SQLite

Check-in [eb07768ae9]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Implement indices that occur in sort order and the LIMIT...OFFSET clause of SELECT statements. (CVS 301)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: eb07768ae93f14bf6c150c1c4329948857a9d01c
User & Date: drh 2001-11-06 04:00:18.000
Context
2001-11-06
14:10
Added support for LIMIT. (CVS 302) (check-in: 177012249a user: drh tags: trunk)
04:00
Implement indices that occur in sort order and the LIMIT...OFFSET clause of SELECT statements. (CVS 301) (check-in: eb07768ae9 user: drh tags: trunk)
2001-11-04
18:32
Increase maximum row size to 1MB. (CVS 300) (check-in: 7dd58fad39 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/parse.y.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30





31
32
33
34
35
36
37
**
*************************************************************************
** This file contains SQLite's grammar for SQL.  Process this file
** using the lemon parser generator to generate C code that runs
** the parser.  Lemon will also generate a header file containing
** numeric codes for all of the tokens.
**
** @(#) $Id: parse.y,v 1.37 2001/10/13 02:59:09 drh Exp $
*/
%token_prefix TK_
%token_type {Token}
%default_type {Token}
%extra_argument {Parse *pParse}
%syntax_error {
  sqliteSetString(&pParse->zErrMsg,"syntax error",0);
  pParse->sErrToken = TOKEN;
}
%name sqliteParser
%include {
#include "sqliteInt.h"
#include "parse.h"





}

// These are extra tokens used by the lexer but never seen by the
// parser.  We put them in a rule so that the parser generator will
// add them to the parse.h output file.
//
%nonassoc END_OF_FILE ILLEGAL SPACE UNCLOSED_STRING COMMENT FUNCTION







|













>
>
>
>
>







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
**
*************************************************************************
** This file contains SQLite's grammar for SQL.  Process this file
** using the lemon parser generator to generate C code that runs
** the parser.  Lemon will also generate a header file containing
** numeric codes for all of the tokens.
**
** @(#) $Id: parse.y,v 1.38 2001/11/06 04:00:18 drh Exp $
*/
%token_prefix TK_
%token_type {Token}
%default_type {Token}
%extra_argument {Parse *pParse}
%syntax_error {
  sqliteSetString(&pParse->zErrMsg,"syntax error",0);
  pParse->sErrToken = TOKEN;
}
%name sqliteParser
%include {
#include "sqliteInt.h"
#include "parse.h"

/*
** A structure for holding two integers
*/
struct twoint { int a,b; };
}

// These are extra tokens used by the lexer but never seen by the
// parser.  We put them in a rule so that the parser generator will
// add them to the parse.h output file.
//
%nonassoc END_OF_FILE ILLEGAL SPACE UNCLOSED_STRING COMMENT FUNCTION
92
93
94
95
96
97
98

99
100
101
102
103
104
105
id(A) ::= VACUUM(X).     {A = X;}
id(A) ::= BEGIN(X).      {A = X;}
id(A) ::= END(X).        {A = X;}
id(A) ::= PRAGMA(X).     {A = X;}
id(A) ::= CLUSTER(X).    {A = X;}
id(A) ::= ID(X).         {A = X;}
id(A) ::= TEMP(X).       {A = X;}


// And "ids" is an identifer-or-string.
//
%type ids {Token}
ids(A) ::= id(X).        {A = X;}
ids(A) ::= STRING(X).    {A = X;}








>







97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
id(A) ::= VACUUM(X).     {A = X;}
id(A) ::= BEGIN(X).      {A = X;}
id(A) ::= END(X).        {A = X;}
id(A) ::= PRAGMA(X).     {A = X;}
id(A) ::= CLUSTER(X).    {A = X;}
id(A) ::= ID(X).         {A = X;}
id(A) ::= TEMP(X).       {A = X;}
id(A) ::= OFFSET(X).     {A = X;}

// And "ids" is an identifer-or-string.
//
%type ids {Token}
ids(A) ::= id(X).        {A = X;}
ids(A) ::= STRING(X).    {A = X;}

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
}
%type joinop {int}
joinop(A) ::= UNION.      {A = TK_UNION;}
joinop(A) ::= UNION ALL.  {A = TK_ALL;}
joinop(A) ::= INTERSECT.  {A = TK_INTERSECT;}
joinop(A) ::= EXCEPT.     {A = TK_EXCEPT;}
oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
                 groupby_opt(P) having_opt(Q) orderby_opt(Z). {
  A = sqliteSelectNew(W,X,Y,P,Q,Z,D);
}

// The "distinct" nonterminal is true (1) if the DISTINCT keyword is
// present and false (0) if it is not.
//
%type distinct {int}
distinct(A) ::= DISTINCT.   {A = 1;}







|
|







181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
}
%type joinop {int}
joinop(A) ::= UNION.      {A = TK_UNION;}
joinop(A) ::= UNION ALL.  {A = TK_ALL;}
joinop(A) ::= INTERSECT.  {A = TK_INTERSECT;}
joinop(A) ::= EXCEPT.     {A = TK_EXCEPT;}
oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
                 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
  A = sqliteSelectNew(W,X,Y,P,Q,Z,D,L.a,L.b);
}

// The "distinct" nonterminal is true (1) if the DISTINCT keyword is
// present and false (0) if it is not.
//
%type distinct {int}
distinct(A) ::= DISTINCT.   {A = 1;}
254
255
256
257
258
259
260








261
262
263
264
265
266
267
groupby_opt(A) ::= .                      {A = 0;}
groupby_opt(A) ::= GROUP BY exprlist(X).  {A = X;}

%type having_opt {Expr*}
%destructor having_opt {sqliteExprDelete($$);}
having_opt(A) ::= .                {A = 0;}
having_opt(A) ::= HAVING expr(X).  {A = X;}









/////////////////////////// The DELETE statement /////////////////////////////
//
cmd ::= DELETE FROM ids(X) where_opt(Y).
    {sqliteDeleteFrom(pParse, &X, Y);}

%type where_opt {Expr*}







>
>
>
>
>
>
>
>







260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
groupby_opt(A) ::= .                      {A = 0;}
groupby_opt(A) ::= GROUP BY exprlist(X).  {A = X;}

%type having_opt {Expr*}
%destructor having_opt {sqliteExprDelete($$);}
having_opt(A) ::= .                {A = 0;}
having_opt(A) ::= HAVING expr(X).  {A = X;}

%type limit_opt {struct twoint}
limit_opt(A) ::= .                  {A.a = -1; A.b = 0;}
limit_opt(A) ::= LIMIT INTEGER(X).  {A.a = atoi(X.z); A.b = 0;}
limit_opt(A) ::= LIMIT INTEGER(X) limit_sep INTEGER(Y). 
                                    {A.a = atoi(X.z); A.b = atoi(Y.z);}
limit_sep ::= OFFSET.
limit_sep ::= COMMA.

/////////////////////////// The DELETE statement /////////////////////////////
//
cmd ::= DELETE FROM ids(X) where_opt(Y).
    {sqliteDeleteFrom(pParse, &X, Y);}

%type where_opt {Expr*}
Changes to src/select.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49


50
51
52
53
54
55
56
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.45 2001/11/01 14:41:34 drh Exp $
*/
#include "sqliteInt.h"

/*
** Allocate a new Select structure and return a pointer to that
** structure.
*/
Select *sqliteSelectNew(
  ExprList *pEList,     /* which columns to include in the result */
  IdList *pSrc,         /* the FROM clause -- which tables to scan */
  Expr *pWhere,         /* the WHERE clause */
  ExprList *pGroupBy,   /* the GROUP BY clause */
  Expr *pHaving,        /* the HAVING clause */
  ExprList *pOrderBy,   /* the ORDER BY clause */
  int isDistinct        /* true if the DISTINCT keyword is present */


){
  Select *pNew;
  pNew = sqliteMalloc( sizeof(*pNew) );
  if( pNew==0 ){
    sqliteExprListDelete(pEList);
    sqliteIdListDelete(pSrc);
    sqliteExprDelete(pWhere);
    sqliteExprListDelete(pGroupBy);
    sqliteExprDelete(pHaving);
    sqliteExprListDelete(pOrderBy);
  }else{
    pNew->pEList = pEList;
    pNew->pSrc = pSrc;
    pNew->pWhere = pWhere;
    pNew->pGroupBy = pGroupBy;
    pNew->pHaving = pHaving;
    pNew->pOrderBy = pOrderBy;
    pNew->isDistinct = isDistinct;
    pNew->op = TK_SELECT;


  }
  return pNew;
}

/*
** Delete the given Select structure and all of its substructures.
*/







|














|
>
>



















>
>







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.46 2001/11/06 04:00:19 drh Exp $
*/
#include "sqliteInt.h"

/*
** Allocate a new Select structure and return a pointer to that
** structure.
*/
Select *sqliteSelectNew(
  ExprList *pEList,     /* which columns to include in the result */
  IdList *pSrc,         /* the FROM clause -- which tables to scan */
  Expr *pWhere,         /* the WHERE clause */
  ExprList *pGroupBy,   /* the GROUP BY clause */
  Expr *pHaving,        /* the HAVING clause */
  ExprList *pOrderBy,   /* the ORDER BY clause */
  int isDistinct,       /* true if the DISTINCT keyword is present */
  int nLimit,           /* LIMIT value.  -1 means not used */
  int nOffset           /* OFFSET value.  -1 means not used */
){
  Select *pNew;
  pNew = sqliteMalloc( sizeof(*pNew) );
  if( pNew==0 ){
    sqliteExprListDelete(pEList);
    sqliteIdListDelete(pSrc);
    sqliteExprDelete(pWhere);
    sqliteExprListDelete(pGroupBy);
    sqliteExprDelete(pHaving);
    sqliteExprListDelete(pOrderBy);
  }else{
    pNew->pEList = pEList;
    pNew->pSrc = pSrc;
    pNew->pWhere = pWhere;
    pNew->pGroupBy = pGroupBy;
    pNew->pHaving = pHaving;
    pNew->pOrderBy = pOrderBy;
    pNew->isDistinct = isDistinct;
    pNew->op = TK_SELECT;
    pNew->nLimit = nLimit;
    pNew->nOffset = nOffset;
  }
  return pNew;
}

/*
** Delete the given Select structure and all of its substructures.
*/
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    sqliteVdbeAddOp(v, OP_MemStore, iParm, 0);
    sqliteVdbeAddOp(v, OP_Goto, 0, iBreak);
  }else

