemSetReal(&p->apVar[i-1], rValue);
  }
  return SQLITE_OK;
}
int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
  return sqlite3_bind_int64(p, i, (long long int)iValue);
}
int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, long long int iValue){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
    sqlite3VdbeMemSetInt(&p->apVar[i-1], iValue);
  }
  return rc;
}
int sqlite3_bind_null(sqlite3_stmt* p, int i){
  return vdbeUnbind((Vdbe *)p, i);
}
int sqlite3_bind_text( 







|




















<


|











|







441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
  return SQLITE_OK;
}

/*
** Bind a blob value to an SQL statement variable.
*/
int sqlite3_bind_blob(
  sqlite3_stmt *pStmt, 
  int i, 
  const void *zData, 
  int nData, 
  int eCopy
){
  Vdbe *p = (Vdbe *)pStmt;
  Mem *pVar;
  int rc;

  rc = vdbeUnbind(p, i);
  if( rc ){
    return rc;
  }
  pVar = &p->apVar[i-1];
  rc = sqlite3VdbeMemSetStr(pVar, zData, nData, 0, eCopy);
  return rc;
}
int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;

  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
    sqlite3VdbeMemSetDouble(&p->apVar[i-1], rValue);
  }
  return SQLITE_OK;
}
int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
  return sqlite3_bind_int64(p, i, (long long int)iValue);
}
int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, long long int iValue){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
    sqlite3VdbeMemSetInt64(&p->apVar[i-1], iValue);
  }
  return rc;
}
int sqlite3_bind_null(sqlite3_stmt* p, int i){
  return vdbeUnbind((Vdbe *)p, i);
}
int sqlite3_bind_text( 
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    return rc;
  }
  pVar = &p->apVar[i-1];
  rc = sqlite3VdbeMemSetStr(pVar, zData, nData, TEXT_Utf8, eCopy);
  if( rc ){
    return rc;
  }
  rc = sqlite3VdbeSetEncoding(pVar, p->db->enc);
  return rc;
}
int sqlite3_bind_text16(
  sqlite3_stmt *pStmt, 
  int i, 
  const void *zData, 
  int nData, 
  int eCopy
){
  Vdbe *p = (Vdbe *)pStmt;
  Mem *pVar;
  int rc;

  rc = vdbeUnbind(p, i);
  if( rc ){
    return rc;
  }
  Mem *pVar = &p->apVar[i-1];

  /* There may or may not be a byte order mark at the start of the UTF-16.
  ** Either way set 'txt_enc' to the TEXT_Utf16* value indicating the 
  ** actual byte order used by this string. If the string does happen
  ** to contain a BOM, then move zData so that it points to the first
  ** byte after the BOM.
  */
  txt_enc = sqlite3UtfReadBom(zData, nData);
  if( txt_enc ){
    zData = (void *)(((u8 *)zData) + 2);
    nData -= 2;
  }else{
    txt_enc = SQLITE3_BIGENDIAN?TEXT_Utf16be:TEXT_Utf16le;
  }
  rc = sqlite3VdbeMemSetStr(pVar, zData, nData, txt_enc, eCopy);
  if( rc ){
    return rc;
  }
  rc = sqlite3VdbeSetEncoding(pVar, p->db->enc);
  return rc;
}







|











|





|


















|


503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    return rc;
  }
  pVar = &p->apVar[i-1];
  rc = sqlite3VdbeMemSetStr(pVar, zData, nData, TEXT_Utf8, eCopy);
  if( rc ){
    return rc;
  }
  rc = sqlite3VdbeChangeEncoding(pVar, p->db->enc);
  return rc;
}
int sqlite3_bind_text16(
  sqlite3_stmt *pStmt, 
  int i, 
  const void *zData, 
  int nData, 
  int eCopy
){
  Vdbe *p = (Vdbe *)pStmt;
  Mem *pVar;
  int rc, txt_enc;

  rc = vdbeUnbind(p, i);
  if( rc ){
    return rc;
  }
  pVar = &p->apVar[i-1];

