Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | All essential opcodes can now operate out of registers and completely avoid the stack. Many still optionally use the stack to support legacy code generation, but the stack is not required. The next step is to update all code generation to avoid using the stack. (CVS 4700) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
e3cf1c1c114bcda8fe577beb5ee55b4a |
User & Date: | drh 2008-01-09 23:04:12.000 |
Context
2008-01-09
| ||
23:21 | Fix a test script problem associated with the new crash4.test file. Ticket #2882. (CVS 4701) (check-in: 1134c5ea71 user: drh tags: trunk) | |
23:04 | All essential opcodes can now operate out of registers and completely avoid the stack. Many still optionally use the stack to support legacy code generation, but the stack is not required. The next step is to update all code generation to avoid using the stack. (CVS 4700) (check-in: e3cf1c1c11 user: drh tags: trunk) | |
18:31 | Fix the build for AIX and other systems where "char" is unsigned by default. (CVS 4699) (check-in: 47672af0c6 user: drh tags: trunk) | |
Changes
Changes to src/analyze.c.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2005 July 8 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code associated with the ANALYZE command. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2005 July 8 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code associated with the ANALYZE command. ** ** @(#) $Id: analyze.c,v 1.36 2008/01/09 23:04:12 drh Exp $ */ #ifndef SQLITE_OMIT_ANALYZE #include "sqliteInt.h" /* ** This routine generates code that opens the sqlite_stat1 table on cursor ** iStatCur. |
︙ | ︙ | |||
69 70 71 72 73 74 75 76 77 78 79 80 81 82 | ** If this vdbe did create the sqlite_stat1 table, then it must have ** already obtained a schema-lock, making the write-lock redundant. */ if( iRootPage>0 ){ sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1"); } sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur, iRootPage, iDb); sqlite3VdbeAddOp2(v, OP_SetNumColumns, iStatCur, 3); } /* ** Generate code to do an analysis of all indices associated with ** a single table. */ | > > > | 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | ** If this vdbe did create the sqlite_stat1 table, then it must have ** already obtained a schema-lock, making the write-lock redundant. */ if( iRootPage>0 ){ sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1"); } sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur, iRootPage, iDb); if( iRootPage==0 ){ sqlite3VdbeChangeP5(v, 1); } sqlite3VdbeAddOp2(v, OP_SetNumColumns, iStatCur, 3); } /* ** Generate code to do an analysis of all indices associated with ** a single table. */ |
︙ | ︙ |
Changes to src/attach.c.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the ATTACH and DETACH commands. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the ATTACH and DETACH commands. ** ** $Id: attach.c,v 1.67 2008/01/09 23:04:12 drh Exp $ */ #include "sqliteInt.h" #ifndef SQLITE_OMIT_ATTACH /* ** Resolve an expression that was part of an ATTACH or DETACH statement. This ** is slightly different from resolving a normal SQL expression, because simple |
︙ | ︙ | |||
328 329 330 331 332 333 334 | v = sqlite3GetVdbe(pParse); sqlite3ExprCode(pParse, pFilename, 0); sqlite3ExprCode(pParse, pDbname, 0); sqlite3ExprCode(pParse, pKey, 0); assert( v || db->mallocFailed ); if( v ){ | | > | 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 | v = sqlite3GetVdbe(pParse); sqlite3ExprCode(pParse, pFilename, 0); sqlite3ExprCode(pParse, pDbname, 0); sqlite3ExprCode(pParse, pKey, 0); assert( v || db->mallocFailed ); if( v ){ sqlite3VdbeAddOp0(v, OP_Function); sqlite3VdbeChangeP5(v, nFunc); pFunc = sqlite3FindFunction(db, zFunc, strlen(zFunc), nFunc, SQLITE_UTF8,0); sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF); /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this ** statement only). For DETACH, set it to false (expire all existing ** statements). */ |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
18 19 20 21 22 23 24 | ** CREATE INDEX ** DROP INDEX ** creating ID lists ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK ** | | | 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ** CREATE INDEX ** DROP INDEX ** creating ID lists ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK ** ** $Id: build.c,v 1.462 2008/01/09 23:04:12 drh Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* ** This routine is called when a new SQL statement is beginning to ** be parsed. Initialize the pParse structure as needed. |
︙ | ︙ | |||
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 | */ if( pSelect ){ SelectDest dest; Table *pSelTab; sqlite3VdbeAddOp0(v, OP_Copy); sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, 0, iDb); pParse->nTab = 2; sqlite3SelectDestInit(&dest, SRT_Table, 1); sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0); sqlite3VdbeAddOp1(v, OP_Close, 1); if( pParse->nErr==0 ){ pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect); if( pSelTab==0 ) return; | > | 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 | */ if( pSelect ){ SelectDest dest; Table *pSelTab; sqlite3VdbeAddOp0(v, OP_Copy); sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, 0, iDb); sqlite3VdbeChangeP5(v, 1); pParse->nTab = 2; sqlite3SelectDestInit(&dest, SRT_Table, 1); sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0); sqlite3VdbeAddOp1(v, OP_Close, 1); if( pParse->nErr==0 ){ pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect); if( pSelTab==0 ) return; |
︙ | ︙ | |||
1830 1831 1832 1833 1834 1835 1836 | ** Write code to erase the table with root-page iTable from database iDb. ** Also write code to modify the sqlite_master table and internal schema ** if a root-page of another table is moved by the btree-layer whilst ** erasing iTable (this can happen with an auto-vacuum database). */ static void destroyRootPage(Parse *pParse, int iTable, int iDb){ Vdbe *v = sqlite3GetVdbe(pParse); | | | 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 | ** Write code to erase the table with root-page iTable from database iDb. ** Also write code to modify the sqlite_master table and internal schema ** if a root-page of another table is moved by the btree-layer whilst ** erasing iTable (this can happen with an auto-vacuum database). */ static void destroyRootPage(Parse *pParse, int iTable, int iDb){ Vdbe *v = sqlite3GetVdbe(pParse); sqlite3VdbeAddOp3(v, OP_Destroy, iTable, 0, iDb); #ifndef SQLITE_OMIT_AUTOVACUUM /* OP_Destroy pushes an integer onto the stack. If this integer ** is non-zero, then it is the root page number of a table moved to ** location iTable. The following code modifies the sqlite_master table to ** reflect this. ** ** The "#0" in the SQL is a special constant that means whatever value |
︙ | ︙ | |||
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 | }else{ tnum = pIndex->tnum; sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); } pKey = sqlite3IndexKeyinfo(pParse, pIndex); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, (char *)pKey, P4_KEYINFO_HANDOFF); sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); sqlite3GenerateIndexKey(v, pIndex, iTab); if( pIndex->onError!=OE_None ){ int curaddr = sqlite3VdbeCurrentAddr(v); int addr2 = curaddr+4; sqlite3VdbeChangeP2(v, curaddr-1, addr2); sqlite3VdbeAddOp1(v, OP_Rowid, iTab); sqlite3VdbeAddOp2(v, OP_AddImm, 0, 1); | > > > | | 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 | }else{ tnum = pIndex->tnum; sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); } pKey = sqlite3IndexKeyinfo(pParse, pIndex); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, (char *)pKey, P4_KEYINFO_HANDOFF); if( memRootPage>=0 ){ sqlite3VdbeChangeP5(v, 1); } sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); sqlite3GenerateIndexKey(v, pIndex, iTab); if( pIndex->onError!=OE_None ){ int curaddr = sqlite3VdbeCurrentAddr(v); int addr2 = curaddr+4; sqlite3VdbeChangeP2(v, curaddr-1, addr2); sqlite3VdbeAddOp1(v, OP_Rowid, iTab); sqlite3VdbeAddOp2(v, OP_AddImm, 0, 1); sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, addr2, 0, 0, P4_INT32); sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0, "indexed columns are not unique", P4_STATIC); assert( db->mallocFailed || addr2==sqlite3VdbeCurrentAddr(v) ); } sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, 0); sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); sqlite3VdbeJumpHere(v, addr1); |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** in order to generate code for DELETE FROM statements. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** in order to generate code for DELETE FROM statements. ** ** $Id: delete.c,v 1.155 2008/01/09 23:04:12 drh Exp $ */ #include "sqliteInt.h" /* ** Look up every table that is named in pSrc. If any table is not found, ** add an error message to pParse->zErrMsg and return NULL. If all tables ** are found, return a pointer to the last table. |
︙ | ︙ | |||