  /* If none of the above, send the data to the callback function.
  */
  {
    sqliteVdbeAddOp(v, OP_Callback, nColumn, 0);
  }
  return 0;
}

/*
** If the inner loop was generated using a non-null pOrderBy argument,
** then the results were placed in a sorter.  After the loop is terminated
** we need to run the sorter and output the results.  The following
** routine generates the code needed to do that.
*/
static void generateSortTail(Vdbe *v, int nColumn){
  int end = sqliteVdbeMakeLabel(v);
  int addr;
  sqliteVdbeAddOp(v, OP_Sort, 0, 0);
  addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end);
  sqliteVdbeAddOp(v, OP_SortCallback, nColumn, 0);
  sqliteVdbeAddOp(v, OP_Goto, 0, addr);
  sqliteVdbeResolveLabel(v, end);
  sqliteVdbeAddOp(v, OP_SortReset, 0, 0);
}

/*
** Generate code that will tell the VDBE how many columns there







|















|







203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    sqliteVdbeAddOp(v, OP_MemStore, iParm, 0);
    sqliteVdbeAddOp(v, OP_Goto, 0, iBreak);
  }else

  /* If none of the above, send the data to the callback function.
  */
  {
    sqliteVdbeAddOp(v, OP_Callback, nColumn, iBreak);
  }
  return 0;
}

/*
** If the inner loop was generated using a non-null pOrderBy argument,
** then the results were placed in a sorter.  After the loop is terminated
** we need to run the sorter and output the results.  The following
** routine generates the code needed to do that.
*/
static void generateSortTail(Vdbe *v, int nColumn){
  int end = sqliteVdbeMakeLabel(v);
  int addr;
  sqliteVdbeAddOp(v, OP_Sort, 0, 0);
  addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end);
  sqliteVdbeAddOp(v, OP_SortCallback, nColumn, end);
  sqliteVdbeAddOp(v, OP_Goto, 0, addr);
  sqliteVdbeResolveLabel(v, end);
  sqliteVdbeAddOp(v, OP_SortReset, 0, 0);
}

/*
** Generate code that will tell the VDBE how many columns there
849
850
851
852
853
854
855










856
857
858
859
860
861
862
    }
  }

  /* Begin generating code.
  */
  v = sqliteGetVdbe(pParse);
  if( v==0 ) return 1;











  /* Identify column names if we will be using in the callback.  This
  ** step is skipped if the output is going to a table or a memory cell.
  */
  if( eDest==SRT_Callback ){
    generateColumnNames(pParse, pTabList, pEList);
  }







>
>
>
>
>
>
>
>
>
>







853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
    }
  }

  /* Begin generating code.
  */
  v = sqliteGetVdbe(pParse);
  if( v==0 ) return 1;

  /* Set the limiter
  */
  if( p->nLimit<=0 ){
    p->nOffset = 0;
  }else{
    if( p->nOffset<0 ) p->nOffset = 0;
    sqliteVdbeAddOp(v, OP_Limit, p->nLimit, p->nOffset);
  }
    

  /* Identify column names if we will be using in the callback.  This
  ** step is skipped if the output is going to a table or a memory cell.
  */
  if( eDest==SRT_Callback ){
    generateColumnNames(pParse, pTabList, pEList);
  }
Changes to src/sqliteInt.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.66 2001/11/04 18:32:47 drh Exp $
*/
#include "sqlite.h"
#include "hash.h"
#include "vdbe.h"
#include "parse.h"
#include "btree.h"
#include <stdio.h>













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.67 2001/11/06 04:00:19 drh Exp $
*/
#include "sqlite.h"
#include "hash.h"
#include "vdbe.h"
#include "parse.h"
#include "btree.h"
#include <stdio.h>
324
325
326
327
328
329
330

331
332
333
334
335
336
337
  IdList *pSrc;          /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
  int op;                /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  Select *pPrior;        /* Prior select in a compound select statement */

};

/*
** The results of a select can be distributed in several ways.
*/
#define SRT_Callback     1  /* Invoke a callback with each row of result */
#define SRT_Mem          2  /* Store result in a memory cell */







>







324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
  IdList *pSrc;          /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
  int op;                /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  Select *pPrior;        /* Prior select in a compound select statement */
  int nLimit, nOffset;   /* LIMIT and OFFSET values.  -1 means not used */
};

/*
** The results of a select can be distributed in several ways.
*/
#define SRT_Callback     1  /* Invoke a callback with each row of result */
#define SRT_Mem          2  /* Store result in a memory cell */
403
404
405
406
407
408
409

410
411
412
413
414
415
416
** Internal function prototypes
*/
int sqliteStrICmp(const char *, const char *);
int sqliteStrNICmp(const char *, const char *, int);
int sqliteHashNoCase(const char *, int);
int sqliteCompare(const char *, const char *);
int sqliteSortCompare(const char *, const char *);

#ifdef MEMORY_DEBUG
  void *sqliteMalloc_(int,char*,int);
  void sqliteFree_(void*,char*,int);
  void *sqliteRealloc_(void*,int,char*,int);
  char *sqliteStrDup_(const char*,char*,int);
  char *sqliteStrNDup_(const char*, int,char*,int);
#else







>







404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
** Internal function prototypes
*/
int sqliteStrICmp(const char *, const char *);
int sqliteStrNICmp(const char *, const char *, int);
int sqliteHashNoCase(const char *, int);
int sqliteCompare(const char *, const char *);
int sqliteSortCompare(const char *, const char *);
void sqliteRealToSortable(double r, char *);
#ifdef MEMORY_DEBUG
  void *sqliteMalloc_(int,char*,int);
  void sqliteFree_(void*,char*,int);
  void *sqliteRealloc_(void*,int,char*,int);
  char *sqliteStrDup_(const char*,char*,int);
  char *sqliteStrNDup_(const char*, int,char*,int);
#else
445
446
447
448
449
450
451
452

453
454
455
456
457
458
459
void sqliteInsert(Parse*, Token*, ExprList*, Select*, IdList*);
IdList *sqliteIdListAppend(IdList*, Token*);
void sqliteIdListAddAlias(IdList*, Token*);
void sqliteIdListDelete(IdList*);
void sqliteCreateIndex(Parse*, Token*, Token*, IdList*, int, Token*, Token*);
void sqliteDropIndex(Parse*, Token*);
int sqliteSelect(Parse*, Select*, int, int);
Select *sqliteSelectNew(ExprList*,IdList*,Expr*,ExprList*,Expr*,ExprList*,int);

void sqliteSelectDelete(Select*);
void sqliteDeleteFrom(Parse*, Token*, Expr*);
void sqliteUpdate(Parse*, Token*, ExprList*, Expr*);
WhereInfo *sqliteWhereBegin(Parse*, IdList*, Expr*, int);
void sqliteWhereEnd(WhereInfo*);
void sqliteExprCode(Parse*, Expr*);
void sqliteExprIfTrue(Parse*, Expr*, int);







|
>







447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
void sqliteInsert(Parse*, Token*, ExprList*, Select*, IdList*);
IdList *sqliteIdListAppend(IdList*, Token*);
void sqliteIdListAddAlias(IdList*, Token*);
void sqliteIdListDelete(IdList*);
void sqliteCreateIndex(Parse*, Token*, Token*, IdList*, int, Token*, Token*);
void sqliteDropIndex(Parse*, Token*);
int sqliteSelect(Parse*, Select*, int, int);
Select *sqliteSelectNew(ExprList*,IdList*,Expr*,ExprList*,Expr*,ExprList*,
                        int,int,int);
void sqliteSelectDelete(Select*);
void sqliteDeleteFrom(Parse*, Token*, Expr*);
void sqliteUpdate(Parse*, Token*, ExprList*, Expr*);
WhereInfo *sqliteWhereBegin(Parse*, IdList*, Expr*, int);
void sqliteWhereEnd(WhereInfo*);
void sqliteExprCode(Parse*, Expr*);
void sqliteExprIfTrue(Parse*, Expr*, int);
Changes to src/tokenize.c.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** An tokenizer for SQL
**
** This file contains C code that splits an SQL input string up into
** individual tokens and sends those tokens one-by-one over to the
** parser for analysis.
**
** $Id: tokenize.c,v 1.31 2001/11/04 18:32:48 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include <stdlib.h>

/*







|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** An tokenizer for SQL
**
** This file contains C code that splits an SQL input string up into
** individual tokens and sends those tokens one-by-one over to the
** parser for analysis.
**
** $Id: tokenize.c,v 1.32 2001/11/06 04:00:19 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include <stdlib.h>

/*
69
70
71
72
73
74
75

76
77
78

79
80
81
82
83
84
85
  { "INSERT",            0, TK_INSERT,           0 },
  { "INTERSECT",         0, TK_INTERSECT,        0 },
  { "INTO",              0, TK_INTO,             0 },
  { "IS",                0, TK_IS,               0 },
  { "ISNULL",            0, TK_ISNULL,           0 },
  { "KEY",               0, TK_KEY,              0 },
  { "LIKE",              0, TK_LIKE,             0 },

  { "NOT",               0, TK_NOT,              0 },
  { "NOTNULL",           0, TK_NOTNULL,          0 },
  { "NULL",              0, TK_NULL,             0 },

  { "ON",                0, TK_ON,               0 },
  { "OR",                0, TK_OR,               0 },
  { "ORDER",             0, TK_ORDER,            0 },
  { "PRAGMA",            0, TK_PRAGMA,           0 },
  { "PRIMARY",           0, TK_PRIMARY,          0 },
  { "ROLLBACK",          0, TK_ROLLBACK,         0 },
  { "SELECT",            0, TK_SELECT,           0 },







>



>







69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
  { "INSERT",            0, TK_INSERT,           0 },
  { "INTERSECT",         0, TK_INTERSECT,        0 },
  { "INTO",              0, TK_INTO,             0 },
  { "IS",                0, TK_IS,               0 },
  { "ISNULL",            0, TK_ISNULL,           0 },
  { "KEY",               0, TK_KEY,              0 },
  { "LIKE",              0, TK_LIKE,             0 },
  { "LIMIT",             0, TK_LIMIT,            0 },
  { "NOT",               0, TK_NOT,              0 },
  { "NOTNULL",           0, TK_NOTNULL,          0 },
  { "NULL",              0, TK_NULL,             0 },
  { "OFFSET",            0, TK_OFFSET,           0 },
  { "ON",                0, TK_ON,               0 },
  { "OR",                0, TK_OR,               0 },
  { "ORDER",             0, TK_ORDER,            0 },
  { "PRAGMA",            0, TK_PRAGMA,           0 },
  { "PRIMARY",           0, TK_PRIMARY,          0 },
  { "ROLLBACK",          0, TK_ROLLBACK,         0 },
  { "SELECT",            0, TK_SELECT,           0 },
Changes to src/util.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Utility functions used throughout sqlite.
**
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
** $Id: util.c,v 1.30 2001/10/22 02:58:10 drh Exp $
*/
#include "sqliteInt.h"
#include <stdarg.h>
#include <ctype.h>

/*
** If malloc() ever fails, this global variable gets set to 1.