  /* There may or may not be a byte order mark at the start of the UTF-16.
  ** Either way set 'txt_enc' to the TEXT_Utf16* value indicating the 
  ** actual byte order used by this string. If the string does happen
  ** to contain a BOM, then move zData so that it points to the first
  ** byte after the BOM.
  */
  txt_enc = sqlite3UtfReadBom(zData, nData);
  if( txt_enc ){
    zData = (void *)(((u8 *)zData) + 2);
    nData -= 2;
  }else{
    txt_enc = SQLITE3_BIGENDIAN?TEXT_Utf16be:TEXT_Utf16le;
  }
  rc = sqlite3VdbeMemSetStr(pVar, zData, nData, txt_enc, eCopy);
  if( rc ){
    return rc;
  }
  rc = sqlite3VdbeChangeEncoding(pVar, p->db->enc);
  return rc;
}
Changes to src/vdbeaux.c.
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
    }
    rc = SQLITE_ERROR;
    sqlite3SetString(&p->zErrMsg, sqlite3_error_string(p->rc), (char*)0);
  }else{
    Op *pOp = &p->aOp[i];
    Mem *pMem = p->aStack;
    pMem->flags = MEM_Int;
    pMem->type = SQLITE3_INT;
    pMem->i = i;                                /* Program counter */
    pMem++;

    pMem->flags = MEM_Static|MEM_Str|MEM_Term;
    pMem->z = sqlite3OpcodeNames[pOp->opcode];  /* Opcode */
    pMem->n = strlen(pMem->z);
    pMem->type = SQLITE3_TEXT;
    pMem->enc = TEXT_Utf8;
    pMem++;

    pMem->flags = MEM_Int;
    pMem->i = pOp->p1;                          /* P1 */
    pMem->type = SQLITE3_INT;
    pMem++;

    pMem->flags = MEM_Int;
    pMem->i = pOp->p2;                          /* P2 */
    pMem->type = SQLITE_INT;
    pMem++;

    pMem->flags = MEM_Short|MEM_Str|MEM_Term;   /* P3 */
    pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort));
    pMem->type = SQLITE_TEXT;
    pMem->enc = TEXT_Utf8;

    p->nResColumn = 5;
    p->pTos = pMem;
    p->rc = SQLITE_OK;
    p->resOnStack = 1;
    rc = SQLITE_ROW;







|












|




|




|







567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
    }
    rc = SQLITE_ERROR;
    sqlite3SetString(&p->zErrMsg, sqlite3_error_string(p->rc), (char*)0);
  }else{
    Op *pOp = &p->aOp[i];
    Mem *pMem = p->aStack;
    pMem->flags = MEM_Int;
    pMem->type = SQLITE3_INTEGER;
    pMem->i = i;                                /* Program counter */
    pMem++;

    pMem->flags = MEM_Static|MEM_Str|MEM_Term;
    pMem->z = sqlite3OpcodeNames[pOp->opcode];  /* Opcode */
    pMem->n = strlen(pMem->z);
    pMem->type = SQLITE3_TEXT;
    pMem->enc = TEXT_Utf8;
    pMem++;

    pMem->flags = MEM_Int;
    pMem->i = pOp->p1;                          /* P1 */
    pMem->type = SQLITE3_INTEGER;
    pMem++;

    pMem->flags = MEM_Int;
    pMem->i = pOp->p2;                          /* P2 */
    pMem->type = SQLITE3_INTEGER;
    pMem++;

    pMem->flags = MEM_Short|MEM_Str|MEM_Term;   /* P3 */
    pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort));
    pMem->type = SQLITE3_TEXT;
    pMem->enc = TEXT_Utf8;

    p->nResColumn = 5;
    p->pTos = pMem;
    p->rc = SQLITE_OK;
    p->resOnStack = 1;
    rc = SQLITE_ROW;
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
    for(i=0; i<p->nResColumn; i++){
      p->aColName[i].flags = MEM_Null;
    }
  }