365 366 367 368 369 370 371 | /* If the record is no longer present in the table, jump to the ** next iteration of the loop through the contents of the fifo. */ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, iRowid); /* Populate the OLD.* pseudo-table */ if( old_col_mask ){ | | | 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | /* If the record is no longer present in the table, jump to the ** next iteration of the loop through the contents of the fifo. */ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, iRowid); /* Populate the OLD.* pseudo-table */ if( old_col_mask ){ sqlite3VdbeAddOp2(v, OP_RowData, iCur, iData); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, iData); } sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, iData, iRowid); /* Jump back and run the BEFORE triggers */ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger); |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. ** ** $Id: expr.c,v 1.340 2008/01/09 23:04:12 drh Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* ** Return the 'affinity' of the expression pExpr if any. ** |
︙ | ︙ | |||
2206 2207 2208 2209 2210 2211 2212 | pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); } } if( pDef->needCollSeq ){ if( !pColl ) pColl = pParse->db->pDfltColl; sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } | | > | 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 | pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); } } if( pDef->needCollSeq ){ if( !pColl ) pColl = pParse->db->pDfltColl; sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp4(v, OP_Function, constMask, 0, 0, (char*)pDef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, nExpr); break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_EXISTS: case TK_SELECT: { if( pExpr->iColumn==0 ){ sqlite3CodeSubselect(pParse, pExpr); |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. ** ** $Id: insert.c,v 1.220 2008/01/09 23:04:12 drh Exp $ */ #include "sqliteInt.h" /* ** Set P4 of the most recently inserted opcode to a column affinity ** string for index pIdx. A column affinity string has one character ** for each column in the table, according to the affinity of the column: |
︙ | ︙ | |||
1180 1181 1182 1183 1184 1185 1186 | else if( onError==OE_Fail ) onError = OE_Abort; } /* Check to see if the new index entry will be unique */ sqlite3VdbeAddOp1(v, OP_SCopy, aRegIdx[iCur]); sqlite3VdbeAddOp1(v, OP_SCopy, regRowid-hasTwoRowids); | | | 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 | else if( onError==OE_Fail ) onError = OE_Abort; } /* Check to see if the new index entry will be unique */ sqlite3VdbeAddOp1(v, OP_SCopy, aRegIdx[iCur]); sqlite3VdbeAddOp1(v, OP_SCopy, regRowid-hasTwoRowids); j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, 0, 0, P4_INT32); /* Generate code that executes if the new index entry is not unique */ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail || onError==OE_Ignore || onError==OE_Replace ); switch( onError ){ case OE_Rollback: case OE_Abort: |
︙ | ︙ | |||
1613 1614 1615 1616 1617 1618 1619 | autoIncStep(pParse, regAutoinc, 0); }else if( pDest->pIndex==0 ){ addr1 = sqlite3VdbeAddOp1(v, OP_NewRowid, iDest); }else{ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, 0); assert( pDest->autoInc==0 ); } | | | | 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 | autoIncStep(pParse, regAutoinc, 0); }else if( pDest->pIndex==0 ){ addr1 = sqlite3VdbeAddOp1(v, OP_NewRowid, iDest); }else{ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, 0); assert( pDest->autoInc==0 ); } sqlite3VdbeAddOp1(v, OP_RowData, iSrc); sqlite3CodeInsert(pParse,iDest,OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); autoIncEnd(pParse, iDbDest, pDest, regAutoinc); for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } assert( pSrcIdx ); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc, (char*)pKey, P4_KEYINFO_HANDOFF); VdbeComment((v, "%s", pSrcIdx->zName)); pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest, (char*)pKey, P4_KEYINFO_HANDOFF); VdbeComment((v, "%s", pDestIdx->zName)); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); sqlite3VdbeAddOp1(v, OP_RowKey, iSrc); sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, 0, 1); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); sqlite3VdbeJumpHere(v, addr1); } sqlite3VdbeJumpHere(v, emptySrcTest); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
︙ | ︙ |
Changes to src/pragma.c.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the PRAGMA command. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the PRAGMA command. ** ** $Id: pragma.c,v 1.164 2008/01/09 23:04:12 drh Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* Ignore this whole file if pragmas are disabled */ #if !defined(SQLITE_OMIT_PRAGMA) && !defined(SQLITE_OMIT_PARSER) |
︙ | ︙ | |||
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 | if( zRight ){ mxErr = atoi(zRight); if( mxErr<=0 ){ mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; } } sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); /* Do an integrity check on each database file */ for(i=0; i<db->nDb; i++){ HashElem *x; Hash *pTbls; int cnt = 0; if( OMIT_TEMPDB && i==1 ) continue; sqlite3CodeVerifySchema(pParse, i); addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); /* Do an integrity check of the B-Tree */ pTbls = &db->aDb[i].pSchema->tblHash; for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; | > | | > > > | > | | < | | | 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 | if( zRight ){ mxErr = atoi(zRight); if( mxErr<=0 ){ mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; } } sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); pParse->nMem = 1; /* Do an integrity check on each database file */ for(i=0; i<db->nDb; i++){ HashElem *x; Hash *pTbls; int cnt = 0; if( OMIT_TEMPDB && i==1 ) continue; sqlite3CodeVerifySchema(pParse, i); addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); /* Do an integrity check of the B-Tree */ pTbls = &db->aDb[i].pSchema->tblHash; for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt); cnt++; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt); cnt++; } } if( cnt==0 ) continue; if( pParse->nMem < cnt+3 ){ pParse->nMem = cnt+3; } sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1); sqlite3VdbeChangeP5(v, i); addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName), P4_DYNAMIC); sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 2); sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1); sqlite3VdbeJumpHere(v, addr); /* Make sure all the indices are constructed correctly. */ for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements in SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements in SQLite. ** ** $Id: select.c,v 1.395 2008/01/09 23:04:12 drh Exp $ */ #include "sqliteInt.h" /* ** Delete all the content of a Select structure but do not deallocate ** the select structure itself. |
︙ | ︙ | |||
434 435 436 437 438 439 440 | sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); VdbeComment((v, "skip OFFSET records")); sqlite3VdbeJumpHere(v, addr); } } /* | | | < < < < < < < < < < < < < < < < < < < < < < < | 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 | sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); VdbeComment((v, "skip OFFSET records")); sqlite3VdbeJumpHere(v, addr); } } /* ** Add code that will check to make sure the N registers starting at iMem ** form a distinct entry. iTab is a sorting index that holds previously ** seen combinations of the N values. A new entry is made in iTab ** if the current N values are new. ** ** A jump to addrRepeat is made and the N+1 values are popped from the ** stack if the top N elements are not distinct. */ static void codeDistinct( |
︙ | ︙ | |||
2131 2132 2133 2134 2135 2136 2137 | while( pFirst->pPrior ) pFirst = pFirst->pPrior; generateColumnNames(pParse, 0, pFirst->pEList); } iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); | | | 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 | while( pFirst->pPrior ) pFirst = pFirst->pPrior; generateColumnNames(pParse, 0, pFirst->pEList); } iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); iStart = sqlite3VdbeAddOp1(v, OP_RowKey, tab1); sqlite3VdbeAddOp2(v, OP_NotFound, tab2, iCont); rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, pOrderBy, -1, &dest, iCont, iBreak, 0); if( rc ){ rc = 1; goto multi_select_end; } |
︙ | ︙ | |||
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 | struct AggInfo_func *pF; struct AggInfo_col *pC; pAggInfo->directMode = 1; for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ int nArg; int addrNext = 0; ExprList *pList = pF->pExpr->pList; if( pList ){ nArg = pList->nExpr; sqlite3ExprCodeExprList(pParse, pList, 0); }else{ nArg = 0; } if( pF->iDistinct>=0 ){ addrNext = sqlite3VdbeMakeLabel(v); assert( nArg==1 ); | > > > | | > | 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 | struct AggInfo_func *pF; struct AggInfo_col *pC; pAggInfo->directMode = 1; for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ int nArg; int addrNext = 0; int regAgg; ExprList *pList = pF->pExpr->pList; if( pList ){ nArg = pList->nExpr; sqlite3ExprCodeExprList(pParse, pList, 0); regAgg = sqlite3StackToReg(pParse, nArg); }else{ nArg = 0; regAgg = 0; } if( pF->iDistinct>=0 ){ addrNext = sqlite3VdbeMakeLabel(v); assert( nArg==1 ); codeDistinct(v, pF->iDistinct, addrNext, 1, regAgg); } if( pF->pFunc->needCollSeq ){ CollSeq *pColl = 0; struct ExprList_item *pItem; int j; assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); } if( !pColl ){ pColl = pParse->db->pDfltColl; } sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, (void*)pF->pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, nArg); if( addrNext ){ sqlite3VdbeResolveLabel(v, addrNext); } } for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); } |