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Utility functions used throughout sqlite.
**
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
** $Id: util.c,v 1.31 2001/11/06 04:00:19 drh Exp $
*/
#include "sqliteInt.h"
#include <stdarg.h>
#include <ctype.h>

/*
** If malloc() ever fails, this global variable gets set to 1.
749
750
751
752
753
754
755






















































































756
757
758
759
760
761
762
      a += len;
      b += len;
    }
  }
  if( *a=='-' ) res = -res;
  return res;
}























































































#ifdef SQLITE_UTF8
/*
** X is a pointer to the first byte of a UTF-8 character.  Increment
** X so that it points to the next character.  This only works right
** if X points to a well-formed UTF-8 string.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
      a += len;
      b += len;
    }
  }
  if( *a=='-' ) res = -res;
  return res;
}

/*
** Some powers of 64.  These numbers and their recipricals should
** all have exact representations in the floating point format.
*/
#define _64e3  (64.0 * 64.0 * 64.0)
#define _64e4  (64.0 * 64.0 * 64.0 * 64.0)
#define _64e15 (_64e3 * _64e4 * _64e4 * _64e4)
#define _64e16 (_64e4 * _64e4 * _64e4 * _64e4)
#define _64e63 (_64e15 * _64e16 * _64e16 * _64e16)
#define _64e64 (_64e16 * _64e16 * _64e16 * _64e16)

/*
** The following procedure converts a double-precision floating point
** number into a string.  The resulting string has the property that
** two such strings comparied using strcmp() or memcmp() will give the
** same results as comparing the original floating point numbers.
**
** This routine is used to generate database keys from floating point
** numbers such that the keys sort in the same order as the original
** floating point numbers even though the keys are compared using
** memcmp().
**
** The calling function should have allocated at least 14 characters
** of space for the buffer z[].
*/
void sqliteRealToSortable(double r, char *z){
  int neg;
  int exp;
  int cnt = 0;

  /* This array maps integers between 0 and 63 into base-64 digits.
  ** The digits must be chosen such at their ASCII codes are increasing.
  ** This means we can not use the traditional base-64 digit set. */
  static const char zDigit[] = 
     "0123456789"
     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
     "abcdefghijklmnopqrstuvwxyz"
     "|~";
  if( r<0.0 ){
    neg = 1;
    r = -r;
    *z++ = '-';
  } else {
    neg = 0;
    *z++ = '0';
  }
  exp = 0;

  if( r==0.0 ){
    exp = -1024;
  }else if( r<(0.5/64.0) ){
    while( r < 0.5/_64e64 && exp > -961  ){ r *= _64e64;  exp -= 64; }
    while( r < 0.5/_64e16 && exp > -1009 ){ r *= _64e16;  exp -= 16; }
    while( r < 0.5/_64e4  && exp > -1021 ){ r *= _64e4;   exp -= 4; }
    while( r < 0.5/64.0   && exp > -1024 ){ r *= 64.0;    exp -= 1; }
  }else if( r>=0.5 ){
    while( r >= 0.5*_64e63 && exp < 960  ){ r *= 1.0/_64e64; exp += 64; }
    while( r >= 0.5*_64e15 && exp < 1008 ){ r *= 1.0/_64e16; exp += 16; }
    while( r >= 0.5*_64e3  && exp < 1020 ){ r *= 1.0/_64e4;  exp += 4; }
    while( r >= 0.5        && exp < 1023 ){ r *= 1.0/64.0;   exp += 1; }
  }
  if( neg ){
    exp = -exp;
    r = -r;
  }
  exp += 1024;
  r += 0.5;
  if( exp<0 ) return;
  if( exp>=2048 || r>=1.0 ){
    strcpy(z, "~~~~~~~~~~~~");
    return;
  }
  *z++ = zDigit[(exp>>6)&0x3f];
  *z++ = zDigit[exp & 0x3f];
  while( r>0.0 && cnt<10 ){
    int digit;
    r *= 64.0;
    digit = r;
    assert( digit>=0 && digit<64 );
    *z++ = zDigit[digit & 0x3f];
    r -= digit;
    cnt++;
  }
  *z = 0;
}

#ifdef SQLITE_UTF8
/*
** X is a pointer to the first byte of a UTF-8 character.  Increment
** X so that it points to the next character.  This only works right
** if X points to a well-formed UTF-8 string.
*/
Changes to src/vdbe.c.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
** type to the other occurs as necessary.
** 
** Most of the code in this file is taken up by the sqliteVdbeExec()
** function which does the work of interpreting a VDBE program.
** But other routines are also provided to help in building up
** a program instruction by instruction.
**
** $Id: vdbe.c,v 1.92 2001/11/04 18:32:48 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** SQL is translated into a sequence of instructions to be
** executed by a virtual machine.  Each instruction is an instance







|







26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
** type to the other occurs as necessary.
** 
** Most of the code in this file is taken up by the sqliteVdbeExec()
** function which does the work of interpreting a VDBE program.
** But other routines are also provided to help in building up
** a program instruction by instruction.
**
** $Id: vdbe.c,v 1.93 2001/11/06 04:00:19 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** SQL is translated into a sequence of instructions to be
** executed by a virtual machine.  Each instruction is an instance
83
84
85
86
87
88
89







90
91
92
93
94
95
96
97
98
99
100
101

102
103
104
105
106
107
108
};

/* 
** Number of buckets used for merge-sort.  
*/
#define NSORT 30








/*
** A single level of the stack is an instance of the following
** structure.  Except, string values are stored on a separate
** list of of pointers to character.  The reason for storing
** strings separately is so that they can be easily passed
** to the callback function.
*/
struct Stack {
  int i;         /* Integer value */
  int n;         /* Number of characters in string value, including '\0' */
  int flags;     /* Some combination of STK_Null, STK_Str, STK_Dyn, etc. */
  double r;      /* Real value */

};
typedef struct Stack Stack;

/*
** Memory cells use the same structure as the stack except that space
** for an arbitrary string is added.
*/







>
>
>
>
>
>
>












>







83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
};

/* 
** Number of buckets used for merge-sort.  
*/
#define NSORT 30

/*
** Number of bytes of string storage space available to each stack
** layer without having to malloc.  NBFS is short for Number of Bytes
** For Strings.
*/
#define NBFS 30

/*
** A single level of the stack is an instance of the following
** structure.  Except, string values are stored on a separate
** list of of pointers to character.  The reason for storing
** strings separately is so that they can be easily passed
** to the callback function.
*/
struct Stack {
  int i;         /* Integer value */
  int n;         /* Number of characters in string value, including '\0' */
  int flags;     /* Some combination of STK_Null, STK_Str, STK_Dyn, etc. */
  double r;      /* Real value */
  char z[NBFS];  /* Space for short strings */
};
typedef struct Stack Stack;

/*
** Memory cells use the same structure as the stack except that space
** for an arbitrary string is added.
*/
116
117
118
119
120
121
122

123
124
125
126
127
128
129
** Allowed values for Stack.flags
*/
#define STK_Null      0x0001   /* Value is NULL */
#define STK_Str       0x0002   /* Value is a string */
#define STK_Int       0x0004   /* Value is an integer */
#define STK_Real      0x0008   /* Value is a real number */
#define STK_Dyn       0x0010   /* Need to call sqliteFree() on zStack[*] */


/*
** An Agg structure describes an Aggregator.  Each Agg consists of
** zero or more Aggregator elements (AggElem).  Each AggElem contains
** a key and one or more values.  The values are used in processing
** aggregate functions in a SELECT.  The key is used to implement
** the GROUP BY clause of a select.







>







124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
** Allowed values for Stack.flags
*/
#define STK_Null      0x0001   /* Value is NULL */
#define STK_Str       0x0002   /* Value is a string */
#define STK_Int       0x0004   /* Value is an integer */
#define STK_Real      0x0008   /* Value is a real number */
#define STK_Dyn       0x0010   /* Need to call sqliteFree() on zStack[*] */
#define STK_Static    0x0020   /* zStack[] points to a static string */

/*
** An Agg structure describes an Aggregator.  Each Agg consists of
** zero or more Aggregator elements (AggElem).  Each AggElem contains
** a key and one or more values.  The values are used in processing
** aggregate functions in a SELECT.  The key is used to implement
** the GROUP BY clause of a select.
197
198
199
200
201
202
203


204
205
206
207
208
209
210
  int nMem;           /* Number of memory locations currently allocated */
  Mem *aMem;          /* The memory locations */
  Agg agg;            /* Aggregate information */
  int nSet;           /* Number of sets allocated */
  Set *aSet;          /* An array of sets */
  int nFetch;         /* Number of OP_Fetch instructions executed */
  int nCallback;      /* Number of callbacks invoked so far */


};

/*
** Create a new virtual database engine.
*/
Vdbe *sqliteVdbeCreate(sqlite *db){
  Vdbe *p;







>
>







206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
  int nMem;           /* Number of memory locations currently allocated */
  Mem *aMem;          /* The memory locations */
  Agg agg;            /* Aggregate information */
  int nSet;           /* Number of sets allocated */
  Set *aSet;          /* An array of sets */
  int nFetch;         /* Number of OP_Fetch instructions executed */
  int nCallback;      /* Number of callbacks invoked so far */
  int iLimit;         /* Limit on the number of callbacks remaining */
  int iOffset;        /* Offset before beginning to do callbacks */
};

/*
** Create a new virtual database engine.
*/
Vdbe *sqliteVdbeCreate(sqlite *db){
  Vdbe *p;
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
** NULLs are converted into an empty string.
*/
#define Stringify(P,I) \
   ((P->aStack[I].flags & STK_Str)==0 ? hardStringify(P,I) : 0)
static int hardStringify(Vdbe *p, int i){
  Stack *pStack = &p->aStack[i];
  char **pzStack = &p->zStack[i];
  char zBuf[30];
  int fg = pStack->flags;
  if( fg & STK_Real ){
    sprintf(zBuf,"%.15g",pStack->r);
  }else if( fg & STK_Int ){
    sprintf(zBuf,"%d",pStack->i);
  }else{
    p->zStack[i] = "";
    pStack->n = 1;
    pStack->flags |= STK_Str;
    return 0;
  }
  *pzStack = sqliteStrDup(zBuf);
  if( *pzStack==0 ) return 1;
  pStack->n = strlen(*pzStack)+1;
  pStack->flags |= STK_Str|STK_Dyn;
  return 0;
}

/*
** Release the memory associated with the given stack level
*/
#define Release(P,I)  if((P)->aStack[I].flags&STK_Dyn){ hardRelease(P,I); }
static void hardRelease(Vdbe *p, int i){
  sqliteFree(p->zStack[i]);
  p->zStack[i] = 0;
  p->aStack[i].flags &= ~(STK_Str|STK_Dyn);
}

/*
** Convert the given stack entity into a integer if it isn't one
** already.
**
** Any prior string or real representation is invalidated.  







