Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge recent enhancements from trunk. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | apple-osx |
Files: | files | file ages | folders |
SHA3-256: |
e17bca2cdb5f31a802e1a1870deb6bf1 |
User & Date: | drh 2018-05-04 19:33:34.574 |
Context
2018-05-04
| ||
20:00 | Bring the code that changes the owner of WAL and rollback files when running as root into alignment with trunk. (check-in: 180516bf7b user: drh tags: apple-osx) | |
19:33 | Merge recent enhancements from trunk. (check-in: e17bca2cdb user: drh tags: apple-osx) | |
18:32 | Fix requirements marks. No code changes. (check-in: 7fdad122a2 user: drh tags: trunk) | |
2018-04-10
| ||
18:05 | Merge all version 3.23.1 changes and enhancements from trunk. (check-in: e20fcb5159 user: drh tags: apple-osx) | |
Changes
Changes to Makefile.in.
︙ | ︙ | |||
183 184 185 186 187 188 189 | memdb.lo memjournal.lo \ mutex.lo mutex_noop.lo mutex_unix.lo mutex_w32.lo \ notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \ pager.lo parse.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \ random.lo resolve.lo rowset.lo rtree.lo \ sqlite3session.lo select.lo sqlite3rbu.lo status.lo stmt.lo \ table.lo threads.lo tokenize.lo treeview.lo trigger.lo \ | | | 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | memdb.lo memjournal.lo \ mutex.lo mutex_noop.lo mutex_unix.lo mutex_w32.lo \ notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \ pager.lo parse.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \ random.lo resolve.lo rowset.lo rtree.lo \ sqlite3session.lo select.lo sqlite3rbu.lo status.lo stmt.lo \ table.lo threads.lo tokenize.lo treeview.lo trigger.lo \ update.lo upsert.lo util.lo vacuum.lo \ vdbe.lo vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbemem.lo vdbesort.lo \ vdbetrace.lo wal.lo walker.lo where.lo wherecode.lo whereexpr.lo \ utf.lo vtab.lo # Object files for the amalgamation. # LIBOBJS1 = sqlite3.lo |
︙ | ︙ | |||
280 281 282 283 284 285 286 287 288 289 290 291 292 293 | $(TOP)/src/tclsqlite.c \ $(TOP)/src/threads.c \ $(TOP)/src/tokenize.c \ $(TOP)/src/treeview.c \ $(TOP)/src/trigger.c \ $(TOP)/src/utf.c \ $(TOP)/src/update.c \ $(TOP)/src/util.c \ $(TOP)/src/vacuum.c \ $(TOP)/src/vdbe.c \ $(TOP)/src/vdbe.h \ $(TOP)/src/vdbeapi.c \ $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbeblob.c \ | > | 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | $(TOP)/src/tclsqlite.c \ $(TOP)/src/threads.c \ $(TOP)/src/tokenize.c \ $(TOP)/src/treeview.c \ $(TOP)/src/trigger.c \ $(TOP)/src/utf.c \ $(TOP)/src/update.c \ $(TOP)/src/upsert.c \ $(TOP)/src/util.c \ $(TOP)/src/vacuum.c \ $(TOP)/src/vdbe.c \ $(TOP)/src/vdbe.h \ $(TOP)/src/vdbeapi.c \ $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbeblob.c \ |
︙ | ︙ | |||
923 924 925 926 927 928 929 930 931 932 933 934 935 936 | trigger.lo: $(TOP)/src/trigger.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/trigger.c update.lo: $(TOP)/src/update.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/update.c utf.lo: $(TOP)/src/utf.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/utf.c util.lo: $(TOP)/src/util.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/util.c vacuum.lo: $(TOP)/src/vacuum.c $(HDR) | > > > | 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 | trigger.lo: $(TOP)/src/trigger.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/trigger.c update.lo: $(TOP)/src/update.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/update.c upsert.lo: $(TOP)/src/upsert.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/upsert.c utf.lo: $(TOP)/src/utf.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/utf.c util.lo: $(TOP)/src/util.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/util.c vacuum.lo: $(TOP)/src/vacuum.c $(HDR) |
︙ | ︙ |
Changes to Makefile.msc.
︙ | ︙ | |||
1189 1190 1191 1192 1193 1194 1195 | memdb.lo memjournal.lo \ mutex.lo mutex_noop.lo mutex_unix.lo mutex_w32.lo \ notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \ pager.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \ random.lo resolve.lo rowset.lo rtree.lo \ sqlite3session.lo select.lo sqlite3rbu.lo status.lo \ table.lo threads.lo tokenize.lo treeview.lo trigger.lo \ | | | 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 | memdb.lo memjournal.lo \ mutex.lo mutex_noop.lo mutex_unix.lo mutex_w32.lo \ notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \ pager.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \ random.lo resolve.lo rowset.lo rtree.lo \ sqlite3session.lo select.lo sqlite3rbu.lo status.lo \ table.lo threads.lo tokenize.lo treeview.lo trigger.lo \ update.lo upsert.lo util.lo vacuum.lo \ vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbemem.lo vdbesort.lo \ vdbetrace.lo wal.lo walker.lo where.lo wherecode.lo whereexpr.lo \ utf.lo vtab.lo # <</mark>> # Object files for the amalgamation. # |
︙ | ︙ | |||
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 | $(TOP)\src\threads.c \ $(TOP)\src\tclsqlite.c \ $(TOP)\src\tokenize.c \ $(TOP)\src\treeview.c \ $(TOP)\src\trigger.c \ $(TOP)\src\utf.c \ $(TOP)\src\update.c \ $(TOP)\src\util.c \ $(TOP)\src\vacuum.c \ $(TOP)\src\vdbe.c \ $(TOP)\src\vdbeapi.c \ $(TOP)\src\vdbeaux.c \ $(TOP)\src\vdbeblob.c \ $(TOP)\src\vdbemem.c \ | > | 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 | $(TOP)\src\threads.c \ $(TOP)\src\tclsqlite.c \ $(TOP)\src\tokenize.c \ $(TOP)\src\treeview.c \ $(TOP)\src\trigger.c \ $(TOP)\src\utf.c \ $(TOP)\src\update.c \ $(TOP)\src\upsert.c \ $(TOP)\src\util.c \ $(TOP)\src\vacuum.c \ $(TOP)\src\vdbe.c \ $(TOP)\src\vdbeapi.c \ $(TOP)\src\vdbeaux.c \ $(TOP)\src\vdbeblob.c \ $(TOP)\src\vdbemem.c \ |
︙ | ︙ | |||
1669 1670 1671 1672 1673 1674 1675 | $(SQLITE3DLL): $(LIBOBJ) $(LIBRESOBJS) $(CORE_LINK_DEP) $(LD) $(LDFLAGS) $(LTLINKOPTS) $(LTLIBPATHS) /DLL $(CORE_LINK_OPTS) /OUT:$@ $(LIBOBJ) $(LIBRESOBJS) $(LTLIBS) $(TLIBS) # <<block2>> sqlite3.def: libsqlite3.lib echo EXPORTS > sqlite3.def dumpbin /all libsqlite3.lib \ | | | 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 | $(SQLITE3DLL): $(LIBOBJ) $(LIBRESOBJS) $(CORE_LINK_DEP) $(LD) $(LDFLAGS) $(LTLINKOPTS) $(LTLIBPATHS) /DLL $(CORE_LINK_OPTS) /OUT:$@ $(LIBOBJ) $(LIBRESOBJS) $(LTLIBS) $(TLIBS) # <<block2>> sqlite3.def: libsqlite3.lib echo EXPORTS > sqlite3.def dumpbin /all libsqlite3.lib \ | $(TCLSH_CMD) $(TOP)\tool\replace.tcl include "^\s+1 _?(sqlite3(?:session|changeset|changegroup|rebaser)?_[^@]*)(?:@\d+)?$$" \1 \ | sort >> sqlite3.def # <</block2>> $(SQLITE3EXE): shell.c $(SHELL_CORE_DEP) $(LIBRESOBJS) $(SHELL_CORE_SRC) $(SQLITE3H) $(LTLINK) $(SHELL_COMPILE_OPTS) $(READLINE_FLAGS) shell.c $(SHELL_CORE_SRC) \ /link $(SQLITE3EXEPDB) $(LDFLAGS) $(LTLINKOPTS) $(SHELL_LINK_OPTS) $(LTLIBPATHS) $(LIBRESOBJS) $(LIBREADLINE) $(LTLIBS) $(TLIBS) |
︙ | ︙ | |||
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 | trigger.lo: $(TOP)\src\trigger.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\trigger.c update.lo: $(TOP)\src\update.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\update.c utf.lo: $(TOP)\src\utf.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\utf.c util.lo: $(TOP)\src\util.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\util.c vacuum.lo: $(TOP)\src\vacuum.c $(HDR) | > > > | 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 | trigger.lo: $(TOP)\src\trigger.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\trigger.c update.lo: $(TOP)\src\update.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\update.c upsert.lo: $(TOP)\src\upsert.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\upsert.c utf.lo: $(TOP)\src\utf.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\utf.c util.lo: $(TOP)\src\util.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\util.c vacuum.lo: $(TOP)\src\vacuum.c $(HDR) |
︙ | ︙ |
Changes to VERSION.
|
| | | 1 | 3.24.0 |
Changes to autoconf/Makefile.am.
1 |
| | | 1 2 3 4 5 6 7 8 9 | AM_CFLAGS = @THREADSAFE_FLAGS@ @DYNAMIC_EXTENSION_FLAGS@ @FTS5_FLAGS@ @JSON1_FLAGS@ @ZLIB_FLAGS@ @SESSION_FLAGS@ -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE @DEBUG_FLAGS@ lib_LTLIBRARIES = libsqlite3.la libsqlite3_la_SOURCES = sqlite3.c libsqlite3_la_LDFLAGS = -no-undefined -version-info 8:6:8 bin_PROGRAMS = sqlite3 sqlite3_SOURCES = shell.c sqlite3.h |
︙ | ︙ |
Changes to autoconf/Makefile.msc.
︙ | ︙ | |||
962 963 964 965 966 967 968 | Replace.exe: $(CSC) /target:exe $(TOP)\Replace.cs sqlite3.def: Replace.exe $(LIBOBJ) echo EXPORTS > sqlite3.def dumpbin /all $(LIBOBJ) \ | | | 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 | Replace.exe: $(CSC) /target:exe $(TOP)\Replace.cs sqlite3.def: Replace.exe $(LIBOBJ) echo EXPORTS > sqlite3.def dumpbin /all $(LIBOBJ) \ | .\Replace.exe "^\s+/EXPORT:_?(sqlite3(?:session|changeset|changegroup|rebaser)?_[^@,]*)(?:@\d+|,DATA)?$$" $$1 true \ | sort >> sqlite3.def $(SQLITE3EXE): shell.c $(SHELL_CORE_DEP) $(LIBRESOBJS) $(SHELL_CORE_SRC) $(SQLITE3H) $(LTLINK) $(SHELL_COMPILE_OPTS) $(READLINE_FLAGS) shell.c $(SHELL_CORE_SRC) \ /link $(SQLITE3EXEPDB) $(LDFLAGS) $(LTLINKOPTS) $(SHELL_LINK_OPTS) $(LTLIBPATHS) $(LIBRESOBJS) $(LIBREADLINE) $(LTLIBS) $(TLIBS) |
︙ | ︙ |
Changes to autoconf/configure.ac.
︙ | ︙ | |||
111 112 113 114 115 116 117 | AC_SUBST(DYNAMIC_EXTENSION_FLAGS) #----------------------------------------------------------------------- #----------------------------------------------------------------------- # --enable-fts5 # AC_ARG_ENABLE(fts5, [AS_HELP_STRING( | | | | | > > > > > > > > > > > > | 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | AC_SUBST(DYNAMIC_EXTENSION_FLAGS) #----------------------------------------------------------------------- #----------------------------------------------------------------------- # --enable-fts5 # AC_ARG_ENABLE(fts5, [AS_HELP_STRING( [--enable-fts5], [include fts5 support [default=yes]])], [], [enable_fts5=yes]) if test x"$enable_fts5" = "xyes"; then AC_SEARCH_LIBS(log, m) FTS5_FLAGS=-DSQLITE_ENABLE_FTS5 fi AC_SUBST(FTS5_FLAGS) #----------------------------------------------------------------------- #----------------------------------------------------------------------- # --enable-json1 # AC_ARG_ENABLE(json1, [AS_HELP_STRING( [--enable-json1], [include json1 support [default=yes]])], [], [enable_json1=yes]) if test x"$enable_json1" = "xyes"; then JSON1_FLAGS=-DSQLITE_ENABLE_JSON1 fi AC_SUBST(JSON1_FLAGS) #----------------------------------------------------------------------- #----------------------------------------------------------------------- # --enable-session # AC_ARG_ENABLE(session, [AS_HELP_STRING( [--enable-session], [enable the session extension [default=no]])], [], [enable_session=no]) if test x"$enable_session" = "xyes"; then SESSION_FLAGS="-DSQLITE_ENABLE_SESSION -DSQLITE_ENABLE_PREUPDATE_HOOK" fi AC_SUBST(SESSION_FLAGS) #----------------------------------------------------------------------- #----------------------------------------------------------------------- # --enable-debug # AC_ARG_ENABLE(debug, [AS_HELP_STRING( [--enable-debug], [build with debugging features enabled [default=no]])], [], [enable_session=no]) if test x"$enable_debug" = "xyes"; then DEBUG_FLAGS="-DSQLITE_DEBUG -DSQLITE_ENABLE_SELECTTRACE -DSQLITE_ENABLE_WHERETRACE" fi AC_SUBST(DEBUG_FLAGS) #----------------------------------------------------------------------- #----------------------------------------------------------------------- # --enable-static-shell # AC_ARG_ENABLE(static-shell, [AS_HELP_STRING( [--enable-static-shell], [statically link libsqlite3 into shell tool [default=yes]])], |
︙ | ︙ |
Changes to configure.
1 2 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. | | | 1 2 3 4 5 6 7 8 9 10 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.69 for sqlite 3.24.0. # # # Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc. # # # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. |
︙ | ︙ | |||
722 723 724 725 726 727 728 | subdirs= MFLAGS= MAKEFLAGS= # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' | | | | 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 | subdirs= MFLAGS= MAKEFLAGS= # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' PACKAGE_VERSION='3.24.0' PACKAGE_STRING='sqlite 3.24.0' PACKAGE_BUGREPORT='' PACKAGE_URL='' # Factoring default headers for most tests. ac_includes_default="\ #include <stdio.h> #ifdef HAVE_SYS_TYPES_H |
︙ | ︙ | |||
1461 1462 1463 1464 1465 1466 1467 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF | | | 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures sqlite 3.24.0 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. |
︙ | ︙ | |||
1526 1527 1528 1529 1530 1531 1532 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in | | | 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in short | recursive ) echo "Configuration of sqlite 3.24.0:";; esac cat <<\_ACEOF Optional Features: --disable-option-checking ignore unrecognized --enable/--with options --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no) --enable-FEATURE[=ARG] include FEATURE [ARG=yes] |
︙ | ︙ | |||
1651 1652 1653 1654 1655 1656 1657 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF | | | 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF sqlite configure 3.24.0 generated by GNU Autoconf 2.69 Copyright (C) 2012 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit |
︙ | ︙ | |||
2070 2071 2072 2073 2074 2075 2076 | eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_header_mongrel cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. | | | 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 | eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_header_mongrel cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by sqlite $as_me 3.24.0, which was generated by GNU Autoconf 2.69. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { |
︙ | ︙ | |||
12238 12239 12240 12241 12242 12243 12244 | test $as_write_fail = 0 && chmod +x $CONFIG_STATUS || ac_write_fail=1 cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Save the log message, to keep $0 and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" | | | 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 | test $as_write_fail = 0 && chmod +x $CONFIG_STATUS || ac_write_fail=1 cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Save the log message, to keep $0 and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by sqlite $as_me 3.24.0, which was generated by GNU Autoconf 2.69. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ |
︙ | ︙ | |||
12304 12305 12306 12307 12308 12309 12310 | Report bugs to the package provider." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`" ac_cs_version="\\ | | | 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 | Report bugs to the package provider." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`" ac_cs_version="\\ sqlite config.status 3.24.0 configured by $0, generated by GNU Autoconf 2.69, with options \\"\$ac_cs_config\\" Copyright (C) 2012 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." |
︙ | ︙ |
Changes to doc/lemon.html.
︙ | ︙ | |||
95 96 97 98 99 100 101 102 103 104 105 106 107 108 | As of this writing, the following command-line options are supported: <ul> <li><b>-b</b> Show only the basis for each parser state in the report file. <li><b>-c</b> Do not compress the generated action tables. The parser will be a little larger and slower, but it will detect syntax errors sooner. <li><b>-D<i>name</i></b> Define C preprocessor macro <i>name</i>. This macro is usable by "<tt><a href='#pifdef'>%ifdef</a></tt>" and "<tt><a href='#pifdef'>%ifndef</a></tt>" lines in the grammar file. <li><b>-g</b> Do not generate a parser. Instead write the input grammar to standard | > > > | 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | As of this writing, the following command-line options are supported: <ul> <li><b>-b</b> Show only the basis for each parser state in the report file. <li><b>-c</b> Do not compress the generated action tables. The parser will be a little larger and slower, but it will detect syntax errors sooner. <li><b>-d</b><i>directory</i> Write all output files into <i>directory</i>. Normally, output files are written into the directory that contains the input grammar file. <li><b>-D<i>name</i></b> Define C preprocessor macro <i>name</i>. This macro is usable by "<tt><a href='#pifdef'>%ifdef</a></tt>" and "<tt><a href='#pifdef'>%ifndef</a></tt>" lines in the grammar file. <li><b>-g</b> Do not generate a parser. Instead write the input grammar to standard |
︙ | ︙ | |||
675 676 677 678 679 680 681 682 683 684 685 686 687 688 | </pre></p> <p>Then the Parse() function generated will have an 4th parameter of type "MyStruct*" and all action routines will have access to a variable named "pAbc" that is the value of the 4th parameter in the most recent call to Parse().</p> <a name='pfallback'></a> <h4>The <tt>%fallback</tt> directive</h4> <p>The <tt>%fallback</tt> directive specifies an alternative meaning for one or more tokens. The alternative meaning is tried if the original token would have generated a syntax error.</p> | > > > > > > > > > > > > > > > > > > > > > > > > | 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 | </pre></p> <p>Then the Parse() function generated will have an 4th parameter of type "MyStruct*" and all action routines will have access to a variable named "pAbc" that is the value of the 4th parameter in the most recent call to Parse().</p> <p>The <tt>%extra_context</tt> directive works the same except that it is passed in on the ParseAlloc() or ParseInit() routines instead of on Parse(). <a name='extractx'></a> <h4>The <tt>%extra_context</tt> directive</h4> The <tt>%extra_context</tt> directive instructs Lemon to add a 2th parameter to the parameter list of the ParseAlloc() and ParseInif() functions. Lemon doesn't do anything itself with these extra argument, but it does store the value make it available to C-code action routines, destructors, and so forth. For example, if the grammar file contains:</p> <p><pre> %extra_context { MyStruct *pAbc } </pre></p> <p>Then the ParseAlloc() and ParseInit() functions will have an 2th parameter of type "MyStruct*" and all action routines will have access to a variable named "pAbc" that is the value of that 2th parameter.</p> <p>The <tt>%extra_argument</tt> directive works the same except that it is passed in on the Parse() routine instead of on ParseAlloc()/ParseInit(). <a name='pfallback'></a> <h4>The <tt>%fallback</tt> directive</h4> <p>The <tt>%fallback</tt> directive specifies an alternative meaning for one or more tokens. The alternative meaning is tried if the original token would have generated a syntax error.</p> |
︙ | ︙ |
Changes to ext/expert/expert1.test.
︙ | ︙ | |||
91 92 93 94 95 96 97 | eval $setup do_setup_rec_test $tn.1 { CREATE TABLE t1(a, b, c) } { SELECT * FROM t1 } { (no new indexes) | | | | | | | | | | | | | | | | > | | | | | > | | | | | 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | eval $setup do_setup_rec_test $tn.1 { CREATE TABLE t1(a, b, c) } { SELECT * FROM t1 } { (no new indexes) SCAN TABLE t1 } do_setup_rec_test $tn.2 { CREATE TABLE t1(a, b, c); } { SELECT * FROM t1 WHERE b>?; } { CREATE INDEX t1_idx_00000062 ON t1(b); SEARCH TABLE t1 USING INDEX t1_idx_00000062 (b>?) } do_setup_rec_test $tn.3 { CREATE TABLE t1(a, b, c); } { SELECT * FROM t1 WHERE b COLLATE nocase BETWEEN ? AND ? } { CREATE INDEX t1_idx_3e094c27 ON t1(b COLLATE NOCASE); SEARCH TABLE t1 USING INDEX t1_idx_3e094c27 (b>? AND b<?) } do_setup_rec_test $tn.4 { CREATE TABLE t1(a, b, c); } { SELECT a FROM t1 ORDER BY b; } { CREATE INDEX t1_idx_00000062 ON t1(b); SCAN TABLE t1 USING INDEX t1_idx_00000062 } do_setup_rec_test $tn.5 { CREATE TABLE t1(a, b, c); } { SELECT a FROM t1 WHERE a=? ORDER BY b; } { CREATE INDEX t1_idx_000123a7 ON t1(a, b); SEARCH TABLE t1 USING COVERING INDEX t1_idx_000123a7 (a=?) } do_setup_rec_test $tn.6 { CREATE TABLE t1(a, b, c); } { SELECT min(a) FROM t1 } { CREATE INDEX t1_idx_00000061 ON t1(a); SEARCH TABLE t1 USING COVERING INDEX t1_idx_00000061 } do_setup_rec_test $tn.7 { CREATE TABLE t1(a, b, c); } { SELECT * FROM t1 ORDER BY a, b, c; } { CREATE INDEX t1_idx_033e95fe ON t1(a, b, c); SCAN TABLE t1 USING COVERING INDEX t1_idx_033e95fe } #do_setup_rec_test $tn.1.8 { # CREATE TABLE t1(a, b, c); #} { # SELECT * FROM t1 ORDER BY a ASC, b COLLATE nocase DESC, c ASC; #} { # CREATE INDEX t1_idx_5be6e222 ON t1(a, b COLLATE NOCASE DESC, c); # 0|0|0|SCAN TABLE t1 USING COVERING INDEX t1_idx_5be6e222 #} do_setup_rec_test $tn.8.1 { CREATE TABLE t1(a COLLATE NOCase, b, c); } { SELECT * FROM t1 WHERE a=? } { CREATE INDEX t1_idx_00000061 ON t1(a); SEARCH TABLE t1 USING INDEX t1_idx_00000061 (a=?) } do_setup_rec_test $tn.8.2 { CREATE TABLE t1(a, b COLLATE nocase, c); } { SELECT * FROM t1 ORDER BY a ASC, b DESC, c ASC; } { CREATE INDEX t1_idx_5cb97285 ON t1(a, b DESC, c); SCAN TABLE t1 USING COVERING INDEX t1_idx_5cb97285 } # Tables with names that require quotes. # do_setup_rec_test $tn.9.1 { CREATE TABLE "t t"(a, b, c); } { SELECT * FROM "t t" WHERE a=? } { CREATE INDEX 't t_idx_00000061' ON 't t'(a); SEARCH TABLE t t USING INDEX t t_idx_00000061 (a=?) } do_setup_rec_test $tn.9.2 { CREATE TABLE "t t"(a, b, c); } { SELECT * FROM "t t" WHERE b BETWEEN ? AND ? } { CREATE INDEX 't t_idx_00000062' ON 't t'(b); SEARCH TABLE t t USING INDEX t t_idx_00000062 (b>? AND b<?) } # Columns with names that require quotes. # do_setup_rec_test $tn.10.1 { CREATE TABLE t3(a, "b b", c); } { SELECT * FROM t3 WHERE "b b" = ? } { CREATE INDEX t3_idx_00050c52 ON t3('b b'); SEARCH TABLE t3 USING INDEX t3_idx_00050c52 (b b=?) } do_setup_rec_test $tn.10.2 { CREATE TABLE t3(a, "b b", c); } { SELECT * FROM t3 ORDER BY "b b" } { CREATE INDEX t3_idx_00050c52 ON t3('b b'); SCAN TABLE t3 USING INDEX t3_idx_00050c52 } # Transitive constraints # do_setup_rec_test $tn.11.1 { CREATE TABLE t5(a, b); CREATE TABLE t6(c, d); } { SELECT * FROM t5, t6 WHERE a=? AND b=c AND c=? } { CREATE INDEX t5_idx_000123a7 ON t5(a, b); CREATE INDEX t6_idx_00000063 ON t6(c); SEARCH TABLE t6 USING INDEX t6_idx_00000063 (c=?) SEARCH TABLE t5 USING COVERING INDEX t5_idx_000123a7 (a=? AND b=?) } # OR terms. # do_setup_rec_test $tn.12.1 { CREATE TABLE t7(a, b); } { SELECT * FROM t7 WHERE a=? OR b=? } { CREATE INDEX t7_idx_00000062 ON t7(b); CREATE INDEX t7_idx_00000061 ON t7(a); MULTI-INDEX OR SEARCH TABLE t7 USING INDEX t7_idx_00000061 (a=?) SEARCH TABLE t7 USING INDEX t7_idx_00000062 (b=?) } # rowid terms. # do_setup_rec_test $tn.13.1 { CREATE TABLE t8(a, b); } { SELECT * FROM t8 WHERE rowid=? } { (no new indexes) SEARCH TABLE t8 USING INTEGER PRIMARY KEY (rowid=?) } do_setup_rec_test $tn.13.2 { CREATE TABLE t8(a, b); } { SELECT * FROM t8 ORDER BY rowid } { (no new indexes) SCAN TABLE t8 } do_setup_rec_test $tn.13.3 { CREATE TABLE t8(a, b); } { SELECT * FROM t8 WHERE a=? ORDER BY rowid } { CREATE INDEX t8_idx_00000061 ON t8(a); SEARCH TABLE t8 USING INDEX t8_idx_00000061 (a=?) } # Triggers # do_setup_rec_test $tn.14 { CREATE TABLE t9(a, b, c); CREATE TABLE t10(a, b, c); CREATE TRIGGER t9t AFTER INSERT ON t9 BEGIN UPDATE t10 SET a=new.a WHERE b = new.b; END; } { INSERT INTO t9 VALUES(?, ?, ?); } { CREATE INDEX t10_idx_00000062 ON t10(b); -- TRIGGER t9t SEARCH TABLE t10 USING INDEX t10_idx_00000062 (b=?) } do_setup_rec_test $tn.15 { CREATE TABLE t1(a, b); CREATE TABLE t2(c, d); WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<100) INSERT INTO t1 SELECT (i-1)/50, (i-1)/20 FROM s; WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<100) INSERT INTO t2 SELECT (i-1)/20, (i-1)/5 FROM s; } { SELECT * FROM t2, t1 WHERE b=? AND d=? AND t2.rowid=t1.rowid } { CREATE INDEX t2_idx_00000064 ON t2(d); SEARCH TABLE t2 USING INDEX t2_idx_00000064 (d=?) SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?) } do_setup_rec_test $tn.16 { CREATE TABLE t1(a, b); } { SELECT * FROM t1 WHERE b IS NOT NULL; } { (no new indexes) SCAN TABLE t1 } } proc do_candidates_test {tn sql res} { set res [squish [string trim $res]] |
︙ | ︙ | |||
375 376 377 378 379 380 381 | t2 t2_idx_00000063 {100 20} t2 t2_idx_00000064 {100 5} t2 t2_idx_0001295b {100 20 5} } finish_test | < | 377 378 379 380 381 382 383 | t2 t2_idx_00000063 {100 20} t2 t2_idx_00000064 {100 5} t2 t2_idx_0001295b {100 20 5} } finish_test |
Changes to ext/expert/sqlite3expert.c.
︙ | ︙ | |||
1119 1120 1121 1122 1123 1124 1125 | IdxHashEntry *pEntry; sqlite3_stmt *pExplain = 0; idxHashClear(&hIdx); rc = idxPrintfPrepareStmt(dbm, &pExplain, pzErr, "EXPLAIN QUERY PLAN %s", pStmt->zSql ); while( rc==SQLITE_OK && sqlite3_step(pExplain)==SQLITE_ROW ){ | | | | | 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 | IdxHashEntry *pEntry; sqlite3_stmt *pExplain = 0; idxHashClear(&hIdx); rc = idxPrintfPrepareStmt(dbm, &pExplain, pzErr, "EXPLAIN QUERY PLAN %s", pStmt->zSql ); while( rc==SQLITE_OK && sqlite3_step(pExplain)==SQLITE_ROW ){ /* int iId = sqlite3_column_int(pExplain, 0); */ /* int iParent = sqlite3_column_int(pExplain, 1); */ /* int iNotUsed = sqlite3_column_int(pExplain, 2); */ const char *zDetail = (const char*)sqlite3_column_text(pExplain, 3); int nDetail = STRLEN(zDetail); int i; for(i=0; i<nDetail; i++){ const char *zIdx = 0; if( memcmp(&zDetail[i], " USING INDEX ", 13)==0 ){ |
︙ | ︙ | |||
1148 1149 1150 1151 1152 1153 1154 | idxHashAdd(&rc, &hIdx, zSql, 0); if( rc ) goto find_indexes_out; } break; } } | | < < | 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 | idxHashAdd(&rc, &hIdx, zSql, 0); if( rc ) goto find_indexes_out; } break; } } pStmt->zEQP = idxAppendText(&rc, pStmt->zEQP, "%s\n", zDetail); } for(pEntry=hIdx.pFirst; pEntry; pEntry=pEntry->pNext){ pStmt->zIdx = idxAppendText(&rc, pStmt->zIdx, "%s;\n", pEntry->zKey); } idxFinalize(&rc, pExplain); |
︙ | ︙ |
Changes to ext/fts3/fts3.c.
︙ | ︙ | |||
3959 3960 3961 3962 3963 3964 3965 | ){ rc = SQLITE_NOMEM; } } #ifdef SQLITE_TEST if( rc==SQLITE_OK ){ | | | 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 | ){ rc = SQLITE_NOMEM; } } #ifdef SQLITE_TEST if( rc==SQLITE_OK ){ rc = sqlite3Fts3ExprInitTestInterface(db, pHash); } #endif /* Create the virtual table wrapper around the hash-table and overload ** the four scalar functions. If this is successful, register the ** module with sqlite. */ |
︙ | ︙ |
Changes to ext/fts3/fts3Int.h.
︙ | ︙ | |||
580 581 582 583 584 585 586 | /* fts3_expr.c */ int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int, char **, int, int, int, const char *, int, Fts3Expr **, char ** ); void sqlite3Fts3ExprFree(Fts3Expr *); #ifdef SQLITE_TEST | | | 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 | /* fts3_expr.c */ int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int, char **, int, int, int, const char *, int, Fts3Expr **, char ** ); void sqlite3Fts3ExprFree(Fts3Expr *); #ifdef SQLITE_TEST int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash*); int sqlite3Fts3InitTerm(sqlite3 *db); #endif int sqlite3Fts3OpenTokenizer(sqlite3_tokenizer *, int, const char *, int, sqlite3_tokenizer_cursor ** ); |
︙ | ︙ |
Changes to ext/fts3/fts3_expr.c.
︙ | ︙ | |||
1104 1105 1106 1107 1108 1109 1110 | ** Everything after this point is just test code. */ #ifdef SQLITE_TEST #include <stdio.h> | < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 | ** Everything after this point is just test code. */ #ifdef SQLITE_TEST #include <stdio.h> /* ** Return a pointer to a buffer containing a text representation of the ** expression passed as the first argument. The buffer is obtained from ** sqlite3_malloc(). It is the responsibility of the caller to use ** sqlite3_free() to release the memory. If an OOM condition is encountered, ** NULL is returned. ** |
︙ | ︙ | |||
1199 1200 1201 1202 1203 1204 1205 | ** to parse the query expression (see README.tokenizers). The second argument ** is the query expression to parse. Each subsequent argument is the name ** of a column of the fts3 table that the query expression may refer to. ** For example: ** ** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2'); */ | | > < | > > < | > > | | < | | < | | < < < | < < | | 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 | ** to parse the query expression (see README.tokenizers). The second argument ** is the query expression to parse. Each subsequent argument is the name ** of a column of the fts3 table that the query expression may refer to. ** For example: ** ** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2'); */ static void fts3ExprTestCommon( int bRebalance, sqlite3_context *context, int argc, sqlite3_value **argv ){ sqlite3_tokenizer *pTokenizer = 0; int rc; char **azCol = 0; const char *zExpr; int nExpr; int nCol; int ii; Fts3Expr *pExpr; char *zBuf = 0; Fts3Hash *pHash = (Fts3Hash*)sqlite3_user_data(context); const char *zTokenizer = 0; char *zErr = 0; if( argc<3 ){ sqlite3_result_error(context, "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1 ); return; } zTokenizer = (const char*)sqlite3_value_text(argv[0]); rc = sqlite3Fts3InitTokenizer(pHash, zTokenizer, &pTokenizer, &zErr); if( rc!=SQLITE_OK ){ if( rc==SQLITE_NOMEM ){ sqlite3_result_error_nomem(context); }else{ sqlite3_result_error(context, zErr, -1); } sqlite3_free(zErr); return; } zExpr = (const char *)sqlite3_value_text(argv[1]); nExpr = sqlite3_value_bytes(argv[1]); nCol = argc-2; azCol = (char **)sqlite3_malloc(nCol*sizeof(char *)); if( !azCol ){ sqlite3_result_error_nomem(context); goto exprtest_out; } for(ii=0; ii<nCol; ii++){ azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]); } if( bRebalance ){ char *zDummy = 0; rc = sqlite3Fts3ExprParse( pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr, &zDummy ); assert( rc==SQLITE_OK || pExpr==0 ); sqlite3_free(zDummy); }else{ |
︙ | ︙ | |||
1279 1280 1281 1282 1283 1284 1285 | sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); sqlite3_free(zBuf); } sqlite3Fts3ExprFree(pExpr); exprtest_out: | | | > > > > > > > > > > > > > > > | | | | 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 | sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); sqlite3_free(zBuf); } sqlite3Fts3ExprFree(pExpr); exprtest_out: if( pTokenizer ){ rc = pTokenizer->pModule->xDestroy(pTokenizer); } sqlite3_free(azCol); } static void fts3ExprTest( sqlite3_context *context, int argc, sqlite3_value **argv ){ fts3ExprTestCommon(0, context, argc, argv); } static void fts3ExprTestRebalance( sqlite3_context *context, int argc, sqlite3_value **argv ){ fts3ExprTestCommon(1, context, argc, argv); } /* ** Register the query expression parser test function fts3_exprtest() ** with database connection db. */ int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash *pHash){ int rc = sqlite3_create_function( db, "fts3_exprtest", -1, SQLITE_UTF8, (void*)pHash, fts3ExprTest, 0, 0 ); if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "fts3_exprtest_rebalance", -1, SQLITE_UTF8, (void*)pHash, fts3ExprTestRebalance, 0, 0 ); } return rc; } #endif #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ |
Changes to ext/fts5/test/fts5plan.test.
︙ | ︙ | |||
25 26 27 28 29 30 31 | CREATE TABLE t1(x, y); CREATE VIRTUAL TABLE f1 USING fts5(ff); } do_eqp_test 1.1 { SELECT * FROM t1, f1 WHERE f1 MATCH t1.x } { | > | | > | | > | | > | | < | < < < < | 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | CREATE TABLE t1(x, y); CREATE VIRTUAL TABLE f1 USING fts5(ff); } do_eqp_test 1.1 { SELECT * FROM t1, f1 WHERE f1 MATCH t1.x } { QUERY PLAN |--SCAN TABLE t1 `--SCAN TABLE f1 VIRTUAL TABLE INDEX 65537: } do_eqp_test 1.2 { SELECT * FROM t1, f1 WHERE f1 > t1.x } { QUERY PLAN |--SCAN TABLE f1 VIRTUAL TABLE INDEX 0: `--SCAN TABLE t1 } do_eqp_test 1.3 { SELECT * FROM f1 WHERE f1 MATCH ? ORDER BY ff } { QUERY PLAN |--SCAN TABLE f1 VIRTUAL TABLE INDEX 65537: `--USE TEMP B-TREE FOR ORDER BY } do_eqp_test 1.4 { SELECT * FROM f1 ORDER BY rank } { QUERY PLAN |--SCAN TABLE f1 VIRTUAL TABLE INDEX 0: `--USE TEMP B-TREE FOR ORDER BY } do_eqp_test 1.5 { SELECT * FROM f1 WHERE rank MATCH ? } {SCAN TABLE f1 VIRTUAL TABLE INDEX 2:} finish_test |
Changes to ext/misc/closure.c.
︙ | ︙ | |||
822 823 824 825 826 827 828 | static int closureBestIndex( sqlite3_vtab *pTab, /* The virtual table */ sqlite3_index_info *pIdxInfo /* Information about the query */ ){ int iPlan = 0; int i; int idx = 1; | < < < < < | 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 | static int closureBestIndex( sqlite3_vtab *pTab, /* The virtual table */ sqlite3_index_info *pIdxInfo /* Information about the query */ ){ int iPlan = 0; int i; int idx = 1; const struct sqlite3_index_constraint *pConstraint; closure_vtab *pVtab = (closure_vtab*)pTab; double rCost = 10000000.0; pConstraint = pIdxInfo->aConstraint; for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ if( pConstraint->usable==0 ) continue; if( (iPlan & 1)==0 && pConstraint->iColumn==CLOSURE_COL_ROOT && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ iPlan |= 1; pIdxInfo->aConstraintUsage[i].argvIndex = 1; |
︙ | ︙ | |||
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 | || (pVtab->zIdColumn==0 && (iPlan & 0x00f000)==0) || (pVtab->zParentColumn==0 && (iPlan & 0x0f0000)==0) ){ /* All of tablename, idcolumn, and parentcolumn must be specified ** in either the CREATE VIRTUAL TABLE or in the WHERE clause constraints ** or else the result is an empty set. */ iPlan = 0; } pIdxInfo->idxNum = iPlan; if( pIdxInfo->nOrderBy==1 && pIdxInfo->aOrderBy[0].iColumn==CLOSURE_COL_ID && pIdxInfo->aOrderBy[0].desc==0 ){ pIdxInfo->orderByConsumed = 1; } | > > > > > > > > > > > > < | 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 | || (pVtab->zIdColumn==0 && (iPlan & 0x00f000)==0) || (pVtab->zParentColumn==0 && (iPlan & 0x0f0000)==0) ){ /* All of tablename, idcolumn, and parentcolumn must be specified ** in either the CREATE VIRTUAL TABLE or in the WHERE clause constraints ** or else the result is an empty set. */ iPlan = 0; } if( (iPlan&1)==0 ){ /* If there is no usable "root=?" term, then set the index-type to 0. ** Also clear any argvIndex variables already set. This is necessary ** to prevent the core from throwing an "xBestIndex malfunction error" ** error (because the argvIndex values are not contiguously assigned ** starting from 1). */ rCost *= 1e30; for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ pIdxInfo->aConstraintUsage[i].argvIndex = 0; } iPlan = 0; } pIdxInfo->idxNum = iPlan; if( pIdxInfo->nOrderBy==1 && pIdxInfo->aOrderBy[0].iColumn==CLOSURE_COL_ID && pIdxInfo->aOrderBy[0].desc==0 ){ pIdxInfo->orderByConsumed = 1; } pIdxInfo->estimatedCost = rCost; return SQLITE_OK; } /* ** A virtual table module that implements the "transitive_closure". |
︙ | ︙ |
Changes to ext/misc/completion.c.
︙ | ︙ | |||
58 59 60 61 62 63 64 65 66 67 68 69 70 71 | struct completion_cursor { sqlite3_vtab_cursor base; /* Base class - must be first */ sqlite3 *db; /* Database connection for this cursor */ int nPrefix, nLine; /* Number of bytes in zPrefix and zLine */ char *zPrefix; /* The prefix for the word we want to complete */ char *zLine; /* The whole that we want to complete */ const char *zCurrentRow; /* Current output row */ sqlite3_stmt *pStmt; /* Current statement */ sqlite3_int64 iRowid; /* The rowid */ int ePhase; /* Current phase */ int j; /* inter-phase counter */ }; /* Values for ePhase: | > | 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | struct completion_cursor { sqlite3_vtab_cursor base; /* Base class - must be first */ sqlite3 *db; /* Database connection for this cursor */ int nPrefix, nLine; /* Number of bytes in zPrefix and zLine */ char *zPrefix; /* The prefix for the word we want to complete */ char *zLine; /* The whole that we want to complete */ const char *zCurrentRow; /* Current output row */ int szRow; /* Length of the zCurrentRow string */ sqlite3_stmt *pStmt; /* Current statement */ sqlite3_int64 iRowid; /* The rowid */ int ePhase; /* Current phase */ int j; /* inter-phase counter */ }; /* Values for ePhase: |
︙ | ︙ | |||
170 171 172 173 174 175 176 | */ static int completionClose(sqlite3_vtab_cursor *cur){ completionCursorReset((completion_cursor*)cur); sqlite3_free(cur); return SQLITE_OK; } | < < < < < < < < < < < < < < < < < < < < < < < < < < | 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | */ static int completionClose(sqlite3_vtab_cursor *cur){ completionCursorReset((completion_cursor*)cur); sqlite3_free(cur); return SQLITE_OK; } /* ** Advance a completion_cursor to its next row of output. ** ** The ->ePhase, ->j, and ->pStmt fields of the completion_cursor object ** record the current state of the scan. This routine sets ->zCurrentRow ** to the current row of output and then returns. If no more rows remain, ** then ->ePhase is set to COMPLETION_EOF which will signal the virtual |
︙ | ︙ | |||
218 219 220 221 222 223 224 | completion_cursor *pCur = (completion_cursor*)cur; int eNextPhase = 0; /* Next phase to try if current phase reaches end */ int iCol = -1; /* If >=0, step pCur->pStmt and use the i-th column */ pCur->iRowid++; while( pCur->ePhase!=COMPLETION_EOF ){ switch( pCur->ePhase ){ case COMPLETION_KEYWORDS: { | | | | 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | completion_cursor *pCur = (completion_cursor*)cur; int eNextPhase = 0; /* Next phase to try if current phase reaches end */ int iCol = -1; /* If >=0, step pCur->pStmt and use the i-th column */ pCur->iRowid++; while( pCur->ePhase!=COMPLETION_EOF ){ switch( pCur->ePhase ){ case COMPLETION_KEYWORDS: { if( pCur->j >= sqlite3_keyword_count() ){ pCur->zCurrentRow = 0; pCur->ePhase = COMPLETION_DATABASES; }else{ sqlite3_keyword_name(pCur->j++, &pCur->zCurrentRow, &pCur->szRow); } iCol = -1; break; } case COMPLETION_DATABASES: { if( pCur->pStmt==0 ){ sqlite3_prepare_v2(pCur->db, "PRAGMA database_list", -1, |
︙ | ︙ | |||
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 | if( iCol<0 ){ /* This case is when the phase presets zCurrentRow */ if( pCur->zCurrentRow==0 ) continue; }else{ if( sqlite3_step(pCur->pStmt)==SQLITE_ROW ){ /* Extract the next row of content */ pCur->zCurrentRow = (const char*)sqlite3_column_text(pCur->pStmt, iCol); }else{ /* When all rows are finished, advance to the next phase */ sqlite3_finalize(pCur->pStmt); pCur->pStmt = 0; pCur->ePhase = eNextPhase; continue; } } if( pCur->nPrefix==0 ) break; | > > | > | | 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 | if( iCol<0 ){ /* This case is when the phase presets zCurrentRow */ if( pCur->zCurrentRow==0 ) continue; }else{ if( sqlite3_step(pCur->pStmt)==SQLITE_ROW ){ /* Extract the next row of content */ pCur->zCurrentRow = (const char*)sqlite3_column_text(pCur->pStmt, iCol); pCur->szRow = sqlite3_column_bytes(pCur->pStmt, iCol); }else{ /* When all rows are finished, advance to the next phase */ sqlite3_finalize(pCur->pStmt); pCur->pStmt = 0; pCur->ePhase = eNextPhase; continue; } } if( pCur->nPrefix==0 ) break; if( pCur->nPrefix<=pCur->szRow && sqlite3_strnicmp(pCur->zPrefix, pCur->zCurrentRow, pCur->nPrefix)==0 ){ break; } } return SQLITE_OK; } /* ** Return values of columns for the row at which the completion_cursor ** is currently pointing. */ static int completionColumn( sqlite3_vtab_cursor *cur, /* The cursor */ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ int i /* Which column to return */ ){ completion_cursor *pCur = (completion_cursor*)cur; switch( i ){ case COMPLETION_COLUMN_CANDIDATE: { sqlite3_result_text(ctx, pCur->zCurrentRow, pCur->szRow,SQLITE_TRANSIENT); break; } case COMPLETION_COLUMN_PREFIX: { sqlite3_result_text(ctx, pCur->zPrefix, -1, SQLITE_TRANSIENT); break; } case COMPLETION_COLUMN_WHOLELINE: { |
︙ | ︙ |
Changes to ext/misc/csv.c.
︙ | ︙ | |||
128 129 130 131 132 133 134 135 136 137 138 139 140 141 | p->zIn = sqlite3_malloc( CSV_INBUFSZ ); if( p->zIn==0 ){ csv_errmsg(p, "out of memory"); return 1; } p->in = fopen(zFilename, "rb"); if( p->in==0 ){ csv_reader_reset(p); csv_errmsg(p, "cannot open '%s' for reading", zFilename); return 1; } }else{ assert( p->in==0 ); p->zIn = (char*)zData; | > | 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | p->zIn = sqlite3_malloc( CSV_INBUFSZ ); if( p->zIn==0 ){ csv_errmsg(p, "out of memory"); return 1; } p->in = fopen(zFilename, "rb"); if( p->in==0 ){ sqlite3_free(p->zIn); csv_reader_reset(p); csv_errmsg(p, "cannot open '%s' for reading", zFilename); return 1; } }else{ assert( p->in==0 ); p->zIn = (char*)zData; |
︙ | ︙ |
Changes to ext/misc/dbdump.c.
︙ | ︙ | |||
137 138 139 140 141 142 143 | ** because it contains non-alphanumeric characters, or because it is an ** SQLite keyword. Be conservative in this estimate: When in doubt assume ** that quoting is required. ** ** Return '"' if quoting is required. Return 0 if no quoting is required. */ static char quoteChar(const char *zName){ | < < < < < < < < < < < < < < < < < < < < < | < < < < < < < < < < < < | | 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | ** because it contains non-alphanumeric characters, or because it is an ** SQLite keyword. Be conservative in this estimate: When in doubt assume ** that quoting is required. ** ** Return '"' if quoting is required. Return 0 if no quoting is required. */ static char quoteChar(const char *zName){ int i; if( !isalpha((unsigned char)zName[0]) && zName[0]!='_' ) return '"'; for(i=0; zName[i]; i++){ if( !isalnum((unsigned char)zName[i]) && zName[i]!='_' ) return '"'; } return sqlite3_keyword_check(zName, i) ? '"' : 0; } /* ** Release memory previously allocated by tableColumnList(). */ static void freeColumnList(char **azCol){ |
︙ | ︙ |
Added ext/misc/templatevtab.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | /* ** 2018-04-19 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file implements a template virtual-table. ** Developers can make a copy of this file as a baseline for writing ** new virtual tables and/or table-valued functions. ** ** Steps for writing a new virtual table implementation: ** ** (1) Make a copy of this file. Perhaps call it "mynewvtab.c" ** ** (2) Replace this header comment with something appropriate for ** the new virtual table ** ** (3) Change every occurrence of "templatevtab" to some other string ** appropriate for the new virtual table. Ideally, the new string ** should be the basename of the source file: "mynewvtab". Also ** globally change "TEMPLATEVTAB" to "MYNEWVTAB". ** ** (4) Run a test compilation to make sure the unmodified virtual ** table works. ** ** (5) Begin making incremental changes, testing as you go, to evolve ** the new virtual table to do what you want it to do. ** ** This template is minimal, in the sense that it uses only the required ** methods on the sqlite3_module object. As a result, templatevtab is ** a read-only and eponymous-only table. Those limitation can be removed ** by adding new methods. ** ** This template implements an eponymous-only virtual table with a rowid and ** two columns named "a" and "b". The table as 10 rows with fixed integer ** values. Usage example: ** ** SELECT rowid, a, b FROM templatevtab; */ #if !defined(SQLITEINT_H) #include "sqlite3ext.h" #endif SQLITE_EXTENSION_INIT1 #include <string.h> #include <assert.h> /* templatevtab_vtab is a subclass of sqlite3_vtab which is ** underlying representation of the virtual table */ typedef struct templatevtab_vtab templatevtab_vtab; struct templatevtab_vtab { sqlite3_vtab base; /* Base class - must be first */ /* Add new fields here, as necessary */ }; /* templatevtab_cursor is a subclass of sqlite3_vtab_cursor which will ** serve as the underlying representation of a cursor that scans ** over rows of the result */ typedef struct templatevtab_cursor templatevtab_cursor; struct templatevtab_cursor { sqlite3_vtab_cursor base; /* Base class - must be first */ /* Insert new fields here. For this templatevtab we only keep track ** of the rowid */ sqlite3_int64 iRowid; /* The rowid */ }; /* ** The templatevtabConnect() method is invoked to create a new ** template virtual table. ** ** Think of this routine as the constructor for templatevtab_vtab objects. ** ** All this routine needs to do is: ** ** (1) Allocate the templatevtab_vtab object and initialize all fields. ** ** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the ** result set of queries against the virtual table will look like. */ static int templatevtabConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ templatevtab_vtab *pNew; int rc; rc = sqlite3_declare_vtab(db, "CREATE TABLE x(a,b)" ); /* For convenience, define symbolic names for the index to each column. */ #define TEMPLATEVTAB_A 0 #define TEMPLATEVTAB_B 1 if( rc==SQLITE_OK ){ pNew = sqlite3_malloc( sizeof(*pNew) ); *ppVtab = (sqlite3_vtab*)pNew; if( pNew==0 ) return SQLITE_NOMEM; memset(pNew, 0, sizeof(*pNew)); } return rc; } /* ** This method is the destructor for templatevtab_vtab objects. */ static int templatevtabDisconnect(sqlite3_vtab *pVtab){ templatevtab_vtab *p = (templatevtab_vtab*)pVtab; sqlite3_free(p); return SQLITE_OK; } /* ** Constructor for a new templatevtab_cursor object. */ static int templatevtabOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ templatevtab_cursor *pCur; pCur = sqlite3_malloc( sizeof(*pCur) ); if( pCur==0 ) return SQLITE_NOMEM; memset(pCur, 0, sizeof(*pCur)); *ppCursor = &pCur->base; return SQLITE_OK; } /* ** Destructor for a templatevtab_cursor. */ static int templatevtabClose(sqlite3_vtab_cursor *cur){ templatevtab_cursor *pCur = (templatevtab_cursor*)cur; sqlite3_free(pCur); return SQLITE_OK; } /* ** Advance a templatevtab_cursor to its next row of output. */ static int templatevtabNext(sqlite3_vtab_cursor *cur){ templatevtab_cursor *pCur = (templatevtab_cursor*)cur; pCur->iRowid++; return SQLITE_OK; } /* ** Return values of columns for the row at which the templatevtab_cursor ** is currently pointing. */ static int templatevtabColumn( sqlite3_vtab_cursor *cur, /* The cursor */ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ int i /* Which column to return */ ){ templatevtab_cursor *pCur = (templatevtab_cursor*)cur; switch( i ){ case TEMPLATEVTAB_A: sqlite3_result_int(ctx, 1000 + pCur->iRowid); break; default: assert( i==TEMPLATEVTAB_B ); sqlite3_result_int(ctx, 2000 + pCur->iRowid); break; } return SQLITE_OK; } /* ** Return the rowid for the current row. In this implementation, the ** rowid is the same as the output value. */ static int templatevtabRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ templatevtab_cursor *pCur = (templatevtab_cursor*)cur; *pRowid = pCur->iRowid; return SQLITE_OK; } /* ** Return TRUE if the cursor has been moved off of the last ** row of output. */ static int templatevtabEof(sqlite3_vtab_cursor *cur){ templatevtab_cursor *pCur = (templatevtab_cursor*)cur; return pCur->iRowid>=10; } /* ** This method is called to "rewind" the templatevtab_cursor object back ** to the first row of output. This method is always called at least ** once prior to any call to templatevtabColumn() or templatevtabRowid() or ** templatevtabEof(). */ static int templatevtabFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ templatevtab_cursor *pCur = (templatevtab_cursor *)pVtabCursor; pCur->iRowid = 1; return SQLITE_OK; } /* ** SQLite will invoke this method one or more times while planning a query ** that uses the virtual table. This routine needs to create ** a query plan for each invocation and compute an estimated cost for that ** plan. */ static int templatevtabBestIndex( sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ pIdxInfo->estimatedCost = (double)10; pIdxInfo->estimatedRows = 10; return SQLITE_OK; } /* ** This following structure defines all the methods for the ** virtual table. */ static sqlite3_module templatevtabModule = { /* iVersion */ 0, /* xCreate */ 0, /* xConnect */ templatevtabConnect, /* xBestIndex */ templatevtabBestIndex, /* xDisconnect */ templatevtabDisconnect, /* xDestroy */ 0, /* xOpen */ templatevtabOpen, /* xClose */ templatevtabClose, /* xFilter */ templatevtabFilter, /* xNext */ templatevtabNext, /* xEof */ templatevtabEof, /* xColumn */ templatevtabColumn, /* xRowid */ templatevtabRowid, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 }; #ifdef _WIN32 __declspec(dllexport) #endif int sqlite3_templatevtab_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; SQLITE_EXTENSION_INIT2(pApi); rc = sqlite3_create_module(db, "templatevtab", &templatevtabModule, 0); return rc; } |
Changes to ext/rbu/rbu.c.
︙ | ︙ | |||
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | void usage(const char *zArgv0){ fprintf(stderr, "Usage: %s ?OPTIONS? TARGET-DB RBU-DB\n" "\n" "Where options are:\n" "\n" " -step NSTEP\n" " -vacuum\n" "\n" " If the -vacuum switch is not present, argument RBU-DB must be an RBU\n" " database containing an update suitable for target database TARGET-DB.\n" " Or, if -vacuum is specified, then TARGET-DB is a database to vacuum using\n" " RBU, and RBU-DB is used as the state database for the vacuum (refer to\n" " API documentation for details).\n" "\n" | > > | 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | void usage(const char *zArgv0){ fprintf(stderr, "Usage: %s ?OPTIONS? TARGET-DB RBU-DB\n" "\n" "Where options are:\n" "\n" " -step NSTEP\n" " -statstep NSTATSTEP\n" " -vacuum\n" " -presql SQL\n" "\n" " If the -vacuum switch is not present, argument RBU-DB must be an RBU\n" " database containing an update suitable for target database TARGET-DB.\n" " Or, if -vacuum is specified, then TARGET-DB is a database to vacuum using\n" " RBU, and RBU-DB is used as the state database for the vacuum (refer to\n" " API documentation for details).\n" "\n" |
︙ | ︙ | |||
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | int i; const char *zTarget; /* Target database to apply RBU to */ const char *zRbu; /* Database containing RBU */ char zBuf[200]; /* Buffer for printf() */ char *zErrmsg; /* Error message, if any */ sqlite3rbu *pRbu; /* RBU handle */ int nStep = 0; /* Maximum number of step() calls */ int bVacuum = 0; int rc; sqlite3_int64 nProgress = 0; int nArgc = argc-2; if( argc<3 ) usage(argv[0]); for(i=1; i<nArgc; i++){ const char *zArg = argv[i]; int nArg = strlen(zArg); if( nArg>1 && nArg<=8 && 0==memcmp(zArg, "-vacuum", nArg) ){ bVacuum = 1; }else if( nArg>1 && nArg<=5 && 0==memcmp(zArg, "-step", nArg) && i<nArg-1 ){ i++; nStep = atoi(argv[i]); }else{ usage(argv[0]); } } zTarget = argv[argc-2]; zRbu = argv[argc-1]; report_default_vfs(); /* Open an RBU handle. A vacuum handle if -vacuum was specified, or a ** regular RBU update handle otherwise. */ if( bVacuum ){ pRbu = sqlite3rbu_vacuum(zTarget, zRbu); }else{ pRbu = sqlite3rbu_open(zTarget, zRbu, 0); } report_rbu_vfs(pRbu); /* If nStep is less than or equal to zero, call ** sqlite3rbu_step() until either the RBU has been completely applied ** or an error occurs. Or, if nStep is greater than zero, call ** sqlite3rbu_step() a maximum of nStep times. */ | > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > | | > | 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | int i; const char *zTarget; /* Target database to apply RBU to */ const char *zRbu; /* Database containing RBU */ char zBuf[200]; /* Buffer for printf() */ char *zErrmsg; /* Error message, if any */ sqlite3rbu *pRbu; /* RBU handle */ int nStep = 0; /* Maximum number of step() calls */ int nStatStep = 0; /* Report stats after this many step calls */ int bVacuum = 0; const char *zPreSql = 0; int rc; sqlite3_int64 nProgress = 0; int nArgc = argc-2; if( argc<3 ) usage(argv[0]); for(i=1; i<nArgc; i++){ const char *zArg = argv[i]; int nArg = strlen(zArg); if( nArg>1 && nArg<=8 && 0==memcmp(zArg, "-vacuum", nArg) ){ bVacuum = 1; }else if( nArg>1 && nArg<=7 && 0==memcmp(zArg, "-presql", nArg) && i<nArg-1 ){ i++; zPreSql = argv[i]; }else if( nArg>1 && nArg<=5 && 0==memcmp(zArg, "-step", nArg) && i<nArg-1 ){ i++; nStep = atoi(argv[i]); }else if( nArg>1 && nArg<=9 && 0==memcmp(zArg, "-statstep", nArg) && i<nArg-1 ){ i++; nStatStep = atoi(argv[i]); }else{ usage(argv[0]); } } zTarget = argv[argc-2]; zRbu = argv[argc-1]; report_default_vfs(); /* Open an RBU handle. A vacuum handle if -vacuum was specified, or a ** regular RBU update handle otherwise. */ if( bVacuum ){ pRbu = sqlite3rbu_vacuum(zTarget, zRbu); }else{ pRbu = sqlite3rbu_open(zTarget, zRbu, 0); } report_rbu_vfs(pRbu); if( zPreSql && pRbu ){ sqlite3 *db = sqlite3rbu_db(pRbu, 0); rc = sqlite3_exec(db, zPreSql, 0, 0, 0); if( rc==SQLITE_OK ){ sqlite3 *db = sqlite3rbu_db(pRbu, 1); rc = sqlite3_exec(db, zPreSql, 0, 0, 0); } } /* If nStep is less than or equal to zero, call ** sqlite3rbu_step() until either the RBU has been completely applied ** or an error occurs. Or, if nStep is greater than zero, call ** sqlite3rbu_step() a maximum of nStep times. */ if( rc==SQLITE_OK ){ for(i=0; (nStep<=0 || i<nStep) && sqlite3rbu_step(pRbu)==SQLITE_OK; i++){ if( nStatStep>0 && (i % nStatStep)==0 ){ sqlite3_int64 nUsed; sqlite3_int64 nHighwater; sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &nUsed, &nHighwater, 0); fprintf(stdout, "memory used=%lld highwater=%lld", nUsed, nHighwater); if( bVacuum==0 ){ int one; int two; sqlite3rbu_bp_progress(pRbu, &one, &two); fprintf(stdout, " progress=%d/%d\n", one, two); }else{ fprintf(stdout, "\n"); } fflush(stdout); } } nProgress = sqlite3rbu_progress(pRbu); rc = sqlite3rbu_close(pRbu, &zErrmsg); } /* Let the user know what happened. */ switch( rc ){ case SQLITE_OK: sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_OK: rbu update incomplete (%lld operations so far)\n", nProgress |
︙ | ︙ |
Changes to ext/rbu/rbu1.test.
︙ | ︙ | |||
135 136 137 138 139 140 141 142 143 144 145 146 147 148 | } { eval $create_vfs foreach {tn2 cmd} { 1 run_rbu 2 step_rbu 3 step_rbu_uri 4 step_rbu_state } { foreach {tn schema} { 1 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c); } 2 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c); | > | 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | } { eval $create_vfs foreach {tn2 cmd} { 1 run_rbu 2 step_rbu 3 step_rbu_uri 4 step_rbu_state 5 step_rbu_legacy } { foreach {tn schema} { 1 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c); } 2 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c); |
︙ | ︙ |
Changes to ext/rbu/rbu_common.tcl.
︙ | ︙ | |||
65 66 67 68 69 70 71 72 73 74 75 76 77 78 | set rc [rbu step] check_poststep_state $rc $target $state rbu close if {$rc != "SQLITE_OK"} break } set rc } proc do_rbu_vacuum_test {tn step} { forcedelete state.db uplevel [list do_test $tn.1 { if {$step==0} { sqlite3rbu_vacuum rbu test.db state.db } while 1 { if {$step==1} { sqlite3rbu_vacuum rbu test.db state.db } | > > > > > > > > > > > > > > > > | 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 | set rc [rbu step] check_poststep_state $rc $target $state rbu close if {$rc != "SQLITE_OK"} break } set rc } proc step_rbu_legacy {target rbu} { while 1 { sqlite3rbu rbu $target $rbu set state [rbu state] check_prestep_state $target $state set rc [rbu step] check_poststep_state $rc $target $state rbu close if {$rc != "SQLITE_OK"} break sqlite3 tmpdb $rbu tmpdb eval { DELETE FROM rbu_state WHERE k==10 } tmpdb close } set rc } proc do_rbu_vacuum_test {tn step} { forcedelete state.db uplevel [list do_test $tn.1 { if {$step==0} { sqlite3rbu_vacuum rbu test.db state.db } while 1 { if {$step==1} { sqlite3rbu_vacuum rbu test.db state.db } |
︙ | ︙ |
Added ext/rbu/rbusplit.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | # 2018 April 28 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # source [file join [file dirname [info script]] rbu_common.tcl] set ::testprefix rbusplit db close sqlite3_shutdown sqlite3_config_uri 1 autoinstall_test_functions proc build_db {db} { $db eval { CREATE TABLE t1(a PRIMARY KEY, b, c); CREATE TABLE t2(a PRIMARY KEY, b, c); CREATE INDEX t1c ON t1(c); } } proc build_rbu {filename} { forcedelete $filename sqlite3 dbRbu $filename dbRbu eval { CREATE TABLE data0_t1(a, b, c, rbu_control); CREATE TABLE data1_t1(a, b, c, rbu_control); CREATE TABLE data2_t1(a, b, c, rbu_control); CREATE TABLE data3_t1(a, b, c, rbu_control); CREATE TABLE data_t2(a, b, c, rbu_control); INSERT INTO data0_t1 VALUES(1, 1, 1, 0); INSERT INTO data0_t1 VALUES(2, 2, 2, 0); INSERT INTO data0_t1 VALUES(3, 3, 3, 0); INSERT INTO data0_t1 VALUES(4, 4, 4, 0); INSERT INTO data1_t1 VALUES(5, 5, 5, 0); INSERT INTO data1_t1 VALUES(6, 6, 6, 0); INSERT INTO data1_t1 VALUES(7, 7, 7, 0); INSERT INTO data1_t1 VALUES(8, 8, 8, 0); INSERT INTO data3_t1 VALUES(9, 9, 9, 0); INSERT INTO data_t2 VALUES(1, 1, 1, 0); INSERT INTO data_t2 VALUES(2, 2, 2, 0); INSERT INTO data_t2 VALUES(3, 3, 3, 0); INSERT INTO data_t2 VALUES(4, 4, 4, 0); INSERT INTO data_t2 VALUES(5, 5, 5, 0); INSERT INTO data_t2 VALUES(6, 6, 6, 0); INSERT INTO data_t2 VALUES(7, 7, 7, 0); INSERT INTO data_t2 VALUES(8, 8, 8, 0); INSERT INTO data_t2 VALUES(9, 9, 9, 0); } dbRbu close } foreach {tn cmd} { 1 run_rbu 2 step_rbu } { reset_db build_db db build_rbu testrbu.db do_test 1.$tn.1 { $cmd test.db testrbu.db } {SQLITE_DONE} do_execsql_test 1.$tn.1 { SELECT * FROM t1; } { 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 } do_execsql_test 1.$tn.2 { SELECT * FROM t2; } { 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 } } finish_test |
Changes to ext/rbu/sqlite3rbu.c.
︙ | ︙ | |||
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | ** ** RBU_STATE_COOKIE: ** Valid if STAGE==1. The current change-counter cookie value in the ** target db file. ** ** RBU_STATE_OALSZ: ** Valid if STAGE==1. The size in bytes of the *-oal file. */ #define RBU_STATE_STAGE 1 #define RBU_STATE_TBL 2 #define RBU_STATE_IDX 3 #define RBU_STATE_ROW 4 #define RBU_STATE_PROGRESS 5 #define RBU_STATE_CKPT 6 #define RBU_STATE_COOKIE 7 #define RBU_STATE_OALSZ 8 #define RBU_STATE_PHASEONESTEP 9 #define RBU_STAGE_OAL 1 #define RBU_STAGE_MOVE 2 #define RBU_STAGE_CAPTURE 3 #define RBU_STAGE_CKPT 4 #define RBU_STAGE_DONE 5 | > > > > > | 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | ** ** RBU_STATE_COOKIE: ** Valid if STAGE==1. The current change-counter cookie value in the ** target db file. ** ** RBU_STATE_OALSZ: ** Valid if STAGE==1. The size in bytes of the *-oal file. ** ** RBU_STATE_DATATBL: ** Only valid if STAGE==1. The RBU database name of the table ** currently being read. */ #define RBU_STATE_STAGE 1 #define RBU_STATE_TBL 2 #define RBU_STATE_IDX 3 #define RBU_STATE_ROW 4 #define RBU_STATE_PROGRESS 5 #define RBU_STATE_CKPT 6 #define RBU_STATE_COOKIE 7 #define RBU_STATE_OALSZ 8 #define RBU_STATE_PHASEONESTEP 9 #define RBU_STATE_DATATBL 10 #define RBU_STAGE_OAL 1 #define RBU_STAGE_MOVE 2 #define RBU_STAGE_CAPTURE 3 #define RBU_STAGE_CKPT 4 #define RBU_STAGE_DONE 5 |
︙ | ︙ | |||
201 202 203 204 205 206 207 208 209 210 211 212 213 214 | /* ** A structure to store values read from the rbu_state table in memory. */ struct RbuState { int eStage; char *zTbl; char *zIdx; i64 iWalCksum; int nRow; i64 nProgress; u32 iCookie; i64 iOalSz; i64 nPhaseOneStep; | > | 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | /* ** A structure to store values read from the rbu_state table in memory. */ struct RbuState { int eStage; char *zTbl; char *zDataTbl; char *zIdx; i64 iWalCksum; int nRow; i64 nProgress; u32 iCookie; i64 iOalSz; i64 nPhaseOneStep; |
︙ | ︙ | |||
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 | /* ** Free an RbuState object allocated by rbuLoadState(). */ static void rbuFreeState(RbuState *p){ if( p ){ sqlite3_free(p->zTbl); sqlite3_free(p->zIdx); sqlite3_free(p); } } /* ** Allocate an RbuState object and load the contents of the rbu_state | > | 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 | /* ** Free an RbuState object allocated by rbuLoadState(). */ static void rbuFreeState(RbuState *p){ if( p ){ sqlite3_free(p->zTbl); sqlite3_free(p->zDataTbl); sqlite3_free(p->zIdx); sqlite3_free(p); } } /* ** Allocate an RbuState object and load the contents of the rbu_state |
︙ | ︙ | |||
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 | case RBU_STATE_OALSZ: pRet->iOalSz = (u32)sqlite3_column_int64(pStmt, 1); break; case RBU_STATE_PHASEONESTEP: pRet->nPhaseOneStep = sqlite3_column_int64(pStmt, 1); break; default: rc = SQLITE_CORRUPT; break; } } rc2 = sqlite3_finalize(pStmt); | > > > > | 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 | case RBU_STATE_OALSZ: pRet->iOalSz = (u32)sqlite3_column_int64(pStmt, 1); break; case RBU_STATE_PHASEONESTEP: pRet->nPhaseOneStep = sqlite3_column_int64(pStmt, 1); break; case RBU_STATE_DATATBL: pRet->zDataTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc); break; default: rc = SQLITE_CORRUPT; break; } } rc2 = sqlite3_finalize(pStmt); |
︙ | ︙ | |||
3108 3109 3110 3111 3112 3113 3114 | "(%d, %Q), " "(%d, %Q), " "(%d, %d), " "(%d, %d), " "(%d, %lld), " "(%d, %lld), " "(%d, %lld), " | | > | > | 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 | "(%d, %Q), " "(%d, %Q), " "(%d, %d), " "(%d, %d), " "(%d, %lld), " "(%d, %lld), " "(%d, %lld), " "(%d, %lld), " "(%d, %Q) ", p->zStateDb, RBU_STATE_STAGE, eStage, RBU_STATE_TBL, p->objiter.zTbl, RBU_STATE_IDX, p->objiter.zIdx, RBU_STATE_ROW, p->nStep, RBU_STATE_PROGRESS, p->nProgress, RBU_STATE_CKPT, p->iWalCksum, RBU_STATE_COOKIE, (i64)pFd->iCookie, RBU_STATE_OALSZ, p->iOalSz, RBU_STATE_PHASEONESTEP, p->nPhaseOneStep, RBU_STATE_DATATBL, p->objiter.zDataTbl ) ); assert( pInsert==0 || rc==SQLITE_OK ); if( rc==SQLITE_OK ){ sqlite3_step(pInsert); rc = sqlite3_finalize(pInsert); |
︙ | ︙ | |||
3374 3375 3376 3377 3378 3379 3380 | assert( p->rc==SQLITE_OK ); if( pState->zTbl ){ RbuObjIter *pIter = &p->objiter; int rc = SQLITE_OK; while( rc==SQLITE_OK && pIter->zTbl && (pIter->bCleanup || rbuStrCompare(pIter->zIdx, pState->zIdx) | | > | 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 | assert( p->rc==SQLITE_OK ); if( pState->zTbl ){ RbuObjIter *pIter = &p->objiter; int rc = SQLITE_OK; while( rc==SQLITE_OK && pIter->zTbl && (pIter->bCleanup || rbuStrCompare(pIter->zIdx, pState->zIdx) || (pState->zDataTbl==0 && rbuStrCompare(pIter->zTbl, pState->zTbl)) || (pState->zDataTbl && rbuStrCompare(pIter->zDataTbl, pState->zDataTbl)) )){ rc = rbuObjIterNext(p, pIter); } if( rc==SQLITE_OK && !pIter->zTbl ){ rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf("rbu_state mismatch error"); |
︙ | ︙ |
Changes to ext/rtree/rtree6.test.
︙ | ︙ | |||
70 71 72 73 74 75 76 | do_test rtree6-1.5 { rtree_strategy {SELECT * FROM t1,t2 WHERE k=+ii AND x1<10} } {C0} do_eqp_test rtree6.2.1 { SELECT * FROM t1,t2 WHERE k=+ii AND x1<10 } { | > | | > | | > | | > | | > | | > | | | 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | do_test rtree6-1.5 { rtree_strategy {SELECT * FROM t1,t2 WHERE k=+ii AND x1<10} } {C0} do_eqp_test rtree6.2.1 { SELECT * FROM t1,t2 WHERE k=+ii AND x1<10 } { QUERY PLAN |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0 `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) } do_eqp_test rtree6.2.2 { SELECT * FROM t1,t2 WHERE k=ii AND x1<10 } { QUERY PLAN |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0 `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) } do_eqp_test rtree6.2.3 { SELECT * FROM t1,t2 WHERE k=ii } { QUERY PLAN |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2: `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) } do_eqp_test rtree6.2.4.1 { SELECT * FROM t1,t2 WHERE v=+ii and x1<10 and x2>10 } { QUERY PLAN |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1 `--SEARCH TABLE t2 USING AUTOMATIC COVERING INDEX (v=?) } do_eqp_test rtree6.2.4.2 { SELECT * FROM t1,t2 WHERE v=10 and x1<10 and x2>10 } { QUERY PLAN |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1 `--SEARCH TABLE t2 USING AUTOMATIC PARTIAL COVERING INDEX (v=?) } do_eqp_test rtree6.2.5 { SELECT * FROM t1,t2 WHERE k=ii AND x1<v } { QUERY PLAN |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2: `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) } do_execsql_test rtree6-3.1 { CREATE VIRTUAL TABLE t3 USING rtree(id, x1, x2, y1, y2); INSERT INTO t3 VALUES(NULL, 1, 1, 2, 2); SELECT * FROM t3 WHERE x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND |
︙ | ︙ |
Changes to ext/rtree/rtreeC.test.