  pColName = &(p->aColName[idx]);
  if( N==0 ){
    rc = MemSetStr(pColName, zName, -1, TEXT_Utf8, 1);
  }else{
    rc = MemSetStr(pColName, zName, N, TEXT_Utf8, N>0);
  }
  if( rc==SQLITE_OK && N==P3_DYNAMIC ){
    pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
  }
  return rc;
}








|

|







882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
    for(i=0; i<p->nResColumn; i++){
      p->aColName[i].flags = MEM_Null;
    }
  }

  pColName = &(p->aColName[idx]);
  if( N==0 ){
    rc = sqlite3VdbeMemSetStr(pColName, zName, -1, TEXT_Utf8, 1);
  }else{
    rc = sqlite3VdbeMemSetStr(pColName, zName, N, TEXT_Utf8, N>0);
  }
  if( rc==SQLITE_OK && N==P3_DYNAMIC ){
    pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
  }
  return rc;
}

Changes to src/vdbemem.c.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
** desiredEnc.
**
** SQLITE_OK is returned if the conversion is successful (or not required).
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
** between formats.
*/
int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
  u8 oldEnd;    /* 

  /* If this is not a string, or if it is a string but the encoding is
  ** already correct, do nothing. */
  if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
    return SQLITE_OK;
  }

  if( pMem->enc==TEXT_Utf8 || desiredEnd==TEXT_Utf8 ){
    /* If the current encoding does not match the desired encoding, then
    ** we will need to do some translation between encodings.
    */
    char *z;
    int n;
    int rc = sqlite3utfTranslate(pMem->z, pMem->n, pMem->enc,
                                 (void **)&z, &n, desiredEnd);
    if( rc!=SQLITE_OK ){
      return rc;
    }
  
    /* Result of sqlite3utfTranslate is currently always dynamically
    ** allocated and nul terminated. This might be altered as a performance
    ** enhancement later.
    */
    pMem->z = z;
    pMem->n = n;
    pMem->flags &= ~(MEM_Ephem | MEM_Short | MEM_Static);
    pMem->flags |= MEM_Str | MEM_Dyn | MEM_Term;
  }else{
    /* Must be translating between UTF-16le and UTF-16be. */
    int i;
    u8 *pFrom, *pTo;
    sqlite3VdbeMemMakeWritable(pMem);
    for(i=0, pFrom=pMem->z, pTo=&pMem->z[1]; i<pMem->n; i+=2, pFrom++, pTo++){
      u8 temp = *pFrom;
      *pFrom = *pTo;
      *pTo = temp;
    }
  }
  pMem->enc = desiredEnc;
  return SQLITE_OK;
}

/*
** Make the given Mem object MEM_Dyn.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemMakeDynamicify(Mem *pMem){
  int n;
  u8 *z;
  if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){
    return SQLITE_OK;
  }
  assert( (pMem->flags & MEM_Dyn)==0 );
  assert( pMem->flags & (MEM_Str|MEM_Blob) );
  z = sqliteMallocRaw( n+2 )
  if( z==0 ){
    return SQLITE_NOMEM;
  }
  pMem->flags |= MEM_Dyn|MEM_Term;
  memcpy(z, pMem->z, n );
  z[n] = 0;
  z[n+1] = 0;
  pMem->z = z;
  pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short);

}

/*
** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
** of the Mem.z[] array can be modified.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemMakeWritable(Mem *pMem){
  int n;
  u8 *z;
  if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){
    return SQLITE_OK;
  }
  assert( (pMem->flags & MEM_Dyn)==0 );
  assert( pMem->flags & (MEM_Str|MEM_Blob) );
  if( (n = pMem->n)+2<sizeof(pMem->zShort) ){
    z = pMem->zShort;
    pMem->flags |= MEM_Short|MEM_Term;
  }else{
    z = sqliteMallocRaw( n+2 )
    if( z==0 ){
      return SQLITE_NOMEM;
    }
    pMem->flags |= MEM_Dyn|MEM_Term;
  }
  memcpy(z, pMem->z, n );
  z[n] = 0;
  z[n+1] = 0;
  pMem->z = z;
  pMem->flags &= ~(MEM_Ephem|MEM_Static);