<


|

|

<
|
<
<

|
<

|










|







541
542
543
544
545
546
547

548
549
550
551
552
553

554


555
556

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
** NULLs are converted into an empty string.
*/
#define Stringify(P,I) \
   ((P->aStack[I].flags & STK_Str)==0 ? hardStringify(P,I) : 0)
static int hardStringify(Vdbe *p, int i){
  Stack *pStack = &p->aStack[i];
  char **pzStack = &p->zStack[i];

  int fg = pStack->flags;
  if( fg & STK_Real ){
    sprintf(pStack->z,"%.15g",pStack->r);
  }else if( fg & STK_Int ){
    sprintf(pStack->z,"%d",pStack->i);
  }else{

    pStack->z[0] = 0;


  }
  *pzStack = pStack->z;

  pStack->n = strlen(*pzStack)+1;
  pStack->flags = STK_Str;
  return 0;
}

/*
** Release the memory associated with the given stack level
*/
#define Release(P,I)  if((P)->aStack[I].flags&STK_Dyn){ hardRelease(P,I); }
static void hardRelease(Vdbe *p, int i){
  sqliteFree(p->zStack[i]);
  p->zStack[i] = 0;
  p->aStack[i].flags &= ~(STK_Str|STK_Dyn|STK_Static);
}

/*
** Convert the given stack entity into a integer if it isn't one
** already.
**
** Any prior string or real representation is invalidated.  
670
671
672
673
674
675
676





















677
678
679
680
681
682
683
    for(i=oldAlloc; i<p->nStackAlloc; i++){
      p->zStack[i] = 0;
      p->aStack[i].flags = 0;
    }
  }
  return 0;
}






















/*
** Delete a keylist
*/
static void KeylistFree(Keylist *p){
  while( p ){
    Keylist *pNext = p->pNext;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
    for(i=oldAlloc; i<p->nStackAlloc; i++){
      p->zStack[i] = 0;
      p->aStack[i].flags = 0;
    }
  }
  return 0;
}

/*
** Return TRUE if zNum is a floating-point or integer number.
*/
static int isNumber(const char *zNum){
  if( *zNum=='-' || *zNum=='+' ) zNum++;
  if( !isdigit(*zNum) ) return 0;
  while( isdigit(*zNum) ) zNum++;
  if( *zNum==0 ) return 1;
  if( *zNum!='.' ) return 0;
  zNum++;
  if( !isdigit(*zNum) ) return 0;
  while( isdigit(*zNum) ) zNum++;
  if( *zNum==0 ) return 1;
  if( *zNum!='e' && *zNum!='E' ) return 0;
  zNum++;
  if( *zNum=='-' || *zNum=='+' ) zNum++;
  if( !isdigit(*zNum) ) return 0;
  while( isdigit(*zNum) ) zNum++;
  return *zNum==0;
}

/*
** Delete a keylist
*/
static void KeylistFree(Keylist *p){
  while( p ){
    Keylist *pNext = p->pNext;
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

841
842
843
844
845
846
847
  "Column",            "KeyAsData",         "Recno",             "FullKey",
  "Rewind",            "Next",              "Destroy",           "Clear",
  "CreateIndex",       "CreateTable",       "Reorganize",        "BeginIdx",
  "NextIdx",           "PutIdx",            "DeleteIdx",         "MemLoad",
  "MemStore",          "ListWrite",         "ListRewind",        "ListRead",
  "ListReset",         "SortPut",           "SortMakeRec",       "SortMakeKey",
  "Sort",              "SortNext",          "SortCallback",      "SortReset",
  "FileOpen",          "FileRead",          "FileColumn",        "FileClose",
  "AggReset",          "AggFocus",          "AggIncr",           "AggNext",
  "AggSet",            "AggGet",            "SetInsert",         "SetFound",
  "SetNotFound",       "SetClear",          "MakeRecord",        "MakeKey",
  "MakeIdxKey",        "Goto",              "If",                "Halt",
  "ColumnCount",       "ColumnName",        "Callback",          "NullCallback",
  "Integer",           "String",            "Null",              "Pop",
  "Dup",               "Pull",              "Add",               "AddImm",
  "Subtract",          "Multiply",          "Divide",            "Remainder",
  "BitAnd",            "BitOr",             "BitNot",            "ShiftLeft",
  "ShiftRight",        "AbsValue",          "Precision",         "Min",
  "Max",               "Like",              "Glob",              "Eq",
  "Ne",                "Lt",                "Le",                "Gt",
  "Ge",                "IsNull",            "NotNull",           "Negative",
  "And",               "Or",                "Not",               "Concat",
  "Noop",              "Strlen",            "Substr",          

};

/*
** Given the name of an opcode, return its number.  Return 0 if
** there is no match.
**
** This routine is used for testing and debugging.







|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
|
>







845
846
847
848
849
850
851
852
853
854
855
856
857

858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
  "Column",            "KeyAsData",         "Recno",             "FullKey",
  "Rewind",            "Next",              "Destroy",           "Clear",
  "CreateIndex",       "CreateTable",       "Reorganize",        "BeginIdx",
  "NextIdx",           "PutIdx",            "DeleteIdx",         "MemLoad",
  "MemStore",          "ListWrite",         "ListRewind",        "ListRead",
  "ListReset",         "SortPut",           "SortMakeRec",       "SortMakeKey",
  "Sort",              "SortNext",          "SortCallback",      "SortReset",
  "FileOpen",          "FileRead",          "FileColumn",        "AggReset",
  "AggFocus",          "AggIncr",           "AggNext",           "AggSet",
  "AggGet",            "SetInsert",         "SetFound",          "SetNotFound",
  "MakeRecord",        "MakeKey",           "MakeIdxKey",        "Goto",
  "If",                "Halt",              "ColumnCount",       "ColumnName",
  "Callback",          "NullCallback",      "Integer",           "String",

  "Pop",               "Dup",               "Pull",              "Add",
  "AddImm",            "Subtract",          "Multiply",          "Divide",
  "Remainder",         "BitAnd",            "BitOr",             "BitNot",
  "ShiftLeft",         "ShiftRight",        "AbsValue",          "Precision",
  "Min",               "Max",               "Like",              "Glob",
  "Eq",                "Ne",                "Lt",                "Le",
  "Gt",                "Ge",                "IsNull",            "NotNull",
  "Negative",          "And",               "Or",                "Not",
  "Concat",            "Noop",              "Strlen",            "Substr",
  "Limit",
};

/*
** Given the name of an opcode, return its number.  Return 0 if
** there is no match.
**
** This routine is used for testing and debugging.
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
  z = pOp->p3;
  if( z==0 ){
    zStack[i] = 0;
    aStack[i].flags = STK_Null;
  }else{
    zStack[i] = z;
    aStack[i].n = strlen(z) + 1;
    aStack[i].flags = STK_Str;
  }
  break;
}

#if 0 /* NOT USED */
/* Opcode: Null * * *
**
** Push a NULL value onto the stack.
*/
case OP_Null: {
  int i = ++p->tos;
  VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; )
  zStack[i] = 0;
  aStack[i].flags = STK_Null;
  break;
}
#endif

/* Opcode: Pop P1 * *
**
** P1 elements are popped off of the top of stack and discarded.
*/
case OP_Pop: {
  PopStack(p, pOp->p1);
  break;







|




<
<
<
<
<
<
<
<
<
<
<
<
<
<







1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153














1154
1155
1156
1157
1158
1159
1160
  z = pOp->p3;
  if( z==0 ){
    zStack[i] = 0;
    aStack[i].flags = STK_Null;
  }else{
    zStack[i] = z;
    aStack[i].n = strlen(z) + 1;
    aStack[i].flags = STK_Str | STK_Static;
  }
  break;
}















/* Opcode: Pop P1 * *
**
** P1 elements are popped off of the top of stack and discarded.
*/
case OP_Pop: {
  PopStack(p, pOp->p1);
  break;
1158
1159
1160
1161
1162
1163
1164







1165
1166

1167
1168
1169
1170
1171

1172
1173
1174
1175
1176
1177
1178
** Also see the Pull instruction.
*/
case OP_Dup: {
  int i = p->tos - pOp->p1;
  int j = ++p->tos;
  VERIFY( if( i<0 ) goto not_enough_stack; )
  VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; )







  aStack[j] = aStack[i];
  if( aStack[i].flags & STK_Dyn ){

    zStack[j] = sqliteMalloc( aStack[j].n );
    if( zStack[j]==0 ) goto no_mem;
    memcpy(zStack[j], zStack[i], aStack[j].n);
  }else{
    zStack[j] = zStack[i];

  }
  break;
}

/* Opcode: Pull P1 * *
**
** The P1-th element is removed from its current location on 







>
>
>
>
>
>
>
|
|
>
|
|
|
<
|
>







1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190

1191
1192
1193
1194
1195
1196
1197
1198
1199
** Also see the Pull instruction.
*/
case OP_Dup: {
  int i = p->tos - pOp->p1;
  int j = ++p->tos;
  VERIFY( if( i<0 ) goto not_enough_stack; )
  VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; )
  memcpy(&aStack[j], &aStack[i], sizeof(aStack[i])-NBFS);
  if( aStack[j].flags & STK_Str ){
    if( aStack[j].flags & STK_Static ){
      zStack[j] = zStack[i];
      aStack[j].flags = STK_Str | STK_Static;
    }else if( aStack[i].n<=NBFS ){
      memcpy(aStack[j].z, zStack[i], aStack[j].n);
      zStack[j] = aStack[j].z;
      aStack[j].flags = STK_Str;
    }else{
      zStack[j] = sqliteMalloc( aStack[j].n );
      if( zStack[j]==0 ) goto no_mem;
      memcpy(zStack[j], zStack[i], aStack[j].n);

      aStack[j].flags = STK_Str | STK_Dyn;
    }
  }
  break;
}

/* Opcode: Pull P1 * *
**
** The P1-th element is removed from its current location on 
1190
1191
1192
1193
1194
1195
1196