︙ | ︙ | |||
25 26 27 28 29 30 31 | CREATE TABLE t(x, y); } do_eqp_test 1.1 { SELECT * FROM r_tree, t WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y } { | > | | > | | > | | > | | | 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | CREATE TABLE t(x, y); } do_eqp_test 1.1 { SELECT * FROM r_tree, t WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y } { QUERY PLAN |--SCAN TABLE t `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0 } do_eqp_test 1.2 { SELECT * FROM t, r_tree WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y } { QUERY PLAN |--SCAN TABLE t `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0 } do_eqp_test 1.3 { SELECT * FROM t, r_tree WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND ?<=max_y } { QUERY PLAN |--SCAN TABLE t `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0 } do_eqp_test 1.5 { SELECT * FROM t, r_tree } { QUERY PLAN |--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2: `--SCAN TABLE t } do_execsql_test 2.0 { INSERT INTO t VALUES(0, 0); INSERT INTO t VALUES(0, 1); INSERT INTO t VALUES(0, 2); INSERT INTO t VALUES(0, 3); |
︙ | ︙ | |||
78 79 80 81 82 83 84 | db close sqlite3 db test.db do_eqp_test 2.1 { SELECT * FROM r_tree, t WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y } { | > | | > | | > | | > | | > | | > | > > | | > | | | 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | db close sqlite3 db test.db do_eqp_test 2.1 { SELECT * FROM r_tree, t WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y } { QUERY PLAN |--SCAN TABLE t `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0 } do_eqp_test 2.2 { SELECT * FROM t, r_tree WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y } { QUERY PLAN |--SCAN TABLE t `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0 } do_eqp_test 2.3 { SELECT * FROM t, r_tree WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND ?<=max_y } { QUERY PLAN |--SCAN TABLE t `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0 } do_eqp_test 2.5 { SELECT * FROM t, r_tree } { QUERY PLAN |--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2: `--SCAN TABLE t } #------------------------------------------------------------------------- # Test that the special CROSS JOIN handling works with rtree tables. # do_execsql_test 3.1 { CREATE TABLE t1(x); CREATE TABLE t2(y); CREATE VIRTUAL TABLE t3 USING rtree(z, x1,x2, y1,y2); } do_eqp_test 3.2.1 { SELECT * FROM t1 CROSS JOIN t2 } { QUERY PLAN |--SCAN TABLE t1 `--SCAN TABLE t2 } do_eqp_test 3.2.2 { SELECT * FROM t2 CROSS JOIN t1 } { QUERY PLAN |--SCAN TABLE t2 `--SCAN TABLE t1 } do_eqp_test 3.3.1 { SELECT * FROM t1 CROSS JOIN t3 } { QUERY PLAN |--SCAN TABLE t1 `--SCAN TABLE t3 VIRTUAL TABLE INDEX 2: } do_eqp_test 3.3.2 { SELECT * FROM t3 CROSS JOIN t1 } { QUERY PLAN |--SCAN TABLE t3 VIRTUAL TABLE INDEX 2: `--SCAN TABLE t1 } #-------------------------------------------------------------------- # Test that LEFT JOINs are not reordered if the right-hand-side is # a virtual table. # reset_db |
︙ | ︙ | |||
185 186 187 188 189 190 191 | # First test a query with no ANALYZE data at all. The outer loop is # real table "t1". # do_eqp_test 5.2 { SELECT * FROM t1, rt WHERE x==id; } { | > | | > | | > | | | 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | # First test a query with no ANALYZE data at all. The outer loop is # real table "t1". # do_eqp_test 5.2 { SELECT * FROM t1, rt WHERE x==id; } { QUERY PLAN |--SCAN TABLE t1 `--SCAN TABLE rt VIRTUAL TABLE INDEX 1: } # Now create enough ANALYZE data to tell SQLite that virtual table "rt" # contains very few rows. This causes it to move "rt" to the outer loop. # do_execsql_test 5.3 { ANALYZE; DELETE FROM sqlite_stat1 WHERE tbl='t1'; } db close sqlite3 db test.db do_eqp_test 5.4 { SELECT * FROM t1, rt WHERE x==id; } { QUERY PLAN |--SCAN TABLE rt VIRTUAL TABLE INDEX 2: `--SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (x=?) } # Delete the ANALYZE data. "t1" should be the outer loop again. # do_execsql_test 5.5 { DROP TABLE sqlite_stat1; } db close sqlite3 db test.db do_eqp_test 5.6 { SELECT * FROM t1, rt WHERE x==id; } { QUERY PLAN |--SCAN TABLE t1 `--SCAN TABLE rt VIRTUAL TABLE INDEX 1: } # This time create and attach a database that contains ANALYZE data for # tables of the same names as those used internally by virtual table # "rt". Check that the rtree module is not fooled into using this data. # Table "t1" should remain the outer loop. # |
︙ | ︙ | |||
237 238 239 240 241 242 243 | db close sqlite3 db test.db execsql { ATTACH 'test.db2' AS aux; } } {} do_eqp_test 5.8 { SELECT * FROM t1, rt WHERE x==id; } { | > | | | 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 | db close sqlite3 db test.db execsql { ATTACH 'test.db2' AS aux; } } {} do_eqp_test 5.8 { SELECT * FROM t1, rt WHERE x==id; } { QUERY PLAN |--SCAN TABLE t1 `--SCAN TABLE rt VIRTUAL TABLE INDEX 1: } #-------------------------------------------------------------------- # Test that having a second connection drop the sqlite_stat1 table # before it is required by rtreeConnect() does not cause problems. # ifcapable rtree { |
︙ | ︙ | |||
295 296 297 298 299 300 301 | INSERT INTO rt VALUES(1, 2, 7, 12, 14); -- Not a hit INSERT INTO rt VALUES(2, 2, 7, 8, 12); -- A hit! INSERT INTO rt VALUES(3, 7, 11, 8, 12); -- Not a hit! INSERT INTO rt VALUES(4, 5, 5, 10, 10); -- A hit! } | | | | > | | | > > | | | | > | | | > > | | | > | 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 | INSERT INTO rt VALUES(1, 2, 7, 12, 14); -- Not a hit INSERT INTO rt VALUES(2, 2, 7, 8, 12); -- A hit! INSERT INTO rt VALUES(3, 7, 11, 8, 12); -- Not a hit! INSERT INTO rt VALUES(4, 5, 5, 10, 10); -- A hit! } proc do_eqp_execsql_test {tn sql res1 res2} { do_eqp_test $tn.1 $sql $res1 do_execsql_test $tn.2 $sql $res2 } do_eqp_execsql_test 7.1 { SELECT id FROM xdir, rt, ydir ON (y1 BETWEEN ymin AND ymax) WHERE (x1 BETWEEN xmin AND xmax); } { QUERY PLAN |--SCAN TABLE xdir |--SCAN TABLE ydir `--SCAN TABLE rt VIRTUAL TABLE INDEX 2:B2D3B0D1 } { 2 4 } do_eqp_execsql_test 7.2 { SELECT * FROM xdir, rt LEFT JOIN ydir ON (y1 BETWEEN ymin AND ymax) WHERE (x1 BETWEEN xmin AND xmax); } { QUERY PLAN |--SCAN TABLE xdir |--SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1 `--SCAN TABLE ydir } { 5 1 2 7 12 14 {} 5 2 2 7 8 12 10 5 4 5 5 10 10 10 } do_eqp_execsql_test 7.3 { SELECT id FROM xdir, rt CROSS JOIN ydir ON (y1 BETWEEN ymin AND ymax) WHERE (x1 BETWEEN xmin AND xmax); } { QUERY PLAN |--SCAN TABLE xdir |--SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1 `--SCAN TABLE ydir } { 2 4 } do_eqp_execsql_test 7.4 { SELECT id FROM rt, xdir CROSS JOIN ydir ON (y1 BETWEEN ymin AND ymax) WHERE (x1 BETWEEN xmin AND xmax); } { QUERY PLAN |--SCAN TABLE xdir |--SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1 `--SCAN TABLE ydir } { 2 4 } finish_test |
Changes to main.mk.
︙ | ︙ | |||
68 69 70 71 72 73 74 | memdb.o memjournal.o \ mutex.o mutex_noop.o mutex_unix.o mutex_w32.o \ notify.o opcodes.o os.o os_unix.o os_win.o \ pager.o pcache.o pcache1.o pragma.o prepare.o printf.o \ random.o resolve.o rowset.o rtree.o \ select.o sqlite3rbu.o status.o stmt.o \ table.o threads.o tokenize.o treeview.o trigger.o \ | | | 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | memdb.o memjournal.o \ mutex.o mutex_noop.o mutex_unix.o mutex_w32.o \ notify.o opcodes.o os.o os_unix.o os_win.o \ pager.o pcache.o pcache1.o pragma.o prepare.o printf.o \ random.o resolve.o rowset.o rtree.o \ select.o sqlite3rbu.o status.o stmt.o \ table.o threads.o tokenize.o treeview.o trigger.o \ update.o upsert.o userauth.o util.o vacuum.o \ vdbeapi.o vdbeaux.o vdbeblob.o vdbemem.o vdbesort.o \ vdbetrace.o wal.o walker.o where.o wherecode.o whereexpr.o \ utf.o vtab.o LIBOBJ += sqlite3session.o # All of the source code files. |
︙ | ︙ | |||
158 159 160 161 162 163 164 165 166 167 168 169 170 171 | $(TOP)/src/tclsqlite.c \ $(TOP)/src/threads.c \ $(TOP)/src/tokenize.c \ $(TOP)/src/treeview.c \ $(TOP)/src/trigger.c \ $(TOP)/src/utf.c \ $(TOP)/src/update.c \ $(TOP)/src/util.c \ $(TOP)/src/vacuum.c \ $(TOP)/src/vdbe.c \ $(TOP)/src/vdbe.h \ $(TOP)/src/vdbeapi.c \ $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbeblob.c \ | > | 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | $(TOP)/src/tclsqlite.c \ $(TOP)/src/threads.c \ $(TOP)/src/tokenize.c \ $(TOP)/src/treeview.c \ $(TOP)/src/trigger.c \ $(TOP)/src/utf.c \ $(TOP)/src/update.c \ $(TOP)/src/upsert.c \ $(TOP)/src/util.c \ $(TOP)/src/vacuum.c \ $(TOP)/src/vdbe.c \ $(TOP)/src/vdbe.h \ $(TOP)/src/vdbeapi.c \ $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbeblob.c \ |
︙ | ︙ |
Changes to src/attach.c.
︙ | ︙ | |||
154 155 156 157 158 159 160 | } assert( pVfs ); flags |= SQLITE_OPEN_MAIN_DB; rc = sqlite3BtreeOpen(pVfs, zPath, db, &pNew->pBt, 0, flags); sqlite3_free( zPath ); db->nDb++; } | | | 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | } assert( pVfs ); flags |= SQLITE_OPEN_MAIN_DB; rc = sqlite3BtreeOpen(pVfs, zPath, db, &pNew->pBt, 0, flags); sqlite3_free( zPath ); db->nDb++; } db->noSharedCache = 0; if( rc==SQLITE_CONSTRAINT ){ rc = SQLITE_ERROR; zErrDyn = sqlite3MPrintf(db, "database is already attached"); }else if( rc==SQLITE_OK ){ Pager *pPager; pNew->pSchema = sqlite3SchemaGet(db, pNew->pBt); if( !pNew->pSchema ){ |
︙ | ︙ | |||
226 227 228 229 230 231 232 233 234 235 236 237 238 239 | ** If this fails, or if opening the file failed, then close the file and ** remove the entry from the db->aDb[] array. i.e. put everything back the ** way we found it. */ if( rc==SQLITE_OK ){ sqlite3BtreeEnterAll(db); db->init.iDb = 0; rc = sqlite3Init(db, &zErrDyn); sqlite3BtreeLeaveAll(db); assert( zErrDyn==0 || rc!=SQLITE_OK ); } #ifdef SQLITE_USER_AUTHENTICATION if( rc==SQLITE_OK ){ u8 newAuth = 0; | > | 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | ** If this fails, or if opening the file failed, then close the file and ** remove the entry from the db->aDb[] array. i.e. put everything back the ** way we found it. */ if( rc==SQLITE_OK ){ sqlite3BtreeEnterAll(db); db->init.iDb = 0; db->mDbFlags &= ~(DBFLAG_SchemaKnownOk); rc = sqlite3Init(db, &zErrDyn); sqlite3BtreeLeaveAll(db); assert( zErrDyn==0 || rc!=SQLITE_OK ); } #ifdef SQLITE_USER_AUTHENTICATION if( rc==SQLITE_OK ){ u8 newAuth = 0; |
︙ | ︙ | |||
498 499 500 501 502 503 504 505 506 507 508 509 510 511 | pItem->zDatabase = 0; pItem->pSchema = pFix->pSchema; } #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1; if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1; #endif } return 0; } #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) int sqlite3FixSelect( DbFixer *pFix, /* Context of the fixation */ Select *pSelect /* The SELECT statement to be fixed to one database */ | > > > | 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 | pItem->zDatabase = 0; pItem->pSchema = pFix->pSchema; } #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1; if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1; #endif if( pItem->fg.isTabFunc && sqlite3FixExprList(pFix, pItem->u1.pFuncArg) ){ return 1; } } return 0; } #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) int sqlite3FixSelect( DbFixer *pFix, /* Context of the fixation */ Select *pSelect /* The SELECT statement to be fixed to one database */ |
︙ | ︙ | |||
597 598 599 600 601 602 603 604 605 606 607 608 | } if( sqlite3FixExpr(pFix, pStep->pWhere) ){ return 1; } if( sqlite3FixExprList(pFix, pStep->pExprList) ){ return 1; } pStep = pStep->pNext; } return 0; } #endif | > > > > > > > > > > > > | 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 | } if( sqlite3FixExpr(pFix, pStep->pWhere) ){ return 1; } if( sqlite3FixExprList(pFix, pStep->pExprList) ){ return 1; } #ifndef SQLITE_OMIT_UPSERT if( pStep->pUpsert ){ Upsert *pUp = pStep->pUpsert; if( sqlite3FixExprList(pFix, pUp->pUpsertTarget) || sqlite3FixExpr(pFix, pUp->pUpsertTargetWhere) || sqlite3FixExprList(pFix, pUp->pUpsertSet) || sqlite3FixExpr(pFix, pUp->pUpsertWhere) ){ return 1; } } #endif pStep = pStep->pNext; } return 0; } #endif |
Changes to src/btmutex.c.
︙ | ︙ | |||
191 192 193 194 195 196 197 | for(i=0; i<db->nDb; i++){ p = db->aDb[i].pBt; if( p && p->sharable ){ sqlite3BtreeEnter(p); skipOk = 0; } } | | | | | 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | for(i=0; i<db->nDb; i++){ p = db->aDb[i].pBt; if( p && p->sharable ){ sqlite3BtreeEnter(p); skipOk = 0; } } db->noSharedCache = skipOk; } void sqlite3BtreeEnterAll(sqlite3 *db){ if( db->noSharedCache==0 ) btreeEnterAll(db); } static void SQLITE_NOINLINE btreeLeaveAll(sqlite3 *db){ int i; Btree *p; assert( sqlite3_mutex_held(db->mutex) ); for(i=0; i<db->nDb; i++){ p = db->aDb[i].pBt; if( p ) sqlite3BtreeLeave(p); } } void sqlite3BtreeLeaveAll(sqlite3 *db){ if( db->noSharedCache==0 ) btreeLeaveAll(db); } #ifndef NDEBUG /* ** Return true if the current thread holds the database connection ** mutex and all required BtShared mutexes. ** |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 | pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); } } } #else # define setDefaultSyncFlag(pBt,safety_level) #endif /* ** Get a reference to pPage1 of the database file. This will ** also acquire a readlock on that file. ** ** SQLITE_OK is returned on success. If the file is not a ** well-formed database file, then SQLITE_CORRUPT is returned. | > > > > | 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 | pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); } } } #else # define setDefaultSyncFlag(pBt,safety_level) #endif /* Forward declaration */ static int newDatabase(BtShared*); /* ** Get a reference to pPage1 of the database file. This will ** also acquire a readlock on that file. ** ** SQLITE_OK is returned on success. If the file is not a ** well-formed database file, then SQLITE_CORRUPT is returned. |
︙ | ︙ | |||
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 | /* Do some checking to help insure the file we opened really is ** a valid database file. */ nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); sqlite3PagerPagecount(pBt->pPager, &nPageFile); if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ nPage = nPageFile; } if( nPage>0 ){ u32 pageSize; u32 usableSize; u8 *page1 = pPage1->aData; rc = SQLITE_NOTADB; /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins | > > > | 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 | /* Do some checking to help insure the file we opened really is ** a valid database file. */ nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); sqlite3PagerPagecount(pBt->pPager, &nPageFile); if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ nPage = nPageFile; } if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ nPage = 0; } if( nPage>0 ){ u32 pageSize; u32 usableSize; u8 *page1 = pPage1->aData; rc = SQLITE_NOTADB; /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
339 340 341 342 343 344 345 346 347 348 | Table *sqlite3LocateTable( Parse *pParse, /* context in which to report errors */ u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ const char *zName, /* Name of the table we are looking for */ const char *zDbase /* Name of the database. Might be NULL */ ){ Table *p; /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ | > > | > | | | | | 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | Table *sqlite3LocateTable( Parse *pParse, /* context in which to report errors */ u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ const char *zName, /* Name of the table we are looking for */ const char *zDbase /* Name of the database. Might be NULL */ ){ Table *p; sqlite3 *db = pParse->db; /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 && SQLITE_OK!=sqlite3ReadSchema(pParse) ){ return 0; } p = sqlite3FindTable(db, zName, zDbase); if( p==0 ){ const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; #ifndef SQLITE_OMIT_VIRTUALTABLE if( sqlite3FindDbName(db, zDbase)<1 ){ /* If zName is the not the name of a table in the schema created using ** CREATE, then check to see if it is the name of an virtual table that ** can be an eponymous virtual table. */ Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ pMod = sqlite3PragmaVtabRegister(db, zName); } if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ return pMod->pEpoTab; } } #endif if( (flags & LOCATE_NOERR)==0 ){ |
︙ | ︙ | |||
521 522 523 524 525 526 527 528 529 530 531 532 533 534 | int i; assert( iDb<db->nDb ); if( iDb>=0 ){ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); DbSetProperty(db, iDb, DB_ResetWanted); DbSetProperty(db, 1, DB_ResetWanted); } if( db->nSchemaLock==0 ){ for(i=0; i<db->nDb; i++){ if( DbHasProperty(db, i, DB_ResetWanted) ){ sqlite3SchemaClear(db->aDb[i].pSchema); } | > | 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 | int i; assert( iDb<db->nDb ); if( iDb>=0 ){ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); DbSetProperty(db, iDb, DB_ResetWanted); DbSetProperty(db, 1, DB_ResetWanted); db->mDbFlags &= ~DBFLAG_SchemaKnownOk; } if( db->nSchemaLock==0 ){ for(i=0; i<db->nDb; i++){ if( DbHasProperty(db, i, DB_ResetWanted) ){ sqlite3SchemaClear(db->aDb[i].pSchema); } |
︙ | ︙ | |||
546 547 548 549 550 551 552 | assert( db->nSchemaLock==0 ); for(i=0; i<db->nDb; i++){ Db *pDb = &db->aDb[i]; if( pDb->pSchema ){ sqlite3SchemaClear(pDb->pSchema); } } | | | 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 | assert( db->nSchemaLock==0 ); for(i=0; i<db->nDb; i++){ Db *pDb = &db->aDb[i]; if( pDb->pSchema ){ sqlite3SchemaClear(pDb->pSchema); } } db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); sqlite3VtabUnlockList(db); sqlite3BtreeLeaveAll(db); sqlite3CollapseDatabaseArray(db); } /* ** This routine is called when a commit occurs. |
︙ | ︙ | |||
1091 1092 1093 1094 1095 1096 1097 | pCol = &p->aCol[p->nCol]; memset(pCol, 0, sizeof(p->aCol[0])); pCol->zName = z; sqlite3ColumnPropertiesFromName(p, pCol); if( pType->n==0 ){ /* If there is no type specified, columns have the default affinity | | > > > > > | | 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 | pCol = &p->aCol[p->nCol]; memset(pCol, 0, sizeof(p->aCol[0])); pCol->zName = z; sqlite3ColumnPropertiesFromName(p, pCol); if( pType->n==0 ){ /* If there is no type specified, columns have the default affinity ** 'BLOB' with a default size of 4 bytes. */ pCol->affinity = SQLITE_AFF_BLOB; pCol->szEst = 1; #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( 4>=sqlite3GlobalConfig.szSorterRef ){ pCol->colFlags |= COLFLAG_SORTERREF; } #endif }else{ zType = z + sqlite3Strlen30(z) + 1; memcpy(zType, pType->z, pType->n); zType[pType->n] = 0; sqlite3Dequote(zType); pCol->affinity = sqlite3AffinityType(zType, pCol); pCol->colFlags |= COLFLAG_HASTYPE; } p->nCol++; pParse->constraintName.n = 0; } /* |
︙ | ︙ | |||
1159 1160 1161 1162 1163 1164 1165 | ** 'REAL' | SQLITE_AFF_REAL ** 'FLOA' | SQLITE_AFF_REAL ** 'DOUB' | SQLITE_AFF_REAL ** ** If none of the substrings in the above table are found, ** SQLITE_AFF_NUMERIC is returned. */ | | | 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 | ** 'REAL' | SQLITE_AFF_REAL ** 'FLOA' | SQLITE_AFF_REAL ** 'DOUB' | SQLITE_AFF_REAL ** ** If none of the substrings in the above table are found, ** SQLITE_AFF_NUMERIC is returned. */ char sqlite3AffinityType(const char *zIn, Column *pCol){ u32 h = 0; char aff = SQLITE_AFF_NUMERIC; const char *zChar = 0; assert( zIn!=0 ); while( zIn[0] ){ h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; |
︙ | ︙ | |||
1196 1197 1198 1199 1200 1201 1202 | #endif }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ aff = SQLITE_AFF_INTEGER; break; } } | | | | | < < < | > > > > > > > > | 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 | #endif }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ aff = SQLITE_AFF_INTEGER; break; } } /* If pCol is not NULL, store an estimate of the field size. The ** estimate is scaled so that the size of an integer is 1. */ if( pCol ){ int v = 0; /* default size is approx 4 bytes */ if( aff<SQLITE_AFF_NUMERIC ){ if( zChar ){ while( zChar[0] ){ if( sqlite3Isdigit(zChar[0]) ){ /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ sqlite3GetInt32(zChar, &v); break; } zChar++; } }else{ v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ } } #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( v>=sqlite3GlobalConfig.szSorterRef ){ pCol->colFlags |= COLFLAG_SORTERREF; } #endif v = v/4 + 1; if( v>255 ) v = 255; pCol->szEst = v; } return aff; } /* ** The expression is the default value for the most recently added column ** of the table currently under construction. |
︙ | ︙ | |||
3006 3007 3008 3009 3010 3011 3012 | assert( pTab!=0 ); assert( pParse->nErr==0 ); if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 && db->init.busy==0 #if SQLITE_USER_AUTHENTICATION && sqlite3UserAuthTable(pTab->zName)==0 #endif | > > > | > | 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 | assert( pTab!=0 ); assert( pParse->nErr==0 ); if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 && db->init.busy==0 #if SQLITE_USER_AUTHENTICATION && sqlite3UserAuthTable(pTab->zName)==0 #endif #ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX && sqlite3StrICmp(&pTab->zName[7],"master")!=0 #endif && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); goto exit_create_index; } #ifndef SQLITE_OMIT_VIEW if( pTab->pSelect ){ sqlite3ErrorMsg(pParse, "views may not be indexed"); goto exit_create_index; |
︙ | ︙ |
Changes to src/ctime.c.
︙ | ︙ | |||
281 282 283 284 285 286 287 288 289 290 291 292 293 294 | "ENABLE_SELECTTRACE", #endif #if SQLITE_ENABLE_SESSION "ENABLE_SESSION", #endif #if SQLITE_ENABLE_SNAPSHOT "ENABLE_SNAPSHOT", #endif #if SQLITE_ENABLE_SQLLOG "ENABLE_SQLLOG", #endif #if defined(SQLITE_ENABLE_STAT4) "ENABLE_STAT4", #elif defined(SQLITE_ENABLE_STAT3) | > > > | 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | "ENABLE_SELECTTRACE", #endif #if SQLITE_ENABLE_SESSION "ENABLE_SESSION", #endif #if SQLITE_ENABLE_SNAPSHOT "ENABLE_SNAPSHOT", #endif #if SQLITE_ENABLE_SORTER_REFERENCES "ENABLE_SORTER_REFERENCES", #endif #if SQLITE_ENABLE_SQLLOG "ENABLE_SQLLOG", #endif #if defined(SQLITE_ENABLE_STAT4) "ENABLE_STAT4", #elif defined(SQLITE_ENABLE_STAT3) |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
234 235 236 237 238 239 240 | int iDataCur = 0; /* VDBE cursor for the canonical data source */ int iIdxCur = 0; /* Cursor number of the first index */ int nIdx; /* Number of indices */ sqlite3 *db; /* Main database structure */ AuthContext sContext; /* Authorization context */ NameContext sNC; /* Name context to resolve expressions in */ int iDb; /* Database number */ | | | 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | int iDataCur = 0; /* VDBE cursor for the canonical data source */ int iIdxCur = 0; /* Cursor number of the first index */ int nIdx; /* Number of indices */ sqlite3 *db; /* Main database structure */ AuthContext sContext; /* Authorization context */ NameContext sNC; /* Name context to resolve expressions in */ int iDb; /* Database number */ int memCnt = 0; /* Memory cell used for change counting */ int rcauth; /* Value returned by authorization callback */ int eOnePass; /* ONEPASS_OFF or _SINGLE or _MULTI */ int aiCurOnePass[2]; /* The write cursors opened by WHERE_ONEPASS */ u8 *aToOpen = 0; /* Open cursor iTabCur+j if aToOpen[j] is true */ Index *pPk; /* The PRIMARY KEY index on the table */ int iPk = 0; /* First of nPk registers holding PRIMARY KEY value */ i16 nPk = 1; /* Number of columns in the PRIMARY KEY */ |
︙ | ︙ | |||
339 340 341 342 343 344 345 | /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ){ goto delete_from_cleanup; } if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); | | | 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 | /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ){ goto delete_from_cleanup; } if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, bComplex, iDb); /* If we are trying to delete from a view, realize that view into ** an ephemeral table. */ #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) if( isView ){ sqlite3MaterializeView(pParse, pTab, |
︙ | ︙ | |||
367 368 369 370 371 372 373 | if( sqlite3ResolveExprNames(&sNC, pWhere) ){ goto delete_from_cleanup; } /* Initialize the counter of the number of rows deleted, if ** we are counting rows. */ | | > > > | 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 | if( sqlite3ResolveExprNames(&sNC, pWhere) ){ goto delete_from_cleanup; } /* Initialize the counter of the number of rows deleted, if ** we are counting rows. */ if( (db->flags & SQLITE_CountRows)!=0 && !pParse->nested && !pParse->pTriggerTab ){ memCnt = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt); } #ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION /* Special case: A DELETE without a WHERE clause deletes everything. ** It is easier just to erase the whole table. Prior to version 3.6.5, |
︙ | ︙ | |||
395 396 397 398 399 400 401 | #ifdef SQLITE_ENABLE_PREUPDATE_HOOK && db->xPreUpdateCallback==0 #endif ){ assert( !isView ); sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); if( HasRowid(pTab) ){ | | | 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | #ifdef SQLITE_ENABLE_PREUPDATE_HOOK && db->xPreUpdateCallback==0 #endif ){ assert( !isView ); sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); if( HasRowid(pTab) ){ sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt ? memCnt : -1, pTab->zName, P4_STATIC); } for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->pSchema==pTab->pSchema ); sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb); } }else |
︙ | ︙ | |||
440 441 442 443 444 445 446 447 448 | ** ONEPASS_MULTI: One-pass approach - any number of rows may be deleted. */ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, wcf, iTabCur+1); if( pWInfo==0 ) goto delete_from_cleanup; eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); assert( IsVirtual(pTab)==0 || eOnePass!=ONEPASS_MULTI ); assert( IsVirtual(pTab) || bComplex || eOnePass!=ONEPASS_OFF ); /* Keep track of the number of rows to be deleted */ | > | | 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 | ** ONEPASS_MULTI: One-pass approach - any number of rows may be deleted. */ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, wcf, iTabCur+1); if( pWInfo==0 ) goto delete_from_cleanup; eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); assert( IsVirtual(pTab)==0 || eOnePass!=ONEPASS_MULTI ); assert( IsVirtual(pTab) || bComplex || eOnePass!=ONEPASS_OFF ); if( eOnePass!=ONEPASS_SINGLE ) sqlite3MultiWrite(pParse); /* Keep track of the number of rows to be deleted */ if( memCnt ){ sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1); } /* Extract the rowid or primary key for the current row */ if( pPk ){ for(i=0; i<nPk; i++){ assert( pPk->aiColumn[i]>=0 ); |
︙ | ︙ | |||
585 586 587 588 589 590 591 | sqlite3AutoincrementEnd(pParse); } /* Return the number of rows that were deleted. If this routine is ** generating code because of a call to sqlite3NestedParse(), do not ** invoke the callback function. */ | | | 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 | sqlite3AutoincrementEnd(pParse); } /* Return the number of rows that were deleted. If this routine is ** generating code because of a call to sqlite3NestedParse(), do not ** invoke the callback function. */ if( memCnt ){ sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC); } delete_from_cleanup: sqlite3AuthContextPop(&sContext); |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 | } } pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); pItem->sortOrder = pOldItem->sortOrder; pItem->done = 0; pItem->bSpanIsTab = pOldItem->bSpanIsTab; pItem->u = pOldItem->u; } return pNew; } /* ** If cursors, triggers, views and subqueries are all omitted from | > | 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 | } } pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); pItem->sortOrder = pOldItem->sortOrder; pItem->done = 0; pItem->bSpanIsTab = pOldItem->bSpanIsTab; pItem->bSorterRef = pOldItem->bSorterRef; pItem->u = pOldItem->u; } return pNew; } /* ** If cursors, triggers, views and subqueries are all omitted from |
︙ | ︙ | |||
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 | testcase( pExpr->op==TK_AGG_FUNCTION ); testcase( pExpr->op==TK_AGG_COLUMN ); if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ return WRC_Continue; } /* Fall through */ case TK_IF_NULL_ROW: testcase( pExpr->op==TK_IF_NULL_ROW ); pWalker->eCode = 0; return WRC_Abort; case TK_VARIABLE: if( pWalker->eCode==5 ){ /* Silently convert bound parameters that appear inside of CREATE ** statements into a NULL when parsing the CREATE statement text out ** of the sqlite_master table */ pExpr->op = TK_NULL; }else if( pWalker->eCode==4 ){ /* A bound parameter in a CREATE statement that originates from ** sqlite3_prepare() causes an error */ pWalker->eCode = 0; return WRC_Abort; } /* Fall through */ default: | > > | | | 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 | testcase( pExpr->op==TK_AGG_FUNCTION ); testcase( pExpr->op==TK_AGG_COLUMN ); if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ return WRC_Continue; } /* Fall through */ case TK_IF_NULL_ROW: case TK_REGISTER: testcase( pExpr->op==TK_REGISTER ); testcase( pExpr->op==TK_IF_NULL_ROW ); pWalker->eCode = 0; return WRC_Abort; case TK_VARIABLE: if( pWalker->eCode==5 ){ /* Silently convert bound parameters that appear inside of CREATE ** statements into a NULL when parsing the CREATE statement text out ** of the sqlite_master table */ pExpr->op = TK_NULL; }else if( pWalker->eCode==4 ){ /* A bound parameter in a CREATE statement that originates from ** sqlite3_prepare() causes an error */ pWalker->eCode = 0; return WRC_Abort; } /* Fall through */ default: testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ return WRC_Continue; } } static int exprIsConst(Expr *p, int initFlag, int iCur){ Walker w; w.eCode = initFlag; w.xExprCallback = exprNodeIsConstant; |
︙ | ︙ | |||
2403 2404 2405 2406 2407 2408 2409 | if( aiMap ) aiMap[i] = j; } assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); if( colUsed==(MASKBIT(nExpr)-1) ){ /* If we reach this point, that means the index pIdx is usable */ int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); | < | | < < | 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 | if( aiMap ) aiMap[i] = j; } assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); if( colUsed==(MASKBIT(nExpr)-1) ){ /* If we reach this point, that means the index pIdx is usable */ int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); ExplainQueryPlan((pParse, 0, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "%s", pIdx->zName)); assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; if( prRhsHasNull ){ |
︙ | ︙ | |||
2602 2603 2604 2605 2606 2607 2608 | ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ if( !ExprHasProperty(pExpr, EP_VarSelect) ){ jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } | < < < < < < < < < < < | 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 | ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ if( !ExprHasProperty(pExpr, EP_VarSelect) ){ jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } switch( pExpr->op ){ case TK_IN: { int addr; /* Address of OP_OpenEphemeral instruction */ Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ KeyInfo *pKeyInfo = 0; /* Key information */ int nVal; /* Size of vector pLeft */ |
︙ | ︙ | |||
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 | ** ** Generate code to write the results of the select into the temporary ** table allocated and opened above. */ Select *pSelect = pExpr->x.pSelect; ExprList *pEList = pSelect->pEList; assert( !isRowid ); /* If the LHS and RHS of the IN operator do not match, that ** error will have been caught long before we reach this point. */ if( ALWAYS(pEList->nExpr==nVal) ){ SelectDest dest; int i; sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); | > > > | 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 | ** ** Generate code to write the results of the select into the temporary ** table allocated and opened above. */ Select *pSelect = pExpr->x.pSelect; ExprList *pEList = pSelect->pEList; ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY", jmpIfDynamic>=0?"":"CORRELATED " )); assert( !isRowid ); /* If the LHS and RHS of the IN operator do not match, that ** error will have been caught long before we reach this point. */ if( ALWAYS(pEList->nExpr==nVal) ){ SelectDest dest; int i; sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); |
︙ | ︙ | |||
2691 2692 2693 2694 2695 2696 2697 | ** a column, use numeric affinity. */ char affinity; /* Affinity of the LHS of the IN */ int i; ExprList *pList = pExpr->x.pList; struct ExprList_item *pItem; int r1, r2, r3; | < | 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 | ** a column, use numeric affinity. */ char affinity; /* Affinity of the LHS of the IN */ int i; ExprList *pList = pExpr->x.pList; struct ExprList_item *pItem; int r1, r2, r3; affinity = sqlite3ExprAffinity(pLeft); if( !affinity ){ affinity = SQLITE_AFF_BLOB; } if( pKeyInfo ){ assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
︙ | ︙ | |||
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 | testcase( pExpr->op==TK_EXISTS ); testcase( pExpr->op==TK_SELECT ); assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); assert( ExprHasProperty(pExpr, EP_xIsSelect) ); pSel = pExpr->x.pSelect; nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); pParse->nMem += nReg; if( pExpr->op==TK_SELECT ){ dest.eDest = SRT_Mem; dest.iSdst = dest.iSDParm; dest.nSdst = nReg; | > > | 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 | testcase( pExpr->op==TK_EXISTS ); testcase( pExpr->op==TK_SELECT ); assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); assert( ExprHasProperty(pExpr, EP_xIsSelect) ); pSel = pExpr->x.pSelect; ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY", jmpIfDynamic>=0?"":"CORRELATED ")); nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); pParse->nMem += nReg; if( pExpr->op==TK_SELECT ){ dest.eDest = SRT_Mem; dest.iSdst = dest.iSDParm; dest.nSdst = nReg; |
︙ | ︙ | |||
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 | assert( target>0 && target<=pParse->nMem ); if( v==0 ){ assert( pParse->db->mallocFailed ); return 0; } if( pExpr==0 ){ op = TK_NULL; }else{ op = pExpr->op; } switch( op ){ case TK_AGG_COLUMN: { | > | 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 | assert( target>0 && target<=pParse->nMem ); if( v==0 ){ assert( pParse->db->mallocFailed ); return 0; } expr_code_doover: if( pExpr==0 ){ op = TK_NULL; }else{ op = pExpr->op; } switch( op ){ case TK_AGG_COLUMN: { |
︙ | ︙ | |||
3994 3995 3996 3997 3998 3999 4000 | case TK_BETWEEN: { exprCodeBetween(pParse, pExpr, target, 0, 0); return target; } case TK_SPAN: case TK_COLLATE: case TK_UPLUS: { | | > | 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 | case TK_BETWEEN: { exprCodeBetween(pParse, pExpr, target, 0, 0); return target; } case TK_SPAN: case TK_COLLATE: case TK_UPLUS: { pExpr = pExpr->pLeft; goto expr_code_doover; } case TK_TRIGGER: { /* If the opcode is TK_TRIGGER, then the expression is a reference ** to a column in the new.* or old.* pseudo-tables available to ** trigger programs. In this case Expr.iTable is set to 1 for the ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn |
︙ | ︙ | |||
4032 4033 4034 4035 4036 4037 4038 | assert( pExpr->iTable==0 || pExpr->iTable==1 ); assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); assert( p1>=0 && p1<(pTab->nCol*2+2) ); sqlite3VdbeAddOp2(v, OP_Param, p1, target); | | | < | 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 | assert( pExpr->iTable==0 || pExpr->iTable==1 ); assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); assert( p1>=0 && p1<(pTab->nCol*2+2) ); sqlite3VdbeAddOp2(v, OP_Param, p1, target); VdbeComment((v, "r[%d]=%s.%s", target, (pExpr->iTable ? "new" : "old"), (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName) )); #ifndef SQLITE_OMIT_FLOATING_POINT /* If the column has REAL affinity, it may currently be stored as an ** integer. Use OP_RealAffinity to make sure it is really real. ** ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to |
︙ | ︙ | |||
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 | assert( pList!=0 ); assert( target>0 ); assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ n = pList->nExpr; if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; for(pItem=pList->a, i=0; i<n; i++, pItem++){ Expr *pExpr = pItem->pExpr; if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ if( flags & SQLITE_ECEL_OMITREF ){ i--; n--; }else{ sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); } | > > > > > > | 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 | assert( pList!=0 ); assert( target>0 ); assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ n = pList->nExpr; if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; for(pItem=pList->a, i=0; i<n; i++, pItem++){ Expr *pExpr = pItem->pExpr; #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( pItem->bSorterRef ){ i--; n--; }else #endif if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ if( flags & SQLITE_ECEL_OMITREF ){ i--; n--; }else{ sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); } |
︙ | ︙ | |||
4895 4896 4897 4898 4899 4900 4901 4902 | return 1; } return 2; } if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ if( pA->op==TK_FUNCTION ){ if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ | > > | | > | 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 | return 1; } return 2; } if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ if( pA->op==TK_FUNCTION ){ if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; }else if( pA->op==TK_COLLATE ){ if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ return 2; } } if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ if( combinedFlags & EP_xIsSelect ) return 2; if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; assert( (combinedFlags & EP_Reduced)==0 ); if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE ){ if( pA->iColumn!=pB->iColumn ) return 2; if( pA->iTable!=pB->iTable && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; } } return 0; } |
︙ | ︙ | |||
5251 5252 5253 5254 5255 5256 5257 | ** for additional information. */ static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ int i; NameContext *pNC = pWalker->u.pNC; Parse *pParse = pNC->pParse; SrcList *pSrcList = pNC->pSrcList; | | > | 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 | ** for additional information. */ static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ int i; NameContext *pNC = pWalker->u.pNC; Parse *pParse = pNC->pParse; SrcList *pSrcList = pNC->pSrcList; AggInfo *pAggInfo = pNC->uNC.pAggInfo; assert( pNC->ncFlags & NC_UAggInfo ); switch( pExpr->op ){ case TK_AGG_COLUMN: case TK_COLUMN: { testcase( pExpr->op==TK_AGG_COLUMN ); testcase( pExpr->op==TK_COLUMN ); /* Check to see if the column is in one of the tables in the FROM ** clause of the aggregate query */ |
︙ | ︙ |
Changes to src/global.c.
︙ | ︙ | |||
236 237 238 239 240 241 242 | 0, /* xVdbeBranch */ 0, /* pVbeBranchArg */ #endif #ifndef SQLITE_UNTESTABLE 0, /* xTestCallback */ #endif 0, /* bLocaltimeFault */ | | > | 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | 0, /* xVdbeBranch */ 0, /* pVbeBranchArg */ #endif #ifndef SQLITE_UNTESTABLE 0, /* xTestCallback */ #endif 0, /* bLocaltimeFault */ 0x7ffffffe, /* iOnceResetThreshold */ SQLITE_DEFAULT_SORTERREF_SIZE /* szSorterRef */ }; /* ** Hash table for global functions - functions common to all ** database connections. After initialization, this table is ** read-only. */ |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
484 485 486 487 488 489 490 | ** D: cleanup */ void sqlite3Insert( Parse *pParse, /* Parser context */ SrcList *pTabList, /* Name of table into which we are inserting */ Select *pSelect, /* A SELECT statement to use as the data source */ IdList *pColumn, /* Column names corresponding to IDLIST. */ | | > | 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | ** D: cleanup */ void sqlite3Insert( Parse *pParse, /* Parser context */ SrcList *pTabList, /* Name of table into which we are inserting */ Select *pSelect, /* A SELECT statement to use as the data source */ IdList *pColumn, /* Column names corresponding to IDLIST. */ int onError, /* How to handle constraint errors */ Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ ){ sqlite3 *db; /* The main database structure */ Table *pTab; /* The table to insert into. aka TABLE */ int i, j; /* Loop counters */ Vdbe *v; /* Generate code into this virtual machine */ Index *pIdx; /* For looping over indices of the table */ int nColumn; /* Number of columns in the data */ |
︙ | ︙ | |||
779 780 781 782 783 784 785 | if( pColumn!=0 && nColumn!=pColumn->nId ){ sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); goto insert_cleanup; } /* Initialize the count of rows to be inserted */ | | > > > > > > > > > > > > > > > > | 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 | if( pColumn!=0 && nColumn!=pColumn->nId ){ sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); goto insert_cleanup; } /* Initialize the count of rows to be inserted */ if( (db->flags & SQLITE_CountRows)!=0 && !pParse->nested && !pParse->pTriggerTab ){ regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } /* If this is not a view, open the table and and all indices */ if( !isView ){ int nIdx; nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, &iDataCur, &iIdxCur); aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1)); if( aRegIdx==0 ){ goto insert_cleanup; } for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ assert( pIdx ); aRegIdx[i] = ++pParse->nMem; pParse->nMem += pIdx->nColumn; } } #ifndef SQLITE_OMIT_UPSERT if( pUpsert ){ pTabList->a[0].iCursor = iDataCur; pUpsert->pUpsertSrc = pTabList; pUpsert->regData = regData; pUpsert->iDataCur = iDataCur; pUpsert->iIdxCur = iIdxCur; if( pUpsert->pUpsertTarget ){ sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert); } } #endif /* This is the top of the main insertion loop */ if( useTempTable ){ /* This block codes the top of loop only. The complete loop is the ** following pseudocode (template 4): ** ** rewind temp table, if empty goto D |
︙ | ︙ | |||
1001 1002 1003 1004 1005 1006 1007 | sqlite3MayAbort(pParse); }else #endif { int isReplace; /* Set to true if constraints may cause a replace */ int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, | | | 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 | sqlite3MayAbort(pParse); }else #endif { int isReplace; /* Set to true if constraints may cause a replace */ int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert ); sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE ** constraints or (b) there are no triggers and this table is not a ** parent table in a foreign key constraint. It is safe to set the ** flag in the second case as if any REPLACE constraint is hit, an |
︙ | ︙ | |||
1024 1025 1026 1027 1028 1029 1030 | regIns, aRegIdx, 0, appendFlag, bUseSeek ); } } /* Update the count of rows that are inserted */ | | | 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 | regIns, aRegIdx, 0, appendFlag, bUseSeek ); } } /* Update the count of rows that are inserted */ if( regRowCount ){ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); } if( pTrigger ){ /* Code AFTER triggers */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, pTab, regData-2-pTab->nCol, onError, endOfLoop); |
︙ | ︙ | |||
1061 1062 1063 1064 1065 1066 1067 | } /* ** Return the number of rows inserted. If this routine is ** generating code because of a call to sqlite3NestedParse(), do not ** invoke the callback function. */ | | > | 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 | } /* ** Return the number of rows inserted. If this routine is ** generating code because of a call to sqlite3NestedParse(), do not ** invoke the callback function. */ if( regRowCount ){ sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); } insert_cleanup: sqlite3SrcListDelete(db, pTabList); sqlite3ExprListDelete(db, pList); sqlite3UpsertDelete(db, pUpsert); sqlite3SelectDelete(db, pSelect); sqlite3IdListDelete(db, pColumn); sqlite3DbFree(db, aRegIdx); } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** they may interfere with compilation of other functions in this file |
︙ | ︙ | |||
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 | } testcase( w.eCode==0 ); testcase( w.eCode==CKCNSTRNT_COLUMN ); testcase( w.eCode==CKCNSTRNT_ROWID ); testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); return !w.eCode; } /* ** Generate code to do constraint checks prior to an INSERT or an UPDATE ** on table pTab. ** ** The regNewData parameter is the first register in a range that contains ** the data to be inserted or the data after the update. There will be | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 | } testcase( w.eCode==0 ); testcase( w.eCode==CKCNSTRNT_COLUMN ); testcase( w.eCode==CKCNSTRNT_ROWID ); testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); return !w.eCode; } /* ** An instance of the ConstraintAddr object remembers the byte-code addresses ** for sections of the constraint checks that deal with uniqueness constraints ** on the rowid and on the upsert constraint. ** ** This information is passed into checkReorderConstraintChecks() to insert ** some OP_Goto operations so that the rowid and upsert constraints occur ** in the correct order relative to other constraints. */ typedef struct ConstraintAddr ConstraintAddr; struct ConstraintAddr { int ipkTop; /* Subroutine for rowid constraint check */ int upsertTop; /* Label for upsert constraint check subroutine */ int upsertTop2; /* Copy of upsertTop not cleared by the call */ int upsertBtm; /* upsert constraint returns to this label */ int ipkBtm; /* Return opcode rowid constraint check */ }; /* ** Generate any OP_Goto operations needed to cause constraints to be ** run that haven't already been run. */ static void reorderConstraintChecks(Vdbe *v, ConstraintAddr *p){ if( p->upsertTop ){ testcase( sqlite3VdbeLabelHasBeenResolved(v, p->upsertTop) ); sqlite3VdbeGoto(v, p->upsertTop); VdbeComment((v, "call upsert subroutine")); sqlite3VdbeResolveLabel(v, p->upsertBtm); p->upsertTop = 0; } if( p->ipkTop ){ sqlite3VdbeGoto(v, p->ipkTop); VdbeComment((v, "call rowid unique-check subroutine")); sqlite3VdbeJumpHere(v, p->ipkBtm); p->ipkTop = 0; } } /* ** Generate code to do constraint checks prior to an INSERT or an UPDATE ** on table pTab. ** ** The regNewData parameter is the first register in a range that contains ** the data to be inserted or the data after the update. There will be |
︙ | ︙ | |||
1236 1237 1238 1239 1240 1241 1242 | int iIdxCur, /* First index cursor */ int regNewData, /* First register in a range holding values to insert */ int regOldData, /* Previous content. 0 for INSERTs */ u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ u8 overrideError, /* Override onError to this if not OE_Default */ int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ | | > | | > > | 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 | int iIdxCur, /* First index cursor */ int regNewData, /* First register in a range holding values to insert */ int regOldData, /* Previous content. 0 for INSERTs */ u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ u8 overrideError, /* Override onError to this if not OE_Default */ int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ int *aiChng, /* column i is unchanged if aiChng[i]<0 */ Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ ){ Vdbe *v; /* VDBE under constrution */ Index *pIdx; /* Pointer to one of the indices */ Index *pPk = 0; /* The PRIMARY KEY index */ sqlite3 *db; /* Database connection */ int i; /* loop counter */ int ix; /* Index loop counter */ int nCol; /* Number of columns */ int onError; /* Conflict resolution strategy */ int addr1; /* Address of jump instruction */ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ ConstraintAddr sAddr;/* Address information for constraint reordering */ Index *pUpIdx = 0; /* Index to which to apply the upsert */ u8 isUpdate; /* True if this is an UPDATE operation */ u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ int upsertBypass = 0; /* Address of Goto to bypass upsert subroutine */ isUpdate = regOldData!=0; db = pParse->db; v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ nCol = pTab->nCol; memset(&sAddr, 0, sizeof(sAddr)); /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for ** normal rowid tables. nPkField is the number of key fields in the ** pPk index or 1 for a rowid table. In other words, nPkField is the ** number of fields in the true primary key of the table. */ if( HasRowid(pTab) ){ pPk = 0; |
︙ | ︙ | |||
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 | P5_ConstraintCheck); } sqlite3VdbeResolveLabel(v, allOk); } pParse->iSelfTab = 0; } #endif /* !defined(SQLITE_OMIT_CHECK) */ /* If rowid is changing, make sure the new rowid does not previously ** exist in the table. */ if( pkChng && pPk==0 ){ int addrRowidOk = sqlite3VdbeMakeLabel(v); /* Figure out what action to take in case of a rowid collision */ onError = pTab->keyConf; if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } if( isUpdate ){ /* pkChng!=0 does not mean that the rowid has changed, only that ** it might have changed. Skip the conflict logic below if the rowid ** is unchanged. */ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < < < < < < < < < < < < < > < > > > | 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 | P5_ConstraintCheck); } sqlite3VdbeResolveLabel(v, allOk); } pParse->iSelfTab = 0; } #endif /* !defined(SQLITE_OMIT_CHECK) */ /* UNIQUE and PRIMARY KEY constraints should be handled in the following ** order: ** ** (1) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore ** (2) OE_Update ** (3) OE_Replace ** ** OE_Fail and OE_Ignore must happen before any changes are made. ** OE_Update guarantees that only a single row will change, so it ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback ** could happen in any order, but they are grouped up front for ** convenience. ** ** Constraint checking code is generated in this order: ** (A) The rowid constraint ** (B) Unique index constraints that do not have OE_Replace as their ** default conflict resolution strategy ** (C) Unique index that do use OE_Replace by default. ** ** The ordering of (2) and (3) is accomplished by making sure the linked ** list of indexes attached to a table puts all OE_Replace indexes last ** in the list. See sqlite3CreateIndex() for where that happens. */ if( pUpsert ){ if( pUpsert->pUpsertTarget==0 ){ /* An ON CONFLICT DO NOTHING clause, without a constraint-target. ** Make all unique constraint resolution be OE_Ignore */ assert( pUpsert->pUpsertSet==0 ); overrideError = OE_Ignore; pUpsert = 0; }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){ /* If the constraint-target is on some column other than ** then ROWID, then we might need to move the UPSERT around ** so that it occurs in the correct order. */ sAddr.upsertTop = sAddr.upsertTop2 = sqlite3VdbeMakeLabel(v); sAddr.upsertBtm = sqlite3VdbeMakeLabel(v); } } /* If rowid is changing, make sure the new rowid does not previously ** exist in the table. */ if( pkChng && pPk==0 ){ int addrRowidOk = sqlite3VdbeMakeLabel(v); /* Figure out what action to take in case of a rowid collision */ onError = pTab->keyConf; if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } /* figure out whether or not upsert applies in this case */ if( pUpsert && pUpsert->pUpsertIdx==0 ){ if( pUpsert->pUpsertSet==0 ){ onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ }else{ onError = OE_Update; /* DO UPDATE */ } } /* If the response to a rowid conflict is REPLACE but the response ** to some other UNIQUE constraint is FAIL or IGNORE, then we need ** to defer the running of the rowid conflict checking until after ** the UNIQUE constraints have run. */ assert( OE_Update>OE_Replace ); assert( OE_Ignore<OE_Replace ); assert( OE_Fail<OE_Replace ); assert( OE_Abort<OE_Replace ); assert( OE_Rollback<OE_Replace ); if( onError>=OE_Replace && (pUpsert || onError!=overrideError) && pTab->pIndex ){ sAddr.ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; } if( isUpdate ){ /* pkChng!=0 does not mean that the rowid has changed, only that ** it might have changed. Skip the conflict logic below if the rowid ** is unchanged. */ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } /* Check to see if the new rowid already exists in the table. Skip ** the following conflict logic if it does not. */ VdbeNoopComment((v, "uniqueness check for ROWID")); sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); VdbeCoverage(v); switch( onError ){ default: { onError = OE_Abort; /* Fall thru into the next case */ } case OE_Rollback: case OE_Abort: case OE_Fail: { testcase( onError==OE_Rollback ); testcase( onError==OE_Abort ); testcase( onError==OE_Fail ); sqlite3RowidConstraint(pParse, onError, pTab); break; } case OE_Replace: { /* If there are DELETE triggers on this table and the ** recursive-triggers flag is set, call GenerateRowDelete() to ** remove the conflicting row from the table. This will fire |
︙ | ︙ | |||
1446 1447 1448 1449 1450 1451 1452 | } if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ sqlite3MultiWrite(pParse); sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, regNewData, 1, 0, OE_Replace, 1, -1); }else{ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK | | | | | | | | < > > > > > > < > | | | > > > > > > > > > | | 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 | } if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ sqlite3MultiWrite(pParse); sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, regNewData, 1, 0, OE_Replace, 1, -1); }else{ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK assert( HasRowid(pTab) ); /* This OP_Delete opcode fires the pre-update-hook only. It does ** not modify the b-tree. It is more efficient to let the coming ** OP_Insert replace the existing entry than it is to delete the ** existing entry and then insert a new one. */ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); sqlite3VdbeAppendP4(v, pTab, P4_TABLE); #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ if( pTab->pIndex ){ sqlite3MultiWrite(pParse); sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); } } seenReplace = 1; break; } #ifndef SQLITE_OMIT_UPSERT case OE_Update: { sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); /* Fall through */ } #endif case OE_Ignore: { testcase( onError==OE_Ignore ); sqlite3VdbeGoto(v, ignoreDest); break; } } sqlite3VdbeResolveLabel(v, addrRowidOk); if( sAddr.ipkTop ){ sAddr.ipkBtm = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeJumpHere(v, sAddr.ipkTop-1); } } /* Test all UNIQUE constraints by creating entries for each UNIQUE ** index and making sure that duplicate entries do not already exist. ** Compute the revised record entries for indices as we go. ** ** This loop also handles the case of the PRIMARY KEY index for a ** WITHOUT ROWID table. */ for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ int regIdx; /* Range of registers hold conent for pIdx */ int regR; /* Range of registers holding conflicting PK */ int iThisCur; /* Cursor for this UNIQUE index */ int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ if( pUpIdx==pIdx ){ addrUniqueOk = sAddr.upsertBtm; upsertBypass = sqlite3VdbeGoto(v, 0); VdbeComment((v, "Skip upsert subroutine")); sqlite3VdbeResolveLabel(v, sAddr.upsertTop2); }else{ addrUniqueOk = sqlite3VdbeMakeLabel(v); } VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName)); if( bAffinityDone==0 ){ sqlite3TableAffinity(v, pTab, regNewData+1); bAffinityDone = 1; } iThisCur = iIdxCur+ix; /* Skip partial indices for which the WHERE clause is not true */ if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); pParse->iSelfTab = -(regNewData+1); sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, SQLITE_JUMPIFNULL); |
︙ | ︙ | |||
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 | continue; /* pIdx is not a UNIQUE index */ } if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } /* Collision detection may be omitted if all of the following are true: ** (1) The conflict resolution algorithm is REPLACE ** (2) The table is a WITHOUT ROWID table ** (3) There are no secondary indexes on the table ** (4) No delete triggers need to be fired if there is a conflict ** (5) No FK constraint counters need to be updated if a conflict occurs. | > > > > > > > > > > > > > > > > > > | 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 | continue; /* pIdx is not a UNIQUE index */ } if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } /* Figure out if the upsert clause applies to this index */ if( pUpIdx==pIdx ){ if( pUpsert->pUpsertSet==0 ){ onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ }else{ onError = OE_Update; /* DO UPDATE */ } } /* Invoke subroutines to handle IPK replace and upsert prior to running ** the first REPLACE constraint check. */ if( onError==OE_Replace ){ testcase( sAddr.ipkTop ); testcase( sAddr.upsertTop && sqlite3VdbeLabelHasBeenResolved(v,sAddr.upsertTop) ); reorderConstraintChecks(v, &sAddr); } /* Collision detection may be omitted if all of the following are true: ** (1) The conflict resolution algorithm is REPLACE ** (2) The table is a WITHOUT ROWID table ** (3) There are no secondary indexes on the table ** (4) No delete triggers need to be fired if there is a conflict ** (5) No FK constraint counters need to be updated if a conflict occurs. |
︙ | ︙ | |||
1637 1638 1639 1640 1641 1642 1643 | } } } } /* Generate code that executes if the new index entry is not unique */ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail | | > > > > > > > > > > > > > | > | < < < > > > > | 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 | } } } } /* Generate code that executes if the new index entry is not unique */ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); switch( onError ){ case OE_Rollback: case OE_Abort: case OE_Fail: { testcase( onError==OE_Rollback ); testcase( onError==OE_Abort ); testcase( onError==OE_Fail ); sqlite3UniqueConstraint(pParse, onError, pIdx); break; } #ifndef SQLITE_OMIT_UPSERT case OE_Update: { sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); /* Fall through */ } #endif case OE_Ignore: { testcase( onError==OE_Ignore ); sqlite3VdbeGoto(v, ignoreDest); break; } default: { Trigger *pTrigger = 0; assert( onError==OE_Replace ); sqlite3MultiWrite(pParse); if( db->flags&SQLITE_RecTriggers ){ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); } sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, regR, nPkField, 0, OE_Replace, (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); seenReplace = 1; break; } } if( pUpIdx==pIdx ){ sqlite3VdbeJumpHere(v, upsertBypass); }else{ sqlite3VdbeResolveLabel(v, addrUniqueOk); } sqlite3ExprCachePop(pParse); if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); } testcase( sAddr.ipkTop!=0 ); testcase( sAddr.upsertTop && sqlite3VdbeLabelHasBeenResolved(v,sAddr.upsertTop) ); reorderConstraintChecks(v, &sAddr); *pbMayReplace = seenReplace; VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); } #ifdef SQLITE_ENABLE_NULL_TRIM /* |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
641 642 643 644 645 646 647 648 649 650 651 652 653 654 | } case SQLITE_CONFIG_STMTJRNL_SPILL: { sqlite3GlobalConfig.nStmtSpill = va_arg(ap, int); break; } default: { rc = SQLITE_ERROR; break; } } va_end(ap); return rc; | > > > > > > > > > > > | 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 | } case SQLITE_CONFIG_STMTJRNL_SPILL: { sqlite3GlobalConfig.nStmtSpill = va_arg(ap, int); break; } #ifdef SQLITE_ENABLE_SORTER_REFERENCES case SQLITE_CONFIG_SORTERREF_SIZE: { int iVal = va_arg(ap, int); if( iVal<0 ){ iVal = SQLITE_DEFAULT_SORTERREF_SIZE; } sqlite3GlobalConfig.szSorterRef = (u32)iVal; break; } #endif /* SQLITE_ENABLE_SORTER_REFERENCES */ default: { rc = SQLITE_ERROR; break; } } va_end(ap); return rc; |
︙ | ︙ | |||
822 823 824 825 826 827 828 829 830 831 832 833 834 835 | { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer }, { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension }, { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE, SQLITE_NoCkptOnClose }, { SQLITE_DBCONFIG_ENABLE_QPSG, SQLITE_EnableQPSG }, { SQLITE_DBCONFIG_TRIGGER_EQP, SQLITE_TriggerEQP }, }; unsigned int i; rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ for(i=0; i<ArraySize(aFlagOp); i++){ if( aFlagOp[i].op==op ){ int onoff = va_arg(ap, int); int *pRes = va_arg(ap, int*); | > | 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 | { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer }, { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension }, { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE, SQLITE_NoCkptOnClose }, { SQLITE_DBCONFIG_ENABLE_QPSG, SQLITE_EnableQPSG }, { SQLITE_DBCONFIG_TRIGGER_EQP, SQLITE_TriggerEQP }, { SQLITE_DBCONFIG_RESET_DATABASE, SQLITE_ResetDatabase }, }; unsigned int i; rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ for(i=0; i<ArraySize(aFlagOp); i++){ if( aFlagOp[i].op==op ){ int onoff = va_arg(ap, int); int *pRes = va_arg(ap, int*); |
︙ | ︙ | |||
3975 3976 3977 3978 3979 3980 3981 | */ case SQLITE_TESTCTRL_OPTIMIZATIONS: { sqlite3 *db = va_arg(ap, sqlite3*); db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff); break; } | < < < < < < < < < < < < < < < < < < | 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 | */ case SQLITE_TESTCTRL_OPTIMIZATIONS: { sqlite3 *db = va_arg(ap, sqlite3*); db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); ** ** If parameter onoff is non-zero, configure the wrappers so that all ** subsequent calls to localtime() and variants fail. If onoff is zero, ** undo this setting. */ case SQLITE_TESTCTRL_LOCALTIME_FAULT: { |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
311 312 313 314 315 316 317 | /* * The size of the buffer used by sqlite3_win32_write_debug(). */ #ifndef SQLITE_WIN32_DBG_BUF_SIZE # define SQLITE_WIN32_DBG_BUF_SIZE ((int)(4096-sizeof(DWORD))) #endif | < < < < < < < < < < < < < < < < | 311 312 313 314 315 316 317 318 319 320 321 322 323 324 | /* * The size of the buffer used by sqlite3_win32_write_debug(). */ #ifndef SQLITE_WIN32_DBG_BUF_SIZE # define SQLITE_WIN32_DBG_BUF_SIZE ((int)(4096-sizeof(DWORD))) #endif /* * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the * various Win32 API heap functions instead of our own. */ #ifdef SQLITE_WIN32_MALLOC /* |
︙ | ︙ | |||
1923 1924 1925 1926 1927 1928 1929 | #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return winUtf8ToMbcs(zText, useAnsi); } /* | | < < < | | > > > | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 | #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return winUtf8ToMbcs(zText, useAnsi); } /* ** This function is the same as sqlite3_win32_set_directory (below); however, ** it accepts a UTF-8 string. */ int sqlite3_win32_set_directory8( unsigned long type, /* Identifier for directory being set or reset */ const char *zValue /* New value for directory being set or reset */ ){ char **ppDirectory = 0; #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return rc; #endif if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){ ppDirectory = &sqlite3_data_directory; }else if( type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ){ ppDirectory = &sqlite3_temp_directory; } assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ); assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) ); if( ppDirectory ){ char *zCopy = 0; if( zValue && zValue[0] ){ zCopy = sqlite3_mprintf("%s", zValue); if ( zCopy==0 ){ return SQLITE_NOMEM_BKPT; } } sqlite3_free(*ppDirectory); *ppDirectory = zCopy; return SQLITE_OK; } return SQLITE_ERROR; } /* ** This function is the same as sqlite3_win32_set_directory (below); however, ** it accepts a UTF-16 string. */ int sqlite3_win32_set_directory16( unsigned long type, /* Identifier for directory being set or reset */ const void *zValue /* New value for directory being set or reset */ ){ int rc; char *zUtf8 = 0; if( zValue ){ zUtf8 = sqlite3_win32_unicode_to_utf8(zValue); if( zUtf8==0 ) return SQLITE_NOMEM_BKPT; } rc = sqlite3_win32_set_directory8(type, zUtf8); if( zUtf8 ) sqlite3_free(zUtf8); return rc; } /* ** This function sets the data directory or the temporary directory based on ** the provided arguments. The type argument must be 1 in order to set the ** data directory or 2 in order to set the temporary directory. The zValue ** argument is the name of the directory to use. The return value will be ** SQLITE_OK if successful. */ int sqlite3_win32_set_directory( unsigned long type, /* Identifier for directory being set or reset */ void *zValue /* New value for directory being set or reset */ ){ return sqlite3_win32_set_directory16(type, zValue); } /* ** The return value of winGetLastErrorMsg ** is zero if the error message fits in the buffer, or non-zero ** otherwise (if the message was truncated). */ static int winGetLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){ |
︙ | ︙ |
Changes to src/parse.y.
︙ | ︙ | |||
20 21 22 23 24 25 26 | // The type of the data attached to each token is Token. This is also the // default type for non-terminals. // %token_type {Token} %default_type {Token} | > | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | // The type of the data attached to each token is Token. This is also the // default type for non-terminals. // %token_type {Token} %default_type {Token} // An extra argument to the constructor for the parser, which is available // to all actions. %extra_context {Parse *pParse} // This code runs whenever there is a syntax error // %syntax_error { UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ if( TOKEN.z[0] ){ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); |
︙ | ︙ | |||
110 111 112 113 114 115 116 | } // end %include // Input is a single SQL command input ::= cmdlist. cmdlist ::= cmdlist ecmd. cmdlist ::= ecmd. ecmd ::= SEMI. | | < > | 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | } // end %include // Input is a single SQL command input ::= cmdlist. cmdlist ::= cmdlist ecmd. cmdlist ::= ecmd. ecmd ::= SEMI. ecmd ::= cmdx SEMI. %ifndef SQLITE_OMIT_EXPLAIN ecmd ::= explain cmdx. explain ::= EXPLAIN. { pParse->explain = 1; } explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } %endif SQLITE_OMIT_EXPLAIN cmdx ::= cmd. { sqlite3FinishCoding(pParse); } ///////////////////// Begin and end transactions. //////////////////////////// // |
︙ | ︙ | |||
201 202 203 204 205 206 207 | // The following directive causes tokens ABORT, AFTER, ASC, etc. to // fallback to ID if they will not parse as their original value. // This obviates the need for the "id" nonterminal. // %fallback ID ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW | | > | 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | // The following directive causes tokens ABORT, AFTER, ASC, etc. to // fallback to ID if they will not parse as their original value. // This obviates the need for the "id" nonterminal. // %fallback ID ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW CONFLICT DATABASE DEFERRED DESC DETACH DO EACH END EXCLUSIVE EXPLAIN FAIL FOR IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT %ifdef SQLITE_OMIT_COMPOUND_SELECT EXCEPT INTERSECT UNION %endif SQLITE_OMIT_COMPOUND_SELECT REINDEX RENAME CTIME_KW IF |
︙ | ︙ | |||
235 236 237 238 239 240 241 242 243 244 245 246 247 248 | %right ESCAPE. %left BITAND BITOR LSHIFT RSHIFT. %left PLUS MINUS. %left STAR SLASH REM. %left CONCAT. %left COLLATE. %right BITNOT. // An IDENTIFIER can be a generic identifier, or one of several // keywords. Any non-standard keyword can also be an identifier. // %token_class id ID|INDEXED. | > | 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | %right ESCAPE. %left BITAND BITOR LSHIFT RSHIFT. %left PLUS MINUS. %left STAR SLASH REM. %left CONCAT. %left COLLATE. %right BITNOT. %nonassoc ON. // An IDENTIFIER can be a generic identifier, or one of several // keywords. Any non-standard keyword can also be an identifier. // %token_class id ID|INDEXED. |
︙ | ︙ | |||
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 | %type fullname {SrcList*} %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} fullname(A) ::= nm(X). {A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/} fullname(A) ::= nm(X) DOT nm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} %type joinop {int} joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } joinop(X) ::= JOIN_KW(A) JOIN. {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} joinop(X) ::= JOIN_KW(A) nm(B) JOIN. {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} %type on_opt {Expr*} %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 | %type fullname {SrcList*} %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} fullname(A) ::= nm(X). {A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/} fullname(A) ::= nm(X) DOT nm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} %type xfullname {SrcList*} %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);} xfullname(A) ::= nm(X). {A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/} xfullname(A) ::= nm(X) DOT nm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z). { A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/ if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); } xfullname(A) ::= nm(X) AS nm(Z). { A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/ if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); } %type joinop {int} joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } joinop(X) ::= JOIN_KW(A) JOIN. {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} joinop(X) ::= JOIN_KW(A) nm(B) JOIN. {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} // There is a parsing abiguity in an upsert statement that uses a // SELECT on the RHS of a the INSERT: // // INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ... // here ----^^ // // When the ON token is encountered, the parser does not know if it is // the beginning of an ON CONFLICT clause, or the beginning of an ON // clause associated with the JOIN. The conflict is resolved in favor // of the JOIN. If an ON CONFLICT clause is intended, insert a dummy // WHERE clause in between, like this: // // INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ... // // The [AND] and [OR] precedence marks in the rules for on_opt cause the // ON in this context to always be interpreted as belonging to the JOIN. // %type on_opt {Expr*} %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} on_opt(N) ::= ON expr(E). {N = E;} on_opt(N) ::= . [OR] {N = 0;} // Note that this block abuses the Token type just a little. If there is // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If // there is an INDEXED BY clause, then the token is populated as per normal, // with z pointing to the token data and n containing the number of bytes // in the token. // |
︙ | ︙ | |||
777 778 779 780 781 782 783 | {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);} limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);} /////////////////////////// The DELETE statement ///////////////////////////// // %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT | | | | | | | | 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 | {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);} limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);} /////////////////////////// The DELETE statement ///////////////////////////// // %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W) orderby_opt(O) limit_opt(L). { sqlite3SrcListIndexedBy(pParse, X, &I); sqlite3DeleteFrom(pParse,X,W,O,L); } %endif %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W). { sqlite3SrcListIndexedBy(pParse, X, &I); sqlite3DeleteFrom(pParse,X,W,0,0); } %endif %type where_opt {Expr*} %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} where_opt(A) ::= . {A = 0;} where_opt(A) ::= WHERE expr(X). {A = X;} ////////////////////////// The UPDATE command //////////////////////////////// // %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L). { sqlite3SrcListIndexedBy(pParse, X, &I); sqlite3ExprListCheckLength(pParse,Y,"set list"); sqlite3Update(pParse,X,Y,W,R,O,L,0); } %endif %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) where_opt(W). { sqlite3SrcListIndexedBy(pParse, X, &I); sqlite3ExprListCheckLength(pParse,Y,"set list"); sqlite3Update(pParse,X,Y,W,R,0,0,0); } %endif %type setlist {ExprList*} %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { |
︙ | ︙ | |||
835 836 837 838 839 840 841 | } setlist(A) ::= LP idlist(X) RP EQ expr(Y). { A = sqlite3ExprListAppendVector(pParse, 0, X, Y); } ////////////////////////// The INSERT command ///////////////////////////////// // | | > | | | > > > > > > > > > > > > > > > > | 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 | } setlist(A) ::= LP idlist(X) RP EQ expr(Y). { A = sqlite3ExprListAppendVector(pParse, 0, X, Y); } ////////////////////////// The INSERT command ///////////////////////////////// // cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S) upsert(U). { sqlite3Insert(pParse, X, S, F, R, U); } cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES. { sqlite3Insert(pParse, X, 0, F, R, 0); } %type upsert {Upsert*} // Because upsert only occurs at the tip end of the INSERT rule for cmd, // there is never a case where the value of the upsert pointer will not // be destroyed by the cmd action. So comment-out the destructor to // avoid unreachable code. //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);} upsert(A) ::= . { A = 0; } upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO UPDATE SET setlist(Z) where_opt(W). { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W);} upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING. { A = sqlite3UpsertNew(pParse->db,T,TW,0,0); } upsert(A) ::= ON CONFLICT DO NOTHING. { A = sqlite3UpsertNew(pParse->db,0,0,0,0); } %type insert_cmd {int} insert_cmd(A) ::= INSERT orconf(R). {A = R;} insert_cmd(A) ::= REPLACE. {A = OE_Replace;} %type idlist_opt {IdList*} %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} %type idlist {IdList*} |
︙ | ︙ | |||
1388 1389 1390 1391 1392 1393 1394 | // UPDATE trigger_cmd(A) ::= UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z) scanpt(E). {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R, B.z, E);} // INSERT trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO | | | | | 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 | // UPDATE trigger_cmd(A) ::= UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z) scanpt(E). {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R, B.z, E);} // INSERT trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). { A = sqlite3TriggerInsertStep(pParse->db,&X,F,S,R,U,B,Z);/*A-overwrites-R*/ } // DELETE trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E). {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y, B.z, E);} // SELECT trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E). {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/} |
︙ | ︙ |
Changes to src/prepare.c.
︙ | ︙ | |||
144 145 146 147 148 149 150 151 152 153 154 155 156 157 | Db *pDb; char const *azArg[4]; int meta[5]; InitData initData; const char *zMasterName; int openedTransaction = 0; assert( iDb>=0 && iDb<db->nDb ); assert( db->aDb[iDb].pSchema ); assert( sqlite3_mutex_held(db->mutex) ); assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); db->init.busy = 1; | > | 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 | Db *pDb; char const *azArg[4]; int meta[5]; InitData initData; const char *zMasterName; int openedTransaction = 0; assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ); assert( iDb>=0 && iDb<db->nDb ); assert( db->aDb[iDb].pSchema ); assert( sqlite3_mutex_held(db->mutex) ); assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); db->init.busy = 1; |
︙ | ︙ | |||
213 214 215 216 217 218 219 220 221 222 223 224 225 226 | ** meta[9] unused ** ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to ** the possible values of meta[4]. */ for(i=0; i<ArraySize(meta); i++){ sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]); } pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; /* If opening a non-empty database, check the text encoding. For the ** main database, set sqlite3.enc to the encoding of the main database. ** For an attached db, it is an error if the encoding is not the same ** as sqlite3.enc. | > > > | 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | ** meta[9] unused ** ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to ** the possible values of meta[4]. */ for(i=0; i<ArraySize(meta); i++){ sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]); } if( (db->flags & SQLITE_ResetDatabase)!=0 ){ memset(meta, 0, sizeof(meta)); } pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; /* If opening a non-empty database, check the text encoding. For the ** main database, set sqlite3.enc to the encoding of the main database. ** For an attached db, it is an error if the encoding is not the same ** as sqlite3.enc. |
︙ | ︙ | |||
373 374 375 376 377 378 379 380 381 382 383 384 385 386 | /* Do the main schema first */ if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){ rc = sqlite3InitOne(db, 0, pzErrMsg); if( rc ) return rc; } /* All other schemas after the main schema. The "temp" schema must be last */ for(i=db->nDb-1; i>0; i--){ if( !DbHasProperty(db, i, DB_SchemaLoaded) ){ rc = sqlite3InitOne(db, i, pzErrMsg); if( rc ) return rc; } } if( commit_internal ){ sqlite3CommitInternalChanges(db); | > | 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 | /* Do the main schema first */ if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){ rc = sqlite3InitOne(db, 0, pzErrMsg); if( rc ) return rc; } /* All other schemas after the main schema. The "temp" schema must be last */ for(i=db->nDb-1; i>0; i--){ assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) ); if( !DbHasProperty(db, i, DB_SchemaLoaded) ){ rc = sqlite3InitOne(db, i, pzErrMsg); if( rc ) return rc; } } if( commit_internal ){ sqlite3CommitInternalChanges(db); |
︙ | ︙ | |||
394 395 396 397 398 399 400 | */ int sqlite3ReadSchema(Parse *pParse){ int rc = SQLITE_OK; sqlite3 *db = pParse->db; assert( sqlite3_mutex_held(db->mutex) ); if( !db->init.busy ){ rc = sqlite3Init(db, &pParse->zErrMsg); | < | | | > > > | 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 | */ int sqlite3ReadSchema(Parse *pParse){ int rc = SQLITE_OK; sqlite3 *db = pParse->db; assert( sqlite3_mutex_held(db->mutex) ); if( !db->init.busy ){ rc = sqlite3Init(db, &pParse->zErrMsg); if( rc!=SQLITE_OK ){ pParse->rc = rc; pParse->nErr++; }else if( db->noSharedCache ){ db->mDbFlags |= DBFLAG_SchemaKnownOk; } } return rc; } /* ** Check schema cookies in all databases. If any cookie is out |
︙ | ︙ | |||
608 609 610 611 612 613 614 | } rc = sParse.rc; #ifndef SQLITE_OMIT_EXPLAIN if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){ static const char * const azColName[] = { "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", | | | 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 | } rc = sParse.rc; #ifndef SQLITE_OMIT_EXPLAIN if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){ static const char * const azColName[] = { "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", "id", "parent", "notused", "detail" }; int iFirst, mx; if( sParse.explain==2 ){ sqlite3VdbeSetNumCols(sParse.pVdbe, 4); iFirst = 8; mx = 12; }else{ |
︙ | ︙ |
Changes to src/resolve.c.