}

/*
** Make sure the given Mem is \u0000 terminated.
*/
int sqlite3VdbeMemNulTerminate(Mem *pMem){
  if( (pMem->flags & MEM_Term)!=0 || pMem->flags & (MEM_Str|MEM_Blob))==0 ){
    return SQLITE_OK;   /* Nothing to do */
  }
  /* Only static or ephemeral strings can be unterminated */
  assert( (pMem->flags & (MEM_Static|MEM_Ephem))!=0 );
  sqlite3VdbeMemMakeWriteable(pMem);
}

/*
** Add MEM_Str to the set of representations for the given Mem.
** A NULL is converted into an empty string.  Numbers are converted
** using sqlite3_snprintf().  Converting a BLOB to a string is a
** no-op.







<
<






|






|
















|















|







|









>








|











|










>






|




|







31
32
33
34
35
36
37


38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
** desiredEnc.
**
** SQLITE_OK is returned if the conversion is successful (or not required).
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
** between formats.
*/
int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){


  /* If this is not a string, or if it is a string but the encoding is
  ** already correct, do nothing. */
  if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
    return SQLITE_OK;
  }

  if( pMem->enc==TEXT_Utf8 || desiredEnc==TEXT_Utf8 ){
    /* If the current encoding does not match the desired encoding, then
    ** we will need to do some translation between encodings.
    */
    char *z;
    int n;
    int rc = sqlite3utfTranslate(pMem->z, pMem->n, pMem->enc,
                                 (void **)&z, &n, desiredEnc);
    if( rc!=SQLITE_OK ){
      return rc;
    }
  
    /* Result of sqlite3utfTranslate is currently always dynamically
    ** allocated and nul terminated. This might be altered as a performance
    ** enhancement later.
    */
    pMem->z = z;
    pMem->n = n;
    pMem->flags &= ~(MEM_Ephem | MEM_Short | MEM_Static);
    pMem->flags |= MEM_Str | MEM_Dyn | MEM_Term;
  }else{
    /* Must be translating between UTF-16le and UTF-16be. */
    int i;
    u8 *pFrom, *pTo;
    sqlite3VdbeMemMakeWriteable(pMem);
    for(i=0, pFrom=pMem->z, pTo=&pMem->z[1]; i<pMem->n; i+=2, pFrom++, pTo++){
      u8 temp = *pFrom;
      *pFrom = *pTo;
      *pTo = temp;
    }
  }
  pMem->enc = desiredEnc;
  return SQLITE_OK;
}

/*
** Make the given Mem object MEM_Dyn.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemDynamicify(Mem *pMem){
  int n;
  u8 *z;
  if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){
    return SQLITE_OK;
  }
  assert( (pMem->flags & MEM_Dyn)==0 );
  assert( pMem->flags & (MEM_Str|MEM_Blob) );
  z = sqliteMallocRaw( n+2 );
  if( z==0 ){
    return SQLITE_NOMEM;
  }
  pMem->flags |= MEM_Dyn|MEM_Term;
  memcpy(z, pMem->z, n );
  z[n] = 0;
  z[n+1] = 0;
  pMem->z = z;
  pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short);
  return SQLITE_OK;
}

/*
** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
** of the Mem.z[] array can be modified.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
  int n;
  u8 *z;
  if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){
    return SQLITE_OK;
  }
  assert( (pMem->flags & MEM_Dyn)==0 );
  assert( pMem->flags & (MEM_Str|MEM_Blob) );
  if( (n = pMem->n)+2<sizeof(pMem->zShort) ){
    z = pMem->zShort;
    pMem->flags |= MEM_Short|MEM_Term;
  }else{
    z = sqliteMallocRaw( n+2 );
    if( z==0 ){
      return SQLITE_NOMEM;
    }
    pMem->flags |= MEM_Dyn|MEM_Term;
  }
  memcpy(z, pMem->z, n );
  z[n] = 0;
  z[n+1] = 0;
  pMem->z = z;
  pMem->flags &= ~(MEM_Ephem|MEM_Static);
  return SQLITE_OK;
}