︙ | ︙ |
Changes to src/sqliteInt.h.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** ** @(#) $Id: sqliteInt.h,v 1.645 2008/01/09 23:04:12 drh Exp $ */ #ifndef _SQLITEINT_H_ #define _SQLITEINT_H_ /* ** The macro unlikely() is a hint that surrounds a boolean ** expression that is usually false. Macro likely() surrounds |
︙ | ︙ | |||
477 478 479 480 481 482 483 | int flags; /* Miscellanous flags. See below */ int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ int errCode; /* Most recent error code (SQLITE_*) */ int errMask; /* & result codes with this before returning */ u8 autoCommit; /* The auto-commit flag. */ u8 temp_store; /* 1: file 2: memory 0: default */ u8 mallocFailed; /* True if we have seen a malloc failure */ | | | 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 | int flags; /* Miscellanous flags. See below */ int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ int errCode; /* Most recent error code (SQLITE_*) */ int errMask; /* & result codes with this before returning */ u8 autoCommit; /* The auto-commit flag. */ u8 temp_store; /* 1: file 2: memory 0: default */ u8 mallocFailed; /* True if we have seen a malloc failure */ signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ int nTable; /* Number of tables in the database */ CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ i64 lastRowid; /* ROWID of most recent insert (see above) */ i64 priorNewRowid; /* Last randomly generated ROWID */ int magic; /* Magic number for detect library misuse */ int nChange; /* Value returned by sqlite3_changes() */ int nTotalChange; /* Value returned by sqlite3_total_changes() */ |
︙ | ︙ |
Changes to src/update.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle UPDATE statements. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle UPDATE statements. ** ** $Id: update.c,v 1.166 2008/01/09 23:04:12 drh Exp $ */ #include "sqliteInt.h" #ifndef SQLITE_OMIT_VIRTUALTABLE /* Forward declaration */ static void updateVirtualTable( Parse *pParse, /* The parsing context */ |
︙ | ︙ | |||
410 411 412 413 414 415 416 | /* Generate the OLD table */ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, 0); if( !old_col_mask ){ sqlite3VdbeAddOp2(v, OP_Null, 0, 0); }else{ | | | 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 | /* Generate the OLD table */ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, 0); if( !old_col_mask ){ sqlite3VdbeAddOp2(v, OP_Null, 0, 0); }else{ sqlite3VdbeAddOp1(v, OP_RowData, iCur); } sqlite3CodeInsert(pParse, oldIdx, 0); /* Generate the NEW table */ if( chngRowid ){ sqlite3ExprCodeAndCache(pParse, pRowidExpr); |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.691 2008/01/09 23:04:12 drh Exp $ */ #include "sqliteInt.h" #include <ctype.h> #include "vdbeInt.h" /* ** The following global variable is incremented every time a cursor |
︙ | ︙ | |||
1431 1432 1433 1434 1435 1436 1437 | ** publicly, only to user functions defined in func.c. */ case OP_CollSeq: { /* no-push */ assert( pOp->p4type==P4_COLLSEQ ); break; } | | | | > | > | > > > | 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 | ** publicly, only to user functions defined in func.c. */ case OP_CollSeq: { /* no-push */ assert( pOp->p4type==P4_COLLSEQ ); break; } /* Opcode: Function P1 P2 P3 P4 P5 ** ** Invoke a user function (P4 is a pointer to a Function structure that ** defines the function) with P5 arguments taken from register P2 and ** successors, or if P2==0 from the stack. The result of the function ** is stored in register P3 or on the stack if P3==0. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** See also: AggStep and AggFinal */ case OP_Function: { int i; Mem *pArg; sqlite3_context ctx; sqlite3_value **apVal; int n = pOp->p5; apVal = p->apArg; assert( apVal || n==0 ); if( pOp->p2==0 ){ pArg = &pTos[1-n]; }else{ pArg = &p->aMem[pOp->p2]; } for(i=0; i<n; i++, pArg++){ apVal[i] = pArg; storeTypeInfo(pArg, encoding); } assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); if( pOp->p4type==P4_FUNCDEF ){ |
︙ | ︙ | |||
1498 1499 1500 1501 1502 1503 1504 | ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn() ** fails also (the if(...) statement above). But if people are ** misusing sqlite, they have bigger problems than a leaked value. */ sqlite3VdbeMemRelease(&ctx.s); goto no_mem; } | > | > > | > | > | | | < | | | < | | | < < | > > | > > | < < | 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 | ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn() ** fails also (the if(...) statement above). But if people are ** misusing sqlite, they have bigger problems than a leaked value. */ sqlite3VdbeMemRelease(&ctx.s); goto no_mem; } if( pOp->p2==0 ){ popStack(&pTos, n); } /* If any auxilary data functions have been called by this user function, ** immediately call the destructor for any non-static values. */ if( ctx.pVdbeFunc ){ sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1); pOp->p4.pVdbeFunc = ctx.pVdbeFunc; pOp->p4type = P4_VDBEFUNC; } /* If the function returned an error, throw an exception */ if( ctx.isError ){ sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0); rc = SQLITE_ERROR; } /* Copy the result of the function to the top of the stack */ sqlite3VdbeChangeEncoding(&ctx.s, encoding); if( pOp->p3==0 ){ pOut = ++pTos; }else{ pOut = &p->aMem[pOp->p3]; } sqlite3VdbeMemMove(pOut, &ctx.s); if( sqlite3VdbeMemTooBig(pOut) ){ goto too_big; } break; } /* Opcode: BitAnd P1 P2 P3 * * ** ** Take the bit-wise AND of the values in register P1 and P2 and ** store the result in register P3. ** If either operand is NULL, the result is NULL. */ /* Opcode: BitOr P1 P2 P3 * * ** ** Take the bit-wise OR of the values in register P1 and P2 and ** store the result in register P3. ** If either operand is NULL, the result is NULL. */ /* Opcode: ShiftLeft P1 P2 P3 * * ** ** Shift the integer value in register P2 to the left by the ** number of bits specified by the integer in P1. ** Store the result in register P3. ** If either operand is NULL, the result is NULL. */ /* Opcode: ShiftRight P1 P2 P3 * * ** ** Shift the integer value in register P2 to the right by the ** number of bits specified by the integer in P1. ** Store the result in register P3. ** If either operand is NULL, the result is NULL. */ case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ i64 a, b; |
︙ | ︙ | |||
1966 1967 1968 1969 1970 1971 1972 | }else{ pOut->u.i = v1; pOut->flags = MEM_Int; } break; } | | | | | | | | | | | | 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 | }else{ pOut->u.i = v1; pOut->flags = MEM_Int; } break; } /* Opcode: Not P1 * * * * ** ** Interpret the value in register P1 as a boolean value. Replace it ** with its complement. If the value in register P1 is NULL its value ** is unchanged. */ case OP_Not: { /* same as TK_NOT, no-push, in1 */ nPop = 0; if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */ sqlite3VdbeMemIntegerify(pIn1); assert( (pIn1->flags & MEM_Dyn)==0 ); pIn1->u.i = !pIn1->u.i; pIn1->flags = MEM_Int; break; } /* Opcode: BitNot P1 * * * * ** ** Interpret the content of register P1 as an integer. Replace it ** with its ones-complement. If the value is originally NULL, leave ** it unchanged. */ case OP_BitNot: { /* same as TK_BITNOT, no-push, in1 */ nPop = 0; if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */ sqlite3VdbeMemIntegerify(pIn1); assert( (pIn1->flags & MEM_Dyn)==0 ); pIn1->u.i = ~pIn1->u.i; pIn1->flags = MEM_Int; break; } /* Opcode: Noop * * * * * ** ** Do nothing. This instruction is often useful as a jump ** destination. */ /* ** The magic Explain opcode are only inserted when explain==2 (which ** is to say when the EXPLAIN QUERY PLAN syntax is used.) |
︙ | ︙ | |||
2066 2067 2068 2069 2070 2071 2072 | } if( pOp->p1>0 ){ popStack(&pTos, pOp->p1); } break; } | | | | | 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 | } if( pOp->p1>0 ){ popStack(&pTos, pOp->p1); } break; } /* Opcode: IsNull P1 P2 * * * ** ** Jump to P2 if the value in register P1 is NULL. ** ** If P1 is 0 then use the top of the stack instead of a register ** and pop the stack regardless of whether or not the jump is taken. */ case OP_IsNull: { /* same as TK_ISNULL, no-push, jump, in1 */ if( (pIn1->flags & MEM_Null)!=0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: NotNull P1 P2 * * * ** ** Jump to P2 if the value in register P1 is not NULL. ** ** If P1 is 0 then use the top of the stack instead of a register ** and pop the stack regardless of whether or not the jump is taken. */ case OP_NotNull: { /* same as TK_NOTNULL, no-push, jump, in1 */ if( (pIn1->flags & MEM_Null)==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: SetNumColumns P1 P2 * * * ** ** Before the OP_Column opcode can be executed on a cursor, this ** opcode must be called to set the number of fields in the table. ** ** This opcode sets the number of columns for cursor P1 to P2. ** ** If OP_KeyAsData is to be applied to cursor P1, it must be executed |