1197


1198

1199

1200



1201
1202
1203
1204
1205
1206
1207
  Stack ts;
  char *tz;
  VERIFY( if( from<0 ) goto not_enough_stack; )
  ts = aStack[from];
  tz = zStack[from];
  for(i=from; i<to; i++){
    aStack[i] = aStack[i+1];

    zStack[i] = zStack[i+1];


  }

  aStack[to] = ts;

  zStack[to] = tz;



  break;
}

/* Opcode: ColumnCount P1 * *
**
** Specify the number of column values that will appear in the
** array passed as the 4th parameter to the callback.  No checking







>
|
>
>
|
>

>
|
>
>
>







1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
  Stack ts;
  char *tz;
  VERIFY( if( from<0 ) goto not_enough_stack; )
  ts = aStack[from];
  tz = zStack[from];
  for(i=from; i<to; i++){
    aStack[i] = aStack[i+1];
    if( aStack[i].flags & (STK_Dyn|STK_Static) ){
      zStack[i] = zStack[i+1];
    }else{
      zStack[i] = aStack[i].z;
    }
  }
  aStack[to] = ts;
  if( aStack[to].flags & (STK_Dyn|STK_Static) ){
    zStack[to] = tz;
  }else{
    zStack[to] = aStack[to].z;
  }
  break;
}

/* Opcode: ColumnCount P1 * *
**
** Specify the number of column values that will appear in the
** array passed as the 4th parameter to the callback.  No checking
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237







1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250



1251
1252
1253
1254







1255
1256
1257
1258
1259
1260
1261
*/
case OP_ColumnName: {
  p->azColName[pOp->p1] = pOp->p3 ? pOp->p3 : "";
  p->nCallback = 0;
  break;
}

/* Opcode: Callback P1 * *
**
** Pop P1 values off the stack and form them into an array.  Then
** invoke the callback function using the newly formed array as the
** 3rd parameter.







*/
case OP_Callback: {
  int i = p->tos - pOp->p1 + 1;
  int j;
  VERIFY( if( i<0 ) goto not_enough_stack; )
  VERIFY( if( NeedStack(p, p->tos+2) ) goto no_mem; )
  for(j=i; j<=p->tos; j++){
    if( (aStack[j].flags & STK_Null)==0 ){
      if( Stringify(p, j) ) goto no_mem;
    }
  }
  zStack[p->tos+1] = 0;
  if( xCallback!=0 ){



    if( xCallback(pArg, pOp->p1, &zStack[i], p->azColName)!=0 ){
      rc = SQLITE_ABORT;
    }
    p->nCallback++;







  }
  PopStack(p, pOp->p1);
  if( sqlite_malloc_failed ) goto no_mem;
  break;
}

/* Opcode: NullCallback P1 * *







|




>
>
>
>
>
>
>













>
>
>
|
|
|
|
>
>
>
>
>
>
>







1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
*/
case OP_ColumnName: {
  p->azColName[pOp->p1] = pOp->p3 ? pOp->p3 : "";
  p->nCallback = 0;
  break;
}

/* Opcode: Callback P1 P2 *
**
** Pop P1 values off the stack and form them into an array.  Then
** invoke the callback function using the newly formed array as the
** 3rd parameter.
**
** If the offset counter (set by the OP_Limit opcode) is positive,
** then decrement the counter and do not invoke the callback.
** 
** If the callback is invoked, then after the callback returns
** decrement the limit counter.  When the limit counter reaches
** zero, jump to address P2.
*/
case OP_Callback: {
  int i = p->tos - pOp->p1 + 1;
  int j;
  VERIFY( if( i<0 ) goto not_enough_stack; )
  VERIFY( if( NeedStack(p, p->tos+2) ) goto no_mem; )
  for(j=i; j<=p->tos; j++){
    if( (aStack[j].flags & STK_Null)==0 ){
      if( Stringify(p, j) ) goto no_mem;
    }
  }
  zStack[p->tos+1] = 0;
  if( xCallback!=0 ){
    if( p->iOffset>0 ){
      p->iOffset--;
    }else{
      if( xCallback(pArg, pOp->p1, &zStack[i], p->azColName)!=0 ){
        rc = SQLITE_ABORT;
      }
      p->nCallback++;
      if( p->iLimit>0 ){
        p->iLimit--;
        if( p->iLimit==0 ){
          pc = pOp->p2 - 1;
        }
      }
    }
  }
  PopStack(p, pOp->p1);
  if( sqlite_malloc_failed ) goto no_mem;
  break;
}

/* Opcode: NullCallback P1 * *
1458
1459
1460
1461
1462
1463
1464

1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475

1476
1477



1478



1479
1480

1481
1482
1483
1484
1485
1486
1487
1488






1489
1490
1491

1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551

1552



1553
1554
1555
1556
1557
1558
1559
** specified by the integer and push the floating-point number back onto
** the stack. 
*/
case OP_Precision: {
  int tos = p->tos;
  int nos = tos - 1;
  int nDigit;

  double v;
  char zBuf[100];

  VERIFY( if( nos<0 ) goto not_enough_stack; )
  Realify(p, tos);
  Integerify(p, nos);
  nDigit = aStack[nos].i;
  if( nDigit<0 ) nDigit = 0;
  if( nDigit>30 ) nDigit = 30;
  v = aStack[tos].r;
  sprintf(zBuf, "%.*f", nDigit, v);

  POPSTACK;
  Release(p, nos);



  zStack[nos] = sqliteStrDup(zBuf);



  aStack[nos].n = strlen(zStack[nos]) + 1;
  aStack[nos].flags = STK_Str | STK_Dyn;

  break;
}

/* Opcode: Max * * *
**
** Pop the top two elements from the stack then push back the
** largest of the two.
*/






case OP_Max: {
  int tos = p->tos;
  int nos = tos - 1;

  int ft, fn;
  int copy = 0;
  VERIFY( if( nos<0 ) goto not_enough_stack; )
  ft = aStack[tos].flags;
  fn = aStack[nos].flags;
  if( fn & STK_Null ){
    copy = 1;
  }else if( (ft & fn & STK_Int)==STK_Int ){
    copy = aStack[nos].i<aStack[tos].i;
  }else if( ( (ft|fn) & (STK_Int|STK_Real) ) !=0 ){
    Realify(p, tos);
    Realify(p, nos);
    copy = aStack[tos].r>aStack[nos].r;
  }else{
    if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem;
    copy = sqliteCompare(zStack[tos],zStack[nos])>0;
  }
  if( copy ){
    Release(p, nos);
    aStack[nos] = aStack[tos];
    zStack[nos] = zStack[tos];
    zStack[tos] = 0;
    aStack[tos].flags = 0;
  }else{
    Release(p, tos);
  }
  p->tos = nos;
  break;
}

/* Opcode: Min * * *
**
** Pop the top two elements from the stack then push back the
** smaller of the two. 
*/
case OP_Min: {
  int tos = p->tos;
  int nos = tos - 1;
  int ft, fn;
  int copy = 0;
  VERIFY( if( nos<0 ) goto not_enough_stack; )
  ft = aStack[tos].flags;
  fn = aStack[nos].flags;
  if( fn & STK_Null ){
    copy = 1;
  }else if( ft & STK_Null ){
    copy = 0;
  }else if( (ft & fn & STK_Int)==STK_Int ){
    copy = aStack[nos].i>aStack[tos].i;
  }else if( ( (ft|fn) & (STK_Int|STK_Real) ) !=0 ){
    Realify(p, tos);
    Realify(p, nos);
    copy = aStack[tos].r<aStack[nos].r;
  }else{
    if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem;
    copy = sqliteCompare(zStack[tos],zStack[nos])<0;
  }
  if( copy ){
    Release(p, nos);
    aStack[nos] = aStack[tos];

    zStack[nos] = zStack[tos];



    zStack[tos] = 0;
    aStack[tos].flags = 0;
  }else{
    Release(p, tos);
  }
  p->tos = nos;
  break;







>

|








|
>


>
>
>
|
>
>
>
|
|
>








>
>
>
>
>
>



>





|
|
<
<
<
<
|
<

<
<
<
<
<
<
<
<
<
<
<
<
|
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<





|



|


|




>
|
>
>
>







1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560




1561

1562












1563
1564
1565














1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
** specified by the integer and push the floating-point number back onto
** the stack. 
*/
case OP_Precision: {
  int tos = p->tos;
  int nos = tos - 1;
  int nDigit;
  int len;
  double v;
  char *zNew;

  VERIFY( if( nos<0 ) goto not_enough_stack; )
  Realify(p, tos);
  Integerify(p, nos);
  nDigit = aStack[nos].i;
  if( nDigit<0 ) nDigit = 0;
  if( nDigit>30 ) nDigit = 30;
  v = aStack[tos].r;
  zNew = sqlite_mprintf("%.*f", nDigit, v);
  if( zNew==0 ) goto no_mem;
  POPSTACK;
  Release(p, nos);
  aStack[nos].n = len = strlen(zNew) + 1;
  if( len<=NBFS ){
    strcpy(aStack[nos].z, zNew);
    zStack[nos] = aStack[nos].z;
    aStack[nos].flags = STK_Str;
    sqliteFree(zNew);
  }else{
    zStack[nos] = zNew;
    aStack[nos].flags = STK_Str | STK_Dyn;
  }
  break;
}

/* Opcode: Max * * *
**
** Pop the top two elements from the stack then push back the
** largest of the two.
*/
/* Opcode: Min * * *
**
** Pop the top two elements from the stack then push back the
** smaller of the two. 
*/
case OP_Min:
case OP_Max: {
  int tos = p->tos;
  int nos = tos - 1;
  int a,b;
  int ft, fn;
  int copy = 0;
  VERIFY( if( nos<0 ) goto not_enough_stack; )
  ft = aStack[tos].flags;
  fn = aStack[nos].flags;
  if( pOp->opcode==OP_Max ){
    a = tos;




    b = nos;

  }else{












    a = nos;
    b = tos;
  }














  if( fn & STK_Null ){
    copy = 1;
  }else if( ft & STK_Null ){
    copy = 0;
  }else if( (ft & fn & STK_Int)==STK_Int ){
    copy = aStack[a].i>aStack[b].i;
  }else if( ( (ft|fn) & (STK_Int|STK_Real) ) !=0 ){
    Realify(p, tos);
    Realify(p, nos);
    copy = aStack[a].r>aStack[b].r;
  }else{
    if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem;
    copy = sqliteCompare(zStack[a],zStack[b])>0;
  }
  if( copy ){
    Release(p, nos);
    aStack[nos] = aStack[tos];
    if( aStack[nos].flags & (STK_Dyn|STK_Static) ){
      zStack[nos] = zStack[tos];
    }else{
      zStack[nos] = aStack[nos].z;
    }
    zStack[tos] = 0;
    aStack[tos].flags = 0;
  }else{
    Release(p, tos);
  }
  p->tos = nos;
  break;
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078

2079
2080
2081

2082
2083
2084

2085
2086
2087
2088



2089
2090





















2091



2092








2093
2094
2095
2096
2097
2098
2099

2100
2101
2102
2103
2104
2105

2106
2107
2108
2109
2110


2111
2112
2113

2114
2115
2116
2117
2118
2119
2120
2121
** If P2 is not zero, then the original entries remain on the stack
** and the new key is pushed on top.  If P2 is zero, the original
** data is popped off the stack first then the new key is pushed
** back in its place.
**
** See also: MakeIdxKey, SortMakeKey
*/
case OP_MakeKey: {
  char *zNewKey;
  int nByte;
  int nField;
  int i, j;

  nField = pOp->p1;
  VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
  nByte = 0;
  for(i=p->tos-nField+1; i<=p->tos; i++){
    if( aStack[i].flags & STK_Null ){
      nByte++;
    }else{
      if( Stringify(p, i) ) goto no_mem;
      nByte += aStack[i].n;
    }
  }
  if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
    rc = SQLITE_TOOBIG;
    goto abort_due_to_error;
  }
  zNewKey = sqliteMalloc( nByte );
  if( zNewKey==0 ) goto no_mem;
  j = 0;
  for(i=p->tos-nField+1; i<=p->tos; i++){
    if( aStack[i].flags & STK_Null ){
      zNewKey[j++] = 0;
    }else{
      memcpy(&zNewKey[j], zStack[i], aStack[i].n);
      j += aStack[i].n;
    }
  }
  if( pOp->p2==0 ) PopStack(p, nField);
  VERIFY( NeedStack(p, p->tos+1); )
  p->tos++;
  aStack[p->tos].n = nByte;
  aStack[p->tos].flags = STK_Str|STK_Dyn;
  zStack[p->tos] = zNewKey;
  break;
}

/* Opcode: MakeIdxKey P1 * *
**
** Convert the top P1 entries of the stack into a single entry suitable
** for use as the key in an index.  In addition, take one additional integer
** off of the stack, treat that integer as a four-byte record number, and
** append the four bytes to the key.  Thus a total of P1+1 entries are
** popped from the stack for this instruction and a single entry is pushed
** back.  The first P1 entries that are popped are strings and the last
** entry (the lowest on the stack) is an integer record number.
**
** The converstion of the first P1 string entries occurs just like in
** MakeKey.  Each entry is separated from the others by a null.
** The entire concatenation is null-terminated.  The lowest entry
** in the stack is the first field and the top of the stack becomes the
** last.
**
** See also:  MakeKey, SortMakeKey
*/
case OP_MakeIdxKey: {

  char *zNewKey;
  int nByte;
  int nField;

  int i, j;
  u32 iKey;


  nField = pOp->p1;
  VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
  nByte = sizeof(u32);
  for(i=p->tos-nField+1; i<=p->tos; i++){



    if( aStack[i].flags & STK_Null ){
      nByte++;





















    }else{



      if( Stringify(p, i) ) goto no_mem;








      nByte += aStack[i].n;
    }
  }
  if( nByte>MAX_BYTES_PER_ROW ){
    rc = SQLITE_TOOBIG;
    goto abort_due_to_error;
  }

  zNewKey = sqliteMalloc( nByte );
  if( zNewKey==0 ) goto no_mem;
  j = 0;
  for(i=p->tos-nField+1; i<=p->tos; i++){
    if( aStack[i].flags & STK_Null ){
      zNewKey[j++] = 0;

    }else{
      memcpy(&zNewKey[j], zStack[i], aStack[i].n);
      j += aStack[i].n;
    }
  }


  Integerify(p, p->tos-nField);
  iKey = bigEndian(aStack[p->tos-nField].i);
  memcpy(&zNewKey[j], &iKey, sizeof(u32));

  PopStack(p, nField+1);
  VERIFY( NeedStack(p, p->tos+1); )
  p->tos++;
  aStack[p->tos].n = nByte;
  aStack[p->tos].flags = STK_Str|STK_Dyn;
  zStack[p->tos] = zNewKey;
  break;
}







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


















|
>



>

<

>

|
|

>
>
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
|
>
>
>
>
>
>
>
>



|



>






>

|



>
>
|
|
|
>
|







2047
2048
2049
2050
2051
2052
2053









































2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078

2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
** If P2 is not zero, then the original entries remain on the stack
** and the new key is pushed on top.  If P2 is zero, the original
** data is popped off the stack first then the new key is pushed
** back in its place.
**
** See also: MakeIdxKey, SortMakeKey
*/









































/* Opcode: MakeIdxKey P1 * *
**
** Convert the top P1 entries of the stack into a single entry suitable
** for use as the key in an index.  In addition, take one additional integer
** off of the stack, treat that integer as a four-byte record number, and
** append the four bytes to the key.  Thus a total of P1+1 entries are
** popped from the stack for this instruction and a single entry is pushed
** back.  The first P1 entries that are popped are strings and the last
** entry (the lowest on the stack) is an integer record number.
**
** The converstion of the first P1 string entries occurs just like in
** MakeKey.  Each entry is separated from the others by a null.
** The entire concatenation is null-terminated.  The lowest entry
** in the stack is the first field and the top of the stack becomes the
** last.
**
** See also:  MakeKey, SortMakeKey
*/
case OP_MakeIdxKey:
case OP_MakeKey: {
  char *zNewKey;
  int nByte;
  int nField;
  int addRowid;
  int i, j;


  addRowid = pOp->opcode==OP_MakeIdxKey;
  nField = pOp->p1;
  VERIFY( if( p->tos+1+addRowid<nField ) goto not_enough_stack; )
  nByte = 0;
  for(i=p->tos-nField+1; i<=p->tos; i++){
    int flags = aStack[i].flags;
    int len;
    char *z;
    if( flags & STK_Null ){
      nByte += 2;
    }else if( flags & STK_Real ){
      z = aStack[i].z;
      sqliteRealToSortable(aStack[i].r, &z[1]);
      z[0] = 0;
      Release(p, i);
      len = strlen(&z[1]);
      zStack[i] = 0;
      aStack[i].flags = STK_Real;
      aStack[i].n = len+2;
      nByte += aStack[i].n;
    }else if( flags & STK_Int ){
      z = aStack[i].z;
      aStack[i].r = aStack[i].i;
      sqliteRealToSortable(aStack[i].r, &z[1]);
      z[0] = 0;
      Release(p, i);
      len = strlen(&z[1]);
      zStack[i] = 0;
      aStack[i].flags = STK_Int;
      aStack[i].n = len+2;
      nByte += aStack[i].n;
    }else{
      assert( flags & STK_Str );
      if( isNumber(zStack[i]) ){
        aStack[i].r = atof(zStack[i]);
        Release(p, i);
        z = aStack[i].z;
        sqliteRealToSortable(aStack[i].r, &z[1]);
        z[0] = 0;
        len = strlen(&z[1]);
        zStack[i] = 0;
        aStack[i].flags = STK_Real;
        aStack[i].n = len+2;
      }
      nByte += aStack[i].n;
    }
  }
  if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
    rc = SQLITE_TOOBIG;
    goto abort_due_to_error;
  }
  if( addRowid ) nByte += sizeof(u32);
  zNewKey = sqliteMalloc( nByte );
  if( zNewKey==0 ) goto no_mem;
  j = 0;
  for(i=p->tos-nField+1; i<=p->tos; i++){
    if( aStack[i].flags & STK_Null ){
      zNewKey[j++] = 0;
      zNewKey[j++] = 0;
    }else{
      memcpy(&zNewKey[j], zStack[i] ? zStack[i] : aStack[i].z, aStack[i].n);
      j += aStack[i].n;
    }
  }
  if( addRowid ){
    u32 iKey;
    Integerify(p, p->tos-nField);
    iKey = bigEndian(aStack[p->tos-nField].i);
    memcpy(&zNewKey[j], &iKey, sizeof(u32));
  }
  if( pOp->p2==0 ) PopStack(p, nField+addRowid);
  VERIFY( NeedStack(p, p->tos+1); )
  p->tos++;
  aStack[p->tos].n = nByte;
  aStack[p->tos].flags = STK_Str|STK_Dyn;
  zStack[p->tos] = zNewKey;
  break;
}
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
** in the data.
**
** If the KeyAsData opcode has previously executed on this cursor,
** then the field might be extracted from the key rather than the
** data.
*/
case OP_Column: {
  int amt, offset, end, nCol, payloadSize;
  int i = pOp->p1;
  int p2 = pOp->p2;
  int tos = p->tos+1;
  Cursor *pC;
  BtCursor *pCrsr;
  int idxWidth;
  unsigned char aHdr[10];







|







2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
** in the data.
**
** If the KeyAsData opcode has previously executed on this cursor,
** then the field might be extracted from the key rather than the
** data.
*/
case OP_Column: {
  int amt, offset, end, payloadSize;
  int i = pOp->p1;
  int p2 = pOp->p2;
  int tos = p->tos+1;
  Cursor *pC;
  BtCursor *pCrsr;
  int idxWidth;
  unsigned char aHdr[10];
2746
2747
2748
2749
2750
2751
2752





2753
2754
2755
2756
2757
2758
2759
    }

    /* amt and offset now hold the offset to the start of data and the
    ** amount of data.  Go get the data and put it on the stack.
    */
    if( amt==0 ){
      aStack[tos].flags = STK_Null;





    }else{
      char *z = sqliteMalloc( amt );
      if( z==0 ) goto no_mem;
      (*xRead)(pCrsr, offset, amt, z);
      aStack[tos].flags = STK_Str | STK_Dyn;
      zStack[tos] = z;
      aStack[tos].n = amt;