/*
** Make sure the given Mem is \u0000 terminated.
*/
int sqlite3VdbeMemNulTerminate(Mem *pMem){
  if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & (MEM_Str|MEM_Blob))==0 ){
    return SQLITE_OK;   /* Nothing to do */
  }
  /* Only static or ephemeral strings can be unterminated */
  assert( (pMem->flags & (MEM_Static|MEM_Ephem))!=0 );
  return sqlite3VdbeMemMakeWriteable(pMem);
}

/*
** Add MEM_Str to the set of representations for the given Mem.
** A NULL is converted into an empty string.  Numbers are converted
** using sqlite3_snprintf().  Converting a BLOB to a string is a
** no-op.
182
183
184
185
186
187
188
189
190
191
192
193
194
195









196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    if( fg & MEM_Real ){
      sqlite3_snprintf(NBFS, z, "%.15g", pMem->r);
    }else{
      assert( fg & MEM_Int );
      sqlite3_snprintf(NBFS, z, "%lld", pMem->i);
    }
    pMem->n = strlen(z);
    pMem->z = n;
    pMem->enc = TEXT_Utf8;
    pMem->flags |= MEM_Str | MEM_Short | MEM_Term;
    sqlite3VdbeMemChangeEncoding(pMem, enc);
  }
  return rc;
}










/*
** Convert the Mem to have representation MEM_Int only.  All
** prior representations are invalidated.  NULL is converted into 0.
*/
int sqlite3VdbeMemIntegerify(Mem *pMem){
  if( pMem->flags & MEM_Int ){
    /* Do nothing */
  }else if( pMem->flags & MEM_Real ){
    pMem->i = (i64)pMem->r;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
    if( sqlite3VdbeChangeEncoding(pMem, TEXT_Utf8)
       || sqlite3VdbeNulTerminate(pMem) ){
      return SQLITE_NOMEM;
    }
    assert( pMem->z );
    sqlite3atoi64(pMem->z, &pMem->i);
  }else{
    pMem->i = 0;
  }
  Release(pMem);
  pMem->flags = MEM_Int;
  pMem->type = SQLITE3_INTEGER;

}

/*
** Add MEM_Real to the set of representations for pMem.  Prior
** prior representations other than MEM_Null retained.  NULL is
** converted into 0.0.
*/
int sqlite3VdbeMemRealify(Mem *pMem){
  if( pMem->flags & MEM_Int ){
    pMem->r = pMem->r;
    pMem->flags |= MEM_Real;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
    if( sqlite3VdbeChangeEncoding(pMem, TEXT_Utf8)
       || sqlite3VdbeNulTerminate(pMem) ){
      return SQLITE_NOMEM;
    }
    assert( pMem->z );
    pMem->r = sqlite3AtoF(pMem->z, 0);
    Release(pMem);
    pMem->flags = MEM_Real;
    pMem->type = SQLITE3_INTEGER;
  }else{
    pMem->r = 0.0;
    pMem->flags = MEM_Real;
    pMem->type = SQLITE3_INTEGER;
  }
}

/*
** Release any memory held by the Mem
*/
static void releaseMem(Mem *p){
  if( p->flags & MEM_Dyn ){
    sqliteFree(p);
  }
}

/*
** Delete any previous value and set the value stored in *pMem to NULL.
*/
void sqlite3VdbeMemSetNull(Mem *pMem){
  releaseMem(pMem);







|


|



>
>
>
>
>
>
>
>
>












|







|


>













|




|

|



|

<
|
<
<
<
<
<
<
<







182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

255







256
257
258
259
260
261
262
    if( fg & MEM_Real ){
      sqlite3_snprintf(NBFS, z, "%.15g", pMem->r);
    }else{
      assert( fg & MEM_Int );
      sqlite3_snprintf(NBFS, z, "%lld", pMem->i);
    }
    pMem->n = strlen(z);
    pMem->z = z;
    pMem->enc = TEXT_Utf8;
    pMem->flags |= MEM_Str | MEM_Short | MEM_Term;
    sqlite3VdbeChangeEncoding(pMem, enc);
  }
  return rc;
}