︙ | ︙ | |||
2523 2524 2525 2526 2527 2528 2529 | } /* If we have to append a varint rowid to this record, set pRowid ** to the value of the rowid and increase nByte by the amount of space ** required to store it. */ if( addRowid ){ | | | 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 | } /* If we have to append a varint rowid to this record, set pRowid ** to the value of the rowid and increase nByte by the amount of space ** required to store it. */ if( addRowid ){ pRowid = &pData0[-1]; assert( pRowid>=p->aStack ); sqlite3VdbeMemIntegerify(pRowid); serial_type = sqlite3VdbeSerialType(pRowid, 0); nData += sqlite3VdbeSerialTypeLen(serial_type); nHdr += sqlite3VarintLen(serial_type); nZero = 0; } |
︙ | ︙ | |||
2605 2606 2607 2608 2609 2610 2611 | /* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */ if( jumpIfNull && containsNull ){ pc = jumpIfNull - 1; } break; } | | | 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 | /* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */ if( jumpIfNull && containsNull ){ pc = jumpIfNull - 1; } break; } /* Opcode: Statement P1 * * * * ** ** Begin an individual statement transaction which is part of a larger ** BEGIN..COMMIT transaction. This is needed so that the statement ** can be rolled back after an error without having to roll back the ** entire transaction. The statement transaction will automatically ** commit when the VDBE halts. ** |
︙ | ︙ | |||
2632 2633 2634 2635 2636 2637 2638 | rc = sqlite3BtreeBeginStmt(pBt); p->openedStatement = 1; } } break; } | | | 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 | rc = sqlite3BtreeBeginStmt(pBt); p->openedStatement = 1; } } break; } /* Opcode: AutoCommit P1 P2 * * * ** ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll ** back any currently active btree transactions. If there are any active ** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails. ** ** This instruction causes the VM to halt. */ |
︙ | ︙ | |||
2689 2690 2691 2692 2693 2694 2695 | "cannot commit - no transaction is active"), (char*)0); rc = SQLITE_ERROR; } break; } | | | 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 | "cannot commit - no transaction is active"), (char*)0); rc = SQLITE_ERROR; } break; } /* Opcode: Transaction P1 P2 * * * ** ** Begin a transaction. The transaction ends when a Commit or Rollback ** opcode is encountered. Depending on the ON CONFLICT setting, the ** transaction might also be rolled back if an error is encountered. ** ** P1 is the index of the database file on which the transaction is ** started. Index 0 is the main database file and index 1 is the |
︙ | ︙ | |||
2776 2777 2778 2779 2780 2781 2782 | */ rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta); pOut->u.i = iMeta; pOut->flags = MEM_Int; break; } | | > | | < | | | | < < | 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 | */ rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta); pOut->u.i = iMeta; pOut->flags = MEM_Int; break; } /* Opcode: SetCookie P1 P2 P3 * * ** ** Write the content of register P3 (interpreted as an integer) ** into cookie number P2 of database P1. ** P2==0 is the schema version. P2==1 is the database format. ** P2==2 is the recommended pager cache size, and so forth. P1==0 is ** the main database file and P1==1 is the database file used to store ** temporary tables. ** ** A transaction must be started before executing this opcode. */ case OP_SetCookie: { /* no-push, in3 */ Db *pDb; assert( pOp->p2<SQLITE_N_BTREE_META ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (1<<pOp->p1))!=0 ); pDb = &db->aDb[pOp->p1]; assert( pDb->pBt!=0 ); sqlite3VdbeMemIntegerify(pIn3); /* See note about index shifting on OP_ReadCookie */ rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pIn3->u.i); if( pOp->p2==0 ){ /* When the schema cookie changes, record the new cookie internally */ pDb->pSchema->schema_cookie = pIn3->u.i; db->flags |= SQLITE_InternChanges; }else if( pOp->p2==1 ){ /* Record changes in the file format */ pDb->pSchema->file_format = pIn3->u.i; } if( pOp->p1==1 ){ /* Invalidate all prepared statements whenever the TEMP database ** schema is changed. Ticket #1644 */ sqlite3ExpirePreparedStatements(db); } break; } |
︙ | ︙ | |||
2869 2870 2871 2872 2873 2874 2875 | sqlite3ExpirePreparedStatements(db); rc = SQLITE_SCHEMA; } break; } | | | | > | > | | 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 | sqlite3ExpirePreparedStatements(db); rc = SQLITE_SCHEMA; } break; } /* Opcode: OpenRead P1 P2 P3 P4 P5 ** ** Open a read-only cursor for the database table whose root page is ** P2 in a database file. The database file is determined by P3. ** P3==0 means the main database and P3==1 means the database used for ** temporary tables. Give the new cursor an identifier of P1. The P1 ** values need not be contiguous but all P1 values should be small integers. ** It is an error for P1 to be negative. ** ** If P5!=0 then use the content of register P2 as the root page, not ** the value of P2 itself. ** ** There will be a read lock on the database whenever there is an ** open cursor. If the database was unlocked prior to this instruction ** then a read lock is acquired as part of this instruction. A read ** lock allows other processes to read the database but prohibits ** any other process from modifying the database. The read lock is ** released when all cursors are closed. If this instruction attempts ** to get a read lock but fails, the script terminates with an ** SQLITE_BUSY error code. ** ** The P4 value is a pointer to a KeyInfo structure that defines the ** content and collating sequence of indices. P4 is NULL for cursors ** that are not pointing to indices. ** ** See also OpenWrite. */ /* Opcode: OpenWrite P1 P2 P3 P4 P5 ** ** Open a read/write cursor named P1 on the table or index whose root ** page is P2. Or if P5!=0 use the content of register P2 to find the ** root page. ** ** The P4 value is a pointer to a KeyInfo structure that defines the ** content and collating sequence of indices. P4 is NULL for cursors ** that are not pointing to indices. ** ** This instruction works just like OpenRead except that it opens the cursor ** in read/write mode. For a given table, there can be one or more read-only |
︙ | ︙ | |||
2933 2934 2935 2936 2937 2938 2939 | wrFlag = 1; if( pDb->pSchema->file_format < p->minWriteFileFormat ){ p->minWriteFileFormat = pDb->pSchema->file_format; } }else{ wrFlag = 0; } | > | | | | | | > > > > > > | 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 | wrFlag = 1; if( pDb->pSchema->file_format < p->minWriteFileFormat ){ p->minWriteFileFormat = pDb->pSchema->file_format; } }else{ wrFlag = 0; } if( pOp->p5 ){ if( p2==0 ){ assert( pTos>=p->aStack ); sqlite3VdbeMemIntegerify(pTos); p2 = pTos->u.i; assert( (pTos->flags & MEM_Dyn)==0 ); pTos--; }else{ assert( p2<=p->nMem ); pIn2 = &p->aMem[p2]; sqlite3VdbeMemIntegerify(pIn2); p2 = pIn2->u.i; } assert( p2>=2 ); } assert( i>=0 ); pCur = allocateCursor(p, i, iDb); if( pCur==0 ) goto no_mem; pCur->nullRow = 1; if( pX==0 ) break; |
︙ | ︙ | |||
3004 3005 3006 3007 3008 3009 3010 | default: { goto abort_due_to_error; } } break; } | | | 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 | default: { goto abort_due_to_error; } } break; } /* Opcode: OpenEphemeral P1 P2 * P4 * ** ** Open a new cursor P1 to a transient table. ** The cursor is always opened read/write even if ** the main database is read-only. The transient or virtual ** table is deleted automatically when the cursor is closed. ** ** P2 is the number of columns in the virtual table. |
︙ | ︙ | |||
3071 3072 3073 3074 3075 3076 3077 | } } pCx->nField = pOp->p2; pCx->isIndex = !pCx->isTable; break; } | | | 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 | } } pCx->nField = pOp->p2; pCx->isIndex = !pCx->isTable; break; } /* Opcode: OpenPseudo P1 * * * * ** ** Open a new cursor that points to a fake table that contains a single ** row of data. Any attempt to write a second row of data causes the ** first row to be deleted. All data is deleted when the cursor is ** closed. ** ** A pseudo-table created by this opcode is useful for holding the |
︙ | ︙ | |||