>
>
>
>
>







2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
    }

    /* amt and offset now hold the offset to the start of data and the
    ** amount of data.  Go get the data and put it on the stack.
    */
    if( amt==0 ){
      aStack[tos].flags = STK_Null;
    }else if( amt<=NBFS ){
      (*xRead)(pCrsr, offset, amt, aStack[tos].z);
      aStack[tos].flags = STK_Str;
      zStack[tos] = aStack[tos].z;
      aStack[tos].n = amt;
    }else{
      char *z = sqliteMalloc( amt );
      if( z==0 ) goto no_mem;
      (*xRead)(pCrsr, offset, amt, z);
      aStack[tos].flags = STK_Str | STK_Dyn;
      zStack[tos] = z;
      aStack[tos].n = amt;
2811
2812
2813
2814
2815
2816
2817

2818





2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
    char *z;

    sqliteBtreeKeySize(pCrsr, &amt);
    if( amt<=0 ){
      rc = SQLITE_CORRUPT;
      goto abort_due_to_error;
    }

    z = sqliteMalloc( amt );





    sqliteBtreeKey(pCrsr, 0, amt, z);
    zStack[tos] = z;
    aStack[tos].flags = STK_Str | STK_Dyn;
    aStack[tos].n = amt;
  }
  break;
}

/* Opcode: Rewind P1 * *
**







>
|
>
>
>
>
>


<







2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867

2868
2869
2870
2871
2872
2873
2874
    char *z;

    sqliteBtreeKeySize(pCrsr, &amt);
    if( amt<=0 ){
      rc = SQLITE_CORRUPT;
      goto abort_due_to_error;
    }
    if( amt>NBFS ){
      z = sqliteMalloc( amt );
      aStack[tos].flags = STK_Str | STK_Dyn;
    }else{
      z = aStack[tos].z;
      aStack[tos].flags = STK_Str;
    }
    sqliteBtreeKey(pCrsr, 0, amt, z);
    zStack[tos] = z;

    aStack[tos].n = amt;
  }
  break;
}

/* Opcode: Rewind P1 * *
**
3100
3101
3102
3103
3104
3105
3106



















3107
3108
3109
3110
3111
3112
3113
**
** In the current implementation, this is a no-op.
*/
case OP_Reorganize: {
  /* This is currently a no-op */
  break;
}




















/* Opcode: ListWrite * * *
**
** Write the integer on the top of the stack
** into the temporary storage list.
*/
case OP_ListWrite: {







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
**
** In the current implementation, this is a no-op.
*/
case OP_Reorganize: {
  /* This is currently a no-op */
  break;
}

/* Opcode:  Limit P1 P2 *
**
** Set a limit and offset on callbacks.  P1 is the limit and P2 is
** the offset.  If the offset counter is positive, no callbacks are
** invoked but instead the counter is decremented.  Once the offset
** counter reaches zero, callbacks are invoked and the limit
** counter is decremented.  When the limit counter reaches zero,
** the OP_Callback or OP_SortCallback instruction executes a jump
** that should end the query.
**
** This opcode is used to implement the "LIMIT x OFFSET y" clause
** of a SELECT statement.
*/
case OP_Limit: {
  p->iLimit = pOp->p1;
  p->iOffset = pOp->p2;
  break;
}

/* Opcode: ListWrite * * *
**
** Write the integer on the top of the stack
** into the temporary storage list.
*/
case OP_ListWrite: {
3179
3180
3181
3182
3183
3184
3185
3186

3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197


3198
3199
3200
3201
3202
3203
3204
  }
  break;
}

/* Opcode: SortPut * * *
**
** The TOS is the key and the NOS is the data.  Pop both from the stack
** and put them on the sorter.

*/
case OP_SortPut: {
  int tos = p->tos;
  int nos = tos - 1;
  Sorter *pSorter;
  VERIFY( if( tos<1 ) goto not_enough_stack; )
  if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem;
  pSorter = sqliteMalloc( sizeof(Sorter) );
  if( pSorter==0 ) goto no_mem;
  pSorter->pNext = p->pSort;
  p->pSort = pSorter;


  pSorter->nKey = aStack[tos].n;
  pSorter->zKey = zStack[tos];
  pSorter->nData = aStack[nos].n;
  pSorter->pData = zStack[nos];
  aStack[tos].flags = 0;
  aStack[nos].flags = 0;
  zStack[tos] = 0;







|
>











>
>







3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
  }
  break;
}

/* Opcode: SortPut * * *
**
** The TOS is the key and the NOS is the data.  Pop both from the stack
** and put them on the sorter.  The key and data should have been
** made using SortMakeKey and SortMakeRec, respectively.
*/
case OP_SortPut: {
  int tos = p->tos;
  int nos = tos - 1;
  Sorter *pSorter;
  VERIFY( if( tos<1 ) goto not_enough_stack; )
  if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem;
  pSorter = sqliteMalloc( sizeof(Sorter) );
  if( pSorter==0 ) goto no_mem;
  pSorter->pNext = p->pSort;
  p->pSort = pSorter;
  assert( aStack[tos].flags & STK_Dyn );
  assert( aStack[nos].flags & STK_Dyn );
  pSorter->nKey = aStack[tos].n;
  pSorter->zKey = zStack[tos];
  pSorter->nData = aStack[nos].n;
  pSorter->pData = zStack[nos];
  aStack[tos].flags = 0;
  aStack[nos].flags = 0;
  zStack[tos] = 0;
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367







3368
3369
3370
3371
3372



3373
3374








3375
3376
3377
3378
3379
3380
3381
    sqliteFree(pSorter);
  }else{
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: SortCallback * P2 *
**
** The top of the stack contains a callback record built using
** the SortMakeRec operation with the same P1 value as this
** instruction.  Pop this record from the stack and invoke the
** callback on it.







*/
case OP_SortCallback: {
  int i = p->tos;
  VERIFY( if( i<0 ) goto not_enough_stack; )
  if( xCallback!=0 ){



    if( xCallback(pArg, pOp->p1, (char**)zStack[i], p->azColName) ){
      rc = SQLITE_ABORT;








    }
    p->nCallback++;
  }
  POPSTACK;
  if( sqlite_malloc_failed ) goto no_mem;
  break;
}







|





>
>
>
>
>
>
>





>
>
>
|
|
>
>
>
>
>
>
>
>







3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
    sqliteFree(pSorter);
  }else{
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: SortCallback P1 P2 *
**
** The top of the stack contains a callback record built using
** the SortMakeRec operation with the same P1 value as this
** instruction.  Pop this record from the stack and invoke the
** callback on it.
**
** If the offset counter (set by the OP_Limit opcode) is positive,
** then decrement the counter and do not invoke the callback.
** 
** If the callback is invoked, then after the callback returns
** decrement the limit counter.  When the limit counter reaches
** zero, jump to address P2.
*/
case OP_SortCallback: {
  int i = p->tos;
  VERIFY( if( i<0 ) goto not_enough_stack; )
  if( xCallback!=0 ){
    if( p->iOffset>0 ){
      p->iOffset--;
    }else{
      if( xCallback(pArg, pOp->p1, (char**)zStack[i], p->azColName)!=0 ){
        rc = SQLITE_ABORT;
      }
      p->nCallback++;
      if( p->iLimit>0 ){
        p->iLimit--;
        if( p->iLimit==0 ){
          pc = pOp->p2 - 1;
        }
      }
    }
    p->nCallback++;
  }
  POPSTACK;
  if( sqlite_malloc_failed ) goto no_mem;
  break;
}
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
    sqliteSetString(pzErrMsg,"unable to open file: ", pOp->p3, 0);
    rc = SQLITE_ERROR;
    goto cleanup;
  }
  break;
}

#if 0 /* NOT USED */
/* Opcode: FileClose * * *
**
** Close a file previously opened using FileOpen.  This is a no-op
** if there is no prior FileOpen call.
*/
case OP_FileClose: {
  if( p->pFile ){
    if( p->pFile!=stdin ) fclose(p->pFile);
    p->pFile = 0;
  }
  if( p->azField ){
    sqliteFree(p->azField);
    p->azField = 0;
  }
  p->nField = 0;
  if( p->zLine ){
    sqliteFree(p->zLine);
    p->zLine = 0;
  }
  p->nLineAlloc = 0;
  break;
}
#endif

/* Opcode: FileRead P1 P2 P3
**
** Read a single line of input from the open file (the file opened using
** FileOpen).  If we reach end-of-file, jump immediately to P2.  If
** we are able to get another line, split the line apart using P3 as
** a delimiter.  There should be P1 fields.  If the input line contains
** more than P1 fields, ignore the excess.  If the input line contains







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







3495
3496
3497
3498
3499
3500
3501

























3502
3503
3504
3505
3506
3507
3508
    sqliteSetString(pzErrMsg,"unable to open file: ", pOp->p3, 0);
    rc = SQLITE_ERROR;
    goto cleanup;
  }
  break;
}


























/* Opcode: FileRead P1 P2 P3
**
** Read a single line of input from the open file (the file opened using
** FileOpen).  If we reach end-of-file, jump immediately to P2.  If
** we are able to get another line, split the line apart using P3 as
** a delimiter.  There should be P1 fields.  If the input line contains
** more than P1 fields, ignore the excess.  If the input line contains
3557
3558
3559
3560
3561
3562
3563
3564
3565

3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586

3587
3588
3589


3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612




3613
3614
3615
3616
3617
3618
3619
** Pop a single value of the stack and store that value into memory
** location P1.  P1 should be a small integer since space is allocated
** for all memory locations between 0 and P1 inclusive.
*/
case OP_MemStore: {
  int i = pOp->p1;
  int tos = p->tos;
  Mem *pMem;
  char *zOld;

  VERIFY( if( tos<0 ) goto not_enough_stack; )
  if( i>=p->nMem ){
    int nOld = p->nMem;
    Mem *aMem;
    p->nMem = i + 5;
    aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
    if( aMem==0 ) goto no_mem;
    p->aMem = aMem;
    if( nOld<p->nMem ){
      memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
    }
  }
  pMem = &p->aMem[i];
  if( pMem->s.flags & STK_Dyn ){
    zOld = pMem->z;
  }else{
    zOld = 0;
  }
  pMem->s = aStack[tos];
  if( pMem->s.flags & STK_Str ){
    pMem->z = sqliteStrNDup(zStack[tos], pMem->s.n);

    pMem->s.flags |= STK_Dyn;
  }
  if( zOld ) sqliteFree(zOld);


  POPSTACK;
  break;
}

/* Opcode: MemLoad P1 * *
**
** Push a copy of the value in memory location P1 onto the stack.
*/
case OP_MemLoad: {
  int tos = ++p->tos;
  int i = pOp->p1;
  VERIFY( if( NeedStack(p, tos) ) goto no_mem; )
  if( i<0 || i>=p->nMem ){
    aStack[tos].flags = STK_Null;
    zStack[tos] = 0;
  }else{
    aStack[tos] = p->aMem[i].s;
    if( aStack[tos].flags & STK_Str ){
      char *z = sqliteMalloc(aStack[tos].n);
      if( z==0 ) goto no_mem;
      memcpy(z, p->aMem[i].z, aStack[tos].n);
      zStack[tos] = z;
      aStack[tos].flags |= STK_Dyn;




    }
  }
  break;
}

/* Opcode: AggReset * P2 *
**







<

>



















|
|
>
|


>
>

















|





>
>
>
>







3618
3619
3620
3621
3622
3623
3624

3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
** Pop a single value of the stack and store that value into memory
** location P1.  P1 should be a small integer since space is allocated
** for all memory locations between 0 and P1 inclusive.
*/
case OP_MemStore: {
  int i = pOp->p1;
  int tos = p->tos;

  char *zOld;
  Mem *pMem;
  VERIFY( if( tos<0 ) goto not_enough_stack; )
  if( i>=p->nMem ){
    int nOld = p->nMem;
    Mem *aMem;
    p->nMem = i + 5;
    aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
    if( aMem==0 ) goto no_mem;
    p->aMem = aMem;
    if( nOld<p->nMem ){
      memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
    }
  }
  pMem = &p->aMem[i];
  if( pMem->s.flags & STK_Dyn ){
    zOld = pMem->z;
  }else{
    zOld = 0;
  }
  pMem->s = aStack[tos];
  if( pMem->s.flags & (STK_Static|STK_Dyn) ){
    pMem->z = zStack[tos];
  }else{
    pMem->z = pMem->s.z;
  }
  if( zOld ) sqliteFree(zOld);
  zStack[tos] = 0;
  aStack[tos].flags = 0;
  POPSTACK;
  break;
}

/* Opcode: MemLoad P1 * *
**
** Push a copy of the value in memory location P1 onto the stack.
*/
case OP_MemLoad: {
  int tos = ++p->tos;
  int i = pOp->p1;
  VERIFY( if( NeedStack(p, tos) ) goto no_mem; )
  if( i<0 || i>=p->nMem ){
    aStack[tos].flags = STK_Null;
    zStack[tos] = 0;
  }else{
    aStack[tos] = p->aMem[i].s;
    if( aStack[tos].flags & STK_Dyn ){
      char *z = sqliteMalloc(aStack[tos].n);
      if( z==0 ) goto no_mem;
      memcpy(z, p->aMem[i].z, aStack[tos].n);
      zStack[tos] = z;
      aStack[tos].flags |= STK_Dyn;
    }else if( aStack[tos].flags & STK_Static ){
      zStack[tos] = p->aMem[i].z;
    }else if( aStack[tos].flags & STK_Str ){
      zStack[tos] = aStack[tos].z;
    }
  }
  break;
}

/* Opcode: AggReset * P2 *
**
3708
3709
3710
3711
3712
3713
3714
3715


3716
3717
3718
3719
3720

3721
3722
3723
3724
3725
3726
3727
    char *zOld;
    if( pMem->s.flags & STK_Dyn ){
      zOld = pMem->z;
    }else{
      zOld = 0;
    }
    pMem->s = aStack[tos];
    if( pMem->s.flags & STK_Str ){


      pMem->z = sqliteMalloc( aStack[tos].n );
      if( pMem->z ){
        memcpy(pMem->z, zStack[tos], pMem->s.n);
      }
      pMem->s.flags |= STK_Str|STK_Dyn;

    }
    if( zOld ) sqliteFree(zOld);
  }
  POPSTACK;
  break;
}








|
>
>
|
|
|
<
|
>







3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788

3789
3790
3791
3792
3793
3794
3795
3796
3797
    char *zOld;
    if( pMem->s.flags & STK_Dyn ){
      zOld = pMem->z;
    }else{
      zOld = 0;
    }
    pMem->s = aStack[tos];
    if( pMem->s.flags & STK_Dyn ){
      pMem->z = zStack[tos];
      zStack[tos] = 0;
      aStack[tos].flags = 0;
    }else if( pMem->s.flags & STK_Static ){
      pMem->z = zStack[tos];

    }else if( pMem->s.flags & STK_Str ){
      pMem->z = pMem->s.z;
    }
    if( zOld ) sqliteFree(zOld);
  }
  POPSTACK;
  break;
}

3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
    pc = pOp->p2 - 1;
  } else {
    p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
  }
  break;
}

#if 0 /* NOT USED */
/* Opcode: SetClear P1 * *
**
** Remove all elements from the P1-th Set.
*/
case OP_SetClear: {
  int i = pOp->p1;
  if( i>=0 && i<p->nSet ){
    sqliteHashClear(&p->aSet[i].hash);
  }
  break;
}
#endif /* NOT USED */

/* Opcode: SetInsert P1 * P3
**
** If Set P1 does not exist then create it.  Then insert value
** P3 into that set.  If P3 is NULL, then insert the top of the
** stack into the set.
*/
case OP_SetInsert: {







<
<
<
<
<
<
<
<
<
<
<
<
<
<







3838
3839
3840
3841
3842
3843
3844














3845
3846
3847
3848
3849
3850
3851
    pc = pOp->p2 - 1;
  } else {
    p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
  }
  break;
}















/* Opcode: SetInsert P1 * P3
**
** If Set P1 does not exist then create it.  Then insert value
** P3 into that set.  If P3 is NULL, then insert the top of the
** stack into the set.
*/
case OP_SetInsert: {
Changes to src/vdbe.h.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE.  The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
** $Id: vdbe.h,v 1.32 2001/11/04 18:32:48 drh Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
#include <stdio.h>

/*
** A single VDBE is an opaque structure named "Vdbe".  Only routines







|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE.  The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
** $Id: vdbe.h,v 1.33 2001/11/06 04:00:19 drh Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
#include <stdio.h>

/*
** A single VDBE is an opaque structure named "Vdbe".  Only routines
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197


198
199
200
201
202
203
204
#define OP_SortNext           46
#define OP_SortCallback       47
#define OP_SortReset          48

#define OP_FileOpen           49
#define OP_FileRead           50
#define OP_FileColumn         51
#define OP_FileClose          52

#define OP_AggReset           53
#define OP_AggFocus           54
#define OP_AggIncr            55
#define OP_AggNext            56
#define OP_AggSet             57
#define OP_AggGet             58

#define OP_SetInsert          59
#define OP_SetFound           60
#define OP_SetNotFound        61
#define OP_SetClear           62

#define OP_MakeRecord         63
#define OP_MakeKey            64
#define OP_MakeIdxKey         65

#define OP_Goto               66
#define OP_If                 67
#define OP_Halt               68

#define OP_ColumnCount        69
#define OP_ColumnName         70
#define OP_Callback           71
#define OP_NullCallback       72

#define OP_Integer            73
#define OP_String             74
#define OP_Null               75
#define OP_Pop                76
#define OP_Dup                77
#define OP_Pull               78

#define OP_Add                79
#define OP_AddImm             80
#define OP_Subtract           81
#define OP_Multiply           82
#define OP_Divide             83
#define OP_Remainder          84
#define OP_BitAnd             85
#define OP_BitOr              86
#define OP_BitNot             87
#define OP_ShiftLeft          88
#define OP_ShiftRight         89
#define OP_AbsValue           90
#define OP_Precision          91
#define OP_Min                92
#define OP_Max                93
#define OP_Like               94
#define OP_Glob               95
#define OP_Eq                 96
#define OP_Ne                 97
#define OP_Lt                 98
#define OP_Le                 99
#define OP_Gt                100
#define OP_Ge                101
#define OP_IsNull            102
#define OP_NotNull           103
#define OP_Negative          104
#define OP_And               105
#define OP_Or                106
#define OP_Not               107
#define OP_Concat            108
#define OP_Noop              109

#define OP_Strlen            110
#define OP_Substr            111



#define OP_MAX               111

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.
*/







<

|
|
|
|
|
|

|
|
|
<

|
|
|

|
|
|

|
|
|
|

|
|
<
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
>
>







123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#define OP_SortNext           46
#define OP_SortCallback       47
#define OP_SortReset          48

#define OP_FileOpen           49
#define OP_FileRead           50
#define OP_FileColumn         51


#define OP_AggReset           52
#define OP_AggFocus           53
#define OP_AggIncr            54
#define OP_AggNext            55
#define OP_AggSet             56
#define OP_AggGet             57

#define OP_SetInsert          58
#define OP_SetFound           59
#define OP_SetNotFound        60


#define OP_MakeRecord         61
#define OP_MakeKey            62
#define OP_MakeIdxKey         63

#define OP_Goto               64
#define OP_If                 65
#define OP_Halt               66

#define OP_ColumnCount        67
#define OP_ColumnName         68
#define OP_Callback           69
#define OP_NullCallback       70

#define OP_Integer            71
#define OP_String             72

#define OP_Pop                73
#define OP_Dup                74
#define OP_Pull               75

#define OP_Add                76
#define OP_AddImm             77
#define OP_Subtract           78
#define OP_Multiply           79
#define OP_Divide             80
#define OP_Remainder          81
#define OP_BitAnd             82
#define OP_BitOr              83
#define OP_BitNot             84
#define OP_ShiftLeft          85
#define OP_ShiftRight         86
#define OP_AbsValue           87
#define OP_Precision          88
#define OP_Min                89
#define OP_Max                90
#define OP_Like               91
#define OP_Glob               92
#define OP_Eq                 93
#define OP_Ne                 94
#define OP_Lt                 95
#define OP_Le                 96
#define OP_Gt                 97
#define OP_Ge                 98
#define OP_IsNull             99
#define OP_NotNull           100
#define OP_Negative          101
#define OP_And               102
#define OP_Or                103
#define OP_Not               104
#define OP_Concat            105
#define OP_Noop              106

#define OP_Strlen            107
#define OP_Substr            108

#define OP_Limit             109

#define OP_MAX               111

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.
*/