︙ | ︙ | |||
187 188 189 190 191 192 193 | int cntTab = 0; /* Number of matching table names */ int nSubquery = 0; /* How many levels of subquery */ sqlite3 *db = pParse->db; /* The database connection */ struct SrcList_item *pItem; /* Use for looping over pSrcList items */ struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ NameContext *pTopNC = pNC; /* First namecontext in the list */ Schema *pSchema = 0; /* Schema of the expression */ | | | 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | int cntTab = 0; /* Number of matching table names */ int nSubquery = 0; /* How many levels of subquery */ sqlite3 *db = pParse->db; /* The database connection */ struct SrcList_item *pItem; /* Use for looping over pSrcList items */ struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ NameContext *pTopNC = pNC; /* First namecontext in the list */ Schema *pSchema = 0; /* Schema of the expression */ int eNewExprOp = TK_COLUMN; /* New value for pExpr->op on success */ Table *pTab = 0; /* Table hold the row */ Column *pCol; /* A column of pTab */ assert( pNC ); /* the name context cannot be NULL. */ assert( zCol ); /* The Z in X.Y.Z cannot be NULL */ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); |
︙ | ︙ | |||
292 293 294 295 296 297 298 | if( (pMatch->fg.jointype & JT_LEFT)!=0 ){ ExprSetProperty(pExpr, EP_CanBeNull); } pSchema = pExpr->pTab->pSchema; } } /* if( pSrcList ) */ | | | > | > > > | | | | | | | | > > > > | > > | > | > > > > > > > > > > > | | | | | | | | | | | > | | < > | | | > | | 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | if( (pMatch->fg.jointype & JT_LEFT)!=0 ){ ExprSetProperty(pExpr, EP_CanBeNull); } pSchema = pExpr->pTab->pSchema; } } /* if( pSrcList ) */ #if !defined(SQLITE_OMIT_TRIGGER) || !defined(SQLITE_OMIT_UPSERT) /* If we have not already resolved the name, then maybe ** it is a new.* or old.* trigger argument reference. Or ** maybe it is an excluded.* from an upsert. */ if( zDb==0 && zTab!=0 && cntTab==0 ){ pTab = 0; #ifndef SQLITE_OMIT_TRIGGER if( pParse->pTriggerTab!=0 ){ int op = pParse->eTriggerOp; assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT ); if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){ pExpr->iTable = 1; pTab = pParse->pTriggerTab; }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){ pExpr->iTable = 0; pTab = pParse->pTriggerTab; } } #endif /* SQLITE_OMIT_TRIGGER */ #ifndef SQLITE_OMIT_UPSERT if( (pNC->ncFlags & NC_UUpsert)!=0 ){ Upsert *pUpsert = pNC->uNC.pUpsert; if( pUpsert && sqlite3StrICmp("excluded",zTab)==0 ){ pTab = pUpsert->pUpsertSrc->a[0].pTab; pExpr->iTable = 2; } } #endif /* SQLITE_OMIT_UPSERT */ if( pTab ){ int iCol; pSchema = pTab->pSchema; cntTab++; for(iCol=0, pCol=pTab->aCol; iCol<pTab->nCol; iCol++, pCol++){ if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ if( iCol==pTab->iPKey ){ iCol = -1; } break; } } if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) && VisibleRowid(pTab) ){ /* IMP: R-51414-32910 */ iCol = -1; } if( iCol<pTab->nCol ){ cnt++; #ifndef SQLITE_OMIT_UPSERT if( pExpr->iTable==2 ){ testcase( iCol==(-1) ); pExpr->iTable = pNC->uNC.pUpsert->regData + iCol; eNewExprOp = TK_REGISTER; }else #endif /* SQLITE_OMIT_UPSERT */ { #ifndef SQLITE_OMIT_TRIGGER if( iCol<0 ){ pExpr->affinity = SQLITE_AFF_INTEGER; }else if( pExpr->iTable==0 ){ testcase( iCol==31 ); testcase( iCol==32 ); pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol)); }else{ testcase( iCol==31 ); testcase( iCol==32 ); pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol)); } pExpr->pTab = pTab; pExpr->iColumn = (i16)iCol; eNewExprOp = TK_TRIGGER; #endif /* SQLITE_OMIT_TRIGGER */ } } } } #endif /* !defined(SQLITE_OMIT_TRIGGER) || !defined(SQLITE_OMIT_UPSERT) */ /* ** Perhaps the name is a reference to the ROWID */ if( cnt==0 && cntTab==1 && pMatch |
︙ | ︙ | |||
379 380 381 382 383 384 385 | ** ** The ability to use an output result-set column in the WHERE, GROUP BY, ** or HAVING clauses, or as part of a larger expression in the ORDER BY ** clause is not standard SQL. This is a (goofy) SQLite extension, that ** is supported for backwards compatibility only. Hence, we issue a warning ** on sqlite3_log() whenever the capability is used. */ | | < > > > | 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 | ** ** The ability to use an output result-set column in the WHERE, GROUP BY, ** or HAVING clauses, or as part of a larger expression in the ORDER BY ** clause is not standard SQL. This is a (goofy) SQLite extension, that ** is supported for backwards compatibility only. Hence, we issue a warning ** on sqlite3_log() whenever the capability is used. */ if( (pNC->ncFlags & NC_UEList)!=0 && cnt==0 && zTab==0 ){ pEList = pNC->uNC.pEList; assert( pEList!=0 ); for(j=0; j<pEList->nExpr; j++){ char *zAs = pEList->a[j].zName; if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ Expr *pOrig; assert( pExpr->pLeft==0 && pExpr->pRight==0 ); assert( pExpr->x.pList==0 ); assert( pExpr->x.pSelect==0 ); |
︙ | ︙ | |||
479 480 481 482 483 484 485 | /* Clean up and return */ sqlite3ExprDelete(db, pExpr->pLeft); pExpr->pLeft = 0; sqlite3ExprDelete(db, pExpr->pRight); pExpr->pRight = 0; | | | 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 | /* Clean up and return */ sqlite3ExprDelete(db, pExpr->pLeft); pExpr->pLeft = 0; sqlite3ExprDelete(db, pExpr->pRight); pExpr->pRight = 0; pExpr->op = eNewExprOp; ExprSetProperty(pExpr, EP_Leaf); lookupname_end: if( cnt==1 ){ assert( pNC!=0 ); if( !ExprHasProperty(pExpr, EP_Alias) ){ sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); } |
︙ | ︙ | |||
911 912 913 914 915 916 917 | pEList = pSelect->pEList; /* Resolve all names in the ORDER BY term expression */ memset(&nc, 0, sizeof(nc)); nc.pParse = pParse; nc.pSrcList = pSelect->pSrc; | | | | 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 | pEList = pSelect->pEList; /* Resolve all names in the ORDER BY term expression */ memset(&nc, 0, sizeof(nc)); nc.pParse = pParse; nc.pSrcList = pSelect->pSrc; nc.uNC.pEList = pEList; nc.ncFlags = NC_AllowAgg|NC_UEList; nc.nErr = 0; db = pParse->db; savedSuppErr = db->suppressErr; db->suppressErr = 1; rc = sqlite3ResolveExprNames(&nc, pE); db->suppressErr = savedSuppErr; if( rc ) return 0; |
︙ | ︙ | |||
1295 1296 1297 1298 1299 1300 1301 | ** other expressions in the SELECT statement. This is so that ** expressions in the WHERE clause (etc.) can refer to expressions by ** aliases in the result set. ** ** Minor point: If this is the case, then the expression will be ** re-evaluated for each reference to it. */ | > | > | 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 | ** other expressions in the SELECT statement. This is so that ** expressions in the WHERE clause (etc.) can refer to expressions by ** aliases in the result set. ** ** Minor point: If this is the case, then the expression will be ** re-evaluated for each reference to it. */ assert( (sNC.ncFlags & (NC_UAggInfo|NC_UUpsert))==0 ); sNC.uNC.pEList = p->pEList; sNC.ncFlags |= NC_UEList; if( sqlite3ResolveExprNames(&sNC, p->pHaving) ) return WRC_Abort; if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort; /* Resolve names in table-valued-function arguments */ for(i=0; i<p->pSrc->nSrc; i++){ struct SrcList_item *pItem = &p->pSrc->a[i]; if( pItem->fg.isTabFunc |
︙ | ︙ | |||
1528 1529 1530 1531 1532 1533 1534 | ** Any errors cause an error message to be set in pParse. */ void sqlite3ResolveSelfReference( Parse *pParse, /* Parsing context */ Table *pTab, /* The table being referenced */ int type, /* NC_IsCheck or NC_PartIdx or NC_IdxExpr */ Expr *pExpr, /* Expression to resolve. May be NULL. */ | | | 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 | ** Any errors cause an error message to be set in pParse. */ void sqlite3ResolveSelfReference( Parse *pParse, /* Parsing context */ Table *pTab, /* The table being referenced */ int type, /* NC_IsCheck or NC_PartIdx or NC_IdxExpr */ Expr *pExpr, /* Expression to resolve. May be NULL. */ ExprList *pList /* Expression list to resolve. May be NULL. */ ){ SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ NameContext sNC; /* Name context for pParse->pNewTable */ assert( type==NC_IsCheck || type==NC_PartIdx || type==NC_IdxExpr ); memset(&sNC, 0, sizeof(sNC)); memset(&sSrc, 0, sizeof(sSrc)); |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
17 18 19 20 21 22 23 | /* ** Trace output macros */ #if SELECTTRACE_ENABLED /***/ int sqlite3SelectTrace = 0; # define SELECTTRACE(K,P,S,X) \ if(sqlite3SelectTrace&(K)) \ | | | 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | /* ** Trace output macros */ #if SELECTTRACE_ENABLED /***/ int sqlite3SelectTrace = 0; # define SELECTTRACE(K,P,S,X) \ if(sqlite3SelectTrace&(K)) \ sqlite3DebugPrintf("%s/%d/%p: ",(S)->zSelName,(P)->addrExplain,(S)),\ sqlite3DebugPrintf X #else # define SELECTTRACE(K,P,S,X) #endif /* |
︙ | ︙ | |||
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | int tabTnct; /* Ephemeral table used for DISTINCT processing */ int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ }; /* ** An instance of the following object is used to record information about ** the ORDER BY (or GROUP BY) clause of query is being coded. */ typedef struct SortCtx SortCtx; struct SortCtx { ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ int nOBSat; /* Number of ORDER BY terms satisfied by indices */ int iECursor; /* Cursor number for the sorter */ int regReturn; /* Register holding block-output return address */ int labelBkOut; /* Start label for the block-output subroutine */ int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ int labelDone; /* Jump here when done, ex: LIMIT reached */ u8 sortFlags; /* Zero or more SORTFLAG_* bits */ u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ }; #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ /* ** Delete all the content of a Select structure. Deallocate the structure ** itself only if bFree is true. */ | > > > > > > > > > > > > > > > > > > > > > > > | 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | int tabTnct; /* Ephemeral table used for DISTINCT processing */ int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ }; /* ** An instance of the following object is used to record information about ** the ORDER BY (or GROUP BY) clause of query is being coded. ** ** The aDefer[] array is used by the sorter-references optimization. For ** example, assuming there is no index that can be used for the ORDER BY, ** for the query: ** ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; ** ** it may be more efficient to add just the "a" values to the sorter, and ** retrieve the associated "bigblob" values directly from table t1 as the ** 10 smallest "a" values are extracted from the sorter. ** ** When the sorter-reference optimization is used, there is one entry in the ** aDefer[] array for each database table that may be read as values are ** extracted from the sorter. */ typedef struct SortCtx SortCtx; struct SortCtx { ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ int nOBSat; /* Number of ORDER BY terms satisfied by indices */ int iECursor; /* Cursor number for the sorter */ int regReturn; /* Register holding block-output return address */ int labelBkOut; /* Start label for the block-output subroutine */ int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ int labelDone; /* Jump here when done, ex: LIMIT reached */ u8 sortFlags; /* Zero or more SORTFLAG_* bits */ u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ #ifdef SQLITE_ENABLE_SORTER_REFERENCES u8 nDefer; /* Number of valid entries in aDefer[] */ struct DeferredCsr { Table *pTab; /* Table definition */ int iCsr; /* Cursor number for table */ int nKey; /* Number of PK columns for table pTab (>=1) */ } aDefer[4]; #endif struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ }; #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ /* ** Delete all the content of a Select structure. Deallocate the structure ** itself only if bFree is true. */ |
︙ | ︙ | |||
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 | /* Forward reference */ static KeyInfo *keyInfoFromExprList( Parse *pParse, /* Parsing context */ ExprList *pList, /* Form the KeyInfo object from this ExprList */ int iStart, /* Begin with this column of pList */ int nExtra /* Add this many extra columns to the end */ ); /* ** Generate code that will push the record in registers regData ** through regData+nData-1 onto the sorter. */ static void pushOntoSorter( Parse *pParse, /* Parser context */ SortCtx *pSort, /* Information about the ORDER BY clause */ Select *pSelect, /* The whole SELECT statement */ int regData, /* First register holding data to be sorted */ int regOrigData, /* First register holding data before packing */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > > > > > > > > > > > > > > | < > | 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 | /* Forward reference */ static KeyInfo *keyInfoFromExprList( Parse *pParse, /* Parsing context */ ExprList *pList, /* Form the KeyInfo object from this ExprList */ int iStart, /* Begin with this column of pList */ int nExtra /* Add this many extra columns to the end */ ); /* ** An instance of this object holds information (beyond pParse and pSelect) ** needed to load the next result row that is to be added to the sorter. */ typedef struct RowLoadInfo RowLoadInfo; struct RowLoadInfo { int regResult; /* Store results in array of registers here */ u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ #ifdef SQLITE_ENABLE_SORTER_REFERENCES ExprList *pExtra; /* Extra columns needed by sorter refs */ int regExtraResult; /* Where to load the extra columns */ #endif }; /* ** This routine does the work of loading query data into an array of ** registers so that it can be added to the sorter. */ static void innerLoopLoadRow( Parse *pParse, /* Statement under construction */ Select *pSelect, /* The query being coded */ RowLoadInfo *pInfo /* Info needed to complete the row load */ ){ sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 0, pInfo->ecelFlags); #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( pInfo->pExtra ){ sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); sqlite3ExprListDelete(pParse->db, pInfo->pExtra); } #endif } /* ** Code the OP_MakeRecord instruction that generates the entry to be ** added into the sorter. ** ** Return the register in which the result is stored. */ static int makeSorterRecord( Parse *pParse, SortCtx *pSort, Select *pSelect, int regBase, int nBase ){ int nOBSat = pSort->nOBSat; Vdbe *v = pParse->pVdbe; int regOut = ++pParse->nMem; if( pSort->pDeferredRowLoad ){ innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); return regOut; } /* ** Generate code that will push the record in registers regData ** through regData+nData-1 onto the sorter. */ static void pushOntoSorter( Parse *pParse, /* Parser context */ SortCtx *pSort, /* Information about the ORDER BY clause */ Select *pSelect, /* The whole SELECT statement */ int regData, /* First register holding data to be sorted */ int regOrigData, /* First register holding data before packing */ int nData, /* Number of elements in the regData data array */ int nPrefixReg /* No. of reg prior to regData available for use */ ){ Vdbe *v = pParse->pVdbe; /* Stmt under construction */ int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ int regBase; /* Regs for sorter record */ int regRecord = 0; /* Assembled sorter record */ int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ int op; /* Opcode to add sorter record to sorter */ int iLimit; /* LIMIT counter */ int iSkip = 0; /* End of the sorter insert loop */ assert( bSeq==0 || bSeq==1 ); /* Three cases: ** (1) The data to be sorted has already been packed into a Record ** by a prior OP_MakeRecord. In this case nData==1 and regData ** will be completely unrelated to regOrigData. ** (2) All output columns are included in the sort record. In that ** case regData==regOrigData. ** (3) Some output columns are omitted from the sort record due to ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the ** SQLITE_ECEL_OMITREF optimization. In that case, regOrigData==0 ** to prevent this routine from trying to copy values that might ** not exist. */ assert( nData==1 || regData==regOrigData || regOrigData==0 ); if( nPrefixReg ){ assert( nPrefixReg==nExpr+bSeq ); regBase = regData - nPrefixReg; }else{ regBase = pParse->nMem + 1; pParse->nMem += nBase; } assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; pSort->labelDone = sqlite3VdbeMakeLabel(v); sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); if( bSeq ){ sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); } if( nPrefixReg==0 && nData>0 ){ sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); } if( nOBSat>0 ){ int regPrevKey; /* The first nOBSat columns of the previous row */ int addrFirst; /* Address of the OP_IfNot opcode */ int addrJmp; /* Address of the OP_Jump opcode */ VdbeOp *pOp; /* Opcode that opens the sorter */ int nKey; /* Number of sorting key columns, including OP_Sequence */ KeyInfo *pKI; /* Original KeyInfo on the sorter table */ regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); regPrevKey = pParse->nMem+1; pParse->nMem += pSort->nOBSat; nKey = nExpr - pSort->nOBSat + bSeq; if( bSeq ){ addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); }else{ addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); |
︙ | ︙ | |||
595 596 597 598 599 600 601 602 603 604 605 606 607 608 | sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); VdbeCoverage(v); } sqlite3VdbeJumpHere(v, addrFirst); sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); sqlite3VdbeJumpHere(v, addrJmp); } if( pSort->sortFlags & SORTFLAG_UseSorter ){ op = OP_SorterInsert; }else{ op = OP_IdxInsert; } sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, regBase+nOBSat, nBase-nOBSat); | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < < < < < < < | < < < < < < < < < < < < < | < < | | 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 | sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); VdbeCoverage(v); } sqlite3VdbeJumpHere(v, addrFirst); sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); sqlite3VdbeJumpHere(v, addrJmp); } if( iLimit ){ /* At this point the values for the new sorter entry are stored ** in an array of registers. They need to be composed into a record ** and inserted into the sorter if either (a) there are currently ** less than LIMIT+OFFSET items or (b) the new record is smaller than ** the largest record currently in the sorter. If (b) is true and there ** are already LIMIT+OFFSET items in the sorter, delete the largest ** entry before inserting the new one. This way there are never more ** than LIMIT+OFFSET items in the sorter. ** ** If the new record does not need to be inserted into the sorter, ** jump to the next iteration of the loop. Or, if the ** pSort->bOrderedInnerLoop flag is set to indicate that the inner ** loop delivers items in sorted order, jump to the next iteration ** of the outer loop. */ int iCsr = pSort->iECursor; sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, 0, regBase+nOBSat, nExpr-nOBSat); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_Delete, iCsr); } if( regRecord==0 ){ regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); } if( pSort->sortFlags & SORTFLAG_UseSorter ){ op = OP_SorterInsert; }else{ op = OP_IdxInsert; } sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, regBase+nOBSat, nBase-nOBSat); if( iSkip ){ assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 ); sqlite3VdbeChangeP2(v, iSkip, sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop); } } /* ** Add code to implement the OFFSET */ static void codeOffset( |
︙ | ︙ | |||
674 675 676 677 678 679 680 681 682 683 684 685 686 687 | sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3ReleaseTempReg(pParse, r1); } /* ** This routine generates the code for the inside of the inner loop ** of a SELECT. ** ** If srcTab is negative, then the p->pEList expressions ** are evaluated in order to get the data for this row. If srcTab is ** zero or more, then data is pulled from srcTab and p->pEList is used only | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 | sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3ReleaseTempReg(pParse, r1); } #ifdef SQLITE_ENABLE_SORTER_REFERENCES /* ** This function is called as part of inner-loop generation for a SELECT ** statement with an ORDER BY that is not optimized by an index. It ** determines the expressions, if any, that the sorter-reference ** optimization should be used for. The sorter-reference optimization ** is used for SELECT queries like: ** ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 ** ** If the optimization is used for expression "bigblob", then instead of ** storing values read from that column in the sorter records, the PK of ** the row from table t1 is stored instead. Then, as records are extracted from ** the sorter to return to the user, the required value of bigblob is ** retrieved directly from table t1. If the values are very large, this ** can be more efficient than storing them directly in the sorter records. ** ** The ExprList_item.bSorterRef flag is set for each expression in pEList ** for which the sorter-reference optimization should be enabled. ** Additionally, the pSort->aDefer[] array is populated with entries ** for all cursors required to evaluate all selected expressions. Finally. ** output variable (*ppExtra) is set to an expression list containing ** expressions for all extra PK values that should be stored in the ** sorter records. */ static void selectExprDefer( Parse *pParse, /* Leave any error here */ SortCtx *pSort, /* Sorter context */ ExprList *pEList, /* Expressions destined for sorter */ ExprList **ppExtra /* Expressions to append to sorter record */ ){ int i; int nDefer = 0; ExprList *pExtra = 0; for(i=0; i<pEList->nExpr; i++){ struct ExprList_item *pItem = &pEList->a[i]; if( pItem->u.x.iOrderByCol==0 ){ Expr *pExpr = pItem->pExpr; Table *pTab = pExpr->pTab; if( pExpr->op==TK_COLUMN && pTab && !IsVirtual(pTab) && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) ){ int j; for(j=0; j<nDefer; j++){ if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; } if( j==nDefer ){ if( nDefer==ArraySize(pSort->aDefer) ){ continue; }else{ int nKey = 1; int k; Index *pPk = 0; if( !HasRowid(pTab) ){ pPk = sqlite3PrimaryKeyIndex(pTab); nKey = pPk->nKeyCol; } for(k=0; k<nKey; k++){ Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); if( pNew ){ pNew->iTable = pExpr->iTable; pNew->pTab = pExpr->pTab; pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); } } pSort->aDefer[nDefer].pTab = pExpr->pTab; pSort->aDefer[nDefer].iCsr = pExpr->iTable; pSort->aDefer[nDefer].nKey = nKey; nDefer++; } } pItem->bSorterRef = 1; } } } pSort->nDefer = (u8)nDefer; *ppExtra = pExtra; } #endif /* ** This routine generates the code for the inside of the inner loop ** of a SELECT. ** ** If srcTab is negative, then the p->pEList expressions ** are evaluated in order to get the data for this row. If srcTab is ** zero or more, then data is pulled from srcTab and p->pEList is used only |
︙ | ︙ | |||
700 701 702 703 704 705 706 707 708 709 710 711 712 713 | Vdbe *v = pParse->pVdbe; int i; int hasDistinct; /* True if the DISTINCT keyword is present */ int eDest = pDest->eDest; /* How to dispose of results */ int iParm = pDest->iSDParm; /* First argument to disposal method */ int nResultCol; /* Number of result columns */ int nPrefixReg = 0; /* Number of extra registers before regResult */ /* Usually, regResult is the first cell in an array of memory cells ** containing the current result row. In this case regOrig is set to the ** same value. However, if the results are being sent to the sorter, the ** values for any expressions that are also part of the sort-key are omitted ** from this array. In this case regOrig is set to zero. */ int regResult; /* Start of memory holding current results */ | > | 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 | Vdbe *v = pParse->pVdbe; int i; int hasDistinct; /* True if the DISTINCT keyword is present */ int eDest = pDest->eDest; /* How to dispose of results */ int iParm = pDest->iSDParm; /* First argument to disposal method */ int nResultCol; /* Number of result columns */ int nPrefixReg = 0; /* Number of extra registers before regResult */ RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ /* Usually, regResult is the first cell in an array of memory cells ** containing the current result row. In this case regOrig is set to the ** same value. However, if the results are being sent to the sorter, the ** values for any expressions that are also part of the sort-key are omitted ** from this array. In this case regOrig is set to zero. */ int regResult; /* Start of memory holding current results */ |
︙ | ︙ | |||
746 747 748 749 750 751 752 753 754 755 | regOrig = regResult = pDest->iSdst; if( srcTab>=0 ){ for(i=0; i<nResultCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); VdbeComment((v, "%s", p->pEList->a[i].zName)); } }else if( eDest!=SRT_Exists ){ /* If the destination is an EXISTS(...) expression, the actual ** values returned by the SELECT are not required. */ | > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > | | > > > > > > > > > > > > > > > | 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 | regOrig = regResult = pDest->iSdst; if( srcTab>=0 ){ for(i=0; i<nResultCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); VdbeComment((v, "%s", p->pEList->a[i].zName)); } }else if( eDest!=SRT_Exists ){ #ifdef SQLITE_ENABLE_SORTER_REFERENCES ExprList *pExtra = 0; #endif /* If the destination is an EXISTS(...) expression, the actual ** values returned by the SELECT are not required. */ u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ ExprList *pEList; if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ ecelFlags = SQLITE_ECEL_DUP; }else{ ecelFlags = 0; } if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ /* For each expression in p->pEList that is a copy of an expression in ** the ORDER BY clause (pSort->pOrderBy), set the associated ** iOrderByCol value to one more than the index of the ORDER BY ** expression within the sort-key that pushOntoSorter() will generate. ** This allows the p->pEList field to be omitted from the sorted record, ** saving space and CPU cycles. */ ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ int j; if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; } } #ifdef SQLITE_ENABLE_SORTER_REFERENCES selectExprDefer(pParse, pSort, p->pEList, &pExtra); if( pExtra && pParse->db->mallocFailed==0 ){ /* If there are any extra PK columns to add to the sorter records, ** allocate extra memory cells and adjust the OpenEphemeral ** instruction to account for the larger records. This is only ** required if there are one or more WITHOUT ROWID tables with ** composite primary keys in the SortCtx.aDefer[] array. */ VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); pOp->p2 += (pExtra->nExpr - pSort->nDefer); pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); pParse->nMem += pExtra->nExpr; } #endif /* Adjust nResultCol to account for columns that are omitted ** from the sorter by the optimizations in this branch */ pEList = p->pEList; for(i=0; i<pEList->nExpr; i++){ if( pEList->a[i].u.x.iOrderByCol>0 #ifdef SQLITE_ENABLE_SORTER_REFERENCES || pEList->a[i].bSorterRef #endif ){ nResultCol--; regOrig = 0; } } testcase( regOrig ); testcase( eDest==SRT_Set ); testcase( eDest==SRT_Mem ); testcase( eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); assert( eDest==SRT_Set || eDest==SRT_Mem || eDest==SRT_Coroutine || eDest==SRT_Output ); } sRowLoadInfo.regResult = regResult; sRowLoadInfo.ecelFlags = ecelFlags; #ifdef SQLITE_ENABLE_SORTER_REFERENCES sRowLoadInfo.pExtra = pExtra; sRowLoadInfo.regExtraResult = regResult + nResultCol; if( pExtra ) nResultCol += pExtra->nExpr; #endif if( p->iLimit && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 && nPrefixReg>0 ){ assert( pSort!=0 ); assert( hasDistinct==0 ); pSort->pDeferredRowLoad = &sRowLoadInfo; }else{ innerLoopLoadRow(pParse, p, &sRowLoadInfo); } } /* If the DISTINCT keyword was present on the SELECT statement ** and this row has been seen before, then do not make this row ** part of the result. */ if( hasDistinct ){ |
︙ | ︙ | |||
890 891 892 893 894 895 896 | sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); assert( pSort==0 ); } #endif if( pSort ){ | > | | 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 | sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); assert( pSort==0 ); } #endif if( pSort ){ assert( regResult==regOrig ); pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); }else{ int r2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3ReleaseTempReg(pParse, r2); } |
︙ | ︙ | |||
1157 1158 1159 1160 1161 1162 1163 | ** ** "USE TEMP B-TREE FOR xxx" ** ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which ** is determined by the zUsage argument. */ static void explainTempTable(Parse *pParse, const char *zUsage){ | < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | | < > > > > > > > > > > > > < < | > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > | | | | | | | | > | 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 | ** ** "USE TEMP B-TREE FOR xxx" ** ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which ** is determined by the zUsage argument. */ static void explainTempTable(Parse *pParse, const char *zUsage){ ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); } /* ** Assign expression b to lvalue a. A second, no-op, version of this macro ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code ** in sqlite3Select() to assign values to structure member variables that ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the ** code with #ifndef directives. */ # define explainSetInteger(a, b) a = b #else /* No-op versions of the explainXXX() functions and macros. */ # define explainTempTable(y,z) # define explainSetInteger(y,z) #endif /* ** If the inner loop was generated using a non-null pOrderBy argument, ** then the results were placed in a sorter. After the loop is terminated ** we need to run the sorter and output the results. The following ** routine generates the code needed to do that. */ static void generateSortTail( Parse *pParse, /* Parsing context */ Select *p, /* The SELECT statement */ SortCtx *pSort, /* Information on the ORDER BY clause */ int nColumn, /* Number of columns of data */ SelectDest *pDest /* Write the sorted results here */ ){ Vdbe *v = pParse->pVdbe; /* The prepared statement */ int addrBreak = pSort->labelDone; /* Jump here to exit loop */ int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ int addr; /* Top of output loop. Jump for Next. */ int addrOnce = 0; int iTab; ExprList *pOrderBy = pSort->pOrderBy; int eDest = pDest->eDest; int iParm = pDest->iSDParm; int regRow; int regRowid; int iCol; int nKey; /* Number of key columns in sorter record */ int iSortTab; /* Sorter cursor to read from */ int i; int bSeq; /* True if sorter record includes seq. no. */ int nRefKey = 0; struct ExprList_item *aOutEx = p->pEList->a; assert( addrBreak<0 ); if( pSort->labelBkOut ){ sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); sqlite3VdbeGoto(v, addrBreak); sqlite3VdbeResolveLabel(v, pSort->labelBkOut); } #ifdef SQLITE_ENABLE_SORTER_REFERENCES /* Open any cursors needed for sorter-reference expressions */ for(i=0; i<pSort->nDefer; i++){ Table *pTab = pSort->aDefer[i].pTab; int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); } #endif iTab = pSort->iECursor; if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ regRowid = 0; regRow = pDest->iSdst; }else{ regRowid = sqlite3GetTempReg(pParse); regRow = sqlite3GetTempRange(pParse, nColumn); } nKey = pOrderBy->nExpr - pSort->nOBSat; if( pSort->sortFlags & SORTFLAG_UseSorter ){ int regSortOut = ++pParse->nMem; iSortTab = pParse->nTab++; if( pSort->labelBkOut ){ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nColumn+nRefKey); if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); VdbeCoverage(v); codeOffset(v, p->iOffset, addrContinue); sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); bSeq = 0; }else{ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); codeOffset(v, p->iOffset, addrContinue); iSortTab = iTab; bSeq = 1; } for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( aOutEx[i].bSorterRef ) continue; #endif if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; } #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( pSort->nDefer ){ int iKey = iCol+1; int regKey = sqlite3GetTempRange(pParse, nRefKey); for(i=0; i<pSort->nDefer; i++){ int iCsr = pSort->aDefer[i].iCsr; Table *pTab = pSort->aDefer[i].pTab; int nKey = pSort->aDefer[i].nKey; sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); if( HasRowid(pTab) ){ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, sqlite3VdbeCurrentAddr(v)+1, regKey); }else{ int k; int iJmp; assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); for(k=0; k<nKey; k++){ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); } iJmp = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); } } sqlite3ReleaseTempRange(pParse, regKey, nRefKey); } #endif for(i=nColumn-1; i>=0; i--){ #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( aOutEx[i].bSorterRef ){ sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); }else #endif { int iRead; if( aOutEx[i].u.x.iOrderByCol ){ iRead = aOutEx[i].u.x.iOrderByCol-1; }else{ iRead = iCol--; } sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan)); } } switch( eDest ){ case SRT_Table: case SRT_EphemTab: { sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
︙ | ︙ | |||
1613 1614 1615 1616 1617 1618 1619 | #ifndef SQLITE_OMIT_EXPLAIN /* If this is an EXPLAIN, skip this step */ if( pParse->explain ){ return; } #endif | | | 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 | #ifndef SQLITE_OMIT_EXPLAIN /* If this is an EXPLAIN, skip this step */ if( pParse->explain ){ return; } #endif if( pParse->colNamesSet ) return; /* Column names are determined by the left-most term of a compound select */ while( pSelect->pPrior ) pSelect = pSelect->pPrior; SELECTTRACE(1,pParse,pSelect,("generating column names\n")); pTabList = pSelect->pSrc; pEList = pSelect->pEList; assert( v!=0 ); assert( pTabList!=0 ); |
︙ | ︙ | |||
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 | } /* Detach the ORDER BY clause from the compound SELECT */ p->pOrderBy = 0; /* Store the results of the setup-query in Queue. */ pSetup->pNext = 0; rc = sqlite3Select(pParse, pSetup, &destQueue); pSetup->pNext = p; if( rc ) goto end_of_recursive_query; /* Find the next row in the Queue and output that row */ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); | > | 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 | } /* Detach the ORDER BY clause from the compound SELECT */ p->pOrderBy = 0; /* Store the results of the setup-query in Queue. */ pSetup->pNext = 0; ExplainQueryPlan((pParse, 1, "SETUP")); rc = sqlite3Select(pParse, pSetup, &destQueue); pSetup->pNext = p; if( rc ) goto end_of_recursive_query; /* Find the next row in the Queue and output that row */ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); |
︙ | ︙ | |||
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 | /* Execute the recursive SELECT taking the single row in Current as ** the value for the recursive-table. Store the results in the Queue. */ if( p->selFlags & SF_Aggregate ){ sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); }else{ p->pPrior = 0; sqlite3Select(pParse, p, &destQueue); assert( p->pPrior==0 ); p->pPrior = pSetup; } /* Keep running the loop until the Queue is empty */ sqlite3VdbeGoto(v, addrTop); | > | 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 | /* Execute the recursive SELECT taking the single row in Current as ** the value for the recursive-table. Store the results in the Queue. */ if( p->selFlags & SF_Aggregate ){ sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); }else{ p->pPrior = 0; ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); sqlite3Select(pParse, p, &destQueue); assert( p->pPrior==0 ); p->pPrior = pSetup; } /* Keep running the loop until the Queue is empty */ sqlite3VdbeGoto(v, addrTop); |
︙ | ︙ | |||
2219 2220 2221 2222 2223 2224 2225 | ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. */ static int multiSelectValues( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ | < < > | > > < < | < | | 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 | ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. */ static int multiSelectValues( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ int nRow = 1; int rc = 0; int bShowAll = p->pLimit==0; assert( p->selFlags & SF_MultiValue ); do{ assert( p->selFlags & SF_Values ); assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); if( p->pPrior==0 ) break; assert( p->pPrior->pNext==p ); p = p->pPrior; nRow += bShowAll; }while(1); ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, nRow==1 ? "" : "S")); while( p ){ selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); if( !bShowAll ) break; p->nSelectRow = nRow; p = p->pNext; } return rc; } /* |
︙ | ︙ | |||
2287 2288 2289 2290 2291 2292 2293 | ){ int rc = SQLITE_OK; /* Success code from a subroutine */ Select *pPrior; /* Another SELECT immediately to our left */ Vdbe *v; /* Generate code to this VDBE */ SelectDest dest; /* Alternative data destination */ Select *pDelete = 0; /* Chain of simple selects to delete */ sqlite3 *db; /* Database connection */ | < < < < | 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 | ){ int rc = SQLITE_OK; /* Success code from a subroutine */ Select *pPrior; /* Another SELECT immediately to our left */ Vdbe *v; /* Generate code to this VDBE */ SelectDest dest; /* Alternative data destination */ Select *pDelete = 0; /* Chain of simple selects to delete */ sqlite3 *db; /* Database connection */ /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. */ assert( p && p->pPrior ); /* Calling function guarantees this much */ assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); db = pParse->db; |
︙ | ︙ | |||
2341 2342 2343 2344 2345 2346 2347 | }else #endif /* Compound SELECTs that have an ORDER BY clause are handled separately. */ if( p->pOrderBy ){ return multiSelectOrderBy(pParse, p, pDest); | | > > > > > > > | | | | | | | | | | < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < | | | | | | | | | | | | | | | | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < | | | | | | | | | | | | | | > | | | | | | > > | | | | | | | | | | | | | | > | | | | | | | | | | | | > > | | > > > | 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 | }else #endif /* Compound SELECTs that have an ORDER BY clause are handled separately. */ if( p->pOrderBy ){ return multiSelectOrderBy(pParse, p, pDest); }else{ #ifndef SQLITE_OMIT_EXPLAIN if( pPrior->pPrior==0 ){ ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); } #endif /* Generate code for the left and right SELECT statements. */ switch( p->op ){ case TK_ALL: { int addr = 0; int nLimit; assert( !pPrior->pLimit ); pPrior->iLimit = p->iLimit; pPrior->iOffset = p->iOffset; pPrior->pLimit = p->pLimit; rc = sqlite3Select(pParse, pPrior, &dest); p->pLimit = 0; if( rc ){ goto multi_select_end; } p->pPrior = 0; p->iLimit = pPrior->iLimit; p->iOffset = pPrior->iOffset; if( p->iLimit ){ addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); VdbeComment((v, "Jump ahead if LIMIT reached")); if( p->iOffset ){ sqlite3VdbeAddOp3(v, OP_OffsetLimit, p->iLimit, p->iOffset+1, p->iOffset); } } ExplainQueryPlan((pParse, 1, "UNION ALL")); rc = sqlite3Select(pParse, p, &dest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); if( pPrior->pLimit && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) ){ p->nSelectRow = sqlite3LogEst((u64)nLimit); } if( addr ){ sqlite3VdbeJumpHere(v, addr); } break; } case TK_EXCEPT: case TK_UNION: { int unionTab; /* Cursor number of the temp table holding result */ u8 op = 0; /* One of the SRT_ operations to apply to self */ int priorOp; /* The SRT_ operation to apply to prior selects */ Expr *pLimit; /* Saved values of p->nLimit */ int addr; SelectDest uniondest; testcase( p->op==TK_EXCEPT ); testcase( p->op==TK_UNION ); priorOp = SRT_Union; if( dest.eDest==priorOp ){ /* We can reuse a temporary table generated by a SELECT to our ** right. */ assert( p->pLimit==0 ); /* Not allowed on leftward elements */ unionTab = dest.iSDParm; }else{ /* We will need to create our own temporary table to hold the ** intermediate results. */ unionTab = pParse->nTab++; assert( p->pOrderBy==0 ); addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); assert( p->addrOpenEphm[0] == -1 ); p->addrOpenEphm[0] = addr; findRightmost(p)->selFlags |= SF_UsesEphemeral; assert( p->pEList ); } /* Code the SELECT statements to our left */ assert( !pPrior->pOrderBy ); sqlite3SelectDestInit(&uniondest, priorOp, unionTab); rc = sqlite3Select(pParse, pPrior, &uniondest); if( rc ){ goto multi_select_end; } /* Code the current SELECT statement */ if( p->op==TK_EXCEPT ){ op = SRT_Except; }else{ assert( p->op==TK_UNION ); op = SRT_Union; } p->pPrior = 0; pLimit = p->pLimit; p->pLimit = 0; uniondest.eDest = op; ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", selectOpName(p->op))); rc = sqlite3Select(pParse, p, &uniondest); testcase( rc!=SQLITE_OK ); /* Query flattening in sqlite3Select() might refill p->pOrderBy. ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ sqlite3ExprListDelete(db, p->pOrderBy); pDelete = p->pPrior; p->pPrior = pPrior; p->pOrderBy = 0; if( p->op==TK_UNION ){ p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); } sqlite3ExprDelete(db, p->pLimit); p->pLimit = pLimit; p->iLimit = 0; p->iOffset = 0; /* Convert the data in the temporary table into whatever form ** it is that we currently need. */ assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); if( dest.eDest!=priorOp ){ int iCont, iBreak, iStart; assert( p->pEList ); iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); iStart = sqlite3VdbeCurrentAddr(v); selectInnerLoop(pParse, p, unionTab, 0, 0, &dest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); sqlite3VdbeResolveLabel(v, iBreak); sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); } break; } default: assert( p->op==TK_INTERSECT ); { int tab1, tab2; int iCont, iBreak, iStart; Expr *pLimit; int addr; SelectDest intersectdest; int r1; /* INTERSECT is different from the others since it requires ** two temporary tables. Hence it has its own case. Begin ** by allocating the tables we will need. */ tab1 = pParse->nTab++; tab2 = pParse->nTab++; assert( p->pOrderBy==0 ); addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); assert( p->addrOpenEphm[0] == -1 ); p->addrOpenEphm[0] = addr; findRightmost(p)->selFlags |= SF_UsesEphemeral; assert( p->pEList ); /* Code the SELECTs to our left into temporary table "tab1". */ sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); rc = sqlite3Select(pParse, pPrior, &intersectdest); if( rc ){ goto multi_select_end; } /* Code the current SELECT into temporary table "tab2" */ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); assert( p->addrOpenEphm[1] == -1 ); p->addrOpenEphm[1] = addr; p->pPrior = 0; pLimit = p->pLimit; p->pLimit = 0; intersectdest.iSDParm = tab2; ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", selectOpName(p->op))); rc = sqlite3Select(pParse, p, &intersectdest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; if( p->nSelectRow>pPrior->nSelectRow ){ p->nSelectRow = pPrior->nSelectRow; } sqlite3ExprDelete(db, p->pLimit); p->pLimit = pLimit; /* Generate code to take the intersection of the two temporary ** tables. */ assert( p->pEList ); iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); r1 = sqlite3GetTempReg(pParse); iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, r1); selectInnerLoop(pParse, p, tab1, 0, 0, &dest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); sqlite3VdbeResolveLabel(v, iBreak); sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); break; } } #ifndef SQLITE_OMIT_EXPLAIN if( p->pNext==0 ){ ExplainQueryPlanPop(pParse); } #endif } /* Compute collating sequences used by ** temporary tables needed to implement the compound select. ** Attach the KeyInfo structure to all temporary tables. ** ** This section is run by the right-most SELECT statement only. ** SELECT statements to the left always skip this part. The right-most ** SELECT might also skip this part if it has no ORDER BY clause and |
︙ | ︙ | |||
2889 2890 2891 2892 2893 2894 2895 | int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ KeyInfo *pKeyMerge; /* Comparison information for merging rows */ sqlite3 *db; /* Database connection */ ExprList *pOrderBy; /* The ORDER BY clause */ int nOrderBy; /* Number of terms in the ORDER BY clause */ int *aPermute; /* Mapping from ORDER BY terms to result set columns */ | < < < < | 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 | int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ KeyInfo *pKeyMerge; /* Comparison information for merging rows */ sqlite3 *db; /* Database connection */ ExprList *pOrderBy; /* The ORDER BY clause */ int nOrderBy; /* Number of terms in the ORDER BY clause */ int *aPermute; /* Mapping from ORDER BY terms to result set columns */ assert( p->pOrderBy!=0 ); assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ db = pParse->db; v = pParse->pVdbe; assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ labelEnd = sqlite3VdbeMakeLabel(v); |
︙ | ︙ | |||
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 | regAddrA = ++pParse->nMem; regAddrB = ++pParse->nMem; regOutA = ++pParse->nMem; regOutB = ++pParse->nMem; sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); /* Generate a coroutine to evaluate the SELECT statement to the ** left of the compound operator - the "A" select. */ addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); VdbeComment((v, "left SELECT")); pPrior->iLimit = regLimitA; | > > | | | 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 | regAddrA = ++pParse->nMem; regAddrB = ++pParse->nMem; regOutA = ++pParse->nMem; regOutB = ++pParse->nMem; sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); /* Generate a coroutine to evaluate the SELECT statement to the ** left of the compound operator - the "A" select. */ addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); VdbeComment((v, "left SELECT")); pPrior->iLimit = regLimitA; ExplainQueryPlan((pParse, 1, "LEFT")); sqlite3Select(pParse, pPrior, &destA); sqlite3VdbeEndCoroutine(v, regAddrA); sqlite3VdbeJumpHere(v, addr1); /* Generate a coroutine to evaluate the SELECT statement on ** the right - the "B" select */ addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); VdbeComment((v, "right SELECT")); savedLimit = p->iLimit; savedOffset = p->iOffset; p->iLimit = regLimitB; p->iOffset = 0; ExplainQueryPlan((pParse, 1, "RIGHT")); sqlite3Select(pParse, p, &destB); p->iLimit = savedLimit; p->iOffset = savedOffset; sqlite3VdbeEndCoroutine(v, regAddrB); /* Generate a subroutine that outputs the current row of the A ** select as the next output row of the compound select. |
︙ | ︙ | |||
3146 3147 3148 3149 3150 3151 3152 | sqlite3SelectDelete(db, p->pPrior); } p->pPrior = pPrior; pPrior->pNext = p; /*** TBD: Insert subroutine calls to close cursors on incomplete **** subqueries ****/ | | | 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 | sqlite3SelectDelete(db, p->pPrior); } p->pPrior = pPrior; pPrior->pNext = p; /*** TBD: Insert subroutine calls to close cursors on incomplete **** subqueries ****/ ExplainQueryPlanPop(pParse); return pParse->nErr!=0; } #endif #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* An instance of the SubstContext object describes an substitution edit |
︙ | ︙ | |||
3633 3634 3635 3636 3637 3638 3639 | if( pNew==0 ){ p->pPrior = pPrior; }else{ pNew->pPrior = pPrior; if( pPrior ) pPrior->pNext = pNew; pNew->pNext = p; p->pPrior = pNew; | | < | | 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 | if( pNew==0 ){ p->pPrior = pPrior; }else{ pNew->pPrior = pPrior; if( pPrior ) pPrior->pNext = pNew; pNew->pNext = p; p->pPrior = pNew; SELECTTRACE(2,pParse,p,("compound-subquery flattener" " creates %s.%p as peer\n",pNew->zSelName, pNew)); } if( db->mallocFailed ) return 1; } /* Begin flattening the iFrom-th entry of the FROM clause ** in the outer query. */ |
︙ | ︙ | |||
4935 4936 4937 4938 4939 4940 4941 | static void explainSimpleCount( Parse *pParse, /* Parse context */ Table *pTab, /* Table being queried */ Index *pIdx /* Index used to optimize scan, or NULL */ ){ if( pParse->explain==2 ){ int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); | | < < < | 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 | static void explainSimpleCount( Parse *pParse, /* Parse context */ Table *pTab, /* Table being queried */ Index *pIdx /* Index used to optimize scan, or NULL */ ){ if( pParse->explain==2 ){ int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", pTab->zName, bCover ? " USING COVERING INDEX " : "", bCover ? pIdx->zName : "" ); } } #else # define explainSimpleCount(a,b,c) #endif /* |
︙ | ︙ | |||
5155 5156 5157 5158 5159 5160 5161 | SortCtx sSort; /* Info on how to code the ORDER BY clause */ AggInfo sAggInfo; /* Information used by aggregate queries */ int iEnd; /* Address of the end of the query */ sqlite3 *db; /* The database connection */ ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ u8 minMaxFlag; /* Flag for min/max queries */ | < < < < < > | | 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 | SortCtx sSort; /* Info on how to code the ORDER BY clause */ AggInfo sAggInfo; /* Information used by aggregate queries */ int iEnd; /* Address of the end of the query */ sqlite3 *db; /* The database connection */ ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ u8 minMaxFlag; /* Flag for min/max queries */ db = pParse->db; v = sqlite3GetVdbe(pParse); if( p==0 || db->mallocFailed || pParse->nErr ){ return 1; } if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; memset(&sAggInfo, 0, sizeof(sAggInfo)); #if SELECTTRACE_ENABLED SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); if( sqlite3SelectTrace & 0x100 ){ sqlite3TreeViewSelect(0, p, 0); } #endif assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); |
︙ | ︙ | |||
5198 5199 5200 5201 5202 5203 5204 | pTabList = p->pSrc; if( pParse->nErr || db->mallocFailed ){ goto select_end; } assert( p->pEList!=0 ); isAgg = (p->selFlags & SF_Aggregate)!=0; #if SELECTTRACE_ENABLED | | | < < < < | 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 | pTabList = p->pSrc; if( pParse->nErr || db->mallocFailed ){ goto select_end; } assert( p->pEList!=0 ); isAgg = (p->selFlags & SF_Aggregate)!=0; #if SELECTTRACE_ENABLED if( sqlite3SelectTrace & 0x104 ){ SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif if( pDest->eDest==SRT_Output ){ generateColumnNames(pParse, p); } /* Try to various optimizations (flattening subqueries, and strength ** reduction of join operators) in the FROM clause up into the main query */ |
︙ | ︙ | |||
5300 5301 5302 5303 5304 5305 5306 | #ifndef SQLITE_OMIT_COMPOUND_SELECT /* Handle compound SELECT statements using the separate multiSelect() ** procedure. */ if( p->pPrior ){ rc = multiSelect(pParse, p, pDest); | < | > > > > | 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 | #ifndef SQLITE_OMIT_COMPOUND_SELECT /* Handle compound SELECT statements using the separate multiSelect() ** procedure. */ if( p->pPrior ){ rc = multiSelect(pParse, p, pDest); #if SELECTTRACE_ENABLED SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ sqlite3TreeViewSelect(0, p, 0); } #endif if( p->pNext==0 ) ExplainQueryPlanPop(pParse); return rc; } #endif /* For each term in the FROM clause, do two things: ** (1) Authorized unreferenced tables ** (2) Generate code for all sub-queries |
︙ | ︙ | |||
5415 5416 5417 5418 5419 5420 5421 | int addrTop = sqlite3VdbeCurrentAddr(v)+1; pItem->regReturn = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); VdbeComment((v, "%s", pItem->pTab->zName)); pItem->addrFillSub = addrTop; sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); | | | 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 | int addrTop = sqlite3VdbeCurrentAddr(v)+1; pItem->regReturn = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); VdbeComment((v, "%s", pItem->pTab->zName)); pItem->addrFillSub = addrTop; sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); ExplainQueryPlan((pParse, 1, "CO-ROUTINE 0x%p", pSub)); sqlite3Select(pParse, pSub, &dest); pItem->pTab->nRowLogEst = pSub->nSelectRow; pItem->fg.viaCoroutine = 1; pItem->regResult = dest.iSdst; sqlite3VdbeEndCoroutine(v, pItem->regReturn); sqlite3VdbeJumpHere(v, addrTop-1); sqlite3ClearTempRegCache(pParse); |
︙ | ︙ | |||
5450 5451 5452 5453 5454 5455 5456 | VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); }else{ VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); } pPrior = isSelfJoinView(pTabList, pItem); if( pPrior ){ sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); | < | | 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 | VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); }else{ VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); } pPrior = isSelfJoinView(pTabList, pItem); if( pPrior ){ sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); assert( pPrior->pSelect!=0 ); pSub->nSelectRow = pPrior->pSelect->nSelectRow; }else{ sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); ExplainQueryPlan((pParse, 1, "MATERIALIZE 0x%p", pSub)); sqlite3Select(pParse, pSub, &dest); } pItem->pTab->nRowLogEst = pSub->nSelectRow; if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); VdbeComment((v, "end %s", pItem->pTab->zName)); sqlite3VdbeChangeP1(v, topAddr, retAddr); |
︙ | ︙ | |||
5682 5683 5684 5685 5686 5687 5688 | /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the ** SELECT statement. */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; | | > | 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 | /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the ** SELECT statement. */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; sNC.uNC.pAggInfo = &sAggInfo; VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) sAggInfo.mnReg = pParse->nMem+1; sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; sAggInfo.pGroupBy = pGroupBy; sqlite3ExprAnalyzeAggList(&sNC, pEList); sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); if( pHaving ){ if( pGroupBy ){ |
︙ | ︙ | |||
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 | /* If there is an ORDER BY clause, then we need to sort the results ** and send them to the callback one by one. */ if( sSort.pOrderBy ){ explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); } /* Jump here to skip this query */ sqlite3VdbeResolveLabel(v, iEnd); /* The SELECT has been coded. If there is an error in the Parse structure, ** set the return code to 1. Otherwise 0. */ rc = (pParse->nErr>0); /* Control jumps to here if an error is encountered above, or upon ** successful coding of the SELECT. */ select_end: | > < | > > > > | 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 | /* If there is an ORDER BY clause, then we need to sort the results ** and send them to the callback one by one. */ if( sSort.pOrderBy ){ explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); assert( p->pEList==pEList ); generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); } /* Jump here to skip this query */ sqlite3VdbeResolveLabel(v, iEnd); /* The SELECT has been coded. If there is an error in the Parse structure, ** set the return code to 1. Otherwise 0. */ rc = (pParse->nErr>0); /* Control jumps to here if an error is encountered above, or upon ** successful coding of the SELECT. */ select_end: sqlite3ExprListDelete(db, pMinMaxOrderBy); sqlite3DbFree(db, sAggInfo.aCol); sqlite3DbFree(db, sAggInfo.aFunc); #if SELECTTRACE_ENABLED SELECTTRACE(0x1,pParse,p,("end processing\n")); if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ sqlite3TreeViewSelect(0, p, 0); } #endif ExplainQueryPlanPop(pParse); return rc; } |
Changes to src/shell.c.in.
︙ | ︙ | |||
431 432 433 434 435 436 437 438 439 440 441 442 443 444 | /* ** Render output like fprintf(). This should not be used on anything that ** includes string formatting (e.g. "%s"). */ #if !defined(raw_printf) # define raw_printf fprintf #endif /* ** Write I/O traces to the following stream. */ #ifdef SQLITE_ENABLE_IOTRACE static FILE *iotrace = 0; #endif | > > > > > > | 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 | /* ** Render output like fprintf(). This should not be used on anything that ** includes string formatting (e.g. "%s"). */ #if !defined(raw_printf) # define raw_printf fprintf #endif /* Indicate out-of-memory and exit. */ static void shell_out_of_memory(void){ raw_printf(stderr,"Error: out of memory\n"); exit(1); } /* ** Write I/O traces to the following stream. */ #ifdef SQLITE_ENABLE_IOTRACE static FILE *iotrace = 0; #endif |
︙ | ︙ | |||
764 765 766 767 768 769 770 | ** because it contains non-alphanumeric characters, or because it is an ** SQLite keyword. Be conservative in this estimate: When in doubt assume ** that quoting is required. ** ** Return '"' if quoting is required. Return 0 if no quoting is required. */ static char quoteChar(const char *zName){ | < < < < < < < < < < < < < < < < < < < < < | < < < < < < < < < < < < | | 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 | ** because it contains non-alphanumeric characters, or because it is an ** SQLite keyword. Be conservative in this estimate: When in doubt assume ** that quoting is required. ** ** Return '"' if quoting is required. Return 0 if no quoting is required. */ static char quoteChar(const char *zName){ int i; if( !isalpha((unsigned char)zName[0]) && zName[0]!='_' ) return '"'; for(i=0; zName[i]; i++){ if( !isalnum((unsigned char)zName[i]) && zName[i]!='_' ) return '"'; } return sqlite3_keyword_check(zName, i) ? '"' : 0; } /* ** Construct a fake object name and column list to describe the structure ** of the view, virtual table, or table valued function zSchema.zName. */ static char *shellFakeSchema( |
︙ | ︙ | |||
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 | typedef struct ExpertInfo ExpertInfo; struct ExpertInfo { sqlite3expert *pExpert; int bVerbose; }; /* ** State information about the database connection is contained in an ** instance of the following structure. */ typedef struct ShellState ShellState; struct ShellState { sqlite3 *db; /* The database */ u8 autoExplain; /* Automatically turn on .explain mode */ u8 autoEQP; /* Run EXPLAIN QUERY PLAN prior to seach SQL stmt */ u8 statsOn; /* True to display memory stats before each finalize */ u8 scanstatsOn; /* True to display scan stats before each finalize */ u8 openMode; /* SHELL_OPEN_NORMAL, _APPENDVFS, or _ZIPFILE */ u8 doXdgOpen; /* Invoke start/open/xdg-open in output_reset() */ int outCount; /* Revert to stdout when reaching zero */ int cnt; /* Number of records displayed so far */ FILE *out; /* Write results here */ FILE *traceOut; /* Output for sqlite3_trace() */ int nErr; /* Number of errors seen */ int mode; /* An output mode setting */ int modePrior; /* Saved mode */ | > > > > > > > > > > > > > > > > > > > > | 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 | typedef struct ExpertInfo ExpertInfo; struct ExpertInfo { sqlite3expert *pExpert; int bVerbose; }; /* A single line in the EQP output */ typedef struct EQPGraphRow EQPGraphRow; struct EQPGraphRow { int iEqpId; /* ID for this row */ int iParentId; /* ID of the parent row */ EQPGraphRow *pNext; /* Next row in sequence */ char zText[1]; /* Text to display for this row */ }; /* All EQP output is collected into an instance of the following */ typedef struct EQPGraph EQPGraph; struct EQPGraph { EQPGraphRow *pRow; /* Linked list of all rows of the EQP output */ EQPGraphRow *pLast; /* Last element of the pRow list */ char zPrefix[100]; /* Graph prefix */ }; /* ** State information about the database connection is contained in an ** instance of the following structure. */ typedef struct ShellState ShellState; struct ShellState { sqlite3 *db; /* The database */ u8 autoExplain; /* Automatically turn on .explain mode */ u8 autoEQP; /* Run EXPLAIN QUERY PLAN prior to seach SQL stmt */ u8 autoEQPtest; /* autoEQP is in test mode */ u8 statsOn; /* True to display memory stats before each finalize */ u8 scanstatsOn; /* True to display scan stats before each finalize */ u8 openMode; /* SHELL_OPEN_NORMAL, _APPENDVFS, or _ZIPFILE */ u8 doXdgOpen; /* Invoke start/open/xdg-open in output_reset() */ u8 nEqpLevel; /* Depth of the EQP output graph */ unsigned mEqpLines; /* Mask of veritical lines in the EQP output graph */ int outCount; /* Revert to stdout when reaching zero */ int cnt; /* Number of records displayed so far */ FILE *out; /* Write results here */ FILE *traceOut; /* Output for sqlite3_trace() */ int nErr; /* Number of errors seen */ int mode; /* An output mode setting */ int modePrior; /* Saved mode */ |
︙ | ︙ | |||
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 | char *zFreeOnClose; /* Filename to free when closing */ const char *zVfs; /* Name of VFS to use */ sqlite3_stmt *pStmt; /* Current statement if any. */ FILE *pLog; /* Write log output here */ int *aiIndent; /* Array of indents used in MODE_Explain */ int nIndent; /* Size of array aiIndent[] */ int iIndent; /* Index of current op in aiIndent[] */ #if defined(SQLITE_ENABLE_SESSION) int nSession; /* Number of active sessions */ OpenSession aSession[4]; /* Array of sessions. [0] is in focus. */ #endif ExpertInfo expert; /* Valid if previous command was ".expert OPT..." */ }; /* Allowed values for ShellState.autoEQP */ | > | | | | | 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 | char *zFreeOnClose; /* Filename to free when closing */ const char *zVfs; /* Name of VFS to use */ sqlite3_stmt *pStmt; /* Current statement if any. */ FILE *pLog; /* Write log output here */ int *aiIndent; /* Array of indents used in MODE_Explain */ int nIndent; /* Size of array aiIndent[] */ int iIndent; /* Index of current op in aiIndent[] */ EQPGraph sGraph; /* Information for the graphical EXPLAIN QUERY PLAN */ #if defined(SQLITE_ENABLE_SESSION) int nSession; /* Number of active sessions */ OpenSession aSession[4]; /* Array of sessions. [0] is in focus. */ #endif ExpertInfo expert; /* Valid if previous command was ".expert OPT..." */ }; /* Allowed values for ShellState.autoEQP */ #define AUTOEQP_off 0 /* Automatic EXPLAIN QUERY PLAN is off */ #define AUTOEQP_on 1 /* Automatic EQP is on */ #define AUTOEQP_trigger 2 /* On and also show plans for triggers */ #define AUTOEQP_full 3 /* Show full EXPLAIN */ /* Allowed values for ShellState.openMode */ #define SHELL_OPEN_UNSPEC 0 /* No open-mode specified */ #define SHELL_OPEN_NORMAL 1 /* Normal database file */ #define SHELL_OPEN_APPENDVFS 2 /* Use appendvfs */ #define SHELL_OPEN_ZIPFILE 3 /* Use the zipfile virtual table */ |
︙ | ︙ | |||
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 | #define MODE_Insert 5 /* Generate SQL "insert" statements */ #define MODE_Quote 6 /* Quote values as for SQL */ #define MODE_Tcl 7 /* Generate ANSI-C or TCL quoted elements */ #define MODE_Csv 8 /* Quote strings, numbers are plain */ #define MODE_Explain 9 /* Like MODE_Column, but do not truncate data */ #define MODE_Ascii 10 /* Use ASCII unit and record separators (0x1F/0x1E) */ #define MODE_Pretty 11 /* Pretty-print schemas */ static const char *modeDescr[] = { "line", "column", "list", "semi", "html", "insert", "quote", "tcl", "csv", "explain", "ascii", "prettyprint", }; /* ** These are the column/row/line separators used by the various ** import/export modes. */ #define SEP_Column "|" | > > | 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 | #define MODE_Insert 5 /* Generate SQL "insert" statements */ #define MODE_Quote 6 /* Quote values as for SQL */ #define MODE_Tcl 7 /* Generate ANSI-C or TCL quoted elements */ #define MODE_Csv 8 /* Quote strings, numbers are plain */ #define MODE_Explain 9 /* Like MODE_Column, but do not truncate data */ #define MODE_Ascii 10 /* Use ASCII unit and record separators (0x1F/0x1E) */ #define MODE_Pretty 11 /* Pretty-print schemas */ #define MODE_EQP 12 /* Converts EXPLAIN QUERY PLAN output into a graph */ static const char *modeDescr[] = { "line", "column", "list", "semi", "html", "insert", "quote", "tcl", "csv", "explain", "ascii", "prettyprint", "eqp" }; /* ** These are the column/row/line separators used by the various ** import/export modes. */ #define SEP_Column "|" |
︙ | ︙ | |||
1665 1666 1667 1668 1669 1670 1671 | if( z[i]=='\n' ) return 1; if( IsSpace(z[i]) ) continue; if( z[i]=='-' && z[i+1]=='-' ) return 1; return 0; } return 1; } | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 | if( z[i]=='\n' ) return 1; if( IsSpace(z[i]) ) continue; if( z[i]=='-' && z[i+1]=='-' ) return 1; return 0; } return 1; } /* ** Add a new entry to the EXPLAIN QUERY PLAN data */ static void eqp_append(ShellState *p, int iEqpId, int p2, const char *zText){ EQPGraphRow *pNew; int nText = strlen30(zText); if( p->autoEQPtest ){ utf8_printf(p->out, "%d,%d,%s\n", iEqpId, p2, zText); } pNew = sqlite3_malloc64( sizeof(*pNew) + nText ); if( pNew==0 ) shell_out_of_memory(); pNew->iEqpId = iEqpId; pNew->iParentId = p2; memcpy(pNew->zText, zText, nText+1); pNew->pNext = 0; if( p->sGraph.pLast ){ p->sGraph.pLast->pNext = pNew; }else{ p->sGraph.pRow = pNew; } p->sGraph.pLast = pNew; } /* ** Free and reset the EXPLAIN QUERY PLAN data that has been collected ** in p->sGraph. */ static void eqp_reset(ShellState *p){ EQPGraphRow *pRow, *pNext; for(pRow = p->sGraph.pRow; pRow; pRow = pNext){ pNext = pRow->pNext; sqlite3_free(pRow); } memset(&p->sGraph, 0, sizeof(p->sGraph)); } /* Return the next EXPLAIN QUERY PLAN line with iEqpId that occurs after ** pOld, or return the first such line if pOld is NULL */ static EQPGraphRow *eqp_next_row(ShellState *p, int iEqpId, EQPGraphRow *pOld){ EQPGraphRow *pRow = pOld ? pOld->pNext : p->sGraph.pRow; while( pRow && pRow->iParentId!=iEqpId ) pRow = pRow->pNext; return pRow; } /* Render a single level of the graph that has iEqpId as its parent. Called ** recursively to render sublevels. */ static void eqp_render_level(ShellState *p, int iEqpId){ EQPGraphRow *pRow, *pNext; int n = strlen30(p->sGraph.zPrefix); char *z; for(pRow = eqp_next_row(p, iEqpId, 0); pRow; pRow = pNext){ pNext = eqp_next_row(p, iEqpId, pRow); z = pRow->zText; utf8_printf(p->out, "%s%s%s\n", p->sGraph.zPrefix, pNext ? "|--" : "`--", z); if( n<sizeof(p->sGraph.zPrefix)-7 ){ memcpy(&p->sGraph.zPrefix[n], pNext ? "| " : " ", 4); eqp_render_level(p, pRow->iEqpId); p->sGraph.zPrefix[n] = 0; } } } /* ** Display and reset the EXPLAIN QUERY PLAN data */ static void eqp_render(ShellState *p){ EQPGraphRow *pRow = p->sGraph.pRow; if( pRow ){ if( pRow->zText[0]=='-' ){ if( pRow->pNext==0 ){ eqp_reset(p); return; } utf8_printf(p->out, "%s\n", pRow->zText+3); p->sGraph.pRow = pRow->pNext; sqlite3_free(pRow); }else{ utf8_printf(p->out, "QUERY PLAN\n"); } p->sGraph.zPrefix[0] = 0; eqp_render_level(p, 0); eqp_reset(p); } } /* ** This is the callback routine that the shell ** invokes for each row of a query result. */ static int shell_callback( void *pArg, |
︙ | ︙ | |||
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 | for(i=0; i<nArg; i++){ if( i>0 ) utf8_printf(p->out, "%s", p->colSeparator); utf8_printf(p->out,"%s",azArg[i] ? azArg[i] : p->nullValue); } utf8_printf(p->out, "%s", p->rowSeparator); break; } } return 0; } /* ** This is the callback routine that the SQLite library ** invokes for each row of a query result. | > > > > | 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 | for(i=0; i<nArg; i++){ if( i>0 ) utf8_printf(p->out, "%s", p->colSeparator); utf8_printf(p->out,"%s",azArg[i] ? azArg[i] : p->nullValue); } utf8_printf(p->out, "%s", p->rowSeparator); break; } case MODE_EQP: { eqp_append(p, atoi(azArg[0]), atoi(azArg[1]), azArg[3]); break; } } return 0; } /* ** This is the callback routine that the SQLite library ** invokes for each row of a query result. |
︙ | ︙ | |||
2114 2115 2116 2117 2118 2119 2120 | p->zDestTable = 0; } if( zName==0 ) return; cQuote = quoteChar(zName); n = strlen30(zName); if( cQuote ) n += n+2; z = p->zDestTable = malloc( n+1 ); | | < < < | 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 | p->zDestTable = 0; } if( zName==0 ) return; cQuote = quoteChar(zName); n = strlen30(zName); if( cQuote ) n += n+2; z = p->zDestTable = malloc( n+1 ); if( z==0 ) shell_out_of_memory(); n = 0; if( cQuote ) z[n++] = cQuote; for(i=0; zName[i]; i++){ z[n++] = zName[i]; if( zName[i]==cQuote ) z[n++] = cQuote; } if( cQuote ) z[n++] = cQuote; |
︙ | ︙ | |||
2857 2858 2859 2860 2861 2862 2863 | if( pArg->autoEQP>=AUTOEQP_trigger ){ sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 1, 0); } zEQP = sqlite3_mprintf("EXPLAIN QUERY PLAN %s", zStmtSql); rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0); if( rc==SQLITE_OK ){ while( sqlite3_step(pExplain)==SQLITE_ROW ){ | | | | | > > | 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 | if( pArg->autoEQP>=AUTOEQP_trigger ){ sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 1, 0); } zEQP = sqlite3_mprintf("EXPLAIN QUERY PLAN %s", zStmtSql); rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0); if( rc==SQLITE_OK ){ while( sqlite3_step(pExplain)==SQLITE_ROW ){ const char *zEQPLine = (const char*)sqlite3_column_text(pExplain,3); int iEqpId = sqlite3_column_int(pExplain, 0); int iParentId = sqlite3_column_int(pExplain, 1); if( zEQPLine[0]=='-' ) eqp_render(pArg); eqp_append(pArg, iEqpId, iParentId, zEQPLine); } eqp_render(pArg); } sqlite3_finalize(pExplain); sqlite3_free(zEQP); if( pArg->autoEQP>=AUTOEQP_full ){ /* Also do an EXPLAIN for ".eqp full" mode */ zEQP = sqlite3_mprintf("EXPLAIN %s", zStmtSql); rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0); |
︙ | ︙ | |||
2889 2890 2891 2892 2893 2894 2895 | sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); } restore_debug_trace_modes(); } if( pArg ){ pArg->cMode = pArg->mode; | | | | | | > > > > > > | 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 | sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); } restore_debug_trace_modes(); } if( pArg ){ pArg->cMode = pArg->mode; if( pArg->autoExplain ){ if( sqlite3_column_count(pStmt)==8 && sqlite3_strlike("EXPLAIN%", zStmtSql,0)==0 ){ pArg->cMode = MODE_Explain; } if( sqlite3_column_count(pStmt)==4 && sqlite3_strlike("EXPLAIN QUERY PLAN%", zStmtSql,0)==0 ){ pArg->cMode = MODE_EQP; } } /* If the shell is currently in ".explain" mode, gather the extra ** data required to add indents to the output.*/ if( pArg->cMode==MODE_Explain ){ explain_data_prepare(pArg, pStmt); } } exec_prepared_stmt(pArg, pStmt); explain_data_delete(pArg); eqp_render(pArg); /* print usage stats if stats on */ if( pArg && pArg->statsOn ){ display_stats(db, pArg, 0); } /* print loop-counters if required */ |
︙ | ︙ | |||
2982 2983 2984 2985 2986 2987 2988 | rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); if( rc ) return 0; while( sqlite3_step(pStmt)==SQLITE_ROW ){ if( nCol>=nAlloc-2 ){ nAlloc = nAlloc*2 + nCol + 10; azCol = sqlite3_realloc(azCol, nAlloc*sizeof(azCol[0])); | | < < < | 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 | rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); if( rc ) return 0; while( sqlite3_step(pStmt)==SQLITE_ROW ){ if( nCol>=nAlloc-2 ){ nAlloc = nAlloc*2 + nCol + 10; azCol = sqlite3_realloc(azCol, nAlloc*sizeof(azCol[0])); if( azCol==0 ) shell_out_of_memory(); } azCol[++nCol] = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1)); if( sqlite3_column_int(pStmt, 5) ){ nPK++; if( nPK==1 && sqlite3_stricmp((const char*)sqlite3_column_text(pStmt,2), "INTEGER")==0 |
︙ | ︙ | |||
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 | ".bail on|off Stop after hitting an error. Default OFF\n" ".binary on|off Turn binary output on or off. Default OFF\n" ".cd DIRECTORY Change the working directory to DIRECTORY\n" ".changes on|off Show number of rows changed by SQL\n" ".check GLOB Fail if output since .testcase does not match\n" ".clone NEWDB Clone data into NEWDB from the existing database\n" ".databases List names and files of attached databases\n" ".dbinfo ?DB? Show status information about the database\n" ".dump ?TABLE? ... Dump the database in an SQL text format\n" " If TABLE specified, only dump tables matching\n" " LIKE pattern TABLE.\n" ".echo on|off Turn command echo on or off\n" ".eqp on|off|full Enable or disable automatic EXPLAIN QUERY PLAN\n" ".excel Display the output of next command in a spreadsheet\n" | > | 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 | ".bail on|off Stop after hitting an error. Default OFF\n" ".binary on|off Turn binary output on or off. Default OFF\n" ".cd DIRECTORY Change the working directory to DIRECTORY\n" ".changes on|off Show number of rows changed by SQL\n" ".check GLOB Fail if output since .testcase does not match\n" ".clone NEWDB Clone data into NEWDB from the existing database\n" ".databases List names and files of attached databases\n" ".dbconfig ?op? ?val? List or change sqlite3_db_config() options\n" ".dbinfo ?DB? Show status information about the database\n" ".dump ?TABLE? ... Dump the database in an SQL text format\n" " If TABLE specified, only dump tables matching\n" " LIKE pattern TABLE.\n" ".echo on|off Turn command echo on or off\n" ".eqp on|off|full Enable or disable automatic EXPLAIN QUERY PLAN\n" ".excel Display the output of next command in a spreadsheet\n" |
︙ | ︙ | |||
3480 3481 3482 3483 3484 3485 3486 | /* ** Make sure the database is open. If it is not, then open it. If ** the database fails to open, print an error message and exit. */ static void open_db(ShellState *p, int keepAlive){ if( p->db==0 ){ | < | 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 | /* ** Make sure the database is open. If it is not, then open it. If ** the database fails to open, print an error message and exit. */ static void open_db(ShellState *p, int keepAlive){ if( p->db==0 ){ if( p->openMode==SHELL_OPEN_UNSPEC && access(p->zDbFilename,0)==0 ){ p->openMode = (u8)deduceDatabaseType(p->zDbFilename, 0); } switch( p->openMode ){ case SHELL_OPEN_APPENDVFS: { sqlite3_open_v2(p->zDbFilename, &p->db, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, "apndvfs"); |
︙ | ︙ | |||
3783 3784 3785 3786 3787 3788 3789 | }; /* Append a single byte to z[] */ static void import_append_char(ImportCtx *p, int c){ if( p->n+1>=p->nAlloc ){ p->nAlloc += p->nAlloc + 100; p->z = sqlite3_realloc64(p->z, p->nAlloc); | | < < < | 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 | }; /* Append a single byte to z[] */ static void import_append_char(ImportCtx *p, int c){ if( p->n+1>=p->nAlloc ){ p->nAlloc += p->nAlloc + 100; p->z = sqlite3_realloc64(p->z, p->nAlloc); if( p->z==0 ) shell_out_of_memory(); } p->z[p->n++] = (char)c; } /* Read a single field of CSV text. Compatible with rfc4180 and extended ** with the option of having a separator other than ",". ** |
︙ | ︙ | |||
3947 3948 3949 3950 3951 3952 3953 | utf8_printf(stderr, "Error %d: %s on [%s]\n", sqlite3_extended_errcode(p->db), sqlite3_errmsg(p->db), zQuery); goto end_data_xfer; } n = sqlite3_column_count(pQuery); zInsert = sqlite3_malloc64(200 + nTable + n*3); | | < < < | 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 | utf8_printf(stderr, "Error %d: %s on [%s]\n", sqlite3_extended_errcode(p->db), sqlite3_errmsg(p->db), zQuery); goto end_data_xfer; } n = sqlite3_column_count(pQuery); zInsert = sqlite3_malloc64(200 + nTable + n*3); if( zInsert==0 ) shell_out_of_memory(); sqlite3_snprintf(200+nTable,zInsert, "INSERT OR IGNORE INTO \"%s\" VALUES(?", zTable); i = strlen30(zInsert); for(j=1; j<n; j++){ memcpy(zInsert+i, ",?", 2); i += 2; } |
︙ | ︙ | |||
4291 4292 4293 4294 4295 4296 4297 | */ static int shellDatabaseError(sqlite3 *db){ const char *zErr = sqlite3_errmsg(db); utf8_printf(stderr, "Error: %s\n", zErr); return 1; } | < < < < < < < < | 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 | */ static int shellDatabaseError(sqlite3 *db){ const char *zErr = sqlite3_errmsg(db); utf8_printf(stderr, "Error: %s\n", zErr); return 1; } /* ** Compare the pattern in zGlob[] against the text in z[]. Return TRUE ** if they match and FALSE (0) if they do not match. ** ** Globbing rules: ** ** '*' Matches any sequence of zero or more characters. |
︙ | ︙ | |||
5695 5696 5697 5698 5699 5700 5701 | if( zErrMsg ){ utf8_printf(stderr,"Error: %s\n", zErrMsg); sqlite3_free(zErrMsg); rc = 1; } }else | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 | if( zErrMsg ){ utf8_printf(stderr,"Error: %s\n", zErrMsg); sqlite3_free(zErrMsg); rc = 1; } }else if( c=='d' && n>=3 && strncmp(azArg[0], "dbconfig", n)==0 ){ static const struct DbConfigChoices {const char *zName; int op;} aDbConfig[] = { { "enable_fkey", SQLITE_DBCONFIG_ENABLE_FKEY }, { "enable_trigger", SQLITE_DBCONFIG_ENABLE_TRIGGER }, { "fts3_tokenizer", SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER }, { "load_extension", SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION }, { "no_ckpt_on_close", SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE }, { "enable_qpsg", SQLITE_DBCONFIG_ENABLE_QPSG }, { "trigger_eqp", SQLITE_DBCONFIG_TRIGGER_EQP }, { "reset_database", SQLITE_DBCONFIG_RESET_DATABASE }, }; int ii, v; open_db(p, 0); for(ii=0; ii<ArraySize(aDbConfig); ii++){ if( nArg>1 && strcmp(azArg[1], aDbConfig[ii].zName)!=0 ) continue; if( nArg>=3 ){ sqlite3_db_config(p->db, aDbConfig[ii].op, booleanValue(azArg[2]), 0); } sqlite3_db_config(p->db, aDbConfig[ii].op, -1, &v); utf8_printf(p->out, "%18s %s\n", aDbConfig[ii].zName, v ? "on" : "off"); if( nArg>1 ) break; } if( nArg>1 && ii==ArraySize(aDbConfig) ){ utf8_printf(stderr, "Error: unknown dbconfig \"%s\"\n", azArg[1]); utf8_printf(stderr, "Enter \".dbconfig\" with no arguments for a list\n"); } }else if( c=='d' && n>=3 && strncmp(azArg[0], "dbinfo", n)==0 ){ rc = shell_dbinfo_command(p, nArg, azArg); }else if( c=='d' && strncmp(azArg[0], "dump", n)==0 ){ const char *zLike = 0; int i; int savedShowHeader = p->showHeader; |
︙ | ︙ | |||
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 | raw_printf(stderr, "Usage: .echo on|off\n"); rc = 1; } }else if( c=='e' && strncmp(azArg[0], "eqp", n)==0 ){ if( nArg==2 ){ if( strcmp(azArg[1],"full")==0 ){ p->autoEQP = AUTOEQP_full; }else if( strcmp(azArg[1],"trigger")==0 ){ p->autoEQP = AUTOEQP_trigger; }else{ p->autoEQP = (u8)booleanValue(azArg[1]); } }else{ raw_printf(stderr, "Usage: .eqp off|on|trigger|full\n"); rc = 1; } | > > > > | 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 | raw_printf(stderr, "Usage: .echo on|off\n"); rc = 1; } }else if( c=='e' && strncmp(azArg[0], "eqp", n)==0 ){ if( nArg==2 ){ p->autoEQPtest = 0; if( strcmp(azArg[1],"full")==0 ){ p->autoEQP = AUTOEQP_full; }else if( strcmp(azArg[1],"trigger")==0 ){ p->autoEQP = AUTOEQP_trigger; }else if( strcmp(azArg[1],"test")==0 ){ p->autoEQP = AUTOEQP_on; p->autoEQPtest = 1; }else{ p->autoEQP = (u8)booleanValue(azArg[1]); } }else{ raw_printf(stderr, "Usage: .eqp off|on|trigger|full\n"); rc = 1; } |
︙ | ︙ | |||
5992 5993 5994 5995 5996 5997 5998 | utf8_printf(stderr, "Error: cannot open \"%s\"\n", zFile); return 1; } sCtx.cColSep = p->colSeparator[0]; sCtx.cRowSep = p->rowSeparator[0]; zSql = sqlite3_mprintf("SELECT * FROM %s", zTable); if( zSql==0 ){ | < < > | 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 | utf8_printf(stderr, "Error: cannot open \"%s\"\n", zFile); return 1; } sCtx.cColSep = p->colSeparator[0]; sCtx.cRowSep = p->rowSeparator[0]; zSql = sqlite3_mprintf("SELECT * FROM %s", zTable); if( zSql==0 ){ xCloser(sCtx.in); shell_out_of_memory(); } nByte = strlen30(zSql); rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); import_append_char(&sCtx, 0); /* To ensure sCtx.z is allocated */ if( rc && sqlite3_strglob("no such table: *", sqlite3_errmsg(p->db))==0 ){ char *zCreate = sqlite3_mprintf("CREATE TABLE %s", zTable); char cSep = '('; |
︙ | ︙ | |||
6039 6040 6041 6042 6043 6044 6045 | } nCol = sqlite3_column_count(pStmt); sqlite3_finalize(pStmt); pStmt = 0; if( nCol==0 ) return 0; /* no columns, no error */ zSql = sqlite3_malloc64( nByte*2 + 20 + nCol*2 ); if( zSql==0 ){ | < < > | 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 | } nCol = sqlite3_column_count(pStmt); sqlite3_finalize(pStmt); pStmt = 0; if( nCol==0 ) return 0; /* no columns, no error */ zSql = sqlite3_malloc64( nByte*2 + 20 + nCol*2 ); if( zSql==0 ){ xCloser(sCtx.in); shell_out_of_memory(); } sqlite3_snprintf(nByte+20, zSql, "INSERT INTO \"%w\" VALUES(?", zTable); j = strlen30(zSql); for(i=1; i<nCol; i++){ zSql[j++] = ','; zSql[j++] = '?'; } |
︙ | ︙ | |||
6117 6118 6119 6120 6121 6122 6123 | #ifndef SQLITE_UNTESTABLE if( c=='i' && strncmp(azArg[0], "imposter", n)==0 ){ char *zSql; char *zCollist = 0; sqlite3_stmt *pStmt; int tnum = 0; int i; | | | > > > > > | 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 | #ifndef SQLITE_UNTESTABLE if( c=='i' && strncmp(azArg[0], "imposter", n)==0 ){ char *zSql; char *zCollist = 0; sqlite3_stmt *pStmt; int tnum = 0; int i; if( !(nArg==3 || (nArg==2 && sqlite3_stricmp(azArg[1],"off")==0)) ){ utf8_printf(stderr, "Usage: .imposter INDEX IMPOSTER\n" " .imposter off\n"); rc = 1; goto meta_command_exit; } open_db(p, 0); if( nArg==2 ){ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->db, "main", 0, 1); goto meta_command_exit; } zSql = sqlite3_mprintf("SELECT rootpage FROM sqlite_master" " WHERE name='%q' AND type='index'", azArg[1]); sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); if( sqlite3_step(pStmt)==SQLITE_ROW ){ tnum = sqlite3_column_int(pStmt, 0); } |
︙ | ︙ | |||
7307 7308 7309 7310 7311 7312 7313 | sqlite3_bind_text(pStmt, 1, "%", -1, SQLITE_STATIC); } while( sqlite3_step(pStmt)==SQLITE_ROW ){ if( nRow>=nAlloc ){ char **azNew; int n2 = nAlloc*2 + 10; azNew = sqlite3_realloc64(azResult, sizeof(azResult[0])*n2); | | < < < | < < < | 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 | sqlite3_bind_text(pStmt, 1, "%", -1, SQLITE_STATIC); } while( sqlite3_step(pStmt)==SQLITE_ROW ){ if( nRow>=nAlloc ){ char **azNew; int n2 = nAlloc*2 + 10; azNew = sqlite3_realloc64(azResult, sizeof(azResult[0])*n2); if( azNew==0 ) shell_out_of_memory(); nAlloc = n2; azResult = azNew; } azResult[nRow] = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 0)); if( 0==azResult[nRow] ) shell_out_of_memory(); nRow++; } if( sqlite3_finalize(pStmt)!=SQLITE_OK ){ rc = shellDatabaseError(p->db); } /* Pretty-print the contents of array azResult[] to the output */ |
︙ | ︙ | |||
7379 7380 7381 7382 7383 7384 7385 | { "always", SQLITE_TESTCTRL_ALWAYS, "BOOLEAN" }, { "assert", SQLITE_TESTCTRL_ASSERT, "BOOLEAN" }, /*{ "benign_malloc_hooks",SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS, "" },*/ /*{ "bitvec_test", SQLITE_TESTCTRL_BITVEC_TEST, "" },*/ { "byteorder", SQLITE_TESTCTRL_BYTEORDER, "" }, /*{ "fault_install", SQLITE_TESTCTRL_FAULT_INSTALL, "" }, */ { "imposter", SQLITE_TESTCTRL_IMPOSTER, "SCHEMA ON/OFF ROOTPAGE"}, | < < < | 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 | { "always", SQLITE_TESTCTRL_ALWAYS, "BOOLEAN" }, { "assert", SQLITE_TESTCTRL_ASSERT, "BOOLEAN" }, /*{ "benign_malloc_hooks",SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS, "" },*/ /*{ "bitvec_test", SQLITE_TESTCTRL_BITVEC_TEST, "" },*/ { "byteorder", SQLITE_TESTCTRL_BYTEORDER, "" }, /*{ "fault_install", SQLITE_TESTCTRL_FAULT_INSTALL, "" }, */ { "imposter", SQLITE_TESTCTRL_IMPOSTER, "SCHEMA ON/OFF ROOTPAGE"}, { "localtime_fault", SQLITE_TESTCTRL_LOCALTIME_FAULT,"BOOLEAN" }, { "never_corrupt", SQLITE_TESTCTRL_NEVER_CORRUPT, "BOOLEAN" }, { "optimizations", SQLITE_TESTCTRL_OPTIMIZATIONS, "DISABLE-MASK" }, #ifdef YYCOVERAGE { "parser_coverage", SQLITE_TESTCTRL_PARSER_COVERAGE, "" }, #endif { "pending_byte", SQLITE_TESTCTRL_PENDING_BYTE, "OFFSET " }, |
︙ | ︙ | |||
7493 7494 7495 7496 7497 7498 7499 | if( nArg==3 ){ int opt = booleanValue(azArg[2]); rc2 = sqlite3_test_control(testctrl, opt); isOk = 3; } break; | < < < < < < < < < < < | 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 | if( nArg==3 ){ int opt = booleanValue(azArg[2]); rc2 = sqlite3_test_control(testctrl, opt); isOk = 3; } break; case SQLITE_TESTCTRL_IMPOSTER: if( nArg==5 ){ rc2 = sqlite3_test_control(testctrl, p->db, azArg[2], integerValue(azArg[3]), integerValue(azArg[4])); isOk = 3; |
︙ | ︙ | |||
7889 7890 7891 7892 7893 7894 7895 | if( line_is_command_terminator(zLine) && line_is_complete(zSql, nSql) ){ memcpy(zLine,";",2); } nLine = strlen30(zLine); if( nSql+nLine+2>=nAlloc ){ nAlloc = nSql+nLine+100; zSql = realloc(zSql, nAlloc); | | < < < | 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 | if( line_is_command_terminator(zLine) && line_is_complete(zSql, nSql) ){ memcpy(zLine,";",2); } nLine = strlen30(zLine); if( nSql+nLine+2>=nAlloc ){ nAlloc = nSql+nLine+100; zSql = realloc(zSql, nAlloc); if( zSql==0 ) shell_out_of_memory(); } nSqlPrior = nSql; if( nSql==0 ){ int i; for(i=0; zLine[i] && IsSpace(zLine[i]); i++){} assert( nAlloc>0 && zSql!=0 ); memcpy(zSql, zLine+i, nLine+1-i); |
︙ | ︙ | |||
8021 8022 8023 8024 8025 8026 8027 | if (sqliterc == NULL) { home_dir = find_home_dir(0); if( home_dir==0 ){ raw_printf(stderr, "-- warning: cannot find home directory;" " cannot read ~/.sqliterc\n"); return; } | < | 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 | if (sqliterc == NULL) { home_dir = find_home_dir(0); if( home_dir==0 ){ raw_printf(stderr, "-- warning: cannot find home directory;" " cannot read ~/.sqliterc\n"); return; } zBuf = sqlite3_mprintf("%s/.sqliterc",home_dir); sqliterc = zBuf; } in = fopen(sqliterc,"rb"); if( in ){ if( stdin_is_interactive ){ utf8_printf(stderr,"-- Loading resources from %s\n",sqliterc); |
︙ | ︙ | |||
8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 | #endif " -newline SEP set output row separator. Default: '\\n'\n" " -nullvalue TEXT set text string for NULL values. Default ''\n" " -pagecache SIZE N use N slots of SZ bytes each for page cache memory\n" " -quote set output mode to 'quote'\n" " -readonly open the database read-only\n" " -separator SEP set output column separator. Default: '|'\n" " -stats print memory stats before each finalize\n" " -version show SQLite version\n" " -vfs NAME use NAME as the default VFS\n" #ifdef SQLITE_ENABLE_VFSTRACE " -vfstrace enable tracing of all VFS calls\n" #endif #ifdef SQLITE_HAVE_ZLIB | > > > | 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 | #endif " -newline SEP set output row separator. Default: '\\n'\n" " -nullvalue TEXT set text string for NULL values. Default ''\n" " -pagecache SIZE N use N slots of SZ bytes each for page cache memory\n" " -quote set output mode to 'quote'\n" " -readonly open the database read-only\n" " -separator SEP set output column separator. Default: '|'\n" #ifdef SQLITE_ENABLE_SORTER_REFERENCES " -sorterref SIZE sorter references threshold size\n" #endif " -stats print memory stats before each finalize\n" " -version show SQLite version\n" " -vfs NAME use NAME as the default VFS\n" #ifdef SQLITE_ENABLE_VFSTRACE " -vfstrace enable tracing of all VFS calls\n" #endif #ifdef SQLITE_HAVE_ZLIB |
︙ | ︙ | |||
8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 | if( showDetail ){ utf8_printf(stderr, "OPTIONS include:\n%s", zOptions); }else{ raw_printf(stderr, "Use the -help option for additional information\n"); } exit(1); } /* ** Initialize the state information in data */ static void main_init(ShellState *data) { memset(data, 0, sizeof(*data)); data->normalMode = data->cMode = data->mode = MODE_List; data->autoExplain = 1; memcpy(data->colSeparator,SEP_Column, 2); memcpy(data->rowSeparator,SEP_Row, 2); data->showHeader = 0; data->shellFlgs = SHFLG_Lookaside; sqlite3_config(SQLITE_CONFIG_URI, 1); sqlite3_config(SQLITE_CONFIG_LOG, shellLog, data); sqlite3_config(SQLITE_CONFIG_MULTITHREAD); sqlite3_snprintf(sizeof(mainPrompt), mainPrompt,"sqlite> "); sqlite3_snprintf(sizeof(continuePrompt), continuePrompt," ...> "); } | > > > > > > > > > > > > | 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 | if( showDetail ){ utf8_printf(stderr, "OPTIONS include:\n%s", zOptions); }else{ raw_printf(stderr, "Use the -help option for additional information\n"); } exit(1); } /* ** Internal check: Verify that the SQLite is uninitialized. Print a ** error message if it is initialized. */ static void verify_uninitialized(void){ if( sqlite3_config(-1)==SQLITE_MISUSE ){ utf8_printf(stdout, "WARNING: attempt to configuration SQLite after" " initialization.\n"); } } /* ** Initialize the state information in data */ static void main_init(ShellState *data) { memset(data, 0, sizeof(*data)); data->normalMode = data->cMode = data->mode = MODE_List; data->autoExplain = 1; memcpy(data->colSeparator,SEP_Column, 2); memcpy(data->rowSeparator,SEP_Row, 2); data->showHeader = 0; data->shellFlgs = SHFLG_Lookaside; verify_uninitialized(); sqlite3_config(SQLITE_CONFIG_URI, 1); sqlite3_config(SQLITE_CONFIG_LOG, shellLog, data); sqlite3_config(SQLITE_CONFIG_MULTITHREAD); sqlite3_snprintf(sizeof(mainPrompt), mainPrompt,"sqlite> "); sqlite3_snprintf(sizeof(continuePrompt), continuePrompt," ...> "); } |
︙ | ︙ | |||
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 | const char *zInitFile = 0; int i; int rc = 0; int warnInmemoryDb = 0; int readStdin = 1; int nCmd = 0; char **azCmd = 0; setBinaryMode(stdin, 0); setvbuf(stderr, 0, _IONBF, 0); /* Make sure stderr is unbuffered */ stdin_is_interactive = isatty(0); stdout_is_console = isatty(1); #if USE_SYSTEM_SQLITE+0!=1 | > | 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 | const char *zInitFile = 0; int i; int rc = 0; int warnInmemoryDb = 0; int readStdin = 1; int nCmd = 0; char **azCmd = 0; const char *zVfs = 0; /* Value of -vfs command-line option */ setBinaryMode(stdin, 0); setvbuf(stderr, 0, _IONBF, 0); /* Make sure stderr is unbuffered */ stdin_is_interactive = isatty(0); stdout_is_console = isatty(1); #if USE_SYSTEM_SQLITE+0!=1 |
︙ | ︙ | |||
8193 8194 8195 8196 8197 8198 8199 | ** do this. But we want to run an sqlite3_shutdown() afterwards so that ** subsequent sqlite3_config() calls will work. So copy all results into ** memory that does not come from the SQLite memory allocator. */ #if !SQLITE_SHELL_IS_UTF8 sqlite3_initialize(); argv = malloc(sizeof(argv[0])*argc); | | < < < | < < < | < < < | 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 | ** do this. But we want to run an sqlite3_shutdown() afterwards so that ** subsequent sqlite3_config() calls will work. So copy all results into ** memory that does not come from the SQLite memory allocator. */ #if !SQLITE_SHELL_IS_UTF8 sqlite3_initialize(); argv = malloc(sizeof(argv[0])*argc); if( argv==0 ) shell_out_of_memory(); for(i=0; i<argc; i++){ char *z = sqlite3_win32_unicode_to_utf8(wargv[i]); int n; if( z==0 ) shell_out_of_memory(); n = (int)strlen(z); argv[i] = malloc( n+1 ); if( argv[i]==0 ) shell_out_of_memory(); memcpy(argv[i], z, n+1); sqlite3_free(z); } sqlite3_shutdown(); #endif assert( argc>=1 && argv && argv[0] ); |
︙ | ︙ | |||
8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 | #endif /* Do an initial pass through the command-line argument to locate ** the name of the database file, the name of the initialization file, ** the size of the alternative malloc heap, ** and the first command to execute. */ for(i=1; i<argc; i++){ char *z; z = argv[i]; if( z[0]!='-' ){ if( data.zDbFilename==0 ){ data.zDbFilename = z; }else{ /* Excesss arguments are interpreted as SQL (or dot-commands) and ** mean that nothing is read from stdin */ readStdin = 0; nCmd++; azCmd = realloc(azCmd, sizeof(azCmd[0])*nCmd); | > | < < < | 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 | #endif /* Do an initial pass through the command-line argument to locate ** the name of the database file, the name of the initialization file, ** the size of the alternative malloc heap, ** and the first command to execute. */ verify_uninitialized(); for(i=1; i<argc; i++){ char *z; z = argv[i]; if( z[0]!='-' ){ if( data.zDbFilename==0 ){ data.zDbFilename = z; }else{ /* Excesss arguments are interpreted as SQL (or dot-commands) and ** mean that nothing is read from stdin */ readStdin = 0; nCmd++; azCmd = realloc(azCmd, sizeof(azCmd[0])*nCmd); if( azCmd==0 ) shell_out_of_memory(); azCmd[nCmd-1] = z; } } if( z[1]=='-' ) z++; if( strcmp(z,"-separator")==0 || strcmp(z,"-nullvalue")==0 || strcmp(z,"-newline")==0 |
︙ | ︙ | |||
8327 8328 8329 8330 8331 8332 8333 | }else if( strcmp(z,"-multiplex")==0 ){ extern int sqlite3_multiple_initialize(const char*,int); sqlite3_multiplex_initialize(0, 1); #endif }else if( strcmp(z,"-mmap")==0 ){ sqlite3_int64 sz = integerValue(cmdline_option_value(argc,argv,++i)); sqlite3_config(SQLITE_CONFIG_MMAP_SIZE, sz, sz); | > | | > | < | | < < > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 | }else if( strcmp(z,"-multiplex")==0 ){ extern int sqlite3_multiple_initialize(const char*,int); sqlite3_multiplex_initialize(0, 1); #endif }else if( strcmp(z,"-mmap")==0 ){ sqlite3_int64 sz = integerValue(cmdline_option_value(argc,argv,++i)); sqlite3_config(SQLITE_CONFIG_MMAP_SIZE, sz, sz); #ifdef SQLITE_ENABLE_SORTER_REFERENCES }else if( strcmp(z,"-sorterref")==0 ){ sqlite3_int64 sz = integerValue(cmdline_option_value(argc,argv,++i)); sqlite3_config(SQLITE_CONFIG_SORTERREF_SIZE, (int)sz); #endif }else if( strcmp(z,"-vfs")==0 ){ zVfs = cmdline_option_value(argc, argv, ++i); #ifdef SQLITE_HAVE_ZLIB }else if( strcmp(z,"-zip")==0 ){ data.openMode = SHELL_OPEN_ZIPFILE; #endif }else if( strcmp(z,"-append")==0 ){ data.openMode = SHELL_OPEN_APPENDVFS; }else if( strcmp(z,"-readonly")==0 ){ data.openMode = SHELL_OPEN_READONLY; #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB) }else if( strncmp(z, "-A",2)==0 ){ /* All remaining command-line arguments are passed to the ".archive" ** command, so ignore them */ break; #endif } } verify_uninitialized(); #ifdef SQLITE_SHELL_INIT_PROC { /* If the SQLITE_SHELL_INIT_PROC macro is defined, then it is the name ** of a C-function that will perform initialization actions on SQLite that ** occur just before or after sqlite3_initialize(). Use this compile-time ** option to embed this shell program in larger applications. */ extern void SQLITE_SHELL_INIT_PROC(void); SQLITE_SHELL_INIT_PROC(); } #else /* All the sqlite3_config() calls have now been made. So it is safe ** to call sqlite3_initialize() and process any command line -vfs option. */ sqlite3_initialize(); #endif if( zVfs ){ sqlite3_vfs *pVfs = sqlite3_vfs_find(zVfs); if( pVfs ){ sqlite3_vfs_register(pVfs, 1); }else{ utf8_printf(stderr, "no such VFS: \"%s\"\n", argv[i]); exit(1); } } if( data.zDbFilename==0 ){ #ifndef SQLITE_OMIT_MEMORYDB data.zDbFilename = ":memory:"; warnInmemoryDb = argc==1; #else utf8_printf(stderr,"%s: Error: no database filename specified\n", Argv0); return 1; |
︙ | ︙ | |||
8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 | i++; }else if( strcmp(z,"-pagecache")==0 ){ i+=2; }else if( strcmp(z,"-lookaside")==0 ){ i+=2; }else if( strcmp(z,"-mmap")==0 ){ i++; }else if( strcmp(z,"-vfs")==0 ){ i++; #ifdef SQLITE_ENABLE_VFSTRACE }else if( strcmp(z,"-vfstrace")==0 ){ i++; #endif #ifdef SQLITE_ENABLE_MULTIPLEX | > > > > | 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 | i++; }else if( strcmp(z,"-pagecache")==0 ){ i+=2; }else if( strcmp(z,"-lookaside")==0 ){ i+=2; }else if( strcmp(z,"-mmap")==0 ){ i++; #ifdef SQLITE_ENABLE_SORTER_REFERENCES }else if( strcmp(z,"-sorterref")==0 ){ i++; #endif }else if( strcmp(z,"-vfs")==0 ){ i++; #ifdef SQLITE_ENABLE_VFSTRACE }else if( strcmp(z,"-vfstrace")==0 ){ i++; #endif #ifdef SQLITE_ENABLE_MULTIPLEX |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 | ** Or if the threshold is -1, statement journals are always held ** exclusively in memory. ** Since many statement journals never become large, setting the spill ** threshold to a value such as 64KiB can greatly reduce the amount of ** I/O required to support statement rollback. ** The default value for this setting is controlled by the ** [SQLITE_STMTJRNL_SPILL] compile-time option. ** </dl> */ #define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */ #define SQLITE_CONFIG_MULTITHREAD 2 /* nil */ #define SQLITE_CONFIG_SERIALIZED 3 /* nil */ #define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */ #define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */ | > > > > > > > > > > > > > > > > | 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 | ** Or if the threshold is -1, statement journals are always held ** exclusively in memory. ** Since many statement journals never become large, setting the spill ** threshold to a value such as 64KiB can greatly reduce the amount of ** I/O required to support statement rollback. ** The default value for this setting is controlled by the ** [SQLITE_STMTJRNL_SPILL] compile-time option. ** ** [[SQLITE_CONFIG_SORTERREF_SIZE]] ** <dt>SQLITE_CONFIG_SORTERREF_SIZE ** <dd>The SQLITE_CONFIG_SORTERREF_SIZE option accepts a single parameter ** of type (int) - the new value of the sorter-reference size threshold. ** Usually, when SQLite uses an external sort to order records according ** to an ORDER BY clause, all fields required by the caller are present in the ** sorted records. However, if SQLite determines based on the declared type ** of a table column that its values are likely to be very large - larger ** than the configured sorter-reference size threshold - then a reference ** is stored in each sorted record and the required column values loaded ** from the database as records are returned in sorted order. The default ** value for this option is to never use this optimization. Specifying a ** negative value for this option restores the default behaviour. ** This option is only available if SQLite is compiled with the ** [SQLITE_ENABLE_SORTER_REFERENCES] compile-time option. ** </dl> */ #define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */ #define SQLITE_CONFIG_MULTITHREAD 2 /* nil */ #define SQLITE_CONFIG_SERIALIZED 3 /* nil */ #define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */ #define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */ |
︙ | ︙ | |||
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 | #define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */ #define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */ #define SQLITE_CONFIG_WIN32_HEAPSIZE 23 /* int nByte */ #define SQLITE_CONFIG_PCACHE_HDRSZ 24 /* int *psz */ #define SQLITE_CONFIG_PMASZ 25 /* unsigned int szPma */ #define SQLITE_CONFIG_STMTJRNL_SPILL 26 /* int nByte */ #define SQLITE_CONFIG_SMALL_MALLOC 27 /* boolean */ /* ** CAPI3REF: Database Connection Configuration Options ** ** These constants are the available integer configuration options that ** can be passed as the second argument to the [sqlite3_db_config()] interface. ** | > | 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 | #define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */ #define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */ #define SQLITE_CONFIG_WIN32_HEAPSIZE 23 /* int nByte */ #define SQLITE_CONFIG_PCACHE_HDRSZ 24 /* int *psz */ #define SQLITE_CONFIG_PMASZ 25 /* unsigned int szPma */ #define SQLITE_CONFIG_STMTJRNL_SPILL 26 /* int nByte */ #define SQLITE_CONFIG_SMALL_MALLOC 27 /* boolean */ #define SQLITE_CONFIG_SORTERREF_SIZE 28 /* int nByte */ /* ** CAPI3REF: Database Connection Configuration Options ** ** These constants are the available integer configuration options that ** can be passed as the second argument to the [sqlite3_db_config()] interface. ** |
︙ | ︙ | |||
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 | ** behavior. The first parameter passed to this operation is an integer - ** positive to enable output for trigger programs, or zero to disable it, ** or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which is written ** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if ** it is not disabled, 1 if it is. ** </dd> ** </dl> */ #define SQLITE_DBCONFIG_MAINDBNAME 1000 /* const char* */ #define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ #define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */ #define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE 1006 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_QPSG 1007 /* int int* */ #define SQLITE_DBCONFIG_TRIGGER_EQP 1008 /* int int* */ | > > > > > > > > > > > > > > > > | | 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 | ** behavior. The first parameter passed to this operation is an integer - ** positive to enable output for trigger programs, or zero to disable it, ** or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which is written ** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if ** it is not disabled, 1 if it is. ** </dd> ** ** <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt> ** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run ** [VACUUM] in order to reset a database back to an empty database ** with no schema and no content. The following process works even for ** a badly corrupted database file: ** <ol> ** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0); ** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0); ** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0); ** </ol> ** Because resetting a database is destructive and irreversible, the ** process requires the use of this obscure API and multiple steps to help ** ensure that it does not happen by accident. ** </dd> ** </dl> */ #define SQLITE_DBCONFIG_MAINDBNAME 1000 /* const char* */ #define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ #define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */ #define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE 1006 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_QPSG 1007 /* int int* */ #define SQLITE_DBCONFIG_TRIGGER_EQP 1008 /* int int* */ #define SQLITE_DBCONFIG_RESET_DATABASE 1009 /* int int* */ #define SQLITE_DBCONFIG_MAX 1009 /* Largest DBCONFIG */ /* ** CAPI3REF: Enable Or Disable Extended Result Codes ** METHOD: sqlite3 ** ** ^The sqlite3_extended_result_codes() routine enables or disables the ** [extended result codes] feature of SQLite. ^The extended result |
︙ | ︙ | |||
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 | ** using [sqlite3_free]. ** Hence, if this variable is modified directly, either it should be ** made NULL or made to point to memory obtained from [sqlite3_malloc] ** or else the use of the [data_store_directory pragma] should be avoided. */ SQLITE_EXTERN char *sqlite3_data_directory; /* ** CAPI3REF: Test For Auto-Commit Mode ** KEYWORDS: {autocommit mode} ** METHOD: sqlite3 ** ** ^The sqlite3_get_autocommit() interface returns non-zero or ** zero if the given database connection is or is not in autocommit mode, | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 | ** using [sqlite3_free]. ** Hence, if this variable is modified directly, either it should be ** made NULL or made to point to memory obtained from [sqlite3_malloc] ** or else the use of the [data_store_directory pragma] should be avoided. */ SQLITE_EXTERN char *sqlite3_data_directory; /* ** CAPI3REF: Win32 Specific Interface ** ** These interfaces are available only on Windows. The ** [sqlite3_win32_set_directory] interface is used to set the value associated ** with the [sqlite3_temp_directory] or [sqlite3_data_directory] variable, to ** zValue, depending on the value of the type parameter. The zValue parameter ** should be NULL to cause the previous value to be freed via [sqlite3_free]; ** a non-NULL value will be copied into memory obtained from [sqlite3_malloc] ** prior to being used. The [sqlite3_win32_set_directory] interface returns ** [SQLITE_OK] to indicate success, [SQLITE_ERROR] if the type is unsupported, ** or [SQLITE_NOMEM] if memory could not be allocated. The value of the ** [sqlite3_data_directory] variable is intended to act as a replacement for ** the current directory on the sub-platforms of Win32 where that concept is ** not present, e.g. WinRT and UWP. The [sqlite3_win32_set_directory8] and ** [sqlite3_win32_set_directory16] interfaces behave exactly the same as the ** sqlite3_win32_set_directory interface except the string parameter must be ** UTF-8 or UTF-16, respectively. */ int sqlite3_win32_set_directory( unsigned long type, /* Identifier for directory being set or reset */ void *zValue /* New value for directory being set or reset */ ); int sqlite3_win32_set_directory8(unsigned long type, const char *zValue); int sqlite3_win32_set_directory16(unsigned long type, const void *zValue); /* ** CAPI3REF: Win32 Directory Types ** ** These macros are only available on Windows. They define the allowed values ** for the type argument to the [sqlite3_win32_set_directory] interface. */ #define SQLITE_WIN32_DATA_DIRECTORY_TYPE 1 #define SQLITE_WIN32_TEMP_DIRECTORY_TYPE 2 /* ** CAPI3REF: Test For Auto-Commit Mode ** KEYWORDS: {autocommit mode} ** METHOD: sqlite3 ** ** ^The sqlite3_get_autocommit() interface returns non-zero or ** zero if the given database connection is or is not in autocommit mode, |
︙ | ︙ | |||
6996 6997 6998 6999 7000 7001 7002 | #define SQLITE_TESTCTRL_FAULT_INSTALL 9 #define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10 #define SQLITE_TESTCTRL_PENDING_BYTE 11 #define SQLITE_TESTCTRL_ASSERT 12 #define SQLITE_TESTCTRL_ALWAYS 13 #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 | #define SQLITE_TESTCTRL_FAULT_INSTALL 9 #define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10 #define SQLITE_TESTCTRL_PENDING_BYTE 11 #define SQLITE_TESTCTRL_ASSERT 12 #define SQLITE_TESTCTRL_ALWAYS 13 #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 /* NOT USED */ #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 /* NOT USED */ #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 /* NOT USED */ #define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 #define SQLITE_TESTCTRL_VDBE_COVERAGE 21 #define SQLITE_TESTCTRL_BYTEORDER 22 #define SQLITE_TESTCTRL_ISINIT 23 #define SQLITE_TESTCTRL_SORTER_MMAP 24 #define SQLITE_TESTCTRL_IMPOSTER 25 #define SQLITE_TESTCTRL_PARSER_COVERAGE 26 #define SQLITE_TESTCTRL_LAST 26 /* Largest TESTCTRL */ /* ** CAPI3REF: SQL Keyword Checking ** ** These routines provide access to the set of SQL language keywords ** recognized by SQLite. Applications can uses these routines to determine ** whether or not a specific identifier needs to be escaped (for example, ** by enclosing in double-quotes) so as not to confuse the parser. ** ** The sqlite3_keyword_count() interface returns the number of distinct ** keywords understood by SQLite. ** ** The sqlite3_keyword_name(N,Z,L) interface finds the N-th keyword and ** makes *Z point to that keyword expressed as UTF8 and writes the number ** of bytes in the keyword into *L. The string that *Z points to is not ** zero-terminated. The sqlite3_keyword_name(N,Z,L) routine returns ** SQLITE_OK if N is within bounds and SQLITE_ERROR if not. If either Z ** or L are NULL or invalid pointers then calls to ** sqlite3_keyword_name(N,Z,L) result in undefined behavior. ** ** The sqlite3_keyword_check(Z,L) interface checks to see whether or not ** the L-byte UTF8 identifier that Z points to is a keyword, returning non-zero ** if it is and zero if not. ** ** The parser used by SQLite is forgiving. It is often possible to use ** a keyword as an identifier as long as such use does not result in a ** parsing ambiguity. For example, the statement ** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and ** creates a new table named "BEGIN" with three columns named ** "REPLACE", "PRAGMA", and "END". Nevertheless, best practice is to avoid ** using keywords as identifiers. Common techniques used to avoid keyword ** name collisions include: ** <ul> ** <li> Put all indentifier names inside double-quotes. This is the official ** SQL way to escape identifier names. ** <li> Put identifier names inside [...]. This is not standard SQL, ** but it is what SQL Server does and so lots of programmers use this ** technique. ** <li> Begin every identifier with the letter "Z" as no SQL keywords start ** with "Z". ** <li> Include a digit somewhere in every identifier name. ** </ul> ** ** Note that the number of keywords understood by SQLite can depend on ** compile-time options. For example, "VACUUM" is not a keyword if ** SQLite is compiled with the [-DSQLITE_OMIT_VACUUM] option. Also, ** new keywords may be added to future releases of SQLite. */ int sqlite3_keyword_count(void); int sqlite3_keyword_name(int,const char**,int*); int sqlite3_keyword_check(const char*,int); /* ** CAPI3REF: SQLite Runtime Status ** ** ^These interfaces are used to retrieve runtime status information ** about the performance of SQLite, and optionally to reset various ** highwater marks. ^The first argument is an integer code for ** the specific parameter to measure. ^(Recognized integer codes |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
633 634 635 636 637 638 639 640 641 642 643 644 645 646 | ** The default value of "20" was choosen to minimize the run-time of the ** speedtest1 test program with options: --shrink-memory --reprepare */ #ifndef SQLITE_DEFAULT_PCACHE_INITSZ # define SQLITE_DEFAULT_PCACHE_INITSZ 20 #endif /* ** The compile-time options SQLITE_MMAP_READWRITE and ** SQLITE_ENABLE_BATCH_ATOMIC_WRITE are not compatible with one another. ** You must choose one or the other (or neither) but not both. */ #if defined(SQLITE_MMAP_READWRITE) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) #error Cannot use both SQLITE_MMAP_READWRITE and SQLITE_ENABLE_BATCH_ATOMIC_WRITE | > > > > > > > | 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 | ** The default value of "20" was choosen to minimize the run-time of the ** speedtest1 test program with options: --shrink-memory --reprepare */ #ifndef SQLITE_DEFAULT_PCACHE_INITSZ # define SQLITE_DEFAULT_PCACHE_INITSZ 20 #endif /* ** Default value for the SQLITE_CONFIG_SORTERREF_SIZE option. */ #ifndef SQLITE_DEFAULT_SORTERREF_SIZE # define SQLITE_DEFAULT_SORTERREF_SIZE 0x7fffffff #endif /* ** The compile-time options SQLITE_MMAP_READWRITE and ** SQLITE_ENABLE_BATCH_ATOMIC_WRITE are not compatible with one another. ** You must choose one or the other (or neither) but not both. */ #if defined(SQLITE_MMAP_READWRITE) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) #error Cannot use both SQLITE_MMAP_READWRITE and SQLITE_ENABLE_BATCH_ATOMIC_WRITE |
︙ | ︙ | |||
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 | typedef struct TableLock TableLock; typedef struct Token Token; typedef struct TreeView TreeView; typedef struct Trigger Trigger; typedef struct TriggerPrg TriggerPrg; typedef struct TriggerStep TriggerStep; typedef struct UnpackedRecord UnpackedRecord; typedef struct VTable VTable; typedef struct VtabCtx VtabCtx; typedef struct Walker Walker; typedef struct WhereInfo WhereInfo; typedef struct With With; /* A VList object records a mapping between parameters/variables/wildcards | > | 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 | typedef struct TableLock TableLock; typedef struct Token Token; typedef struct TreeView TreeView; typedef struct Trigger Trigger; typedef struct TriggerPrg TriggerPrg; typedef struct TriggerStep TriggerStep; typedef struct UnpackedRecord UnpackedRecord; typedef struct Upsert Upsert; typedef struct VTable VTable; typedef struct VtabCtx VtabCtx; typedef struct Walker Walker; typedef struct WhereInfo WhereInfo; typedef struct With With; /* A VList object records a mapping between parameters/variables/wildcards |
︙ | ︙ | |||
1350 1351 1352 1353 1354 1355 1356 | u8 bBenignMalloc; /* Do not require OOMs if true */ u8 dfltLockMode; /* Default locking-mode for attached dbs */ signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ u8 suppressErr; /* Do not issue error messages if true */ u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ u8 mTrace; /* zero or more SQLITE_TRACE flags */ | | | 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 | u8 bBenignMalloc; /* Do not require OOMs if true */ u8 dfltLockMode; /* Default locking-mode for attached dbs */ signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ u8 suppressErr; /* Do not issue error messages if true */ u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ u8 mTrace; /* zero or more SQLITE_TRACE flags */ u8 noSharedCache; /* True if no shared-cache backends */ u8 nSqlExec; /* Number of pending OP_SqlExec opcodes */ int nextPagesize; /* Pagesize after VACUUM if >0 */ u32 magic; /* Magic number for detect library misuse */ int nChange; /* Value returned by sqlite3_changes() */ int nTotalChange; /* Value returned by sqlite3_total_changes() */ int aLimit[SQLITE_N_LIMIT]; /* Limits */ int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ |
︙ | ︙ | |||
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 | #define SQLITE_EnableTrigger 0x00040000 /* True to enable triggers */ #define SQLITE_DeferFKs 0x00080000 /* Defer all FK constraints */ #define SQLITE_QueryOnly 0x00100000 /* Disable database changes */ #define SQLITE_CellSizeCk 0x00200000 /* Check btree cell sizes on load */ #define SQLITE_Fts3Tokenizer 0x00400000 /* Enable fts3_tokenizer(2) */ #define SQLITE_EnableQPSG 0x00800000 /* Query Planner Stability Guarantee*/ #define SQLITE_TriggerEQP 0x01000000 /* Show trigger EXPLAIN QUERY PLAN */ /* Flags used only if debugging */ #ifdef SQLITE_DEBUG #define SQLITE_SqlTrace 0x08000000 /* Debug print SQL as it executes */ #define SQLITE_VdbeListing 0x10000000 /* Debug listings of VDBE programs */ #define SQLITE_VdbeTrace 0x20000000 /* True to trace VDBE execution */ #define SQLITE_VdbeAddopTrace 0x40000000 /* Trace sqlite3VdbeAddOp() calls */ #define SQLITE_VdbeEQP 0x80000000 /* Debug EXPLAIN QUERY PLAN */ #endif /* ** Allowed values for sqlite3.mDbFlags */ #define DBFLAG_SchemaChange 0x0001 /* Uncommitted Hash table changes */ #define DBFLAG_PreferBuiltin 0x0002 /* Preference to built-in funcs */ #define DBFLAG_Vacuum 0x0004 /* Currently in a VACUUM */ /* ** Bits of the sqlite3.dbOptFlags field that are used by the ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to ** selectively disable various optimizations. */ #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ | > > | 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 | #define SQLITE_EnableTrigger 0x00040000 /* True to enable triggers */ #define SQLITE_DeferFKs 0x00080000 /* Defer all FK constraints */ #define SQLITE_QueryOnly 0x00100000 /* Disable database changes */ #define SQLITE_CellSizeCk 0x00200000 /* Check btree cell sizes on load */ #define SQLITE_Fts3Tokenizer 0x00400000 /* Enable fts3_tokenizer(2) */ #define SQLITE_EnableQPSG 0x00800000 /* Query Planner Stability Guarantee*/ #define SQLITE_TriggerEQP 0x01000000 /* Show trigger EXPLAIN QUERY PLAN */ #define SQLITE_ResetDatabase 0x02000000 /* Reset the database */ /* Flags used only if debugging */ #ifdef SQLITE_DEBUG #define SQLITE_SqlTrace 0x08000000 /* Debug print SQL as it executes */ #define SQLITE_VdbeListing 0x10000000 /* Debug listings of VDBE programs */ #define SQLITE_VdbeTrace 0x20000000 /* True to trace VDBE execution */ #define SQLITE_VdbeAddopTrace 0x40000000 /* Trace sqlite3VdbeAddOp() calls */ #define SQLITE_VdbeEQP 0x80000000 /* Debug EXPLAIN QUERY PLAN */ #endif /* ** Allowed values for sqlite3.mDbFlags */ #define DBFLAG_SchemaChange 0x0001 /* Uncommitted Hash table changes */ #define DBFLAG_PreferBuiltin 0x0002 /* Preference to built-in funcs */ #define DBFLAG_Vacuum 0x0004 /* Currently in a VACUUM */ #define DBFLAG_SchemaKnownOk 0x0008 /* Schema is known to be valid */ /* ** Bits of the sqlite3.dbOptFlags field that are used by the ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to ** selectively disable various optimizations. */ #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ |
︙ | ︙ | |||
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 | /* Allowed values for Column.colFlags: */ #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ #define COLFLAG_HASTYPE 0x0004 /* Type name follows column name */ #define COLFLAG_UNIQUE 0x0008 /* Column def contains "UNIQUE" or "PK" */ /* ** A "Collating Sequence" is defined by an instance of the following ** structure. Conceptually, a collating sequence consists of a name and ** a comparison routine that defines the order of that sequence. ** ** If CollSeq.xCmp is NULL, it means that the | > | 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 | /* Allowed values for Column.colFlags: */ #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ #define COLFLAG_HASTYPE 0x0004 /* Type name follows column name */ #define COLFLAG_UNIQUE 0x0008 /* Column def contains "UNIQUE" or "PK" */ #define COLFLAG_SORTERREF 0x0010 /* Use sorter-refs with this column */ /* ** A "Collating Sequence" is defined by an instance of the following ** structure. Conceptually, a collating sequence consists of a name and ** a comparison routine that defines the order of that sequence. ** ** If CollSeq.xCmp is NULL, it means that the |
︙ | ︙ | |||
2042 2043 2044 2045 2046 2047 2048 | */ #define OE_None 0 /* There is no constraint to check */ #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ #define OE_Abort 2 /* Back out changes but do no rollback transaction */ #define OE_Fail 3 /* Stop the operation but leave all prior changes */ #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ | | | | | | < | | 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 | */ #define OE_None 0 /* There is no constraint to check */ #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ #define OE_Abort 2 /* Back out changes but do no rollback transaction */ #define OE_Fail 3 /* Stop the operation but leave all prior changes */ #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ #define OE_Update 6 /* Process as a DO UPDATE in an upsert */ #define OE_Restrict 7 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ #define OE_SetNull 8 /* Set the foreign key value to NULL */ #define OE_SetDflt 9 /* Set the foreign key value to its default */ #define OE_Cascade 10 /* Cascade the changes */ #define OE_Default 11 /* Do whatever the default action is */ /* ** An instance of the following structure is passed as the first ** argument to sqlite3VdbeKeyCompare and is used to control the ** comparison of the two index keys. ** |
︙ | ︙ | |||
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 | Expr *pExpr; /* The parse tree for this expression */ char *zName; /* Token associated with this expression */ char *zSpan; /* Original text of the expression */ u8 sortOrder; /* 1 for DESC or 0 for ASC */ unsigned done :1; /* A flag to indicate when processing is finished */ unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ unsigned reusable :1; /* Constant expression is reusable */ union { struct { u16 iOrderByCol; /* For ORDER BY, column number in result set */ u16 iAlias; /* Index into Parse.aAlias[] for zName */ } x; int iConstExprReg; /* Register in which Expr value is cached */ } u; | > | 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 | Expr *pExpr; /* The parse tree for this expression */ char *zName; /* Token associated with this expression */ char *zSpan; /* Original text of the expression */ u8 sortOrder; /* 1 for DESC or 0 for ASC */ unsigned done :1; /* A flag to indicate when processing is finished */ unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ unsigned reusable :1; /* Constant expression is reusable */ unsigned bSorterRef :1; /* Defer evaluation until after sorting */ union { struct { u16 iOrderByCol; /* For ORDER BY, column number in result set */ u16 iAlias; /* Index into Parse.aAlias[] for zName */ } x; int iConstExprReg; /* Register in which Expr value is cached */ } u; |
︙ | ︙ | |||
2594 2595 2596 2597 2598 2599 2600 | unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ unsigned isIndexedBy :1; /* True if there is an INDEXED BY clause */ unsigned isTabFunc :1; /* True if table-valued-function syntax */ unsigned isCorrelated :1; /* True if sub-query is correlated */ unsigned viaCoroutine :1; /* Implemented as a co-routine */ unsigned isRecursive :1; /* True for recursive reference in WITH */ } fg; | < < < | 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 | unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ unsigned isIndexedBy :1; /* True if there is an INDEXED BY clause */ unsigned isTabFunc :1; /* True if table-valued-function syntax */ unsigned isCorrelated :1; /* True if sub-query is correlated */ unsigned viaCoroutine :1; /* Implemented as a co-routine */ unsigned isRecursive :1; /* True for recursive reference in WITH */ } fg; int iCursor; /* The VDBE cursor number used to access this table */ Expr *pOn; /* The ON clause of a join */ IdList *pUsing; /* The USING clause of a join */ Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ union { char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */ ExprList *pFuncArg; /* Arguments to table-valued-function */ |
︙ | ︙ | |||
2678 2679 2680 2681 2682 2683 2684 | ** NameContext in the parent query. Thus the process of scanning the ** NameContext list corresponds to searching through successively outer ** subqueries looking for a match. */ struct NameContext { Parse *pParse; /* The parser */ SrcList *pSrcList; /* One or more tables used to resolve names */ | > | | > > | 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 | ** NameContext in the parent query. Thus the process of scanning the ** NameContext list corresponds to searching through successively outer ** subqueries looking for a match. */ struct NameContext { Parse *pParse; /* The parser */ SrcList *pSrcList; /* One or more tables used to resolve names */ union { ExprList *pEList; /* Optional list of result-set columns */ AggInfo *pAggInfo; /* Information about aggregates at this level */ Upsert *pUpsert; /* ON CONFLICT clause information from an upsert */ } uNC; NameContext *pNext; /* Next outer name context. NULL for outermost */ int nRef; /* Number of names resolved by this context */ int nErr; /* Number of errors encountered while resolving names */ u16 ncFlags; /* Zero or more NC_* flags defined below */ }; /* |
︙ | ︙ | |||
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 | #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ #define NC_PartIdx 0x0002 /* True if resolving a partial index WHERE */ #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ #define NC_HasAgg 0x0010 /* One or more aggregate functions seen */ #define NC_IdxExpr 0x0020 /* True if resolving columns of CREATE INDEX */ #define NC_VarSelect 0x0040 /* A correlated subquery has been seen */ #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ #define NC_Complex 0x2000 /* True if a function or subquery seen */ /* ** An instance of the following structure contains all information ** needed to generate code for a single SELECT statement. ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < | < | 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 | #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ #define NC_PartIdx 0x0002 /* True if resolving a partial index WHERE */ #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ #define NC_HasAgg 0x0010 /* One or more aggregate functions seen */ #define NC_IdxExpr 0x0020 /* True if resolving columns of CREATE INDEX */ #define NC_VarSelect 0x0040 /* A correlated subquery has been seen */ #define NC_UEList 0x0080 /* True if uNC.pEList is used */ #define NC_UAggInfo 0x0100 /* True if uNC.pAggInfo is used */ #define NC_UUpsert 0x0200 /* True if uNC.pUpsert is used */ #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ #define NC_Complex 0x2000 /* True if a function or subquery seen */ /* ** An instance of the following object describes a single ON CONFLICT ** clause in an upsert. ** ** The pUpsertTarget field is only set if the ON CONFLICT clause includes ** conflict-target clause. (In "ON CONFLICT(a,b)" the "(a,b)" is the ** conflict-target clause.) The pUpsertTargetWhere is the optional ** WHERE clause used to identify partial unique indexes. ** ** pUpsertSet is the list of column=expr terms of the UPDATE statement. ** The pUpsertSet field is NULL for a ON CONFLICT DO NOTHING. The ** pUpsertWhere is the WHERE clause for the UPDATE and is NULL if the ** WHERE clause is omitted. */ struct Upsert { ExprList *pUpsertTarget; /* Optional description of conflicting index */ Expr *pUpsertTargetWhere; /* WHERE clause for partial index targets */ ExprList *pUpsertSet; /* The SET clause from an ON CONFLICT UPDATE */ Expr *pUpsertWhere; /* WHERE clause for the ON CONFLICT UPDATE */ /* The fields above comprise the parse tree for the upsert clause. ** The fields below are used to transfer information from the INSERT ** processing down into the UPDATE processing while generating code. ** Upsert owns the memory allocated above, but not the memory below. */ Index *pUpsertIdx; /* Constraint that pUpsertTarget identifies */ SrcList *pUpsertSrc; /* Table to be updated */ int regData; /* First register holding array of VALUES */ int iDataCur; /* Index of the data cursor */ int iIdxCur; /* Index of the first index cursor */ }; /* ** An instance of the following structure contains all information ** needed to generate code for a single SELECT statement. ** ** See the header comment on the computeLimitRegisters() routine for a ** detailed description of the meaning of the iLimit and iOffset fields. ** ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. ** These addresses must be stored so that we can go back and fill in ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor ** the number of columns in P2 can be computed at the same time ** as the OP_OpenEphm instruction is coded because not ** enough information about the compound query is known at that point. |
︙ | ︙ | |||
2772 2773 2774 2775 2776 2777 2778 | #define SF_NestedFrom 0x00800 /* Part of a parenthesized FROM clause */ #define SF_MinMaxAgg 0x01000 /* Aggregate containing min() or max() */ #define SF_Recursive 0x02000 /* The recursive part of a recursive CTE */ #define SF_FixedLimit 0x04000 /* nSelectRow set by a constant LIMIT */ #define SF_MaybeConvert 0x08000 /* Need convertCompoundSelectToSubquery() */ #define SF_Converted 0x10000 /* By convertCompoundSelectToSubquery() */ #define SF_IncludeHidden 0x20000 /* Include hidden columns in output */ | | < | 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 | #define SF_NestedFrom 0x00800 /* Part of a parenthesized FROM clause */ #define SF_MinMaxAgg 0x01000 /* Aggregate containing min() or max() */ #define SF_Recursive 0x02000 /* The recursive part of a recursive CTE */ #define SF_FixedLimit 0x04000 /* nSelectRow set by a constant LIMIT */ #define SF_MaybeConvert 0x08000 /* Need convertCompoundSelectToSubquery() */ #define SF_Converted 0x10000 /* By convertCompoundSelectToSubquery() */ #define SF_IncludeHidden 0x20000 /* Include hidden columns in output */ #define SF_ComplexResult 0x40000 /* Result contains subquery or function */ /* ** The results of a SELECT can be distributed in several ways, as defined ** by one of the following macros. The "SRT" prefix means "SELECT Result ** Type". ** ** SRT_Union Store results as a key in a temporary index |
︙ | ︙ | |||
3043 3044 3045 3046 3047 3048 3049 | u8 explain; /* True if the EXPLAIN flag is found on the query */ #ifndef SQLITE_OMIT_VIRTUALTABLE u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ int nVtabLock; /* Number of virtual tables to lock */ #endif int nHeight; /* Expression tree height of current sub-select */ #ifndef SQLITE_OMIT_EXPLAIN | | < | 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 | u8 explain; /* True if the EXPLAIN flag is found on the query */ #ifndef SQLITE_OMIT_VIRTUALTABLE u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ int nVtabLock; /* Number of virtual tables to lock */ #endif int nHeight; /* Expression tree height of current sub-select */ #ifndef SQLITE_OMIT_EXPLAIN int addrExplain; /* Address of current OP_Explain opcode */ #endif VList *pVList; /* Mapping between variable names and numbers */ Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ const char *zTail; /* All SQL text past the last semicolon parsed */ Table *pNewTable; /* A table being constructed by CREATE TABLE */ Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ |
︙ | ︙ | |||
3203 3204 3205 3206 3207 3208 3209 | struct TriggerStep { u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ u8 orconf; /* OE_Rollback etc. */ Trigger *pTrig; /* The trigger that this step is a part of */ Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ | | > | 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 | struct TriggerStep { u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ u8 orconf; /* OE_Rollback etc. */ Trigger *pTrig; /* The trigger that this step is a part of */ Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ ExprList *pExprList; /* SET clause for UPDATE */ IdList *pIdList; /* Column names for INSERT */ Upsert *pUpsert; /* Upsert clauses on an INSERT */ char *zSpan; /* Original SQL text of this command */ TriggerStep *pNext; /* Next in the link-list */ TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ }; /* ** The following structure contains information used by the sqliteFix... |
︙ | ︙ | |||
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 | void *pVdbeBranchArg; /* 1st argument */ #endif #ifndef SQLITE_UNTESTABLE int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ #endif int bLocaltimeFault; /* True to fail localtime() calls */ int iOnceResetThreshold; /* When to reset OP_Once counters */ }; /* ** This macro is used inside of assert() statements to indicate that ** the assert is only valid on a well-formed database. Instead of: ** ** assert( X ); | > | 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 | void *pVdbeBranchArg; /* 1st argument */ #endif #ifndef SQLITE_UNTESTABLE int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ #endif int bLocaltimeFault; /* True to fail localtime() calls */ int iOnceResetThreshold; /* When to reset OP_Once counters */ u32 szSorterRef; /* Min size in bytes to use sorter-refs */ }; /* ** This macro is used inside of assert() statements to indicate that ** the assert is only valid on a well-formed database. Instead of: ** ** assert( X ); |
︙ | ︙ | |||
3736 3737 3738 3739 3740 3741 3742 | #ifndef SQLITE_OMIT_AUTOINCREMENT void sqlite3AutoincrementBegin(Parse *pParse); void sqlite3AutoincrementEnd(Parse *pParse); #else # define sqlite3AutoincrementBegin(X) # define sqlite3AutoincrementEnd(X) #endif | | | 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 | #ifndef SQLITE_OMIT_AUTOINCREMENT void sqlite3AutoincrementBegin(Parse *pParse); void sqlite3AutoincrementEnd(Parse *pParse); #else # define sqlite3AutoincrementBegin(X) # define sqlite3AutoincrementEnd(X) #endif void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int, Upsert*); void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); int sqlite3IdListIndex(IdList*,const char*); SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*, Select*, Expr*, IdList*); |
︙ | ︙ | |||
3766 3767 3768 3769 3770 3771 3772 | Table *sqlite3SrcListLookup(Parse*, SrcList*); int sqlite3IsReadOnly(Parse*, Table*, int); void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,char*); #endif void sqlite3DeleteFrom(Parse*, SrcList*, Expr*, ExprList*, Expr*); | | > | 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 | Table *sqlite3SrcListLookup(Parse*, SrcList*); int sqlite3IsReadOnly(Parse*, Table*, int); void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,char*); #endif void sqlite3DeleteFrom(Parse*, SrcList*, Expr*, ExprList*, Expr*); void sqlite3Update(Parse*, SrcList*, ExprList*,Expr*,int,ExprList*,Expr*, Upsert*); WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); void sqlite3WhereEnd(WhereInfo*); LogEst sqlite3WhereOutputRowCount(WhereInfo*); int sqlite3WhereIsDistinct(WhereInfo*); int sqlite3WhereIsOrdered(WhereInfo*); int sqlite3WhereOrderedInnerLoop(WhereInfo*); int sqlite3WhereIsSorted(WhereInfo*); |
︙ | ︙ | |||
3859 3860 3861 3862 3863 3864 3865 | int sqlite3IsRowid(const char*); void sqlite3GenerateRowDelete( Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int); void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int); int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); void sqlite3ResolvePartIdxLabel(Parse*,int); void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, | | | 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 | int sqlite3IsRowid(const char*); void sqlite3GenerateRowDelete( Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int); void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int); int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); void sqlite3ResolvePartIdxLabel(Parse*,int); void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, u8,u8,int,int*,int*,Upsert*); #ifdef SQLITE_ENABLE_NULL_TRIM void sqlite3SetMakeRecordP5(Vdbe*,Table*); #else # define sqlite3SetMakeRecordP5(A,B) #endif void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*); |
︙ | ︙ | |||
3912 3913 3914 3915 3916 3917 3918 | int, int, int); void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*, const char*,const char*); TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, | > | | 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 | int, int, int); void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*, const char*,const char*); TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, Select*,u8,Upsert*, const char*,const char*); TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8, const char*,const char*); TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*, const char*,const char*); void sqlite3DeleteTrigger(sqlite3*, Trigger*); void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); |
︙ | ︙ | |||
4098 4099 4100 4101 4102 4103 4104 | void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); void sqlite3ColumnDefault(Vdbe *, Table *, int, int); void sqlite3AlterFinishAddColumn(Parse *, Token *); void sqlite3AlterBeginAddColumn(Parse *, SrcList *); CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); | | | 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 | void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); void sqlite3ColumnDefault(Vdbe *, Table *, int, int); void sqlite3AlterFinishAddColumn(Parse *, Token *); void sqlite3AlterBeginAddColumn(Parse *, SrcList *); CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); char sqlite3AffinityType(const char*, Column*); void sqlite3Analyze(Parse*, Token*, Token*); int sqlite3InvokeBusyHandler(BusyHandler*, sqlite3_file*); int sqlite3FindDb(sqlite3*, Token*); int sqlite3FindDbName(sqlite3 *, const char *); int sqlite3AnalysisLoad(sqlite3*,int iDB); void sqlite3DeleteIndexSamples(sqlite3*,Index*); void sqlite3DefaultRowEst(Index*); |
︙ | ︙ | |||
4160 4161 4162 4163 4164 4165 4166 | char sqlite3IndexColumnAffinity(sqlite3*, Index*, int); #endif /* ** The interface to the LEMON-generated parser */ #ifndef SQLITE_AMALGAMATION | | | | 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 | char sqlite3IndexColumnAffinity(sqlite3*, Index*, int); #endif /* ** The interface to the LEMON-generated parser */ #ifndef SQLITE_AMALGAMATION void *sqlite3ParserAlloc(void*(*)(u64), Parse*); void sqlite3ParserFree(void*, void(*)(void*)); #endif void sqlite3Parser(void*, int, Token); #ifdef YYTRACKMAXSTACKDEPTH int sqlite3ParserStackPeak(void*); #endif void sqlite3AutoLoadExtensions(sqlite3*); #ifndef SQLITE_OMIT_LOAD_EXTENSION void sqlite3CloseExtensions(sqlite3*); |
︙ | ︙ | |||
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 | With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); void sqlite3WithDelete(sqlite3*,With*); void sqlite3WithPush(Parse*, With*, u8); #else #define sqlite3WithPush(x,y,z) #define sqlite3WithDelete(x,y) #endif /* Declarations for functions in fkey.c. All of these are replaced by ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign ** key functionality is available. If OMIT_TRIGGER is defined but ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In ** this case foreign keys are parsed, but no other functionality is ** provided (enforcement of FK constraints requires the triggers sub-system). | > > > > > > > > > > > > | 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 | With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); void sqlite3WithDelete(sqlite3*,With*); void sqlite3WithPush(Parse*, With*, u8); #else #define sqlite3WithPush(x,y,z) #define sqlite3WithDelete(x,y) #endif #ifndef SQLITE_OMIT_UPSERT Upsert *sqlite3UpsertNew(sqlite3*,ExprList*,Expr*,ExprList*,Expr*); void sqlite3UpsertDelete(sqlite3*,Upsert*); Upsert *sqlite3UpsertDup(sqlite3*,Upsert*); int sqlite3UpsertAnalyzeTarget(Parse*,SrcList*,Upsert*); void sqlite3UpsertDoUpdate(Parse*,Upsert*,Table*,Index*,int); #else #define sqlite3UpsertNew(v,w,x,y,z) ((Upsert*)0) #define sqlite3UpsertDelete(x,y) #define sqlite3UpsertDup(x,y) ((Upsert*)0) #endif /* Declarations for functions in fkey.c. All of these are replaced by ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign ** key functionality is available. If OMIT_TRIGGER is defined but ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In ** this case foreign keys are parsed, but no other functionality is ** provided (enforcement of FK constraints requires the triggers sub-system). |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 | Tcl_WrongNumArgs(interp, 1, objv, ""); return TCL_ERROR; } sqlite3_config(SQLITE_CONFIG_SQLLOG, 0, 0); return TCL_OK; } #endif /* ** Usage: vfs_current_time_int64 ** ** Return the value returned by the default VFS's xCurrentTimeInt64 method. */ static int SQLITE_TCLAPI vfsCurrentTimeInt64( | > > > > > > > > > > > > > > > > > > > > > | 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 | Tcl_WrongNumArgs(interp, 1, objv, ""); return TCL_ERROR; } sqlite3_config(SQLITE_CONFIG_SQLLOG, 0, 0); return TCL_OK; } #endif /* ** Usage: sqlite3_config_sorterref ** ** Set the SQLITE_CONFIG_SORTERREF_SIZE configuration option */ static int SQLITE_TCLAPI test_config_sorterref( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ int iVal; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "NBYTE"); return TCL_ERROR; } if( Tcl_GetIntFromObj(interp, objv[1], &iVal) ) return TCL_ERROR; sqlite3_config(SQLITE_CONFIG_SORTERREF_SIZE, iVal); return TCL_OK; } /* ** Usage: vfs_current_time_int64 ** ** Return the value returned by the default VFS's xCurrentTimeInt64 method. */ static int SQLITE_TCLAPI vfsCurrentTimeInt64( |
︙ | ︙ | |||
7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 | } aSetting[] = { { "FKEY", SQLITE_DBCONFIG_ENABLE_FKEY }, { "TRIGGER", SQLITE_DBCONFIG_ENABLE_TRIGGER }, { "FTS3_TOKENIZER", SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER }, { "LOAD_EXTENSION", SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION }, { "NO_CKPT_ON_CLOSE",SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE }, { "QPSG", SQLITE_DBCONFIG_ENABLE_QPSG }, }; int i; int v; const char *zSetting; sqlite3 *db; if( objc!=4 ){ | > > | 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 | } aSetting[] = { { "FKEY", SQLITE_DBCONFIG_ENABLE_FKEY }, { "TRIGGER", SQLITE_DBCONFIG_ENABLE_TRIGGER }, { "FTS3_TOKENIZER", SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER }, { "LOAD_EXTENSION", SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION }, { "NO_CKPT_ON_CLOSE",SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE }, { "QPSG", SQLITE_DBCONFIG_ENABLE_QPSG }, { "TRIGGER_EQP", SQLITE_DBCONFIG_TRIGGER_EQP }, { "RESET_DB", SQLITE_DBCONFIG_RESET_DATABASE }, }; int i; int v; const char *zSetting; sqlite3 *db; if( objc!=4 ){ |
︙ | ︙ | |||
7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 | { "sqlite3_snapshot_get_blob", test_snapshot_get_blob, 0 }, { "sqlite3_snapshot_open_blob", test_snapshot_open_blob, 0 }, { "sqlite3_snapshot_cmp_blob", test_snapshot_cmp_blob, 0 }, #endif { "sqlite3_delete_database", test_delete_database, 0 }, { "atomic_batch_write", test_atomic_batch_write, 0 }, { "sqlite3_mmap_warm", test_mmap_warm, 0 }, }; static int bitmask_size = sizeof(Bitmask)*8; static int longdouble_size = sizeof(LONGDOUBLE_TYPE); int i; extern int sqlite3_sync_count, sqlite3_fullsync_count; extern int sqlite3_opentemp_count; extern int sqlite3_like_count; | > | 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 | { "sqlite3_snapshot_get_blob", test_snapshot_get_blob, 0 }, { "sqlite3_snapshot_open_blob", test_snapshot_open_blob, 0 }, { "sqlite3_snapshot_cmp_blob", test_snapshot_cmp_blob, 0 }, #endif { "sqlite3_delete_database", test_delete_database, 0 }, { "atomic_batch_write", test_atomic_batch_write, 0 }, { "sqlite3_mmap_warm", test_mmap_warm, 0 }, { "sqlite3_config_sorterref", test_config_sorterref, 0 }, }; static int bitmask_size = sizeof(Bitmask)*8; static int longdouble_size = sizeof(LONGDOUBLE_TYPE); int i; extern int sqlite3_sync_count, sqlite3_fullsync_count; extern int sqlite3_opentemp_count; extern int sqlite3_like_count; |
︙ | ︙ |
Changes to src/tokenize.c.
︙ | ︙ | |||
492 493 494 495 496 497 498 | } pParse->rc = SQLITE_OK; pParse->zTail = zSql; assert( pzErrMsg!=0 ); /* sqlite3ParserTrace(stdout, "parser: "); */ #ifdef sqlite3Parser_ENGINEALWAYSONSTACK pEngine = &sEngine; | | | | 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 | } pParse->rc = SQLITE_OK; pParse->zTail = zSql; assert( pzErrMsg!=0 ); /* sqlite3ParserTrace(stdout, "parser: "); */ #ifdef sqlite3Parser_ENGINEALWAYSONSTACK pEngine = &sEngine; sqlite3ParserInit(pEngine, pParse); #else pEngine = sqlite3ParserAlloc(sqlite3Malloc, pParse); if( pEngine==0 ){ sqlite3OomFault(db); return SQLITE_NOMEM_BKPT; } #endif assert( pParse->pNewTable==0 ); assert( pParse->pNewTrigger==0 ); |
︙ | ︙ | |||
538 539 540 541 542 543 544 | sqlite3ErrorMsg(pParse, "unrecognized token: \"%.*s\"", n, zSql); break; } zSql += n; }else{ pParse->sLastToken.z = zSql; pParse->sLastToken.n = n; | | | 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 | sqlite3ErrorMsg(pParse, "unrecognized token: \"%.*s\"", n, zSql); break; } zSql += n; }else{ pParse->sLastToken.z = zSql; pParse->sLastToken.n = n; sqlite3Parser(pEngine, tokenType, pParse->sLastToken); lastTokenParsed = tokenType; zSql += n; if( pParse->rc!=SQLITE_OK || db->mallocFailed ) break; } } assert( nErr==0 ); pParse->zTail = zSql; |
︙ | ︙ |
Changes to src/treeview.c.
︙ | ︙ | |||
58 59 60 61 62 63 64 | sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); if( p ){ for(i=0; i<p->iLevel && i<sizeof(p->bLine)-1; i++){ sqlite3StrAccumAppend(&acc, p->bLine[i] ? "| " : " ", 4); } sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|-- " : "'-- ", 4); } | > | | | | | > | 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); if( p ){ for(i=0; i<p->iLevel && i<sizeof(p->bLine)-1; i++){ sqlite3StrAccumAppend(&acc, p->bLine[i] ? "| " : " ", 4); } sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|-- " : "'-- ", 4); } if( zFormat!=0 ){ va_start(ap, zFormat); sqlite3VXPrintf(&acc, zFormat, ap); va_end(ap); assert( acc.nChar>0 ); sqlite3StrAccumAppend(&acc, "\n", 1); } sqlite3StrAccumFinish(&acc); fprintf(stdout,"%s", zBuf); fflush(stdout); } /* ** Shorthand for starting a new tree item that consists of a single label |
︙ | ︙ | |||
532 533 534 535 536 537 538 539 | sqlite3TreeViewLine(pView, "%s (empty)", zLabel); }else{ int i; sqlite3TreeViewLine(pView, "%s", zLabel); for(i=0; i<pList->nExpr; i++){ int j = pList->a[i].u.x.iOrderByCol; char *zName = pList->a[i].zName; if( j || zName ){ | > | < > > | | | | | | > > > | | 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 | sqlite3TreeViewLine(pView, "%s (empty)", zLabel); }else{ int i; sqlite3TreeViewLine(pView, "%s", zLabel); for(i=0; i<pList->nExpr; i++){ int j = pList->a[i].u.x.iOrderByCol; char *zName = pList->a[i].zName; int moreToFollow = i<pList->nExpr - 1; if( j || zName ){ sqlite3TreeViewPush(pView, moreToFollow); moreToFollow = 0; sqlite3TreeViewLine(pView, 0); if( zName ){ fprintf(stdout, "AS %s ", zName); } if( j ){ fprintf(stdout, "iOrderByCol=%d", j); } fprintf(stdout, "\n"); fflush(stdout); } sqlite3TreeViewExpr(pView, pList->a[i].pExpr, moreToFollow); if( j || zName ){ sqlite3TreeViewPop(pView); } } } } void sqlite3TreeViewExprList( |
︙ | ︙ |
Changes to src/trigger.c.
︙ | ︙ | |||
21 22 23 24 25 26 27 28 29 30 31 32 33 34 | TriggerStep * pTmp = pTriggerStep; pTriggerStep = pTriggerStep->pNext; sqlite3ExprDelete(db, pTmp->pWhere); sqlite3ExprListDelete(db, pTmp->pExprList); sqlite3SelectDelete(db, pTmp->pSelect); sqlite3IdListDelete(db, pTmp->pIdList); sqlite3DbFree(db, pTmp->zSpan); sqlite3DbFree(db, pTmp); } } /* | > | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | TriggerStep * pTmp = pTriggerStep; pTriggerStep = pTriggerStep->pNext; sqlite3ExprDelete(db, pTmp->pWhere); sqlite3ExprListDelete(db, pTmp->pExprList); sqlite3SelectDelete(db, pTmp->pSelect); sqlite3IdListDelete(db, pTmp->pIdList); sqlite3UpsertDelete(db, pTmp->pUpsert); sqlite3DbFree(db, pTmp->zSpan); sqlite3DbFree(db, pTmp); } } /* |
︙ | ︙ | |||
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 | */ TriggerStep *sqlite3TriggerInsertStep( sqlite3 *db, /* The database connection */ Token *pTableName, /* Name of the table into which we insert */ IdList *pColumn, /* List of columns in pTableName to insert into */ Select *pSelect, /* A SELECT statement that supplies values */ u8 orconf, /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */ const char *zStart, /* Start of SQL text */ const char *zEnd /* End of SQL text */ ){ TriggerStep *pTriggerStep; assert(pSelect != 0 || db->mallocFailed); pTriggerStep = triggerStepAllocate(db, TK_INSERT, pTableName, zStart, zEnd); if( pTriggerStep ){ pTriggerStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); pTriggerStep->pIdList = pColumn; pTriggerStep->orconf = orconf; }else{ sqlite3IdListDelete(db, pColumn); } sqlite3SelectDelete(db, pSelect); return pTriggerStep; } /* | > > > > > | 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 | */ TriggerStep *sqlite3TriggerInsertStep( sqlite3 *db, /* The database connection */ Token *pTableName, /* Name of the table into which we insert */ IdList *pColumn, /* List of columns in pTableName to insert into */ Select *pSelect, /* A SELECT statement that supplies values */ u8 orconf, /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */ Upsert *pUpsert, /* ON CONFLICT clauses for upsert */ const char *zStart, /* Start of SQL text */ const char *zEnd /* End of SQL text */ ){ TriggerStep *pTriggerStep; assert(pSelect != 0 || db->mallocFailed); pTriggerStep = triggerStepAllocate(db, TK_INSERT, pTableName, zStart, zEnd); if( pTriggerStep ){ pTriggerStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); pTriggerStep->pIdList = pColumn; pTriggerStep->pUpsert = pUpsert; pTriggerStep->orconf = orconf; }else{ testcase( pColumn ); sqlite3IdListDelete(db, pColumn); testcase( pUpsert ); sqlite3UpsertDelete(db, pUpsert); } sqlite3SelectDelete(db, pSelect); return pTriggerStep; } /* |
︙ | ︙ | |||
742 743 744 745 746 747 748 | switch( pStep->op ){ case TK_UPDATE: { sqlite3Update(pParse, targetSrcList(pParse, pStep), sqlite3ExprListDup(db, pStep->pExprList, 0), sqlite3ExprDup(db, pStep->pWhere, 0), | | | > | 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 | switch( pStep->op ){ case TK_UPDATE: { sqlite3Update(pParse, targetSrcList(pParse, pStep), sqlite3ExprListDup(db, pStep->pExprList, 0), sqlite3ExprDup(db, pStep->pWhere, 0), pParse->eOrconf, 0, 0, 0 ); break; } case TK_INSERT: { sqlite3Insert(pParse, targetSrcList(pParse, pStep), sqlite3SelectDup(db, pStep->pSelect, 0), sqlite3IdListDup(db, pStep->pIdList), pParse->eOrconf, sqlite3UpsertDup(db, pStep->pUpsert) ); break; } case TK_DELETE: { sqlite3DeleteFrom(pParse, targetSrcList(pParse, pStep), sqlite3ExprDup(db, pStep->pWhere, 0), 0, 0 |
︙ | ︙ |
Changes to src/update.c.
︙ | ︙ | |||
89 90 91 92 93 94 95 | void sqlite3Update( Parse *pParse, /* The parser context */ SrcList *pTabList, /* The table in which we should change things */ ExprList *pChanges, /* Things to be changed */ Expr *pWhere, /* The WHERE clause. May be null */ int onError, /* How to handle constraint errors */ ExprList *pOrderBy, /* ORDER BY clause. May be null */ | | > | 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | void sqlite3Update( Parse *pParse, /* The parser context */ SrcList *pTabList, /* The table in which we should change things */ ExprList *pChanges, /* Things to be changed */ Expr *pWhere, /* The WHERE clause. May be null */ int onError, /* How to handle constraint errors */ ExprList *pOrderBy, /* ORDER BY clause. May be null */ Expr *pLimit, /* LIMIT clause. May be null */ Upsert *pUpsert /* ON CONFLICT clause, or null */ ){ int i, j; /* Loop counters */ Table *pTab; /* The table to be updated */ int addrTop = 0; /* VDBE instruction address of the start of the loop */ WhereInfo *pWInfo; /* Information about the WHERE clause */ Vdbe *v; /* The virtual database engine */ Index *pIdx; /* For looping over indices */ |
︙ | ︙ | |||
196 197 198 199 200 201 202 | } /* Allocate a cursors for the main database table and for all indices. ** The index cursors might not be used, but if they are used they ** need to occur right after the database cursor. So go ahead and ** allocate enough space, just in case. */ | | > | < > > > > > > > > > | 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | } /* Allocate a cursors for the main database table and for all indices. ** The index cursors might not be used, but if they are used they ** need to occur right after the database cursor. So go ahead and ** allocate enough space, just in case. */ iBaseCur = iDataCur = pParse->nTab++; iIdxCur = iDataCur+1; pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); testcase( pPk!=0 && pPk!=pTab->pIndex ); for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ if( pPk==pIdx ){ iDataCur = pParse->nTab; } pParse->nTab++; } if( pUpsert ){ /* On an UPSERT, reuse the same cursors already opened by INSERT */ iDataCur = pUpsert->iDataCur; iIdxCur = pUpsert->iIdxCur; pParse->nTab = iBaseCur; } pTabList->a[0].iCursor = iDataCur; /* Allocate space for aXRef[], aRegIdx[], and aToOpen[]. ** Initialize aXRef[] and aToOpen[] to their default values. */ aXRef = sqlite3DbMallocRawNN(db, sizeof(int) * (pTab->nCol+nIdx) + nIdx+2 ); if( aXRef==0 ) goto update_cleanup; aRegIdx = aXRef+pTab->nCol; aToOpen = (u8*)(aRegIdx+nIdx); memset(aToOpen, 1, nIdx+1); aToOpen[nIdx+1] = 0; for(i=0; i<pTab->nCol; i++) aXRef[i] = -1; /* Initialize the name-context */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; sNC.uNC.pUpsert = pUpsert; sNC.ncFlags = NC_UUpsert; /* Resolve the column names in all the expressions of the ** of the UPDATE statement. Also find the column index ** for each column to be updated in the pChanges array. For each ** column to be updated, make sure we have authorization to change ** that column. */ |
︙ | ︙ | |||
325 326 327 328 329 330 331 | memset(aToOpen, 1, nIdx+1); } /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto update_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); | | | 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 | memset(aToOpen, 1, nIdx+1); } /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto update_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, pTrigger || hasFK, iDb); /* Allocate required registers. */ if( !IsVirtual(pTab) ){ regRowSet = ++pParse->nMem; regOldRowid = regNewRowid = ++pParse->nMem; if( chngPk || pTrigger || hasFK ){ regOld = pParse->nMem + 1; |
︙ | ︙ | |||
376 377 378 379 380 381 382 | if( IsVirtual(pTab) ){ updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef, pWhere, onError); goto update_cleanup; } #endif | > > > > | > | > > > > | < | | | | | > > > > > > > > > > > | | | | | | | | | | | | | | | | | | | | | | | | | > > | | | | | | | | > > | > | | | | < | | | | | | | | | | | | | | | | | | | | | | | | | < < | | | | | | | | | | | | | | | | | | | > | | | 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 | if( IsVirtual(pTab) ){ updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef, pWhere, onError); goto update_cleanup; } #endif /* Jump to labelBreak to abandon further processing of this UPDATE */ labelContinue = labelBreak = sqlite3VdbeMakeLabel(v); /* Not an UPSERT. Normal processing. Begin by ** initialize the count of updated rows */ if( (db->flags&SQLITE_CountRows)!=0 && !pParse->pTriggerTab && !pParse->nested && pUpsert==0 ){ regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } if( HasRowid(pTab) ){ sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid); }else{ assert( pPk!=0 ); nPk = pPk->nKeyCol; iPk = pParse->nMem+1; pParse->nMem += nPk; regKey = ++pParse->nMem; if( pUpsert==0 ){ iEph = pParse->nTab++; sqlite3VdbeAddOp3(v, OP_Null, 0, iPk, iPk+nPk-1); addrOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEph, nPk); sqlite3VdbeSetP4KeyInfo(pParse, pPk); } } if( pUpsert ){ /* If this is an UPSERT, then all cursors have already been opened by ** the outer INSERT and the data cursor should be pointing at the row ** that is to be updated. So bypass the code that searches for the ** row(s) to be updated. */ pWInfo = 0; eOnePass = ONEPASS_SINGLE; sqlite3ExprIfFalse(pParse, pWhere, labelBreak, SQLITE_JUMPIFNULL); }else{ /* Begin the database scan. ** ** Do not consider a single-pass strategy for a multi-row update if ** there are any triggers or foreign keys to process, or rows may ** be deleted as a result of REPLACE conflict handling. Any of these ** things might disturb a cursor being used to scan through the table ** or index, causing a single-pass approach to malfunction. */ flags = WHERE_ONEPASS_DESIRED|WHERE_SEEK_UNIQ_TABLE; if( !pParse->nested && !pTrigger && !hasFK && !chngKey && !bReplace ){ flags |= WHERE_ONEPASS_MULTIROW; } pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, flags, iIdxCur); if( pWInfo==0 ) goto update_cleanup; /* A one-pass strategy that might update more than one row may not ** be used if any column of the index used for the scan is being ** updated. Otherwise, if there is an index on "b", statements like ** the following could create an infinite loop: ** ** UPDATE t1 SET b=b+1 WHERE b>? ** ** Fall back to ONEPASS_OFF if where.c has selected a ONEPASS_MULTI ** strategy that uses an index for which one or more columns are being ** updated. */ eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); if( eOnePass!=ONEPASS_SINGLE ){ sqlite3MultiWrite(pParse); if( eOnePass==ONEPASS_MULTI ){ int iCur = aiCurOnePass[1]; if( iCur>=0 && iCur!=iDataCur && aToOpen[iCur-iBaseCur] ){ eOnePass = ONEPASS_OFF; } assert( iCur!=iDataCur || !HasRowid(pTab) ); } } } if( HasRowid(pTab) ){ /* Read the rowid of the current row of the WHERE scan. In ONEPASS_OFF ** mode, write the rowid into the FIFO. In either of the one-pass modes, ** leave it in register regOldRowid. */ sqlite3VdbeAddOp2(v, OP_Rowid, iDataCur, regOldRowid); if( eOnePass==ONEPASS_OFF ){ sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid); } }else{ /* Read the PK of the current row into an array of registers. In ** ONEPASS_OFF mode, serialize the array into a record and store it in ** the ephemeral table. Or, in ONEPASS_SINGLE or MULTI mode, change ** the OP_OpenEphemeral instruction to a Noop (the ephemeral table ** is not required) and leave the PK fields in the array of registers. */ for(i=0; i<nPk; i++){ assert( pPk->aiColumn[i]>=0 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur,pPk->aiColumn[i],iPk+i); } if( eOnePass ){ if( addrOpen ) sqlite3VdbeChangeToNoop(v, addrOpen); nKey = nPk; regKey = iPk; }else{ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey, sqlite3IndexAffinityStr(db, pPk), nPk); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEph, regKey, iPk, nPk); } } if( pUpsert==0 ){ if( eOnePass!=ONEPASS_MULTI ){ sqlite3WhereEnd(pWInfo); } if( !isView ){ int addrOnce = 0; /* Open every index that needs updating. */ if( eOnePass!=ONEPASS_OFF ){ if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0; if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0; } if( eOnePass==ONEPASS_MULTI && (nIdx-(aiCurOnePass[1]>=0))>0 ){ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, iBaseCur, aToOpen, 0, 0); if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); } /* Top of the update loop */ if( eOnePass!=ONEPASS_OFF ){ if( !isView && aiCurOnePass[0]!=iDataCur && aiCurOnePass[1]!=iDataCur ){ assert( pPk ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey,nKey); VdbeCoverageNeverTaken(v); } if( eOnePass!=ONEPASS_SINGLE ){ labelContinue = sqlite3VdbeMakeLabel(v); } sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak); VdbeCoverageIf(v, pPk==0); VdbeCoverageIf(v, pPk!=0); }else if( pPk ){ labelContinue = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v); addrTop = sqlite3VdbeAddOp2(v, OP_RowData, iEph, regKey); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey, 0); VdbeCoverage(v); }else{ labelContinue = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet,labelBreak, regOldRowid); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid); VdbeCoverage(v); } } /* If the rowid value will change, set register regNewRowid to ** contain the new value. If the rowid is not being modified, ** then regNewRowid is the same register as regOldRowid, which is ** already populated. */ assert( chngKey || pTrigger || hasFK || regOldRowid==regNewRowid ); if( chngRowid ){ sqlite3ExprCode(pParse, pRowidExpr, regNewRowid); sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); VdbeCoverage(v); } |
︙ | ︙ | |||
575 576 577 578 579 580 581 582 583 584 585 586 587 588 | ** into a register. This is done if there are no BEFORE triggers, or ** if there are one or more BEFORE triggers that use this value via ** a new.* reference in a trigger program. */ testcase( i==31 ); testcase( i==32 ); sqlite3ExprCodeGetColumnToReg(pParse, pTab, i, iDataCur, regNew+i); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i); } } } /* Fire any BEFORE UPDATE triggers. This happens before constraints are | > > > > > > | 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 | ** into a register. This is done if there are no BEFORE triggers, or ** if there are one or more BEFORE triggers that use this value via ** a new.* reference in a trigger program. */ testcase( i==31 ); testcase( i==32 ); sqlite3ExprCodeGetColumnToReg(pParse, pTab, i, iDataCur, regNew+i); if( tmask & TRIGGER_BEFORE ){ /* This value will be recomputed in After-BEFORE-trigger-reload-loop ** below, so make sure that it is not cached and reused. ** Ticket d85fffd6ffe856092ed8daefa811b1e399706b28. */ sqlite3ExprCacheRemove(pParse, regNew+i, 1); } }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i); } } } /* Fire any BEFORE UPDATE triggers. This happens before constraints are |
︙ | ︙ | |||
603 604 605 606 607 608 609 | sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue,regKey,nKey); VdbeCoverage(v); }else{ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid); VdbeCoverage(v); } | > | | | > > > | | 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 | sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue,regKey,nKey); VdbeCoverage(v); }else{ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid); VdbeCoverage(v); } /* After-BEFORE-trigger-reload-loop: ** If it did not delete it, the BEFORE trigger may still have modified ** some of the columns of the row being updated. Load the values for ** all columns not modified by the update statement into their registers ** in case this has happened. Only unmodified columns are reloaded. ** The values computed for modified columns use the values before the ** BEFORE trigger runs. See test case trigger1-18.0 (added 2018-04-26) ** for an example. */ for(i=0; i<pTab->nCol; i++){ if( aXRef[i]<0 && i!=pTab->iPKey ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, regNew+i); } } } if( !isView ){ int addr1 = 0; /* Address of jump instruction */ /* Do constraint checks. */ assert( regOldRowid>0 ); sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, regNewRowid, regOldRowid, chngKey, onError, labelContinue, &bReplace, aXRef, 0); /* Do FK constraint checks. */ if( hasFK ){ sqlite3FkCheck(pParse, pTab, regOldRowid, 0, aXRef, chngKey); } /* Delete the index entries associated with the current record. */ |
︙ | ︙ | |||
692 693 694 695 696 697 698 | if( hasFK ){ sqlite3FkActions(pParse, pTab, pChanges, regOldRowid, aXRef, chngKey); } } /* Increment the row counter */ | | | 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 | if( hasFK ){ sqlite3FkActions(pParse, pTab, pChanges, regOldRowid, aXRef, chngKey); } } /* Increment the row counter */ if( regRowCount ){ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); } sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab, regOldRowid, onError, labelContinue); /* Repeat the above with the next record to be updated, until |
︙ | ︙ | |||
719 720 721 722 723 724 725 | } sqlite3VdbeResolveLabel(v, labelBreak); /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ | | | < | | | 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 | } sqlite3VdbeResolveLabel(v, labelBreak); /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ if( pParse->nested==0 && pParse->pTriggerTab==0 && pUpsert==0 ){ sqlite3AutoincrementEnd(pParse); } /* ** Return the number of rows that were changed, if we are tracking ** that information. */ if( regRowCount ){ sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC); } update_cleanup: sqlite3AuthContextPop(&sContext); |
︙ | ︙ | |||
849 850 851 852 853 854 855 | sqlite3VdbeAddOp2(v, OP_SCopy, regArg+2+iPk, regArg+1); } bOnePass = sqlite3WhereOkOnePass(pWInfo, aDummy); if( bOnePass ){ /* If using the onepass strategy, no-op out the OP_OpenEphemeral coded | | < < < < > | 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 | sqlite3VdbeAddOp2(v, OP_SCopy, regArg+2+iPk, regArg+1); } bOnePass = sqlite3WhereOkOnePass(pWInfo, aDummy); if( bOnePass ){ /* If using the onepass strategy, no-op out the OP_OpenEphemeral coded ** above. */ sqlite3VdbeChangeToNoop(v, addr); }else{ /* Create a record from the argument register contents and insert it into ** the ephemeral table. */ sqlite3MultiWrite(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regArg, nArg, regRec); #ifdef SQLITE_DEBUG /* Signal an assert() within OP_MakeRecord that it is allowed to ** accept no-change records with serial_type 10 */ sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC); #endif sqlite3VdbeAddOp2(v, OP_NewRowid, ephemTab, regRowid); |
︙ | ︙ |
Added src/upsert.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | /* ** 2018-04-12 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code to implement various aspects of UPSERT ** processing and handling of the Upsert object. */ #include "sqliteInt.h" #ifndef SQLITE_OMIT_UPSERT /* ** Free a list of Upsert objects */ void sqlite3UpsertDelete(sqlite3 *db, Upsert *p){ if( p ){ sqlite3ExprListDelete(db, p->pUpsertTarget); sqlite3ExprDelete(db, p->pUpsertTargetWhere); sqlite3ExprListDelete(db, p->pUpsertSet); sqlite3ExprDelete(db, p->pUpsertWhere); sqlite3DbFree(db, p); } } /* ** Duplicate an Upsert object. */ Upsert *sqlite3UpsertDup(sqlite3 *db, Upsert *p){ if( p==0 ) return 0; return sqlite3UpsertNew(db, sqlite3ExprListDup(db, p->pUpsertTarget, 0), sqlite3ExprDup(db, p->pUpsertTargetWhere, 0), sqlite3ExprListDup(db, p->pUpsertSet, 0), sqlite3ExprDup(db, p->pUpsertWhere, 0) ); } /* ** Create a new Upsert object. */ Upsert *sqlite3UpsertNew( sqlite3 *db, /* Determines which memory allocator to use */ ExprList *pTarget, /* Target argument to ON CONFLICT, or NULL */ Expr *pTargetWhere, /* Optional WHERE clause on the target */ ExprList *pSet, /* UPDATE columns, or NULL for a DO NOTHING */ Expr *pWhere /* WHERE clause for the ON CONFLICT UPDATE */ ){ Upsert *pNew; pNew = sqlite3DbMallocRaw(db, sizeof(Upsert)); if( pNew==0 ){ sqlite3ExprListDelete(db, pTarget); sqlite3ExprDelete(db, pTargetWhere); sqlite3ExprListDelete(db, pSet); sqlite3ExprDelete(db, pWhere); return 0; }else{ pNew->pUpsertTarget = pTarget; pNew->pUpsertTargetWhere = pTargetWhere; pNew->pUpsertSet = pSet; pNew->pUpsertWhere = pWhere; pNew->pUpsertIdx = 0; } return pNew; } /* ** Analyze the ON CONFLICT clause described by pUpsert. Resolve all ** symbols in the conflict-target. ** ** Return SQLITE_OK if everything works, or an error code is something ** is wrong. */ int sqlite3UpsertAnalyzeTarget( Parse *pParse, /* The parsing context */ SrcList *pTabList, /* Table into which we are inserting */ Upsert *pUpsert /* The ON CONFLICT clauses */ ){ Table *pTab; /* That table into which we are inserting */ int rc; /* Result code */ int iCursor; /* Cursor used by pTab */ Index *pIdx; /* One of the indexes of pTab */ ExprList *pTarget; /* The conflict-target clause */ Expr *pTerm; /* One term of the conflict-target clause */ NameContext sNC; /* Context for resolving symbolic names */ Expr sCol[2]; /* Index column converted into an Expr */ assert( pTabList->nSrc==1 ); assert( pTabList->a[0].pTab!=0 ); assert( pUpsert!=0 ); assert( pUpsert->pUpsertTarget!=0 ); /* Resolve all symbolic names in the conflict-target clause, which ** includes both the list of columns and the optional partial-index ** WHERE clause. */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; rc = sqlite3ResolveExprListNames(&sNC, pUpsert->pUpsertTarget); if( rc ) return rc; rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertTargetWhere); if( rc ) return rc; /* Check to see if the conflict target matches the rowid. */ pTab = pTabList->a[0].pTab; pTarget = pUpsert->pUpsertTarget; iCursor = pTabList->a[0].iCursor; if( HasRowid(pTab) && pTarget->nExpr==1 && (pTerm = pTarget->a[0].pExpr)->op==TK_COLUMN && pTerm->iColumn==XN_ROWID ){ /* The conflict-target is the rowid of the primary table */ assert( pUpsert->pUpsertIdx==0 ); return SQLITE_OK; } /* Initialize sCol[0..1] to be an expression parse tree for a ** single column of an index. The sCol[0] node will be the TK_COLLATE ** operator and sCol[1] will be the TK_COLUMN operator. Code below ** will populate the specific collation and column number values ** prior to comparing against the conflict-target expression. */ memset(sCol, 0, sizeof(sCol)); sCol[0].op = TK_COLLATE; sCol[0].pLeft = &sCol[1]; sCol[1].op = TK_COLUMN; sCol[1].iTable = pTabList->a[0].iCursor; /* Check for matches against other indexes */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int ii, jj, nn; if( !IsUniqueIndex(pIdx) ) continue; if( pTarget->nExpr!=pIdx->nKeyCol ) continue; if( pIdx->pPartIdxWhere ){ if( pUpsert->pUpsertTargetWhere==0 ) continue; if( sqlite3ExprCompare(pParse, pUpsert->pUpsertTargetWhere, pIdx->pPartIdxWhere, iCursor)!=0 ){ continue; } } nn = pIdx->nKeyCol; for(ii=0; ii<nn; ii++){ Expr *pExpr; sCol[0].u.zToken = (char*)pIdx->azColl[ii]; if( pIdx->aiColumn[ii]==XN_EXPR ){ assert( pIdx->aColExpr!=0 ); assert( pIdx->aColExpr->nExpr>ii ); pExpr = pIdx->aColExpr->a[ii].pExpr; if( pExpr->op!=TK_COLLATE ){ sCol[0].pLeft = pExpr; pExpr = &sCol[0]; } }else{ sCol[0].pLeft = &sCol[1]; sCol[1].iColumn = pIdx->aiColumn[ii]; pExpr = &sCol[0]; } for(jj=0; jj<nn; jj++){ if( sqlite3ExprCompare(pParse, pTarget->a[jj].pExpr, pExpr,iCursor)<2 ){ break; /* Column ii of the index matches column jj of target */ } } if( jj>=nn ){ /* The target contains no match for column jj of the index */ break; } } if( ii<nn ){ /* Column ii of the index did not match any term of the conflict target. ** Continue the search with the next index. */ continue; } pUpsert->pUpsertIdx = pIdx; return SQLITE_OK; } sqlite3ErrorMsg(pParse, "ON CONFLICT clause does not match any " "PRIMARY KEY or UNIQUE constraint"); return SQLITE_ERROR; } /* ** Generate bytecode that does an UPDATE as part of an upsert. ** ** If pIdx is NULL, then the UNIQUE constraint that failed was the IPK. ** In this case parameter iCur is a cursor open on the table b-tree that ** currently points to the conflicting table row. Otherwise, if pIdx ** is not NULL, then pIdx is the constraint that failed and iCur is a ** cursor points to the conflicting row. */ void sqlite3UpsertDoUpdate( Parse *pParse, /* The parsing and code-generating context */ Upsert *pUpsert, /* The ON CONFLICT clause for the upsert */ Table *pTab, /* The table being updated */ Index *pIdx, /* The UNIQUE constraint that failed */ int iCur /* Cursor for pIdx (or pTab if pIdx==NULL) */ ){ Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; SrcList *pSrc; /* FROM clause for the UPDATE */ int iDataCur = pUpsert->iDataCur; assert( v!=0 ); VdbeNoopComment((v, "Begin DO UPDATE of UPSERT")); if( pIdx && iCur!=iDataCur ){ if( HasRowid(pTab) ){ int regRowid = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_IdxRowid, iCur, regRowid); sqlite3VdbeAddOp3(v, OP_SeekRowid, iDataCur, 0, regRowid); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, regRowid); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); int nPk = pPk->nKeyCol; int iPk = pParse->nMem+1; int i; pParse->nMem += nPk; for(i=0; i<nPk; i++){ int k; assert( pPk->aiColumn[i]>=0 ); k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); sqlite3VdbeAddOp3(v, OP_Column, iCur, k, iPk+i); VdbeComment((v, "%s.%s", pIdx->zName, pTab->aCol[pPk->aiColumn[i]].zName)); } i = sqlite3VdbeAddOp4Int(v, OP_Found, iDataCur, 0, iPk, nPk); VdbeCoverage(v); sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CORRUPT, OE_Abort, 0, "corrupt database", P4_STATIC); sqlite3VdbeJumpHere(v, i); } } /* pUpsert does not own pUpsertSrc - the outer INSERT statement does. So ** we have to make a copy before passing it down into sqlite3Update() */ pSrc = sqlite3SrcListDup(db, pUpsert->pUpsertSrc, 0); sqlite3Update(pParse, pSrc, pUpsert->pUpsertSet, pUpsert->pUpsertWhere, OE_Abort, 0, 0, pUpsert); pUpsert->pUpsertSet = 0; /* Will have been deleted by sqlite3Update() */ pUpsert->pUpsertWhere = 0; /* Will have been deleted by sqlite3Update() */ VdbeNoopComment((v, "End DO UPDATE of UPSERT")); } #endif /* SQLITE_OMIT_UPSERT */ |
Changes to src/vacuum.c.
︙ | ︙ | |||
35 36 37 38 39 40 41 | /* printf("SQL: [%s]\n", zSql); fflush(stdout); */ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; while( SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ const char *zSubSql = (const char*)sqlite3_column_text(pStmt,0); assert( sqlite3_strnicmp(zSql,"SELECT",6)==0 ); | | > > > > | > > | 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | /* printf("SQL: [%s]\n", zSql); fflush(stdout); */ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; while( SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ const char *zSubSql = (const char*)sqlite3_column_text(pStmt,0); assert( sqlite3_strnicmp(zSql,"SELECT",6)==0 ); /* The secondary SQL must be one of CREATE TABLE, CREATE INDEX, ** or INSERT. Historically there have been attacks that first ** corrupt the sqlite_master.sql field with other kinds of statements ** then run VACUUM to get those statements to execute at inappropriate ** times. */ if( zSubSql && (strncmp(zSubSql,"CRE",3)==0 || strncmp(zSubSql,"INS",3)==0) ){ rc = execSql(db, pzErrMsg, zSubSql); if( rc!=SQLITE_OK ) break; } } assert( rc!=SQLITE_ROW ); if( rc==SQLITE_DONE ) rc = SQLITE_OK; if( rc ){ |
︙ | ︙ | |||
249 250 251 252 253 254 255 | " WHERE type='table'AND name<>'sqlite_sequence'" " AND coalesce(rootpage,1)>0", zDbMain ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execSqlF(db, pzErrMsg, "SELECT sql FROM \"%w\".sqlite_master" | | | 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 | " WHERE type='table'AND name<>'sqlite_sequence'" " AND coalesce(rootpage,1)>0", zDbMain ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execSqlF(db, pzErrMsg, "SELECT sql FROM \"%w\".sqlite_master" " WHERE type='index'", zDbMain ); if( rc!=SQLITE_OK ) goto end_of_vacuum; db->init.iDb = 0; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy |
︙ | ︙ |
Changes to src/vdbe.h.
︙ | ︙ | |||
193 194 195 196 197 198 199 | #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N); void sqlite3VdbeVerifyNoResultRow(Vdbe *p); #else # define sqlite3VdbeVerifyNoMallocRequired(A,B) # define sqlite3VdbeVerifyNoResultRow(A) #endif | | > > > > > > > > > > > > | 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 | #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N); void sqlite3VdbeVerifyNoResultRow(Vdbe *p); #else # define sqlite3VdbeVerifyNoMallocRequired(A,B) # define sqlite3VdbeVerifyNoResultRow(A) #endif VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp,int iLineno); #ifndef SQLITE_OMIT_EXPLAIN void sqlite3VdbeExplain(Parse*,u8,const char*,...); void sqlite3VdbeExplainPop(Parse*); int sqlite3VdbeExplainParent(Parse*); # define ExplainQueryPlan(P) sqlite3VdbeExplain P # define ExplainQueryPlanPop(P) sqlite3VdbeExplainPop(P) # define ExplainQueryPlanParent(P) sqlite3VdbeExplainParent(P) #else # define ExplainQueryPlan(P) # define ExplainQueryPlanPop(P) # define ExplainQueryPlanParent(P) 0 #endif void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*); void sqlite3VdbeChangeOpcode(Vdbe*, u32 addr, u8); void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1); void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2); void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3); void sqlite3VdbeChangeP5(Vdbe*, u16 P5); void sqlite3VdbeJumpHere(Vdbe*, int addr); |
︙ | ︙ | |||
216 217 218 219 220 221 222 223 224 225 226 227 228 229 | void sqlite3VdbeRunOnlyOnce(Vdbe*); void sqlite3VdbeReusable(Vdbe*); void sqlite3VdbeDelete(Vdbe*); void sqlite3VdbeClearObject(sqlite3*,Vdbe*); void sqlite3VdbeMakeReady(Vdbe*,Parse*); int sqlite3VdbeFinalize(Vdbe*); void sqlite3VdbeResolveLabel(Vdbe*, int); int sqlite3VdbeCurrentAddr(Vdbe*); #ifdef SQLITE_DEBUG int sqlite3VdbeAssertMayAbort(Vdbe *, int); #endif void sqlite3VdbeResetStepResult(Vdbe*); void sqlite3VdbeRewind(Vdbe*); int sqlite3VdbeReset(Vdbe*); | > > > | 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | void sqlite3VdbeRunOnlyOnce(Vdbe*); void sqlite3VdbeReusable(Vdbe*); void sqlite3VdbeDelete(Vdbe*); void sqlite3VdbeClearObject(sqlite3*,Vdbe*); void sqlite3VdbeMakeReady(Vdbe*,Parse*); int sqlite3VdbeFinalize(Vdbe*); void sqlite3VdbeResolveLabel(Vdbe*, int); #ifdef SQLITE_COVERAGE_TEST int sqlite3VdbeLabelHasBeenResolved(Vdbe*,int); #endif int sqlite3VdbeCurrentAddr(Vdbe*); #ifdef SQLITE_DEBUG int sqlite3VdbeAssertMayAbort(Vdbe *, int); #endif void sqlite3VdbeResetStepResult(Vdbe*); void sqlite3VdbeRewind(Vdbe*); int sqlite3VdbeReset(Vdbe*); |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
299 300 301 302 303 304 305 306 307 308 309 310 311 312 | int p4type /* P4 operand type */ ){ char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); if( p4copy ) memcpy(p4copy, zP4, 8); return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); } /* ** Add an OP_ParseSchema opcode. This routine is broken out from ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees ** as having been used. ** ** The zWhere string must have been obtained from sqlite3_malloc(). ** This routine will take ownership of the allocated memory. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | int p4type /* P4 operand type */ ){ char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); if( p4copy ) memcpy(p4copy, zP4, 8); return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); } #ifndef SQLITE_OMIT_EXPLAIN /* ** Return the address of the current EXPLAIN QUERY PLAN baseline. ** 0 means "none". */ int sqlite3VdbeExplainParent(Parse *pParse){ VdbeOp *pOp; if( pParse->addrExplain==0 ) return 0; pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); return pOp->p2; } /* ** Add a new OP_Explain opcode. ** ** If the bPush flag is true, then make this opcode the parent for ** subsequent Explains until sqlite3VdbeExplainPop() is called. */ void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ if( pParse->explain==2 ){ char *zMsg; Vdbe *v = pParse->pVdbe; va_list ap; int iThis; va_start(ap, zFmt); zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); va_end(ap); v = pParse->pVdbe; iThis = v->nOp; sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, zMsg, P4_DYNAMIC); if( bPush) pParse->addrExplain = iThis; } } /* ** Pop the EXPLAIN QUERY PLAN stack one level. */ void sqlite3VdbeExplainPop(Parse *pParse){ pParse->addrExplain = sqlite3VdbeExplainParent(pParse); } #endif /* SQLITE_OMIT_EXPLAIN */ /* ** Add an OP_ParseSchema opcode. This routine is broken out from ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees ** as having been used. ** ** The zWhere string must have been obtained from sqlite3_malloc(). ** This routine will take ownership of the allocated memory. |
︙ | ︙ | |||
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 | void sqlite3VdbeResolveLabel(Vdbe *v, int x){ Parse *p = v->pParse; int j = ADDR(x); assert( v->magic==VDBE_MAGIC_INIT ); assert( j<p->nLabel ); assert( j>=0 ); if( p->aLabel ){ p->aLabel[j] = v->nOp; } } /* ** Mark the VDBE as one that can only be run one time. */ void sqlite3VdbeRunOnlyOnce(Vdbe *p){ p->runOnlyOnce = 1; } | > > > > > > > > > > > > > > > > > > > | 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 | void sqlite3VdbeResolveLabel(Vdbe *v, int x){ Parse *p = v->pParse; int j = ADDR(x); assert( v->magic==VDBE_MAGIC_INIT ); assert( j<p->nLabel ); assert( j>=0 ); if( p->aLabel ){ #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ printf("RESOLVE LABEL %d to %d\n", x, v->nOp); } #endif assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ p->aLabel[j] = v->nOp; } } #ifdef SQLITE_COVERAGE_TEST /* ** Return TRUE if and only if the label x has already been resolved. ** Return FALSE (zero) if label x is still unresolved. ** ** This routine is only used inside of testcase() macros, and so it ** only exists when measuring test coverage. */ int sqlite3VdbeLabelHasBeenResolved(Vdbe *v, int x){ return v->pParse->aLabel && v->pParse->aLabel[ADDR(x)]>=0; } #endif /* SQLITE_COVERAGE_TEST */ /* ** Mark the VDBE as one that can only be run one time. */ void sqlite3VdbeRunOnlyOnce(Vdbe *p){ p->runOnlyOnce = 1; } |
︙ | ︙ | |||
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 | ** running the code, it invokes the callback once for each instruction. ** This feature is used to implement "EXPLAIN". ** ** When p->explain==1, each instruction is listed. When ** p->explain==2, only OP_Explain instructions are listed and these ** are shown in a different format. p->explain==2 is used to implement ** EXPLAIN QUERY PLAN. ** ** When p->explain==1, first the main program is listed, then each of ** the trigger subprograms are listed one by one. */ int sqlite3VdbeList( Vdbe *p /* The VDBE */ ){ | > > > | 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 | ** running the code, it invokes the callback once for each instruction. ** This feature is used to implement "EXPLAIN". ** ** When p->explain==1, each instruction is listed. When ** p->explain==2, only OP_Explain instructions are listed and these ** are shown in a different format. p->explain==2 is used to implement ** EXPLAIN QUERY PLAN. ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers ** are also shown, so that the boundaries between the main program and ** each trigger are clear. ** ** When p->explain==1, first the main program is listed, then each of ** the trigger subprograms are listed one by one. */ int sqlite3VdbeList( Vdbe *p /* The VDBE */ ){ |
︙ | ︙ | |||
1684 1685 1686 1687 1688 1689 1690 | apSub = (SubProgram **)pSub->z; } for(i=0; i<nSub; i++){ nRow += apSub[i]->nOp; } } | | | 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 | apSub = (SubProgram **)pSub->z; } for(i=0; i<nSub; i++){ nRow += apSub[i]->nOp; } } while(1){ /* Loop exits via break */ i = p->pc++; if( i>=nRow ){ p->rc = SQLITE_OK; rc = SQLITE_DONE; break; } if( i<p->nOp ){ |
︙ | ︙ | |||
1730 1731 1732 1733 1734 1735 1736 | apSub = (SubProgram **)pSub->z; apSub[nSub++] = pOp->p4.pProgram; pSub->flags |= MEM_Blob; pSub->n = nSub*sizeof(SubProgram*); nRow += pOp->p4.pProgram->nOp; } } | | > > > | 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 | apSub = (SubProgram **)pSub->z; apSub[nSub++] = pOp->p4.pProgram; pSub->flags |= MEM_Blob; pSub->n = nSub*sizeof(SubProgram*); nRow += pOp->p4.pProgram->nOp; } } if( p->explain<2 ) break; if( pOp->opcode==OP_Explain ) break; if( pOp->opcode==OP_Init && p->pc>1 ) break; } if( rc==SQLITE_OK ){ if( db->u1.isInterrupted ){ p->rc = SQLITE_INTERRUPT; rc = SQLITE_ERROR; sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); }else{ |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
1474 1475 1476 1477 1478 1479 1480 | zVal = &pExpr->u.zToken[2]; nVal = sqlite3Strlen30(zVal)-1; assert( zVal[nVal]=='\'' ); sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 0, SQLITE_DYNAMIC); } #endif | < > > > > > | 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 | zVal = &pExpr->u.zToken[2]; nVal = sqlite3Strlen30(zVal)-1; assert( zVal[nVal]=='\'' ); sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 0, SQLITE_DYNAMIC); } #endif #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 else if( op==TK_FUNCTION && pCtx!=0 ){ rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); } #endif else if( op==TK_TRUEFALSE ){ pVal = valueNew(db, pCtx); pVal->flags = MEM_Int; pVal->u.i = pExpr->u.zToken[4]==0; } *ppVal = pVal; return rc; no_mem: #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 if( pCtx==0 || pCtx->pParse->nErr==0 ) |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
2416 2417 2418 2419 2420 2421 2422 | } if( pTerm->prereqRight & pNew->maskSelf ) continue; /* Do not allow the upper bound of a LIKE optimization range constraint ** to mix with a lower range bound from some other source */ if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; | | < < < | 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 | } if( pTerm->prereqRight & pNew->maskSelf ) continue; /* Do not allow the upper bound of a LIKE optimization range constraint ** to mix with a lower range bound from some other source */ if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; /* Do not allow constraints from the WHERE clause to be used by the ** right table of a LEFT JOIN. Only constraints in the ON clause are ** allowed */ if( (pSrc->fg.jointype & JT_LEFT)!=0 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) ){ continue; } if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE; }else{ pBuilder->bldFlags |= SQLITE_BLDF_INDEXED; |
︙ | ︙ | |||
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 | /* Special case: No FROM clause */ if( nTabList==0 ){ if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; if( wctrlFlags & WHERE_WANT_DISTINCT ){ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; } }else{ /* Assign a bit from the bitmask to every term in the FROM clause. ** ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. ** ** The rule of the previous sentence ensures thta if X is the bitmask for ** a table T, then X-1 is the bitmask for all other tables to the left of T. | > | 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 | /* Special case: No FROM clause */ if( nTabList==0 ){ if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; if( wctrlFlags & WHERE_WANT_DISTINCT ){ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; } ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); }else{ /* Assign a bit from the bitmask to every term in the FROM clause. ** ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. ** ** The rule of the previous sentence ensures thta if X is the bitmask for ** a table T, then X-1 is the bitmask for all other tables to the left of T. |
︙ | ︙ |
Changes to src/wherecode.c.
︙ | ︙ | |||
130 131 132 133 134 135 136 | #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) if( sqlite3ParseToplevel(pParse)->explain==2 ) #endif { struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; Vdbe *v = pParse->pVdbe; /* VM being constructed */ sqlite3 *db = pParse->db; /* Database handle */ | < | | 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) if( sqlite3ParseToplevel(pParse)->explain==2 ) #endif { struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; Vdbe *v = pParse->pVdbe; /* VM being constructed */ sqlite3 *db = pParse->db; /* Database handle */ int isSearch; /* True for a SEARCH. False for SCAN. */ WhereLoop *pLoop; /* The controlling WhereLoop object */ u32 flags; /* Flags that describe this loop */ char *zMsg; /* Text to add to EQP output */ StrAccum str; /* EQP output string */ char zBuf[100]; /* Initial space for EQP output string */ pLoop = pLevel->pWLoop; flags = pLoop->wsFlags; if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); if( pItem->pSelect ){ sqlite3XPrintf(&str, " SUBQUERY 0x%p", pItem->pSelect); }else{ sqlite3XPrintf(&str, " TABLE %s", pItem->zName); } if( pItem->zAlias ){ sqlite3XPrintf(&str, " AS %s", pItem->zAlias); } |
︙ | ︙ | |||
210 211 212 213 214 215 216 | if( pLoop->nOut>=10 ){ sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); }else{ sqlite3StrAccumAppend(&str, " (~1 row)", 9); } #endif zMsg = sqlite3StrAccumFinish(&str); | | > | 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | if( pLoop->nOut>=10 ){ sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); }else{ sqlite3StrAccumAppend(&str, " (~1 row)", 9); } #endif zMsg = sqlite3StrAccumFinish(&str); ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), pParse->addrExplain, 0, zMsg,P4_DYNAMIC); } return ret; } #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS /* |
︙ | ︙ | |||
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 | addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); /* If this is the right table of a LEFT OUTER JOIN, allocate and ** initialize a memory cell that records if this table matches any ** row of the left table of the join. */ if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ pLevel->iLeftJoin = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); VdbeComment((v, "init LEFT JOIN no-match flag")); } /* Compute a safe address to jump to if we discover that the table for | > > > | 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 | addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); /* If this is the right table of a LEFT OUTER JOIN, allocate and ** initialize a memory cell that records if this table matches any ** row of the left table of the join. */ assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 ); if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ pLevel->iLeftJoin = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); VdbeComment((v, "init LEFT JOIN no-match flag")); } /* Compute a safe address to jump to if we discover that the table for |
︙ | ︙ | |||
1744 1745 1746 1747 1748 1749 1750 1751 | sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, iRowidReg, pPk->nKeyCol); VdbeCoverage(v); } /* If pIdx is an index on one or more expressions, then look through ** all the expressions in pWInfo and try to transform matching expressions ** into reference to index columns. */ | > > > > > > > | | | 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 | sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, iRowidReg, pPk->nKeyCol); VdbeCoverage(v); } /* If pIdx is an index on one or more expressions, then look through ** all the expressions in pWInfo and try to transform matching expressions ** into reference to index columns. ** ** Do not do this for the RHS of a LEFT JOIN. This is because the ** expression may be evaluated after OP_NullRow has been executed on ** the cursor. In this case it is important to do the full evaluation, ** as the result of the expression may not be NULL, even if all table ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a */ if( pLevel->iLeftJoin==0 ){ whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); } /* Record the instruction used to terminate the loop. */ if( pLoop->wsFlags & WHERE_ONEROW ){ pLevel->op = OP_Noop; }else if( bRev ){ pLevel->op = OP_Prev; }else{ |
︙ | ︙ | |||
1902 1903 1904 1905 1906 1907 1908 | ** See ticket http://www.sqlite.org/src/info/f2369304e4 */ if( pWC->nTerm>1 ){ int iTerm; for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ Expr *pExpr = pWC->a[iTerm].pExpr; if( &pWC->a[iTerm] == pTerm ) continue; | < > > | > > | 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 | ** See ticket http://www.sqlite.org/src/info/f2369304e4 */ if( pWC->nTerm>1 ){ int iTerm; for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ Expr *pExpr = pWC->a[iTerm].pExpr; if( &pWC->a[iTerm] == pTerm ) continue; testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); pExpr = sqlite3ExprDup(db, pExpr, 0); pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); } if( pAndExpr ){ pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr); } } /* Run a separate WHERE clause for each term of the OR clause. After ** eliminating duplicates from other WHERE clauses, the action for each ** sub-WHERE clause is to to invoke the main loop body as a subroutine. */ wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE); ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); for(ii=0; ii<pOrWc->nTerm; ii++){ WhereTerm *pOrTerm = &pOrWc->a[ii]; if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ WhereInfo *pSubWInfo; /* Info for single OR-term scan */ Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ int jmp1 = 0; /* Address of jump operation */ assert( (pTabItem[0].fg.jointype & JT_LEFT)==0 || ExprHasProperty(pOrExpr, EP_FromJoin) ); if( pAndExpr ){ pAndExpr->pLeft = pOrExpr; pOrExpr = pAndExpr; } /* Loop through table entries that match term pOrTerm. */ WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, wctrlFlags, iCovCur); |
︙ | ︙ | |||
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 | } /* Finish the loop through table entries that match term pOrTerm. */ sqlite3WhereEnd(pSubWInfo); } } } pLevel->u.pCovidx = pCov; if( pCov ) pLevel->iIdxCur = iCovCur; if( pAndExpr ){ pAndExpr->pLeft = 0; sqlite3ExprDelete(db, pAndExpr); } sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); | > | 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 | } /* Finish the loop through table entries that match term pOrTerm. */ sqlite3WhereEnd(pSubWInfo); } } } ExplainQueryPlanPop(pParse); pLevel->u.pCovidx = pCov; if( pCov ) pLevel->iIdxCur = iCovCur; if( pAndExpr ){ pAndExpr->pLeft = 0; sqlite3ExprDelete(db, pAndExpr); } sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); |
︙ | ︙ | |||
2110 2111 2112 2113 2114 2115 2116 | testcase( pWInfo->untestedTerms==0 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); pWInfo->untestedTerms = 1; continue; } pE = pTerm->pExpr; assert( pE!=0 ); | | | 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 | testcase( pWInfo->untestedTerms==0 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); pWInfo->untestedTerms = 1; continue; } pE = pTerm->pExpr; assert( pE!=0 ); if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){ continue; } if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ iNext = 2; continue; } |
︙ | ︙ |
Changes to src/whereexpr.c.
︙ | ︙ | |||
814 815 816 817 818 819 820 | testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; markTermAsChild(pWC, idxNew, idxTerm); }else{ sqlite3ExprListDelete(db, pList); } | < | 814 815 816 817 818 819 820 821 822 823 824 825 826 827 | testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; markTermAsChild(pWC, idxNew, idxTerm); }else{ sqlite3ExprListDelete(db, pList); } } } } #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ /* ** We already know that pExpr is a binary operator where both operands are |
︙ | ︙ |
Changes to test/analyze3.test.
︙ | ︙ | |||
114 115 116 117 118 119 120 | # The first of the following two SELECT statements visits 99 rows. So # it is better to use the index. But the second visits every row in # the table (1000 in total) so it is better to do a full-table scan. # do_eqp_test analyze3-1.1.2 { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 | | | | | | | | | 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | # The first of the following two SELECT statements visits 99 rows. So # it is better to use the index. But the second visits every row in # the table (1000 in total) so it is better to do a full-table scan. # do_eqp_test analyze3-1.1.2 { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 } {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)} do_eqp_test analyze3-1.1.3 { SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 } {SCAN TABLE t1} # 2017-06-26: Verify that the SQLITE_DBCONFIG_ENABLE_QPSG setting disables # the use of bound parameters by STAT4 # db cache flush unset -nocomplain l unset -nocomplain u do_eqp_test analyze3-1.1.3.100 { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u } {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)} set l 200 set u 300 do_eqp_test analyze3-1.1.3.101 { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u } {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)} set l 0 set u 1100 do_eqp_test analyze3-1.1.3.102 { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u } {SCAN TABLE t1} db cache flush sqlite3_db_config db ENABLE_QPSG 1 do_eqp_test analyze3-1.1.3.103 { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u } {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)} db cache flush sqlite3_db_config db ENABLE_QPSG 0 do_eqp_test analyze3-1.1.3.104 { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u } {SCAN TABLE t1} do_test analyze3-1.1.4 { sf_execsql { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 } } {199 0 14850} do_test analyze3-1.1.5 { set l [string range "200" 0 end] set u [string range "300" 0 end] |
︙ | ︙ | |||
197 198 199 200 201 202 203 | } {} do_execsql_test analyze3-2.1.x { SELECT count(*) FROM t2 WHERE x>1 AND x<2; SELECT count(*) FROM t2 WHERE x>0 AND x<99; } {200 990} do_eqp_test analyze3-1.2.2 { SELECT sum(y) FROM t2 WHERE x>1 AND x<2 | | | | 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | } {} do_execsql_test analyze3-2.1.x { SELECT count(*) FROM t2 WHERE x>1 AND x<2; SELECT count(*) FROM t2 WHERE x>0 AND x<99; } {200 990} do_eqp_test analyze3-1.2.2 { SELECT sum(y) FROM t2 WHERE x>1 AND x<2 } {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?)} do_eqp_test analyze3-1.2.3 { SELECT sum(y) FROM t2 WHERE x>0 AND x<99 } {SCAN TABLE t2} do_test analyze3-1.2.4 { sf_execsql { SELECT sum(y) FROM t2 WHERE x>12 AND x<20 } } {161 0 4760} do_test analyze3-1.2.5 { set l [string range "12" 0 end] set u [string range "20" 0 end] |
︙ | ︙ | |||
249 250 251 252 253 254 255 | } {} do_execsql_test analyze3-1.3.x { SELECT count(*) FROM t3 WHERE x>200 AND x<300; SELECT count(*) FROM t3 WHERE x>0 AND x<1100 } {99 1000} do_eqp_test analyze3-1.3.2 { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 | | | | 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | } {} do_execsql_test analyze3-1.3.x { SELECT count(*) FROM t3 WHERE x>200 AND x<300; SELECT count(*) FROM t3 WHERE x>0 AND x<1100 } {99 1000} do_eqp_test analyze3-1.3.2 { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 } {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?)} do_eqp_test analyze3-1.3.3 { SELECT sum(y) FROM t3 WHERE x>0 AND x<1100 } {SCAN TABLE t3} do_test analyze3-1.3.4 { sf_execsql { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 } } {199 0 14850} do_test analyze3-1.3.5 { set l [string range "200" 0 end] set u [string range "300" 0 end] |
︙ | ︙ | |||
304 305 306 307 308 309 310 | append t [lindex {a b c d e f g h i j} [expr ($i%10)]] execsql { INSERT INTO t1 VALUES($i, $t) } } execsql COMMIT } {} do_eqp_test analyze3-2.2 { SELECT count(a) FROM t1 WHERE b LIKE 'a%' | | | | 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | append t [lindex {a b c d e f g h i j} [expr ($i%10)]] execsql { INSERT INTO t1 VALUES($i, $t) } } execsql COMMIT } {} do_eqp_test analyze3-2.2 { SELECT count(a) FROM t1 WHERE b LIKE 'a%' } {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?)} do_eqp_test analyze3-2.3 { SELECT count(a) FROM t1 WHERE b LIKE '%a' } {SCAN TABLE t1} # Return the first argument if like_match_blobs is true (the default) # or the second argument if not # proc ilmb {a b} { ifcapable like_match_blobs {return $a} return $b |
︙ | ︙ | |||
694 695 696 697 698 699 700 | } execsql COMMIT execsql ANALYZE } {} do_eqp_test analyze3-6-3 { SELECT * FROM t1 WHERE a = 5 AND c = 13; | | | | 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 | } execsql COMMIT execsql ANALYZE } {} do_eqp_test analyze3-6-3 { SELECT * FROM t1 WHERE a = 5 AND c = 13; } {SEARCH TABLE t1 USING INDEX i2 (c=?)} do_eqp_test analyze3-6-2 { SELECT * FROM t1 WHERE a = 5 AND b > 'w' AND c = 13; } {SEARCH TABLE t1 USING INDEX i2 (c=?)} #----------------------------------------------------------------------------- # 2015-04-20. # Memory leak in sqlite3Stat4ProbeFree(). (Discovered while fuzzing.) # do_execsql_test analyze-7.1 { DROP TABLE IF EXISTS t1; |
︙ | ︙ |
Changes to test/analyze4.test.
︙ | ︙ | |||
34 35 36 37 38 39 40 | INSERT INTO t1 SELECT a+32, b FROM t1; INSERT INTO t1 SELECT a+64, b FROM t1; ANALYZE; } # Should choose the t1a index since it is more specific than t1b. db eval {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=5 AND b IS NULL} | | | 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | INSERT INTO t1 SELECT a+32, b FROM t1; INSERT INTO t1 SELECT a+64, b FROM t1; ANALYZE; } # Should choose the t1a index since it is more specific than t1b. db eval {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=5 AND b IS NULL} } {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/} # Verify that the t1b index shows that it does not narrow down the # search any at all. # do_test analyze4-1.1 { db eval { SELECT idx, stat FROM sqlite_stat1 WHERE tbl='t1' ORDER BY idx; |
︙ | ︙ |
Changes to test/analyze6.test.
︙ | ︙ | |||
57 58 59 60 61 62 63 | # The lowest cost plan is to scan CAT and for each integer there, do a single # lookup of the first corresponding entry in EV then read off the equal values # in EV. (Prior to the 2011-03-04 enhancement to where.c, this query would # have used EV for the outer loop instead of CAT - which was about 3x slower.) # do_test analyze6-1.1 { eqp {SELECT count(*) FROM ev, cat WHERE x=y} | | | | > > > | > | | | | | | | | | | 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | # The lowest cost plan is to scan CAT and for each integer there, do a single # lookup of the first corresponding entry in EV then read off the equal values # in EV. (Prior to the 2011-03-04 enhancement to where.c, this query would # have used EV for the outer loop instead of CAT - which was about 3x slower.) # do_test analyze6-1.1 { eqp {SELECT count(*) FROM ev, cat WHERE x=y} } {/*SCAN TABLE cat USING COVERING INDEX catx*SEARCH TABLE ev USING COVERING INDEX evy (y=?)*/} # The same plan is chosen regardless of the order of the tables in the # FROM clause. # do_eqp_test analyze6-1.2 { SELECT count(*) FROM cat, ev WHERE x=y } { QUERY PLAN |--SCAN TABLE cat USING COVERING INDEX catx `--SEARCH TABLE ev USING COVERING INDEX evy (y=?) } # Ticket [83ea97620bd3101645138b7b0e71c12c5498fe3d] 2011-03-30 # If ANALYZE is run on an empty table, make sure indices are used # on the table. # do_test analyze6-2.1 { execsql { CREATE TABLE t201(x INTEGER PRIMARY KEY, y UNIQUE, z); CREATE INDEX t201z ON t201(z); ANALYZE; } eqp {SELECT * FROM t201 WHERE z=5} } {/*SEARCH TABLE t201 USING INDEX t201z (z=?)*/} do_test analyze6-2.2 { eqp {SELECT * FROM t201 WHERE y=5} } {/*SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)*/} do_test analyze6-2.3 { eqp {SELECT * FROM t201 WHERE x=5} } {/*SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)*/} do_test analyze6-2.4 { execsql { INSERT INTO t201 VALUES(1,2,3),(2,3,4),(3,4,5); ANALYZE t201; } eqp {SELECT * FROM t201 WHERE z=5} } {/*SEARCH TABLE t201 USING INDEX t201z (z=?)*/} do_test analyze6-2.5 { eqp {SELECT * FROM t201 WHERE y=5} } {/*SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)*/} do_test analyze6-2.6 { eqp {SELECT * FROM t201 WHERE x=5} } {/*SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)*/} do_test analyze6-2.7 { execsql { INSERT INTO t201 VALUES(4,5,7); INSERT INTO t201 SELECT x+100, y+100, z+100 FROM t201; INSERT INTO t201 SELECT x+200, y+200, z+200 FROM t201; INSERT INTO t201 SELECT x+400, y+400, z+400 FROM t201; ANALYZE t201; } eqp {SELECT * FROM t201 WHERE z=5} } {/*SEARCH TABLE t201 USING INDEX t201z (z=?)*/} do_test analyze6-2.8 { eqp {SELECT * FROM t201 WHERE y=5} } {/*SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)*/} do_test analyze6-2.9 { eqp {SELECT * FROM t201 WHERE x=5} } {/*SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)*/} finish_test |
Changes to test/analyze7.test.
︙ | ︙ | |||
33 34 35 36 37 38 39 | CREATE INDEX t1b ON t1(b); CREATE INDEX t1cd ON t1(c,d); CREATE VIRTUAL TABLE nums USING wholenumber; INSERT INTO t1 SELECT value, value, value/100, value FROM nums WHERE value BETWEEN 1 AND 256; EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123; } | | | | | | | | | | | | | | | | | | 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | CREATE INDEX t1b ON t1(b); CREATE INDEX t1cd ON t1(c,d); CREATE VIRTUAL TABLE nums USING wholenumber; INSERT INTO t1 SELECT value, value, value/100, value FROM nums WHERE value BETWEEN 1 AND 256; EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123; } } {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/} do_test analyze7-1.1 { execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;} } {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/} do_test analyze7-1.2 { execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;} } {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/} # Run an analyze on one of the three indices. Verify that this # effects the row-count estimate on the one query that uses that # one index. # do_test analyze7-2.0 { execsql {ANALYZE t1a;} db cache flush execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;} } {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/} do_test analyze7-2.1 { execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;} } {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/} do_test analyze7-2.2 { execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;} } {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/} # Verify that since the query planner now things that t1a is more # selective than t1b, it prefers to use t1a. # do_test analyze7-2.3 { execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123} } {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/} # Run an analysis on another of the three indices. Verify that this # new analysis works and does not disrupt the previous analysis. # do_test analyze7-3.0 { execsql {ANALYZE t1cd;} db cache flush; execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;} } {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/} do_test analyze7-3.1 { execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;} } {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/} do_test analyze7-3.2.1 { execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=?;} } {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/} ifcapable stat4||stat3 { # If ENABLE_STAT4 is defined, SQLite comes up with a different estimated # row count for (c=2) than it does for (c=?). do_test analyze7-3.2.2 { execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;} } {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/} } else { # If ENABLE_STAT4 is not defined, the expected row count for (c=2) is the # same as that for (c=?). do_test analyze7-3.2.3 { execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;} } {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/} } do_test analyze7-3.3 { execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123} } {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/} ifcapable {!stat4 && !stat3} { do_test analyze7-3.4 { execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND b=123} } {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/} do_test analyze7-3.5 { execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND c=123} } {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/} } do_test analyze7-3.6 { execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND d=123 AND b=123} } {/*SEARCH TABLE t1 USING INDEX t1cd (c=? AND d=?)*/} finish_test |
Changes to test/analyze8.test.
︙ | ︙ | |||
57 58 59 60 61 62 63 | # with a==100. And so for those cases, choose the t1b index. # # Buf ro a==99 and a==101, there are far fewer rows so choose # the t1a index. # do_test 1.1 { eqp {SELECT * FROM t1 WHERE a=100 AND b=55} | | | | | | | | | | | | | 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | # with a==100. And so for those cases, choose the t1b index. # # Buf ro a==99 and a==101, there are far fewer rows so choose # the t1a index. # do_test 1.1 { eqp {SELECT * FROM t1 WHERE a=100 AND b=55} } {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/} do_test 1.2 { eqp {SELECT * FROM t1 WHERE a=99 AND b=55} } {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/} do_test 1.3 { eqp {SELECT * FROM t1 WHERE a=101 AND b=55} } {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/} do_test 1.4 { eqp {SELECT * FROM t1 WHERE a=100 AND b=56} } {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/} do_test 1.5 { eqp {SELECT * FROM t1 WHERE a=99 AND b=56} } {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/} do_test 1.6 { eqp {SELECT * FROM t1 WHERE a=101 AND b=56} } {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/} do_test 2.1 { eqp {SELECT * FROM t1 WHERE a=100 AND b BETWEEN 50 AND 54} } {/*SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)*/} # There are many more values of c between 0 and 100000 than there are # between 800000 and 900000. So t1c is more selective for the latter # range. # # Test 3.2 is a little unstable. It depends on the planner estimating # that (b BETWEEN 30 AND 34) will match more rows than (c BETWEEN # 800000 AND 900000). Which is a pretty close call (50 vs. 32), so # the planner could get it wrong with an unlucky set of samples. This # case happens to work, but others ("b BETWEEN 40 AND 44" for example) # will fail. # do_execsql_test 3.0 { SELECT count(*) FROM t1 WHERE b BETWEEN 30 AND 34; SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 100000; SELECT count(*) FROM t1 WHERE c BETWEEN 800000 AND 900000; } {50 376 32} do_test 3.1 { eqp {SELECT * FROM t1 WHERE b BETWEEN 30 AND 34 AND c BETWEEN 0 AND 100000} } {/*SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)*/} do_test 3.2 { eqp {SELECT * FROM t1 WHERE b BETWEEN 30 AND 34 AND c BETWEEN 800000 AND 900000} } {/*SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)*/} do_test 3.3 { eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 0 AND 100000} } {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/} do_test 3.4 { eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 800000 AND 900000} } {/*SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)*/} finish_test |
Changes to test/analyze9.test.
︙ | ︙ | |||
983 984 985 986 987 988 989 | } {/*USING INTEGER PRIMARY KEY*/} #------------------------------------------------------------------------- # reset_db do_execsql_test 22.0 { CREATE TABLE t3(a, b, c, d, PRIMARY KEY(a, b)) WITHOUT ROWID; | > | | 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 | } {/*USING INTEGER PRIMARY KEY*/} #------------------------------------------------------------------------- # reset_db do_execsql_test 22.0 { CREATE TABLE t3(a, b, c, d, PRIMARY KEY(a, b)) WITHOUT ROWID; SELECT * FROM t3; } {} do_execsql_test 22.1 { WITH r(x) AS ( SELECT 1 UNION ALL SELECT x+1 FROM r WHERE x<=100 ) |
︙ | ︙ | |||
1051 1052 1053 1054 1055 1056 1057 | do_eqp_test 23.1 { SELECT * FROM t4 WHERE (e=1 AND b='xyz' AND c='zyx' AND a<'AEA') AND f<300 -- Formerly used index i41. But i41 is not a covering index whereas -- the PRIMARY KEY is a covering index, and so as of 2017-10-15, the -- PRIMARY KEY is preferred. | < | < < | < | 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 | do_eqp_test 23.1 { SELECT * FROM t4 WHERE (e=1 AND b='xyz' AND c='zyx' AND a<'AEA') AND f<300 -- Formerly used index i41. But i41 is not a covering index whereas -- the PRIMARY KEY is a covering index, and so as of 2017-10-15, the -- PRIMARY KEY is preferred. } {SEARCH TABLE t4 USING PRIMARY KEY (c=? AND b=? AND a<?)} do_eqp_test 23.2 { SELECT * FROM t4 WHERE (e=1 AND b='xyz' AND c='zyx' AND a<'JJJ') AND f<300 } {SEARCH TABLE t4 USING INDEX i42 (f<?)} do_execsql_test 24.0 { CREATE TABLE t5(c, d, b, e, a, PRIMARY KEY(a, b, c)) WITHOUT ROWID; WITH data(a, b, c, d, e) AS ( SELECT 'z', 'y', 0, 0, 0 UNION ALL SELECT |
︙ | ︙ | |||
1104 1105 1106 1107 1108 1109 1110 | CREATE INDEX aa ON t6(a); CREATE INDEX bb ON t6(b); ANALYZE; } # Term (b<?) is estimated at 25%. Better than (a<30) but not as # good as (a<20). | | | < | | < < | < < | | < | < | 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 | CREATE INDEX aa ON t6(a); CREATE INDEX bb ON t6(b); ANALYZE; } # Term (b<?) is estimated at 25%. Better than (a<30) but not as # good as (a<20). do_eqp_test 25.2.1 { SELECT * FROM t6 WHERE a<30 AND b<? } \ {SEARCH TABLE t6 USING INDEX bb (b<?)} do_eqp_test 25.2.2 { SELECT * FROM t6 WHERE a<20 AND b<? } \ {SEARCH TABLE t6 USING INDEX aa (a<?)} # Term (b BETWEEN ? AND ?) is estimated at 1/64. do_eqp_test 25.3.1 { SELECT * FROM t6 WHERE a BETWEEN 5 AND 10 AND b BETWEEN ? AND ? } {SEARCH TABLE t6 USING INDEX bb (b>? AND b<?)} # Term (b BETWEEN ? AND 60) is estimated to return roughly 15 rows - # 60 from (b<=60) multiplied by 0.25 for the b>=? term. Better than # (a<20) but not as good as (a<10). do_eqp_test 25.4.1 { SELECT * FROM t6 WHERE a < 10 AND (b BETWEEN ? AND 60) } {SEARCH TABLE t6 USING INDEX aa (a<?)} do_eqp_test 25.4.2 { SELECT * FROM t6 WHERE a < 20 AND (b BETWEEN ? AND 60) } {SEARCH TABLE t6 USING INDEX bb (b>? AND b<?)} } #------------------------------------------------------------------------- # Check that a problem in they way stat4 data is used has been # resolved (see below). # reset_db |
︙ | ︙ | |||
1186 1187 1188 1189 1190 1191 1192 | # no more than that. Guessing less than 20 is therefore unreasonable. # # At one point though, due to a problem in whereKeyStats(), the planner was # estimating that (x=10000 AND y<50) would match only 2 rows. # do_eqp_test 26.1.4 { SELECT * FROM t1 WHERE x = 10000 AND y < 50 AND z = 444; | < | < | 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 | # no more than that. Guessing less than 20 is therefore unreasonable. # # At one point though, due to a problem in whereKeyStats(), the planner was # estimating that (x=10000 AND y<50) would match only 2 rows. # do_eqp_test 26.1.4 { SELECT * FROM t1 WHERE x = 10000 AND y < 50 AND z = 444; } {SEARCH TABLE t1 USING INDEX t1z (z=?)} # This test - 26.2.* - tests that another manifestation of the same problem # is no longer present in the library. Assuming: # # CREATE INDEX t1xy ON t1(x, y) # |
︙ | ︙ | |||
1237 1238 1239 1240 1241 1242 1243 | UPDATE t1 SET z = (rowid / 95); ANALYZE; COMMIT; } do_eqp_test 26.2.2 { SELECT * FROM t1 WHERE x='B' AND y>25 AND z=?; | < | < | 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 | UPDATE t1 SET z = (rowid / 95); ANALYZE; COMMIT; } do_eqp_test 26.2.2 { SELECT * FROM t1 WHERE x='B' AND y>25 AND z=?; } {SEARCH TABLE t1 USING INDEX i1 (x=? AND y>?)} finish_test |
Changes to test/analyzeA.test.
︙ | ︙ | |||
132 133 134 135 136 137 138 | do_execsql_test 1.$tn.2.1 { SELECT count(*) FROM t1 WHERE b=31 } 1 do_execsql_test 1.$tn.2.2 { SELECT count(*) FROM t1 WHERE c=0 } 49 do_execsql_test 1.$tn.2.3 { SELECT count(*) FROM t1 WHERE b=125 } 49 do_execsql_test 1.$tn.2.4 { SELECT count(*) FROM t1 WHERE c=16 } 1 do_eqp_test 1.$tn.2.5 { SELECT * FROM t1 WHERE b = 31 AND c = 0; | | | | | | | | | | 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | do_execsql_test 1.$tn.2.1 { SELECT count(*) FROM t1 WHERE b=31 } 1 do_execsql_test 1.$tn.2.2 { SELECT count(*) FROM t1 WHERE c=0 } 49 do_execsql_test 1.$tn.2.3 { SELECT count(*) FROM t1 WHERE b=125 } 49 do_execsql_test 1.$tn.2.4 { SELECT count(*) FROM t1 WHERE c=16 } 1 do_eqp_test 1.$tn.2.5 { SELECT * FROM t1 WHERE b = 31 AND c = 0; } {SEARCH TABLE t1 USING INDEX t1b (b=?)} do_eqp_test 1.$tn.2.6 { SELECT * FROM t1 WHERE b = 125 AND c = 16; } {SEARCH TABLE t1 USING INDEX t1c (c=?)} do_execsql_test 1.$tn.3.1 { SELECT count(*) FROM t1 WHERE b BETWEEN 0 AND 50 } {6} do_execsql_test 1.$tn.3.2 { SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 50 } {90} do_execsql_test 1.$tn.3.3 { SELECT count(*) FROM t1 WHERE b BETWEEN 75 AND 125 } {90} do_execsql_test 1.$tn.3.4 { SELECT count(*) FROM t1 WHERE c BETWEEN 75 AND 125 } {6} do_eqp_test 1.$tn.3.5 { SELECT * FROM t1 WHERE b BETWEEN 0 AND 50 AND c BETWEEN 0 AND 50 } {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)} do_eqp_test 1.$tn.3.6 { SELECT * FROM t1 WHERE b BETWEEN 75 AND 125 AND c BETWEEN 75 AND 125 } {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)} do_eqp_test 1.$tn.3.7 { SELECT * FROM t1 WHERE b BETWEEN +0 AND +50 AND c BETWEEN +0 AND +50 } {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)} do_eqp_test 1.$tn.3.8 { SELECT * FROM t1 WHERE b BETWEEN cast('0' AS int) AND cast('50.0' AS real) AND c BETWEEN cast('0' AS numeric) AND cast('50.0' AS real) } {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)} do_eqp_test 1.$tn.3.9 { SELECT * FROM t1 WHERE b BETWEEN +75 AND +125 AND c BETWEEN +75 AND +125 } {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)} do_eqp_test 1.$tn.3.10 { SELECT * FROM t1 WHERE b BETWEEN cast('75' AS int) AND cast('125.0' AS real) AND c BETWEEN cast('75' AS numeric) AND cast('125.0' AS real) } {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)} } finish_test |
Changes to test/analyzeD.test.
︙ | ︙ | |||
59 60 61 62 63 64 65 | } {} # With full ANALYZE data, SQLite sees that c=150 (5 rows) is better than # a=3001 (7 rows). # do_eqp_test 1.2 { SELECT * FROM t1 WHERE a=3001 AND c=150; | < | < < | < < | < < | | < | 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | } {} # With full ANALYZE data, SQLite sees that c=150 (5 rows) is better than # a=3001 (7 rows). # do_eqp_test 1.2 { SELECT * FROM t1 WHERE a=3001 AND c=150; } {SEARCH TABLE t1 USING INDEX t1_c (c=?)} do_test 1.3 { execsql { DELETE FROM sqlite_stat1 } db close sqlite3 db test.db } {} # Without stat1, because 3001 is larger than all samples in the stat4 # table, SQLite thinks that a=3001 matches just 1 row. So it (incorrectly) # chooses it over the c=150 index (5 rows). Even with stat1 data, things # worked this way before commit [e6f7f97dbc]. # do_eqp_test 1.4 { SELECT * FROM t1 WHERE a=3001 AND c=150; } {SEARCH TABLE t1 USING INDEX t1_ab (a=?)} do_test 1.5 { execsql { UPDATE t1 SET a=13 WHERE a = 3001; ANALYZE; } } {} do_eqp_test 1.6 { SELECT * FROM t1 WHERE a=13 AND c=150; } {SEARCH TABLE t1 USING INDEX t1_c (c=?)} do_test 1.7 { execsql { DELETE FROM sqlite_stat1 } db close sqlite3 db test.db } {} # Same test as 1.4, except this time the 7 rows that match the a=? condition # do not feature larger values than all rows in the stat4 table. So SQLite # gets this right, even without stat1 data. do_eqp_test 1.8 { SELECT * FROM t1 WHERE a=13 AND c=150; } {SEARCH TABLE t1 USING INDEX t1_c (c=?)} finish_test |
Changes to test/analyzeF.test.
︙ | ︙ | |||
58 59 60 61 62 63 64 | 9 "x = str('19') AND y = str('4')" {t1y (y=?)} 10 "x = str('4') AND y = str('19')" {t1y (y=?)} 11 "x = nullif('19', 0) AND y = nullif('4', 0)" {t1y (y=?)} 12 "x = nullif('4', 0) AND y = nullif('19', 0)" {t1y (y=?)} } { | | | 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | 9 "x = str('19') AND y = str('4')" {t1y (y=?)} 10 "x = str('4') AND y = str('19')" {t1y (y=?)} 11 "x = nullif('19', 0) AND y = nullif('4', 0)" {t1y (y=?)} 12 "x = nullif('4', 0) AND y = nullif('19', 0)" {t1y (y=?)} } { set res "SEARCH TABLE t1 USING INDEX $idx" do_eqp_test 1.$tn "SELECT * FROM t1 WHERE $where" $res } # Test that functions that do not exist - "func()" - do not cause an error. # do_catchsql_test 2.1 { SELECT * FROM t1 WHERE x = substr('145', 2, 1) AND y = func(1, 2, 3) |
︙ | ︙ | |||
88 89 90 91 92 93 94 | foreach {tn where idx} { 1 "x = det4() AND y = det19()" {t1x (x=?)} 2 "x = det19() AND y = det4()" {t1y (y=?)} 3 "x = nondet4() AND y = nondet19()" {t1y (y=?)} 4 "x = nondet19() AND y = nondet4()" {t1y (y=?)} } { | | | 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | foreach {tn where idx} { 1 "x = det4() AND y = det19()" {t1x (x=?)} 2 "x = det19() AND y = det4()" {t1y (y=?)} 3 "x = nondet4() AND y = nondet19()" {t1y (y=?)} 4 "x = nondet19() AND y = nondet4()" {t1y (y=?)} } { set res "SEARCH TABLE t1 USING INDEX $idx" do_eqp_test 3.$tn "SELECT * FROM t1 WHERE $where" $res } execsql { DELETE FROM t1 } proc throw_error {err} { error $err } |
︙ | ︙ |
Changes to test/autoinc.test.
︙ | ︙ | |||
671 672 673 674 675 676 677 | CREATE TABLE t10a(a INTEGER PRIMARY KEY AUTOINCREMENT, b UNIQUE); INSERT INTO t10a VALUES(888,9999); CREATE TABLE t10b(x INTEGER PRIMARY KEY AUTOINCREMENT, y UNIQUE); INSERT INTO t10b SELECT * FROM t10a; SELECT * FROM sqlite_sequence; } {t10a 888 t10b 888} | > | > > > > > > | 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 | CREATE TABLE t10a(a INTEGER PRIMARY KEY AUTOINCREMENT, b UNIQUE); INSERT INTO t10a VALUES(888,9999); CREATE TABLE t10b(x INTEGER PRIMARY KEY AUTOINCREMENT, y UNIQUE); INSERT INTO t10b SELECT * FROM t10a; SELECT * FROM sqlite_sequence; } {t10a 888 t10b 888} # 2018-04-21 autoincrement does not cause problems for upsert # do_execsql_test autoinc-11.1 { CREATE TABLE t11(a INTEGER PRIMARY KEY AUTOINCREMENT,b UNIQUE); INSERT INTO t11(a,b) VALUES(2,3),(5,6),(4,3),(1,2) ON CONFLICT(b) DO UPDATE SET a=a+1000; SELECT seq FROM sqlite_sequence WHERE name='t11'; } {5} finish_test |
Changes to test/autoindex1.test.
︙ | ︙ | |||
173 174 175 176 177 178 179 | # do_execsql_test autoindex1-500 { CREATE TABLE t501(a INTEGER PRIMARY KEY, b); CREATE TABLE t502(x INTEGER PRIMARY KEY, y); INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t501',null,'1000000'); INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t502',null,'1000'); ANALYZE sqlite_master; | < > > > | | | | < > | | | | < > | | | < | 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | # do_execsql_test autoindex1-500 { CREATE TABLE t501(a INTEGER PRIMARY KEY, b); CREATE TABLE t502(x INTEGER PRIMARY KEY, y); INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t501',null,'1000000'); INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t502',null,'1000'); ANALYZE sqlite_master; } do_eqp_test autoindex1-500.1 { SELECT b FROM t501 WHERE t501.a IN (SELECT x FROM t502 WHERE y=?); } { QUERY PLAN |--SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?) `--LIST SUBQUERY `--SCAN TABLE t502 } do_eqp_test autoindex1-501 { SELECT b FROM t501 WHERE t501.a IN (SELECT x FROM t502 WHERE y=t501.b); } { QUERY PLAN |--SCAN TABLE t501 `--CORRELATED LIST SUBQUERY `--SEARCH TABLE t502 USING AUTOMATIC COVERING INDEX (y=?) } do_eqp_test autoindex1-502 { SELECT b FROM t501 WHERE t501.a=123 AND t501.a IN (SELECT x FROM t502 WHERE y=t501.b); } { QUERY PLAN |--SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?) `--CORRELATED LIST SUBQUERY `--SCAN TABLE t502 } # The following code checks a performance regression reported on the # mailing list on 2010-10-19. The problem is that the nRowEst field # of ephermeral tables was not being initialized correctly and so no # automatic index was being created for the emphemeral table when it was # used as part of a join. # |
︙ | ︙ | |||
253 254 255 256 257 258 259 | ON flock_owner (owner_change_date); CREATE INDEX fo_owner_person_id_index ON flock_owner (owner_person_id); CREATE INDEX sheep_org_flock_index ON sheep (originating_flock); CREATE INDEX sheep_reg_flock_index ON sheep (registering_flock); | < > > > > | | | | | | > > | > | | | 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 | ON flock_owner (owner_change_date); CREATE INDEX fo_owner_person_id_index ON flock_owner (owner_person_id); CREATE INDEX sheep_org_flock_index ON sheep (originating_flock); CREATE INDEX sheep_reg_flock_index ON sheep (registering_flock); } do_eqp_test autoindex1-600a { SELECT x.sheep_no, x.registering_flock, x.date_of_registration FROM sheep x LEFT JOIN (SELECT s.sheep_no, prev.flock_no, prev.owner_person_id, s.date_of_registration, prev.owner_change_date FROM sheep s JOIN flock_owner prev ON s.registering_flock = prev.flock_no AND (prev.owner_change_date <= s.date_of_registration || ' 00:00:00') WHERE NOT EXISTS (SELECT 'x' FROM flock_owner later WHERE prev.flock_no = later.flock_no AND later.owner_change_date > prev.owner_change_date AND later.owner_change_date <= s.date_of_registration||' 00:00:00') ) y ON x.sheep_no = y.sheep_no WHERE y.sheep_no IS NULL ORDER BY x.registering_flock; } { QUERY PLAN |--MATERIALIZE xxxxxx | |--SCAN TABLE sheep AS s | |--SEARCH TABLE flock_owner AS prev USING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date<?) | `--CORRELATED SCALAR SUBQUERY | `--SEARCH TABLE flock_owner AS later USING COVERING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date>? AND owner_change_date<?) |--SCAN TABLE sheep AS x USING INDEX sheep_reg_flock_index `--SEARCH SUBQUERY xxxxxx AS y USING AUTOMATIC COVERING INDEX (sheep_no=?) } do_execsql_test autoindex1-700 { CREATE TABLE t5(a, b, c); } do_eqp_test autoindex1-700a { SELECT a FROM t5 WHERE b=10 ORDER BY c; } { QUERY PLAN |--SCAN TABLE t5 `--USE TEMP B-TREE FOR ORDER BY } # The following checks a performance issue reported on the sqlite-dev # mailing list on 2013-01-10 # do_execsql_test autoindex1-800 { CREATE TABLE accounts( |
︙ | ︙ |
Changes to test/autoindex3.test.
︙ | ︙ | |||
80 81 82 83 84 85 86 | # on the basis that the real index "uab" must be better than the automatic # index. This is not right - a skip-scan is not necessarily better than an # automatic index scan. # do_eqp_test 220 { select count(*) from u, v where u.b = v.b and v.e > 34; } { | > | | | 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | # on the basis that the real index "uab" must be better than the automatic # index. This is not right - a skip-scan is not necessarily better than an # automatic index scan. # do_eqp_test 220 { select count(*) from u, v where u.b = v.b and v.e > 34; } { QUERY PLAN |--SEARCH TABLE v USING INDEX ve (e>?) `--SEARCH TABLE u USING AUTOMATIC COVERING INDEX (b=?) } finish_test |
Changes to test/autoindex5.test.
︙ | ︙ | |||
80 81 82 83 84 85 86 | AND debian_bugs.note = package_notes.id ORDER BY debian_bugs.bug; } {} # The following query should use an automatic index for the view # in FROM clause of the subquery of the second result column. # | | < | | 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | AND debian_bugs.note = package_notes.id ORDER BY debian_bugs.bug; } {} # The following query should use an automatic index for the view # in FROM clause of the subquery of the second result column. # do_eqp_test autoindex5-1.1 { SELECT st.bug_name, (SELECT ALL debian_cve.bug FROM debian_cve WHERE debian_cve.bug_name = st.bug_name ORDER BY debian_cve.bug), sp.release FROM source_package_status AS st, source_packages AS sp, bugs WHERE sp.rowid = st.package AND st.bug_name = bugs.name AND ( st.bug_name LIKE 'CVE-%' OR st.bug_name LIKE 'TEMP-%' ) AND ( sp.release = 'sid' OR sp.release = 'stretch' OR sp.release = 'jessie' OR sp.release = 'wheezy' OR sp.release = 'squeeze' ) ORDER BY sp.name, st.bug_name, sp.release, sp.subrelease; } {SEARCH SUBQUERY * USING AUTOMATIC COVERING INDEX (bug_name=?)} #------------------------------------------------------------------------- # Test that ticket [8a2adec1] has been fixed. # do_execsql_test 2.1 { CREATE TABLE one(o); INSERT INTO one DEFAULT VALUES; |
︙ | ︙ |
Changes to test/bestindex1.test.
︙ | ︙ | |||
47 48 49 50 51 52 53 | do_execsql_test 1.0 { CREATE VIRTUAL TABLE x1 USING tcl(vtab_command); } {} do_eqp_test 1.1 { SELECT * FROM x1 WHERE a = 'abc' | < | < < | < < | 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | do_execsql_test 1.0 { CREATE VIRTUAL TABLE x1 USING tcl(vtab_command); } {} do_eqp_test 1.1 { SELECT * FROM x1 WHERE a = 'abc' } {SCAN TABLE x1 VIRTUAL TABLE INDEX 555:eq!} do_eqp_test 1.2 { SELECT * FROM x1 WHERE a IN ('abc', 'def'); } {SCAN TABLE x1 VIRTUAL TABLE INDEX 555:eq!} #------------------------------------------------------------------------- # reset_db register_tcl_module db # Parameter $mode may be one of: |
︙ | ︙ | |||
141 142 143 144 145 146 147 | do_execsql_test 2.2.$mode.4 {SELECT rowid FROM t1 WHERE a='two'} {2} do_execsql_test 2.2.$mode.5 { SELECT rowid FROM t1 WHERE a IN ('one', 'four') ORDER BY +rowid } {1 4} set plan(use) { | > | < | > | < | > | < | | | 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | do_execsql_test 2.2.$mode.4 {SELECT rowid FROM t1 WHERE a='two'} {2} do_execsql_test 2.2.$mode.5 { SELECT rowid FROM t1 WHERE a IN ('one', 'four') ORDER BY +rowid } {1 4} set plan(use) { QUERY PLAN |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x WHERE a='%1%' `--USE TEMP B-TREE FOR ORDER BY } set plan(omit) { QUERY PLAN |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x WHERE a='%1%' `--USE TEMP B-TREE FOR ORDER BY } set plan(use2) { QUERY PLAN |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x `--USE TEMP B-TREE FOR ORDER BY } do_eqp_test 2.2.$mode.6 { SELECT rowid FROM t1 WHERE a IN ('one', 'four') ORDER BY +rowid } [string map {"\n " "\n"} $plan($mode)] } # 2016-04-09. # Demonstrate a register overwrite problem when using two virtual # tables where the outer loop uses the IN operator. # set G(collist) [list PrimaryKey flagA columnA] |
︙ | ︙ |
Changes to test/bestindex2.test.
︙ | ︙ | |||
85 86 87 88 89 90 91 | CREATE VIRTUAL TABLE t1 USING tcl("vtab_cmd t1 {a b}"); CREATE VIRTUAL TABLE t2 USING tcl("vtab_cmd t2 {c d}"); CREATE VIRTUAL TABLE t3 USING tcl("vtab_cmd t3 {e f}"); } do_eqp_test 1.1 { SELECT * FROM t1 WHERE a='abc' | < | | < | | < | | > | | > | | | > | | | > | | | | | 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | CREATE VIRTUAL TABLE t1 USING tcl("vtab_cmd t1 {a b}"); CREATE VIRTUAL TABLE t2 USING tcl("vtab_cmd t2 {c d}"); CREATE VIRTUAL TABLE t3 USING tcl("vtab_cmd t3 {e f}"); } do_eqp_test 1.1 { SELECT * FROM t1 WHERE a='abc' } {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=?)} do_eqp_test 1.2 { SELECT * FROM t1 WHERE a='abc' AND b='def' } {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=? AND b=?)} do_eqp_test 1.3 { SELECT * FROM t1 WHERE a='abc' AND a='def' } {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=?)} do_eqp_test 1.4 { SELECT * FROM t1,t2 WHERE c=a } { QUERY PLAN |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0: `--SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?) } do_eqp_test 1.5 { SELECT * FROM t1, t2 CROSS JOIN t3 WHERE t2.c = +t1.b AND t3.e=t2.d } { QUERY PLAN |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0: |--SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?) `--SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?) } do_eqp_test 1.6 { SELECT * FROM t1, t2, t3 WHERE t2.c = +t1.b AND t3.e = t2.d } { QUERY PLAN |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0: |--SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?) `--SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?) } do_execsql_test 1.7.1 { CREATE TABLE x1(a, b); } do_eqp_test 1.7.2 { SELECT * FROM x1 CROSS JOIN t1, t2, t3 WHERE t1.a = t2.c AND t1.b = t3.e } { QUERY PLAN |--SCAN TABLE x1 |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0: |--SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?) `--SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?) } finish_test |
Changes to test/bestindex3.test.
︙ | ︙ | |||
75 76 77 78 79 80 81 | do_execsql_test 1.0 { CREATE VIRTUAL TABLE t1 USING tcl("vtab_cmd 0"); } do_eqp_test 1.1 { SELECT * FROM t1 WHERE a LIKE 'abc'; | < | < < | < > > | | > > | | | 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | do_execsql_test 1.0 { CREATE VIRTUAL TABLE t1 USING tcl("vtab_cmd 0"); } do_eqp_test 1.1 { SELECT * FROM t1 WHERE a LIKE 'abc'; } {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a LIKE ?} do_eqp_test 1.2 { SELECT * FROM t1 WHERE a = 'abc'; } {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a EQ ?} do_eqp_test 1.3 { SELECT * FROM t1 WHERE a = 'abc' OR b = 'def'; } { QUERY PLAN `--MULTI-INDEX OR |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a EQ ? `--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:b EQ ? } do_eqp_test 1.4 { SELECT * FROM t1 WHERE a LIKE 'abc%' OR b = 'def'; } { QUERY PLAN `--MULTI-INDEX OR |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a LIKE ? `--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:b EQ ? } do_execsql_test 1.5 { CREATE TABLE ttt(a, b, c); INSERT INTO ttt VALUES(1, 'two', 'three'); INSERT INTO ttt VALUES(2, 'one', 'two'); |
︙ | ︙ | |||
143 144 145 146 147 148 149 | CREATE TABLE t2(x TEXT COLLATE nocase, y TEXT); CREATE INDEX t2x ON t2(x COLLATE nocase); CREATE INDEX t2y ON t2(y); } do_eqp_test 2.2 { SELECT * FROM t2 WHERE x LIKE 'abc%' OR y = 'def' | > | > | | | | 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | CREATE TABLE t2(x TEXT COLLATE nocase, y TEXT); CREATE INDEX t2x ON t2(x COLLATE nocase); CREATE INDEX t2y ON t2(y); } do_eqp_test 2.2 { SELECT * FROM t2 WHERE x LIKE 'abc%' OR y = 'def' } [string map {"\n " \n} { QUERY PLAN `--MULTI-INDEX OR |--SEARCH TABLE t2 USING INDEX t2x (x>? AND x<?) `--SEARCH TABLE t2 USING INDEX t2y (y=?) }] } #------------------------------------------------------------------------- # Test that any PRIMARY KEY within a sqlite3_decl_vtab() CREATE TABLE # statement is currently ignored. # proc vvv_command {method args} { |
︙ | ︙ |
Changes to test/bigmmap.test.
︙ | ︙ | |||
88 89 90 91 92 93 94 | ORDER BY b, c; " {} do_eqp_test 2.$i.$t.3 " SELECT * FROM t$t AS o WHERE NOT EXISTS( SELECT * FROM t$t AS i WHERE a=o.a AND +b=o.b AND +c=o.c ) ORDER BY b, c; | > | | | | | < | 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | ORDER BY b, c; " {} do_eqp_test 2.$i.$t.3 " SELECT * FROM t$t AS o WHERE NOT EXISTS( SELECT * FROM t$t AS i WHERE a=o.a AND +b=o.b AND +c=o.c ) ORDER BY b, c; " [string map {"\n " "\n"} " QUERY PLAN |--SCAN TABLE t$t AS o USING COVERING INDEX sqlite_autoindex_t${t}_1 `--CORRELATED SCALAR SUBQUERY `--SEARCH TABLE t$t AS i USING INTEGER PRIMARY KEY (rowid=?) "] } } finish_test |
Changes to test/closure01.test.
︙ | ︙ | |||
268 269 270 271 272 273 274 275 276 | WHERE root=1 AND depth=3 AND tablename='t1' AND idcolumn='x' AND parentcolumn='y' ORDER BY id; } {8 9 10 11 12 13 14 15} finish_test | > > > > > > > > > > > > > > > > > > > | 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | WHERE root=1 AND depth=3 AND tablename='t1' AND idcolumn='x' AND parentcolumn='y' ORDER BY id; } {8 9 10 11 12 13 14 15} #------------------------------------------------------------------------- # At one point the following join query was causing a malfunction in # xBestIndex. # do_execsql_test 6.0 { CREATE TABLE t4 ( id INTEGER PRIMARY KEY, name TEXT NOT NULL, parent_id INTEGER ); CREATE VIRTUAL TABLE vt4 USING transitive_closure ( idcolumn=id, parentcolumn=parent_id, tablename=t4 ); } do_execsql_test 6.1 { SELECT * FROM t4, vt4 WHERE t4.id = vt4.root AND vt4.id=4 AND vt4.depth=2; } finish_test |
Changes to test/cost.test.
︙ | ︙ | |||
20 21 22 23 24 25 26 | CREATE TABLE t4(c, d, e); CREATE UNIQUE INDEX i3 ON t3(b); CREATE UNIQUE INDEX i4 ON t4(c, d); } do_eqp_test 1.2 { SELECT e FROM t3, t4 WHERE b=c ORDER BY b, d; } { | > | | < | < > > | | | | < | | < | < > | | > | | > > | | | > > | | | < | < < | < | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | CREATE TABLE t4(c, d, e); CREATE UNIQUE INDEX i3 ON t3(b); CREATE UNIQUE INDEX i4 ON t4(c, d); } do_eqp_test 1.2 { SELECT e FROM t3, t4 WHERE b=c ORDER BY b, d; } { QUERY PLAN |--SCAN TABLE t3 USING COVERING INDEX i3 `--SEARCH TABLE t4 USING INDEX i4 (c=?) } do_execsql_test 2.1 { CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a); } # It is better to use an index for ORDER BY than sort externally, even # if the index is a non-covering index. do_eqp_test 2.2 { SELECT * FROM t1 ORDER BY a; } {SCAN TABLE t1 USING INDEX i1} do_execsql_test 3.1 { CREATE TABLE t5(a INTEGER PRIMARY KEY,b,c,d,e,f,g); CREATE INDEX t5b ON t5(b); CREATE INDEX t5c ON t5(c); CREATE INDEX t5d ON t5(d); CREATE INDEX t5e ON t5(e); CREATE INDEX t5f ON t5(f); CREATE INDEX t5g ON t5(g); } do_eqp_test 3.2 { SELECT a FROM t5 WHERE b IS NULL OR c IS NULL OR d IS NULL ORDER BY a; } { QUERY PLAN |--MULTI-INDEX OR | |--SEARCH TABLE t5 USING INDEX t5b (b=?) | |--SEARCH TABLE t5 USING INDEX t5c (c=?) | `--SEARCH TABLE t5 USING INDEX t5d (d=?) `--USE TEMP B-TREE FOR ORDER BY } #------------------------------------------------------------------------- # If there is no likelihood() or stat3 data, SQLite assumes that a closed # range scan (e.g. one constrained by "col BETWEEN ? AND ?" constraint) # visits 1/64 of the rows in a table. # # Note: 1/63 =~ 0.016 # Note: 1/65 =~ 0.015 # reset_db do_execsql_test 4.1 { CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a); CREATE INDEX i2 ON t1(b); } do_eqp_test 4.2 { SELECT * FROM t1 WHERE likelihood(a=?, 0.014) AND b BETWEEN ? AND ?; } {SEARCH TABLE t1 USING INDEX i1 (a=?)} do_eqp_test 4.3 { SELECT * FROM t1 WHERE likelihood(a=?, 0.016) AND b BETWEEN ? AND ?; } {SEARCH TABLE t1 USING INDEX i2 (b>? AND b<?)} #------------------------------------------------------------------------- # reset_db do_execsql_test 5.1 { CREATE TABLE t2(x, y); CREATE INDEX t2i1 ON t2(x); } do_eqp_test 5.2 { SELECT * FROM t2 ORDER BY x, y; } { QUERY PLAN |--SCAN TABLE t2 USING INDEX t2i1 `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY } do_eqp_test 5.3 { SELECT * FROM t2 WHERE x BETWEEN ? AND ? ORDER BY rowid; } { QUERY PLAN |--SEARCH TABLE t2 USING INDEX t2i1 (x>? AND x<?) `--USE TEMP B-TREE FOR ORDER BY } # where7.test, where8.test: # do_execsql_test 6.1 { CREATE TABLE t3(a INTEGER PRIMARY KEY, b, c); CREATE INDEX t3i1 ON t3(b); CREATE INDEX t3i2 ON t3(c); } do_eqp_test 6.2 { SELECT a FROM t3 WHERE (b BETWEEN 2 AND 4) OR c=100 ORDER BY a } { QUERY PLAN |--MULTI-INDEX OR | |--SEARCH TABLE t3 USING INDEX t3i1 (b>? AND b<?) | `--SEARCH TABLE t3 USING INDEX t3i2 (c=?) `--USE TEMP B-TREE FOR ORDER BY } #------------------------------------------------------------------------- # reset_db do_execsql_test 7.1 { CREATE TABLE t1(a INTEGER PRIMARY KEY,b,c,d,e,f,g); CREATE INDEX t1b ON t1(b); CREATE INDEX t1c ON t1(c); CREATE INDEX t1d ON t1(d); CREATE INDEX t1e ON t1(e); CREATE INDEX t1f ON t1(f); CREATE INDEX t1g ON t1(g); } do_eqp_test 7.2 { SELECT a FROM t1 WHERE (b>=950 AND b<=1010) OR (b IS NULL AND c NOT NULL) ORDER BY a } { QUERY PLAN |--MULTI-INDEX OR | |--SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?) | `--SEARCH TABLE t1 USING INDEX t1b (b=?) `--USE TEMP B-TREE FOR ORDER BY } do_eqp_test 7.3 { SELECT rowid FROM t1 WHERE (+b IS NULL AND c NOT NULL AND d NOT NULL) OR (b NOT NULL AND c IS NULL AND d NOT NULL) OR (b NOT NULL AND c NOT NULL AND d IS NULL) } {SCAN TABLE t1} do_eqp_test 7.4 { SELECT rowid FROM t1 WHERE (+b IS NULL AND c NOT NULL) OR c IS NULL } {SCAN TABLE t1} #------------------------------------------------------------------------- # reset_db do_execsql_test 8.1 { CREATE TABLE composer( cid INTEGER PRIMARY KEY, |
︙ | ︙ | |||
190 191 192 193 194 195 196 | do_eqp_test 8.2 { SELECT DISTINCT aname FROM album, composer, track WHERE cname LIKE '%bach%' AND unlikely(composer.cid=track.cid) AND unlikely(album.aid=track.aid); } { | > | | | | | 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | do_eqp_test 8.2 { SELECT DISTINCT aname FROM album, composer, track WHERE cname LIKE '%bach%' AND unlikely(composer.cid=track.cid) AND unlikely(album.aid=track.aid); } { QUERY PLAN |--SCAN TABLE track |--SEARCH TABLE album USING INTEGER PRIMARY KEY (rowid=?) |--SEARCH TABLE composer USING INTEGER PRIMARY KEY (rowid=?) `--USE TEMP B-TREE FOR DISTINCT } #------------------------------------------------------------------------- # do_execsql_test 9.1 { CREATE TABLE t1( a,b,c,d,e, f,g,h,i,j, |
︙ | ︙ | |||
259 260 261 262 263 264 265 | execsql { INSERT INTO t6 VALUES($i%4, 'xyz', $i%8) } } execsql ANALYZE } {} do_eqp_test 10.3 { SELECT rowid FROM t6 WHERE a=0 AND c=0 | < | < < | < < | < < | < | 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 | execsql { INSERT INTO t6 VALUES($i%4, 'xyz', $i%8) } } execsql ANALYZE } {} do_eqp_test 10.3 { SELECT rowid FROM t6 WHERE a=0 AND c=0 } {SEARCH TABLE t6 USING INDEX t6i2 (c=?)} do_eqp_test 10.4 { SELECT rowid FROM t6 WHERE a=0 AND b='xyz' AND c=0 } {SEARCH TABLE t6 USING INDEX t6i2 (c=?)} do_eqp_test 10.5 { SELECT rowid FROM t6 WHERE likelihood(a=0, 0.1) AND c=0 } {SEARCH TABLE t6 USING INDEX t6i1 (a=?)} do_eqp_test 10.6 { SELECT rowid FROM t6 WHERE likelihood(a=0, 0.1) AND b='xyz' AND c=0 } {SEARCH TABLE t6 USING INDEX t6i1 (a=? AND b=?)} } finish_test |
Changes to test/coveridxscan.test.
︙ | ︙ | |||
105 106 107 108 109 110 111 | CREATE TABLE t2(i INTEGER PRIMARY KEY, $cols); CREATE INDEX i2 ON t2($cols); " do_eqp_test 5.1.1 { SELECT * FROM t1 ORDER BY c1, c2; | < | < < | < < | 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | CREATE TABLE t2(i INTEGER PRIMARY KEY, $cols); CREATE INDEX i2 ON t2($cols); " do_eqp_test 5.1.1 { SELECT * FROM t1 ORDER BY c1, c2; } {SCAN TABLE t1 USING COVERING INDEX i1} do_eqp_test 5.1.2 { SELECT * FROM t2 ORDER BY c1, c2; } {SCAN TABLE t2 USING COVERING INDEX i2} finish_test |
Changes to test/csv01.test.
︙ | ︙ | |||
136 137 138 139 140 141 142 143 144 | columns=4, schema= 'CREATE TABLE t3(a,b,c,d) WITHOUT ROWID', testflags=1 ); } {1 {vtable constructor failed: t5}} finish_test | > > > > > > > | 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | columns=4, schema= 'CREATE TABLE t3(a,b,c,d) WITHOUT ROWID', testflags=1 ); } {1 {vtable constructor failed: t5}} # 2018-04-24 # Memory leak reported on the sqlite-users mailing list by Ralf Junker. # do_catchsql_test 4.3 { CREATE VIRTUAL TABLE IF NOT EXISTS temp.t1 USING csv(filename='FileDoesNotExist.csv'); } {1 {cannot open 'FileDoesNotExist.csv' for reading}} finish_test |
Changes to test/delete.test.
︙ | ︙ | |||
398 399 400 401 402 403 404 405 406 407 | do_execsql_test delete-10.1 { DELETE FROM t1 WHERE a='1' AND b='2'; } do_execsql_test delete-10.2 { SELECT * FROM t1 WHERE a='1' AND b='2'; } finish_test | > > > > > > > > > > > > | 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | do_execsql_test delete-10.1 { DELETE FROM t1 WHERE a='1' AND b='2'; } do_execsql_test delete-10.2 { SELECT * FROM t1 WHERE a='1' AND b='2'; } do_execsql_test delete-11.0 { CREATE TABLE t11(a INTEGER PRIMARY KEY, b INT); WITH RECURSIVE cnt(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM cnt WHERE x<20) INSERT INTO t11(a,b) SELECT x, (x*17)%100 FROM cnt; SELECT * FROM t11; } {1 17 2 34 3 51 4 68 5 85 6 2 7 19 8 36 9 53 10 70 11 87 12 4 13 21 14 38 15 55 16 72 17 89 18 6 19 23 20 40} do_execsql_test delete-11.1 { DELETE FROM t11 AS xyz WHERE EXISTS(SELECT 1 FROM t11 WHERE t11.a>xyz.a AND t11.b<=xyz.b); SELECT * FROM t11; } {6 2 12 4 18 6 19 23 20 40} finish_test |
Changes to test/e_createtable.test.
︙ | ︙ | |||
652 653 654 655 656 657 658 | 1 "CREATE TABLE x1 AS SELECT * FROM t1" {a b c} 2 "CREATE TABLE x1 AS SELECT c, b, a FROM t1" {c b a} 3 "CREATE TABLE x1 AS SELECT * FROM t1, t2" {a b c d e f} 4 "CREATE TABLE x1 AS SELECT count(*) FROM t1" {count(*)} 5 "CREATE TABLE x1 AS SELECT count(a) AS a, max(b) FROM t1" {a max(b)} } | | | | 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 | 1 "CREATE TABLE x1 AS SELECT * FROM t1" {a b c} 2 "CREATE TABLE x1 AS SELECT c, b, a FROM t1" {c b a} 3 "CREATE TABLE x1 AS SELECT * FROM t1, t2" {a b c d e f} 4 "CREATE TABLE x1 AS SELECT count(*) FROM t1" {count(*)} 5 "CREATE TABLE x1 AS SELECT count(a) AS a, max(b) FROM t1" {a max(b)} } # EVIDENCE-OF: R-55407-45319 The declared type of each column is # determined by the expression affinity of the corresponding expression # in the result set of the SELECT statement, as follows: Expression # Affinity Column Declared Type TEXT "TEXT" NUMERIC "NUM" INTEGER "INT" # REAL "REAL" BLOB (a.k.a "NONE") "" (empty string) # do_createtable_tests 2.2 -tclquery { table_column_decltypes x1 } -repair { catchsql { DROP TABLE x1 } } { 1 "CREATE TABLE x1 AS SELECT a FROM t1" {""} |
︙ | ︙ | |||
1381 1382 1383 1384 1385 1386 1387 | # do_execsql_test 4.10.0 { CREATE TABLE t1(a, b PRIMARY KEY); CREATE TABLE t2(a, b, c, UNIQUE(b, c)); } do_createtable_tests 4.10 { 1 "EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 5" | | | | | 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 | # do_execsql_test 4.10.0 { CREATE TABLE t1(a, b PRIMARY KEY); CREATE TABLE t2(a, b, c, UNIQUE(b, c)); } do_createtable_tests 4.10 { 1 "EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 5" {/*SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (b=?)*/} 2 "EXPLAIN QUERY PLAN SELECT * FROM t2 ORDER BY b, c" {/*SCAN TABLE t2 USING INDEX sqlite_autoindex_t2_1*/} 3 "EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE b=10 AND c>10" {/*SEARCH TABLE t2 USING INDEX sqlite_autoindex_t2_1 (b=? AND c>?)*/} } # EVIDENCE-OF: R-45493-35653 A CHECK constraint may be attached to a # column definition or specified as a table constraint. In practice it # makes no difference. # # All the tests that deal with CHECK constraints below (4.11.* and |
︙ | ︙ |
Changes to test/eqp.test.
︙ | ︙ | |||
39 40 41 42 43 44 45 | CREATE TABLE t2(a INT, b INT, ex TEXT); CREATE TABLE t3(a INT, b INT, ex TEXT); } do_eqp_test 1.2 { SELECT * FROM t2, t1 WHERE t1.a=1 OR t1.b=2; } { | > > | | | > | > | | > | > | | > | > | | | > > > | | > > > > > | > | | > > > > | | > | | > > > > > > | < | | > > > > > > | < | | > | | | | > | | | > | | > | | | > | | | | > | | > | > | > | > | > | | | > | | | > | | | | > | | | > > | | | | > > | | > | | | | > | | | > | | | > | | | > > > | > | < > > > | | > | | < > > > | | > | | < > > > | | > | | < > > > | | > | | < > > > | | > | < > > > | | > | | < > > > | | > | | < > > > | | > | | < > > > | > | < > > > | > | | | < > > > > > | | > | < > | | < > | | | | | | | | | | | | | < | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 | CREATE TABLE t2(a INT, b INT, ex TEXT); CREATE TABLE t3(a INT, b INT, ex TEXT); } do_eqp_test 1.2 { SELECT * FROM t2, t1 WHERE t1.a=1 OR t1.b=2; } { QUERY PLAN |--MULTI-INDEX OR | |--SEARCH TABLE t1 USING INDEX i1 (a=?) | `--SEARCH TABLE t1 USING INDEX i2 (b=?) `--SCAN TABLE t2 } do_eqp_test 1.3 { SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=1 OR t1.b=2; } { QUERY PLAN |--SCAN TABLE t2 `--MULTI-INDEX OR |--SEARCH TABLE t1 USING INDEX i1 (a=?) `--SEARCH TABLE t1 USING INDEX i2 (b=?) } do_eqp_test 1.3 { SELECT a FROM t1 ORDER BY a } { QUERY PLAN `--SCAN TABLE t1 USING COVERING INDEX i1 } do_eqp_test 1.4 { SELECT a FROM t1 ORDER BY +a } { QUERY PLAN |--SCAN TABLE t1 USING COVERING INDEX i1 `--USE TEMP B-TREE FOR ORDER BY } do_eqp_test 1.5 { SELECT a FROM t1 WHERE a=4 } { QUERY PLAN `--SEARCH TABLE t1 USING COVERING INDEX i1 (a=?) } do_eqp_test 1.6 { SELECT DISTINCT count(*) FROM t3 GROUP BY a; } { QUERY PLAN |--SCAN TABLE t3 |--USE TEMP B-TREE FOR GROUP BY `--USE TEMP B-TREE FOR DISTINCT } do_eqp_test 1.7 { SELECT * FROM t3 JOIN (SELECT 1) } { QUERY PLAN |--MATERIALIZE xxxxxx | `--SCAN CONSTANT ROW |--SCAN SUBQUERY xxxxxx `--SCAN TABLE t3 } do_eqp_test 1.8 { SELECT * FROM t3 JOIN (SELECT 1 UNION SELECT 2) } { QUERY PLAN |--MATERIALIZE xxxxxx | `--COMPOUND QUERY | |--LEFT-MOST SUBQUERY | | `--SCAN CONSTANT ROW | `--UNION USING TEMP B-TREE | `--SCAN CONSTANT ROW |--SCAN SUBQUERY xxxxxx `--SCAN TABLE t3 } do_eqp_test 1.9 { SELECT * FROM t3 JOIN (SELECT 1 EXCEPT SELECT a FROM t3 LIMIT 17) } { QUERY PLAN |--MATERIALIZE xxxxxx | `--COMPOUND QUERY | |--LEFT-MOST SUBQUERY | | `--SCAN CONSTANT ROW | `--EXCEPT USING TEMP B-TREE | `--SCAN TABLE t3 |--SCAN SUBQUERY xxxxxx `--SCAN TABLE t3 } do_eqp_test 1.10 { SELECT * FROM t3 JOIN (SELECT 1 INTERSECT SELECT a FROM t3 LIMIT 17) } { QUERY PLAN |--MATERIALIZE xxxxxx | `--COMPOUND QUERY | |--LEFT-MOST SUBQUERY | | `--SCAN CONSTANT ROW | `--INTERSECT USING TEMP B-TREE | `--SCAN TABLE t3 |--SCAN SUBQUERY xxxxxx `--SCAN TABLE t3 } do_eqp_test 1.11 { SELECT * FROM t3 JOIN (SELECT 1 UNION ALL SELECT a FROM t3 LIMIT 17) } { QUERY PLAN |--MATERIALIZE xxxxxx | `--COMPOUND QUERY | |--LEFT-MOST SUBQUERY | | `--SCAN CONSTANT ROW | `--UNION ALL | `--SCAN TABLE t3 |--SCAN SUBQUERY xxxxxx `--SCAN TABLE t3 } #------------------------------------------------------------------------- # Test cases eqp-2.* - tests for single select statements. # drop_all_tables do_execsql_test 2.1 { CREATE TABLE t1(x INT, y INT, ex TEXT); CREATE TABLE t2(x INT, y INT, ex TEXT); CREATE INDEX t2i1 ON t2(x); } det 2.2.1 "SELECT DISTINCT min(x), max(x) FROM t1 GROUP BY x ORDER BY 1" { QUERY PLAN |--SCAN TABLE t1 |--USE TEMP B-TREE FOR GROUP BY |--USE TEMP B-TREE FOR DISTINCT `--USE TEMP B-TREE FOR ORDER BY } det 2.2.2 "SELECT DISTINCT min(x), max(x) FROM t2 GROUP BY x ORDER BY 1" { QUERY PLAN |--SCAN TABLE t2 USING COVERING INDEX t2i1 |--USE TEMP B-TREE FOR DISTINCT `--USE TEMP B-TREE FOR ORDER BY } det 2.2.3 "SELECT DISTINCT * FROM t1" { QUERY PLAN |--SCAN TABLE t1 `--USE TEMP B-TREE FOR DISTINCT } det 2.2.4 "SELECT DISTINCT * FROM t1, t2" { QUERY PLAN |--SCAN TABLE t1 |--SCAN TABLE t2 `--USE TEMP B-TREE FOR DISTINCT } det 2.2.5 "SELECT DISTINCT * FROM t1, t2 ORDER BY t1.x" { QUERY PLAN |--SCAN TABLE t1 |--SCAN TABLE t2 |--USE TEMP B-TREE FOR DISTINCT `--USE TEMP B-TREE FOR ORDER BY } det 2.2.6 "SELECT DISTINCT t2.x FROM t1, t2 ORDER BY t2.x" { QUERY PLAN |--SCAN TABLE t2 USING COVERING INDEX t2i1 `--SCAN TABLE t1 } det 2.3.1 "SELECT max(x) FROM t2" { QUERY PLAN `--SEARCH TABLE t2 USING COVERING INDEX t2i1 } det 2.3.2 "SELECT min(x) FROM t2" { QUERY PLAN `--SEARCH TABLE t2 USING COVERING INDEX t2i1 } det 2.3.3 "SELECT min(x), max(x) FROM t2" { QUERY PLAN `--SCAN TABLE t2 USING COVERING INDEX t2i1 } det 2.4.1 "SELECT * FROM t1 WHERE rowid=?" { QUERY PLAN `--SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?) } #------------------------------------------------------------------------- # Test cases eqp-3.* - tests for select statements that use sub-selects. # do_eqp_test 3.1.1 { SELECT (SELECT x FROM t1 AS sub) FROM t1; } { QUERY PLAN |--SCAN TABLE t1 `--SCALAR SUBQUERY `--SCAN TABLE t1 AS sub } do_eqp_test 3.1.2 { SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub); } { QUERY PLAN |--SCAN TABLE t1 `--SCALAR SUBQUERY `--SCAN TABLE t1 AS sub } do_eqp_test 3.1.3 { SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub ORDER BY y); } { QUERY PLAN |--SCAN TABLE t1 `--SCALAR SUBQUERY |--SCAN TABLE t1 AS sub `--USE TEMP B-TREE FOR ORDER BY } do_eqp_test 3.1.4 { SELECT * FROM t1 WHERE (SELECT x FROM t2 ORDER BY x); } { QUERY PLAN |--SCAN TABLE t1 `--SCALAR SUBQUERY `--SCAN TABLE t2 USING COVERING INDEX t2i1 } det 3.2.1 { SELECT * FROM (SELECT * FROM t1 ORDER BY x LIMIT 10) ORDER BY y LIMIT 5 } { QUERY PLAN |--CO-ROUTINE xxxxxx | |--SCAN TABLE t1 | `--USE TEMP B-TREE FOR ORDER BY |--SCAN SUBQUERY xxxxxx `--USE TEMP B-TREE FOR ORDER BY } det 3.2.2 { SELECT * FROM (SELECT * FROM t1 ORDER BY x LIMIT 10) AS x1, (SELECT * FROM t2 ORDER BY x LIMIT 10) AS x2 ORDER BY x2.y LIMIT 5 } { QUERY PLAN |--MATERIALIZE xxxxxx | |--SCAN TABLE t1 | `--USE TEMP B-TREE FOR ORDER BY |--MATERIALIZE xxxxxx | `--SCAN TABLE t2 USING INDEX t2i1 |--SCAN SUBQUERY xxxxxx AS x1 |--SCAN SUBQUERY xxxxxx AS x2 `--USE TEMP B-TREE FOR ORDER BY } det 3.3.1 { SELECT * FROM t1 WHERE y IN (SELECT y FROM t2) } { QUERY PLAN |--SCAN TABLE t1 `--LIST SUBQUERY `--SCAN TABLE t2 } det 3.3.2 { SELECT * FROM t1 WHERE y IN (SELECT y FROM t2 WHERE t1.x!=t2.x) } { QUERY PLAN |--SCAN TABLE t1 `--CORRELATED LIST SUBQUERY `--SCAN TABLE t2 } det 3.3.3 { SELECT * FROM t1 WHERE EXISTS (SELECT y FROM t2 WHERE t1.x!=t2.x) } { QUERY PLAN |--SCAN TABLE t1 `--CORRELATED SCALAR SUBQUERY `--SCAN TABLE t2 } #------------------------------------------------------------------------- # Test cases eqp-4.* - tests for composite select statements. # do_eqp_test 4.1.1 { SELECT * FROM t1 UNION ALL SELECT * FROM t2 } { QUERY PLAN `--COMPOUND QUERY |--LEFT-MOST SUBQUERY | `--SCAN TABLE t1 `--UNION ALL `--SCAN TABLE t2 } do_eqp_test 4.1.2 { SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 2 } { QUERY PLAN `--MERGE (UNION ALL) |--LEFT | |--SCAN TABLE t1 | `--USE TEMP B-TREE FOR ORDER BY `--RIGHT |--SCAN TABLE t2 `--USE TEMP B-TREE FOR ORDER BY } do_eqp_test 4.1.3 { SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 2 } { QUERY PLAN `--MERGE (UNION) |--LEFT | |--SCAN TABLE t1 | `--USE TEMP B-TREE FOR ORDER BY `--RIGHT |--SCAN TABLE t2 `--USE TEMP B-TREE FOR ORDER BY } do_eqp_test 4.1.4 { SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 2 } { QUERY PLAN `--MERGE (INTERSECT) |--LEFT | |--SCAN TABLE t1 | `--USE TEMP B-TREE FOR ORDER BY `--RIGHT |--SCAN TABLE t2 `--USE TEMP B-TREE FOR ORDER BY } do_eqp_test 4.1.5 { SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 2 } { QUERY PLAN `--MERGE (EXCEPT) |--LEFT | |--SCAN TABLE t1 | `--USE TEMP B-TREE FOR ORDER BY `--RIGHT |--SCAN TABLE t2 `--USE TEMP B-TREE FOR ORDER BY } do_eqp_test 4.2.2 { SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 1 } { QUERY PLAN `--MERGE (UNION ALL) |--LEFT | |--SCAN TABLE t1 | `--USE TEMP B-TREE FOR ORDER BY `--RIGHT `--SCAN TABLE t2 USING INDEX t2i1 } do_eqp_test 4.2.3 { SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 1 } { QUERY PLAN `--MERGE (UNION) |--LEFT | |--SCAN TABLE t1 | `--USE TEMP B-TREE FOR ORDER BY `--RIGHT |--SCAN TABLE t2 USING INDEX t2i1 `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY } do_eqp_test 4.2.4 { SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 1 } { QUERY PLAN `--MERGE (INTERSECT) |--LEFT | |--SCAN TABLE t1 | `--USE TEMP B-TREE FOR ORDER BY `--RIGHT |--SCAN TABLE t2 USING INDEX t2i1 `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY } do_eqp_test 4.2.5 { SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 1 } { QUERY PLAN `--MERGE (EXCEPT) |--LEFT | |--SCAN TABLE t1 | `--USE TEMP B-TREE FOR ORDER BY `--RIGHT |--SCAN TABLE t2 USING INDEX t2i1 `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY } do_eqp_test 4.3.1 { SELECT x FROM t1 UNION SELECT x FROM t2 } { QUERY PLAN `--COMPOUND QUERY |--LEFT-MOST SUBQUERY | `--SCAN TABLE t1 `--UNION USING TEMP B-TREE `--SCAN TABLE t2 USING COVERING INDEX t2i1 } do_eqp_test 4.3.2 { SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1 } { QUERY PLAN `--COMPOUND QUERY |--LEFT-MOST SUBQUERY | `--SCAN TABLE t1 |--UNION USING TEMP B-TREE | `--SCAN TABLE t2 USING COVERING INDEX t2i1 `--UNION USING TEMP B-TREE `--SCAN TABLE t1 } do_eqp_test 4.3.3 { SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1 ORDER BY 1 } { QUERY PLAN `--MERGE (UNION) |--LEFT | `--MERGE (UNION) | |--LEFT | | |--SCAN TABLE t1 | | `--USE TEMP B-TREE FOR ORDER BY | `--RIGHT | `--SCAN TABLE t2 USING COVERING INDEX t2i1 `--RIGHT |--SCAN TABLE t1 `--USE TEMP B-TREE FOR ORDER BY } if 0 { #------------------------------------------------------------------------- # This next block of tests verifies that the examples on the # lang_explain.html page are correct. # drop_all_tables # XVIDENCE-OF: R-47779-47605 sqlite> EXPLAIN QUERY PLAN SELECT a, b # FROM t1 WHERE a=1; # 0|0|0|SCAN TABLE t1 # do_execsql_test 5.1.0 { CREATE TABLE t1(a INT, b INT, ex TEXT) } det 5.1.1 "SELECT a, b FROM t1 WHERE a=1" { 0 0 0 {SCAN TABLE t1} } # XVIDENCE-OF: R-55852-17599 sqlite> CREATE INDEX i1 ON t1(a); # sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1; # 0|0|0|SEARCH TABLE t1 USING INDEX i1 # do_execsql_test 5.2.0 { CREATE INDEX i1 ON t1(a) } det 5.2.1 "SELECT a, b FROM t1 WHERE a=1" { 0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)} } # XVIDENCE-OF: R-21179-11011 sqlite> CREATE INDEX i2 ON t1(a, b); # sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1; # 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) # do_execsql_test 5.3.0 { CREATE INDEX i2 ON t1(a, b) } det 5.3.1 "SELECT a, b FROM t1 WHERE a=1" { 0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)} } # XVIDENCE-OF: R-09991-48941 sqlite> EXPLAIN QUERY PLAN # SELECT t1.*, t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2; # 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?) # 0|1|1|SCAN TABLE t2 # do_execsql_test 5.4.0 {CREATE TABLE t2(c INT, d INT, ex TEXT)} det 5.4.1 "SELECT t1.a, t2.c FROM t1, t2 WHERE t1.a=1 AND t1.b>2" { 0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)} 0 1 1 {SCAN TABLE t2} } # XVIDENCE-OF: R-33626-61085 sqlite> EXPLAIN QUERY PLAN # SELECT t1.*, t2.* FROM t2, t1 WHERE t1.a=1 AND t1.b>2; # 0|0|1|SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?) # 0|1|0|SCAN TABLE t2 # det 5.5 "SELECT t1.a, t2.c FROM t2, t1 WHERE t1.a=1 AND t1.b>2" { 0 0 1 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)} 0 1 0 {SCAN TABLE t2} } # XVIDENCE-OF: R-04002-25654 sqlite> CREATE INDEX i3 ON t1(b); # sqlite> EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=1 OR b=2; # 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) # 0|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?) # do_execsql_test 5.5.0 {CREATE INDEX i3 ON t1(b)} det 5.6.1 "SELECT a, b FROM t1 WHERE a=1 OR b=2" { 0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)} 0 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?)} } # XVIDENCE-OF: R-24577-38891 sqlite> EXPLAIN QUERY PLAN # SELECT c, d FROM t2 ORDER BY c; # 0|0|0|SCAN TABLE t2 # 0|0|0|USE TEMP B-TREE FOR ORDER BY # det 5.7 "SELECT c, d FROM t2 ORDER BY c" { 0 0 0 {SCAN TABLE t2} 0 0 0 {USE TEMP B-TREE FOR ORDER BY} } # XVIDENCE-OF: R-58157-12355 sqlite> CREATE INDEX i4 ON t2(c); # sqlite> EXPLAIN QUERY PLAN SELECT c, d FROM t2 ORDER BY c; # 0|0|0|SCAN TABLE t2 USING INDEX i4 # do_execsql_test 5.8.0 {CREATE INDEX i4 ON t2(c)} det 5.8.1 "SELECT c, d FROM t2 ORDER BY c" { 0 0 0 {SCAN TABLE t2 USING INDEX i4} } # XVIDENCE-OF: R-13931-10421 sqlite> EXPLAIN QUERY PLAN SELECT # (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2; # 0|0|0|SCAN TABLE t2 # 0|0|0|EXECUTE SCALAR SUBQUERY 1 # 1|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) # 0|0|0|EXECUTE CORRELATED SCALAR SUBQUERY 2 # 2|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?) # det 5.9 { SELECT (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2 } { 0 0 0 {SCAN TABLE t2 USING COVERING INDEX i4} 0 0 0 {EXECUTE SCALAR SUBQUERY 1} 1 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)} 0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2} 2 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?)} } # XVIDENCE-OF: R-50892-45943 sqlite> EXPLAIN QUERY PLAN # SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x; # 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2 # 0|0|0|SCAN SUBQUERY 1 # 0|0|0|USE TEMP B-TREE FOR GROUP BY # det 5.10 { SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x } { 1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2} 0 0 0 {SCAN SUBQUERY 1} 0 0 0 {USE TEMP B-TREE FOR GROUP BY} } # XVIDENCE-OF: R-46219-33846 sqlite> EXPLAIN QUERY PLAN # SELECT * FROM (SELECT * FROM t2 WHERE c=1), t1; # 0|0|0|SEARCH TABLE t2 USING INDEX i4 (c=?) # 0|1|1|SCAN TABLE t1 # det 5.11 "SELECT a, b FROM (SELECT * FROM t2 WHERE c=1), t1" { 0 0 0 {SEARCH TABLE t2 USING INDEX i4 (c=?)} 0 1 1 {SCAN TABLE t1 USING COVERING INDEX i2} } # XVIDENCE-OF: R-37879-39987 sqlite> EXPLAIN QUERY PLAN # SELECT a FROM t1 UNION SELECT c FROM t2; # 1|0|0|SCAN TABLE t1 # 2|0|0|SCAN TABLE t2 # 0|0|0|COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION) # det 5.12 "SELECT a,b FROM t1 UNION SELECT c, 99 FROM t2" { 1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2} 2 0 0 {SCAN TABLE t2 USING COVERING INDEX i4} 0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)} } # XVIDENCE-OF: R-44864-63011 sqlite> EXPLAIN QUERY PLAN # SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1; # 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2 # 2|0|0|SCAN TABLE t2 2|0|0|USE TEMP B-TREE FOR ORDER BY # 0|0|0|COMPOUND SUBQUERIES 1 AND 2 (EXCEPT) # det 5.13 "SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1" { 1 0 0 {SCAN TABLE t1 USING COVERING INDEX i1} 2 0 0 {SCAN TABLE t2} 2 0 0 {USE TEMP B-TREE FOR ORDER BY} 0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)} } if {![nonzero_reserved_bytes]} { #------------------------------------------------------------------------- # The following tests - eqp-6.* - test that the example C code on # documentation page eqp.html works. The C code is duplicated in test1.c # and wrapped in Tcl command [print_explain_query_plan] # |
︙ | ︙ | |||
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 | } [string trimleft { 1 0 0 SCAN TABLE t1 USING COVERING INDEX i2 2 0 0 SCAN TABLE t2 2 0 0 USE TEMP B-TREE FOR ORDER BY 0 0 0 COMPOUND SUBQUERIES 1 AND 2 (EXCEPT) }] } #------------------------------------------------------------------------- # The following tests - eqp-7.* - test that queries that use the OP_Count # optimization return something sensible with EQP. # drop_all_tables do_execsql_test 7.0 { CREATE TABLE t1(a INT, b INT, ex CHAR(100)); CREATE TABLE t2(a INT, b INT, ex CHAR(100)); CREATE INDEX i1 ON t2(a); } det 7.1 "SELECT count(*) FROM t1" { | > > | > | > | > | > | > | > | > | > | > | > | | 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 | } [string trimleft { 1 0 0 SCAN TABLE t1 USING COVERING INDEX i2 2 0 0 SCAN TABLE t2 2 0 0 USE TEMP B-TREE FOR ORDER BY 0 0 0 COMPOUND SUBQUERIES 1 AND 2 (EXCEPT) }] } } #------------------------------------------------------------------------- # The following tests - eqp-7.* - test that queries that use the OP_Count # optimization return something sensible with EQP. # drop_all_tables do_execsql_test 7.0 { CREATE TABLE t1(a INT, b INT, ex CHAR(100)); CREATE TABLE t2(a INT, b INT, ex CHAR(100)); CREATE INDEX i1 ON t2(a); } det 7.1 "SELECT count(*) FROM t1" { QUERY PLAN `--SCAN TABLE t1 } det 7.2 "SELECT count(*) FROM t2" { QUERY PLAN `--SCAN TABLE t2 USING COVERING INDEX i1 } do_execsql_test 7.3 { INSERT INTO t1(a,b) VALUES(1, 2); INSERT INTO t1(a,b) VALUES(3, 4); INSERT INTO t2(a,b) VALUES(1, 2); INSERT INTO t2(a,b) VALUES(3, 4); INSERT INTO t2(a,b) VALUES(5, 6); ANALYZE; } db close sqlite3 db test.db det 7.4 "SELECT count(*) FROM t1" { QUERY PLAN `--SCAN TABLE t1 } det 7.5 "SELECT count(*) FROM t2" { QUERY PLAN `--SCAN TABLE t2 USING COVERING INDEX i1 } #------------------------------------------------------------------------- # The following tests - eqp-8.* - test that queries that use the OP_Count # optimization return something sensible with EQP. # drop_all_tables do_execsql_test 8.0 { CREATE TABLE t1(a, b, c, PRIMARY KEY(b, c)) WITHOUT ROWID; CREATE TABLE t2(a, b, c); } det 8.1.1 "SELECT * FROM t2" { QUERY PLAN `--SCAN TABLE t2 } det 8.1.2 "SELECT * FROM t2 WHERE rowid=?" { QUERY PLAN `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) } det 8.1.3 "SELECT count(*) FROM t2" { QUERY PLAN `--SCAN TABLE t2 } det 8.2.1 "SELECT * FROM t1" { QUERY PLAN `--SCAN TABLE t1 } det 8.2.2 "SELECT * FROM t1 WHERE b=?" { QUERY PLAN `--SEARCH TABLE t1 USING PRIMARY KEY (b=?) } det 8.2.3 "SELECT * FROM t1 WHERE b=? AND c=?" { QUERY PLAN `--SEARCH TABLE t1 USING PRIMARY KEY (b=? AND c=?) } det 8.2.4 "SELECT count(*) FROM t1" { QUERY PLAN `--SCAN TABLE t1 } finish_test |
Changes to test/fts3aux1.test.
︙ | ︙ | |||
101 102 103 104 105 106 107 | db func rec rec # Use EQP to show that the WHERE expression "term='braid'" uses a different # index number (1) than "+term='braid'" (0). # do_execsql_test 2.1.1.1 { EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term='braid' | | | | 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | db func rec rec # Use EQP to show that the WHERE expression "term='braid'" uses a different # index number (1) than "+term='braid'" (0). # do_execsql_test 2.1.1.1 { EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term='braid' } {/*SCAN TABLE terms VIRTUAL TABLE INDEX 1:*/} do_execsql_test 2.1.1.2 { EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term='braid' } {/*SCAN TABLE terms VIRTUAL TABLE INDEX 0:*/} # Now show that using "term='braid'" means the virtual table returns # only 1 row to SQLite, but "+term='braid'" means all 19 are returned. # do_test 2.1.2.1 { set cnt 0 execsql { SELECT * FROM terms_v WHERE rec('cnt', term) AND term='braid' } |
︙ | ︙ | |||
150 151 152 153 154 155 156 | # Special case: term=NULL # do_execsql_test 2.1.5 { SELECT * FROM terms WHERE term=NULL } {} do_execsql_test 2.2.1.1 { EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term>'brain' | | | | | | | | 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 | # Special case: term=NULL # do_execsql_test 2.1.5 { SELECT * FROM terms WHERE term=NULL } {} do_execsql_test 2.2.1.1 { EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term>'brain' } {/*SCAN TABLE terms VIRTUAL TABLE INDEX 2:*/} do_execsql_test 2.2.1.2 { EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term>'brain' } {/*SCAN TABLE terms VIRTUAL TABLE INDEX 0:*/} do_execsql_test 2.2.1.3 { EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term<'brain' } {/*SCAN TABLE terms VIRTUAL TABLE INDEX 4:*/} do_execsql_test 2.2.1.4 { EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term<'brain' } {/*SCAN TABLE terms VIRTUAL TABLE INDEX 0:*/} do_execsql_test 2.2.1.5 { EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term BETWEEN 'brags' AND 'brain' } {/*SCAN TABLE terms VIRTUAL TABLE INDEX 6:*/} do_execsql_test 2.2.1.6 { EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term BETWEEN 'brags' AND 'brain' } {/*SCAN TABLE terms VIRTUAL TABLE INDEX 0:*/} do_test 2.2.2.1 { set cnt 0 execsql { SELECT * FROM terms WHERE rec('cnt', term) AND term>'brain' } set cnt } {18} do_test 2.2.2.2 { |
︙ | ︙ | |||
331 332 333 334 335 336 337 | 5 1 "ORDER BY documents" 6 1 "ORDER BY documents DESC" 7 1 "ORDER BY occurrences ASC" 8 1 "ORDER BY occurrences" 9 1 "ORDER BY occurrences DESC" } { | | | > | 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | 5 1 "ORDER BY documents" 6 1 "ORDER BY documents DESC" 7 1 "ORDER BY occurrences ASC" 8 1 "ORDER BY occurrences" 9 1 "ORDER BY occurrences DESC" } { set res {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} if {$sort} { append res {*USE TEMP B-TREE FOR ORDER BY} } set res "/*$res*/" set sql "SELECT * FROM terms $orderby" do_execsql_test 2.3.1.$tn "EXPLAIN QUERY PLAN $sql" $res } #------------------------------------------------------------------------- # The next set of tests, fts3aux1-3.*, test error conditions in the |
︙ | ︙ | |||
399 400 401 402 403 404 405 | INSERT INTO x1 VALUES('f g h i j'); INSERT INTO x1 VALUES('k k l l a'); INSERT INTO x2 SELECT term FROM terms WHERE col = '*'; INSERT INTO x3 SELECT term FROM terms WHERE col = '*'; } | | > | > | | > > | | > > | | > > | | > | 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 | INSERT INTO x1 VALUES('f g h i j'); INSERT INTO x1 VALUES('k k l l a'); INSERT INTO x2 SELECT term FROM terms WHERE col = '*'; INSERT INTO x3 SELECT term FROM terms WHERE col = '*'; } proc do_plansql_test {tn sql r1 r2} { do_eqp_test $tn.eqp $sql $r1 do_execsql_test $tn $sql $r2 } do_plansql_test 4.2 { SELECT y FROM x2, terms WHERE y = term AND col = '*' } { QUERY PLAN |--SCAN TABLE x2 `--SCAN TABLE terms VIRTUAL TABLE INDEX 1: } { a b c d e f g h i j k l } do_plansql_test 4.3 { SELECT y FROM terms, x2 WHERE y = term AND col = '*' } { QUERY PLAN |--SCAN TABLE x2 `--SCAN TABLE terms VIRTUAL TABLE INDEX 1: } { a b c d e f g h i j k l } do_plansql_test 4.4 { SELECT y FROM x3, terms WHERE y = term AND col = '*' } { QUERY PLAN |--SCAN TABLE terms VIRTUAL TABLE INDEX 0: `--SEARCH TABLE x3 USING COVERING INDEX i1 (y=?) } { a b c d e f g h i j k l } do_plansql_test 4.5 { SELECT y FROM terms, x3 WHERE y = term AND occurrences>1 AND col = '*' } { QUERY PLAN |--SCAN TABLE terms VIRTUAL TABLE INDEX 0: `--SEARCH TABLE x3 USING COVERING INDEX i1 (y=?) } { a k l } #------------------------------------------------------------------------- # The following tests check that fts4aux can handle an fts table with an # odd name (one that requires quoting for use in SQL statements). And that # the argument to the fts4aux constructor is properly dequoted before use. |
︙ | ︙ |
Changes to test/fts3expr.test.
︙ | ︙ | |||
405 406 407 408 409 410 411 | # cases in the test code, which makes test coverage easier to measure. # do_test fts3expr-5.1 { catchsql { SELECT fts3_exprtest('simple', 'a b') } } {1 {Usage: fts3_exprtest(tokenizer, expr, col1, ...}} do_test fts3expr-5.2 { catchsql { SELECT fts3_exprtest('doesnotexist', 'a b', 'c') } | | | 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | # cases in the test code, which makes test coverage easier to measure. # do_test fts3expr-5.1 { catchsql { SELECT fts3_exprtest('simple', 'a b') } } {1 {Usage: fts3_exprtest(tokenizer, expr, col1, ...}} do_test fts3expr-5.2 { catchsql { SELECT fts3_exprtest('doesnotexist', 'a b', 'c') } } {1 {unknown tokenizer: doesnotexist}} do_test fts3expr-5.3 { catchsql { SELECT fts3_exprtest('simple', 'a b OR', 'c') } } {1 {Error parsing expression}} #------------------------------------------------------------------------ # The next set of tests verifies that things actually work as they are # supposed to when using the new syntax. |
︙ | ︙ |
Changes to test/fts3expr4.test.
︙ | ︙ | |||
25 26 27 28 29 30 31 | set sqlite_fts3_enable_parentheses 1 proc test_fts3expr {tokenizer expr} { db one {SELECT fts3_exprtest($tokenizer, $expr, 'a', 'b', 'c')} } proc do_icu_expr_test {tn expr res} { | > | | 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | set sqlite_fts3_enable_parentheses 1 proc test_fts3expr {tokenizer expr} { db one {SELECT fts3_exprtest($tokenizer, $expr, 'a', 'b', 'c')} } proc do_icu_expr_test {tn expr res} { set res2 [list {*}$res] uplevel [list do_test $tn [list test_fts3expr "icu en_US" $expr] $res2] } proc do_simple_expr_test {tn expr res} { uplevel [list do_test $tn [list test_fts3expr simple $expr] [list {*}$res]] } #------------------------------------------------------------------------- |
︙ | ︙ |
Changes to test/fts3join.test.
︙ | ︙ | |||
92 93 94 95 96 97 98 | do_eqp_test 4.2 { SELECT * FROM t4 LEFT JOIN ( SELECT docid, * FROM ft4 WHERE ft4 MATCH ? ) AS rr ON t4.rowid=rr.docid WHERE t4.y = ?; } { | > > | | | | 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | do_eqp_test 4.2 { SELECT * FROM t4 LEFT JOIN ( SELECT docid, * FROM ft4 WHERE ft4 MATCH ? ) AS rr ON t4.rowid=rr.docid WHERE t4.y = ?; } { QUERY PLAN |--MATERIALIZE xxxxxx | `--SCAN TABLE ft4 VIRTUAL TABLE INDEX 3: |--SCAN TABLE t4 `--SEARCH SUBQUERY xxxxxx AS rr USING AUTOMATIC COVERING INDEX (docid=?) } finish_test |
Changes to test/fts3query.test.
︙ | ︙ | |||
114 115 116 117 118 119 120 | CREATE VIRTUAL TABLE ft USING fts3(title); CREATE TABLE bt(title); } } {} do_eqp_test fts3query-4.2 { SELECT t1.number FROM t1, ft WHERE t1.number=ft.rowid ORDER BY t1.date } { | > | | > | | > | | > | | | 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | CREATE VIRTUAL TABLE ft USING fts3(title); CREATE TABLE bt(title); } } {} do_eqp_test fts3query-4.2 { SELECT t1.number FROM t1, ft WHERE t1.number=ft.rowid ORDER BY t1.date } { QUERY PLAN |--SCAN TABLE t1 USING COVERING INDEX i1 `--SCAN TABLE ft VIRTUAL TABLE INDEX 1: } do_eqp_test fts3query-4.3 { SELECT t1.number FROM ft, t1 WHERE t1.number=ft.rowid ORDER BY t1.date } { QUERY PLAN |--SCAN TABLE t1 USING COVERING INDEX i1 `--SCAN TABLE ft VIRTUAL TABLE INDEX 1: } do_eqp_test fts3query-4.4 { SELECT t1.number FROM t1, bt WHERE t1.number=bt.rowid ORDER BY t1.date } { QUERY PLAN |--SCAN TABLE t1 USING COVERING INDEX i1 `--SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?) } do_eqp_test fts3query-4.5 { SELECT t1.number FROM bt, t1 WHERE t1.number=bt.rowid ORDER BY t1.date } { QUERY PLAN |--SCAN TABLE t1 USING COVERING INDEX i1 `--SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?) } # Test that calling matchinfo() with the wrong number of arguments, or with # an invalid argument returns an error. # do_execsql_test 5.1 { |
︙ | ︙ |
Changes to test/fuzz_malloc.test.
︙ | ︙ | |||
53 54 55 56 57 58 59 | execsql $::prep set jj 0 for {set ii 0} {$ii < $::fuzzyopts(-repeats)} {incr ii} { expr srand($jj) incr jj set ::sql [subst $::fuzzyopts(-template)] # puts fuzyy-sql=\[$::sql\]; flush stdout | | > | > > > > > > > > > > | 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | execsql $::prep set jj 0 for {set ii 0} {$ii < $::fuzzyopts(-repeats)} {incr ii} { expr srand($jj) incr jj set ::sql [subst $::fuzzyopts(-template)] # puts fuzyy-sql=\[$::sql\]; flush stdout foreach {rc ::fmtres} [catchsql "$::sql"] {} if {$rc==0} { set nErr1 [set_test_counter errors] do_faultsim_test $testname-$ii -faults oom* -body { execsql $::sql } -test { if {$testrc && $testresult!="datatype mismatch"} { faultsim_test_result {0 {}} } } if {[set_test_counter errors]>$nErr1} { puts "Previous fuzzy-sql=\[$::sql\]" flush stdout } } else { incr ii -1 } } } #---------------------------------------------------------------- |
︙ | ︙ |
Changes to test/index6.test.
︙ | ︙ | |||
314 315 316 317 318 319 320 | INSERT INTO t8b VALUES('value', 3); INSERT INTO t8b VALUES('dummy', 4); } {} do_eqp_test index6-8.1 { SELECT * FROM t8a LEFT JOIN t8b ON (x = 'value' AND y = a) } { | > | | | 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | INSERT INTO t8b VALUES('value', 3); INSERT INTO t8b VALUES('dummy', 4); } {} do_eqp_test index6-8.1 { SELECT * FROM t8a LEFT JOIN t8b ON (x = 'value' AND y = a) } { QUERY PLAN |--SCAN TABLE t8a `--SEARCH TABLE t8b USING INDEX i8c (y=?) } do_execsql_test index6-8.2 { SELECT * FROM t8a LEFT JOIN t8b ON (x = 'value' AND y = a) } { 1 one value 1 2 two {} {} |
︙ | ︙ |
Changes to test/index7.test.
︙ | ︙ | |||
317 318 319 320 321 322 323 | INSERT INTO t4 VALUES('def', 'xyz'); SELECT * FROM v4 WHERE d='xyz' AND c='def' } { def xyz } do_eqp_test index7-6.4 { SELECT * FROM v4 WHERE d='xyz' AND c='def' | < | | | 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 | INSERT INTO t4 VALUES('def', 'xyz'); SELECT * FROM v4 WHERE d='xyz' AND c='def' } { def xyz } do_eqp_test index7-6.4 { SELECT * FROM v4 WHERE d='xyz' AND c='def' } {SEARCH TABLE t4 USING INDEX i4 (c=?)} do_catchsql_test index7-6.5 { CREATE INDEX t5a ON t5(a) WHERE a=#1; } {1 {near "#1": syntax error}} finish_test |
Changes to test/indexedby.test.
︙ | ︙ | |||
36 37 38 39 40 41 42 | # proc EQP {sql} { uplevel "execsql {EXPLAIN QUERY PLAN $sql}" } # These tests are to check that "EXPLAIN QUERY PLAN" is working as expected. # | | | | | | | | | > | | | | 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | # proc EQP {sql} { uplevel "execsql {EXPLAIN QUERY PLAN $sql}" } # These tests are to check that "EXPLAIN QUERY PLAN" is working as expected. # do_eqp_test indexedby-1.2 { select * from t1 WHERE a = 10; } {SEARCH TABLE t1 USING INDEX i1 (a=?)} do_eqp_test indexedby-1.3 { select * from t1 ; } {SCAN TABLE t1} do_eqp_test indexedby-1.4 { select * from t1, t2 WHERE c = 10; } { QUERY PLAN |--SEARCH TABLE t2 USING INDEX i3 (c=?) `--SCAN TABLE t1 } # Parser tests. Test that an INDEXED BY or NOT INDEX clause can be # attached to a table in the FROM clause, but not to a sub-select or # SQL view. Also test that specifying an index that does not exist or # is attached to a different table is detected as an error. # # X-EVIDENCE-OF: R-07004-11522 -- syntax diagram qualified-table-name # # EVIDENCE-OF: R-58230-57098 The "INDEXED BY index-name" phrase # specifies that the named index must be used in order to look up values # on the preceding table. # do_test indexedby-2.1 { execsql { SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'} |
︙ | ︙ | |||
111 112 113 114 115 116 117 | # # EVIDENCE-OF: R-37002-28871 The "NOT INDEXED" clause specifies that no # index shall be used when accessing the preceding table, including # implied indices create by UNIQUE and PRIMARY KEY constraints. However, # the rowid can still be used to look up entries even when "NOT INDEXED" # is specified. # | | | | | | | | | < | | < | | < | | < | | | > | | | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < | | < | | 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | # # EVIDENCE-OF: R-37002-28871 The "NOT INDEXED" clause specifies that no # index shall be used when accessing the preceding table, including # implied indices create by UNIQUE and PRIMARY KEY constraints. However, # the rowid can still be used to look up entries even when "NOT INDEXED" # is specified. # do_eqp_test indexedby-3.1 { SELECT * FROM t1 WHERE a = 'one' AND b = 'two' } {/SEARCH TABLE t1 USING INDEX/} do_eqp_test indexedby-3.1.1 { SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two' } {SCAN TABLE t1} do_eqp_test indexedby-3.1.2 { SELECT * FROM t1 NOT INDEXED WHERE rowid=1 } {/SEARCH TABLE t1 USING INTEGER PRIMARY KEY .rowid=/} do_eqp_test indexedby-3.2 { SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' AND b = 'two' } {SEARCH TABLE t1 USING INDEX i1 (a=?)} do_eqp_test indexedby-3.3 { SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' AND b = 'two' } {SEARCH TABLE t1 USING INDEX i2 (b=?)} do_test indexedby-3.4 { catchsql { SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' } } {1 {no query solution}} do_test indexedby-3.5 { catchsql { SELECT * FROM t1 INDEXED BY i2 ORDER BY a } } {1 {no query solution}} do_test indexedby-3.6 { catchsql { SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' } } {0 {}} do_test indexedby-3.7 { catchsql { SELECT * FROM t1 INDEXED BY i1 ORDER BY a } } {0 {}} do_eqp_test indexedby-3.8 { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 ORDER BY e } {SCAN TABLE t3 USING INDEX sqlite_autoindex_t3_1} do_eqp_test indexedby-3.9 { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE e = 10 } {SEARCH TABLE t3 USING INDEX sqlite_autoindex_t3_1 (e=?)} do_test indexedby-3.10 { catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE f = 10 } } {1 {no query solution}} do_test indexedby-3.11 { catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_2 WHERE f = 10 } } {1 {no such index: sqlite_autoindex_t3_2}} # Tests for multiple table cases. # do_eqp_test indexedby-4.1 { SELECT * FROM t1, t2 WHERE a = c } { QUERY PLAN |--SCAN TABLE t1 `--SEARCH TABLE t2 USING INDEX i3 (c=?) } do_eqp_test indexedby-4.2 { SELECT * FROM t1 INDEXED BY i1, t2 WHERE a = c } { QUERY PLAN |--SCAN TABLE t2 `--SEARCH TABLE t1 USING INDEX i1 (a=?) } do_test indexedby-4.3 { catchsql { SELECT * FROM t1 INDEXED BY i1, t2 INDEXED BY i3 WHERE a=c } } {1 {no query solution}} do_test indexedby-4.4 { catchsql { SELECT * FROM t2 INDEXED BY i3, t1 INDEXED BY i1 WHERE a=c } } {1 {no query solution}} # Test embedding an INDEXED BY in a CREATE VIEW statement. This block # also tests that nothing bad happens if an index refered to by # a CREATE VIEW statement is dropped and recreated. # do_execsql_test indexedby-5.1 { CREATE VIEW v2 AS SELECT * FROM t1 INDEXED BY i1 WHERE a > 5; EXPLAIN QUERY PLAN SELECT * FROM v2 } {/*SEARCH TABLE t1 USING INDEX i1 (a>?)*/} do_execsql_test indexedby-5.2 { EXPLAIN QUERY PLAN SELECT * FROM v2 WHERE b = 10 } {/*SEARCH TABLE t1 USING INDEX i1 (a>?)*/} do_test indexedby-5.3 { execsql { DROP INDEX i1 } catchsql { SELECT * FROM v2 } } {1 {no such index: i1}} do_test indexedby-5.4 { # Recreate index i1 in such a way as it cannot be used by the view query. execsql { CREATE INDEX i1 ON t1(b) } catchsql { SELECT * FROM v2 } } {1 {no query solution}} do_test indexedby-5.5 { # Drop and recreate index i1 again. This time, create it so that it can # be used by the query. execsql { DROP INDEX i1 ; CREATE INDEX i1 ON t1(a) } catchsql { SELECT * FROM v2 } } {0 {}} # Test that "NOT INDEXED" may use the rowid index, but not others. # do_eqp_test indexedby-6.1 { SELECT * FROM t1 WHERE b = 10 ORDER BY rowid } {SEARCH TABLE t1 USING INDEX i2 (b=?)} do_eqp_test indexedby-6.2 { SELECT * FROM t1 NOT INDEXED WHERE b = 10 ORDER BY rowid } {SCAN TABLE t1} # EVIDENCE-OF: R-40297-14464 The INDEXED BY phrase forces the SQLite # query planner to use a particular named index on a DELETE, SELECT, or # UPDATE statement. # # Test that "INDEXED BY" can be used in a DELETE statement. # do_eqp_test indexedby-7.1 { DELETE FROM t1 WHERE a = 5 } {SEARCH TABLE t1 USING INDEX i1 (a=?)} do_eqp_test indexedby-7.2 { DELETE FROM t1 NOT INDEXED WHERE a = 5 } {SCAN TABLE t1} do_eqp_test indexedby-7.3 { DELETE FROM t1 INDEXED BY i1 WHERE a = 5 } {SEARCH TABLE t1 USING INDEX i1 (a=?)} do_eqp_test indexedby-7.4 { DELETE FROM t1 INDEXED BY i1 WHERE a = 5 AND b = 10 } {SEARCH TABLE t1 USING INDEX i1 (a=?)} do_eqp_test indexedby-7.5 { DELETE FROM t1 INDEXED BY i2 WHERE a = 5 AND b = 10 } {SEARCH TABLE t1 USING INDEX i2 (b=?)} do_test indexedby-7.6 { catchsql { DELETE FROM t1 INDEXED BY i2 WHERE a = 5} } {1 {no query solution}} # Test that "INDEXED BY" can be used in an UPDATE statement. # do_eqp_test indexedby-8.1 { UPDATE t1 SET rowid=rowid+1 WHERE a = 5 } {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)} do_eqp_test indexedby-8.2 { UPDATE t1 NOT INDEXED SET rowid=rowid+1 WHERE a = 5 } {SCAN TABLE t1} do_eqp_test indexedby-8.3 { UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 } {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)} do_eqp_test indexedby-8.4 { UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 AND b = 10 } {SEARCH TABLE t1 USING INDEX i1 (a=?)} do_eqp_test indexedby-8.5 { UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5 AND b = 10 } {SEARCH TABLE t1 USING INDEX i2 (b=?)} do_test indexedby-8.6 { catchsql { UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5} } {1 {no query solution}} # Test that bug #3560 is fixed. # do_test indexedby-9.1 { |
︙ | ︙ | |||
337 338 339 340 341 342 343 | SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3'; } {1 1 3} do_execsql_test 11.4 { SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0'; } {1 1 3} do_eqp_test 11.5 { SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0'; | | | | 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3'; } {1 1 3} do_execsql_test 11.4 { SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0'; } {1 1 3} do_eqp_test 11.5 { SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0'; } {SEARCH TABLE x1 USING COVERING INDEX x1i (a=? AND b=? AND rowid=?)} do_execsql_test 11.6 { CREATE TABLE x2(c INTEGER PRIMARY KEY, a, b TEXT); CREATE INDEX x2i ON x2(a, b); INSERT INTO x2 VALUES(1, 1, 1); INSERT INTO x2 VALUES(2, 1, 1); INSERT INTO x2 VALUES(3, 1, 1); INSERT INTO x2 VALUES(4, 1, 1); } do_execsql_test 11.7 { SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c=3; } {1 1 3} do_execsql_test 11.8 { SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3'; } {1 1 3} do_execsql_test 11.9 { SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3.0'; } {1 1 3} do_eqp_test 11.10 { SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3.0'; } {SEARCH TABLE x2 USING COVERING INDEX x2i (a=? AND b=? AND rowid=?)} #------------------------------------------------------------------------- # Check INDEXED BY works (throws an exception) with partial indexes that # cannot be used. do_execsql_test 12.1 { CREATE TABLE o1(x INTEGER PRIMARY KEY, y, z); CREATE INDEX p1 ON o1(z); |
︙ | ︙ |
Changes to test/indexexpr2.test.
︙ | ︙ | |||
87 88 89 90 91 92 93 | ifcapable json1 { do_eqp_test 3.3.1 { SELECT json_extract(x, '$.b') FROM t2 WHERE json_extract(x, '$.b') IS NOT NULL AND json_extract(x, '$.a') IS NULL GROUP BY json_extract(x, '$.b') COLLATE nocase ORDER BY json_extract(x, '$.b') COLLATE nocase; | > | | | | > | | | | | 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | ifcapable json1 { do_eqp_test 3.3.1 { SELECT json_extract(x, '$.b') FROM t2 WHERE json_extract(x, '$.b') IS NOT NULL AND json_extract(x, '$.a') IS NULL GROUP BY json_extract(x, '$.b') COLLATE nocase ORDER BY json_extract(x, '$.b') COLLATE nocase; } [string map {"\n " \n} { QUERY PLAN |--SCAN TABLE t2 `--USE TEMP B-TREE FOR GROUP BY }] do_execsql_test 3.3.2 { CREATE INDEX i3 ON t3(json_extract(x, '$.a'), json_extract(x, '$.b')); } {} do_eqp_test 3.3.3 { SELECT json_extract(x, '$.b') FROM t3 WHERE json_extract(x, '$.b') IS NOT NULL AND json_extract(x, '$.a') IS NULL GROUP BY json_extract(x, '$.b') COLLATE nocase ORDER BY json_extract(x, '$.b') COLLATE nocase; } [string map {"\n " \n} { QUERY PLAN |--SEARCH TABLE t3 USING INDEX i3 (<expr>=?) `--USE TEMP B-TREE FOR GROUP BY }] } do_execsql_test 3.4.0 { CREATE TABLE t4(a, b); INSERT INTO t4 VALUES('.ABC', 1); INSERT INTO t4 VALUES('.abc', 2); INSERT INTO t4 VALUES('.ABC', 3); |
︙ | ︙ |
Changes to test/istrue.test.
︙ | ︙ | |||
139 140 141 142 143 144 145 146 | SELECT x IS TRUE FROM t1; } [expr {$tn in [list 5 6] ? {1} : {0}}] do_execsql_test istrue-600.$tn.4 { SELECT x IS FALSE FROM t1; } {0} } finish_test | > > > > > > > > > > > > > > > | 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | SELECT x IS TRUE FROM t1; } [expr {$tn in [list 5 6] ? {1} : {0}}] do_execsql_test istrue-600.$tn.4 { SELECT x IS FALSE FROM t1; } {0} } do_execsql_test istrue-700 { CREATE TABLE t7( a INTEGER PRIMARY KEY, b BOOLEAN DEFAULT false, c BOOLEAN DEFAULT true ); INSERT INTO t7(a) VALUES(1); INSERT INTO t7(a,b,c) VALUES(2,true,false); ALTER TABLE t7 ADD COLUMN d BOOLEAN DEFAULT false; ALTER TABLE t7 ADD COLUMN e BOOLEAN DEFAULT true; INSERT INTO t7(a,b,c) VALUES(3,true,false); INSERT INTO t7 VALUES(4,false,true,true,false); SELECT *,'x' FROM t7 ORDER BY a; } {1 0 1 0 1 x 2 1 0 0 1 x 3 1 0 0 1 x 4 0 1 1 0 x} finish_test |
Changes to test/join2.test.
︙ | ︙ | |||
108 109 110 111 112 113 114 | CREATE TABLE t3_1(k3 PRIMARY KEY, v3) WITHOUT ROWID; CREATE TABLE t3_2(v3, k3 PRIMARY KEY) WITHOUT ROWID; } do_eqp_test 3.1 { SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_1 USING (k3); } { | > | | > | | | 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | CREATE TABLE t3_1(k3 PRIMARY KEY, v3) WITHOUT ROWID; CREATE TABLE t3_2(v3, k3 PRIMARY KEY) WITHOUT ROWID; } do_eqp_test 3.1 { SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_1 USING (k3); } { QUERY PLAN |--SCAN TABLE t1 `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) } do_eqp_test 3.2 { SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_2 USING (k3); } { QUERY PLAN |--SCAN TABLE t1 `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) } #------------------------------------------------------------------------- # Test that tables other than the rightmost can be omitted from a # LEFT JOIN query. # do_execsql_test 4.0 { |
︙ | ︙ | |||
154 155 156 157 158 159 160 | do_execsql_test 4.1.4 { SELECT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1); } {2 v3 2 v3 1112 {} 1112 {}} do_eqp_test 4.1.5 { SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2); } { | > | | | > | | | 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | do_execsql_test 4.1.4 { SELECT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1); } {2 v3 2 v3 1112 {} 1112 {}} do_eqp_test 4.1.5 { SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2); } { QUERY PLAN |--SCAN TABLE c1 |--SEARCH TABLE c2 USING INTEGER PRIMARY KEY (rowid=?) `--SEARCH TABLE c3 USING INTEGER PRIMARY KEY (rowid=?) } do_eqp_test 4.1.6 { SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v1+1); } { QUERY PLAN |--SCAN TABLE c1 `--SEARCH TABLE c3 USING INTEGER PRIMARY KEY (rowid=?) } do_execsql_test 4.2.0 { DROP TABLE c1; DROP TABLE c2; DROP TABLE c3; CREATE TABLE c1(k UNIQUE, v1); |
︙ | ︙ | |||
199 200 201 202 203 204 205 | do_execsql_test 4.2.4 { SELECT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1); } {2 v3 2 v3 1112 {} 1112 {}} do_eqp_test 4.2.5 { SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2); } { | > | | | > | | | 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | do_execsql_test 4.2.4 { SELECT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1); } {2 v3 2 v3 1112 {} 1112 {}} do_eqp_test 4.2.5 { SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2); } { QUERY PLAN |--SCAN TABLE c1 |--SEARCH TABLE c2 USING INDEX sqlite_autoindex_c2_1 (k=?) `--SEARCH TABLE c3 USING INDEX sqlite_autoindex_c3_1 (k=?) } do_eqp_test 4.2.6 { SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v1+1); } { QUERY PLAN |--SCAN TABLE c1 `--SEARCH TABLE c3 USING INDEX sqlite_autoindex_c3_1 (k=?) } # 2017-11-23 (Thanksgiving day) # OSSFuzz found an assertion fault in the new LEFT JOIN eliminator code. # do_execsql_test 4.3.0 { DROP TABLE IF EXISTS t1; |
︙ | ︙ | |||
241 242 243 244 245 246 247 | CREATE TABLE s1 (a INTEGER PRIMARY KEY); CREATE TABLE s2 (a INTEGER PRIMARY KEY); CREATE TABLE s3 (a INTEGER); CREATE UNIQUE INDEX ndx on s3(a); } do_eqp_test 5.1 { SELECT s1.a FROM s1 left join s2 using (a); | < | | < | < < | < | 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 | CREATE TABLE s1 (a INTEGER PRIMARY KEY); CREATE TABLE s2 (a INTEGER PRIMARY KEY); CREATE TABLE s3 (a INTEGER); CREATE UNIQUE INDEX ndx on s3(a); } do_eqp_test 5.1 { SELECT s1.a FROM s1 left join s2 using (a); } {SCAN TABLE s1} do_eqp_test 5.2 { SELECT s1.a FROM s1 left join s3 using (a); } {SCAN TABLE s1} do_execsql_test 6.0 { CREATE TABLE u1(a INTEGER PRIMARY KEY, b, c); CREATE TABLE u2(a INTEGER PRIMARY KEY, b, c); CREATE INDEX u1ab ON u1(b, c); } do_eqp_test 6.1 { SELECT u2.* FROM u2 LEFT JOIN u1 ON( u1.a=u2.a AND u1.b=u2.b AND u1.c=u2.c ); } {SCAN TABLE u2} db close sqlite3 db :memory: do_execsql_test 7.0 { CREATE TABLE t1(a,b); INSERT INTO t1 VALUES(1,2),(3,4),(5,6); CREATE TABLE t2(c,d); INSERT INTO t2 VALUES(2,4),(3,6); CREATE TABLE t3(x); INSERT INTO t3 VALUES(9); |
︙ | ︙ |
Changes to test/join5.test.
︙ | ︙ | |||
207 208 209 210 211 212 213 214 215 | do_execsql_test 5.4 { SELECT count(z) FROM ( SELECT * FROM y1 ) LEFT JOIN y2 ON x } 1 do_execsql_test 5.5 { SELECT * FROM ( SELECT * FROM y1 ) LEFT JOIN y2 ON x } {0 0 1 {}} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | do_execsql_test 5.4 { SELECT count(z) FROM ( SELECT * FROM y1 ) LEFT JOIN y2 ON x } 1 do_execsql_test 5.5 { SELECT * FROM ( SELECT * FROM y1 ) LEFT JOIN y2 ON x } {0 0 1 {}} #------------------------------------------------------------------------- # reset_db do_execsql_test 6.1 { CREATE TABLE t1(x); INSERT INTO t1 VALUES(1); CREATE TABLE t2(y INTEGER PRIMARY KEY,a,b); INSERT INTO t2 VALUES(1,2,3); CREATE INDEX t2a ON t2(a); CREATE INDEX t2b ON t2(b); } do_execsql_test 6.2 { SELECT * FROM t1 LEFT JOIN t2 ON a=2 OR b=3 WHERE y IS NULL; } {} do_execsql_test 6.3.1 { CREATE TABLE t3(x); INSERT INTO t3 VALUES(1); CREATE TABLE t4(y, z); SELECT ifnull(z, '!!!') FROM t3 LEFT JOIN t4 ON (x=y); } {!!!} do_execsql_test 6.3.2 { CREATE INDEX t4i ON t4(y, ifnull(z, '!!!')); SELECT ifnull(z, '!!!') FROM t3 LEFT JOIN t4 ON (x=y); } {!!!} #------------------------------------------------------------------------- # reset_db do_execsql_test 7.0 { CREATE TABLE t1(x); INSERT INTO t1 VALUES(1); } do_execsql_test 7.1 { CREATE TABLE t2(x, y, z); CREATE INDEX t2xy ON t2(x, y); WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<50000 ) INSERT INTO t2 SELECT i/10, i, NULL FROM s; ANALYZE; } do_eqp_test 7.2 { SELECT * FROM t1 LEFT JOIN t2 ON ( t2.x = t1.x AND (t2.y=? OR (t2.y=? AND t2.z IS NOT NULL)) ); } { QUERY PLAN |--SCAN TABLE t1 `--MULTI-INDEX OR |--SEARCH TABLE t2 USING INDEX t2xy (x=? AND y=?) `--SEARCH TABLE t2 USING INDEX t2xy (x=? AND y=?) } do_execsql_test 7.3 { CREATE TABLE t3(x); CREATE TABLE t4(x, y, z); CREATE INDEX t4xy ON t4(x, y); CREATE INDEX t4xz ON t4(x, z); WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<50000) INSERT INTO t4 SELECT i/10, i, i FROM s; ANALYZE; } do_eqp_test 7.4 { SELECT * FROM t3 LEFT JOIN t4 ON (t4.x = t3.x) WHERE (t4.y = ? OR t4.z = ?); } { QUERY PLAN |--SCAN TABLE t3 `--SEARCH TABLE t4 USING INDEX t4xz (x=?) } finish_test |
Changes to test/mallocK.test.
︙ | ︙ | |||
117 118 119 120 121 122 123 | SELECT 'x' > '.'; } {1} ifcapable stat4 { do_eqp_test 6.1 { SELECT DISTINCT c FROM t3 WHERE b BETWEEN '.xx..' AND '.xxxx'; | > | | | | | 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | SELECT 'x' > '.'; } {1} ifcapable stat4 { do_eqp_test 6.1 { SELECT DISTINCT c FROM t3 WHERE b BETWEEN '.xx..' AND '.xxxx'; } [string map {"\n " \n} { QUERY PLAN |--SEARCH TABLE t3 USING INDEX i3 (ANY(a) AND b>? AND b<?) `--USE TEMP B-TREE FOR DISTINCT }] } do_faultsim_test 6 -faults oom* -body { db cache flush db eval { SELECT DISTINCT c FROM t3 WHERE b BETWEEN '.xx..' AND '.xxxx' } } -test { faultsim_test_result {0 {12 13 14 15}} |
︙ | ︙ |
Changes to test/orderby1.test.
︙ | ︙ | |||
450 451 452 453 454 455 456 | SELECT b, y FROM t41 CROSS JOIN t42 ON x=a ORDER BY b, y; } } {1 13 1 14 1 15 1 16} # No sorting of queries that omit the FROM clause. # | | | | > > > | 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 | SELECT b, y FROM t41 CROSS JOIN t42 ON x=a ORDER BY b, y; } } {1 13 1 14 1 15 1 16} # No sorting of queries that omit the FROM clause. # do_eqp_test 5.0 { SELECT 5 ORDER BY 1 } { QUERY PLAN `--SCAN CONSTANT ROW } do_execsql_test 5.1 { EXPLAIN QUERY PLAN SELECT 5 UNION ALL SELECT 3 ORDER BY 1 } {~/B-TREE/} do_execsql_test 5.2 { SELECT 5 UNION ALL SELECT 3 ORDER BY 1 } {3 5} do_execsql_test 5.3 { |
︙ | ︙ | |||
508 509 510 511 512 513 514 | CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a); } do_eqp_test 8.1 { SELECT * FROM t1 ORDER BY a, b; } { | > | | | 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 | CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a); } do_eqp_test 8.1 { SELECT * FROM t1 ORDER BY a, b; } { QUERY PLAN |--SCAN TABLE t1 USING INDEX i1 `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY } do_execsql_test 8.2 { WITH cnt(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM cnt WHERE i<10000 ) INSERT INTO t1 SELECT i%2, randomblob(500) FROM cnt; |
︙ | ︙ |
Changes to test/permutations.test.
︙ | ︙ | |||
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 | } -dbconfig { $::dbhandle version -use-legacy-prepare 1 #$::dbhandle cache size 0 } -files [ test_set $allquicktests -exclude *malloc* *ioerr* *fault* \ stmtvtab1.test index9.test ] # End of tests ############################################################################# # run_tests NAME OPTIONS # # where available options are: | > > > > > > > > > > > > > > > > > > > > | 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 | } -dbconfig { $::dbhandle version -use-legacy-prepare 1 #$::dbhandle cache size 0 } -files [ test_set $allquicktests -exclude *malloc* *ioerr* *fault* \ stmtvtab1.test index9.test ] test_suite "sorterref" -prefix "" -description { Run the "veryquick" test suite with SQLITE_CONFIG_SORTERREF_SIZE set to 0 so that sorter-references are used whenever possible. } -files [ test_set $allquicktests -exclude *malloc* *ioerr* *fault* *bigfile* *_err* \ *fts5corrupt* *fts5big* *fts5aj* ] -initialize { catch {db close} sqlite3_shutdown sqlite3_config_sorterref 0 sqlite3_initialize autoinstall_test_functions } -shutdown { catch {db close} sqlite3_shutdown sqlite3_config_sorterref -1 sqlite3_initialize autoinstall_test_functions } # End of tests ############################################################################# # run_tests NAME OPTIONS # # where available options are: |
︙ | ︙ |
Added test/resetdb.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | # 2018-04-28 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # Test cases for SQLITE_DBCONFIG_RESET_DATABASE # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix resetdb ifcapable !vtab||!compound { finish_test return } # Create a sample database do_execsql_test 100 { PRAGMA page_size=4096; CREATE TABLE t1(a,b); WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20) INSERT INTO t1(a,b) SELECT x, randomblob(300) FROM c; CREATE INDEX t1a ON t1(a); CREATE INDEX t1b ON t1(b); SELECT sum(a), sum(length(b)) FROM t1; PRAGMA integrity_check; PRAGMA journal_mode; PRAGMA page_count; } {210 6000 ok delete 8} # Verify that the same content is seen from a separate database connection sqlite3 db2 test.db do_test 110 { execsql { SELECT sum(a), sum(length(b)) FROM t1; PRAGMA integrity_check; PRAGMA journal_mode; PRAGMA page_count; } db2 } {210 6000 ok delete 8} do_test 200 { # Thoroughly corrupt the database file by overwriting the first # page with randomness. catchsql { UPDATE sqlite_dbpage SET data=randomblob(4096) WHERE pgno=1; PRAGMA quick_check; } } {1 {unsupported file format}} do_test 201 { catchsql { PRAGMA quick_check; } db2 } {1 {unsupported file format}} do_test 210 { # Reset the database file using SQLITE_DBCONFIG_RESET_DATABASE sqlite3_db_config db RESET_DB 1 db eval VACUUM sqlite3_db_config db RESET_DB 0 # Verify that the reset took, even on the separate database connection catchsql { PRAGMA page_count; PRAGMA page_size; PRAGMA quick_check; PRAGMA journal_mode; } db2 } {0 {1 4096 ok delete}} # Delete the old connections and database and start over again # with a different page size and in WAL mode. # db close db2 close forcedelete test.db sqlite3 db test.db do_execsql_test 300 { PRAGMA page_size=8192; PRAGMA journal_mode=WAL; CREATE TABLE t1(a,b); WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20) INSERT INTO t1(a,b) SELECT x, randomblob(1300) FROM c; CREATE INDEX t1a ON t1(a); CREATE INDEX t1b ON t1(b); SELECT sum(a), sum(length(b)) FROM t1; PRAGMA integrity_check; PRAGMA journal_mode; PRAGMA page_size; PRAGMA page_count; } {wal 210 26000 ok wal 8192 12} sqlite3 db2 test.db do_test 310 { execsql { SELECT sum(a), sum(length(b)) FROM t1; PRAGMA integrity_check; PRAGMA journal_mode; PRAGMA page_size; PRAGMA page_count; } db2 } {210 26000 ok wal 8192 12} # Corrupt the database again do_catchsql_test 320 { UPDATE sqlite_dbpage SET data=randomblob(8192) WHERE pgno=1; PRAGMA quick_check } {1 {file is not a database}} do_test 330 { catchsql { PRAGMA quick_check } db2 } {1 {file is not a database}} # Reset the database yet again. Verify that the page size and # journal mode are preserved. # do_test 400 { sqlite3_db_config db RESET_DB 1 db eval VACUUM sqlite3_db_config db RESET_DB 0 catchsql { PRAGMA page_count; PRAGMA page_size; PRAGMA journal_mode; PRAGMA quick_check; } db2 } {0 {1 8192 wal ok}} db2 close finish_test |
Changes to test/rollback2.test.
︙ | ︙ | |||
97 98 99 100 101 102 103 | } #-------------------------------------------------------------------- # Try with some index scans # do_eqp_test 3.1 { SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC; | | | 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | } #-------------------------------------------------------------------- # Try with some index scans # do_eqp_test 3.1 { SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC; } {SCAN TABLE t1 USING INDEX i1} do_rollback_test 3.2 -setup { BEGIN; DELETE FROM t1 WHERE (i%2)==1; } -select { SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC; } -result { 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 |
︙ | ︙ | |||
127 128 129 130 131 132 133 | # Now with some index scans that feature overflow keys. # set leader [string repeat "abcdefghij" 70] do_execsql_test 4.1 { UPDATE t1 SET h = $leader || h; } do_eqp_test 4.2 { SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC; | | | 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | # Now with some index scans that feature overflow keys. # set leader [string repeat "abcdefghij" 70] do_execsql_test 4.1 { UPDATE t1 SET h = $leader || h; } do_eqp_test 4.2 { SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC; } {SCAN TABLE t1 USING INDEX i1} do_rollback_test 4.3 -setup { BEGIN; DELETE FROM t1 WHERE (i%2)==1; } -select { SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC; } -result { 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 |
︙ | ︙ |
Changes to test/rowvalue.test.
︙ | ︙ | |||
171 172 173 174 175 176 177 | INSERT INTO xy VALUES(3, 3, 3); INSERT INTO xy VALUES(4, 4, 4); } foreach {tn sql res eqp} { 1 "SELECT * FROM xy WHERE (i, j) IS (2, 2)" {2 2 2} | | | | | | | 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | INSERT INTO xy VALUES(3, 3, 3); INSERT INTO xy VALUES(4, 4, 4); } foreach {tn sql res eqp} { 1 "SELECT * FROM xy WHERE (i, j) IS (2, 2)" {2 2 2} "SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid=?)" 2 "SELECT * FROM xy WHERE (k, j) < (2, 3)" {1 1 1 2 2 2} "SCAN TABLE xy" 3 "SELECT * FROM xy WHERE (i, j) < (2, 3)" {1 1 1 2 2 2} "SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid<?)" 4 "SELECT * FROM xy WHERE (i, j) > (2, 1)" {2 2 2 3 3 3 4 4 4} "SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid>?)" 5 "SELECT * FROM xy WHERE (i, j) > ('2', 1)" {2 2 2 3 3 3 4 4 4} "SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid>?)" } { do_eqp_test 7.$tn.1 $sql $eqp do_execsql_test 7.$tn.2 $sql $res } do_execsql_test 8.0 { |
︙ | ︙ |
Changes to test/rowvalue4.test.
︙ | ︙ | |||
180 181 182 183 184 185 186 | INSERT INTO c1(c, d) SELECT a, b FROM c1; CREATE INDEX c1ab ON c1(a, b); CREATE INDEX c1cd ON c1(c, d); ANALYZE; } | | | | | | | | | | < | | | | | | | | | | | | | | | | | | | 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | INSERT INTO c1(c, d) SELECT a, b FROM c1; CREATE INDEX c1ab ON c1(a, b); CREATE INDEX c1cd ON c1(c, d); ANALYZE; } do_eqp_test 3.1.1 { SELECT * FROM c1 WHERE a=1 AND c=2 } \ {SEARCH TABLE c1 USING INDEX c1cd (c=?)} do_eqp_test 3.1.2 { SELECT * FROM c1 WHERE a=1 AND b>'d' AND c=2 } \ {SEARCH TABLE c1 USING INDEX c1cd (c=?)} do_eqp_test 3.1.3 { SELECT * FROM c1 WHERE a=1 AND b>'l' AND c=2 } \ {SEARCH TABLE c1 USING INDEX c1ab (a=? AND b>?)} do_eqp_test 3.2.1 { SELECT * FROM c1 WHERE a=1 AND c>1 } \ {SEARCH TABLE c1 USING INDEX c1cd (c>?)} do_eqp_test 3.2.2 { SELECT * FROM c1 WHERE a=1 AND c>0 } \ {SEARCH TABLE c1 USING INDEX c1ab (a=?)} do_eqp_test 3.2.3 { SELECT * FROM c1 WHERE a=1 AND c>=1 } \ {SEARCH TABLE c1 USING INDEX c1ab (a=?)} do_eqp_test 3.2.4 { SELECT * FROM c1 WHERE a=1 AND (c, d)>(1, 'c') } \ {SEARCH TABLE c1 USING INDEX c1ab (a=?)} do_eqp_test 3.2.5 { SELECT * FROM c1 WHERE a=1 AND (c, d)>(1, 'o') } \ {SEARCH TABLE c1 USING INDEX c1cd ((c,d)>(?,?))} do_eqp_test 3.2.6 { SELECT * FROM c1 WHERE a=1 AND (c, +b)>(1, 'c') } \ {SEARCH TABLE c1 USING INDEX c1ab (a=?)} } #------------------------------------------------------------------------ do_execsql_test 5.0 { CREATE TABLE d1(x, y); CREATE TABLE d2(a, b, c); |
︙ | ︙ | |||
230 231 232 233 234 235 236 | } do_eqp_test 5.1 { SELECT * FROM d2 WHERE (a, b) IN (SELECT x, y FROM d1) AND (c) IN (SELECT y FROM d1) } { | > | | | | | < | | < | | < | | < | < < < | < | 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | } do_eqp_test 5.1 { SELECT * FROM d2 WHERE (a, b) IN (SELECT x, y FROM d1) AND (c) IN (SELECT y FROM d1) } { QUERY PLAN |--SEARCH TABLE d2 USING INDEX d2ab (a=? AND b=?) |--LIST SUBQUERY | `--SCAN TABLE d1 `--LIST SUBQUERY `--SCAN TABLE d1 } do_execsql_test 6.0 { CREATE TABLE e1(a, b, c, d, e); CREATE INDEX e1ab ON e1(a, b); CREATE INDEX e1cde ON e1(c, d, e); } do_eqp_test 6.1 { SELECT * FROM e1 WHERE (a, b) > (?, ?) } {SEARCH TABLE e1 USING INDEX e1ab ((a,b)>(?,?))} do_eqp_test 6.2 { SELECT * FROM e1 WHERE (a, b) < (?, ?) } {SEARCH TABLE e1 USING INDEX e1ab ((a,b)<(?,?))} do_eqp_test 6.3 { SELECT * FROM e1 WHERE c = ? AND (d, e) > (?, ?) } {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)>(?,?))} do_eqp_test 6.4 { SELECT * FROM e1 WHERE c = ? AND (d, e) < (?, ?) } {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)<(?,?))} do_eqp_test 6.5 { SELECT * FROM e1 WHERE (d, e) BETWEEN (?, ?) AND (?, ?) AND c = ? } {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)>(?,?) AND (d,e)<(?,?))} #------------------------------------------------------------------------- do_execsql_test 7.1 { CREATE TABLE f1(a, b, c); CREATE INDEX f1ab ON f1(a, b); } |
︙ | ︙ |
Changes to test/scanstatus.test.
︙ | ︙ | |||
324 325 326 327 328 329 330 | do_scanstatus_test 5.2.2 { nLoop 1 nVisit 2 nEst 2.0 zName sqlite_autoindex_t1_1 zExplain {SEARCH TABLE t1 USING COVERING INDEX sqlite_autoindex_t1_1 (a=?)} } do_eqp_test 5.3.1 { SELECT count(*) FROM t2 WHERE y = 'j'; | | > | | > | | | 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | do_scanstatus_test 5.2.2 { nLoop 1 nVisit 2 nEst 2.0 zName sqlite_autoindex_t1_1 zExplain {SEARCH TABLE t1 USING COVERING INDEX sqlite_autoindex_t1_1 (a=?)} } do_eqp_test 5.3.1 { SELECT count(*) FROM t2 WHERE y = 'j'; } {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)} do_execsql_test 5.3.2 { SELECT count(*) FROM t2 WHERE y = 'j'; } {19} do_scanstatus_test 5.3.3 { nLoop 1 nVisit 19 nEst 56.0 zName t2xy zExplain {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)} } do_eqp_test 5.4.1 { SELECT count(*) FROM t1, t2 WHERE y = c; } { QUERY PLAN |--SCAN TABLE t1 USING COVERING INDEX t1bc `--SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?) } do_execsql_test 5.4.2 { SELECT count(*) FROM t1, t2 WHERE y = c; } {200} do_scanstatus_test 5.4.3 { nLoop 1 nVisit 10 nEst 10.0 zName t1bc zExplain {SCAN TABLE t1 USING COVERING INDEX t1bc} nLoop 10 nVisit 200 nEst 56.0 zName t2xy zExplain {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)} } do_eqp_test 5.5.1 { SELECT count(*) FROM t1, t3 WHERE y = c; } { QUERY PLAN |--SCAN TABLE t3 `--SEARCH TABLE t1 USING AUTOMATIC COVERING INDEX (c=?) } do_execsql_test 5.5.2 { SELECT count(*) FROM t1, t3 WHERE y = c; } {200} do_scanstatus_test 5.5.3 { nLoop 1 nVisit 501 nEst 480.0 zName t3 zExplain {SCAN TABLE t3} nLoop 501 nVisit 200 nEst 20.0 zName auto-index zExplain |
︙ | ︙ |
Changes to test/selectA.test.
︙ | ︙ | |||
1332 1333 1334 1335 1336 1337 1338 | do_eqp_test 4.1.2 { SELECT c, d FROM t5 UNION ALL SELECT a, b FROM t4 WHERE f()==f() ORDER BY 1,2 } { | > > > | | > | | < | 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 | do_eqp_test 4.1.2 { SELECT c, d FROM t5 UNION ALL SELECT a, b FROM t4 WHERE f()==f() ORDER BY 1,2 } { QUERY PLAN `--MERGE (UNION ALL) |--LEFT | |--SCAN TABLE t5 USING INDEX i2 | `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY `--RIGHT |--SCAN TABLE t4 USING INDEX i1 `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY } do_execsql_test 4.1.3 { SELECT c, d FROM t5 UNION ALL SELECT a, b FROM t4 WHERE f()==f() ORDER BY 1,2 |
︙ | ︙ |
Changes to test/selectD.test.
︙ | ︙ | |||
165 166 167 168 169 170 171 | SELECT * FROM t41 LEFT JOIN (SELECT count(*) AS cnt, x1.d FROM (t42 INNER JOIN t43 ON d=g) AS x1 WHERE x1.d>5 GROUP BY x1.d) AS x2 ON t41.b=x2.d; | | | 165 166 167 168 169 170 171 172 173 174 | SELECT * FROM t41 LEFT JOIN (SELECT count(*) AS cnt, x1.d FROM (t42 INNER JOIN t43 ON d=g) AS x1 WHERE x1.d>5 GROUP BY x1.d) AS x2 ON t41.b=x2.d; } {/*SEARCH SUBQUERY 0x* AS x2 USING AUTOMATIC*/} finish_test |
Changes to test/skipscan2.test.
︙ | ︙ | |||
195 196 197 198 199 200 201 | for {set i 0} {$i < 1000} {incr i} { execsql { INSERT INTO t3 VALUES($i%2, $i, 'xyz') } } execsql { ANALYZE } } {} do_eqp_test skipscan2-3.3eqp { SELECT * FROM t3 WHERE b=42; | | | 195 196 197 198 199 200 201 202 203 204 205 | for {set i 0} {$i < 1000} {incr i} { execsql { INSERT INTO t3 VALUES($i%2, $i, 'xyz') } } execsql { ANALYZE } } {} do_eqp_test skipscan2-3.3eqp { SELECT * FROM t3 WHERE b=42; } {SEARCH TABLE t3 USING PRIMARY KEY (ANY(a) AND b=?)} finish_test |
Changes to test/skipscan6.test.
︙ | ︙ | |||
175 176 177 178 179 180 181 | t3 t3_ba {100 20 1 1} } # Use index "t3_a", as (a=?) is expected to match only a single row. # do_eqp_test 3.1 { SELECT * FROM t3 WHERE a = ? AND c = ? | < | < < | < < < < < < | 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | t3 t3_ba {100 20 1 1} } # Use index "t3_a", as (a=?) is expected to match only a single row. # do_eqp_test 3.1 { SELECT * FROM t3 WHERE a = ? AND c = ? } {SEARCH TABLE t3 USING INDEX t3_a (a=?)} # The same query on table t2. This should use index "t2_a", for the # same reason. At one point though, it was mistakenly using a skip-scan. # do_eqp_test 3.2 { SELECT * FROM t2 WHERE a = ? AND c = ? } {SEARCH TABLE t2 USING INDEX t2_a (a=?)} finish_test |
Changes to test/soak.test.
︙ | ︙ | |||
63 64 65 66 67 68 69 | fuzz_malloc.test trans.test corruptC.test } set G(isquick) 1 | | | | 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | fuzz_malloc.test trans.test corruptC.test } set G(isquick) 1 set soak_starttime [clock_seconds] set soak_finishtime [expr {$soak_starttime + $TIMEOUT}] # Loop until the timeout is reached or an error occurs. # for {set iRun 0} {[clock_seconds] < $soak_finishtime} {incr iRun} { set iIdx [expr {$iRun % [llength $SOAKTESTS]}] source [file join $testdir [lindex $SOAKTESTS $iIdx]] catch {db close} if {$sqlite_open_file_count>0} { puts "$tail did not close all files: $sqlite_open_file_count" |
︙ | ︙ |
Added test/sorterref.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | # 2018 April 14. # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix sorterref do_execsql_test 1.0 { CREATE TABLE t1(a, b, c); INSERT INTO t1 VALUES(1, 2, 3); INSERT INTO t1 VALUES(4, 5, 6); ALTER TABLE t1 ADD COLUMN d DEFAULT 'string'; INSERT INTO t1 VALUES(7, 8, 9, 'text'); } do_execsql_test 1.1 { SELECT * FROM t1 ORDER BY b; } { 1 2 3 string 4 5 6 string 7 8 9 text } do_execsql_test 2.0 { DROP TABLE IF EXISTS t1; CREATE TABLE t1(a, b); CREATE TABLE t2(c, d, PRIMARY KEY(c)) WITHOUT ROWID; INSERT INTO t1 VALUES(1, 2); INSERT INTO t1 VALUES(2, 3); INSERT INTO t1 VALUES(3, 4); INSERT INTO t2 VALUES(1, 'one'); INSERT INTO t2 VALUES(3, 'three'); } do_execsql_test 2.1 { SELECT * FROM t1 LEFT JOIN t2 ON (a=c) ORDER BY b; } {1 2 1 one 2 3 {} {} 3 4 3 three} finish_test |
Changes to test/tester.tcl.
︙ | ︙ | |||
980 981 982 983 984 985 986 987 | uplevel do_test [list $testname] [list "catchsql {$sql}"] [list $result] } proc do_timed_execsql_test {testname sql {result {}}} { fix_testname testname uplevel do_test [list $testname] [list "execsql_timed {$sql}"]\ [list [list {*}$result]] } proc do_eqp_test {name sql res} { | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > | 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 | uplevel do_test [list $testname] [list "catchsql {$sql}"] [list $result] } proc do_timed_execsql_test {testname sql {result {}}} { fix_testname testname uplevel do_test [list $testname] [list "execsql_timed {$sql}"]\ [list [list {*}$result]] } # Run an EXPLAIN QUERY PLAN $sql in database "db". Then rewrite the output # as an ASCII-art graph and return a string that is that graph. # # Hexadecimal literals in the output text are converted into "xxxxxx" since those # literals are pointer values that might very from one run of the test to the # next, yet we want the output to be consistent. # proc query_plan_graph {sql} { db eval "EXPLAIN QUERY PLAN $sql" { set dx($id) $detail lappend cx($parent) $id } set a "\n QUERY PLAN\n" append a [append_graph " " dx cx 0] return [regsub -all { 0x[A-F0-9]+\y} $a { xxxxxx}] } # Helper routine for [query_plan_graph SQL]: # # Output rows of the graph that are children of $level. # # prefix: Prepend to every output line # # dxname: Name of an array variable that stores text describe # The description for $id is $dx($id) # # cxname: Name of an array variable holding children of item. # Children of $id are $cx($id) # # level: Render all lines that are children of $level # proc append_graph {prefix dxname cxname level} { upvar $dxname dx $cxname cx set a "" set x $cx($level) set n [llength $x] for {set i 0} {$i<$n} {incr i} { set id [lindex $x $i] if {$i==$n-1} { set p1 "`--" set p2 " " } else { set p1 "|--" set p2 "| " } append a $prefix$p1$dx($id)\n if {[info exists cx($id)]} { append a [append_graph "$prefix$p2" dx cx $id] } } return $a } # Do an EXPLAIN QUERY PLAN test on input $sql with expected results $res # # If $res begins with a "\s+QUERY PLAN\n" then it is assumed to be the # complete graph which must match the output of [query_plan_graph $sql] # exactly. # # If $res does not begin with "\s+QUERY PLAN\n" then take it is a string # that must be found somewhere in the query plan output. # proc do_eqp_test {name sql res} { if {[regexp {^\s+QUERY PLAN\n} $res]} { uplevel do_test $name [list [list query_plan_graph $sql]] [list $res] } else { if {[string index $res 0]!="/"} { set res "/*$res*/" } uplevel do_execsql_test $name [list "EXPLAIN QUERY PLAN $sql"] [list $res] } } #------------------------------------------------------------------------- # Usage: do_select_tests PREFIX ?SWITCHES? TESTLIST # # Where switches are: # # -errorformat FMTSTRING |
︙ | ︙ |
Changes to test/tkt-385a5b56b9.test.
︙ | ︙ | |||
30 31 32 33 34 35 36 | do_execsql_test 2.0 { CREATE TABLE t2(x, y NOT NULL); CREATE UNIQUE INDEX t2x ON t2(x); CREATE UNIQUE INDEX t2y ON t2(y); } | | | | < | | | < | | | < | | | | 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | do_execsql_test 2.0 { CREATE TABLE t2(x, y NOT NULL); CREATE UNIQUE INDEX t2x ON t2(x); CREATE UNIQUE INDEX t2y ON t2(y); } do_eqp_test 2.1 { SELECT DISTINCT x FROM t2 } \ {SCAN TABLE t2 USING COVERING INDEX t2x} do_eqp_test 2.2 { SELECT DISTINCT y FROM t2 } \ {SCAN TABLE t2 USING COVERING INDEX t2y} do_eqp_test 2.3 { SELECT DISTINCT x, y FROM t2 WHERE y=10 } \ {SEARCH TABLE t2 USING INDEX t2y (y=?)} do_eqp_test 2.4 { SELECT DISTINCT x, y FROM t2 WHERE x=10 } \ {SEARCH TABLE t2 USING INDEX t2x (x=?)} finish_test |
Changes to test/tkt-78e04e52ea.test.
︙ | ︙ | |||
37 38 39 40 41 42 43 | } {0 {} {} 0 {} 0 1 x CHAR(100) 0 {} 0} do_test tkt-78e04-1.3 { execsql { CREATE INDEX i1 ON ""("" COLLATE nocase); } } {} do_test tkt-78e04-1.4 { | < | < | | | | 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | } {0 {} {} 0 {} 0 1 x CHAR(100) 0 {} 0} do_test tkt-78e04-1.3 { execsql { CREATE INDEX i1 ON ""("" COLLATE nocase); } } {} do_test tkt-78e04-1.4 { db eval {EXPLAIN QUERY PLAN SELECT "" FROM "" WHERE "" LIKE '1abc%';} } {/*SCAN TABLE USING COVERING INDEX i1*/} do_test tkt-78e04-1.5 { execsql { DROP TABLE ""; SELECT name FROM sqlite_master; } } {t2} do_test tkt-78e04-2.1 { execsql { CREATE INDEX "" ON t2(x); EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=5; } } {/*SEARCH TABLE t2 USING COVERING INDEX (x=?)*/} do_test tkt-78e04-2.2 { execsql { DROP INDEX ""; EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=2; } } {/*SCAN TABLE t2*/} finish_test |
Changes to test/tkt-b75a9ca6b0.test.
︙ | ︙ | |||
28 29 30 31 32 33 34 | INSERT INTO t1 VALUES (3, 1); } do_execsql_test 1.1 { CREATE INDEX i1 ON t1(x, y); } | | | | | | | | | | | | | 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | INSERT INTO t1 VALUES (3, 1); } do_execsql_test 1.1 { CREATE INDEX i1 ON t1(x, y); } set idxscan {SCAN TABLE t1 USING COVERING INDEX i1} set tblscan {SCAN TABLE t1} set grpsort {USE TEMP B-TREE FOR GROUP BY} set sort {USE TEMP B-TREE FOR ORDER BY} foreach {tn q res eqp} [subst -nocommands { 1 "SELECT * FROM t1 GROUP BY x, y ORDER BY x,y" {1 3 2 2 3 1} {$idxscan} 2 "SELECT * FROM t1 GROUP BY x, y ORDER BY x" {1 3 2 2 3 1} {$idxscan*$sort} 3 "SELECT * FROM t1 GROUP BY y, x ORDER BY y, x" {3 1 2 2 1 3} {$idxscan*$sort} 4 "SELECT * FROM t1 GROUP BY x ORDER BY x" {1 3 2 2 3 1} {$idxscan} 5 "SELECT * FROM t1 GROUP BY y ORDER BY y" {3 1 2 2 1 3} {$tblscan*$grpsort} 6 "SELECT * FROM t1 GROUP BY y ORDER BY x" {1 3 2 2 3 1} {$tblscan*$grpsort*$sort} 7 "SELECT * FROM t1 GROUP BY x, y ORDER BY x, y DESC" {1 3 2 2 3 1} {$idxscan*$sort} 8 "SELECT * FROM t1 GROUP BY x, y ORDER BY x DESC, y DESC" {3 1 2 2 1 3} {$idxscan*$sort} 9 "SELECT * FROM t1 GROUP BY x, y ORDER BY x ASC, y ASC" {1 3 2 2 3 1} {$idxscan} 10 "SELECT * FROM t1 GROUP BY x, y ORDER BY x COLLATE nocase, y" {1 3 2 2 3 1} {$idxscan*$sort} }] { do_execsql_test 1.$tn.1 $q $res do_eqp_test 1.$tn.2 $q $eqp } |
︙ | ︙ |
Changes to test/tkt3442.test.
︙ | ︙ | |||
30 31 32 33 34 35 36 | id TEXT, node INTEGER ); CREATE UNIQUE INDEX ididx ON listhash(id); } } {} | < < < < < < < < < | | | | | | < < | | | | | 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | id TEXT, node INTEGER ); CREATE UNIQUE INDEX ididx ON listhash(id); } } {} # These tests perform an EXPLAIN QUERY PLAN on both versions of the # SELECT referenced in ticket #3442 (both '5000' and "5000") # and verify that the query plan is the same. # do_eqp_test tkt3442-1.2 { SELECT node FROM listhash WHERE id='5000' LIMIT 1; } {SEARCH TABLE listhash USING INDEX ididx (id=?)} do_eqp_test tkt3442-1.3 { SELECT node FROM listhash WHERE id="5000" LIMIT 1; } {SEARCH TABLE listhash USING INDEX ididx (id=?)} # Some extra tests testing other permutations of 5000. # do_eqp_test tkt3442-1.4 { SELECT node FROM listhash WHERE id=5000 LIMIT 1; } {SEARCH TABLE listhash USING INDEX ididx (id=?)} do_test tkt3442-1.5 { catchsql { SELECT node FROM listhash WHERE id=[5000] LIMIT 1; } } {1 {no such column: 5000}} finish_test |
Changes to test/tpch01.test.
︙ | ︙ | |||
161 162 163 164 165 166 167 | and p_type = 'LARGE PLATED STEEL' ) as all_nations group by o_year order by o_year;}] set ::eqpres | | | 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | and p_type = 'LARGE PLATED STEEL' ) as all_nations group by o_year order by o_year;}] set ::eqpres } {/*SEARCH TABLE part USING INDEX bootleg_pti *SEARCH TABLE lineitem USING INDEX lpki2*/} do_test tpch01-1.1b { set ::eqpres } {/.* customer .* nation AS n1 .*/} do_test tpch01-1.1c { set ::eqpres } {/.* supplier .* nation AS n2 .*/} |
︙ | ︙ | |||
183 184 185 186 187 188 189 | c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate >= '1994-08-01' and o_orderdate < date('1994-08-01', '+3 month') and l_returnflag = 'R' and c_nationkey = n_nationkey group by c_custkey, c_name, c_acctbal, c_phone, n_name, c_address, c_comment order by revenue desc; | > > | > > > > > | > | 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate >= '1994-08-01' and o_orderdate < date('1994-08-01', '+3 month') and l_returnflag = 'R' and c_nationkey = n_nationkey group by c_custkey, c_name, c_acctbal, c_phone, n_name, c_address, c_comment order by revenue desc; } { QUERY PLAN |--SEARCH TABLE orders USING INDEX odi (O_ORDERDATE>? AND O_ORDERDATE<?) |--SEARCH TABLE customer USING INDEX cpki (C_CUSTKEY=?) |--SEARCH TABLE nation USING INDEX npki (N_NATIONKEY=?) |--SEARCH TABLE lineitem USING INDEX lpki (L_ORDERKEY=?) |--USE TEMP B-TREE FOR GROUP BY `--USE TEMP B-TREE FOR ORDER BY } finish_test |
Changes to test/trigger1.test.
︙ | ︙ | |||
723 724 725 726 727 728 729 730 731 | END; CREATE TRIGGER t17b_ai AFTER INSERT ON t17b BEGIN UPDATE t17b SET ss = 4; END; INSERT INTO t17a(ii) VALUES('1'); PRAGMA integrity_check; } {ok} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 | END; CREATE TRIGGER t17b_ai AFTER INSERT ON t17b BEGIN UPDATE t17b SET ss = 4; END; INSERT INTO t17a(ii) VALUES('1'); PRAGMA integrity_check; } {ok} # 2018-04-26 # When a BEFORE UPDATE trigger changes a column value in a row being # updated, and that column value is used by the UPDATE to change other # column, the value used to compute the update is from before the trigger. # In the example that follows, the value of "b" in "c=b" is 2 (the value # prior to running the BEFORE UPDATE trigger) not 1000. # do_execsql_test trigger1-18.0 { CREATE TABLE t18(a PRIMARY KEY,b,c); INSERT INTO t18(a,b,c) VALUES(1,2,3); CREATE TRIGGER t18r1 BEFORE UPDATE ON t18 BEGIN UPDATE t18 SET b=1000 WHERE a=old.a; END; UPDATE t18 SET c=b WHERE a=1; SELECT * FROM t18; } {1 1000 2} ;# Not: 1 1000 1000 do_execsql_test trigger1-18.1 { DELETE FROM t18; INSERT INTO t18(a,b,c) VALUES(1,2,3); UPDATE t18 SET c=b, b=b+1 WHERE a=1; SELECT * FROM t18; } {1 3 2} ;# Not: 1 1001 1000 # 2018-04-26 ticket [https://www.sqlite.org/src/tktview/d85fffd6ffe856092e] # VDBE Program uses an expired value. # do_execsql_test trigger1-19.0 { CREATE TABLE t19(a INT PRIMARY KEY, b, c)WITHOUT ROWID; INSERT INTO t19(a,b,c) VALUES(1,2,3); CREATE TRIGGER t19r3 BEFORE UPDATE ON t19 BEGIN SELECT new.b; END; UPDATE t19 SET c=b WHERE a=1; SELECT * FROM t19; } {1 2 2} do_execsql_test trigger1-19.1 { DELETE FROM t19; INSERT INTO t19(a,b,c) VALUES(1,2,3); UPDATE t19 SET c=CASE WHEN b=2 THEN b ELSE b+99 END WHERE a=1; SELECT * FROM t19; } {1 2 2} finish_test |
Changes to test/triggerE.test.
︙ | ︙ | |||
53 54 55 56 57 58 59 60 61 62 63 64 65 66 | 2 { BEFORE DELETE ON t1 BEGIN SELECT ?; END; } 3 { BEFORE DELETE ON t1 BEGIN SELECT * FROM (SELECT * FROM (SELECT ?)); END; } 5 { BEFORE DELETE ON t1 BEGIN SELECT * FROM t2 GROUP BY ?; END; } 6 { BEFORE DELETE ON t1 BEGIN SELECT * FROM t2 LIMIT ?; END; } 7 { BEFORE DELETE ON t1 BEGIN SELECT * FROM t2 ORDER BY ?; END; } 8 { BEFORE UPDATE ON t1 BEGIN UPDATE t2 SET c = ?; END; } 9 { BEFORE UPDATE ON t1 BEGIN UPDATE t2 SET c = 1 WHERE d = ?; END; } } { catchsql {drop trigger tr1} do_catchsql_test 1.1.$tn "CREATE TRIGGER tr1 $defn" [list 1 $errmsg] do_catchsql_test 1.2.$tn "CREATE TEMP TRIGGER tr1 $defn" [list 1 $errmsg] } #------------------------------------------------------------------------- | > | 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | 2 { BEFORE DELETE ON t1 BEGIN SELECT ?; END; } 3 { BEFORE DELETE ON t1 BEGIN SELECT * FROM (SELECT * FROM (SELECT ?)); END; } 5 { BEFORE DELETE ON t1 BEGIN SELECT * FROM t2 GROUP BY ?; END; } 6 { BEFORE DELETE ON t1 BEGIN SELECT * FROM t2 LIMIT ?; END; } 7 { BEFORE DELETE ON t1 BEGIN SELECT * FROM t2 ORDER BY ?; END; } 8 { BEFORE UPDATE ON t1 BEGIN UPDATE t2 SET c = ?; END; } 9 { BEFORE UPDATE ON t1 BEGIN UPDATE t2 SET c = 1 WHERE d = ?; END; } 10 { AFTER INSERT ON t1 BEGIN SELECT * FROM pragma_stats(?); END; } } { catchsql {drop trigger tr1} do_catchsql_test 1.1.$tn "CREATE TRIGGER tr1 $defn" [list 1 $errmsg] do_catchsql_test 1.2.$tn "CREATE TEMP TRIGGER tr1 $defn" [list 1 $errmsg] } #------------------------------------------------------------------------- |
︙ | ︙ |
Changes to test/unordered.test.
︙ | ︙ | |||
36 37 38 39 40 41 42 | if {$idxmode == "unordered"} { execsql { UPDATE sqlite_stat1 SET stat = stat || ' unordered' } } db close sqlite3 db test.db foreach {tn sql r(ordered) r(unordered)} { 1 "SELECT * FROM t1 ORDER BY a" | | | | | | | < | | | | | | | | | 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | if {$idxmode == "unordered"} { execsql { UPDATE sqlite_stat1 SET stat = stat || ' unordered' } } db close sqlite3 db test.db foreach {tn sql r(ordered) r(unordered)} { 1 "SELECT * FROM t1 ORDER BY a" {SCAN TABLE t1 USING INDEX i1} {SCAN TABLE t1*USE TEMP B-TREE FOR ORDER BY} 2 "SELECT * FROM t1 WHERE a > 100" {SEARCH TABLE t1 USING INDEX i1 (a>?)} {SCAN TABLE t1} 3 "SELECT * FROM t1 WHERE a = ? ORDER BY rowid" {SEARCH TABLE t1 USING INDEX i1 (a=?)} {SEARCH TABLE t1 USING INDEX i1 (a=?)*USE TEMP B-TREE FOR ORDER BY} 4 "SELECT max(a) FROM t1" {SEARCH TABLE t1 USING COVERING INDEX i1} {SEARCH TABLE t1} 5 "SELECT group_concat(b) FROM t1 GROUP BY a" {SCAN TABLE t1 USING INDEX i1} {SCAN TABLE t1*USE TEMP B-TREE FOR GROUP BY} 6 "SELECT * FROM t1 WHERE a = ?" {SEARCH TABLE t1 USING INDEX i1 (a=?)} {SEARCH TABLE t1 USING INDEX i1 (a=?)} 7 "SELECT count(*) FROM t1" {SCAN TABLE t1 USING COVERING INDEX i1} {SCAN TABLE t1} } { do_eqp_test 1.$idxmode.$tn $sql $r($idxmode) } } finish_test |
Changes to test/update.test.
︙ | ︙ | |||
504 505 506 507 508 509 510 511 512 513 514 515 516 517 | } {2 14 3 7} do_test update-11.2 { execsql { UPDATE t1 SET e=e+1 WHERE a IN (SELECT a FROM t1); SELECT a,e FROM t1; } } {1 15 2 8} } integrity_check update-12.1 # Ticket 602. Updates should occur in the same order as the records # were discovered in the WHERE clause. # | > > > > > > > > > > > > | 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 | } {2 14 3 7} do_test update-11.2 { execsql { UPDATE t1 SET e=e+1 WHERE a IN (SELECT a FROM t1); SELECT a,e FROM t1; } } {1 15 2 8} do_test update-11.3 { execsql { UPDATE t1 AS xyz SET e=e+1 WHERE xyz.a IN (SELECT a FROM t1); SELECT a,e FROM t1; } } {1 16 2 9} do_test update-11.4 { execsql { UPDATE t1 AS xyz SET e=e+1 WHERE EXISTS(SELECT 1 FROM t1 WHERE t1.a<xyz.a); SELECT a,e FROM t1; } } {1 16 2 10} } integrity_check update-12.1 # Ticket 602. Updates should occur in the same order as the records # were discovered in the WHERE clause. # |
︙ | ︙ | |||
614 615 616 617 618 619 620 | CREATE INDEX t15c ON t15(c); INSERT INTO t15(a,b) VALUES(5,'zyx'),(15,'wvu'),(25,'tsr'),(35,'qpo'); UPDATE t15 SET c=printf("y%d",a) WHERE c IS NULL; SELECT a,b,c,'|' FROM t15 ORDER BY a; } {5 zyx y5 | 10 abc y10 | 15 wvu y15 | 20 def y20 | 25 tsr y25 | 30 ghi y30 | 35 qpo y35 |} | > > > | > > > > > > > | 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 | CREATE INDEX t15c ON t15(c); INSERT INTO t15(a,b) VALUES(5,'zyx'),(15,'wvu'),(25,'tsr'),(35,'qpo'); UPDATE t15 SET c=printf("y%d",a) WHERE c IS NULL; SELECT a,b,c,'|' FROM t15 ORDER BY a; } {5 zyx y5 | 10 abc y10 | 15 wvu y15 | 20 def y20 | 25 tsr y25 | 30 ghi y30 | 35 qpo y35 |} # Unreleased bug in UPDATE caused by the UPSERT changes. # Found by OSSFuzz as soon as the UPSERT changes landed on trunk. # Never released into the wild. 2018-04-19. # do_execsql_test update-16.1 { CREATE TABLE t16(a INTEGER PRIMARY KEY ON CONFLICT REPLACE, b UNIQUE); INSERT INTO t16(a,b) VALUES(1,2),(3,4),(5,6); UPDATE t16 SET a=a; SELECT * FROM t16 ORDER BY +a; } {1 2 3 4 5 6} finish_test |
Added test/upsert1.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | # 2018-04-12 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # Test cases for UPSERT set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix zipfile do_execsql_test upsert1-100 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT, c DEFAULT 0); CREATE UNIQUE INDEX t1x1 ON t1(b); INSERT INTO t1(a,b) VALUES(1,2) ON CONFLICT DO NOTHING; INSERT INTO t1(a,b) VALUES(1,99),(99,2) ON CONFLICT DO NOTHING; SELECT * FROM t1; } {1 2 0} do_execsql_test upsert1-101 { DELETE FROM t1; INSERT INTO t1(a,b) VALUES(2,3) ON CONFLICT(a) DO NOTHING; INSERT INTO t1(a,b) VALUES(2,99) ON CONFLICT(a) DO NOTHING; SELECT * FROM t1; } {2 3 0} do_execsql_test upsert1-102 { DELETE FROM t1; INSERT INTO t1(a,b) VALUES(3,4) ON CONFLICT(b) DO NOTHING; INSERT INTO t1(a,b) VALUES(99,4) ON CONFLICT(b) DO NOTHING; SELECT * FROM t1; } {3 4 0} do_catchsql_test upsert1-110 { INSERT INTO t1(a,b) VALUES(5,6) ON CONFLICT(x) DO NOTHING; SELECT * FROM t1; } {1 {no such column: x}} do_catchsql_test upsert1-120 { INSERT INTO t1(a,b) VALUES(5,6) ON CONFLICT(c) DO NOTHING; SELECT * FROM t1; } {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}} breakpoint do_catchsql_test upsert1-130 { INSERT INTO t1(a,b) VALUES(5,6) ON CONFLICT(b COLLATE nocase) DO NOTHING; SELECT * FROM t1; } {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}} do_execsql_test upsert1-140 { DELETE FROM t1; INSERT INTO t1(a,b) VALUES(5,6) ON CONFLICT(b COLLATE binary) DO NOTHING; SELECT * FROM t1; } {5 6 0} do_catchsql_test upsert1-200 { DROP TABLE t1; CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT, c DEFAULT 0); CREATE UNIQUE INDEX t1x1 ON t1(a+b); INSERT INTO t1(a,b) VALUES(7,8) ON CONFLICT(a+b) DO NOTHING; INSERT INTO t1(a,b) VALUES(8,7),(9,6) ON CONFLICT(a+b) DO NOTHING; SELECT * FROM t1; } {0 {7 8 0}} do_catchsql_test upsert1-201 { INSERT INTO t1(a,b) VALUES(8,7),(9,6) ON CONFLICT(a) DO NOTHING; } {1 {UNIQUE constraint failed: index 't1x1'}} do_catchsql_test upsert1-210 { DELETE FROM t1; INSERT INTO t1(a,b) VALUES(9,10) ON CONFLICT(a+(+b)) DO NOTHING; SELECT * FROM t1; } {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}} do_catchsql_test upsert1-300 { DROP INDEX t1x1; DELETE FROM t1; CREATE UNIQUE INDEX t1x1 ON t1(b) WHERE b>10; INSERT INTO t1(a,b) VALUES(1,2),(3,2) ON CONFLICT(b) DO NOTHING; SELECT * FROM t1; } {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}} do_catchsql_test upsert1-310 { DELETE FROM t1; INSERT INTO t1(a,b) VALUES(1,2),(3,2) ON CONFLICT(b) WHERE b!=10 DO NOTHING; SELECT * FROM t1; } {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}} do_execsql_test upsert1-320 { DELETE FROM t1; INSERT INTO t1(a,b) VALUES(1,2),(3,2),(4,20),(5,20) ON CONFLICT(b) WHERE b>10 DO NOTHING; SELECT *, 'x' FROM t1 ORDER BY b, a; } {1 2 0 x 3 2 0 x 4 20 0 x} # Upsert works with count_changes=on; do_execsql_test upsert1-400 { DROP TABLE IF EXISTS t2; CREATE TABLE t2(a TEXT UNIQUE, b INT DEFAULT 1); INSERT INTO t2(a) VALUES('one'),('two'),('three'); PRAGMA count_changes=ON; INSERT INTO t2(a) VALUES('one'),('one'),('three'),('four') ON CONFLICT(a) DO UPDATE SET b=b+1; } {1} do_execsql_test upsert1-410 { PRAGMA count_changes=OFF; SELECT a, b FROM t2 ORDER BY a; } {four 1 one 3 three 2 two 1} # Problem found by AFL prior to any release do_execsql_test upsert1-500 { DROP TABLE t1; CREATE TABLE t1(x INTEGER PRIMARY KEY, y INT UNIQUE); INSERT INTO t1(x,y) SELECT 1,2 WHERE true ON CONFLICT(x) DO UPDATE SET y=max(t1.y,excluded.y) AND true; SELECT * FROM t1; } {1 2} finish_test |
Added test/upsert2.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | # 2018-04-17 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # Test cases for UPSERT set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix zipfile do_execsql_test upsert2-100 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b int, c DEFAULT 0); INSERT INTO t1(a,b) VALUES(1,2),(3,4); INSERT INTO t1(a,b) VALUES(1,8),(2,11),(3,1) ON CONFLICT(a) DO UPDATE SET b=excluded.b, c=c+1 WHERE t1.b<excluded.b; SELECT *, 'x' FROM t1 ORDER BY a; } {1 8 1 x 2 11 0 x 3 4 0 x} do_execsql_test upsert2-110 { DROP TABLE t1; CREATE TABLE t1(a INT PRIMARY KEY, b int, c DEFAULT 0) WITHOUT ROWID; INSERT INTO t1(a,b) VALUES(1,2),(3,4); INSERT INTO t1(a,b) VALUES(1,8),(2,11),(3,1) ON CONFLICT(a) DO UPDATE SET b=excluded.b, c=c+1 WHERE t1.b<excluded.b; SELECT *, 'x' FROM t1 ORDER BY a; } {1 8 1 x 2 11 0 x 3 4 0 x} do_execsql_test upsert2-200 { DROP TABLE t1; CREATE TABLE t1(a INTEGER PRIMARY KEY, b int, c DEFAULT 0); INSERT INTO t1(a,b) VALUES(1,2),(3,4); WITH nx(a,b) AS (VALUES(1,8),(2,11),(3,1),(2,15),(1,4),(1,99)) INSERT INTO t1(a,b) SELECT a, b FROM nx WHERE true ON CONFLICT(a) DO UPDATE SET b=excluded.b, c=c+1 WHERE t1.b<excluded.b; SELECT *, 'x' FROM t1 ORDER BY a; } {1 99 2 x 2 15 1 x 3 4 0 x} do_execsql_test upsert2-201 { DELETE FROM t1; INSERT INTO t1(a,b) VALUES(1,2),(3,4); WITH nx(a,b) AS (VALUES(1,8),(2,11),(3,1),(2,15),(1,4),(1,99)) INSERT INTO main.t1 AS t2(a,b) SELECT a, b FROM nx WHERE true ON CONFLICT(a) DO UPDATE SET b=excluded.b, c=t2.c+1 WHERE t2.b<excluded.b; SELECT *, 'x' FROM t1 ORDER BY a; } {1 99 2 x 2 15 1 x 3 4 0 x} do_catchsql_test upsert2-202 { WITH nx(a,b) AS (VALUES(1,8),(2,11),(3,1),(2,15),(1,4),(1,99)) INSERT INTO t1 AS t2(a,b) SELECT a, b FROM nx WHERE true ON CONFLICT(a) DO UPDATE SET b=excluded.b, c=t1.c+1 WHERE t1.b<excluded.b; } {1 {no such column: t1.c}} do_execsql_test upsert2-210 { DROP TABLE t1; CREATE TABLE t1(a INT PRIMARY KEY, b int, c DEFAULT 0) WITHOUT ROWID; INSERT INTO t1(a,b) VALUES(1,2),(3,4); WITH nx(a,b) AS (VALUES(1,8),(2,11),(3,1),(2,15),(1,4),(1,99)) INSERT INTO t1(a,b) SELECT a, b FROM nx WHERE true ON CONFLICT(a) DO UPDATE SET b=excluded.b, c=c+1 WHERE t1.b<excluded.b; SELECT *, 'x' FROM t1 ORDER BY a; } {1 99 2 x 2 15 1 x 3 4 0 x} # On an ON CONFLICT DO UPDATE, the before-insert, before-update, and # after-update triggers fire. # do_execsql_test upsert2-300 { DROP TABLE t1; CREATE TABLE t1(a INTEGER PRIMARY KEY, b int, c DEFAULT 0); CREATE TABLE record(x TEXT, y TEXT); CREATE TRIGGER r1 BEFORE INSERT ON t1 BEGIN INSERT INTO record(x,y) VALUES('before-insert',printf('%d,%d,%d',new.a,new.b,new.c)); END; CREATE TRIGGER r2 AFTER INSERT ON t1 BEGIN INSERT INTO record(x,y) VALUES('after-insert',printf('%d,%d,%d',new.a,new.b,new.c)); END; CREATE TRIGGER r3 BEFORE UPDATE ON t1 BEGIN INSERT INTO record(x,y) VALUES('before-update',printf('%d,%d,%d/%d,%d,%d', old.a,old.b,old.c,new.a,new.b,new.c)); END; CREATE TRIGGER r4 AFTER UPDATE ON t1 BEGIN INSERT INTO record(x,y) VALUES('after-update',printf('%d,%d,%d/%d,%d,%d', old.a,old.b,old.c,new.a,new.b,new.c)); END; INSERT INTO t1(a,b) VALUES(1,2); DELETE FROM record; INSERT INTO t1(a,b) VALUES(1,2) ON CONFLICT(a) DO UPDATE SET c=t1.c+1; SELECT * FROM record } {before-insert 1,2,0 before-update 1,2,0/1,2,1 after-update 1,2,0/1,2,1} # On an ON CONFLICT DO NOTHING, only the before-insert trigger fires. # do_execsql_test upsert2-310 { DELETE FROM record; INSERT INTO t1(a,b) VALUES(1,2) ON CONFLICT DO NOTHING; SELECT * FROM record; } {before-insert 1,2,0} # With ON CONFLICT DO UPDATE and a failed WHERE, only the before-insert # trigger fires. # do_execsql_test upsert2-320 { DELETE FROM record; INSERT INTO t1(a,b) VALUES(1,2) ON CONFLICT(a) DO UPDATE SET c=c+1 WHERE c<0; SELECT * FROM record; } {before-insert 1,2,0} do_execsql_test upsert2-321 { SELECT * FROM t1; } {1 2 1} # Trigger tests repeated for a WITHOUT ROWID table. # do_execsql_test upsert2-400 { DROP TABLE t1; CREATE TABLE t1(a INT PRIMARY KEY, b int, c DEFAULT 0) WITHOUT ROWID; CREATE TRIGGER r1 BEFORE INSERT ON t1 BEGIN INSERT INTO record(x,y) VALUES('before-insert',printf('%d,%d,%d',new.a,new.b,new.c)); END; CREATE TRIGGER r2 AFTER INSERT ON t1 BEGIN INSERT INTO record(x,y) VALUES('after-insert',printf('%d,%d,%d',new.a,new.b,new.c)); END; CREATE TRIGGER r3 BEFORE UPDATE ON t1 BEGIN INSERT INTO record(x,y) VALUES('before-update',printf('%d,%d,%d/%d,%d,%d', old.a,old.b,old.c,new.a,new.b,new.c)); END; CREATE TRIGGER r4 AFTER UPDATE ON t1 BEGIN INSERT INTO record(x,y) VALUES('after-update',printf('%d,%d,%d/%d,%d,%d', old.a,old.b,old.c,new.a,new.b,new.c)); END; INSERT INTO t1(a,b) VALUES(1,2); DELETE FROM record; INSERT INTO t1(a,b) VALUES(1,2) ON CONFLICT(a) DO UPDATE SET c=t1.c+1; SELECT * FROM record } {before-insert 1,2,0 before-update 1,2,0/1,2,1 after-update 1,2,0/1,2,1} # On an ON CONFLICT DO NOTHING, only the before-insert trigger fires. # do_execsql_test upsert2-410 { DELETE FROM record; INSERT INTO t1(a,b) VALUES(1,2) ON CONFLICT DO NOTHING; SELECT * FROM record; } {before-insert 1,2,0} # With ON CONFLICT DO UPDATE and a failed WHERE, only the before-insert # trigger fires. # do_execsql_test upsert2-420 { DELETE FROM record; INSERT INTO t1(a,b) VALUES(1,2) ON CONFLICT(a) DO UPDATE SET c=c+1 WHERE c<0; SELECT * FROM record; } {before-insert 1,2,0} do_execsql_test upsert2-421 { SELECT * FROM t1; } {1 2 1} finish_test |
Added test/upsert3.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | # 2018-04-17 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # Test cases for UPSERT # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix zipfile do_execsql_test upsert3-100 { CREATE TABLE t1(k int, v text); CREATE UNIQUE INDEX x1 ON t1(k, v); } {} do_catchsql_test upsert3-110 { INSERT INTO t1 VALUES(0,'abcdefghij') ON CONFLICT(k) DO NOTHING; } {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}} do_catchsql_test upsert3-120 { INSERT INTO t1 VALUES(0,'abcdefghij') ON CONFLICT(v) DO NOTHING; } {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}} do_execsql_test upsert3-130 { INSERT INTO t1 VALUES(0, 'abcdefghij') ON CONFLICT(k,v) DO NOTHING; SELECT * FROM t1; } {0 abcdefghij} do_execsql_test upsert3-140 { INSERT INTO t1 VALUES(0, 'abcdefghij') ON CONFLICT(v,k) DO NOTHING; SELECT * FROM t1; } {0 abcdefghij} do_execsql_test upsert3-200 { CREATE TABLE excluded(a INT, b INT, c INT DEFAULT 0); CREATE UNIQUE INDEX excludedab ON excluded(a,b); INSERT INTO excluded(a,b) VALUES(1,2),(1,2),(3,4),(1,2),(5,6),(3,4) ON CONFLICT(b,a) DO UPDATE SET c=excluded.c+1; SELECT *, 'x' FROM excluded ORDER BY a; } {1 2 2 x 3 4 1 x 5 6 0 x} do_execsql_test upsert3-210 { INSERT INTO excluded AS base(a,b,c) VALUES(1,2,8),(1,2,3) ON CONFLICT(b,a) DO UPDATE SET c=excluded.c+1 WHERE base.c<excluded.c; SELECT *, 'x' FROM excluded ORDER BY a; } {1 2 9 x 3 4 1 x 5 6 0 x} finish_test |
Added test/upsert4.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 | # 2018-04-17 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # Test cases for UPSERT set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix upsert4 foreach {tn sql} { 1 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c UNIQUE) } 2 { CREATE TABLE t1(a INT PRIMARY KEY, b, c UNIQUE) } 3 { CREATE TABLE t1(a INT PRIMARY KEY, b, c UNIQUE) WITHOUT ROWID} } { reset_db execsql $sql do_execsql_test 1.$tn.0 { INSERT INTO t1 VALUES(1, NULL, 'one'); INSERT INTO t1 VALUES(2, NULL, 'two'); INSERT INTO t1 VALUES(3, NULL, 'three'); } do_execsql_test 1.$tn.1 { INSERT INTO t1 VALUES(1, NULL, 'xyz') ON CONFLICT DO NOTHING; SELECT * FROM t1; } { 1 {} one 2 {} two 3 {} three } do_execsql_test 1.$tn.2 { INSERT INTO t1 VALUES(4, NULL, 'two') ON CONFLICT DO NOTHING; SELECT * FROM t1; } { 1 {} one 2 {} two 3 {} three } do_execsql_test 1.$tn.3 { INSERT INTO t1 VALUES(4, NULL, 'two') ON CONFLICT (c) DO UPDATE SET b = 1; SELECT * FROM t1; } { 1 {} one 2 1 two 3 {} three } do_execsql_test 1.$tn.4 { INSERT INTO t1 VALUES(2, NULL, 'zero') ON CONFLICT (a) DO UPDATE SET b=2; SELECT * FROM t1; } {1 {} one 2 2 two 3 {} three} do_catchsql_test 1.$tn.5 { INSERT INTO t1 VALUES(2, NULL, 'zero') ON CONFLICT (a) DO UPDATE SET c = 'one'; } {1 {UNIQUE constraint failed: t1.c}} do_execsql_test 1.$tn.6 { SELECT * FROM t1; } {1 {} one 2 2 two 3 {} three} do_execsql_test 1.$tn.7 { INSERT INTO t1 VALUES(2, NULL, 'zero') ON CONFLICT (a) DO UPDATE SET (b, c) = (SELECT 'x', 'y'); SELECT * FROM t1; } {1 {} one 2 x y 3 {} three} do_execsql_test 1.$tn.8 { INSERT INTO t1 VALUES(1, NULL, NULL) ON CONFLICT (a) DO UPDATE SET (c, a) = ('four', 4); SELECT * FROM t1 ORDER BY 1; } {2 x y 3 {} three 4 {} four} } #------------------------------------------------------------------------- # Test target analysis. # set rtbl(0) {0 {}} set rtbl(1) {/1 .*failed.*/} set rtbl(2) {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}} foreach {tn sql} { 1 { CREATE TABLE xyz(a INTEGER PRIMARY KEY, b, c, d); CREATE UNIQUE INDEX xyz1 ON xyz(d, c, b COLLATE nocase); } 2 { CREATE TABLE xyz(a INT PRIMARY KEY, b, c, d); CREATE UNIQUE INDEX xyz1 ON xyz(d, c, b COLLATE nocase); } 3 { CREATE TABLE xyz(a INT PRIMARY KEY, b, c, d) WITHOUT ROWID; CREATE UNIQUE INDEX xyz1 ON xyz(d, c, b COLLATE nocase); } } { reset_db execsql $sql do_execsql_test 2.$tn.1 { INSERT INTO xyz VALUES(10, 1, 1, 'one'); } foreach {tn2 oc res} { 1 "ON CONFLICT (b COLLATE nocase, c, d) DO NOTHING" 0 2 "ON CONFLICT (b, c, d) DO NOTHING" 0 3 "ON CONFLICT (b, c COLLATE nocase, d) DO NOTHING" 2 4 "ON CONFLICT (a) DO NOTHING" 1 5 "ON CONFLICT DO NOTHING" 0 6 "ON CONFLICT (b, c, d) WHERE a!=0 DO NOTHING" 0 7 "ON CONFLICT (d, c, c) WHERE a!=0 DO NOTHING" 2 8 "ON CONFLICT (b COLLATE nocase, c COLLATE nocase, d) DO NOTHING" 2 9 "ON CONFLICT (b, c, d) WHERE b==45 DO NOTHING" 0 } { do_catchsql_test 2.$tn.2.$tn2 " INSERT INTO xyz VALUES(11, 1, 1, 'one') $oc " $rtbl($res) } do_execsql_test 2.$tn.3 { SELECT * FROM xyz; } {10 1 1 one} } foreach {tn sql} { 1 { CREATE TABLE abc(a INTEGER PRIMARY KEY, x, y); CREATE UNIQUE INDEX abc1 ON abc(('x' || x) COLLATE nocase); } 2 { CREATE TABLE abc(a INT PRIMARY KEY, x, y); CREATE UNIQUE INDEX abc1 ON abc(('x' || x) COLLATE nocase); } 3 { CREATE TABLE abc(a INT PRIMARY KEY, x, y) WITHOUT ROWID; CREATE UNIQUE INDEX abc1 ON abc(('x' || x) COLLATE nocase); } } { reset_db execsql $sql do_execsql_test 3.$tn.1 { INSERT INTO abc VALUES(1, 'one', 'two'); } foreach {tn2 oc res} { 1 "ON CONFLICT DO NOTHING" 0 2 "ON CONFLICT ('x' || x) DO NOTHING" 0 3 "ON CONFLICT (('x' || x) COLLATE nocase) DO NOTHING" 0 4 "ON CONFLICT (('x' || x) COLLATE binary) DO NOTHING" 2 5 "ON CONFLICT (x || 'x') DO NOTHING" 2 6 "ON CONFLICT ((('x' || x))) DO NOTHING" 0 } { do_catchsql_test 3.$tn.2.$tn2 " INSERT INTO abc VALUES(2, 'one', NULL) $oc; " $rtbl($res) } do_execsql_test 3.$tn.3 { SELECT * FROM abc } {1 one two} } foreach {tn sql} { 1 { CREATE TABLE abc(a INTEGER PRIMARY KEY, x, y); CREATE UNIQUE INDEX abc1 ON abc(x) WHERE y>0; CREATE UNIQUE INDEX abc2 ON abc(y) WHERE x='xyz' COLLATE nocase; } } { reset_db execsql $sql do_execsql_test 4.$tn.1 { INSERT INTO abc VALUES(1, 'one', 1); INSERT INTO abc VALUES(2, 'two', 2); INSERT INTO abc VALUES(3, 'xyz', 3); INSERT INTO abc VALUES(4, 'XYZ', 4); } foreach {tn2 oc res} { 1 "ON CONFLICT DO NOTHING" 0 2 "ON CONFLICT(x) WHERE y>0 DO NOTHING" 0 3 "ON CONFLICT(x) DO NOTHING" 2 4 "ON CONFLICT(x) WHERE y>=0 DO NOTHING" 2 5 "ON CONFLICT(y) WHERE x='xyz' COLLATE nocase DO NOTHING" 1 } { do_catchsql_test 4.$tn.2.$tn2 " INSERT INTO abc VALUES(5, 'one', 10) $oc " $rtbl($res) } do_execsql_test 4.$tn.3 { SELECT * FROM abc } {1 one 1 2 two 2 3 xyz 3 4 XYZ 4} foreach {tn2 oc res} { 1 "ON CONFLICT DO NOTHING" 0 2 "ON CONFLICT(y) WHERE x='xyz' COLLATE nocase DO NOTHING" 0 3 "ON CONFLICT(y) WHERE x='xyz' COLLATE binary DO NOTHING" 2 4 "ON CONFLICT(x) WHERE y>0 DO NOTHING" 1 } { do_catchsql_test 4.$tn.2.$tn2 " INSERT INTO abc VALUES(5, 'xYz', 3) $oc " $rtbl($res) } } do_catchsql_test 5.0 { CREATE TABLE w1(a INT PRIMARY KEY, x, y); CREATE UNIQUE INDEX w1expr ON w1(('x' || x)); INSERT INTO w1 VALUES(2, 'one', NULL) ON CONFLICT (('x' || x) COLLATE nocase) DO NOTHING; } {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}} #------------------------------------------------------------------------- # Test that ON CONFLICT constraint processing occurs before any REPLACE # constraint processing. # foreach {tn sql} { 1 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b UNIQUE, c); } 2 { CREATE TABLE t1(a INT PRIMARY KEY, b UNIQUE, c); } 3 { CREATE TABLE t1(a INT PRIMARY KEY, b UNIQUE, c) WITHOUT ROWID; } } { reset_db execsql $sql do_execsql_test 6.1.$tn { INSERT INTO t1 VALUES(1, 1, 'one'); INSERT INTO t1 VALUES(2, 2, 'two'); INSERT OR REPLACE INTO t1 VALUES(1, 2, 'two') ON CONFLICT(b) DO NOTHING; PRAGMA integrity_check; } {ok} } foreach {tn sql} { 1 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b UNIQUE, c UNIQUE); } } { reset_db execsql $sql do_execsql_test 6.2.$tn.1 { INSERT INTO t1 VALUES(1, 1, 1); INSERT INTO t1 VALUES(2, 2, 2); } do_execsql_test 6.2.$tn.2 { INSERT OR REPLACE INTO t1 VALUES(3, 1, 1) ON CONFLICT(b) DO NOTHING; SELECT * FROM t1; PRAGMA integrity_check; } {1 1 1 2 2 2 ok} do_execsql_test 6.2.$tn.3 { INSERT OR REPLACE INTO t1 VALUES(3, 2, 2) ON CONFLICT(c) DO NOTHING; SELECT * FROM t1; PRAGMA integrity_check; } {1 1 1 2 2 2 ok} do_execsql_test 6.2.$tn.2 { INSERT OR REPLACE INTO t1 VALUES(3, 1, 1) ON CONFLICT(b) DO UPDATE SET b=b||'x'; SELECT * FROM t1; PRAGMA integrity_check; } {1 1x 1 2 2 2 ok} do_execsql_test 6.2.$tn.2 { INSERT OR REPLACE INTO t1 VALUES(3, 2, 2) ON CONFLICT(c) DO UPDATE SET c=c||'x'; SELECT * FROM t1; PRAGMA integrity_check; } {1 1x 1 2 2 2x ok} } #------------------------------------------------------------------------- # Test references to "excluded". And using an alias in an INSERT # statement. # foreach {tn sql} { 1 { CREATE TABLE t1(w, x, y, z, PRIMARY KEY(x, y)); CREATE UNIQUE INDEX zz ON t1(z); } 2 { CREATE TABLE t1(w, x, y, z, PRIMARY KEY(x, y)) WITHOUT ROWID; CREATE UNIQUE INDEX zz ON t1(z); } } { reset_db execsql $sql do_execsql_test 7.$tn.0 { INSERT INTO t1 VALUES('a', 1, 1, 1); INSERT INTO t1 VALUES('b', 2, 2, 2); } do_execsql_test 7.$tn.1 { INSERT INTO t1 VALUES('c', 3, 3, 1) ON CONFLICT(z) DO UPDATE SET w = excluded.w; SELECT * FROM t1; } {c 1 1 1 b 2 2 2} do_execsql_test 7.$tn.2 { INSERT INTO t1 VALUES('c', 2, 2, 3) ON CONFLICT(y, x) DO UPDATE SET w = w||w; SELECT * FROM t1; } {c 1 1 1 bb 2 2 2} do_execsql_test 7.$tn.3 { INSERT INTO t1 VALUES('c', 2, 2, 3) ON CONFLICT(y, x) DO UPDATE SET w = w||t1.w; SELECT * FROM t1; } {c 1 1 1 bbbb 2 2 2} do_execsql_test 7.$tn.4 { INSERT INTO t1 AS tbl VALUES('c', 2, 2, 3) ON CONFLICT(y, x) DO UPDATE SET w = w||tbl.w; SELECT * FROM t1; } {c 1 1 1 bbbbbbbb 2 2 2} } foreach {tn sql} { 1 { CREATE TABLE excluded(w, x INTEGER, 'a b', z, PRIMARY KEY(x, 'a b')); CREATE UNIQUE INDEX zz ON excluded(z); CREATE INDEX zz2 ON excluded(z); } 2 { CREATE TABLE excluded(w, x, 'a b', z, PRIMARY KEY(x, 'a b')) WITHOUT ROWID; CREATE UNIQUE INDEX zz ON excluded(z); CREATE INDEX zz2 ON excluded(z); } } { reset_db execsql $sql do_execsql_test 8.$tn.0 { INSERT INTO excluded VALUES('a', 1, 1, 1); INSERT INTO excluded VALUES('b', 2, 2, 2); } # Note: An error in Postgres: "table reference "excluded" is ambiguous". # do_execsql_test 8.$tn.1 { INSERT INTO excluded VALUES('hello', 1, 1, NULL) ON CONFLICT(x, "a b") DO UPDATE SET w=excluded.w; SELECT * FROM excluded; } {a 1 1 1 b 2 2 2} do_execsql_test 8.$tn.2 { INSERT INTO excluded AS x1 VALUES('hello', 1, 1, NULL) ON CONFLICT(x, [a b]) DO UPDATE SET w=excluded.w; SELECT * FROM excluded; } {hello 1 1 1 b 2 2 2} do_execsql_test 8.$tn.3 { INSERT INTO excluded AS x1 VALUES('hello', 1, 1, NULL) ON CONFLICT(x, [a b]) DO UPDATE SET w=w||w WHERE excluded.w!='hello'; SELECT * FROM excluded; } {hello 1 1 1 b 2 2 2} do_execsql_test 8.$tn.4 { INSERT INTO excluded AS x1 VALUES('hello', 1, 1, NULL) ON CONFLICT(x, [a b]) DO UPDATE SET w=w||w WHERE excluded.x=1; SELECT * FROM excluded; } {hellohello 1 1 1 b 2 2 2} do_catchsql_test 8.$tn.5 { INSERT INTO excluded AS x1 VALUES('hello', 1, 1, NULL) ON CONFLICT(x, [a b]) WHERE y=1 DO UPDATE SET w=w||w WHERE excluded.x=1; } {1 {no such column: y}} } #-------------------------------------------------------------------------- # do_execsql_test 9.0 { CREATE TABLE v(x INTEGER); CREATE TABLE hist(x INTEGER PRIMARY KEY, cnt INTEGER); CREATE TRIGGER vt AFTER INSERT ON v BEGIN INSERT INTO hist VALUES(new.x, 1) ON CONFLICT(x) DO UPDATE SET cnt=cnt+1; END; } do_execsql_test 9.1 { INSERT INTO v VALUES(1), (4), (1), (5), (5), (8), (9), (1); SELECT * FROM hist; } { 1 3 4 1 5 2 8 1 9 1 } finish_test |
Added test/upsertfault.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | # 2018-04-17 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # Test cases for UPSERT set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix upsertfault do_execsql_test 1.0 { CREATE TABLE t1(a PRIMARY KEY, b, c, d, UNIQUE(b, c)); INSERT INTO t1 VALUES(1, 1, 1, 1); INSERT INTO t1 VALUES(2, 2, 2, 2); } faultsim_save_and_close do_faultsim_test 1 -faults oom* -prep { faultsim_restore_and_reopen db eval { SELECT * FROM sqlite_master } } -body { execsql { INSERT INTO t1 VALUES(3, 2, 2, NULL) ON CONFLICT(b, c) DO UPDATE SET d=d+1; } } -test { faultsim_test_result {0 {}} } finish_test |
Changes to test/where.test.
︙ | ︙ | |||
1363 1364 1365 1366 1367 1368 1369 1370 1371 | SELECT DISTINCT a FROM t181 LEFT JOIN t182 ON a=b ORDER BY c IS NULL, +a; } {1 2} do_execsql_test where-18.6 { INSERT INTO t181 VALUES(2); SELECT DISTINCT a FROM t181 LEFT JOIN t182 ON a=b ORDER BY +a, +c IS NULL; } {1 2} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 | SELECT DISTINCT a FROM t181 LEFT JOIN t182 ON a=b ORDER BY c IS NULL, +a; } {1 2} do_execsql_test where-18.6 { INSERT INTO t181 VALUES(2); SELECT DISTINCT a FROM t181 LEFT JOIN t182 ON a=b ORDER BY +a, +c IS NULL; } {1 2} # Make sure the OR optimization works on a JOIN # do_execsql_test where-19.0 { CREATE TABLE t191(a INT UNIQUE NOT NULL, b INT UNIQUE NOT NULL,c,d); CREATE INDEX t191a ON t1(a); CREATE INDEX t191b ON t1(b); CREATE TABLE t192(x INTEGER PRIMARY KEY,y INT, z INT); EXPLAIN QUERY PLAN SELECT t191.rowid FROM t192, t191 WHERE (a=y OR b=y) AND x=?1; } {/.* sqlite_autoindex_t191_1 .* sqlite_autoindex_t191_2 .*/} # 2018-04-24 ticket [https://www.sqlite.org/src/info/4ba5abf65c5b0f9a] # Index on expressions leads to an incorrect answer for a LEFT JOIN # do_execsql_test where-20.0 { CREATE TABLE t201(x); CREATE TABLE t202(y, z); INSERT INTO t201 VALUES('key'); INSERT INTO t202 VALUES('key', -1); CREATE INDEX t202i ON t202(y, ifnull(z, 0)); SELECT count(*) FROM t201 LEFT JOIN t202 ON (x=y) WHERE ifnull(z, 0) >=0; } {0} do_execsql_test where-21.0 { CREATE TABLE t12(a, b, c); CREATE TABLE t13(x); CREATE INDEX t12ab ON t12(b, a); CREATE INDEX t12ac ON t12(c, a); INSERT INTO t12 VALUES(4, 0, 1); INSERT INTO t12 VALUES(4, 1, 0); INSERT INTO t12 VALUES(5, 0, 1); INSERT INTO t12 VALUES(5, 1, 0); INSERT INTO t13 VALUES(1), (2), (3), (4); } do_execsql_test where-21.1 { SELECT * FROM t12 WHERE a = (SELECT * FROM (SELECT count(*) FROM t13 LIMIT 5) ORDER BY 1 LIMIT 10) AND (b=1 OR c=1); } { 4 1 0 4 0 1 } finish_test |
Changes to test/where3.test.
︙ | ︙ | |||
231 232 233 234 235 236 237 | CREATE TABLE t301(a INTEGER PRIMARY KEY,b,c); CREATE INDEX t301c ON t301(c); INSERT INTO t301 VALUES(1,2,3); INSERT INTO t301 VALUES(2,2,3); CREATE TABLE t302(x, y); INSERT INTO t302 VALUES(4,5); ANALYZE; | > > | > | | | < > | | | 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | CREATE TABLE t301(a INTEGER PRIMARY KEY,b,c); CREATE INDEX t301c ON t301(c); INSERT INTO t301 VALUES(1,2,3); INSERT INTO t301 VALUES(2,2,3); CREATE TABLE t302(x, y); INSERT INTO t302 VALUES(4,5); ANALYZE; } do_eqp_test where3-3.0a { SELECT * FROM t302, t301 WHERE t302.x=5 AND t301.a=t302.y; } { QUERY PLAN |--SCAN TABLE t302 `--SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) } do_eqp_test where3-3.1 { SELECT * FROM t301, t302 WHERE t302.x=5 AND t301.a=t302.y; } { QUERY PLAN |--SCAN TABLE t302 `--SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) } do_execsql_test where3-3.2 { SELECT * FROM t301 WHERE c=3 AND a IS NULL; } {} do_execsql_test where3-3.3 { SELECT * FROM t301 WHERE c=3 AND a IS NOT NULL; } {1 2 3 2 2 3} |
︙ | ︙ | |||
304 305 306 307 308 309 310 | fk INTEGER DEFAULT NULL, parent INTEGER, position INTEGER, title LONGVARCHAR, keyword_id INTEGER, folder_type TEXT, dateAdded INTEGER, lastModified INTEGER); CREATE INDEX bbb_111 ON bbb (fk, type); CREATE INDEX bbb_222 ON bbb (parent, position); CREATE INDEX bbb_333 ON bbb (fk, lastModified); | | | > | | | | < > | | | | < > | | | | < > | | | | 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 | fk INTEGER DEFAULT NULL, parent INTEGER, position INTEGER, title LONGVARCHAR, keyword_id INTEGER, folder_type TEXT, dateAdded INTEGER, lastModified INTEGER); CREATE INDEX bbb_111 ON bbb (fk, type); CREATE INDEX bbb_222 ON bbb (parent, position); CREATE INDEX bbb_333 ON bbb (fk, lastModified); } do_eqp_test where3-5.0a { SELECT bbb.title AS tag_title FROM aaa JOIN bbb ON bbb.id = aaa.parent WHERE aaa.fk = 'constant' AND LENGTH(bbb.title) > 0 AND bbb.parent = 4 ORDER BY bbb.title COLLATE NOCASE ASC; } { QUERY PLAN |--SEARCH TABLE aaa USING INDEX aaa_333 (fk=?) |--SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?) `--USE TEMP B-TREE FOR ORDER BY } do_eqp_test where3-5.1 { SELECT bbb.title AS tag_title FROM aaa JOIN aaa AS bbb ON bbb.id = aaa.parent WHERE aaa.fk = 'constant' AND LENGTH(bbb.title) > 0 AND bbb.parent = 4 ORDER BY bbb.title COLLATE NOCASE ASC; } { QUERY PLAN |--SEARCH TABLE aaa USING INDEX aaa_333 (fk=?) |--SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?) `--USE TEMP B-TREE FOR ORDER BY } do_eqp_test where3-5.2 { SELECT bbb.title AS tag_title FROM bbb JOIN aaa ON bbb.id = aaa.parent WHERE aaa.fk = 'constant' AND LENGTH(bbb.title) > 0 AND bbb.parent = 4 ORDER BY bbb.title COLLATE NOCASE ASC; } { QUERY PLAN |--SEARCH TABLE aaa USING INDEX aaa_333 (fk=?) |--SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?) `--USE TEMP B-TREE FOR ORDER BY } do_eqp_test where3-5.3 { SELECT bbb.title AS tag_title FROM aaa AS bbb JOIN aaa ON bbb.id = aaa.parent WHERE aaa.fk = 'constant' AND LENGTH(bbb.title) > 0 AND bbb.parent = 4 ORDER BY bbb.title COLLATE NOCASE ASC; } { QUERY PLAN |--SEARCH TABLE aaa USING INDEX aaa_333 (fk=?) |--SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?) `--USE TEMP B-TREE FOR ORDER BY } # Name resolution with NATURAL JOIN and USING # do_test where3-6.setup { db eval { CREATE TABLE t6w(a, w); |
︙ | ︙ |
Changes to test/where7.test.
︙ | ︙ | |||
23337 23338 23339 23340 23341 23342 23343 | c2 INTEGER, c4 INTEGER, FOREIGN KEY (c8) REFERENCES t301(c8) ); CREATE INDEX t302_c3 on t302(c3); CREATE INDEX t302_c8_c3 on t302(c8, c3); CREATE INDEX t302_c5 on t302(c5); | | | > > | | | | | 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 | c2 INTEGER, c4 INTEGER, FOREIGN KEY (c8) REFERENCES t301(c8) ); CREATE INDEX t302_c3 on t302(c3); CREATE INDEX t302_c8_c3 on t302(c8, c3); CREATE INDEX t302_c5 on t302(c5); } do_eqp_test where7-3.2 { SELECT t302.c1 FROM t302 JOIN t301 ON t302.c8 = +t301.c8 WHERE t302.c2 = 19571 AND t302.c3 > 1287603136 AND (t301.c4 = 1407449685622784 OR t301.c8 = 1407424651264000) ORDER BY t302.c5 LIMIT 200; } { QUERY PLAN |--MULTI-INDEX OR | |--SEARCH TABLE t301 USING COVERING INDEX t301_c4 (c4=?) | `--SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) |--SEARCH TABLE t302 USING INDEX t302_c8_c3 (c8=? AND c3>?) `--USE TEMP B-TREE FOR ORDER BY } finish_test |
Changes to test/where8.test.
︙ | ︙ | |||
11 12 13 14 15 16 17 18 19 20 21 22 23 24 | # This file implements regression tests for SQLite library. The focus # is testing of where.c. More specifically, the focus is the optimization # of WHERE clauses that feature the OR operator. # set testdir [file dirname $argv0] source $testdir/tester.tcl # Test organization: # # where8-1.*: Tests to demonstrate simple cases work with a single table # in the FROM clause. # # where8-2.*: Tests surrounding virtual tables and the OR optimization. | > > > > > | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | # This file implements regression tests for SQLite library. The focus # is testing of where.c. More specifically, the focus is the optimization # of WHERE clauses that feature the OR operator. # set testdir [file dirname $argv0] source $testdir/tester.tcl if {[permutation]=="sorterref"} { finish_test return } # Test organization: # # where8-1.*: Tests to demonstrate simple cases work with a single table # in the FROM clause. # # where8-2.*: Tests surrounding virtual tables and the OR optimization. |
︙ | ︙ |
Changes to test/where9.test.
︙ | ︙ | |||
353 354 355 356 357 358 359 | WHERE t1.a=t3.y OR t1.b=t3.y*11 OR (t1.c=27027 AND round(t1.d)==80) ORDER BY 1, 2, 3 } } {1 80 2 1 80 28 1 80 54 1 80 80 2 80 2 2 80 28 2 80 54 2 80 80 scan 1 sort 1} ifcapable explain { | | < > | | > | | | | < > | | > | | | | 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 | WHERE t1.a=t3.y OR t1.b=t3.y*11 OR (t1.c=27027 AND round(t1.d)==80) ORDER BY 1, 2, 3 } } {1 80 2 1 80 28 1 80 54 1 80 80 2 80 2 2 80 28 2 80 54 2 80 80 scan 1 sort 1} ifcapable explain { do_eqp_test where9-3.1 { SELECT t2.a FROM t1, t2 WHERE t1.a=80 AND ((t1.c=t2.c AND t1.d=t2.d) OR t1.f=t2.f) } [string map {"\n " \n} { QUERY PLAN |--SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?) `--MULTI-INDEX OR |--SEARCH TABLE t2 USING INDEX t2d (d=?) `--SEARCH TABLE t2 USING COVERING INDEX t2f (f=?) }] do_eqp_test where9-3.2 { SELECT coalesce(t2.a,9999) FROM t1 LEFT JOIN t2 ON (t1.c+1=t2.c AND t1.d=t2.d) OR (t1.f||'x')=t2.f WHERE t1.a=80 } [string map {"\n " \n} { QUERY PLAN |--SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?) `--MULTI-INDEX OR |--SEARCH TABLE t2 USING INDEX t2d (d=?) `--SEARCH TABLE t2 USING COVERING INDEX t2f (f=?) }] } # Make sure that INDEXED BY and multi-index OR clauses play well with # one another. # do_test where9-4.1 { count_steps { |
︙ | ︙ | |||
442 443 444 445 446 447 448 | SELECT a FROM t1 INDEXED BY t1d WHERE b>1000 AND (c=31031 OR d IS NULL) ORDER BY +a } } {1 {no query solution}} | < | | | | | | > > | | | | | | | < | | < | | | | | < | < < | 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 | SELECT a FROM t1 INDEXED BY t1d WHERE b>1000 AND (c=31031 OR d IS NULL) ORDER BY +a } } {1 {no query solution}} # The (c=31031 OR d IS NULL) clause is preferred over b>1000 because # the former is an equality test which is expected to return fewer rows. # do_eqp_test where9-5.1 { SELECT a FROM t1 WHERE b>1000 AND (c=31031 OR d IS NULL) } { QUERY PLAN `--MULTI-INDEX OR |--SEARCH TABLE t1 USING INDEX t1c (c=?) `--SEARCH TABLE t1 USING INDEX t1d (d=?) } # In contrast, b=1000 is preferred over any OR-clause. # do_eqp_test where9-5.2 { SELECT a FROM t1 WHERE b=1000 AND (c=31031 OR d IS NULL) } {SEARCH TABLE t1 USING INDEX t1b (b=?)} # Likewise, inequalities in an AND are preferred over inequalities in # an OR. # do_eqp_test where9-5.3 { SELECT a FROM t1 WHERE b>1000 AND (c>=31031 OR d IS NULL) } {SEARCH TABLE t1 USING INDEX t1b (b>?)} ############################################################################ # Make sure OR-clauses work correctly on UPDATE and DELETE statements. do_test where9-6.2.1 { db eval {SELECT count(*) FROM t1 UNION ALL SELECT a FROM t1 WHERE a>=85} } {99 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99} |
︙ | ︙ |
Changes to test/whereG.test.
︙ | ︙ | |||
62 63 64 65 66 67 68 | } {} do_eqp_test whereG-1.1 { SELECT DISTINCT aname FROM album, composer, track WHERE unlikely(cname LIKE '%bach%') AND composer.cid=track.cid AND album.aid=track.aid; | | | 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | } {} do_eqp_test whereG-1.1 { SELECT DISTINCT aname FROM album, composer, track WHERE unlikely(cname LIKE '%bach%') AND composer.cid=track.cid AND album.aid=track.aid; } {composer*track*album} do_execsql_test whereG-1.2 { SELECT DISTINCT aname FROM album, composer, track WHERE unlikely(cname LIKE '%bach%') AND composer.cid=track.cid AND album.aid=track.aid; } {{Mass in B Minor, BWV 232}} |
︙ | ︙ | |||
191 192 193 194 195 196 197 | do_execsql_test 5.1 { CREATE TABLE t1(a, b, c); CREATE INDEX i1 ON t1(a, b); } do_eqp_test 5.1.2 { SELECT * FROM t1 WHERE a>? | | | | | | | | | | | 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 | do_execsql_test 5.1 { CREATE TABLE t1(a, b, c); CREATE INDEX i1 ON t1(a, b); } do_eqp_test 5.1.2 { SELECT * FROM t1 WHERE a>? } {SEARCH TABLE t1 USING INDEX i1 (a>?)} do_eqp_test 5.1.3 { SELECT * FROM t1 WHERE likelihood(a>?, 0.9) } {SCAN TABLE t1} do_eqp_test 5.1.4 { SELECT * FROM t1 WHERE likely(a>?) } {SCAN TABLE t1} do_test 5.2 { for {set i 0} {$i < 100} {incr i} { execsql { INSERT INTO t1 VALUES('abc', $i, $i); } } execsql { INSERT INTO t1 SELECT 'def', b, c FROM t1; } execsql { ANALYZE } } {} do_eqp_test 5.2.2 { SELECT * FROM t1 WHERE likelihood(b>?, 0.01) } {SEARCH TABLE t1 USING INDEX i1 (ANY(a) AND b>?)} do_eqp_test 5.2.3 { SELECT * FROM t1 WHERE likelihood(b>?, 0.9) } {SCAN TABLE t1} do_eqp_test 5.2.4 { SELECT * FROM t1 WHERE likely(b>?) } {SCAN TABLE t1} do_eqp_test 5.3.1 { SELECT * FROM t1 WHERE a=? } {SEARCH TABLE t1 USING INDEX i1 (a=?)} do_eqp_test 5.3.2 { SELECT * FROM t1 WHERE likelihood(a=?, 0.9) } {SCAN TABLE t1} do_eqp_test 5.3.3 { SELECT * FROM t1 WHERE likely(a=?) } {SCAN TABLE t1} # 2015-06-18 # Ticket [https://www.sqlite.org/see/tktview/472f0742a1868fb58862bc588ed70] # do_execsql_test 6.0 { DROP TABLE IF EXISTS t1; CREATE TABLE t1(i int, x, y, z); |
︙ | ︙ |
Changes to test/whereI.test.
︙ | ︙ | |||
25 26 27 28 29 30 31 | CREATE INDEX i1 ON t1(b); CREATE INDEX i2 ON t1(c); } do_eqp_test 1.1 { SELECT a FROM t1 WHERE b='b' OR c='x' } { | > > | | | 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | CREATE INDEX i1 ON t1(b); CREATE INDEX i2 ON t1(c); } do_eqp_test 1.1 { SELECT a FROM t1 WHERE b='b' OR c='x' } { QUERY PLAN `--MULTI-INDEX OR |--SEARCH TABLE t1 USING INDEX i1 (b=?) `--SEARCH TABLE t1 USING INDEX i2 (c=?) } do_execsql_test 1.2 { SELECT a FROM t1 WHERE b='b' OR c='x' } {2 3} do_execsql_test 1.3 { |
︙ | ︙ | |||
53 54 55 56 57 58 59 | CREATE INDEX i3 ON t2(b); CREATE INDEX i4 ON t2(c); } do_eqp_test 2.1 { SELECT a FROM t2 WHERE b='b' OR c='x' } { | > > | | | 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | CREATE INDEX i3 ON t2(b); CREATE INDEX i4 ON t2(c); } do_eqp_test 2.1 { SELECT a FROM t2 WHERE b='b' OR c='x' } { QUERY PLAN `--MULTI-INDEX OR |--SEARCH TABLE t2 USING INDEX i3 (b=?) `--SEARCH TABLE t2 USING INDEX i4 (c=?) } do_execsql_test 2.2 { SELECT a FROM t2 WHERE b='b' OR c='x' } {ii iii} do_execsql_test 2.3 { |
︙ | ︙ |
Changes to test/whereJ.test.
︙ | ︙ | |||
398 399 400 401 402 403 404 | # This one should use index "idx_c". do_eqp_test 3.4 { SELECT * FROM t1 WHERE a = 4 AND b BETWEEN 20 AND 80 -- Matches 80 rows AND c BETWEEN 150 AND 160 -- Matches 10 rows | < | < < | < | 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 | # This one should use index "idx_c". do_eqp_test 3.4 { SELECT * FROM t1 WHERE a = 4 AND b BETWEEN 20 AND 80 -- Matches 80 rows AND c BETWEEN 150 AND 160 -- Matches 10 rows } {SEARCH TABLE t1 USING INDEX idx_c (c>? AND c<?)} # This one should use index "idx_ab". do_eqp_test 3.5 { SELECT * FROM t1 WHERE a = 5 AND b BETWEEN 20 AND 80 -- Matches 1 row AND c BETWEEN 150 AND 160 -- Matches 10 rows } {SEARCH TABLE t1 USING INDEX idx_ab (a=? AND b>? AND b<?)} ########################################################################################### # Reset the database and setup for a test case derived from actual SQLite users # db close sqlite3 db test.db |
︙ | ︙ |
Changes to test/with1.test.
︙ | ︙ | |||
988 989 990 991 992 993 994 | FROM xyz ORDER BY 1 ) SELECT 1 FROM xyz; } 1 # EXPLAIN QUERY PLAN on a self-join of a CTE # | | < > > > > > > | > > | 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 | FROM xyz ORDER BY 1 ) SELECT 1 FROM xyz; } 1 # EXPLAIN QUERY PLAN on a self-join of a CTE # do_execsql_test 19.1a { DROP TABLE IF EXISTS t1; CREATE TABLE t1(x); } do_eqp_test 19.1b { WITH x1(a) AS (values(100)) INSERT INTO t1(x) SELECT * FROM (WITH x2(y) AS (SELECT * FROM x1) SELECT y+a FROM x1, x2); SELECT * FROM t1; } { QUERY PLAN |--MATERIALIZE xxxxxx | `--SCAN CONSTANT ROW |--SCAN SUBQUERY xxxxxx `--SCAN SUBQUERY xxxxxx } # 2017-10-28. # See check-in https://sqlite.org/src/info/0926df095faf72c2 # Tried to optimize co-routine processing by changing a Copy opcode # into SCopy. But OSSFuzz found two (similar) cases where that optimization # does not work. # |
︙ | ︙ |
Changes to test/with3.test.
︙ | ︙ | |||
75 76 77 78 79 80 81 | ANALYZE; } do_eqp_test 3.1.2 { WITH cnt(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM cnt LIMIT 1) SELECT * FROM cnt, y1 WHERE i=a | > | > > > > | < | | | > | > > > > | < | | | > > > > | | > | | | | | | 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | ANALYZE; } do_eqp_test 3.1.2 { WITH cnt(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM cnt LIMIT 1) SELECT * FROM cnt, y1 WHERE i=a } [string map {"\n " \n} { QUERY PLAN |--MATERIALIZE xxxxxx | |--SETUP | | `--SCAN CONSTANT ROW | `--RECURSIVE STEP | `--SCAN TABLE cnt |--SCAN SUBQUERY xxxxxx `--SEARCH TABLE y1 USING INDEX y1a (a=?) }] do_eqp_test 3.1.3 { WITH cnt(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM cnt LIMIT 1000000) SELECT * FROM cnt, y1 WHERE i=a } [string map {"\n " \n} { QUERY PLAN |--MATERIALIZE xxxxxx | |--SETUP | | `--SCAN CONSTANT ROW | `--RECURSIVE STEP | `--SCAN TABLE cnt |--SCAN TABLE y1 `--SEARCH SUBQUERY xxxxxx USING AUTOMATIC COVERING INDEX (i=?) }] } do_execsql_test 3.2.1 { CREATE TABLE w1(pk INTEGER PRIMARY KEY, x INTEGER); CREATE TABLE w2(pk INTEGER PRIMARY KEY); } do_eqp_test 3.2.2 { WITH RECURSIVE c(w,id) AS (SELECT 0, (SELECT pk FROM w2 LIMIT 1) UNION ALL SELECT c.w + 1, x FROM w1, c LIMIT 1) SELECT * FROM c, w2, w1 WHERE c.id=w2.pk AND c.id=w1.pk; } { QUERY PLAN |--MATERIALIZE xxxxxx | |--SETUP | | |--SCAN CONSTANT ROW | | `--SCALAR SUBQUERY | | `--SCAN TABLE w2 | `--RECURSIVE STEP | |--SCAN TABLE w1 | `--SCAN TABLE c |--SCAN SUBQUERY xxxxxx |--SEARCH TABLE w2 USING INTEGER PRIMARY KEY (rowid=?) `--SEARCH TABLE w1 USING INTEGER PRIMARY KEY (rowid=?) } finish_test |
Changes to test/without_rowid1.test.
︙ | ︙ | |||
234 235 236 237 238 239 240 | INSERT INTO t45 VALUES(5, 'two', 'x'); INSERT INTO t45 VALUES(7, 'two', 'x'); INSERT INTO t45 VALUES(9, 'two', 'x'); } do_eqp_test 5.1 { SELECT * FROM t45 WHERE b=? AND a>? | | | | | | | | 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | INSERT INTO t45 VALUES(5, 'two', 'x'); INSERT INTO t45 VALUES(7, 'two', 'x'); INSERT INTO t45 VALUES(9, 'two', 'x'); } do_eqp_test 5.1 { SELECT * FROM t45 WHERE b=? AND a>? } {USING INDEX i45 (b=? AND a>?)} do_execsql_test 5.2 { SELECT * FROM t45 WHERE b='two' AND a>4 } {5 two x 7 two x 9 two x} do_execsql_test 5.3 { SELECT * FROM t45 WHERE b='one' AND a<8 } { 2 one x 4 one x 6 one x } do_execsql_test 5.4 { CREATE TABLE t46(a, b, c, d, PRIMARY KEY(a, b)) WITHOUT ROWID; WITH r(x) AS ( SELECT 1 UNION ALL SELECT x+1 FROM r WHERE x<100 ) INSERT INTO t46 SELECT x / 20, x % 20, x % 10, x FROM r; } set queries { 1 2 "c = 5 AND a = 1" {i46 (c=? AND a=?)} 2 6 "c = 4 AND a < 3" {i46 (c=? AND a<?)} 3 4 "c = 2 AND a >= 3" {i46 (c=? AND a>?)} 4 1 "c = 2 AND a = 1 AND b<10" {i46 (c=? AND a=? AND b<?)} 5 1 "c = 0 AND a = 0 AND b>5" {i46 (c=? AND a=? AND b>?)} } foreach {tn cnt where eqp} $queries { do_execsql_test 5.5.$tn.1 "SELECT count(*) FROM t46 WHERE $where" $cnt } do_execsql_test 5.6 { |
︙ | ︙ |
Changes to test/wordcount.c.
︙ | ︙ | |||
24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ** (1) INSERT OR IGNORE INTO wordcount VALUES($new,0) ** (2) UPDATE wordcount SET cnt=cnt+1 WHERE word=$new ** ** Replace mode means: ** (1) REPLACE INTO wordcount ** VALUES($new,ifnull((SELECT cnt FROM wordcount WHERE word=$new),0)+1); ** ** Select mode means: ** (1) SELECT 1 FROM wordcount WHERE word=$new ** (2) INSERT INTO wordcount VALUES($new,1) -- if (1) returns nothing ** (3) UPDATE wordcount SET cnt=cnt+1 WHERE word=$new --if (1) return TRUE ** ** Delete mode means: ** (1) DELETE FROM wordcount WHERE word=$new | > > > > | 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | ** (1) INSERT OR IGNORE INTO wordcount VALUES($new,0) ** (2) UPDATE wordcount SET cnt=cnt+1 WHERE word=$new ** ** Replace mode means: ** (1) REPLACE INTO wordcount ** VALUES($new,ifnull((SELECT cnt FROM wordcount WHERE word=$new),0)+1); ** ** Upsert mode means: ** (1) INSERT INTO wordcount VALUES($new,1) ** ON CONFLICT(word) DO UPDATE SET cnt=cnt+1 ** ** Select mode means: ** (1) SELECT 1 FROM wordcount WHERE word=$new ** (2) INSERT INTO wordcount VALUES($new,1) -- if (1) returns nothing ** (3) UPDATE wordcount SET cnt=cnt+1 WHERE word=$new --if (1) return TRUE ** ** Delete mode means: ** (1) DELETE FROM wordcount WHERE word=$new |
︙ | ︙ | |||
86 87 88 89 90 91 92 93 94 95 96 97 98 99 | " --select Use SELECT mode\n" " --stats Show sqlite3_status() results at the end.\n" " --summary Show summary information on the collected data.\n" " --tag NAME Tag all output using NAME. Use only stdout.\n" " --timer Time the operation of this program\n" " --trace Enable sqlite3_trace() output.\n" " --update Use UPDATE mode\n" " --without-rowid Use a WITHOUT ROWID table to store the words.\n" ; /* Output tag */ char *zTag = "--"; /* Return the current wall-clock time */ | > | 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | " --select Use SELECT mode\n" " --stats Show sqlite3_status() results at the end.\n" " --summary Show summary information on the collected data.\n" " --tag NAME Tag all output using NAME. Use only stdout.\n" " --timer Time the operation of this program\n" " --trace Enable sqlite3_trace() output.\n" " --update Use UPDATE mode\n" " --upsert Use UPSERT mode\n" " --without-rowid Use a WITHOUT ROWID table to store the words.\n" ; /* Output tag */ char *zTag = "--"; /* Return the current wall-clock time */ |
︙ | ︙ | |||
204 205 206 207 208 209 210 | sqlite3_result_text(context, zResult, -1, SQLITE_TRANSIENT); } } /* Define operating modes */ #define MODE_INSERT 0 #define MODE_REPLACE 1 | > | | | | | > | 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | sqlite3_result_text(context, zResult, -1, SQLITE_TRANSIENT); } } /* Define operating modes */ #define MODE_INSERT 0 #define MODE_REPLACE 1 #define MODE_UPSERT 2 #define MODE_SELECT 3 #define MODE_UPDATE 4 #define MODE_DELETE 5 #define MODE_QUERY 6 #define MODE_COUNT 7 #define MODE_ALL (-1) /* Mode names */ static const char *azMode[] = { "--insert", "--replace", "--upsert", "--select", "--update", "--delete", "--query" }; /* |
︙ | ︙ | |||
288 289 290 291 292 293 294 295 296 297 298 299 300 301 | const char *z = argv[i]; if( z[0]=='-' ){ do{ z++; }while( z[0]=='-' ); if( strcmp(z,"without-rowid")==0 ){ useWithoutRowid = 1; }else if( strcmp(z,"replace")==0 ){ iMode = MODE_REPLACE; }else if( strcmp(z,"select")==0 ){ iMode = MODE_SELECT; }else if( strcmp(z,"insert")==0 ){ iMode = MODE_INSERT; }else if( strcmp(z,"update")==0 ){ iMode = MODE_UPDATE; }else if( strcmp(z,"delete")==0 ){ | > > | 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 | const char *z = argv[i]; if( z[0]=='-' ){ do{ z++; }while( z[0]=='-' ); if( strcmp(z,"without-rowid")==0 ){ useWithoutRowid = 1; }else if( strcmp(z,"replace")==0 ){ iMode = MODE_REPLACE; }else if( strcmp(z,"upsert")==0 ){ iMode = MODE_UPSERT; }else if( strcmp(z,"select")==0 ){ iMode = MODE_SELECT; }else if( strcmp(z,"insert")==0 ){ iMode = MODE_INSERT; }else if( strcmp(z,"update")==0 ){ iMode = MODE_UPDATE; }else if( strcmp(z,"delete")==0 ){ |
︙ | ︙ | |||
463 464 465 466 467 468 469 470 471 472 473 474 475 476 | rc = sqlite3_prepare_v2(db, "REPLACE INTO wordcount(word,cnt)" "VALUES(?1,coalesce((SELECT cnt FROM wordcount WHERE word=?1),0)+1)", -1, &pInsert, 0); if( rc ) fatal_error("Could not prepare the REPLACE statement: %s\n", sqlite3_errmsg(db)); } if( iMode2==MODE_DELETE ){ rc = sqlite3_prepare_v2(db, "DELETE FROM wordcount WHERE word=?1", -1, &pDelete, 0); if( rc ) fatal_error("Could not prepare the DELETE statement: %s\n", sqlite3_errmsg(db)); } | > > > > > > > > | 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 | rc = sqlite3_prepare_v2(db, "REPLACE INTO wordcount(word,cnt)" "VALUES(?1,coalesce((SELECT cnt FROM wordcount WHERE word=?1),0)+1)", -1, &pInsert, 0); if( rc ) fatal_error("Could not prepare the REPLACE statement: %s\n", sqlite3_errmsg(db)); } if( iMode2==MODE_UPSERT ){ rc = sqlite3_prepare_v2(db, "INSERT INTO wordcount(word,cnt) VALUES(?1,1) " "ON CONFLICT(word) DO UPDATE SET cnt=cnt+1", -1, &pInsert, 0); if( rc ) fatal_error("Could not prepare the UPSERT statement: %s\n", sqlite3_errmsg(db)); } if( iMode2==MODE_DELETE ){ rc = sqlite3_prepare_v2(db, "DELETE FROM wordcount WHERE word=?1", -1, &pDelete, 0); if( rc ) fatal_error("Could not prepare the DELETE statement: %s\n", sqlite3_errmsg(db)); } |
︙ | ︙ |
Changes to test/zipfile2.test.
︙ | ︙ | |||
48 49 50 51 52 53 54 | CREATE VIRTUAL TABLE bbb USING zipfile("testzip"); CREATE VIRTUAL TABLE ccc USING zipfile(`testzip`); CREATE VIRTUAL TABLE ddd USING zipfile([testzip]); CREATE VIRTUAL TABLE eee USING zipfile(testzip); CREATE VIRTUAL TABLE fff USING zipfile('test''zip'); } | < < < < < > | > > | | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | CREATE VIRTUAL TABLE bbb USING zipfile("testzip"); CREATE VIRTUAL TABLE ccc USING zipfile(`testzip`); CREATE VIRTUAL TABLE ddd USING zipfile([testzip]); CREATE VIRTUAL TABLE eee USING zipfile(testzip); CREATE VIRTUAL TABLE fff USING zipfile('test''zip'); } do_test 2.0 { forcedelete testdir file mkdir testdir execsql { CREATE VIRTUAL TABLE hhh USING zipfile('testdir') } lindex [catchsql { SELECT * FROM hhh; INSERT INTO hhh(name, data) VALUES('1.txt', 'file data'); }] 0 } 1 set archive { 504B0304140000080000D4A52BEC09F3B6E0110000001100000005000900612E 747874555405000140420F00636F6E74656E7473206F6620612E747874504B03 04140000080000D4A52BECD98916A7110000001100000005000900622E747874 555405000140420F00636F6E74656E7473206F6620622E747874504B01021E03 |
︙ | ︙ |
Changes to tool/lemon.c.
︙ | ︙ | |||
266 267 268 269 270 271 272 273 274 275 276 277 278 279 | int destLineno; /* Line number for start of destructor. Set to ** -1 for duplicate destructors. */ char *datatype; /* The data type of information held by this ** object. Only used if type==NONTERMINAL */ int dtnum; /* The data type number. In the parser, the value ** stack is a union. The .yy%d element of this ** union is the correct data type for this object */ /* The following fields are used by MULTITERMINALs only */ int nsubsym; /* Number of constituent symbols in the MULTI */ struct symbol **subsym; /* Array of constituent symbols */ }; /* Each production rule in the grammar is stored in the following ** structure. */ | > > | 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | int destLineno; /* Line number for start of destructor. Set to ** -1 for duplicate destructors. */ char *datatype; /* The data type of information held by this ** object. Only used if type==NONTERMINAL */ int dtnum; /* The data type number. In the parser, the value ** stack is a union. The .yy%d element of this ** union is the correct data type for this object */ int bContent; /* True if this symbol ever carries content - if ** it is ever more than just syntax */ /* The following fields are used by MULTITERMINALs only */ int nsubsym; /* Number of constituent symbols in the MULTI */ struct symbol **subsym; /* Array of constituent symbols */ }; /* Each production rule in the grammar is stored in the following ** structure. */ |
︙ | ︙ | |||
392 393 394 395 396 397 398 399 400 401 402 403 404 405 | int maxAction; /* Maximum action value of any kind */ struct symbol **symbols; /* Sorted array of pointers to symbols */ int errorcnt; /* Number of errors */ struct symbol *errsym; /* The error symbol */ struct symbol *wildcard; /* Token that matches anything */ char *name; /* Name of the generated parser */ char *arg; /* Declaration of the 3th argument to parser */ char *tokentype; /* Type of terminal symbols in the parser stack */ char *vartype; /* The default type of non-terminal symbols */ char *start; /* Name of the start symbol for the grammar */ char *stacksize; /* Size of the parser stack */ char *include; /* Code to put at the start of the C file */ char *error; /* Code to execute when an error is seen */ char *overflow; /* Code to execute on a stack overflow */ | > | 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 | int maxAction; /* Maximum action value of any kind */ struct symbol **symbols; /* Sorted array of pointers to symbols */ int errorcnt; /* Number of errors */ struct symbol *errsym; /* The error symbol */ struct symbol *wildcard; /* Token that matches anything */ char *name; /* Name of the generated parser */ char *arg; /* Declaration of the 3th argument to parser */ char *ctx; /* Declaration of 2nd argument to constructor */ char *tokentype; /* Type of terminal symbols in the parser stack */ char *vartype; /* The default type of non-terminal symbols */ char *start; /* Name of the start symbol for the grammar */ char *stacksize; /* Size of the parser stack */ char *include; /* Code to put at the start of the C file */ char *error; /* Code to execute when an error is seen */ char *overflow; /* Code to execute on a stack overflow */ |
︙ | ︙ | |||
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 | fprintf(stderr,"out of memory\n"); exit(1); } lemon_strcpy(*paz, z); for(z=*paz; *z && *z!='='; z++){} *z = 0; } static char *user_templatename = NULL; static void handle_T_option(char *z){ user_templatename = (char *) malloc( lemonStrlen(z)+1 ); if( user_templatename==0 ){ memory_error(); } | > > > > > > > > > > > > | 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 | fprintf(stderr,"out of memory\n"); exit(1); } lemon_strcpy(*paz, z); for(z=*paz; *z && *z!='='; z++){} *z = 0; } /* Rember the name of the output directory */ static char *outputDir = NULL; static void handle_d_option(char *z){ outputDir = (char *) malloc( lemonStrlen(z)+1 ); if( outputDir==0 ){ fprintf(stderr,"out of memory\n"); exit(1); } lemon_strcpy(outputDir, z); } static char *user_templatename = NULL; static void handle_T_option(char *z){ user_templatename = (char *) malloc( lemonStrlen(z)+1 ); if( user_templatename==0 ){ memory_error(); } |
︙ | ︙ | |||
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 | static int basisflag = 0; static int compress = 0; static int quiet = 0; static int statistics = 0; static int mhflag = 0; static int nolinenosflag = 0; static int noResort = 0; static struct s_options options[] = { {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."}, {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."}, {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."}, {OPT_FSTR, "f", 0, "Ignored. (Placeholder for -f compiler options.)"}, {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."}, {OPT_FSTR, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"}, {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."}, {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."}, {OPT_FSTR, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"}, | > > | 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 | static int basisflag = 0; static int compress = 0; static int quiet = 0; static int statistics = 0; static int mhflag = 0; static int nolinenosflag = 0; static int noResort = 0; static struct s_options options[] = { {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."}, {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."}, {OPT_FSTR, "d", (char*)&handle_d_option, "Output directory. Default '.'"}, {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."}, {OPT_FSTR, "f", 0, "Ignored. (Placeholder for -f compiler options.)"}, {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."}, {OPT_FSTR, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"}, {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."}, {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."}, {OPT_FSTR, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"}, |
︙ | ︙ | |||
1659 1660 1661 1662 1663 1664 1665 | Symbol_init(); State_init(); lem.argv0 = argv[0]; lem.filename = OptArg(0); lem.basisflag = basisflag; lem.nolinenosflag = nolinenosflag; Symbol_new("$"); | < < > | 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 | Symbol_init(); State_init(); lem.argv0 = argv[0]; lem.filename = OptArg(0); lem.basisflag = basisflag; lem.nolinenosflag = nolinenosflag; Symbol_new("$"); /* Parse the input file */ Parse(&lem); if( lem.errorcnt ) exit(lem.errorcnt); if( lem.nrule==0 ){ fprintf(stderr,"Empty grammar.\n"); exit(1); } lem.errsym = Symbol_find("error"); /* Count and index the symbols of the grammar */ Symbol_new("{default}"); lem.nsymbol = Symbol_count(); lem.symbols = Symbol_arrayof(); for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i; qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp); |
︙ | ︙ | |||
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 | int i; rp->ruleline = psp->tokenlineno; rp->rhs = (struct symbol**)&rp[1]; rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]); for(i=0; i<psp->nrhs; i++){ rp->rhs[i] = psp->rhs[i]; rp->rhsalias[i] = psp->alias[i]; } rp->lhs = psp->lhs; rp->lhsalias = psp->lhsalias; rp->nrhs = psp->nrhs; rp->code = 0; rp->noCode = 1; rp->precsym = 0; | > | 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 | int i; rp->ruleline = psp->tokenlineno; rp->rhs = (struct symbol**)&rp[1]; rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]); for(i=0; i<psp->nrhs; i++){ rp->rhs[i] = psp->rhs[i]; rp->rhsalias[i] = psp->alias[i]; if( rp->rhsalias[i]!=0 ){ rp->rhs[i]->bContent = 1; } } rp->lhs = psp->lhs; rp->lhsalias = psp->lhsalias; rp->nrhs = psp->nrhs; rp->code = 0; rp->noCode = 1; rp->precsym = 0; |
︙ | ︙ | |||
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 | psp->declargslot = &(psp->gp->accept); }else if( strcmp(x,"parse_failure")==0 ){ psp->declargslot = &(psp->gp->failure); }else if( strcmp(x,"stack_overflow")==0 ){ psp->declargslot = &(psp->gp->overflow); }else if( strcmp(x,"extra_argument")==0 ){ psp->declargslot = &(psp->gp->arg); psp->insertLineMacro = 0; }else if( strcmp(x,"token_type")==0 ){ psp->declargslot = &(psp->gp->tokentype); psp->insertLineMacro = 0; }else if( strcmp(x,"default_type")==0 ){ psp->declargslot = &(psp->gp->vartype); psp->insertLineMacro = 0; | > > > | 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 | psp->declargslot = &(psp->gp->accept); }else if( strcmp(x,"parse_failure")==0 ){ psp->declargslot = &(psp->gp->failure); }else if( strcmp(x,"stack_overflow")==0 ){ psp->declargslot = &(psp->gp->overflow); }else if( strcmp(x,"extra_argument")==0 ){ psp->declargslot = &(psp->gp->arg); psp->insertLineMacro = 0; }else if( strcmp(x,"extra_context")==0 ){ psp->declargslot = &(psp->gp->ctx); psp->insertLineMacro = 0; }else if( strcmp(x,"token_type")==0 ){ psp->declargslot = &(psp->gp->tokentype); psp->insertLineMacro = 0; }else if( strcmp(x,"default_type")==0 ){ psp->declargslot = &(psp->gp->vartype); psp->insertLineMacro = 0; |
︙ | ︙ | |||
3022 3023 3024 3025 3026 3027 3028 3029 | ** name comes from malloc() and must be freed by the calling ** function. */ PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) { char *name; char *cp; | > > > > > > > > > > | > > | > > > | 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 | ** name comes from malloc() and must be freed by the calling ** function. */ PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) { char *name; char *cp; char *filename = lemp->filename; int sz; if( outputDir ){ cp = strrchr(filename, '/'); if( cp ) filename = cp + 1; } sz = lemonStrlen(filename); sz += lemonStrlen(suffix); if( outputDir ) sz += lemonStrlen(outputDir) + 1; sz += 5; name = (char*)malloc( sz ); if( name==0 ){ fprintf(stderr,"Can't allocate space for a filename.\n"); exit(1); } name[0] = 0; if( outputDir ){ lemon_strcpy(name, outputDir); lemon_strcat(name, "/"); } lemon_strcat(name,filename); cp = strrchr(name,'.'); if( cp ) *cp = 0; lemon_strcat(name,suffix); return name; } /* Open a file with a name based on the name of the input file, |
︙ | ︙ | |||
3246 3247 3248 3249 3250 3251 3252 | } return result; } /* Generate the "*.out" log file */ void ReportOutput(struct lemon *lemp) { | | | 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 | } return result; } /* Generate the "*.out" log file */ void ReportOutput(struct lemon *lemp) { int i, n; struct state *stp; struct config *cfp; struct action *ap; struct rule *rp; FILE *fp; fp = file_open(lemp,".out","wb"); |
︙ | ︙ | |||
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 | for(ap=stp->ap; ap; ap=ap->next){ if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); } fprintf(fp,"\n"); } fprintf(fp, "----------------------------------------------------\n"); fprintf(fp, "Symbols:\n"); for(i=0; i<lemp->nsymbol; i++){ int j; struct symbol *sp; sp = lemp->symbols[i]; fprintf(fp, " %3d: %s", i, sp->name); if( sp->type==NONTERMINAL ){ fprintf(fp, ":"); if( sp->lambda ){ fprintf(fp, " <lambda>"); } for(j=0; j<lemp->nterminal; j++){ if( sp->firstset && SetFind(sp->firstset, j) ){ fprintf(fp, " %s", lemp->symbols[j]->name); } } } if( sp->prec>=0 ) fprintf(fp," (precedence=%d)", sp->prec); fprintf(fp, "\n"); } fprintf(fp, "----------------------------------------------------\n"); fprintf(fp, "Rules:\n"); for(rp=lemp->rule; rp; rp=rp->next){ fprintf(fp, "%4d: ", rp->iRule); rule_print(fp, rp); fprintf(fp,"."); if( rp->precsym ){ | > > > > > > > > > > > > > > > > > > > > > | 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 | for(ap=stp->ap; ap; ap=ap->next){ if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); } fprintf(fp,"\n"); } fprintf(fp, "----------------------------------------------------\n"); fprintf(fp, "Symbols:\n"); fprintf(fp, "The first-set of non-terminals is shown after the name.\n\n"); for(i=0; i<lemp->nsymbol; i++){ int j; struct symbol *sp; sp = lemp->symbols[i]; fprintf(fp, " %3d: %s", i, sp->name); if( sp->type==NONTERMINAL ){ fprintf(fp, ":"); if( sp->lambda ){ fprintf(fp, " <lambda>"); } for(j=0; j<lemp->nterminal; j++){ if( sp->firstset && SetFind(sp->firstset, j) ){ fprintf(fp, " %s", lemp->symbols[j]->name); } } } if( sp->prec>=0 ) fprintf(fp," (precedence=%d)", sp->prec); fprintf(fp, "\n"); } fprintf(fp, "----------------------------------------------------\n"); fprintf(fp, "Syntax-only Symbols:\n"); fprintf(fp, "The following symbols never carry semantic content.\n\n"); for(i=n=0; i<lemp->nsymbol; i++){ int w; struct symbol *sp = lemp->symbols[i]; if( sp->bContent ) continue; w = (int)strlen(sp->name); if( n>0 && n+w>75 ){ fprintf(fp,"\n"); n = 0; } if( n>0 ){ fprintf(fp, " "); n++; } fprintf(fp, "%s", sp->name); n += w; } if( n>0 ) fprintf(fp, "\n"); fprintf(fp, "----------------------------------------------------\n"); fprintf(fp, "Rules:\n"); for(rp=lemp->rule; rp; rp=rp->next){ fprintf(fp, "%4d: ", rp->iRule); rule_print(fp, rp); fprintf(fp,"."); if( rp->precsym ){ |
︙ | ︙ | |||
3990 3991 3992 3993 3994 3995 3996 | fprintf(out," int yyinit;\n"); lineno++; fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; for(i=0; i<arraysize; i++){ if( types[i]==0 ) continue; fprintf(out," %s yy%d;\n",types[i],i+1); lineno++; free(types[i]); } | | | 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 | fprintf(out," int yyinit;\n"); lineno++; fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; for(i=0; i<arraysize; i++){ if( types[i]==0 ) continue; fprintf(out," %s yy%d;\n",types[i],i+1); lineno++; free(types[i]); } if( lemp->errsym && lemp->errsym->useCnt ){ fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++; } free(stddt); free(types); fprintf(out,"} YYMINORTYPE;\n"); lineno++; *plineno = lineno; } |
︙ | ︙ | |||
4140 4141 4142 4143 4144 4145 4146 | } fprintf(out,"#endif\n"); lineno++; } tplt_xfer(lemp->name,in,out,&lineno); /* Generate the defines */ fprintf(out,"#define YYCODETYPE %s\n", | | | | 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 | } fprintf(out,"#endif\n"); lineno++; } tplt_xfer(lemp->name,in,out,&lineno); /* Generate the defines */ fprintf(out,"#define YYCODETYPE %s\n", minimum_size_type(0, lemp->nsymbol, &szCodeType)); lineno++; fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol); lineno++; fprintf(out,"#define YYACTIONTYPE %s\n", minimum_size_type(0,lemp->maxAction,&szActionType)); lineno++; if( lemp->wildcard ){ fprintf(out,"#define YYWILDCARD %d\n", lemp->wildcard->index); lineno++; } print_stack_union(out,lemp,&lineno,mhflag); |
︙ | ︙ | |||
4166 4167 4168 4169 4170 4171 4172 | name = lemp->name ? lemp->name : "Parse"; if( lemp->arg && lemp->arg[0] ){ i = lemonStrlen(lemp->arg); while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--; while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--; fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++; fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++; | > | | | | > > > > > > > > > > > > > > > > > > > | | 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 | name = lemp->name ? lemp->name : "Parse"; if( lemp->arg && lemp->arg[0] ){ i = lemonStrlen(lemp->arg); while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--; while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--; fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++; fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++; fprintf(out,"#define %sARG_PARAM ,%s\n",name,&lemp->arg[i]); lineno++; fprintf(out,"#define %sARG_FETCH %s=yypParser->%s;\n", name,lemp->arg,&lemp->arg[i]); lineno++; fprintf(out,"#define %sARG_STORE yypParser->%s=%s;\n", name,&lemp->arg[i],&lemp->arg[i]); lineno++; }else{ fprintf(out,"#define %sARG_SDECL\n",name); lineno++; fprintf(out,"#define %sARG_PDECL\n",name); lineno++; fprintf(out,"#define %sARG_PARAM\n",name); lineno++; fprintf(out,"#define %sARG_FETCH\n",name); lineno++; fprintf(out,"#define %sARG_STORE\n",name); lineno++; } if( lemp->ctx && lemp->ctx[0] ){ i = lemonStrlen(lemp->ctx); while( i>=1 && ISSPACE(lemp->ctx[i-1]) ) i--; while( i>=1 && (ISALNUM(lemp->ctx[i-1]) || lemp->ctx[i-1]=='_') ) i--; fprintf(out,"#define %sCTX_SDECL %s;\n",name,lemp->ctx); lineno++; fprintf(out,"#define %sCTX_PDECL ,%s\n",name,lemp->ctx); lineno++; fprintf(out,"#define %sCTX_PARAM ,%s\n",name,&lemp->ctx[i]); lineno++; fprintf(out,"#define %sCTX_FETCH %s=yypParser->%s;\n", name,lemp->ctx,&lemp->ctx[i]); lineno++; fprintf(out,"#define %sCTX_STORE yypParser->%s=%s;\n", name,&lemp->ctx[i],&lemp->ctx[i]); lineno++; }else{ fprintf(out,"#define %sCTX_SDECL\n",name); lineno++; fprintf(out,"#define %sCTX_PDECL\n",name); lineno++; fprintf(out,"#define %sCTX_PARAM\n",name); lineno++; fprintf(out,"#define %sCTX_FETCH\n",name); lineno++; fprintf(out,"#define %sCTX_STORE\n",name); lineno++; } if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } if( lemp->errsym && lemp->errsym->useCnt ){ fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++; fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++; } if( lemp->has_fallback ){ fprintf(out,"#define YYFALLBACK 1\n"); lineno++; } |
︙ | ︙ |
Changes to tool/lempar.c.
︙ | ︙ | |||
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | ** This is typically a union of many types, one of ** which is ParseTOKENTYPE. The entry in the union ** for terminal symbols is called "yy0". ** YYSTACKDEPTH is the maximum depth of the parser's stack. If ** zero the stack is dynamically sized using realloc() ** ParseARG_SDECL A static variable declaration for the %extra_argument ** ParseARG_PDECL A parameter declaration for the %extra_argument ** ParseARG_STORE Code to store %extra_argument into yypParser ** ParseARG_FETCH Code to extract %extra_argument from yypParser ** YYERRORSYMBOL is the code number of the error symbol. If not ** defined, then do no error processing. ** YYNSTATE the combined number of states. ** YYNRULE the number of rules in the grammar ** YYNTOKEN Number of terminal symbols ** YY_MAX_SHIFT Maximum value for shift actions ** YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions | > > | 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | ** This is typically a union of many types, one of ** which is ParseTOKENTYPE. The entry in the union ** for terminal symbols is called "yy0". ** YYSTACKDEPTH is the maximum depth of the parser's stack. If ** zero the stack is dynamically sized using realloc() ** ParseARG_SDECL A static variable declaration for the %extra_argument ** ParseARG_PDECL A parameter declaration for the %extra_argument ** ParseARG_PARAM Code to pass %extra_argument as a subroutine parameter ** ParseARG_STORE Code to store %extra_argument into yypParser ** ParseARG_FETCH Code to extract %extra_argument from yypParser ** ParseCTX_* As ParseARG_ except for %extra_context ** YYERRORSYMBOL is the code number of the error symbol. If not ** defined, then do no error processing. ** YYNSTATE the combined number of states. ** YYNRULE the number of rules in the grammar ** YYNTOKEN Number of terminal symbols ** YY_MAX_SHIFT Maximum value for shift actions ** YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions |
︙ | ︙ | |||
207 208 209 210 211 212 213 214 215 216 217 218 219 220 | #ifdef YYTRACKMAXSTACKDEPTH int yyhwm; /* High-water mark of the stack */ #endif #ifndef YYNOERRORRECOVERY int yyerrcnt; /* Shifts left before out of the error */ #endif ParseARG_SDECL /* A place to hold %extra_argument */ #if YYSTACKDEPTH<=0 int yystksz; /* Current side of the stack */ yyStackEntry *yystack; /* The parser's stack */ yyStackEntry yystk0; /* First stack entry */ #else yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */ yyStackEntry *yystackEnd; /* Last entry in the stack */ | > | 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | #ifdef YYTRACKMAXSTACKDEPTH int yyhwm; /* High-water mark of the stack */ #endif #ifndef YYNOERRORRECOVERY int yyerrcnt; /* Shifts left before out of the error */ #endif ParseARG_SDECL /* A place to hold %extra_argument */ ParseCTX_SDECL /* A place to hold %extra_context */ #if YYSTACKDEPTH<=0 int yystksz; /* Current side of the stack */ yyStackEntry *yystack; /* The parser's stack */ yyStackEntry yystk0; /* First stack entry */ #else yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */ yyStackEntry *yystackEnd; /* Last entry in the stack */ |
︙ | ︙ | |||
311 312 313 314 315 316 317 | */ #ifndef YYMALLOCARGTYPE # define YYMALLOCARGTYPE size_t #endif /* Initialize a new parser that has already been allocated. */ | | | > | | | | | | | | | | | | | | | | > > > | | > | 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | */ #ifndef YYMALLOCARGTYPE # define YYMALLOCARGTYPE size_t #endif /* Initialize a new parser that has already been allocated. */ void ParseInit(void *yypRawParser ParseCTX_PDECL){ yyParser *yypParser = (yyParser*)yypRawParser; ParseCTX_STORE #ifdef YYTRACKMAXSTACKDEPTH yypParser->yyhwm = 0; #endif #if YYSTACKDEPTH<=0 yypParser->yytos = NULL; yypParser->yystack = NULL; yypParser->yystksz = 0; if( yyGrowStack(yypParser) ){ yypParser->yystack = &yypParser->yystk0; yypParser->yystksz = 1; } #endif #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt = -1; #endif yypParser->yytos = yypParser->yystack; yypParser->yystack[0].stateno = 0; yypParser->yystack[0].major = 0; #if YYSTACKDEPTH>0 yypParser->yystackEnd = &yypParser->yystack[YYSTACKDEPTH-1]; #endif } #ifndef Parse_ENGINEALWAYSONSTACK /* ** This function allocates a new parser. ** The only argument is a pointer to a function which works like ** malloc. ** ** Inputs: ** A pointer to the function used to allocate memory. ** ** Outputs: ** A pointer to a parser. This pointer is used in subsequent calls ** to Parse and ParseFree. */ void *ParseAlloc(void *(*mallocProc)(YYMALLOCARGTYPE) ParseCTX_PDECL){ yyParser *yypParser; yypParser = (yyParser*)(*mallocProc)( (YYMALLOCARGTYPE)sizeof(yyParser) ); if( yypParser ){ ParseCTX_STORE ParseInit(yypParser ParseCTX_PARAM); } return (void*)yypParser; } #endif /* Parse_ENGINEALWAYSONSTACK */ /* The following function deletes the "minor type" or semantic value ** associated with a symbol. The symbol can be either a terminal ** or nonterminal. "yymajor" is the symbol code, and "yypminor" is ** a pointer to the value to be deleted. The code used to do the ** deletions is derived from the %destructor and/or %token_destructor ** directives of the input grammar. */ static void yy_destructor( yyParser *yypParser, /* The parser */ YYCODETYPE yymajor, /* Type code for object to destroy */ YYMINORTYPE *yypminor /* The object to be destroyed */ ){ ParseARG_FETCH ParseCTX_FETCH switch( yymajor ){ /* Here is inserted the actions which take place when a ** terminal or non-terminal is destroyed. This can happen ** when the symbol is popped from the stack during a ** reduce or during error processing or when a parser is ** being destroyed before it is finished parsing. ** |
︙ | ︙ | |||
493 494 495 496 497 498 499 | } #endif /* ** Find the appropriate action for a parser given the terminal ** look-ahead token iLookAhead. */ | | < | > < | | 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 | } #endif /* ** Find the appropriate action for a parser given the terminal ** look-ahead token iLookAhead. */ static YYACTIONTYPE yy_find_shift_action( YYCODETYPE iLookAhead, /* The look-ahead token */ YYACTIONTYPE stateno /* Current state number */ ){ int i; if( stateno>YY_MAX_SHIFT ) return stateno; assert( stateno <= YY_SHIFT_COUNT ); #if defined(YYCOVERAGE) yycoverage[stateno][iLookAhead] = 1; #endif do{ i = yy_shift_ofst[stateno]; |
︙ | ︙ | |||
563 564 565 566 567 568 569 | } /* ** Find the appropriate action for a parser given the non-terminal ** look-ahead token iLookAhead. */ static int yy_find_reduce_action( | | | 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 | } /* ** Find the appropriate action for a parser given the non-terminal ** look-ahead token iLookAhead. */ static int yy_find_reduce_action( YYACTIONTYPE stateno, /* Current state number */ YYCODETYPE iLookAhead /* The look-ahead token */ ){ int i; #ifdef YYERRORSYMBOL if( stateno>YY_REDUCE_COUNT ){ return yy_default[stateno]; } |
︙ | ︙ | |||
592 593 594 595 596 597 598 | return yy_action[i]; } /* ** The following routine is called if the stack overflows. */ static void yyStackOverflow(yyParser *yypParser){ | | > | > | 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 | return yy_action[i]; } /* ** The following routine is called if the stack overflows. */ static void yyStackOverflow(yyParser *yypParser){ ParseARG_FETCH ParseCTX_FETCH #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt); } #endif while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser); /* Here code is inserted which will execute if the parser ** stack every overflows */ /******** Begin %stack_overflow code ******************************************/ %% /******** End %stack_overflow code ********************************************/ ParseARG_STORE /* Suppress warning about unused %extra_argument var */ ParseCTX_STORE } /* ** Print tracing information for a SHIFT action */ #ifndef NDEBUG static void yyTraceShift(yyParser *yypParser, int yyNewState, const char *zTag){ |
︙ | ︙ | |||
633 634 635 636 637 638 639 | #endif /* ** Perform a shift action. */ static void yy_shift( yyParser *yypParser, /* The parser to be shifted */ | | | | 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 | #endif /* ** Perform a shift action. */ static void yy_shift( yyParser *yypParser, /* The parser to be shifted */ YYACTIONTYPE yyNewState, /* The new state to shift in */ YYCODETYPE yyMajor, /* The major token to shift in */ ParseTOKENTYPE yyMinor /* The minor token to shift in */ ){ yyStackEntry *yytos; yypParser->yytos++; #ifdef YYTRACKMAXSTACKDEPTH if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){ yypParser->yyhwm++; |
︙ | ︙ | |||
664 665 666 667 668 669 670 | } } #endif if( yyNewState > YY_MAX_SHIFT ){ yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE; } yytos = yypParser->yytos; | | | | 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 | } } #endif if( yyNewState > YY_MAX_SHIFT ){ yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE; } yytos = yypParser->yytos; yytos->stateno = yyNewState; yytos->major = yyMajor; yytos->minor.yy0 = yyMinor; yyTraceShift(yypParser, yyNewState, "Shift"); } /* The following table contains information about every rule that ** is used during the reduce. */ |
︙ | ︙ | |||
692 693 694 695 696 697 698 | ** ** The yyLookahead and yyLookaheadToken parameters provide reduce actions ** access to the lookahead token (if any). The yyLookahead will be YYNOCODE ** if the lookahead token has already been consumed. As this procedure is ** only called from one place, optimizing compilers will in-line it, which ** means that the extra parameters have no performance impact. */ | | > | | 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 | ** ** The yyLookahead and yyLookaheadToken parameters provide reduce actions ** access to the lookahead token (if any). The yyLookahead will be YYNOCODE ** if the lookahead token has already been consumed. As this procedure is ** only called from one place, optimizing compilers will in-line it, which ** means that the extra parameters have no performance impact. */ static YYACTIONTYPE yy_reduce( yyParser *yypParser, /* The parser */ unsigned int yyruleno, /* Number of the rule by which to reduce */ int yyLookahead, /* Lookahead token, or YYNOCODE if none */ ParseTOKENTYPE yyLookaheadToken /* Value of the lookahead token */ ParseCTX_PDECL /* %extra_context */ ){ int yygoto; /* The next state */ int yyact; /* The next action */ yyStackEntry *yymsp; /* The top of the parser's stack */ int yysize; /* Amount to pop the stack */ ParseARG_FETCH (void)yyLookahead; (void)yyLookaheadToken; yymsp = yypParser->yytos; #ifndef NDEBUG if( yyTraceFILE && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){ yysize = yyRuleInfo[yyruleno].nrhs; if( yysize ){ |
︙ | ︙ | |||
733 734 735 736 737 738 739 | yypParser->yyhwm++; assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack)); } #endif #if YYSTACKDEPTH>0 if( yypParser->yytos>=yypParser->yystackEnd ){ yyStackOverflow(yypParser); | > > > | > > > | | 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 | yypParser->yyhwm++; assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack)); } #endif #if YYSTACKDEPTH>0 if( yypParser->yytos>=yypParser->yystackEnd ){ yyStackOverflow(yypParser); /* The call to yyStackOverflow() above pops the stack until it is ** empty, causing the main parser loop to exit. So the return value ** is never used and does not matter. */ return 0; } #else if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz-1] ){ if( yyGrowStack(yypParser) ){ yyStackOverflow(yypParser); /* The call to yyStackOverflow() above pops the stack until it is ** empty, causing the main parser loop to exit. So the return value ** is never used and does not matter. */ return 0; } yymsp = yypParser->yytos; } #endif } switch( yyruleno ){ |
︙ | ︙ | |||
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 | assert( yyact!=YY_ERROR_ACTION ); yymsp += yysize+1; yypParser->yytos = yymsp; yymsp->stateno = (YYACTIONTYPE)yyact; yymsp->major = (YYCODETYPE)yygoto; yyTraceShift(yypParser, yyact, "... then shift"); } /* ** The following code executes when the parse fails */ #ifndef YYNOERRORRECOVERY static void yy_parse_failed( yyParser *yypParser /* The parser */ ){ | > | > | > | > | > | > | > | 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 | assert( yyact!=YY_ERROR_ACTION ); yymsp += yysize+1; yypParser->yytos = yymsp; yymsp->stateno = (YYACTIONTYPE)yyact; yymsp->major = (YYCODETYPE)yygoto; yyTraceShift(yypParser, yyact, "... then shift"); return yyact; } /* ** The following code executes when the parse fails */ #ifndef YYNOERRORRECOVERY static void yy_parse_failed( yyParser *yypParser /* The parser */ ){ ParseARG_FETCH ParseCTX_FETCH #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt); } #endif while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser); /* Here code is inserted which will be executed whenever the ** parser fails */ /************ Begin %parse_failure code ***************************************/ %% /************ End %parse_failure code *****************************************/ ParseARG_STORE /* Suppress warning about unused %extra_argument variable */ ParseCTX_STORE } #endif /* YYNOERRORRECOVERY */ /* ** The following code executes when a syntax error first occurs. */ static void yy_syntax_error( yyParser *yypParser, /* The parser */ int yymajor, /* The major type of the error token */ ParseTOKENTYPE yyminor /* The minor type of the error token */ ){ ParseARG_FETCH ParseCTX_FETCH #define TOKEN yyminor /************ Begin %syntax_error code ****************************************/ %% /************ End %syntax_error code ******************************************/ ParseARG_STORE /* Suppress warning about unused %extra_argument variable */ ParseCTX_STORE } /* ** The following is executed when the parser accepts */ static void yy_accept( yyParser *yypParser /* The parser */ ){ ParseARG_FETCH ParseCTX_FETCH #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt); } #endif #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt = -1; #endif assert( yypParser->yytos==yypParser->yystack ); /* Here code is inserted which will be executed whenever the ** parser accepts */ /*********** Begin %parse_accept code *****************************************/ %% /*********** End %parse_accept code *******************************************/ ParseARG_STORE /* Suppress warning about unused %extra_argument variable */ ParseCTX_STORE } /* The main parser program. ** The first argument is a pointer to a structure obtained from ** "ParseAlloc" which describes the current state of the parser. ** The second argument is the major token number. The third is ** the minor token. The fourth optional argument is whatever the |
︙ | ︙ | |||
867 868 869 870 871 872 873 | void Parse( void *yyp, /* The parser */ int yymajor, /* The major token code number */ ParseTOKENTYPE yyminor /* The value for the token */ ParseARG_PDECL /* Optional %extra_argument parameter */ ){ YYMINORTYPE yyminorunion; | | | > > < < > < | | | > | | > | | 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 | void Parse( void *yyp, /* The parser */ int yymajor, /* The major token code number */ ParseTOKENTYPE yyminor /* The value for the token */ ParseARG_PDECL /* Optional %extra_argument parameter */ ){ YYMINORTYPE yyminorunion; YYACTIONTYPE yyact; /* The parser action. */ #if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY) int yyendofinput; /* True if we are at the end of input */ #endif #ifdef YYERRORSYMBOL int yyerrorhit = 0; /* True if yymajor has invoked an error */ #endif yyParser *yypParser = (yyParser*)yyp; /* The parser */ ParseCTX_FETCH ParseARG_STORE assert( yypParser->yytos!=0 ); #if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY) yyendofinput = (yymajor==0); #endif yyact = yypParser->yytos->stateno; #ifndef NDEBUG if( yyTraceFILE ){ if( yyact < YY_MIN_REDUCE ){ fprintf(yyTraceFILE,"%sInput '%s' in state %d\n", yyTracePrompt,yyTokenName[yymajor],yyact); }else{ fprintf(yyTraceFILE,"%sInput '%s' with pending reduce %d\n", yyTracePrompt,yyTokenName[yymajor],yyact-YY_MIN_REDUCE); } } #endif do{ assert( yyact==yypParser->yytos->stateno ); yyact = yy_find_shift_action(yymajor,yyact); if( yyact >= YY_MIN_REDUCE ){ yyact = yy_reduce(yypParser,yyact-YY_MIN_REDUCE,yymajor, yyminor ParseCTX_PARAM); }else if( yyact <= YY_MAX_SHIFTREDUCE ){ yy_shift(yypParser,yyact,yymajor,yyminor); #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt--; #endif break; }else if( yyact==YY_ACCEPT_ACTION ){ yypParser->yytos--; yy_accept(yypParser); return; }else{ assert( yyact == YY_ERROR_ACTION ); yyminorunion.yy0 = yyminor; |
︙ | ︙ | |||
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 | yymajor = YYNOCODE; }else if( yymx!=YYERRORSYMBOL ){ yy_shift(yypParser,yyact,YYERRORSYMBOL,yyminor); } } yypParser->yyerrcnt = 3; yyerrorhit = 1; #elif defined(YYNOERRORRECOVERY) /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to ** do any kind of error recovery. Instead, simply invoke the syntax ** error routine and continue going as if nothing had happened. ** ** Applications can set this macro (for example inside %include) if ** they intend to abandon the parse upon the first syntax error seen. */ yy_syntax_error(yypParser,yymajor, yyminor); yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); | > > < | | 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 | yymajor = YYNOCODE; }else if( yymx!=YYERRORSYMBOL ){ yy_shift(yypParser,yyact,YYERRORSYMBOL,yyminor); } } yypParser->yyerrcnt = 3; yyerrorhit = 1; if( yymajor==YYNOCODE ) break; yyact = yypParser->yytos->stateno; #elif defined(YYNOERRORRECOVERY) /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to ** do any kind of error recovery. Instead, simply invoke the syntax ** error routine and continue going as if nothing had happened. ** ** Applications can set this macro (for example inside %include) if ** they intend to abandon the parse upon the first syntax error seen. */ yy_syntax_error(yypParser,yymajor, yyminor); yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); break; #else /* YYERRORSYMBOL is not defined */ /* This is what we do if the grammar does not define ERROR: ** ** * Report an error message, and throw away the input token. ** ** * If the input token is $, then fail the parse. ** |
︙ | ︙ | |||
1009 1010 1011 1012 1013 1014 1015 | yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); if( yyendofinput ){ yy_parse_failed(yypParser); #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt = -1; #endif } | | | | 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 | yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); if( yyendofinput ){ yy_parse_failed(yypParser); #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt = -1; #endif } break; #endif } }while( yypParser->yytos>yypParser->yystack ); #ifndef NDEBUG if( yyTraceFILE ){ yyStackEntry *i; char cDiv = '['; fprintf(yyTraceFILE,"%sReturn. Stack=",yyTracePrompt); for(i=&yypParser->yystack[1]; i<=yypParser->yytos; i++){ fprintf(yyTraceFILE,"%c%s", cDiv, yyTokenName[i->major]); |
︙ | ︙ |
Changes to tool/mkkeywordhash.c.
︙ | ︙ | |||
139 140 141 142 143 144 145 146 147 148 149 150 151 152 | # define AUTOVACUUM 0x00020000 #endif #ifdef SQLITE_OMIT_CTE # define CTE 0 #else # define CTE 0x00040000 #endif /* ** These are the keywords */ static Keyword aKeywordTable[] = { { "ABORT", "TK_ABORT", CONFLICT|TRIGGER }, { "ACTION", "TK_ACTION", FKEY }, | > > > > > | 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | # define AUTOVACUUM 0x00020000 #endif #ifdef SQLITE_OMIT_CTE # define CTE 0 #else # define CTE 0x00040000 #endif #ifdef SQLITE_OMIT_UPSERT # define UPSERT 0 #else # define UPSERT 0x00080000 #endif /* ** These are the keywords */ static Keyword aKeywordTable[] = { { "ABORT", "TK_ABORT", CONFLICT|TRIGGER }, { "ACTION", "TK_ACTION", FKEY }, |
︙ | ︙ | |||
182 183 184 185 186 187 188 189 190 191 192 193 194 195 | { "DEFAULT", "TK_DEFAULT", ALWAYS }, { "DEFERRED", "TK_DEFERRED", ALWAYS }, { "DEFERRABLE", "TK_DEFERRABLE", FKEY }, { "DELETE", "TK_DELETE", ALWAYS }, { "DESC", "TK_DESC", ALWAYS }, { "DETACH", "TK_DETACH", ATTACH }, { "DISTINCT", "TK_DISTINCT", ALWAYS }, { "DROP", "TK_DROP", ALWAYS }, { "END", "TK_END", ALWAYS }, { "EACH", "TK_EACH", TRIGGER }, { "ELSE", "TK_ELSE", ALWAYS }, { "ESCAPE", "TK_ESCAPE", ALWAYS }, { "EXCEPT", "TK_EXCEPT", COMPOUND }, { "EXCLUSIVE", "TK_EXCLUSIVE", ALWAYS }, | > | 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | { "DEFAULT", "TK_DEFAULT", ALWAYS }, { "DEFERRED", "TK_DEFERRED", ALWAYS }, { "DEFERRABLE", "TK_DEFERRABLE", FKEY }, { "DELETE", "TK_DELETE", ALWAYS }, { "DESC", "TK_DESC", ALWAYS }, { "DETACH", "TK_DETACH", ATTACH }, { "DISTINCT", "TK_DISTINCT", ALWAYS }, { "DO", "TK_DO", UPSERT }, { "DROP", "TK_DROP", ALWAYS }, { "END", "TK_END", ALWAYS }, { "EACH", "TK_EACH", TRIGGER }, { "ELSE", "TK_ELSE", ALWAYS }, { "ESCAPE", "TK_ESCAPE", ALWAYS }, { "EXCEPT", "TK_EXCEPT", COMPOUND }, { "EXCLUSIVE", "TK_EXCLUSIVE", ALWAYS }, |
︙ | ︙ | |||
222 223 224 225 226 227 228 229 230 231 232 233 234 235 | { "LEFT", "TK_JOIN_KW", ALWAYS }, { "LIKE", "TK_LIKE_KW", ALWAYS }, { "LIMIT", "TK_LIMIT", ALWAYS }, { "MATCH", "TK_MATCH", ALWAYS }, { "NATURAL", "TK_JOIN_KW", ALWAYS }, { "NO", "TK_NO", FKEY }, { "NOT", "TK_NOT", ALWAYS }, { "NOTNULL", "TK_NOTNULL", ALWAYS }, { "NULL", "TK_NULL", ALWAYS }, { "OF", "TK_OF", ALWAYS }, { "OFFSET", "TK_OFFSET", ALWAYS }, { "ON", "TK_ON", ALWAYS }, { "OR", "TK_OR", ALWAYS }, { "ORDER", "TK_ORDER", ALWAYS }, | > | 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | { "LEFT", "TK_JOIN_KW", ALWAYS }, { "LIKE", "TK_LIKE_KW", ALWAYS }, { "LIMIT", "TK_LIMIT", ALWAYS }, { "MATCH", "TK_MATCH", ALWAYS }, { "NATURAL", "TK_JOIN_KW", ALWAYS }, { "NO", "TK_NO", FKEY }, { "NOT", "TK_NOT", ALWAYS }, { "NOTHING", "TK_NOTHING", UPSERT }, { "NOTNULL", "TK_NOTNULL", ALWAYS }, { "NULL", "TK_NULL", ALWAYS }, { "OF", "TK_OF", ALWAYS }, { "OFFSET", "TK_OFFSET", ALWAYS }, { "ON", "TK_ON", ALWAYS }, { "OR", "TK_OR", ALWAYS }, { "ORDER", "TK_ORDER", ALWAYS }, |
︙ | ︙ | |||
606 607 608 609 610 611 612 613 614 615 | printf("}\n"); printf("int sqlite3KeywordCode(const unsigned char *z, int n){\n"); printf(" int id = TK_ID;\n"); printf(" keywordCode((char*)z, n, &id);\n"); printf(" return id;\n"); printf("}\n"); printf("#define SQLITE_N_KEYWORD %d\n", nKeyword); return 0; } | > > > > > > > > > > | 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 | printf("}\n"); printf("int sqlite3KeywordCode(const unsigned char *z, int n){\n"); printf(" int id = TK_ID;\n"); printf(" keywordCode((char*)z, n, &id);\n"); printf(" return id;\n"); printf("}\n"); printf("#define SQLITE_N_KEYWORD %d\n", nKeyword); printf("int sqlite3_keyword_name(int i,const char **pzName,int *pnName){\n"); printf(" if( i<0 || i>=SQLITE_N_KEYWORD ) return SQLITE_ERROR;\n"); printf(" *pzName = zKWText + aKWOffset[i];\n"); printf(" *pnName = aKWLen[i];\n"); printf(" return SQLITE_OK;\n"); printf("}\n"); printf("int sqlite3_keyword_count(void){ return SQLITE_N_KEYWORD; }\n"); printf("int sqlite3_keyword_check(const char *zName, int nName){\n"); printf(" return TK_ID!=sqlite3KeywordCode((const u8*)zName, nName);\n"); printf("}\n"); return 0; } |
Changes to tool/mkmsvcmin.tcl.
︙ | ︙ | |||
79 80 81 82 83 84 85 | set blocks(2) [string trimleft [string map [list \\\\ \\] { Replace.exe: $(CSC) /target:exe $(TOP)\Replace.cs sqlite3.def: Replace.exe $(LIBOBJ) echo EXPORTS > sqlite3.def dumpbin /all $(LIBOBJ) \\ | | | 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | set blocks(2) [string trimleft [string map [list \\\\ \\] { Replace.exe: $(CSC) /target:exe $(TOP)\Replace.cs sqlite3.def: Replace.exe $(LIBOBJ) echo EXPORTS > sqlite3.def dumpbin /all $(LIBOBJ) \\ | .\Replace.exe "^\s+/EXPORT:_?(sqlite3(?:session|changeset|changegroup|rebaser)?_[^@,]*)(?:@\d+|,DATA)?$$" $$1 true \\ | sort >> sqlite3.def }]] set data "#### DO NOT EDIT ####\n" append data "# This makefile is automatically " append data "generated from the [file tail $fromFileName] at\n" append data "# the root of the canonical SQLite source tree (not the\n" |
︙ | ︙ |
Changes to tool/mksqlite3c.tcl.
︙ | ︙ | |||
360 361 362 363 364 365 366 367 368 369 370 371 372 373 | loadext.c pragma.c prepare.c select.c table.c trigger.c update.c vacuum.c vtab.c wherecode.c whereexpr.c where.c parse.c | > | 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 | loadext.c pragma.c prepare.c select.c table.c trigger.c update.c upsert.c vacuum.c vtab.c wherecode.c whereexpr.c where.c parse.c |
︙ | ︙ |
Changes to tool/sqldiff.c.
︙ | ︙ | |||
130 131 132 133 134 135 136 | ** necessary to allow the string to be used with %s. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). The ** caller is responsible for ensuring this space is freed when no longer ** needed. */ static char *safeId(const char *zId){ | < < < < < < < < < < < < < < < < < < < < < | > > | < < < < < < < < < < | < | | 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | ** necessary to allow the string to be used with %s. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). The ** caller is responsible for ensuring this space is freed when no longer ** needed. */ static char *safeId(const char *zId){ int i, x; char c; if( zId[0]==0 ) return sqlite3_mprintf("\"\""); for(i=x=0; (c = zId[i])!=0; i++){ if( !isalpha(c) && c!='_' ){ if( i>0 && isdigit(c) ){ x++; }else{ return sqlite3_mprintf("\"%w\"", zId); } } } if( x || !sqlite3_keyword_check(zId,i) ){ return sqlite3_mprintf("%s", zId); } return sqlite3_mprintf("\"%w\"", zId); } /* ** Prepare a new SQL statement. Print an error and abort if anything ** goes wrong. */ static sqlite3_stmt *db_vprepare(const char *zFormat, va_list ap){ |
︙ | ︙ |