3097 3098 3099 3100 3101 3102 3103 | pCx->pseudoTable = 1; pCx->pIncrKey = &pCx->bogusIncrKey; pCx->isTable = 1; pCx->isIndex = 0; break; } | | | | | | | | | | | | | | | < | < < < < | | | | | 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 | pCx->pseudoTable = 1; pCx->pIncrKey = &pCx->bogusIncrKey; pCx->isTable = 1; pCx->isIndex = 0; break; } /* Opcode: Close P1 * * * * ** ** Close a cursor previously opened as P1. If P1 is not ** currently open, this instruction is a no-op. */ case OP_Close: { /* no-push */ int i = pOp->p1; if( i>=0 && i<p->nCursor ){ sqlite3VdbeFreeCursor(p, p->apCsr[i]); p->apCsr[i] = 0; } break; } /* Opcode: MoveGe P1 P2 P3 * * ** ** Use the value in register P3 as a key. Reposition ** cursor P1 so that it points to the smallest entry that is greater ** than or equal to the key in register P3. ** If there are no records greater than or equal to the key and P2 ** is not zero, then jump to P2. ** ** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe */ /* Opcode: MoveGt P1 P2 * ** ** Use the value in register P3 as a key. Reposition ** cursor P1 so that it points to the smallest entry that is greater ** than the key in register P3. ** If there are no records greater than the key and P2 is not zero, ** then jump to P2. ** ** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe */ /* Opcode: MoveLt P1 P2 * ** ** Use the value in register P3 as a key. Reposition ** cursor P1 so that it points to the largest entry that is less ** than the key in register P3. ** If there are no records less than the key and P2 is not zero, ** then jump to P2. ** ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe */ /* Opcode: MoveLe P1 P2 * ** ** Use the value in register P3 as a key. Reposition ** cursor P1 so that it points to the largest entry that is less than ** or equal to the key. ** If there are no records less than or eqal to the key and P2 is not zero, ** then jump to P2. ** ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt */ case OP_MoveLt: /* no-push, jump, in3 */ case OP_MoveLe: /* no-push, jump, in3 */ case OP_MoveGe: /* no-push, jump, in3 */ case OP_MoveGt: { /* no-push, jump, in3 */ int i = pOp->p1; Cursor *pC; assert( i>=0 && i<p->nCursor ); pC = p->apCsr[i]; assert( pC!=0 ); if( pC->pCursor!=0 ){ int res, oc; oc = pOp->opcode; pC->nullRow = 0; *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe; if( pC->isTable ){ i64 iKey = sqlite3VdbeIntValue(pIn3); if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){ pC->movetoTarget = iKey; pC->deferredMoveto = 1; break; } rc = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, 0, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } pC->lastRowid = iKey; pC->rowidIsValid = res==0; }else{ assert( pIn3->flags & MEM_Blob ); ExpandBlob(pIn3); rc = sqlite3BtreeMoveto(pC->pCursor, pIn3->z, pIn3->n, 0, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } pC->rowidIsValid = 0; } pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; |
︙ | ︙ | |||
3228 3229 3230 3231 3232 3233 3234 | if( pOp->p2>0 ){ pc = pOp->p2 - 1; }else{ pC->nullRow = 1; } } } | < < | | | | | | | | | | < | < | | < | | | | | < | | < > > > | > > > > | | | < | < | | | 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 | if( pOp->p2>0 ){ pc = pOp->p2 - 1; }else{ pC->nullRow = 1; } } } break; } /* Opcode: Distinct P1 P2 P3 * * ** ** Use register P3 as a record created using MakeRecord. P1 is a ** cursor on a table that declared as an index. If that table contains an ** entry that matches the top of the stack fall thru. If the top of the stack ** matches no entry in P1 then jump to P2. ** ** The cursor is left pointing at the matching entry if it exists. The ** record on the top of the stack is not popped. ** ** This instruction is similar to NotFound except that this operation ** does not pop the key from the stack when P3==0. ** ** The instruction is used to implement the DISTINCT operator on SELECT ** statements. The P1 table is not a true index but rather a record of ** all results that have produced so far. ** ** See also: Found, NotFound, MoveTo, IsUnique, NotExists */ /* Opcode: Found P1 P2 P3 * * ** ** Register P3 holds a blob constructed by MakeRecord. P1 is an index. ** If an entry that matches the top of the stack exists in P1 then ** jump to P2. If the top of the stack does not match any entry in P1 ** then fall thru. The P1 cursor is left pointing at the matching entry ** if it exists. The blob is popped off the top of the stack. ** ** This instruction is used to implement the IN operator where the ** left-hand side is a SELECT statement. P1 may be a true index, or it ** may be a temporary index that holds the results of the SELECT ** statement. ** ** This instruction checks if index P1 contains a record for which ** the first N serialised values exactly match the N serialised values ** in the record on the stack, where N is the total number of values in ** the stack record (stack record is a prefix of the P1 record). ** ** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists */ /* Opcode: NotFound P1 P2 P3 * * ** ** Register P3 holds a blob constructed by MakeRecord. P1 is ** an index. If no entry exists in P1 that matches the blob then jump ** to P2. If an entry does existing, fall through. The cursor is left ** pointing to the entry that matches. The blob is popped from the stack. ** ** The difference between this operation and Distinct is that ** Distinct does not pop the key from the stack. ** ** See also: Distinct, Found, MoveTo, NotExists, IsUnique */ case OP_Distinct: /* no-push, jump, in3 */ case OP_NotFound: /* no-push, jump, in3 */ case OP_Found: { /* no-push, jump, in3 */ int i = pOp->p1; int alreadyExists = 0; Cursor *pC; assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); if( (pC = p->apCsr[i])->pCursor!=0 ){ int res; assert( pC->isTable==0 ); assert( pIn3->flags & MEM_Blob ); if( pOp->opcode==OP_Found ){ pC->pKeyInfo->prefixIsEqual = 1; } rc = sqlite3BtreeMoveto(pC->pCursor, pIn3->z, pIn3->n, 0, &res); pC->pKeyInfo->prefixIsEqual = 0; if( rc!=SQLITE_OK ){ break; } alreadyExists = (res==0); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } if( pOp->opcode==OP_Found ){ if( alreadyExists ) pc = pOp->p2 - 1; }else{ if( !alreadyExists ) pc = pOp->p2 - 1; } if( pOp->opcode==OP_Distinct ){ nPop = 0; } break; } /* Opcode: IsUnique P1 P2 P3 P4 * ** ** The P3 register contains an integer record number. Call this ** record number R. The P4 register contains an index key created ** using MakeIdxRec. Call it K. ** ** P1 is an index. So it has no data and its key consists of a ** record generated by OP_MakeRecord where the last field is the ** rowid of the entry that the index refers to. ** ** This instruction asks if there is an entry in P1 where the ** fields matches K but the rowid is different from R. ** If there is no such entry, then there is an immediate ** jump to P2. If any entry does exist where the index string ** matches K but the record number is not R, then the record ** number for that entry is written into P3 and control ** falls through to the next instruction. ** ** See also: Distinct, NotFound, NotExists, Found */ case OP_IsUnique: { /* no-push, jump, in3 */ int i = pOp->p1; Cursor *pCx; BtCursor *pCrsr; Mem *pK; i64 R; /* Pop the value R off the top of the stack */ assert( pOp->p4type==P4_INT32 ); if( pOp->p4.i==0 ){ assert( pOp->p3==0 ); pK = &pIn3[-1]; }else{ pK = &p->aMem[pOp->p4.i]; } sqlite3VdbeMemIntegerify(pIn3); R = pIn3->u.i; assert( (pIn3->flags & MEM_Dyn)==0 ); assert( i>=0 && i<p->nCursor ); pCx = p->apCsr[i]; assert( pCx!=0 ); pCrsr = pCx->pCursor; if( pCrsr!=0 ){ int res; i64 v; /* The record number on the P1 entry that matches K */ char *zKey; /* The value of K */ int nKey; /* Number of bytes in K */ int len; /* Number of bytes in K without the rowid at the end */ int szRowid; /* Size of the rowid column at the end of zKey */ /* Make sure K is a string and make zKey point to K */ assert( pK->flags & MEM_Blob ); zKey = pK->z; nKey = pK->n; szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey); len = nKey-szRowid; /* Search for an entry in P1 where all but the last four bytes match K. ** If there is no such entry, jump immediately to P2. */ |
︙ | ︙ | |||
3420 3421 3422 3423 3424 3425 3426 | break; } /* The final varint of the key is different from R. Push it onto ** the stack. (The record number of an entry that violates a UNIQUE ** constraint.) */ | | | | | | | < < < < < < < < < | | | < < < < < | | | | | 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 | break; } /* The final varint of the key is different from R. Push it onto ** the stack. (The record number of an entry that violates a UNIQUE ** constraint.) */ nPop = 0; pIn3->u.i = v; pIn3->flags = MEM_Int; } break; } /* Opcode: NotExists P1 P2 P3 ** ** Use the top of the stack as a integer key. Or, if P3 is non-zero, ** use the contents of register P3 as an integer key. If a record ** with that key does not exist in table of P1, then jump to P2. ** If the record does exist, then fall thru. The cursor is left ** pointing to the record if it exists. The integer key is popped ** from the stack if P3==0. ** ** The difference between this operation and NotFound is that this ** operation assumes the key is an integer and that P1 is a table whereas ** NotFound assumes key is a blob constructed from MakeRecord and ** P1 is an index. ** ** See also: Distinct, Found, MoveTo, NotFound, IsUnique */ case OP_NotExists: { /* no-push, jump, in3 */ int i = pOp->p1; Cursor *pC; BtCursor *pCrsr; assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ int res; u64 iKey; assert( pIn3->flags & MEM_Int ); assert( p->apCsr[i]->isTable ); iKey = intToKey(pIn3->u.i); rc = sqlite3BtreeMoveto(pCrsr, 0, iKey, 0,&res); pC->lastRowid = pIn3->u.i; pC->rowidIsValid = res==0; pC->nullRow = 0; pC->cacheStatus = CACHE_STALE; /* res might be uninitialized if rc!=SQLITE_OK. But if rc!=SQLITE_OK ** processing is about to abort so we really do not care whether or not ** the following jump is taken. (In other words, do not stress over ** the error that valgrind sometimes shows on the next statement when ** running ioerr.test and similar failure-recovery test scripts.) */ if( res!=0 ){ pc = pOp->p2 - 1; pC->rowidIsValid = 0; } } break; } /* Opcode: Sequence P1 P2 * * * ** ** Find the next available sequence number for cursor P1. ** Write the sequence number into register P2, or push it onto ** the stack if P2==0. ** The sequence number on the cursor is incremented after this ** instruction. */ case OP_Sequence: { /* out2-prerelease */ int i = pOp->p1; assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); pOut->u.i = p->apCsr[i]->seqCount++; pOut->flags = MEM_Int; break; } /* Opcode: NewRowid P1 P2 P3 * * ** ** Get a new integer record number (a.k.a "rowid") used as the key to a table. ** The record number is not previously used as a key in the database ** table that cursor P1 points to. The new record number is pushed ** onto the stack if P2 is 0 or written to register P2 otherwise. ** ** If P3>0 then P3 is a register that holds the largest previously ** generated record number. No new record numbers are allowed to be less ** than this value. When this value reaches its maximum, a SQLITE_FULL ** error is generated. The P3 register is updated with the generated ** record number. This P3 mechanism is used to help implement the ** AUTOINCREMENT feature. */ case OP_NewRowid: { /* out2-prerelease */ int i = pOp->p1; i64 v = 0; Cursor *pC; |
︙ | ︙ | |||
3753 3754 3755 3756 3757 3758 3759 | assert( pC->iDb>=0 ); } } break; } | | | 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 | assert( pC->iDb>=0 ); } } break; } /* Opcode: Delete P1 P2 * P4 * ** ** Delete the record at which the P1 cursor is currently pointing. ** ** The cursor will be left pointing at either the next or the previous ** record in the table. If it is left pointing at the next record, then ** the next Next instruction will be a no-op. Hence it is OK to delete ** a record from within an Next loop. |
︙ | ︙ | |||
3825 3826 3827 3828 3829 3830 3831 | if( pOp->p1 ){ sqlite3VdbeSetChanges(db, p->nChange); } p->nChange = 0; break; } | | | < | | | | | < | | | | | < < < < < < | 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 | if( pOp->p1 ){ sqlite3VdbeSetChanges(db, p->nChange); } p->nChange = 0; break; } /* Opcode: RowData P1 P2 * * * ** ** Write into register P2 the complete row data for cursor P1. ** There is no interpretation of the data. ** It is just copied onto the P2 register exactly as ** it is found in the database file. ** ** If the cursor is not pointing to a valid row, a NULL value is ** written into P2. */ /* Opcode: RowKey P1 P2 * * * ** ** Write into register P2 the complete row key for cursor P1. ** There is no interpretation of the data. ** It is just copied onto the stack or into the memory cell exactly as ** it is found in the database file. ** ** If the cursor is not pointing to a valid row, a NULL is ** written into P2. */ case OP_RowKey: /* out2-prerelease */ case OP_RowData: { /* out2-prerelease */ int i = pOp->p1; Cursor *pC; u32 n; /* Note that RowKey and RowData are really exactly the same instruction */ assert( i>=0 && i<p->nCursor ); pC = p->apCsr[i]; assert( pC->isTable || pOp->opcode==OP_RowKey ); assert( pC->isIndex || pOp->opcode==OP_RowData ); assert( pC!=0 ); if( pC->nullRow ){ pOut->flags = MEM_Null; |
︙ | ︙ | |||
3913 3914 3915 3916 3917 3918 3919 | assert( pC->nData<=SQLITE_MAX_LENGTH ); pOut->z = pC->pData; pOut->flags = MEM_Blob|MEM_Ephem; }else{ pOut->flags = MEM_Null; } pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ | < | 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 | assert( pC->nData<=SQLITE_MAX_LENGTH ); pOut->z = pC->pData; pOut->flags = MEM_Blob|MEM_Ephem; }else{ pOut->flags = MEM_Null; } pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ break; } /* Opcode: Rowid P1 P2 * * * ** ** Store in register P2 an integer which is the key of the table entry that ** P1 is currently point to. If p2==0 then push the integer. |
︙ | ︙ | |||
4190 4191 4192 4193 4194 4195 4196 | pOut->flags = MEM_Int; pOut->u.i = rowid; } } break; } | | | | | | < | | | | | | < | | | | | | | < | | | | | < | | | | | < < | | | > | | | < | > | | < | | | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 | pOut->flags = MEM_Int; pOut->u.i = rowid; } } break; } /* Opcode: IdxGT P1 P2 P3 * * ** ** The value in register P3 is an index entry that omits the ROWID. Compare ** the value in register P3 against the index that P1 is currently pointing to. ** Ignore the ROWID on the P1 index. ** ** The P3 value might have fewer columns that P1 index. ** ** If the P1 index entry is greater than the value in register P3 ** then jump to P2. Otherwise fall through to the next instruction. */ /* Opcode: IdxGE P1 P2 P3 * P5 ** ** The value in register P3 is an index entry that omits the ROWID. Compare ** this value against the index that P1 is currently pointing to. ** Ignore the ROWID on the P1 index. ** ** If the P1 index entry is greater than or equal to the value in ** register P3 then jump to P2. Otherwise fall through to the next ** instruction. ** ** If P5 is non-zero then the value in register P3 is temporarily ** increased by an epsilon prior to the comparison. This make the opcode work ** like IdxGT except that if the key from register P3 is a prefix of ** the key in the cursor, the result is false whereas it would be ** true with IdxGT. */ /* Opcode: IdxLT P1 P2 P3 * P5 ** ** The value in register P3 is an index entry that omits the ROWID. Compare ** the this value against the index that P1 is currently pointing to. ** Ignore the ROWID on the P1 index. ** ** If the P1 index entry is less than the register P3 value ** then jump to P2. Otherwise fall through to the next instruction. ** ** If P5 is non-zero then the ** index taken from register P3 is temporarily increased by ** an epsilon prior to the comparison. This makes the opcode work ** like IdxLE. */ case OP_IdxLT: /* no-push, jump, in3 */ case OP_IdxGT: /* no-push, jump, in3 */ case OP_IdxGE: { /* no-push, jump, in3 */ int i= pOp->p1; Cursor *pC; assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); if( (pC = p->apCsr[i])->pCursor!=0 ){ int res; assert( pIn3->flags & MEM_Blob ); /* Created using OP_MakeRecord */ assert( pC->deferredMoveto==0 ); ExpandBlob(pIn3); *pC->pIncrKey = pOp->p5!=0; assert( pOp->opcode!=OP_IdxGT || pOp->p5==0 ); rc = sqlite3VdbeIdxKeyCompare(pC, pIn3->n, (u8*)pIn3->z, &res); *pC->pIncrKey = 0; if( rc!=SQLITE_OK ){ break; } if( pOp->opcode==OP_IdxLT ){ res = -res; }else if( pOp->opcode==OP_IdxGE ){ res++; } if( res>0 ){ pc = pOp->p2 - 1 ; } } break; } /* Opcode: Destroy P1 P2 P3 * * ** ** Delete an entire database table or index whose root page in the database ** file is given by P1. ** ** The table being destroyed is in the main database file if P3==0. If ** P3==1 then the table to be clear is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** If AUTOVACUUM is enabled then it is possible that another root page ** might be moved into the newly deleted root page in order to keep all ** root pages contiguous at the beginning of the database. The former ** value of the root page that moved - its value before the move occurred - ** is stored in register P2 or pushed onto the stack if P2==0. If no page ** movement was required (because the table being dropped was already ** the last one in the database) then a zero is stored in register P2. ** If AUTOVACUUM is disabled then a zero is stored in register P2. ** ** See also: Clear */ case OP_Destroy: { /* out2-prerelease */ int iMoved; int iCnt; #ifndef SQLITE_OMIT_VIRTUALTABLE Vdbe *pVdbe; iCnt = 0; for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){ if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){ iCnt++; } } #else iCnt = db->activeVdbeCnt; #endif if( iCnt>1 ){ rc = SQLITE_LOCKED; p->errorAction = OE_Abort; }else{ int iDb = pOp->p3; assert( iCnt==1 ); assert( (p->btreeMask & (1<<iDb))!=0 ); rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); pOut->flags = MEM_Int; pOut->u.i = iMoved; #ifndef SQLITE_OMIT_AUTOVACUUM if( rc==SQLITE_OK && iMoved!=0 ){ sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1); } #endif } break; } /* Opcode: Clear P1 P2 * ** ** Delete all contents of the database table or index whose root page ** in the database file is given by P1. But, unlike Destroy, do not ** remove the table or index from the database file. ** ** The table being clear is in the main database file if P2==0. If ** P2==1 then the table to be clear is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** See also: Destroy */ case OP_Clear: { /* no-push */ assert( (p->btreeMask & (1<<pOp->p2))!=0 ); rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1); break; } /* Opcode: CreateTable P1 P2 * * * ** |
︙ | ︙ | |||
4415 4416 4417 4418 4419 4420 4421 | /* flags = BTREE_INTKEY; */ flags = BTREE_LEAFDATA|BTREE_INTKEY; }else{ flags = BTREE_ZERODATA; } rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); if( rc==SQLITE_OK ){ | | | | | 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 | /* flags = BTREE_INTKEY; */ flags = BTREE_LEAFDATA|BTREE_INTKEY; }else{ flags = BTREE_ZERODATA; } rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); if( rc==SQLITE_OK ){ pOut->u.i = pgno; pOut->flags = MEM_Int; } break; } /* Opcode: ParseSchema P1 P2 * P4 * ** ** Read and parse all entries from the SQLITE_MASTER table of database P1 ** that match the WHERE clause P4. P2 is the "force" flag. Always do ** the parsing if P2 is true. If P2 is false, then this routine is a ** no-op if the schema is not currently loaded. In other words, if P2 ** is false, the SQLITE_MASTER table is only parsed if the rest of the ** schema is already loaded into the symbol table. |
︙ | ︙ | |||
4467 4468 4469 4470 4471 4472 4473 | if( rc==SQLITE_NOMEM ){ goto no_mem; } break; } #if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) | | | | | | | | | | | | | | | | | | | | | | | < | < < | | > > | < < | | | > | | | | | | | | | | < < < < | | | < | | < < > > > > | < < < < < | 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 | if( rc==SQLITE_NOMEM ){ goto no_mem; } break; } #if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) /* Opcode: LoadAnalysis P1 * * * * ** ** Read the sqlite_stat1 table for database P1 and load the content ** of that table into the internal index hash table. This will cause ** the analysis to be used when preparing all subsequent queries. */ case OP_LoadAnalysis: { /* no-push */ int iDb = pOp->p1; assert( iDb>=0 && iDb<db->nDb ); rc = sqlite3AnalysisLoad(db, iDb); break; } #endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) */ /* Opcode: DropTable P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the table named P4 in database P1. This is called after a table ** is dropped in order to keep the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTable: { /* no-push */ sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); break; } /* Opcode: DropIndex P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the index named P4 in database P1. This is called after an index ** is dropped in order to keep the internal representation of the ** schema consistent with what is on disk. */ case OP_DropIndex: { /* no-push */ sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); break; } /* Opcode: DropTrigger P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the trigger named P4 in database P1. This is called after a trigger ** is dropped in order to keep the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTrigger: { /* no-push */ sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); break; } #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* Opcode: IntegrityCk P1 P2 P3 * P5 ** ** Do an analysis of the currently open database. Store in ** register P1 the text of an error message describing any problems. ** If no problems are found, store a NULL in register P1. ** ** The register P3 contains the maximum number of allowed errors. ** At most reg[P3] errors will be reported. ** In other words, the analysis stops as soon as reg[P1] errors are ** seen. Reg[P1] is updated with the number of errors remaining. ** ** The root page numbers of all tables in the database are integer ** stored in reg[P1], reg[P1+1], reg[P1+2], .... There are P2 tables ** total. ** ** If P5 is not zero, the check is done on the auxiliary database ** file, not the main database file. ** ** This opcode is used to implement the integrity_check pragma. */ case OP_IntegrityCk: { int nRoot; /* Number of tables to check. (Number of root pages.) */ int *aRoot; /* Array of rootpage numbers for tables to be checked */ int j; /* Loop counter */ int nErr; /* Number of errors reported */ char *z; /* Text of the error report */ Mem *pnErr; /* Register keeping track of errors remaining */ nRoot = pOp->p2; assert( nRoot>0 ); aRoot = sqlite3_malloc( sizeof(int)*(nRoot+1) ); if( aRoot==0 ) goto no_mem; assert( pOp->p3>0 && pOp->p3<=p->nMem ); pnErr = &p->aMem[pOp->p3]; assert( (pnErr->flags & MEM_Int)!=0 ); assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); pIn1 = &p->aMem[pOp->p1]; for(j=0; j<nRoot; j++){ aRoot[j] = sqlite3VdbeIntValue(&pIn1[j]); } aRoot[j] = 0; assert( pOp->p5<db->nDb ); assert( (p->btreeMask & (1<<pOp->p5))!=0 ); z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, pnErr->u.i, &nErr); pnErr->u.i -= nErr; Release(pIn1); if( nErr==0 ){ assert( z==0 ); pIn1->flags = MEM_Null; }else{ pIn1->z = z; pIn1->n = strlen(z); pIn1->flags = MEM_Str | MEM_Dyn | MEM_Term; pIn1->xDel = 0; } pIn1->enc = SQLITE_UTF8; sqlite3VdbeChangeEncoding(pIn1, encoding); sqlite3_free(aRoot); break; } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ /* Opcode: FifoWrite P1 * * * * ** ** Write the integer from register P1 into the Fifo. */ case OP_FifoWrite: { /* no-push, in1 */ if( sqlite3VdbeFifoPush(&p->sFifo, sqlite3VdbeIntValue(pIn1))==SQLITE_NOMEM ){ goto no_mem; } break; } /* Opcode: FifoRead P1 P2 * * * ** ** Attempt to read a single integer from the Fifo. Store that ** integer in register P1. ** ** If the Fifo is empty jump to P2. */ case OP_FifoRead: { /* jump */ CHECK_FOR_INTERRUPT; assert( pOp->p1>0 && pOp->p1<=p->nMem ); pOut = &p->aMem[pOp->p1]; Release(pOut); pOut->flags = MEM_Int; if( sqlite3VdbeFifoPop(&p->sFifo, &pOut->u.i)==SQLITE_DONE ){ pc = pOp->p2 - 1; } break; } #ifndef SQLITE_OMIT_TRIGGER /* Opcode: ContextPush * * * ** |
︙ | ︙ | |||
4667 4668 4669 4670 4671 4672 4673 | sqlite3VdbeFifoClear(&p->sFifo); p->sFifo = pContext->sFifo; break; } #endif /* #ifndef SQLITE_OMIT_TRIGGER */ #ifndef SQLITE_OMIT_AUTOINCREMENT | | | | < | < < < < < < | | | | > | | | | | | | | | | | | | | > | | < | | < | | 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 | sqlite3VdbeFifoClear(&p->sFifo); p->sFifo = pContext->sFifo; break; } #endif /* #ifndef SQLITE_OMIT_TRIGGER */ #ifndef SQLITE_OMIT_AUTOINCREMENT /* Opcode: MemMax P1 P2 * * * ** ** Set the value of register P1 to the maximum of its current value ** and the value in register P2. ** ** This instruction throws an error if the memory cell is not initially ** an integer. */ case OP_MemMax: { /* no-push, in1, in2 */ sqlite3VdbeMemIntegerify(pIn1); sqlite3VdbeMemIntegerify(pIn2); if( pIn1->u.i<pIn2->u.i){ pIn1->u.i = pIn2->u.i; } nPop = 0; break; } #endif /* SQLITE_OMIT_AUTOINCREMENT */ /* Opcode: IfPos P1 P2 * * * ** ** If the value of register P1 is 1 or greater, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfPos: { /* no-push, jump, in1 */ assert( pIn1->flags==MEM_Int ); if( pIn1->u.i>0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfNeg P1 P2 * * * ** ** If the value of register P1 is less than zero, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfNeg: { /* no-push, jump, in1 */ assert( pIn1->flags==MEM_Int ); if( pIn1->u.i<0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfZero P1 P2 * * * ** ** If the value of register P1 is exactly 0, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfZero: { /* no-push, jump, in1 */ assert( pIn1->flags==MEM_Int ); if( pIn1->u.i==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: AggStep * P2 P3 P4 P5 ** ** Execute the step function for an aggregate. The ** function has P5 arguments. P4 is a pointer to the FuncDef ** structure that specifies the function. Use register ** P3 as the accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. */ case OP_AggStep: { /* no-push */ int n = pOp->p5; int i; Mem *pMem, *pRec; sqlite3_context ctx; sqlite3_value **apVal; assert( n>=0 ); pRec = &p->aMem[pOp->p2]; apVal = p->apArg; assert( apVal || n==0 ); for(i=0; i<n; i++, pRec++){ apVal[i] = pRec; storeTypeInfo(pRec, encoding); } ctx.pFunc = pOp->p4.pFunc; assert( pOp->p3>0 && pOp->p3<=p->nMem ); ctx.pMem = pMem = &p->aMem[pOp->p3]; pMem->n++; ctx.s.flags = MEM_Null; ctx.s.z = 0; ctx.s.xDel = 0; ctx.s.db = db; ctx.isError = 0; ctx.pColl = 0; if( ctx.pFunc->needCollSeq ){ assert( pOp>p->aOp ); assert( pOp[-1].p4type==P4_COLLSEQ ); assert( pOp[-1].opcode==OP_CollSeq ); ctx.pColl = pOp[-1].p4.pColl; } (ctx.pFunc->xStep)(&ctx, n, apVal); if( ctx.isError ){ sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0); rc = SQLITE_ERROR; } sqlite3VdbeMemRelease(&ctx.s); break; } /* Opcode: AggFinal P1 P2 * P4 * ** ** Execute the finalizer function for an aggregate. P1 is ** the memory location that is the accumulator for the aggregate. ** ** P2 is the number of arguments that the step function takes and ** P4 is a pointer to the FuncDef for this function. The P2 ** argument is not used by this opcode. It is only there to disambiguate |
︙ | ︙ | |||
4817 4818 4819 4820 4821 4822 4823 | goto too_big; } break; } #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) | | | | | | 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 | goto too_big; } break; } #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) /* Opcode: Vacuum * * * * * ** ** Vacuum the entire database. This opcode will cause other virtual ** machines to be created and run. It may not be called from within ** a transaction. */ case OP_Vacuum: { /* no-push */ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; rc = sqlite3RunVacuum(&p->zErrMsg, db); if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; break; } #endif #if !defined(SQLITE_OMIT_AUTOVACUUM) /* Opcode: IncrVacuum P1 P2 * * * ** ** Perform a single step of the incremental vacuum procedure on ** the P1 database. If the vacuum has finished, jump to instruction ** P2. Otherwise, fall through to the next instruction. */ case OP_IncrVacuum: { /* no-push, jump */ Btree *pBt; assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (1<<pOp->p1))!=0 ); pBt = db->aDb[pOp->p1].pBt; rc = sqlite3BtreeIncrVacuum(pBt); if( rc==SQLITE_DONE ){ pc = pOp->p2 - 1; rc = SQLITE_OK; } break; } #endif /* Opcode: Expire P1 * * * * ** ** Cause precompiled statements to become expired. An expired statement ** fails with an error code of SQLITE_SCHEMA if it is ever executed ** (via sqlite3_step()). ** ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, ** then only the currently executing statement is affected. */ case OP_Expire: { /* no-push */ if( !pOp->p1 ){ sqlite3ExpirePreparedStatements(db); }else{ p->expired = 1; } break; } #ifndef SQLITE_OMIT_SHARED_CACHE /* Opcode: TableLock P1 P2 * P4 * ** ** Obtain a lock on a particular table. This instruction is only used when ** the shared-cache feature is enabled. ** ** If P1 is not negative, then it is the index of the database ** in sqlite3.aDb[] and a read-lock is required. If P1 is negative, a ** write-lock is required. In this case the index of the database is the |
︙ | ︙ | |||
4906 4907 4908 4909 4910 4911 4912 | sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0); } break; } #endif /* SQLITE_OMIT_SHARED_CACHE */ #ifndef SQLITE_OMIT_VIRTUALTABLE | | | | | | 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 | sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0); } break; } #endif /* SQLITE_OMIT_SHARED_CACHE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VBegin * * * P4 * ** ** P4 a pointer to an sqlite3_vtab structure. Call the xBegin method ** for that table. */ case OP_VBegin: { /* no-push */ rc = sqlite3VtabBegin(db, pOp->p4.pVtab); break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VCreate P1 * * P4 * ** ** P4 is the name of a virtual table in database P1. Call the xCreate method ** for that table. */ case OP_VCreate: { /* no-push */ rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VDestroy P1 * * P4 * ** ** P4 is the name of a virtual table in database P1. Call the xDestroy method ** of that table. */ case OP_VDestroy: { /* no-push */ p->inVtabMethod = 2; rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); p->inVtabMethod = 0; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VOpen P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** P1 is a cursor number. This opcode opens a cursor to the virtual ** table and stores that cursor in P1. */ case OP_VOpen: { /* no-push */ Cursor *pCur = 0; |
︙ | ︙ | |||
5045 5046 5047 5048 5049 5050 5051 | } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE | | | 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 | } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VRowid P1 P2 * * * ** ** Store into register P2 the rowid of ** the virtual-table that the P1 cursor is pointing to. ** If P2==0, push the value onto the stack. */ case OP_VRowid: { /* out2-prerelease */ const sqlite3_module *pModule; |
︙ | ︙ | |||
5075 5076 5077 5078 5079 5080 5081 | } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE | | | 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 | } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VColumn P1 P2 P3 * * ** ** Store the value of the P2-th column of ** the row of the virtual-table that the ** P1 cursor is pointing to into register P3. ** Or if P3==0 push the value onto the stack. */ case OP_VColumn: { |
︙ | ︙ | |||
5128 5129 5130 5131 5132 5133 5134 | } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE | | | 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 | } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VNext P1 P2 * * * ** ** Advance virtual table P1 to the next row in its result set and ** jump to instruction P2. Or, if the virtual table has reached ** the end of its result set, then fall through to the next instruction. */ case OP_VNext: { /* no-push, jump */ const sqlite3_module *pModule; |
︙ | ︙ | |||
5171 5172 5173 5174 5175 5176 5177 | } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE | | | 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 | } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VRename P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xRename method. The value ** in register P1 is passed as the zName argument to the xRename method. */ case OP_VRename: { /* no-push */ sqlite3_vtab *pVtab = pOp->p4.pVtab; |
︙ | ︙ | |||
5196 5197 5198 5199 5200 5201 5202 | if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; break; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE | | | 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 | if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; break; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VUpdate P1 P2 P3 P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xUpdate method. P2 values ** are contiguous memory cells starting at P3 to pass to the xUpdate ** invocation. The value in register (P3+P2-1) corresponds to the ** p2th element of the argv array passed to xUpdate. ** |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
266 267 268 269 270 271 272 | Op *pOp; int *aLabel = p->aLabel; int doesStatementRollback = 0; int hasStatementBegin = 0; for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ u8 opcode = pOp->opcode; | | > > | 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 | Op *pOp; int *aLabel = p->aLabel; int doesStatementRollback = 0; int hasStatementBegin = 0; for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ u8 opcode = pOp->opcode; if( opcode==OP_Function ){ if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; }else if( opcode==OP_AggStep #ifndef SQLITE_OMIT_VIRTUALTABLE || opcode==OP_VUpdate #endif ){ if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; } if( opcode==OP_Halt ){ |
︙ | ︙ | |||
528 529 530 531 532 533 534 | if( addr<0 || addr>=p->nOp ){ addr = p->nOp - 1; if( addr<0 ) return; } pOp = &p->aOp[addr]; freeP4(pOp->p4type, pOp->p4.p); pOp->p4.p = 0; | > > > | | 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 | if( addr<0 || addr>=p->nOp ){ addr = p->nOp - 1; if( addr<0 ) return; } pOp = &p->aOp[addr]; freeP4(pOp->p4type, pOp->p4.p); pOp->p4.p = 0; if( n==P4_INT32 ){ pOp->p4.i = (int)zP4; pOp->p4type = n; }else if( zP4==0 ){ pOp->p4.p = 0; pOp->p4type = P4_NOTUSED; }else if( n==P4_KEYINFO ){ KeyInfo *pKeyInfo; int nField, nByte; nField = ((KeyInfo*)zP4)->nField; |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
12 13 14 15 16 17 18 | ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. This module is reponsible for ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". ** | | | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. This module is reponsible for ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". ** ** $Id: where.c,v 1.280 2008/01/09 23:04:13 drh Exp $ */ #include "sqliteInt.h" /* ** The number of bits in a Bitmask. "BMS" means "BitMask Size". */ #define BMS (sizeof(Bitmask)*8) |
︙ | ︙ | |||
2545 2546 2547 2548 2549 2550 2551 | ** loop. */ start = sqlite3VdbeCurrentAddr(v); if( testOp!=OP_Noop ){ sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); sqlite3VdbeAddOp2(v, testOp, iIdxCur, nxt); if( (topEq && !bRev) || (!btmEq && bRev) ){ | | | 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 | ** loop. */ start = sqlite3VdbeCurrentAddr(v); if( testOp!=OP_Noop ){ sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); sqlite3VdbeAddOp2(v, testOp, iIdxCur, nxt); if( (topEq && !bRev) || (!btmEq && bRev) ){ sqlite3VdbeChangeP5(v, 1); } } if( topLimit | btmLimit ){ sqlite3VdbeAddOp2(v, OP_Column, iIdxCur, nEq); sqlite3VdbeAddOp2(v, OP_StackIsNull, 1, cont); } if( !omitTable ){ |
︙ | ︙ | |||
2614 2615 2616 2617 2618 2619 2620 | start = sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); sqlite3VdbeAddOp2(v, OP_IdxLT, iIdxCur, nxt); pLevel->op = OP_Prev; }else{ /* Scan in the forward order */ sqlite3VdbeAddOp2(v, (isMinQuery?OP_MoveGt:OP_MoveGe), iIdxCur, nxt); start = sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); | | > | 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 | start = sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); sqlite3VdbeAddOp2(v, OP_IdxLT, iIdxCur, nxt); pLevel->op = OP_Prev; }else{ /* Scan in the forward order */ sqlite3VdbeAddOp2(v, (isMinQuery?OP_MoveGt:OP_MoveGe), iIdxCur, nxt); start = sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); sqlite3VdbeAddOp2(v, OP_IdxGE, iIdxCur, nxt); sqlite3VdbeChangeP5(v, 1); pLevel->op = OP_Next; } if( !omitTable ){ sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, 0); sqlite3VdbeAddOp2(v, OP_MoveGe, iCur, 0); } pLevel->p1 = iIdxCur; |
︙ | ︙ |