/*
** Release any memory held by the Mem
*/
static void releaseMem(Mem *p){
  if( p->flags & MEM_Dyn ){
    sqliteFree(p);
  }
}

/*
** Convert the Mem to have representation MEM_Int only.  All
** prior representations are invalidated.  NULL is converted into 0.
*/
int sqlite3VdbeMemIntegerify(Mem *pMem){
  if( pMem->flags & MEM_Int ){
    /* Do nothing */
  }else if( pMem->flags & MEM_Real ){
    pMem->i = (i64)pMem->r;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
    if( sqlite3VdbeChangeEncoding(pMem, TEXT_Utf8)
       || sqlite3VdbeMemNulTerminate(pMem) ){
      return SQLITE_NOMEM;
    }
    assert( pMem->z );
    sqlite3atoi64(pMem->z, &pMem->i);
  }else{
    pMem->i = 0;
  }
  releaseMem(pMem);
  pMem->flags = MEM_Int;
  pMem->type = SQLITE3_INTEGER;
  return SQLITE_OK;
}

/*
** Add MEM_Real to the set of representations for pMem.  Prior
** prior representations other than MEM_Null retained.  NULL is
** converted into 0.0.
*/
int sqlite3VdbeMemRealify(Mem *pMem){
  if( pMem->flags & MEM_Int ){
    pMem->r = pMem->r;
    pMem->flags |= MEM_Real;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
    if( sqlite3VdbeChangeEncoding(pMem, TEXT_Utf8)
       || sqlite3VdbeMemNulTerminate(pMem) ){
      return SQLITE_NOMEM;
    }
    assert( pMem->z );
    pMem->r = sqlite3AtoF(pMem->z, 0);
    releaseMem(pMem);
    pMem->flags = MEM_Real;
    pMem->type = SQLITE3_FLOAT;
  }else{
    pMem->r = 0.0;
    pMem->flags = MEM_Real;
    pMem->type = SQLITE3_FLOAT;
  }

  return SQLITE_OK;







}

/*
** Delete any previous value and set the value stored in *pMem to NULL.
*/
void sqlite3VdbeMemSetNull(Mem *pMem){
  releaseMem(pMem);
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
int sqlite3VdbeMemSetStr(
  Mem *pMem,          /* Memory cell to set to string value */
  const char *z,      /* String pointer */
  int n,              /* Bytes in string, or negative */
  u8 enc,             /* Encoding of z.  0 for BLOBs */
  int eCopy           /* True if this function should make a copy of z */
){
  Mem tmp;

  releaseMem(pMem);
  if( !z ){
    pMem->flags = MEM_Null;
    pMem->type = SQLITE3_NULL;
    return SQLITE_OK;
  }








<
<







306
307
308
309
310
311
312


313
314
315
316
317
318
319
int sqlite3VdbeMemSetStr(
  Mem *pMem,          /* Memory cell to set to string value */
  const char *z,      /* String pointer */
  int n,              /* Bytes in string, or negative */
  u8 enc,             /* Encoding of z.  0 for BLOBs */
  int eCopy           /* True if this function should make a copy of z */
){


  releaseMem(pMem);
  if( !z ){
    pMem->flags = MEM_Null;
    pMem->type = SQLITE3_NULL;
    return SQLITE_OK;
  }

346
347
348
349
350
351
352
353
354

355
356
357
358
359
360
361
      }
      break;

    default:
      assert(0);
  }
  if( eCopy ){
    sqlite3VdbeMemMakeWriteable(pMem);
  }

}

/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating







|

>







346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
      }
      break;

    default:
      assert(0);
  }
  if( eCopy ){
    return sqlite3VdbeMemMakeWriteable(pMem);
  }
  return SQLITE_OK;
}

/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating