SQLite

Check-in [e17bca2cdb]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge recent enhancements from trunk.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | apple-osx
Files: files | file ages | folders
SHA3-256: e17bca2cdb5f31a802e1a1870deb6bf17e332117ab272537f26351f1145de690
User & Date: drh 2018-05-04 19:33:34.574
Context
2018-05-04
20:00
Bring the code that changes the owner of WAL and rollback files when running as root into alignment with trunk. (check-in: 180516bf7b user: drh tags: apple-osx)
19:33
Merge recent enhancements from trunk. (check-in: e17bca2cdb user: drh tags: apple-osx)
18:32
Fix requirements marks. No code changes. (check-in: 7fdad122a2 user: drh tags: trunk)
2018-04-10
18:05
Merge all version 3.23.1 changes and enhancements from trunk. (check-in: e20fcb5159 user: drh tags: apple-osx)
Changes
Unified Diff Ignore Whitespace Patch
Changes to Makefile.in.
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
         memdb.lo memjournal.lo \
         mutex.lo mutex_noop.lo mutex_unix.lo mutex_w32.lo \
         notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \
         pager.lo parse.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \
         random.lo resolve.lo rowset.lo rtree.lo \
         sqlite3session.lo select.lo sqlite3rbu.lo status.lo stmt.lo \
         table.lo threads.lo tokenize.lo treeview.lo trigger.lo \
         update.lo util.lo vacuum.lo \
         vdbe.lo vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbemem.lo vdbesort.lo \
         vdbetrace.lo wal.lo walker.lo where.lo wherecode.lo whereexpr.lo \
         utf.lo vtab.lo

# Object files for the amalgamation.
#
LIBOBJS1 = sqlite3.lo







|







183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
         memdb.lo memjournal.lo \
         mutex.lo mutex_noop.lo mutex_unix.lo mutex_w32.lo \
         notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \
         pager.lo parse.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \
         random.lo resolve.lo rowset.lo rtree.lo \
         sqlite3session.lo select.lo sqlite3rbu.lo status.lo stmt.lo \
         table.lo threads.lo tokenize.lo treeview.lo trigger.lo \
         update.lo upsert.lo util.lo vacuum.lo \
         vdbe.lo vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbemem.lo vdbesort.lo \
         vdbetrace.lo wal.lo walker.lo where.lo wherecode.lo whereexpr.lo \
         utf.lo vtab.lo

# Object files for the amalgamation.
#
LIBOBJS1 = sqlite3.lo
280
281
282
283
284
285
286

287
288
289
290
291
292
293
  $(TOP)/src/tclsqlite.c \
  $(TOP)/src/threads.c \
  $(TOP)/src/tokenize.c \
  $(TOP)/src/treeview.c \
  $(TOP)/src/trigger.c \
  $(TOP)/src/utf.c \
  $(TOP)/src/update.c \

  $(TOP)/src/util.c \
  $(TOP)/src/vacuum.c \
  $(TOP)/src/vdbe.c \
  $(TOP)/src/vdbe.h \
  $(TOP)/src/vdbeapi.c \
  $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbeblob.c \







>







280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
  $(TOP)/src/tclsqlite.c \
  $(TOP)/src/threads.c \
  $(TOP)/src/tokenize.c \
  $(TOP)/src/treeview.c \
  $(TOP)/src/trigger.c \
  $(TOP)/src/utf.c \
  $(TOP)/src/update.c \
  $(TOP)/src/upsert.c \
  $(TOP)/src/util.c \
  $(TOP)/src/vacuum.c \
  $(TOP)/src/vdbe.c \
  $(TOP)/src/vdbe.h \
  $(TOP)/src/vdbeapi.c \
  $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbeblob.c \
923
924
925
926
927
928
929



930
931
932
933
934
935
936

trigger.lo:	$(TOP)/src/trigger.c $(HDR)
	$(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/trigger.c

update.lo:	$(TOP)/src/update.c $(HDR)
	$(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/update.c




utf.lo:	$(TOP)/src/utf.c $(HDR)
	$(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/utf.c

util.lo:	$(TOP)/src/util.c $(HDR)
	$(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/util.c

vacuum.lo:	$(TOP)/src/vacuum.c $(HDR)







>
>
>







924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940

trigger.lo:	$(TOP)/src/trigger.c $(HDR)
	$(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/trigger.c

update.lo:	$(TOP)/src/update.c $(HDR)
	$(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/update.c

upsert.lo:	$(TOP)/src/upsert.c $(HDR)
	$(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/upsert.c

utf.lo:	$(TOP)/src/utf.c $(HDR)
	$(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/utf.c

util.lo:	$(TOP)/src/util.c $(HDR)
	$(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/util.c

vacuum.lo:	$(TOP)/src/vacuum.c $(HDR)
Changes to Makefile.msc.
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
         memdb.lo memjournal.lo \
         mutex.lo mutex_noop.lo mutex_unix.lo mutex_w32.lo \
         notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \
         pager.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \
         random.lo resolve.lo rowset.lo rtree.lo \
         sqlite3session.lo select.lo sqlite3rbu.lo status.lo \
         table.lo threads.lo tokenize.lo treeview.lo trigger.lo \
         update.lo util.lo vacuum.lo \
         vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbemem.lo vdbesort.lo \
         vdbetrace.lo wal.lo walker.lo where.lo wherecode.lo whereexpr.lo \
         utf.lo vtab.lo
# <</mark>>

# Object files for the amalgamation.
#







|







1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
         memdb.lo memjournal.lo \
         mutex.lo mutex_noop.lo mutex_unix.lo mutex_w32.lo \
         notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \
         pager.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \
         random.lo resolve.lo rowset.lo rtree.lo \
         sqlite3session.lo select.lo sqlite3rbu.lo status.lo \
         table.lo threads.lo tokenize.lo treeview.lo trigger.lo \
         update.lo upsert.lo util.lo vacuum.lo \
         vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbemem.lo vdbesort.lo \
         vdbetrace.lo wal.lo walker.lo where.lo wherecode.lo whereexpr.lo \
         utf.lo vtab.lo
# <</mark>>

# Object files for the amalgamation.
#
1288
1289
1290
1291
1292
1293
1294

1295
1296
1297
1298
1299
1300
1301
  $(TOP)\src\threads.c \
  $(TOP)\src\tclsqlite.c \
  $(TOP)\src\tokenize.c \
  $(TOP)\src\treeview.c \
  $(TOP)\src\trigger.c \
  $(TOP)\src\utf.c \
  $(TOP)\src\update.c \

  $(TOP)\src\util.c \
  $(TOP)\src\vacuum.c \
  $(TOP)\src\vdbe.c \
  $(TOP)\src\vdbeapi.c \
  $(TOP)\src\vdbeaux.c \
  $(TOP)\src\vdbeblob.c \
  $(TOP)\src\vdbemem.c \







>







1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
  $(TOP)\src\threads.c \
  $(TOP)\src\tclsqlite.c \
  $(TOP)\src\tokenize.c \
  $(TOP)\src\treeview.c \
  $(TOP)\src\trigger.c \
  $(TOP)\src\utf.c \
  $(TOP)\src\update.c \
  $(TOP)\src\upsert.c \
  $(TOP)\src\util.c \
  $(TOP)\src\vacuum.c \
  $(TOP)\src\vdbe.c \
  $(TOP)\src\vdbeapi.c \
  $(TOP)\src\vdbeaux.c \
  $(TOP)\src\vdbeblob.c \
  $(TOP)\src\vdbemem.c \
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
$(SQLITE3DLL):	$(LIBOBJ) $(LIBRESOBJS) $(CORE_LINK_DEP)
	$(LD) $(LDFLAGS) $(LTLINKOPTS) $(LTLIBPATHS) /DLL $(CORE_LINK_OPTS) /OUT:$@ $(LIBOBJ) $(LIBRESOBJS) $(LTLIBS) $(TLIBS)

# <<block2>>
sqlite3.def:	libsqlite3.lib
	echo EXPORTS > sqlite3.def
	dumpbin /all libsqlite3.lib \
		| $(TCLSH_CMD) $(TOP)\tool\replace.tcl include "^\s+1 _?(sqlite3(?:session|changeset|changegroup)?_[^@]*)(?:@\d+)?$$" \1 \
		| sort >> sqlite3.def
# <</block2>>

$(SQLITE3EXE):	shell.c $(SHELL_CORE_DEP) $(LIBRESOBJS) $(SHELL_CORE_SRC) $(SQLITE3H)
	$(LTLINK) $(SHELL_COMPILE_OPTS) $(READLINE_FLAGS) shell.c $(SHELL_CORE_SRC) \
		/link $(SQLITE3EXEPDB) $(LDFLAGS) $(LTLINKOPTS) $(SHELL_LINK_OPTS) $(LTLIBPATHS) $(LIBRESOBJS) $(LIBREADLINE) $(LTLIBS) $(TLIBS)








|







1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
$(SQLITE3DLL):	$(LIBOBJ) $(LIBRESOBJS) $(CORE_LINK_DEP)
	$(LD) $(LDFLAGS) $(LTLINKOPTS) $(LTLIBPATHS) /DLL $(CORE_LINK_OPTS) /OUT:$@ $(LIBOBJ) $(LIBRESOBJS) $(LTLIBS) $(TLIBS)

# <<block2>>
sqlite3.def:	libsqlite3.lib
	echo EXPORTS > sqlite3.def
	dumpbin /all libsqlite3.lib \
		| $(TCLSH_CMD) $(TOP)\tool\replace.tcl include "^\s+1 _?(sqlite3(?:session|changeset|changegroup|rebaser)?_[^@]*)(?:@\d+)?$$" \1 \
		| sort >> sqlite3.def
# <</block2>>

$(SQLITE3EXE):	shell.c $(SHELL_CORE_DEP) $(LIBRESOBJS) $(SHELL_CORE_SRC) $(SQLITE3H)
	$(LTLINK) $(SHELL_COMPILE_OPTS) $(READLINE_FLAGS) shell.c $(SHELL_CORE_SRC) \
		/link $(SQLITE3EXEPDB) $(LDFLAGS) $(LTLINKOPTS) $(SHELL_LINK_OPTS) $(LTLIBPATHS) $(LIBRESOBJS) $(LIBREADLINE) $(LTLIBS) $(TLIBS)

1990
1991
1992
1993
1994
1995
1996



1997
1998
1999
2000
2001
2002
2003

trigger.lo:	$(TOP)\src\trigger.c $(HDR)
	$(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\trigger.c

update.lo:	$(TOP)\src\update.c $(HDR)
	$(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\update.c




utf.lo:	$(TOP)\src\utf.c $(HDR)
	$(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\utf.c

util.lo:	$(TOP)\src\util.c $(HDR)
	$(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\util.c

vacuum.lo:	$(TOP)\src\vacuum.c $(HDR)







>
>
>







1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007

trigger.lo:	$(TOP)\src\trigger.c $(HDR)
	$(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\trigger.c

update.lo:	$(TOP)\src\update.c $(HDR)
	$(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\update.c

upsert.lo:	$(TOP)\src\upsert.c $(HDR)
	$(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\upsert.c

utf.lo:	$(TOP)\src\utf.c $(HDR)
	$(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\utf.c

util.lo:	$(TOP)\src\util.c $(HDR)
	$(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\util.c

vacuum.lo:	$(TOP)\src\vacuum.c $(HDR)
Changes to VERSION.
1
3.23.1
|
1
3.24.0
Changes to autoconf/Makefile.am.
1
2
3
4
5
6
7
8
9

AM_CFLAGS = @THREADSAFE_FLAGS@ @DYNAMIC_EXTENSION_FLAGS@ @FTS5_FLAGS@ @JSON1_FLAGS@ @ZLIB_FLAGS@ @SESSION_FLAGS@ -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE

lib_LTLIBRARIES = libsqlite3.la
libsqlite3_la_SOURCES = sqlite3.c
libsqlite3_la_LDFLAGS = -no-undefined -version-info 8:6:8

bin_PROGRAMS = sqlite3
sqlite3_SOURCES = shell.c sqlite3.h

|







1
2
3
4
5
6
7
8
9

AM_CFLAGS = @THREADSAFE_FLAGS@ @DYNAMIC_EXTENSION_FLAGS@ @FTS5_FLAGS@ @JSON1_FLAGS@ @ZLIB_FLAGS@ @SESSION_FLAGS@ -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE @DEBUG_FLAGS@

lib_LTLIBRARIES = libsqlite3.la
libsqlite3_la_SOURCES = sqlite3.c
libsqlite3_la_LDFLAGS = -no-undefined -version-info 8:6:8

bin_PROGRAMS = sqlite3
sqlite3_SOURCES = shell.c sqlite3.h
Changes to autoconf/Makefile.msc.
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

Replace.exe:
	$(CSC) /target:exe $(TOP)\Replace.cs

sqlite3.def:	Replace.exe $(LIBOBJ)
	echo EXPORTS > sqlite3.def
	dumpbin /all $(LIBOBJ) \
		| .\Replace.exe "^\s+/EXPORT:_?(sqlite3(?:session|changeset|changegroup)?_[^@,]*)(?:@\d+|,DATA)?$$" $$1 true \
		| sort >> sqlite3.def

$(SQLITE3EXE):	shell.c $(SHELL_CORE_DEP) $(LIBRESOBJS) $(SHELL_CORE_SRC) $(SQLITE3H)
	$(LTLINK) $(SHELL_COMPILE_OPTS) $(READLINE_FLAGS) shell.c $(SHELL_CORE_SRC) \
		/link $(SQLITE3EXEPDB) $(LDFLAGS) $(LTLINKOPTS) $(SHELL_LINK_OPTS) $(LTLIBPATHS) $(LIBRESOBJS) $(LIBREADLINE) $(LTLIBS) $(TLIBS)









|







962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

Replace.exe:
	$(CSC) /target:exe $(TOP)\Replace.cs

sqlite3.def:	Replace.exe $(LIBOBJ)
	echo EXPORTS > sqlite3.def
	dumpbin /all $(LIBOBJ) \
		| .\Replace.exe "^\s+/EXPORT:_?(sqlite3(?:session|changeset|changegroup|rebaser)?_[^@,]*)(?:@\d+|,DATA)?$$" $$1 true \
		| sort >> sqlite3.def

$(SQLITE3EXE):	shell.c $(SHELL_CORE_DEP) $(LIBRESOBJS) $(SHELL_CORE_SRC) $(SQLITE3H)
	$(LTLINK) $(SHELL_COMPILE_OPTS) $(READLINE_FLAGS) shell.c $(SHELL_CORE_SRC) \
		/link $(SQLITE3EXEPDB) $(LDFLAGS) $(LTLINKOPTS) $(SHELL_LINK_OPTS) $(LTLIBPATHS) $(LIBRESOBJS) $(LIBREADLINE) $(LTLIBS) $(TLIBS)


Changes to autoconf/configure.ac.
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149












150
151
152
153
154
155
156
AC_SUBST(DYNAMIC_EXTENSION_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
#   --enable-fts5
#
AC_ARG_ENABLE(fts5, [AS_HELP_STRING(
  [--enable-fts5], [include fts5 support [default=no]])], 
  [], [enable_fts5=no])
if test x"$enable_fts5" = "xyes"; then
  AC_SEARCH_LIBS(log, m)
  FTS5_FLAGS=-DSQLITE_ENABLE_FTS5
fi
AC_SUBST(FTS5_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
#   --enable-json1
#
AC_ARG_ENABLE(json1, [AS_HELP_STRING(
  [--enable-json1], [include json1 support [default=no]])], 
  [], [enable_json1=no])
if test x"$enable_json1" = "xyes"; then
  JSON1_FLAGS=-DSQLITE_ENABLE_JSON1
fi
AC_SUBST(JSON1_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
#   --enable-session
#
AC_ARG_ENABLE(session, [AS_HELP_STRING(
  [--enable-session], [enable the session extension [default=no]])], 
  [], [enable_session=no])
if test x"$enable_session" = "xyes"; then
  SESSION_FLAGS="-DSQLITE_ENABLE_SESSION -DSQLITE_ENABLE_PREUPDATE_HOOK"
fi
AC_SUBST(SESSION_FLAGS)
#-----------------------------------------------------------------------













#-----------------------------------------------------------------------
#   --enable-static-shell
#
AC_ARG_ENABLE(static-shell, [AS_HELP_STRING(
  [--enable-static-shell], 
  [statically link libsqlite3 into shell tool [default=yes]])], 







|
|











|
|

















>
>
>
>
>
>
>
>
>
>
>
>







111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
AC_SUBST(DYNAMIC_EXTENSION_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
#   --enable-fts5
#
AC_ARG_ENABLE(fts5, [AS_HELP_STRING(
  [--enable-fts5], [include fts5 support [default=yes]])], 
  [], [enable_fts5=yes])
if test x"$enable_fts5" = "xyes"; then
  AC_SEARCH_LIBS(log, m)
  FTS5_FLAGS=-DSQLITE_ENABLE_FTS5
fi
AC_SUBST(FTS5_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
#   --enable-json1
#
AC_ARG_ENABLE(json1, [AS_HELP_STRING(
  [--enable-json1], [include json1 support [default=yes]])], 
  [], [enable_json1=yes])
if test x"$enable_json1" = "xyes"; then
  JSON1_FLAGS=-DSQLITE_ENABLE_JSON1
fi
AC_SUBST(JSON1_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
#   --enable-session
#
AC_ARG_ENABLE(session, [AS_HELP_STRING(
  [--enable-session], [enable the session extension [default=no]])], 
  [], [enable_session=no])
if test x"$enable_session" = "xyes"; then
  SESSION_FLAGS="-DSQLITE_ENABLE_SESSION -DSQLITE_ENABLE_PREUPDATE_HOOK"
fi
AC_SUBST(SESSION_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
#   --enable-debug
#
AC_ARG_ENABLE(debug, [AS_HELP_STRING(
  [--enable-debug], [build with debugging features enabled [default=no]])], 
  [], [enable_session=no])
if test x"$enable_debug" = "xyes"; then
  DEBUG_FLAGS="-DSQLITE_DEBUG -DSQLITE_ENABLE_SELECTTRACE -DSQLITE_ENABLE_WHERETRACE"
fi
AC_SUBST(DEBUG_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
#   --enable-static-shell
#
AC_ARG_ENABLE(static-shell, [AS_HELP_STRING(
  [--enable-static-shell], 
  [statically link libsqlite3 into shell tool [default=yes]])], 
Changes to configure.
1
2
3
4
5
6
7
8
9
10
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.69 for sqlite 3.23.1.
#
#
# Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
#
#
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.


|







1
2
3
4
5
6
7
8
9
10
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.69 for sqlite 3.24.0.
#
#
# Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
#
#
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
subdirs=
MFLAGS=
MAKEFLAGS=

# Identity of this package.
PACKAGE_NAME='sqlite'
PACKAGE_TARNAME='sqlite'
PACKAGE_VERSION='3.23.1'
PACKAGE_STRING='sqlite 3.23.1'
PACKAGE_BUGREPORT=''
PACKAGE_URL=''

# Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H







|
|







722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
subdirs=
MFLAGS=
MAKEFLAGS=

# Identity of this package.
PACKAGE_NAME='sqlite'
PACKAGE_TARNAME='sqlite'
PACKAGE_VERSION='3.24.0'
PACKAGE_STRING='sqlite 3.24.0'
PACKAGE_BUGREPORT=''
PACKAGE_URL=''

# Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
  # Omit some internal or obsolete options to make the list less imposing.
  # This message is too long to be a string in the A/UX 3.1 sh.
  cat <<_ACEOF
\`configure' configures sqlite 3.23.1 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.







|







1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
  # Omit some internal or obsolete options to make the list less imposing.
  # This message is too long to be a string in the A/UX 3.1 sh.
  cat <<_ACEOF
\`configure' configures sqlite 3.24.0 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
  --build=BUILD     configure for building on BUILD [guessed]
  --host=HOST       cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
  case $ac_init_help in
     short | recursive ) echo "Configuration of sqlite 3.23.1:";;
   esac
  cat <<\_ACEOF

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]







|







1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
  --build=BUILD     configure for building on BUILD [guessed]
  --host=HOST       cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
  case $ac_init_help in
     short | recursive ) echo "Configuration of sqlite 3.24.0:";;
   esac
  cat <<\_ACEOF

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
    cd "$ac_pwd" || { ac_status=$?; break; }
  done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
  cat <<\_ACEOF
sqlite configure 3.23.1
generated by GNU Autoconf 2.69

Copyright (C) 2012 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
  exit







|







1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
    cd "$ac_pwd" || { ac_status=$?; break; }
  done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
  cat <<\_ACEOF
sqlite configure 3.24.0
generated by GNU Autoconf 2.69

Copyright (C) 2012 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
  exit
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
  eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno

} # ac_fn_c_check_header_mongrel
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by sqlite $as_me 3.23.1, which was
generated by GNU Autoconf 2.69.  Invocation command line was

  $ $0 $@

_ACEOF
exec 5>>config.log
{







|







2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
  eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno

} # ac_fn_c_check_header_mongrel
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by sqlite $as_me 3.24.0, which was
generated by GNU Autoconf 2.69.  Invocation command line was

  $ $0 $@

_ACEOF
exec 5>>config.log
{
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
test $as_write_fail = 0 && chmod +x $CONFIG_STATUS || ac_write_fail=1

cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
# Save the log message, to keep $0 and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by sqlite $as_me 3.23.1, which was
generated by GNU Autoconf 2.69.  Invocation command line was

  CONFIG_FILES    = $CONFIG_FILES
  CONFIG_HEADERS  = $CONFIG_HEADERS
  CONFIG_LINKS    = $CONFIG_LINKS
  CONFIG_COMMANDS = $CONFIG_COMMANDS
  $ $0 $@







|







12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
test $as_write_fail = 0 && chmod +x $CONFIG_STATUS || ac_write_fail=1

cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
# Save the log message, to keep $0 and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by sqlite $as_me 3.24.0, which was
generated by GNU Autoconf 2.69.  Invocation command line was

  CONFIG_FILES    = $CONFIG_FILES
  CONFIG_HEADERS  = $CONFIG_HEADERS
  CONFIG_LINKS    = $CONFIG_LINKS
  CONFIG_COMMANDS = $CONFIG_COMMANDS
  $ $0 $@
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318

Report bugs to the package provider."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`"
ac_cs_version="\\
sqlite config.status 3.23.1
configured by $0, generated by GNU Autoconf 2.69,
  with options \\"\$ac_cs_config\\"

Copyright (C) 2012 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."








|







12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318

Report bugs to the package provider."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`"
ac_cs_version="\\
sqlite config.status 3.24.0
configured by $0, generated by GNU Autoconf 2.69,
  with options \\"\$ac_cs_config\\"

Copyright (C) 2012 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."

Changes to doc/lemon.html.
95
96
97
98
99
100
101



102
103
104
105
106
107
108
As of this writing, the following command-line options are supported:
<ul>
<li><b>-b</b>
Show only the basis for each parser state in the report file.
<li><b>-c</b>
Do not compress the generated action tables.  The parser will be a
little larger and slower, but it will detect syntax errors sooner.



<li><b>-D<i>name</i></b>
Define C preprocessor macro <i>name</i>.  This macro is usable by
"<tt><a href='#pifdef'>%ifdef</a></tt>" and
"<tt><a href='#pifdef'>%ifndef</a></tt>" lines
in the grammar file.
<li><b>-g</b>
Do not generate a parser.  Instead write the input grammar to standard







>
>
>







95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
As of this writing, the following command-line options are supported:
<ul>
<li><b>-b</b>
Show only the basis for each parser state in the report file.
<li><b>-c</b>
Do not compress the generated action tables.  The parser will be a
little larger and slower, but it will detect syntax errors sooner.
<li><b>-d</b><i>directory</i>
Write all output files into <i>directory</i>.  Normally, output files
are written into the directory that contains the input grammar file.
<li><b>-D<i>name</i></b>
Define C preprocessor macro <i>name</i>.  This macro is usable by
"<tt><a href='#pifdef'>%ifdef</a></tt>" and
"<tt><a href='#pifdef'>%ifndef</a></tt>" lines
in the grammar file.
<li><b>-g</b>
Do not generate a parser.  Instead write the input grammar to standard
675
676
677
678
679
680
681
























682
683
684
685
686
687
688
</pre></p>

<p>Then the Parse() function generated will have an 4th parameter
of type "MyStruct*" and all action routines will have access to
a variable named "pAbc" that is the value of the 4th parameter
in the most recent call to Parse().</p>

























<a name='pfallback'></a>
<h4>The <tt>%fallback</tt> directive</h4>

<p>The <tt>%fallback</tt> directive specifies an alternative meaning for one
or more tokens.  The alternative meaning is tried if the original token
would have generated a syntax error.</p>








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
</pre></p>

<p>Then the Parse() function generated will have an 4th parameter
of type "MyStruct*" and all action routines will have access to
a variable named "pAbc" that is the value of the 4th parameter
in the most recent call to Parse().</p>

<p>The <tt>%extra_context</tt> directive works the same except that it
is passed in on the ParseAlloc() or ParseInit() routines instead of
on Parse().

<a name='extractx'></a>
<h4>The <tt>%extra_context</tt> directive</h4>

The <tt>%extra_context</tt> directive instructs Lemon to add a 2th parameter
to the parameter list of the ParseAlloc() and ParseInif() functions.  Lemon
doesn't do anything itself with these extra argument, but it does
store the value make it available to C-code action routines, destructors,
and so forth.  For example, if the grammar file contains:</p>

<p><pre>
    %extra_context { MyStruct *pAbc }
</pre></p>

<p>Then the ParseAlloc() and ParseInit() functions will have an 2th parameter
of type "MyStruct*" and all action routines will have access to
a variable named "pAbc" that is the value of that 2th parameter.</p>

<p>The <tt>%extra_argument</tt> directive works the same except that it
is passed in on the Parse() routine instead of on ParseAlloc()/ParseInit().

<a name='pfallback'></a>
<h4>The <tt>%fallback</tt> directive</h4>

<p>The <tt>%fallback</tt> directive specifies an alternative meaning for one
or more tokens.  The alternative meaning is tried if the original token
would have generated a syntax error.</p>

Changes to ext/expert/expert1.test.
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
  eval $setup


do_setup_rec_test $tn.1 { CREATE TABLE t1(a, b, c) } {
  SELECT * FROM t1
} {
  (no new indexes)
  0|0|0|SCAN TABLE t1
}

do_setup_rec_test $tn.2 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT * FROM t1 WHERE b>?;
} {
  CREATE INDEX t1_idx_00000062 ON t1(b);
  0|0|0|SEARCH TABLE t1 USING INDEX t1_idx_00000062 (b>?)
}

do_setup_rec_test $tn.3 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT * FROM t1 WHERE b COLLATE nocase BETWEEN ? AND ?
} {
  CREATE INDEX t1_idx_3e094c27 ON t1(b COLLATE NOCASE);
  0|0|0|SEARCH TABLE t1 USING INDEX t1_idx_3e094c27 (b>? AND b<?)
}

do_setup_rec_test $tn.4 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT a FROM t1 ORDER BY b;
} {
  CREATE INDEX t1_idx_00000062 ON t1(b);
  0|0|0|SCAN TABLE t1 USING INDEX t1_idx_00000062
}

do_setup_rec_test $tn.5 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT a FROM t1 WHERE a=? ORDER BY b;
} {
  CREATE INDEX t1_idx_000123a7 ON t1(a, b);
  0|0|0|SEARCH TABLE t1 USING COVERING INDEX t1_idx_000123a7 (a=?)
}

do_setup_rec_test $tn.6 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT min(a) FROM t1
} {
  CREATE INDEX t1_idx_00000061 ON t1(a);
  0|0|0|SEARCH TABLE t1 USING COVERING INDEX t1_idx_00000061
}

do_setup_rec_test $tn.7 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT * FROM t1 ORDER BY a, b, c;
} {
  CREATE INDEX t1_idx_033e95fe ON t1(a, b, c);
  0|0|0|SCAN TABLE t1 USING COVERING INDEX t1_idx_033e95fe
}

#do_setup_rec_test $tn.1.8 {
#  CREATE TABLE t1(a, b, c);
#} {
#  SELECT * FROM t1 ORDER BY a ASC, b COLLATE nocase DESC, c ASC;
#} {
#  CREATE INDEX t1_idx_5be6e222 ON t1(a, b COLLATE NOCASE DESC, c);
#  0|0|0|SCAN TABLE t1 USING COVERING INDEX t1_idx_5be6e222
#}

do_setup_rec_test $tn.8.1 {
  CREATE TABLE t1(a COLLATE NOCase, b, c);
} {
  SELECT * FROM t1 WHERE a=?
} {
  CREATE INDEX t1_idx_00000061 ON t1(a);
  0|0|0|SEARCH TABLE t1 USING INDEX t1_idx_00000061 (a=?)
}
do_setup_rec_test $tn.8.2 {
  CREATE TABLE t1(a, b COLLATE nocase, c);
} {
  SELECT * FROM t1 ORDER BY a ASC, b DESC, c ASC;
} {
  CREATE INDEX t1_idx_5cb97285 ON t1(a, b DESC, c);
  0|0|0|SCAN TABLE t1 USING COVERING INDEX t1_idx_5cb97285
}


# Tables with names that require quotes.
#
do_setup_rec_test $tn.9.1 {
  CREATE TABLE "t t"(a, b, c);
} {
  SELECT * FROM "t t" WHERE a=?
} {
  CREATE INDEX 't t_idx_00000061' ON 't t'(a);
  0|0|0|SEARCH TABLE t t USING INDEX t t_idx_00000061 (a=?) 
}

do_setup_rec_test $tn.9.2 {
  CREATE TABLE "t t"(a, b, c);
} {
  SELECT * FROM "t t" WHERE b BETWEEN ? AND ?
} {
  CREATE INDEX 't t_idx_00000062' ON 't t'(b);
  0|0|0|SEARCH TABLE t t USING INDEX t t_idx_00000062 (b>? AND b<?)
}

# Columns with names that require quotes.
#
do_setup_rec_test $tn.10.1 {
  CREATE TABLE t3(a, "b b", c);
} {
  SELECT * FROM t3 WHERE "b b" = ?
} {
  CREATE INDEX t3_idx_00050c52 ON t3('b b');
  0|0|0|SEARCH TABLE t3 USING INDEX t3_idx_00050c52 (b b=?)
}

do_setup_rec_test $tn.10.2 {
  CREATE TABLE t3(a, "b b", c);
} {
  SELECT * FROM t3 ORDER BY "b b"
} {
  CREATE INDEX t3_idx_00050c52 ON t3('b b');
  0|0|0|SCAN TABLE t3 USING INDEX t3_idx_00050c52
}

# Transitive constraints
#
do_setup_rec_test $tn.11.1 {
  CREATE TABLE t5(a, b);
  CREATE TABLE t6(c, d);
} {
  SELECT * FROM t5, t6 WHERE a=? AND b=c AND c=?
} {
  CREATE INDEX t5_idx_000123a7 ON t5(a, b);
  CREATE INDEX t6_idx_00000063 ON t6(c);
  0|0|1|SEARCH TABLE t6 USING INDEX t6_idx_00000063 (c=?) 
  0|1|0|SEARCH TABLE t5 USING COVERING INDEX t5_idx_000123a7 (a=? AND b=?)
}

# OR terms.
#
do_setup_rec_test $tn.12.1 {
  CREATE TABLE t7(a, b);
} {
  SELECT * FROM t7 WHERE a=? OR b=?
} {
  CREATE INDEX t7_idx_00000062 ON t7(b);
  CREATE INDEX t7_idx_00000061 ON t7(a);

  0|0|0|SEARCH TABLE t7 USING INDEX t7_idx_00000061 (a=?) 
  0|0|0|SEARCH TABLE t7 USING INDEX t7_idx_00000062 (b=?)
}

# rowid terms.
#
do_setup_rec_test $tn.13.1 {
  CREATE TABLE t8(a, b);
} {
  SELECT * FROM t8 WHERE rowid=?
} {
  (no new indexes)
  0|0|0|SEARCH TABLE t8 USING INTEGER PRIMARY KEY (rowid=?)
}
do_setup_rec_test $tn.13.2 {
  CREATE TABLE t8(a, b);
} {
  SELECT * FROM t8 ORDER BY rowid
} {
  (no new indexes)
  0|0|0|SCAN TABLE t8
}
do_setup_rec_test $tn.13.3 {
  CREATE TABLE t8(a, b);
} {
  SELECT * FROM t8 WHERE a=? ORDER BY rowid
} {
  CREATE INDEX t8_idx_00000061 ON t8(a); 
  0|0|0|SEARCH TABLE t8 USING INDEX t8_idx_00000061 (a=?)
}

# Triggers
#
do_setup_rec_test $tn.14 {
  CREATE TABLE t9(a, b, c);
  CREATE TABLE t10(a, b, c);
  CREATE TRIGGER t9t AFTER INSERT ON t9 BEGIN
    UPDATE t10 SET a=new.a WHERE b = new.b;
  END;
} {
  INSERT INTO t9 VALUES(?, ?, ?);
} {
  CREATE INDEX t10_idx_00000062 ON t10(b); 

  0|0|0|SEARCH TABLE t10 USING INDEX t10_idx_00000062 (b=?)
}

do_setup_rec_test $tn.15 {
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(c, d);

  WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<100)
  INSERT INTO t1 SELECT (i-1)/50, (i-1)/20 FROM s;

  WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<100)
  INSERT INTO t2 SELECT (i-1)/20, (i-1)/5 FROM s;
} {
  SELECT * FROM t2, t1 WHERE b=? AND d=? AND t2.rowid=t1.rowid
} {
  CREATE INDEX t2_idx_00000064 ON t2(d);
  0|0|0|SEARCH TABLE t2 USING INDEX t2_idx_00000064 (d=?) 
  0|1|1|SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)
}

do_setup_rec_test $tn.16 {
  CREATE TABLE t1(a, b);
} {
  SELECT * FROM t1 WHERE b IS NOT NULL;
} {
  (no new indexes)
  0|0|0|SCAN TABLE t1
}

}

proc do_candidates_test {tn sql res} {
  set res [squish [string trim $res]]








|








|








|








|








|








|








|

















|







|











|








|










|








|












|
|











>
|
|










|







|







|














>
|















|
|








|







91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
  eval $setup


do_setup_rec_test $tn.1 { CREATE TABLE t1(a, b, c) } {
  SELECT * FROM t1
} {
  (no new indexes)
  SCAN TABLE t1
}

do_setup_rec_test $tn.2 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT * FROM t1 WHERE b>?;
} {
  CREATE INDEX t1_idx_00000062 ON t1(b);
  SEARCH TABLE t1 USING INDEX t1_idx_00000062 (b>?)
}

do_setup_rec_test $tn.3 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT * FROM t1 WHERE b COLLATE nocase BETWEEN ? AND ?
} {
  CREATE INDEX t1_idx_3e094c27 ON t1(b COLLATE NOCASE);
  SEARCH TABLE t1 USING INDEX t1_idx_3e094c27 (b>? AND b<?)
}

do_setup_rec_test $tn.4 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT a FROM t1 ORDER BY b;
} {
  CREATE INDEX t1_idx_00000062 ON t1(b);
  SCAN TABLE t1 USING INDEX t1_idx_00000062
}

do_setup_rec_test $tn.5 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT a FROM t1 WHERE a=? ORDER BY b;
} {
  CREATE INDEX t1_idx_000123a7 ON t1(a, b);
  SEARCH TABLE t1 USING COVERING INDEX t1_idx_000123a7 (a=?)
}

do_setup_rec_test $tn.6 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT min(a) FROM t1
} {
  CREATE INDEX t1_idx_00000061 ON t1(a);
  SEARCH TABLE t1 USING COVERING INDEX t1_idx_00000061
}

do_setup_rec_test $tn.7 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT * FROM t1 ORDER BY a, b, c;
} {
  CREATE INDEX t1_idx_033e95fe ON t1(a, b, c);
  SCAN TABLE t1 USING COVERING INDEX t1_idx_033e95fe
}

#do_setup_rec_test $tn.1.8 {
#  CREATE TABLE t1(a, b, c);
#} {
#  SELECT * FROM t1 ORDER BY a ASC, b COLLATE nocase DESC, c ASC;
#} {
#  CREATE INDEX t1_idx_5be6e222 ON t1(a, b COLLATE NOCASE DESC, c);
#  0|0|0|SCAN TABLE t1 USING COVERING INDEX t1_idx_5be6e222
#}

do_setup_rec_test $tn.8.1 {
  CREATE TABLE t1(a COLLATE NOCase, b, c);
} {
  SELECT * FROM t1 WHERE a=?
} {
  CREATE INDEX t1_idx_00000061 ON t1(a);
  SEARCH TABLE t1 USING INDEX t1_idx_00000061 (a=?)
}
do_setup_rec_test $tn.8.2 {
  CREATE TABLE t1(a, b COLLATE nocase, c);
} {
  SELECT * FROM t1 ORDER BY a ASC, b DESC, c ASC;
} {
  CREATE INDEX t1_idx_5cb97285 ON t1(a, b DESC, c);
  SCAN TABLE t1 USING COVERING INDEX t1_idx_5cb97285
}


# Tables with names that require quotes.
#
do_setup_rec_test $tn.9.1 {
  CREATE TABLE "t t"(a, b, c);
} {
  SELECT * FROM "t t" WHERE a=?
} {
  CREATE INDEX 't t_idx_00000061' ON 't t'(a);
  SEARCH TABLE t t USING INDEX t t_idx_00000061 (a=?) 
}

do_setup_rec_test $tn.9.2 {
  CREATE TABLE "t t"(a, b, c);
} {
  SELECT * FROM "t t" WHERE b BETWEEN ? AND ?
} {
  CREATE INDEX 't t_idx_00000062' ON 't t'(b);
  SEARCH TABLE t t USING INDEX t t_idx_00000062 (b>? AND b<?)
}

# Columns with names that require quotes.
#
do_setup_rec_test $tn.10.1 {
  CREATE TABLE t3(a, "b b", c);
} {
  SELECT * FROM t3 WHERE "b b" = ?
} {
  CREATE INDEX t3_idx_00050c52 ON t3('b b');
  SEARCH TABLE t3 USING INDEX t3_idx_00050c52 (b b=?)
}

do_setup_rec_test $tn.10.2 {
  CREATE TABLE t3(a, "b b", c);
} {
  SELECT * FROM t3 ORDER BY "b b"
} {
  CREATE INDEX t3_idx_00050c52 ON t3('b b');
  SCAN TABLE t3 USING INDEX t3_idx_00050c52
}

# Transitive constraints
#
do_setup_rec_test $tn.11.1 {
  CREATE TABLE t5(a, b);
  CREATE TABLE t6(c, d);
} {
  SELECT * FROM t5, t6 WHERE a=? AND b=c AND c=?
} {
  CREATE INDEX t5_idx_000123a7 ON t5(a, b);
  CREATE INDEX t6_idx_00000063 ON t6(c);
  SEARCH TABLE t6 USING INDEX t6_idx_00000063 (c=?) 
  SEARCH TABLE t5 USING COVERING INDEX t5_idx_000123a7 (a=? AND b=?)
}

# OR terms.
#
do_setup_rec_test $tn.12.1 {
  CREATE TABLE t7(a, b);
} {
  SELECT * FROM t7 WHERE a=? OR b=?
} {
  CREATE INDEX t7_idx_00000062 ON t7(b);
  CREATE INDEX t7_idx_00000061 ON t7(a);
  MULTI-INDEX OR
    SEARCH TABLE t7 USING INDEX t7_idx_00000061 (a=?) 
    SEARCH TABLE t7 USING INDEX t7_idx_00000062 (b=?)
}

# rowid terms.
#
do_setup_rec_test $tn.13.1 {
  CREATE TABLE t8(a, b);
} {
  SELECT * FROM t8 WHERE rowid=?
} {
  (no new indexes)
  SEARCH TABLE t8 USING INTEGER PRIMARY KEY (rowid=?)
}
do_setup_rec_test $tn.13.2 {
  CREATE TABLE t8(a, b);
} {
  SELECT * FROM t8 ORDER BY rowid
} {
  (no new indexes)
  SCAN TABLE t8
}
do_setup_rec_test $tn.13.3 {
  CREATE TABLE t8(a, b);
} {
  SELECT * FROM t8 WHERE a=? ORDER BY rowid
} {
  CREATE INDEX t8_idx_00000061 ON t8(a); 
  SEARCH TABLE t8 USING INDEX t8_idx_00000061 (a=?)
}

# Triggers
#
do_setup_rec_test $tn.14 {
  CREATE TABLE t9(a, b, c);
  CREATE TABLE t10(a, b, c);
  CREATE TRIGGER t9t AFTER INSERT ON t9 BEGIN
    UPDATE t10 SET a=new.a WHERE b = new.b;
  END;
} {
  INSERT INTO t9 VALUES(?, ?, ?);
} {
  CREATE INDEX t10_idx_00000062 ON t10(b); 
  -- TRIGGER t9t
  SEARCH TABLE t10 USING INDEX t10_idx_00000062 (b=?)
}

do_setup_rec_test $tn.15 {
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(c, d);

  WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<100)
  INSERT INTO t1 SELECT (i-1)/50, (i-1)/20 FROM s;

  WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<100)
  INSERT INTO t2 SELECT (i-1)/20, (i-1)/5 FROM s;
} {
  SELECT * FROM t2, t1 WHERE b=? AND d=? AND t2.rowid=t1.rowid
} {
  CREATE INDEX t2_idx_00000064 ON t2(d);
  SEARCH TABLE t2 USING INDEX t2_idx_00000064 (d=?) 
  SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)
}

do_setup_rec_test $tn.16 {
  CREATE TABLE t1(a, b);
} {
  SELECT * FROM t1 WHERE b IS NOT NULL;
} {
  (no new indexes)
  SCAN TABLE t1
}

}

proc do_candidates_test {tn sql res} {
  set res [squish [string trim $res]]

375
376
377
378
379
380
381
382
  t2 t2_idx_00000063 {100 20} 
  t2 t2_idx_00000064 {100 5} 
  t2 t2_idx_0001295b {100 20 5}
}


finish_test








<
377
378
379
380
381
382
383

  t2 t2_idx_00000063 {100 20} 
  t2 t2_idx_00000064 {100 5} 
  t2 t2_idx_0001295b {100 20 5}
}


finish_test

Changes to ext/expert/sqlite3expert.c.
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
    IdxHashEntry *pEntry;
    sqlite3_stmt *pExplain = 0;
    idxHashClear(&hIdx);
    rc = idxPrintfPrepareStmt(dbm, &pExplain, pzErr,
        "EXPLAIN QUERY PLAN %s", pStmt->zSql
    );
    while( rc==SQLITE_OK && sqlite3_step(pExplain)==SQLITE_ROW ){
      int iSelectid = sqlite3_column_int(pExplain, 0);
      int iOrder = sqlite3_column_int(pExplain, 1);
      int iFrom = sqlite3_column_int(pExplain, 2);
      const char *zDetail = (const char*)sqlite3_column_text(pExplain, 3);
      int nDetail = STRLEN(zDetail);
      int i;

      for(i=0; i<nDetail; i++){
        const char *zIdx = 0;
        if( memcmp(&zDetail[i], " USING INDEX ", 13)==0 ){







|
|
|







1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
    IdxHashEntry *pEntry;
    sqlite3_stmt *pExplain = 0;
    idxHashClear(&hIdx);
    rc = idxPrintfPrepareStmt(dbm, &pExplain, pzErr,
        "EXPLAIN QUERY PLAN %s", pStmt->zSql
    );
    while( rc==SQLITE_OK && sqlite3_step(pExplain)==SQLITE_ROW ){
      /* int iId = sqlite3_column_int(pExplain, 0); */
      /* int iParent = sqlite3_column_int(pExplain, 1); */
      /* int iNotUsed = sqlite3_column_int(pExplain, 2); */
      const char *zDetail = (const char*)sqlite3_column_text(pExplain, 3);
      int nDetail = STRLEN(zDetail);
      int i;

      for(i=0; i<nDetail; i++){
        const char *zIdx = 0;
        if( memcmp(&zDetail[i], " USING INDEX ", 13)==0 ){
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
            idxHashAdd(&rc, &hIdx, zSql, 0);
            if( rc ) goto find_indexes_out;
          }
          break;
        }
      }

      pStmt->zEQP = idxAppendText(&rc, pStmt->zEQP, "%d|%d|%d|%s\n", 
          iSelectid, iOrder, iFrom, zDetail
      );
    }

    for(pEntry=hIdx.pFirst; pEntry; pEntry=pEntry->pNext){
      pStmt->zIdx = idxAppendText(&rc, pStmt->zIdx, "%s;\n", pEntry->zKey);
    }

    idxFinalize(&rc, pExplain);







|
<
<







1148
1149
1150
1151
1152
1153
1154
1155


1156
1157
1158
1159
1160
1161
1162
            idxHashAdd(&rc, &hIdx, zSql, 0);
            if( rc ) goto find_indexes_out;
          }
          break;
        }
      }

      pStmt->zEQP = idxAppendText(&rc, pStmt->zEQP, "%s\n", zDetail);


    }

    for(pEntry=hIdx.pFirst; pEntry; pEntry=pEntry->pNext){
      pStmt->zIdx = idxAppendText(&rc, pStmt->zIdx, "%s;\n", pEntry->zKey);
    }

    idxFinalize(&rc, pExplain);
Changes to ext/fts3/fts3.c.
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
    ){
      rc = SQLITE_NOMEM;
    }
  }

#ifdef SQLITE_TEST
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3ExprInitTestInterface(db);
  }
#endif

  /* Create the virtual table wrapper around the hash-table and overload 
  ** the four scalar functions. If this is successful, register the
  ** module with sqlite.
  */







|







3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
    ){
      rc = SQLITE_NOMEM;
    }
  }

#ifdef SQLITE_TEST
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3ExprInitTestInterface(db, pHash);
  }
#endif

  /* Create the virtual table wrapper around the hash-table and overload 
  ** the four scalar functions. If this is successful, register the
  ** module with sqlite.
  */
Changes to ext/fts3/fts3Int.h.
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

/* fts3_expr.c */
int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int,
  char **, int, int, int, const char *, int, Fts3Expr **, char **
);
void sqlite3Fts3ExprFree(Fts3Expr *);
#ifdef SQLITE_TEST
int sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
int sqlite3Fts3InitTerm(sqlite3 *db);
#endif

int sqlite3Fts3OpenTokenizer(sqlite3_tokenizer *, int, const char *, int,
  sqlite3_tokenizer_cursor **
);








|







580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

/* fts3_expr.c */
int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int,
  char **, int, int, int, const char *, int, Fts3Expr **, char **
);
void sqlite3Fts3ExprFree(Fts3Expr *);
#ifdef SQLITE_TEST
int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash*);
int sqlite3Fts3InitTerm(sqlite3 *db);
#endif

int sqlite3Fts3OpenTokenizer(sqlite3_tokenizer *, int, const char *, int,
  sqlite3_tokenizer_cursor **
);

Changes to ext/fts3/fts3_expr.c.
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
** Everything after this point is just test code.
*/

#ifdef SQLITE_TEST

#include <stdio.h>

/*
** Function to query the hash-table of tokenizers (see README.tokenizers).
*/
static int queryTestTokenizer(
  sqlite3 *db, 
  const char *zName,  
  const sqlite3_tokenizer_module **pp
){
  int rc;
  sqlite3_stmt *pStmt;
  const char zSql[] = "SELECT fts3_tokenizer(?)";

  *pp = 0;
  rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
  if( rc!=SQLITE_OK ){
    return rc;
  }

  sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
  if( SQLITE_ROW==sqlite3_step(pStmt) ){
    if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
      memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
    }
  }

  return sqlite3_finalize(pStmt);
}

/*
** Return a pointer to a buffer containing a text representation of the
** expression passed as the first argument. The buffer is obtained from
** sqlite3_malloc(). It is the responsibility of the caller to use 
** sqlite3_free() to release the memory. If an OOM condition is encountered,
** NULL is returned.
**







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1104
1105
1106
1107
1108
1109
1110




























1111
1112
1113
1114
1115
1116
1117
** Everything after this point is just test code.
*/

#ifdef SQLITE_TEST

#include <stdio.h>





























/*
** Return a pointer to a buffer containing a text representation of the
** expression passed as the first argument. The buffer is obtained from
** sqlite3_malloc(). It is the responsibility of the caller to use 
** sqlite3_free() to release the memory. If an OOM condition is encountered,
** NULL is returned.
**
1199
1200
1201
1202
1203
1204
1205
1206

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221


1222
1223
1224
1225
1226
1227
1228
1229
1230
1231


1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
** to parse the query expression (see README.tokenizers). The second argument
** is the query expression to parse. Each subsequent argument is the name
** of a column of the fts3 table that the query expression may refer to.
** For example:
**
**   SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2');
*/
static void fts3ExprTest(

  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3_tokenizer_module const *pModule = 0;
  sqlite3_tokenizer *pTokenizer = 0;
  int rc;
  char **azCol = 0;
  const char *zExpr;
  int nExpr;
  int nCol;
  int ii;
  Fts3Expr *pExpr;
  char *zBuf = 0;
  sqlite3 *db = sqlite3_context_db_handle(context);



  if( argc<3 ){
    sqlite3_result_error(context, 
        "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1
    );
    return;
  }

  rc = queryTestTokenizer(db,
                          (const char *)sqlite3_value_text(argv[0]), &pModule);


  if( rc==SQLITE_NOMEM ){
    sqlite3_result_error_nomem(context);
    goto exprtest_out;
  }else if( !pModule ){
    sqlite3_result_error(context, "No such tokenizer module", -1);
    goto exprtest_out;
  }

  rc = pModule->xCreate(0, 0, &pTokenizer);
  assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
  if( rc==SQLITE_NOMEM ){
    sqlite3_result_error_nomem(context);
    goto exprtest_out;
  }
  pTokenizer->pModule = pModule;

  zExpr = (const char *)sqlite3_value_text(argv[1]);
  nExpr = sqlite3_value_bytes(argv[1]);
  nCol = argc-2;
  azCol = (char **)sqlite3_malloc(nCol*sizeof(char *));
  if( !azCol ){
    sqlite3_result_error_nomem(context);
    goto exprtest_out;
  }
  for(ii=0; ii<nCol; ii++){
    azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]);
  }

  if( sqlite3_user_data(context) ){
    char *zDummy = 0;
    rc = sqlite3Fts3ExprParse(
        pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr, &zDummy
    );
    assert( rc==SQLITE_OK || pExpr==0 );
    sqlite3_free(zDummy);
  }else{







|
>




<









|
>
>








<
|
>
>
|
|
<
|
|
<
|
|
<
<
<
|
<

<













|







1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

1204
1205
1206
1207
1208

1209
1210

1211
1212



1213

1214

1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
** to parse the query expression (see README.tokenizers). The second argument
** is the query expression to parse. Each subsequent argument is the name
** of a column of the fts3 table that the query expression may refer to.
** For example:
**
**   SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2');
*/
static void fts3ExprTestCommon(
  int bRebalance,
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){

  sqlite3_tokenizer *pTokenizer = 0;
  int rc;
  char **azCol = 0;
  const char *zExpr;
  int nExpr;
  int nCol;
  int ii;
  Fts3Expr *pExpr;
  char *zBuf = 0;
  Fts3Hash *pHash = (Fts3Hash*)sqlite3_user_data(context);
  const char *zTokenizer = 0;
  char *zErr = 0;

  if( argc<3 ){
    sqlite3_result_error(context, 
        "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1
    );
    return;
  }


  zTokenizer = (const char*)sqlite3_value_text(argv[0]);
  rc = sqlite3Fts3InitTokenizer(pHash, zTokenizer, &pTokenizer, &zErr);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ){
      sqlite3_result_error_nomem(context);

    }else{
      sqlite3_result_error(context, zErr, -1);

    }
    sqlite3_free(zErr);



    return;

  }


  zExpr = (const char *)sqlite3_value_text(argv[1]);
  nExpr = sqlite3_value_bytes(argv[1]);
  nCol = argc-2;
  azCol = (char **)sqlite3_malloc(nCol*sizeof(char *));
  if( !azCol ){
    sqlite3_result_error_nomem(context);
    goto exprtest_out;
  }
  for(ii=0; ii<nCol; ii++){
    azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]);
  }

  if( bRebalance ){
    char *zDummy = 0;
    rc = sqlite3Fts3ExprParse(
        pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr, &zDummy
    );
    assert( rc==SQLITE_OK || pExpr==0 );
    sqlite3_free(zDummy);
  }else{
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290















1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
    sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
    sqlite3_free(zBuf);
  }

  sqlite3Fts3ExprFree(pExpr);

exprtest_out:
  if( pModule && pTokenizer ){
    rc = pModule->xDestroy(pTokenizer);
  }
  sqlite3_free(azCol);
}
















/*
** Register the query expression parser test function fts3_exprtest() 
** with database connection db. 
*/
int sqlite3Fts3ExprInitTestInterface(sqlite3* db){
  int rc = sqlite3_create_function(
      db, "fts3_exprtest", -1, SQLITE_UTF8, 0, fts3ExprTest, 0, 0
  );
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "fts3_exprtest_rebalance", 
        -1, SQLITE_UTF8, (void *)1, fts3ExprTest, 0, 0
    );
  }
  return rc;
}

#endif
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */







|
|



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>





|

|



|







1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
    sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
    sqlite3_free(zBuf);
  }

  sqlite3Fts3ExprFree(pExpr);

exprtest_out:
  if( pTokenizer ){
    rc = pTokenizer->pModule->xDestroy(pTokenizer);
  }
  sqlite3_free(azCol);
}

static void fts3ExprTest(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  fts3ExprTestCommon(0, context, argc, argv);
}
static void fts3ExprTestRebalance(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  fts3ExprTestCommon(1, context, argc, argv);
}

/*
** Register the query expression parser test function fts3_exprtest() 
** with database connection db. 
*/
int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash *pHash){
  int rc = sqlite3_create_function(
      db, "fts3_exprtest", -1, SQLITE_UTF8, (void*)pHash, fts3ExprTest, 0, 0
  );
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "fts3_exprtest_rebalance", 
        -1, SQLITE_UTF8, (void*)pHash, fts3ExprTestRebalance, 0, 0
    );
  }
  return rc;
}

#endif
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
Changes to ext/fts5/test/fts5plan.test.
25
26
27
28
29
30
31

32
33
34
35
36
37
38

39
40
41
42
43
44
45

46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
  CREATE TABLE t1(x, y);
  CREATE VIRTUAL TABLE f1 USING fts5(ff);
}

do_eqp_test 1.1 {
  SELECT * FROM t1, f1 WHERE f1 MATCH t1.x
} {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE f1 VIRTUAL TABLE INDEX 65537:}
}

do_eqp_test 1.2 {
  SELECT * FROM t1, f1 WHERE f1 > t1.x
} {

  0 0 1 {SCAN TABLE f1 VIRTUAL TABLE INDEX 0:}
  0 1 0 {SCAN TABLE t1} 
}

do_eqp_test 1.3 {
  SELECT * FROM f1 WHERE f1 MATCH ? ORDER BY ff
} {

  0 0 0 {SCAN TABLE f1 VIRTUAL TABLE INDEX 65537:}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

do_eqp_test 1.4 {
  SELECT * FROM f1 ORDER BY rank
} {

  0 0 0 {SCAN TABLE f1 VIRTUAL TABLE INDEX 0:}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

do_eqp_test 1.5 {
  SELECT * FROM f1 WHERE rank MATCH ?
} {
  0 0 0 {SCAN TABLE f1 VIRTUAL TABLE INDEX 2:}
}




finish_test







>
|
|





>
|
|





>
|
|





>
|
|




<
|
<
<
<
<


25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63




64
65
  CREATE TABLE t1(x, y);
  CREATE VIRTUAL TABLE f1 USING fts5(ff);
}

do_eqp_test 1.1 {
  SELECT * FROM t1, f1 WHERE f1 MATCH t1.x
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCAN TABLE f1 VIRTUAL TABLE INDEX 65537:
}

do_eqp_test 1.2 {
  SELECT * FROM t1, f1 WHERE f1 > t1.x
} {
  QUERY PLAN
  |--SCAN TABLE f1 VIRTUAL TABLE INDEX 0:
  `--SCAN TABLE t1
}

do_eqp_test 1.3 {
  SELECT * FROM f1 WHERE f1 MATCH ? ORDER BY ff
} {
  QUERY PLAN
  |--SCAN TABLE f1 VIRTUAL TABLE INDEX 65537:
  `--USE TEMP B-TREE FOR ORDER BY
}

do_eqp_test 1.4 {
  SELECT * FROM f1 ORDER BY rank
} {
  QUERY PLAN
  |--SCAN TABLE f1 VIRTUAL TABLE INDEX 0:
  `--USE TEMP B-TREE FOR ORDER BY
}

do_eqp_test 1.5 {
  SELECT * FROM f1 WHERE rank MATCH ?

} {SCAN TABLE f1 VIRTUAL TABLE INDEX 2:}





finish_test
Changes to ext/misc/closure.c.
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
static int closureBestIndex(
  sqlite3_vtab *pTab,             /* The virtual table */
  sqlite3_index_info *pIdxInfo    /* Information about the query */
){
  int iPlan = 0;
  int i;
  int idx = 1;
  int seenMatch = 0;
  const struct sqlite3_index_constraint *pConstraint;
  closure_vtab *pVtab = (closure_vtab*)pTab;
  double rCost = 10000000.0;

  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
    if( pConstraint->iColumn==CLOSURE_COL_ROOT
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
      seenMatch = 1;
    }
    if( pConstraint->usable==0 ) continue;
    if( (iPlan & 1)==0 
     && pConstraint->iColumn==CLOSURE_COL_ROOT
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 1;
      pIdxInfo->aConstraintUsage[i].argvIndex = 1;







<






<
<
<
<







822
823
824
825
826
827
828

829
830
831
832
833
834




835
836
837
838
839
840
841
static int closureBestIndex(
  sqlite3_vtab *pTab,             /* The virtual table */
  sqlite3_index_info *pIdxInfo    /* Information about the query */
){
  int iPlan = 0;
  int i;
  int idx = 1;

  const struct sqlite3_index_constraint *pConstraint;
  closure_vtab *pVtab = (closure_vtab*)pTab;
  double rCost = 10000000.0;

  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){




    if( pConstraint->usable==0 ) continue;
    if( (iPlan & 1)==0 
     && pConstraint->iColumn==CLOSURE_COL_ROOT
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 1;
      pIdxInfo->aConstraintUsage[i].argvIndex = 1;
888
889
890
891
892
893
894












895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
   || (pVtab->zIdColumn==0     && (iPlan & 0x00f000)==0)
   || (pVtab->zParentColumn==0 && (iPlan & 0x0f0000)==0)
  ){
    /* All of tablename, idcolumn, and parentcolumn must be specified
    ** in either the CREATE VIRTUAL TABLE or in the WHERE clause constraints
    ** or else the result is an empty set. */
    iPlan = 0;












  }
  pIdxInfo->idxNum = iPlan;
  if( pIdxInfo->nOrderBy==1
   && pIdxInfo->aOrderBy[0].iColumn==CLOSURE_COL_ID
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }
  if( seenMatch && (iPlan&1)==0 ) rCost *= 1e30;
  pIdxInfo->estimatedCost = rCost;
   
  return SQLITE_OK;
}

/*
** A virtual table module that implements the "transitive_closure".







>
>
>
>
>
>
>
>
>
>
>
>








<







883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

910
911
912
913
914
915
916
   || (pVtab->zIdColumn==0     && (iPlan & 0x00f000)==0)
   || (pVtab->zParentColumn==0 && (iPlan & 0x0f0000)==0)
  ){
    /* All of tablename, idcolumn, and parentcolumn must be specified
    ** in either the CREATE VIRTUAL TABLE or in the WHERE clause constraints
    ** or else the result is an empty set. */
    iPlan = 0;
  }
  if( (iPlan&1)==0 ){
    /* If there is no usable "root=?" term, then set the index-type to 0.
    ** Also clear any argvIndex variables already set. This is necessary
    ** to prevent the core from throwing an "xBestIndex malfunction error"
    ** error (because the argvIndex values are not contiguously assigned
    ** starting from 1).  */
    rCost *= 1e30;
    for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
      pIdxInfo->aConstraintUsage[i].argvIndex = 0;
    }
    iPlan = 0;
  }
  pIdxInfo->idxNum = iPlan;
  if( pIdxInfo->nOrderBy==1
   && pIdxInfo->aOrderBy[0].iColumn==CLOSURE_COL_ID
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }

  pIdxInfo->estimatedCost = rCost;
   
  return SQLITE_OK;
}

/*
** A virtual table module that implements the "transitive_closure".
Changes to ext/misc/completion.c.
58
59
60
61
62
63
64

65
66
67
68
69
70
71
struct completion_cursor {
  sqlite3_vtab_cursor base;  /* Base class - must be first */
  sqlite3 *db;               /* Database connection for this cursor */
  int nPrefix, nLine;        /* Number of bytes in zPrefix and zLine */
  char *zPrefix;             /* The prefix for the word we want to complete */
  char *zLine;               /* The whole that we want to complete */
  const char *zCurrentRow;   /* Current output row */

  sqlite3_stmt *pStmt;       /* Current statement */
  sqlite3_int64 iRowid;      /* The rowid */
  int ePhase;                /* Current phase */
  int j;                     /* inter-phase counter */
};

/* Values for ePhase:







>







58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
struct completion_cursor {
  sqlite3_vtab_cursor base;  /* Base class - must be first */
  sqlite3 *db;               /* Database connection for this cursor */
  int nPrefix, nLine;        /* Number of bytes in zPrefix and zLine */
  char *zPrefix;             /* The prefix for the word we want to complete */
  char *zLine;               /* The whole that we want to complete */
  const char *zCurrentRow;   /* Current output row */
  int szRow;                 /* Length of the zCurrentRow string */
  sqlite3_stmt *pStmt;       /* Current statement */
  sqlite3_int64 iRowid;      /* The rowid */
  int ePhase;                /* Current phase */
  int j;                     /* inter-phase counter */
};

/* Values for ePhase:
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
*/
static int completionClose(sqlite3_vtab_cursor *cur){
  completionCursorReset((completion_cursor*)cur);
  sqlite3_free(cur);
  return SQLITE_OK;
}

/*
** All SQL keywords understood by SQLite
*/
static const char *completionKwrds[] = {
  "ABORT", "ACTION", "ADD", "AFTER", "ALL", "ALTER", "ANALYZE", "AND", "AS",
  "ASC", "ATTACH", "AUTOINCREMENT", "BEFORE", "BEGIN", "BETWEEN", "BY",
  "CASCADE", "CASE", "CAST", "CHECK", "COLLATE", "COLUMN", "COMMIT",
  "CONFLICT", "CONSTRAINT", "CREATE", "CROSS", "CURRENT_DATE",
  "CURRENT_TIME", "CURRENT_TIMESTAMP", "DATABASE", "DEFAULT", "DEFERRABLE",
  "DEFERRED", "DELETE", "DESC", "DETACH", "DISTINCT", "DROP", "EACH",
  "ELSE", "END", "ESCAPE", "EXCEPT", "EXCLUSIVE", "EXISTS", "EXPLAIN",
  "FAIL", "FOR", "FOREIGN", "FROM", "FULL", "GLOB", "GROUP", "HAVING", "IF",
  "IGNORE", "IMMEDIATE", "IN", "INDEX", "INDEXED", "INITIALLY", "INNER",
  "INSERT", "INSTEAD", "INTERSECT", "INTO", "IS", "ISNULL", "JOIN", "KEY",
  "LEFT", "LIKE", "LIMIT", "MATCH", "NATURAL", "NO", "NOT", "NOTNULL",
  "NULL", "OF", "OFFSET", "ON", "OR", "ORDER", "OUTER", "PLAN", "PRAGMA",
  "PRIMARY", "QUERY", "RAISE", "RECURSIVE", "REFERENCES", "REGEXP",
  "REINDEX", "RELEASE", "RENAME", "REPLACE", "RESTRICT", "RIGHT",
  "ROLLBACK", "ROW", "SAVEPOINT", "SELECT", "SET", "TABLE", "TEMP",
  "TEMPORARY", "THEN", "TO", "TRANSACTION", "TRIGGER", "UNION", "UNIQUE",
  "UPDATE", "USING", "VACUUM", "VALUES", "VIEW", "VIRTUAL", "WHEN", "WHERE",
  "WITH", "WITHOUT",
};
#define completionKwCount \
   (int)(sizeof(completionKwrds)/sizeof(completionKwrds[0]))

/*
** Advance a completion_cursor to its next row of output.
**
** The ->ePhase, ->j, and ->pStmt fields of the completion_cursor object
** record the current state of the scan.  This routine sets ->zCurrentRow
** to the current row of output and then returns.  If no more rows remain,
** then ->ePhase is set to COMPLETION_EOF which will signal the virtual







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







171
172
173
174
175
176
177


























178
179
180
181
182
183
184
*/
static int completionClose(sqlite3_vtab_cursor *cur){
  completionCursorReset((completion_cursor*)cur);
  sqlite3_free(cur);
  return SQLITE_OK;
}



























/*
** Advance a completion_cursor to its next row of output.
**
** The ->ePhase, ->j, and ->pStmt fields of the completion_cursor object
** record the current state of the scan.  This routine sets ->zCurrentRow
** to the current row of output and then returns.  If no more rows remain,
** then ->ePhase is set to COMPLETION_EOF which will signal the virtual
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
  completion_cursor *pCur = (completion_cursor*)cur;
  int eNextPhase = 0;  /* Next phase to try if current phase reaches end */
  int iCol = -1;       /* If >=0, step pCur->pStmt and use the i-th column */
  pCur->iRowid++;
  while( pCur->ePhase!=COMPLETION_EOF ){
    switch( pCur->ePhase ){
      case COMPLETION_KEYWORDS: {
        if( pCur->j >= completionKwCount ){
          pCur->zCurrentRow = 0;
          pCur->ePhase = COMPLETION_DATABASES;
        }else{
          pCur->zCurrentRow = completionKwrds[pCur->j++];
        }
        iCol = -1;
        break;
      }
      case COMPLETION_DATABASES: {
        if( pCur->pStmt==0 ){
          sqlite3_prepare_v2(pCur->db, "PRAGMA database_list", -1,







|



|







193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
  completion_cursor *pCur = (completion_cursor*)cur;
  int eNextPhase = 0;  /* Next phase to try if current phase reaches end */
  int iCol = -1;       /* If >=0, step pCur->pStmt and use the i-th column */
  pCur->iRowid++;
  while( pCur->ePhase!=COMPLETION_EOF ){
    switch( pCur->ePhase ){
      case COMPLETION_KEYWORDS: {
        if( pCur->j >= sqlite3_keyword_count() ){
          pCur->zCurrentRow = 0;
          pCur->ePhase = COMPLETION_DATABASES;
        }else{
          sqlite3_keyword_name(pCur->j++, &pCur->zCurrentRow, &pCur->szRow);
        }
        iCol = -1;
        break;
      }
      case COMPLETION_DATABASES: {
        if( pCur->pStmt==0 ){
          sqlite3_prepare_v2(pCur->db, "PRAGMA database_list", -1,
294
295
296
297
298
299
300

301
302
303
304
305
306
307
308
309

310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    if( iCol<0 ){
      /* This case is when the phase presets zCurrentRow */
      if( pCur->zCurrentRow==0 ) continue;
    }else{
      if( sqlite3_step(pCur->pStmt)==SQLITE_ROW ){
        /* Extract the next row of content */
        pCur->zCurrentRow = (const char*)sqlite3_column_text(pCur->pStmt, iCol);

      }else{
        /* When all rows are finished, advance to the next phase */
        sqlite3_finalize(pCur->pStmt);
        pCur->pStmt = 0;
        pCur->ePhase = eNextPhase;
        continue;
      }
    }
    if( pCur->nPrefix==0 ) break;

    if( sqlite3_strnicmp(pCur->zPrefix, pCur->zCurrentRow, pCur->nPrefix)==0 ){

      break;
    }
  }

  return SQLITE_OK;
}

/*
** Return values of columns for the row at which the completion_cursor
** is currently pointing.
*/
static int completionColumn(
  sqlite3_vtab_cursor *cur,   /* The cursor */
  sqlite3_context *ctx,       /* First argument to sqlite3_result_...() */
  int i                       /* Which column to return */
){
  completion_cursor *pCur = (completion_cursor*)cur;
  switch( i ){
    case COMPLETION_COLUMN_CANDIDATE: {
      sqlite3_result_text(ctx, pCur->zCurrentRow, -1, SQLITE_TRANSIENT);
      break;
    }
    case COMPLETION_COLUMN_PREFIX: {
      sqlite3_result_text(ctx, pCur->zPrefix, -1, SQLITE_TRANSIENT);
      break;
    }
    case COMPLETION_COLUMN_WHOLELINE: {







>









>
|
>



















|







269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    if( iCol<0 ){
      /* This case is when the phase presets zCurrentRow */
      if( pCur->zCurrentRow==0 ) continue;
    }else{
      if( sqlite3_step(pCur->pStmt)==SQLITE_ROW ){
        /* Extract the next row of content */
        pCur->zCurrentRow = (const char*)sqlite3_column_text(pCur->pStmt, iCol);
        pCur->szRow = sqlite3_column_bytes(pCur->pStmt, iCol);
      }else{
        /* When all rows are finished, advance to the next phase */
        sqlite3_finalize(pCur->pStmt);
        pCur->pStmt = 0;
        pCur->ePhase = eNextPhase;
        continue;
      }
    }
    if( pCur->nPrefix==0 ) break;
    if( pCur->nPrefix<=pCur->szRow
     && sqlite3_strnicmp(pCur->zPrefix, pCur->zCurrentRow, pCur->nPrefix)==0
    ){
      break;
    }
  }

  return SQLITE_OK;
}

/*
** Return values of columns for the row at which the completion_cursor
** is currently pointing.
*/
static int completionColumn(
  sqlite3_vtab_cursor *cur,   /* The cursor */
  sqlite3_context *ctx,       /* First argument to sqlite3_result_...() */
  int i                       /* Which column to return */
){
  completion_cursor *pCur = (completion_cursor*)cur;
  switch( i ){
    case COMPLETION_COLUMN_CANDIDATE: {
      sqlite3_result_text(ctx, pCur->zCurrentRow, pCur->szRow,SQLITE_TRANSIENT);
      break;
    }
    case COMPLETION_COLUMN_PREFIX: {
      sqlite3_result_text(ctx, pCur->zPrefix, -1, SQLITE_TRANSIENT);
      break;
    }
    case COMPLETION_COLUMN_WHOLELINE: {
Changes to ext/misc/csv.c.
128
129
130
131
132
133
134

135
136
137
138
139
140
141
    p->zIn = sqlite3_malloc( CSV_INBUFSZ );
    if( p->zIn==0 ){
      csv_errmsg(p, "out of memory");
      return 1;
    }
    p->in = fopen(zFilename, "rb");
    if( p->in==0 ){

      csv_reader_reset(p);
      csv_errmsg(p, "cannot open '%s' for reading", zFilename);
      return 1;
    }
  }else{
    assert( p->in==0 );
    p->zIn = (char*)zData;







>







128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    p->zIn = sqlite3_malloc( CSV_INBUFSZ );
    if( p->zIn==0 ){
      csv_errmsg(p, "out of memory");
      return 1;
    }
    p->in = fopen(zFilename, "rb");
    if( p->in==0 ){
      sqlite3_free(p->zIn);
      csv_reader_reset(p);
      csv_errmsg(p, "cannot open '%s' for reading", zFilename);
      return 1;
    }
  }else{
    assert( p->in==0 );
    p->zIn = (char*)zData;
Changes to ext/misc/dbdump.c.
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
** because it contains non-alphanumeric characters, or because it is an
** SQLite keyword.  Be conservative in this estimate:  When in doubt assume
** that quoting is required.
**
** Return '"' if quoting is required.  Return 0 if no quoting is required.
*/
static char quoteChar(const char *zName){
  /* All SQLite keywords, in alphabetical order */
  static const char *azKeywords[] = {
    "ABORT", "ACTION", "ADD", "AFTER", "ALL", "ALTER", "ANALYZE", "AND", "AS",
    "ASC", "ATTACH", "AUTOINCREMENT", "BEFORE", "BEGIN", "BETWEEN", "BY",
    "CASCADE", "CASE", "CAST", "CHECK", "COLLATE", "COLUMN", "COMMIT",
    "CONFLICT", "CONSTRAINT", "CREATE", "CROSS", "CURRENT_DATE",
    "CURRENT_TIME", "CURRENT_TIMESTAMP", "DATABASE", "DEFAULT", "DEFERRABLE",
    "DEFERRED", "DELETE", "DESC", "DETACH", "DISTINCT", "DROP", "EACH",
    "ELSE", "END", "ESCAPE", "EXCEPT", "EXCLUSIVE", "EXISTS", "EXPLAIN",
    "FAIL", "FOR", "FOREIGN", "FROM", "FULL", "GLOB", "GROUP", "HAVING", "IF",
    "IGNORE", "IMMEDIATE", "IN", "INDEX", "INDEXED", "INITIALLY", "INNER",
    "INSERT", "INSTEAD", "INTERSECT", "INTO", "IS", "ISNULL", "JOIN", "KEY",
    "LEFT", "LIKE", "LIMIT", "MATCH", "NATURAL", "NO", "NOT", "NOTNULL",
    "NULL", "OF", "OFFSET", "ON", "OR", "ORDER", "OUTER", "PLAN", "PRAGMA",
    "PRIMARY", "QUERY", "RAISE", "RECURSIVE", "REFERENCES", "REGEXP",
    "REINDEX", "RELEASE", "RENAME", "REPLACE", "RESTRICT", "RIGHT",
    "ROLLBACK", "ROW", "SAVEPOINT", "SELECT", "SET", "TABLE", "TEMP",
    "TEMPORARY", "THEN", "TO", "TRANSACTION", "TRIGGER", "UNION", "UNIQUE",
    "UPDATE", "USING", "VACUUM", "VALUES", "VIEW", "VIRTUAL", "WHEN", "WHERE",
    "WITH", "WITHOUT",
  };
  int i, lwr, upr, mid, c;
  if( !isalpha((unsigned char)zName[0]) && zName[0]!='_' ) return '"';
  for(i=0; zName[i]; i++){
    if( !isalnum((unsigned char)zName[i]) && zName[i]!='_' ) return '"';
  }
  lwr = 0;
  upr = sizeof(azKeywords)/sizeof(azKeywords[0]) - 1;
  while( lwr<=upr ){
    mid = (lwr+upr)/2;
    c = sqlite3_stricmp(azKeywords[mid], zName);
    if( c==0 ) return '"';
    if( c<0 ){
      lwr = mid+1;
    }else{
      upr = mid-1;
    }
  }
  return 0;
}


/*
** Release memory previously allocated by tableColumnList().
*/
static void freeColumnList(char **azCol){







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|




<
<
<
<
<
<
<
<
<
<
<
<
|







137
138
139
140
141
142
143





















144
145
146
147
148












149
150
151
152
153
154
155
156
** because it contains non-alphanumeric characters, or because it is an
** SQLite keyword.  Be conservative in this estimate:  When in doubt assume
** that quoting is required.
**
** Return '"' if quoting is required.  Return 0 if no quoting is required.
*/
static char quoteChar(const char *zName){





















  int i;
  if( !isalpha((unsigned char)zName[0]) && zName[0]!='_' ) return '"';
  for(i=0; zName[i]; i++){
    if( !isalnum((unsigned char)zName[i]) && zName[i]!='_' ) return '"';
  }












  return sqlite3_keyword_check(zName, i) ? '"' : 0;
}


/*
** Release memory previously allocated by tableColumnList().
*/
static void freeColumnList(char **azCol){
Added ext/misc/templatevtab.c.






















































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
** 2018-04-19
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements a template virtual-table.
** Developers can make a copy of this file as a baseline for writing
** new virtual tables and/or table-valued functions.
**
** Steps for writing a new virtual table implementation:
**
**     (1)  Make a copy of this file.  Perhaps call it "mynewvtab.c"
**
**     (2)  Replace this header comment with something appropriate for
**          the new virtual table
**
**     (3)  Change every occurrence of "templatevtab" to some other string
**          appropriate for the new virtual table.  Ideally, the new string
**          should be the basename of the source file: "mynewvtab".  Also
**          globally change "TEMPLATEVTAB" to "MYNEWVTAB".
**
**     (4)  Run a test compilation to make sure the unmodified virtual
**          table works.
**
**     (5)  Begin making incremental changes, testing as you go, to evolve
**          the new virtual table to do what you want it to do.
**
** This template is minimal, in the sense that it uses only the required
** methods on the sqlite3_module object.  As a result, templatevtab is
** a read-only and eponymous-only table.  Those limitation can be removed
** by adding new methods.
**
** This template implements an eponymous-only virtual table with a rowid and
** two columns named "a" and "b".  The table as 10 rows with fixed integer
** values. Usage example:
**
**     SELECT rowid, a, b FROM templatevtab;
*/
#if !defined(SQLITEINT_H)
#include "sqlite3ext.h"
#endif
SQLITE_EXTENSION_INIT1
#include <string.h>
#include <assert.h>

/* templatevtab_vtab is a subclass of sqlite3_vtab which is
** underlying representation of the virtual table
*/
typedef struct templatevtab_vtab templatevtab_vtab;
struct templatevtab_vtab {
  sqlite3_vtab base;  /* Base class - must be first */
  /* Add new fields here, as necessary */
};

/* templatevtab_cursor is a subclass of sqlite3_vtab_cursor which will
** serve as the underlying representation of a cursor that scans
** over rows of the result
*/
typedef struct templatevtab_cursor templatevtab_cursor;
struct templatevtab_cursor {
  sqlite3_vtab_cursor base;  /* Base class - must be first */
  /* Insert new fields here.  For this templatevtab we only keep track
  ** of the rowid */
  sqlite3_int64 iRowid;      /* The rowid */
};

/*
** The templatevtabConnect() method is invoked to create a new
** template virtual table.
**
** Think of this routine as the constructor for templatevtab_vtab objects.
**
** All this routine needs to do is:
**
**    (1) Allocate the templatevtab_vtab object and initialize all fields.
**
**    (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the
**        result set of queries against the virtual table will look like.
*/
static int templatevtabConnect(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  templatevtab_vtab *pNew;
  int rc;

  rc = sqlite3_declare_vtab(db,
           "CREATE TABLE x(a,b)"
       );
  /* For convenience, define symbolic names for the index to each column. */
#define TEMPLATEVTAB_A  0
#define TEMPLATEVTAB_B  1
  if( rc==SQLITE_OK ){
    pNew = sqlite3_malloc( sizeof(*pNew) );
    *ppVtab = (sqlite3_vtab*)pNew;
    if( pNew==0 ) return SQLITE_NOMEM;
    memset(pNew, 0, sizeof(*pNew));
  }
  return rc;
}

/*
** This method is the destructor for templatevtab_vtab objects.
*/
static int templatevtabDisconnect(sqlite3_vtab *pVtab){
  templatevtab_vtab *p = (templatevtab_vtab*)pVtab;
  sqlite3_free(p);
  return SQLITE_OK;
}

/*
** Constructor for a new templatevtab_cursor object.
*/
static int templatevtabOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
  templatevtab_cursor *pCur;
  pCur = sqlite3_malloc( sizeof(*pCur) );
  if( pCur==0 ) return SQLITE_NOMEM;
  memset(pCur, 0, sizeof(*pCur));
  *ppCursor = &pCur->base;
  return SQLITE_OK;
}

/*
** Destructor for a templatevtab_cursor.
*/
static int templatevtabClose(sqlite3_vtab_cursor *cur){
  templatevtab_cursor *pCur = (templatevtab_cursor*)cur;
  sqlite3_free(pCur);
  return SQLITE_OK;
}


/*
** Advance a templatevtab_cursor to its next row of output.
*/
static int templatevtabNext(sqlite3_vtab_cursor *cur){
  templatevtab_cursor *pCur = (templatevtab_cursor*)cur;
  pCur->iRowid++;
  return SQLITE_OK;
}

/*
** Return values of columns for the row at which the templatevtab_cursor
** is currently pointing.
*/
static int templatevtabColumn(
  sqlite3_vtab_cursor *cur,   /* The cursor */
  sqlite3_context *ctx,       /* First argument to sqlite3_result_...() */
  int i                       /* Which column to return */
){
  templatevtab_cursor *pCur = (templatevtab_cursor*)cur;
  switch( i ){
    case TEMPLATEVTAB_A:
      sqlite3_result_int(ctx, 1000 + pCur->iRowid);
      break;
    default:
      assert( i==TEMPLATEVTAB_B );
      sqlite3_result_int(ctx, 2000 + pCur->iRowid);
      break;
  }
  return SQLITE_OK;
}

/*
** Return the rowid for the current row.  In this implementation, the
** rowid is the same as the output value.
*/
static int templatevtabRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
  templatevtab_cursor *pCur = (templatevtab_cursor*)cur;
  *pRowid = pCur->iRowid;
  return SQLITE_OK;
}

/*
** Return TRUE if the cursor has been moved off of the last
** row of output.
*/
static int templatevtabEof(sqlite3_vtab_cursor *cur){
  templatevtab_cursor *pCur = (templatevtab_cursor*)cur;
  return pCur->iRowid>=10;
}

/*
** This method is called to "rewind" the templatevtab_cursor object back
** to the first row of output.  This method is always called at least
** once prior to any call to templatevtabColumn() or templatevtabRowid() or 
** templatevtabEof().
*/
static int templatevtabFilter(
  sqlite3_vtab_cursor *pVtabCursor, 
  int idxNum, const char *idxStr,
  int argc, sqlite3_value **argv
){
  templatevtab_cursor *pCur = (templatevtab_cursor *)pVtabCursor;
  pCur->iRowid = 1;
  return SQLITE_OK;
}

/*
** SQLite will invoke this method one or more times while planning a query
** that uses the virtual table.  This routine needs to create
** a query plan for each invocation and compute an estimated cost for that
** plan.
*/
static int templatevtabBestIndex(
  sqlite3_vtab *tab,
  sqlite3_index_info *pIdxInfo
){
  pIdxInfo->estimatedCost = (double)10;
  pIdxInfo->estimatedRows = 10;
  return SQLITE_OK;
}

/*
** This following structure defines all the methods for the 
** virtual table.
*/
static sqlite3_module templatevtabModule = {
  /* iVersion    */ 0,
  /* xCreate     */ 0,
  /* xConnect    */ templatevtabConnect,
  /* xBestIndex  */ templatevtabBestIndex,
  /* xDisconnect */ templatevtabDisconnect,
  /* xDestroy    */ 0,
  /* xOpen       */ templatevtabOpen,
  /* xClose      */ templatevtabClose,
  /* xFilter     */ templatevtabFilter,
  /* xNext       */ templatevtabNext,
  /* xEof        */ templatevtabEof,
  /* xColumn     */ templatevtabColumn,
  /* xRowid      */ templatevtabRowid,
  /* xUpdate     */ 0,
  /* xBegin      */ 0,
  /* xSync       */ 0,
  /* xCommit     */ 0,
  /* xRollback   */ 0,
  /* xFindMethod */ 0,
  /* xRename     */ 0,
  /* xSavepoint  */ 0,
  /* xRelease    */ 0,
  /* xRollbackTo */ 0
};


#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_templatevtab_init(
  sqlite3 *db, 
  char **pzErrMsg, 
  const sqlite3_api_routines *pApi
){
  int rc = SQLITE_OK;
  SQLITE_EXTENSION_INIT2(pApi);
  rc = sqlite3_create_module(db, "templatevtab", &templatevtabModule, 0);
  return rc;
}
Changes to ext/rbu/rbu.c.
25
26
27
28
29
30
31

32

33
34
35
36
37
38
39
void usage(const char *zArgv0){
  fprintf(stderr, 
"Usage: %s ?OPTIONS? TARGET-DB RBU-DB\n"
"\n"
"Where options are:\n"
"\n"
"    -step NSTEP\n"

"    -vacuum\n"

"\n"
"  If the -vacuum switch is not present, argument RBU-DB must be an RBU\n"
"  database containing an update suitable for target database TARGET-DB.\n"
"  Or, if -vacuum is specified, then TARGET-DB is a database to vacuum using\n"
"  RBU, and RBU-DB is used as the state database for the vacuum (refer to\n"
"  API documentation for details).\n"
"\n"







>

>







25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
void usage(const char *zArgv0){
  fprintf(stderr, 
"Usage: %s ?OPTIONS? TARGET-DB RBU-DB\n"
"\n"
"Where options are:\n"
"\n"
"    -step NSTEP\n"
"    -statstep NSTATSTEP\n"
"    -vacuum\n"
"    -presql SQL\n"
"\n"
"  If the -vacuum switch is not present, argument RBU-DB must be an RBU\n"
"  database containing an update suitable for target database TARGET-DB.\n"
"  Or, if -vacuum is specified, then TARGET-DB is a database to vacuum using\n"
"  RBU, and RBU-DB is used as the state database for the vacuum (refer to\n"
"  API documentation for details).\n"
"\n"
75
76
77
78
79
80
81

82

83
84
85
86
87
88
89
90
91
92




93
94
95





96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113









114
115
116
117
118

119
















120
121

122
123
124
125
126
127
128
  int i;
  const char *zTarget;            /* Target database to apply RBU to */
  const char *zRbu;               /* Database containing RBU */
  char zBuf[200];                 /* Buffer for printf() */
  char *zErrmsg;                  /* Error message, if any */
  sqlite3rbu *pRbu;               /* RBU handle */
  int nStep = 0;                  /* Maximum number of step() calls */

  int bVacuum = 0;

  int rc;
  sqlite3_int64 nProgress = 0;
  int nArgc = argc-2;

  if( argc<3 ) usage(argv[0]);
  for(i=1; i<nArgc; i++){
    const char *zArg = argv[i];
    int nArg = strlen(zArg);
    if( nArg>1 && nArg<=8 && 0==memcmp(zArg, "-vacuum", nArg) ){
      bVacuum = 1;




    }else if( nArg>1 && nArg<=5 && 0==memcmp(zArg, "-step", nArg) && i<nArg-1 ){
      i++;
      nStep = atoi(argv[i]);





    }else{
      usage(argv[0]);
    }
  }

  zTarget = argv[argc-2];
  zRbu = argv[argc-1];

  report_default_vfs();

  /* Open an RBU handle. A vacuum handle if -vacuum was specified, or a
  ** regular RBU update handle otherwise.  */
  if( bVacuum ){
    pRbu = sqlite3rbu_vacuum(zTarget, zRbu);
  }else{
    pRbu = sqlite3rbu_open(zTarget, zRbu, 0);
  }
  report_rbu_vfs(pRbu);










  /* If nStep is less than or equal to zero, call
  ** sqlite3rbu_step() until either the RBU has been completely applied
  ** or an error occurs. Or, if nStep is greater than zero, call
  ** sqlite3rbu_step() a maximum of nStep times.  */

  for(i=0; (nStep<=0 || i<nStep) && sqlite3rbu_step(pRbu)==SQLITE_OK; i++);
















  nProgress = sqlite3rbu_progress(pRbu);
  rc = sqlite3rbu_close(pRbu, &zErrmsg);


  /* Let the user know what happened. */
  switch( rc ){
    case SQLITE_OK:
      sqlite3_snprintf(sizeof(zBuf), zBuf,
          "SQLITE_OK: rbu update incomplete (%lld operations so far)\n",
          nProgress







>

>










>
>
>
>



>
>
>
>
>


















>
>
>
>
>
>
>
>
>





>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>







77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
  int i;
  const char *zTarget;            /* Target database to apply RBU to */
  const char *zRbu;               /* Database containing RBU */
  char zBuf[200];                 /* Buffer for printf() */
  char *zErrmsg;                  /* Error message, if any */
  sqlite3rbu *pRbu;               /* RBU handle */
  int nStep = 0;                  /* Maximum number of step() calls */
  int nStatStep = 0;              /* Report stats after this many step calls */
  int bVacuum = 0;
  const char *zPreSql = 0;
  int rc;
  sqlite3_int64 nProgress = 0;
  int nArgc = argc-2;

  if( argc<3 ) usage(argv[0]);
  for(i=1; i<nArgc; i++){
    const char *zArg = argv[i];
    int nArg = strlen(zArg);
    if( nArg>1 && nArg<=8 && 0==memcmp(zArg, "-vacuum", nArg) ){
      bVacuum = 1;
    }else if( nArg>1 && nArg<=7 
           && 0==memcmp(zArg, "-presql", nArg) && i<nArg-1 ){
      i++;
      zPreSql = argv[i];
    }else if( nArg>1 && nArg<=5 && 0==memcmp(zArg, "-step", nArg) && i<nArg-1 ){
      i++;
      nStep = atoi(argv[i]);
    }else if( nArg>1 && nArg<=9 
           && 0==memcmp(zArg, "-statstep", nArg) && i<nArg-1 
    ){
      i++;
      nStatStep = atoi(argv[i]);
    }else{
      usage(argv[0]);
    }
  }

  zTarget = argv[argc-2];
  zRbu = argv[argc-1];

  report_default_vfs();

  /* Open an RBU handle. A vacuum handle if -vacuum was specified, or a
  ** regular RBU update handle otherwise.  */
  if( bVacuum ){
    pRbu = sqlite3rbu_vacuum(zTarget, zRbu);
  }else{
    pRbu = sqlite3rbu_open(zTarget, zRbu, 0);
  }
  report_rbu_vfs(pRbu);

  if( zPreSql && pRbu ){
    sqlite3 *db = sqlite3rbu_db(pRbu, 0);
    rc = sqlite3_exec(db, zPreSql, 0, 0, 0);
    if( rc==SQLITE_OK ){
      sqlite3 *db = sqlite3rbu_db(pRbu, 1);
      rc = sqlite3_exec(db, zPreSql, 0, 0, 0);
    }
  }

  /* If nStep is less than or equal to zero, call
  ** sqlite3rbu_step() until either the RBU has been completely applied
  ** or an error occurs. Or, if nStep is greater than zero, call
  ** sqlite3rbu_step() a maximum of nStep times.  */
  if( rc==SQLITE_OK ){
    for(i=0; (nStep<=0 || i<nStep) && sqlite3rbu_step(pRbu)==SQLITE_OK; i++){
      if( nStatStep>0 && (i % nStatStep)==0 ){
        sqlite3_int64 nUsed;
        sqlite3_int64 nHighwater;
        sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &nUsed, &nHighwater, 0);
        fprintf(stdout, "memory used=%lld highwater=%lld", nUsed, nHighwater);
        if( bVacuum==0 ){
          int one;
          int two;
          sqlite3rbu_bp_progress(pRbu, &one, &two);
          fprintf(stdout, "  progress=%d/%d\n", one, two);
        }else{
          fprintf(stdout, "\n");
        }
        fflush(stdout);
      }
    }
    nProgress = sqlite3rbu_progress(pRbu);
    rc = sqlite3rbu_close(pRbu, &zErrmsg);
  }

  /* Let the user know what happened. */
  switch( rc ){
    case SQLITE_OK:
      sqlite3_snprintf(sizeof(zBuf), zBuf,
          "SQLITE_OK: rbu update incomplete (%lld operations so far)\n",
          nProgress
Changes to ext/rbu/rbu1.test.
135
136
137
138
139
140
141

142
143
144
145
146
147
148
} {

  eval $create_vfs

  foreach {tn2 cmd} {
      1 run_rbu 
      2 step_rbu 3 step_rbu_uri 4 step_rbu_state

  } {
    foreach {tn schema} {
      1 {
        CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c);
      }
      2 { 
        CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c);







>







135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
} {

  eval $create_vfs

  foreach {tn2 cmd} {
      1 run_rbu 
      2 step_rbu 3 step_rbu_uri 4 step_rbu_state
      5 step_rbu_legacy
  } {
    foreach {tn schema} {
      1 {
        CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c);
      }
      2 { 
        CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c);
Changes to ext/rbu/rbu_common.tcl.
65
66
67
68
69
70
71
















72
73
74
75
76
77
78
    set rc [rbu step]
    check_poststep_state $rc $target $state
    rbu close
    if {$rc != "SQLITE_OK"} break
  }
  set rc
}

















proc do_rbu_vacuum_test {tn step} {
  forcedelete state.db
  uplevel [list do_test $tn.1 {
    if {$step==0} { sqlite3rbu_vacuum rbu test.db state.db }
    while 1 {
      if {$step==1} { sqlite3rbu_vacuum rbu test.db state.db }







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    set rc [rbu step]
    check_poststep_state $rc $target $state
    rbu close
    if {$rc != "SQLITE_OK"} break
  }
  set rc
}

proc step_rbu_legacy {target rbu} {
  while 1 {
    sqlite3rbu rbu $target $rbu
    set state [rbu state]
    check_prestep_state $target $state
    set rc [rbu step]
    check_poststep_state $rc $target $state
    rbu close
    if {$rc != "SQLITE_OK"} break
    sqlite3 tmpdb $rbu
    tmpdb eval { DELETE FROM rbu_state WHERE k==10 }
    tmpdb close
  }
  set rc
}

proc do_rbu_vacuum_test {tn step} {
  forcedelete state.db
  uplevel [list do_test $tn.1 {
    if {$step==0} { sqlite3rbu_vacuum rbu test.db state.db }
    while 1 {
      if {$step==1} { sqlite3rbu_vacuum rbu test.db state.db }
Added ext/rbu/rbusplit.test.






























































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# 2018 April 28
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
#

source [file join [file dirname [info script]] rbu_common.tcl]
set ::testprefix rbusplit

db close
sqlite3_shutdown
sqlite3_config_uri 1

autoinstall_test_functions

proc build_db {db} {
  $db eval {
    CREATE TABLE t1(a PRIMARY KEY, b, c);
    CREATE TABLE t2(a PRIMARY KEY, b, c);

    CREATE INDEX t1c ON t1(c);
  }
}

proc build_rbu {filename} {
  forcedelete $filename
  sqlite3 dbRbu $filename
  dbRbu eval {
    CREATE TABLE data0_t1(a, b, c, rbu_control);
    CREATE TABLE data1_t1(a, b, c, rbu_control);
    CREATE TABLE data2_t1(a, b, c, rbu_control);
    CREATE TABLE data3_t1(a, b, c, rbu_control);

    CREATE TABLE data_t2(a, b, c, rbu_control);

    INSERT INTO data0_t1 VALUES(1, 1, 1, 0);
    INSERT INTO data0_t1 VALUES(2, 2, 2, 0);
    INSERT INTO data0_t1 VALUES(3, 3, 3, 0);
    INSERT INTO data0_t1 VALUES(4, 4, 4, 0);
    INSERT INTO data1_t1 VALUES(5, 5, 5, 0);
    INSERT INTO data1_t1 VALUES(6, 6, 6, 0);
    INSERT INTO data1_t1 VALUES(7, 7, 7, 0);
    INSERT INTO data1_t1 VALUES(8, 8, 8, 0);
    INSERT INTO data3_t1 VALUES(9, 9, 9, 0);

    INSERT INTO data_t2 VALUES(1, 1, 1, 0);
    INSERT INTO data_t2 VALUES(2, 2, 2, 0);
    INSERT INTO data_t2 VALUES(3, 3, 3, 0);
    INSERT INTO data_t2 VALUES(4, 4, 4, 0);
    INSERT INTO data_t2 VALUES(5, 5, 5, 0);
    INSERT INTO data_t2 VALUES(6, 6, 6, 0);
    INSERT INTO data_t2 VALUES(7, 7, 7, 0);
    INSERT INTO data_t2 VALUES(8, 8, 8, 0);
    INSERT INTO data_t2 VALUES(9, 9, 9, 0);
  }
  
  dbRbu close
}

foreach {tn cmd} {
  1 run_rbu
  2 step_rbu
} {
  reset_db
  build_db db
  build_rbu testrbu.db

  do_test 1.$tn.1 {
    $cmd test.db testrbu.db
  } {SQLITE_DONE}
  do_execsql_test 1.$tn.1 {
    SELECT * FROM t1;
  } {
    1 1 1 2 2 2 3 3 3 4 4 4
    5 5 5 6 6 6 7 7 7 8 8 8
    9 9 9
  }
  do_execsql_test 1.$tn.2 {
    SELECT * FROM t2;
  } {
    1 1 1 2 2 2 3 3 3 4 4 4
    5 5 5 6 6 6 7 7 7 8 8 8
    9 9 9
  }
}

finish_test

Changes to ext/rbu/sqlite3rbu.c.
149
150
151
152
153
154
155




156
157
158
159
160
161
162
163
164
165

166
167
168
169
170
171
172
**
** RBU_STATE_COOKIE:
**   Valid if STAGE==1. The current change-counter cookie value in the 
**   target db file.
**
** RBU_STATE_OALSZ:
**   Valid if STAGE==1. The size in bytes of the *-oal file.




*/
#define RBU_STATE_STAGE        1
#define RBU_STATE_TBL          2
#define RBU_STATE_IDX          3
#define RBU_STATE_ROW          4
#define RBU_STATE_PROGRESS     5
#define RBU_STATE_CKPT         6
#define RBU_STATE_COOKIE       7
#define RBU_STATE_OALSZ        8
#define RBU_STATE_PHASEONESTEP 9


#define RBU_STAGE_OAL         1
#define RBU_STAGE_MOVE        2
#define RBU_STAGE_CAPTURE     3
#define RBU_STAGE_CKPT        4
#define RBU_STAGE_DONE        5








>
>
>
>










>







149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
**
** RBU_STATE_COOKIE:
**   Valid if STAGE==1. The current change-counter cookie value in the 
**   target db file.
**
** RBU_STATE_OALSZ:
**   Valid if STAGE==1. The size in bytes of the *-oal file.
**
** RBU_STATE_DATATBL:
**   Only valid if STAGE==1. The RBU database name of the table 
**   currently being read.
*/
#define RBU_STATE_STAGE        1
#define RBU_STATE_TBL          2
#define RBU_STATE_IDX          3
#define RBU_STATE_ROW          4
#define RBU_STATE_PROGRESS     5
#define RBU_STATE_CKPT         6
#define RBU_STATE_COOKIE       7
#define RBU_STATE_OALSZ        8
#define RBU_STATE_PHASEONESTEP 9
#define RBU_STATE_DATATBL     10

#define RBU_STAGE_OAL         1
#define RBU_STAGE_MOVE        2
#define RBU_STAGE_CAPTURE     3
#define RBU_STAGE_CKPT        4
#define RBU_STAGE_DONE        5

201
202
203
204
205
206
207

208
209
210
211
212
213
214

/*
** A structure to store values read from the rbu_state table in memory.
*/
struct RbuState {
  int eStage;
  char *zTbl;

  char *zIdx;
  i64 iWalCksum;
  int nRow;
  i64 nProgress;
  u32 iCookie;
  i64 iOalSz;
  i64 nPhaseOneStep;







>







206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

/*
** A structure to store values read from the rbu_state table in memory.
*/
struct RbuState {
  int eStage;
  char *zTbl;
  char *zDataTbl;
  char *zIdx;
  i64 iWalCksum;
  int nRow;
  i64 nProgress;
  u32 iCookie;
  i64 iOalSz;
  i64 nPhaseOneStep;
2264
2265
2266
2267
2268
2269
2270

2271
2272
2273
2274
2275
2276
2277

/*
** Free an RbuState object allocated by rbuLoadState().
*/
static void rbuFreeState(RbuState *p){
  if( p ){
    sqlite3_free(p->zTbl);

    sqlite3_free(p->zIdx);
    sqlite3_free(p);
  }
}

/*
** Allocate an RbuState object and load the contents of the rbu_state 







>







2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284

/*
** Free an RbuState object allocated by rbuLoadState().
*/
static void rbuFreeState(RbuState *p){
  if( p ){
    sqlite3_free(p->zTbl);
    sqlite3_free(p->zDataTbl);
    sqlite3_free(p->zIdx);
    sqlite3_free(p);
  }
}

/*
** Allocate an RbuState object and load the contents of the rbu_state 
2333
2334
2335
2336
2337
2338
2339




2340
2341
2342
2343
2344
2345
2346
      case RBU_STATE_OALSZ:
        pRet->iOalSz = (u32)sqlite3_column_int64(pStmt, 1);
        break;

      case RBU_STATE_PHASEONESTEP:
        pRet->nPhaseOneStep = sqlite3_column_int64(pStmt, 1);
        break;





      default:
        rc = SQLITE_CORRUPT;
        break;
    }
  }
  rc2 = sqlite3_finalize(pStmt);







>
>
>
>







2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
      case RBU_STATE_OALSZ:
        pRet->iOalSz = (u32)sqlite3_column_int64(pStmt, 1);
        break;

      case RBU_STATE_PHASEONESTEP:
        pRet->nPhaseOneStep = sqlite3_column_int64(pStmt, 1);
        break;

      case RBU_STATE_DATATBL:
        pRet->zDataTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
        break;

      default:
        rc = SQLITE_CORRUPT;
        break;
    }
  }
  rc2 = sqlite3_finalize(pStmt);
3108
3109
3110
3111
3112
3113
3114
3115

3116
3117
3118
3119
3120
3121
3122
3123
3124
3125

3126
3127
3128
3129
3130
3131
3132
          "(%d, %Q), "
          "(%d, %Q), "
          "(%d, %d), "
          "(%d, %d), "
          "(%d, %lld), "
          "(%d, %lld), "
          "(%d, %lld), "
          "(%d, %lld) ",

          p->zStateDb,
          RBU_STATE_STAGE, eStage,
          RBU_STATE_TBL, p->objiter.zTbl, 
          RBU_STATE_IDX, p->objiter.zIdx, 
          RBU_STATE_ROW, p->nStep, 
          RBU_STATE_PROGRESS, p->nProgress,
          RBU_STATE_CKPT, p->iWalCksum,
          RBU_STATE_COOKIE, (i64)pFd->iCookie,
          RBU_STATE_OALSZ, p->iOalSz,
          RBU_STATE_PHASEONESTEP, p->nPhaseOneStep

      )
    );
    assert( pInsert==0 || rc==SQLITE_OK );

    if( rc==SQLITE_OK ){
      sqlite3_step(pInsert);
      rc = sqlite3_finalize(pInsert);







|
>









|
>







3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
          "(%d, %Q), "
          "(%d, %Q), "
          "(%d, %d), "
          "(%d, %d), "
          "(%d, %lld), "
          "(%d, %lld), "
          "(%d, %lld), "
          "(%d, %lld), "
          "(%d, %Q)  ",
          p->zStateDb,
          RBU_STATE_STAGE, eStage,
          RBU_STATE_TBL, p->objiter.zTbl, 
          RBU_STATE_IDX, p->objiter.zIdx, 
          RBU_STATE_ROW, p->nStep, 
          RBU_STATE_PROGRESS, p->nProgress,
          RBU_STATE_CKPT, p->iWalCksum,
          RBU_STATE_COOKIE, (i64)pFd->iCookie,
          RBU_STATE_OALSZ, p->iOalSz,
          RBU_STATE_PHASEONESTEP, p->nPhaseOneStep,
          RBU_STATE_DATATBL, p->objiter.zDataTbl
      )
    );
    assert( pInsert==0 || rc==SQLITE_OK );

    if( rc==SQLITE_OK ){
      sqlite3_step(pInsert);
      rc = sqlite3_finalize(pInsert);
3374
3375
3376
3377
3378
3379
3380
3381

3382
3383
3384
3385
3386
3387
3388
  assert( p->rc==SQLITE_OK );
  if( pState->zTbl ){
    RbuObjIter *pIter = &p->objiter;
    int rc = SQLITE_OK;

    while( rc==SQLITE_OK && pIter->zTbl && (pIter->bCleanup 
       || rbuStrCompare(pIter->zIdx, pState->zIdx)
       || rbuStrCompare(pIter->zTbl, pState->zTbl) 

    )){
      rc = rbuObjIterNext(p, pIter);
    }

    if( rc==SQLITE_OK && !pIter->zTbl ){
      rc = SQLITE_ERROR;
      p->zErrmsg = sqlite3_mprintf("rbu_state mismatch error");







|
>







3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
  assert( p->rc==SQLITE_OK );
  if( pState->zTbl ){
    RbuObjIter *pIter = &p->objiter;
    int rc = SQLITE_OK;

    while( rc==SQLITE_OK && pIter->zTbl && (pIter->bCleanup 
       || rbuStrCompare(pIter->zIdx, pState->zIdx)
       || (pState->zDataTbl==0 && rbuStrCompare(pIter->zTbl, pState->zTbl))
       || (pState->zDataTbl && rbuStrCompare(pIter->zDataTbl, pState->zDataTbl))
    )){
      rc = rbuObjIterNext(p, pIter);
    }

    if( rc==SQLITE_OK && !pIter->zTbl ){
      rc = SQLITE_ERROR;
      p->zErrmsg = sqlite3_mprintf("rbu_state mismatch error");
Changes to ext/rtree/rtree6.test.
70
71
72
73
74
75
76

77
78
79
80
81
82
83

84
85
86
87
88
89
90

91
92
93
94
95
96
97

98
99
100
101
102
103

104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
do_test rtree6-1.5 {
  rtree_strategy {SELECT * FROM t1,t2 WHERE k=+ii AND x1<10}
} {C0}

do_eqp_test rtree6.2.1 {
  SELECT * FROM t1,t2 WHERE k=+ii AND x1<10
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test rtree6.2.2 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<10
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test rtree6.2.3 {
  SELECT * FROM t1,t2 WHERE k=ii
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test rtree6.2.4.1 {
  SELECT * FROM t1,t2 WHERE v=+ii and x1<10 and x2>10
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1} 
  0 1 1 {SEARCH TABLE t2 USING AUTOMATIC COVERING INDEX (v=?)}
}
do_eqp_test rtree6.2.4.2 {
  SELECT * FROM t1,t2 WHERE v=10 and x1<10 and x2>10
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1} 
  0 1 1 {SEARCH TABLE t2 USING AUTOMATIC PARTIAL COVERING INDEX (v=?)}
}

do_eqp_test rtree6.2.5 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<v
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_execsql_test rtree6-3.1 {
  CREATE VIRTUAL TABLE t3 USING rtree(id, x1, x2, y1, y2);
  INSERT INTO t3 VALUES(NULL, 1, 1, 2, 2);
  SELECT * FROM t3 WHERE 
    x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND 







>
|
|





>
|
|





>
|
|





>
|
|




>
|
|





>
|
|







70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
do_test rtree6-1.5 {
  rtree_strategy {SELECT * FROM t1,t2 WHERE k=+ii AND x1<10}
} {C0}

do_eqp_test rtree6.2.1 {
  SELECT * FROM t1,t2 WHERE k=+ii AND x1<10
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0
  `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)
}

do_eqp_test rtree6.2.2 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<10
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0
  `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)
}

do_eqp_test rtree6.2.3 {
  SELECT * FROM t1,t2 WHERE k=ii
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:
  `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)
}

do_eqp_test rtree6.2.4.1 {
  SELECT * FROM t1,t2 WHERE v=+ii and x1<10 and x2>10
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1
  `--SEARCH TABLE t2 USING AUTOMATIC COVERING INDEX (v=?)
}
do_eqp_test rtree6.2.4.2 {
  SELECT * FROM t1,t2 WHERE v=10 and x1<10 and x2>10
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1
  `--SEARCH TABLE t2 USING AUTOMATIC PARTIAL COVERING INDEX (v=?)
}

do_eqp_test rtree6.2.5 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<v
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:
  `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)
}

do_execsql_test rtree6-3.1 {
  CREATE VIRTUAL TABLE t3 USING rtree(id, x1, x2, y1, y2);
  INSERT INTO t3 VALUES(NULL, 1, 1, 2, 2);
  SELECT * FROM t3 WHERE 
    x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND 
Changes to ext/rtree/rtreeC.test.
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
  CREATE TABLE t(x, y);
}

do_eqp_test 1.1 {
  SELECT * FROM r_tree, t 
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {

  0 0 1 {SCAN TABLE t}
  0 1 0 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0}
}

do_eqp_test 1.2 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {

  0 0 0 {SCAN TABLE t}
  0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0}
}

do_eqp_test 1.3 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND ?<=max_y
} {

  0 0 0 {SCAN TABLE t}
  0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0}
}

do_eqp_test 1.5 {
  SELECT * FROM t, r_tree
} {

  0 0 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:}
  0 1 0 {SCAN TABLE t} 
}

do_execsql_test 2.0 {
  INSERT INTO t VALUES(0, 0);
  INSERT INTO t VALUES(0, 1);
  INSERT INTO t VALUES(0, 2);
  INSERT INTO t VALUES(0, 3);







>
|
|






>
|
|






>
|
|





>
|
|







25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
  CREATE TABLE t(x, y);
}

do_eqp_test 1.1 {
  SELECT * FROM r_tree, t 
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {
  QUERY PLAN
  |--SCAN TABLE t
  `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0
}

do_eqp_test 1.2 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {
  QUERY PLAN
  |--SCAN TABLE t
  `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0
}

do_eqp_test 1.3 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND ?<=max_y
} {
  QUERY PLAN
  |--SCAN TABLE t
  `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0
}

do_eqp_test 1.5 {
  SELECT * FROM t, r_tree
} {
  QUERY PLAN
  |--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:
  `--SCAN TABLE t
}

do_execsql_test 2.0 {
  INSERT INTO t VALUES(0, 0);
  INSERT INTO t VALUES(0, 1);
  INSERT INTO t VALUES(0, 2);
  INSERT INTO t VALUES(0, 3);
78
79
80
81
82
83
84

85
86
87
88
89
90
91
92

93
94
95
96
97
98
99
100

101
102
103
104
105
106
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121

122
123
124
125

126

127
128
129

130
131
132
133

134
135
136
137
138
139
140
141
142
db close
sqlite3 db test.db

do_eqp_test 2.1 {
  SELECT * FROM r_tree, t 
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {

  0 0 1 {SCAN TABLE t}
  0 1 0 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0}
}

do_eqp_test 2.2 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {

  0 0 0 {SCAN TABLE t}
  0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0}
}

do_eqp_test 2.3 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND ?<=max_y
} {

  0 0 0 {SCAN TABLE t}
  0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0}
}

do_eqp_test 2.5 {
  SELECT * FROM t, r_tree
} {

  0 0 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:}
  0 1 0 {SCAN TABLE t} 
}

#-------------------------------------------------------------------------
# Test that the special CROSS JOIN handling works with rtree tables.
#
do_execsql_test 3.1 {
  CREATE TABLE t1(x);
  CREATE TABLE t2(y);
  CREATE VIRTUAL TABLE t3 USING rtree(z, x1,x2, y1,y2);
}

do_eqp_test 3.2.1 { SELECT * FROM t1 CROSS JOIN t2 } {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE t2}
}
do_eqp_test 3.2.2 { SELECT * FROM t2 CROSS JOIN t1 } {

  0 0 0 {SCAN TABLE t2} 0 1 1 {SCAN TABLE t1}

}

do_eqp_test 3.3.1 { SELECT * FROM t1 CROSS JOIN t3 } {

  0 0 0 {SCAN TABLE t1}
  0 1 1 {SCAN TABLE t3 VIRTUAL TABLE INDEX 2:} 
}
do_eqp_test 3.3.2 { SELECT * FROM t3 CROSS JOIN t1 } {

  0 0 0 {SCAN TABLE t3 VIRTUAL TABLE INDEX 2:} 
  0 1 1 {SCAN TABLE t1}
}

#--------------------------------------------------------------------
# Test that LEFT JOINs are not reordered if the right-hand-side is
# a virtual table.
#
reset_db







>
|
|






>
|
|






>
|
|





>
|
|












>
|
|


>
|
>



>
|
|


>
|
|







82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
db close
sqlite3 db test.db

do_eqp_test 2.1 {
  SELECT * FROM r_tree, t 
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {
  QUERY PLAN
  |--SCAN TABLE t
  `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0
}

do_eqp_test 2.2 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {
  QUERY PLAN
  |--SCAN TABLE t
  `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0
}

do_eqp_test 2.3 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND ?<=max_y
} {
  QUERY PLAN
  |--SCAN TABLE t
  `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0
}

do_eqp_test 2.5 {
  SELECT * FROM t, r_tree
} {
  QUERY PLAN
  |--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:
  `--SCAN TABLE t
}

#-------------------------------------------------------------------------
# Test that the special CROSS JOIN handling works with rtree tables.
#
do_execsql_test 3.1 {
  CREATE TABLE t1(x);
  CREATE TABLE t2(y);
  CREATE VIRTUAL TABLE t3 USING rtree(z, x1,x2, y1,y2);
}

do_eqp_test 3.2.1 { SELECT * FROM t1 CROSS JOIN t2 } {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCAN TABLE t2
}
do_eqp_test 3.2.2 { SELECT * FROM t2 CROSS JOIN t1 } {
  QUERY PLAN
  |--SCAN TABLE t2
  `--SCAN TABLE t1
}

do_eqp_test 3.3.1 { SELECT * FROM t1 CROSS JOIN t3 } {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCAN TABLE t3 VIRTUAL TABLE INDEX 2:
}
do_eqp_test 3.3.2 { SELECT * FROM t3 CROSS JOIN t1 } {
  QUERY PLAN
  |--SCAN TABLE t3 VIRTUAL TABLE INDEX 2:
  `--SCAN TABLE t1
}

#--------------------------------------------------------------------
# Test that LEFT JOINs are not reordered if the right-hand-side is
# a virtual table.
#
reset_db
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

208
209
210
211
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226
227
228

# First test a query with no ANALYZE data at all. The outer loop is
# real table "t1".
#
do_eqp_test 5.2 {
  SELECT * FROM t1, rt WHERE x==id;
} {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 1:}
}

# Now create enough ANALYZE data to tell SQLite that virtual table "rt"
# contains very few rows. This causes it to move "rt" to the outer loop.
#
do_execsql_test 5.3 {
  ANALYZE;
  DELETE FROM sqlite_stat1 WHERE tbl='t1';
}
db close
sqlite3 db test.db
do_eqp_test 5.4 {
  SELECT * FROM t1, rt WHERE x==id;
} {

  0 0 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 2:} 
  0 1 0 {SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (x=?)}
}

# Delete the ANALYZE data. "t1" should be the outer loop again.
#
do_execsql_test 5.5 { DROP TABLE sqlite_stat1; }
db close
sqlite3 db test.db
do_eqp_test 5.6 {
  SELECT * FROM t1, rt WHERE x==id;
} {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 1:}
}

# This time create and attach a database that contains ANALYZE data for
# tables of the same names as those used internally by virtual table
# "rt". Check that the rtree module is not fooled into using this data.
# Table "t1" should remain the outer loop.
#







>
|
|














>
|
|










>
|
|







198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

# First test a query with no ANALYZE data at all. The outer loop is
# real table "t1".
#
do_eqp_test 5.2 {
  SELECT * FROM t1, rt WHERE x==id;
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCAN TABLE rt VIRTUAL TABLE INDEX 1:
}

# Now create enough ANALYZE data to tell SQLite that virtual table "rt"
# contains very few rows. This causes it to move "rt" to the outer loop.
#
do_execsql_test 5.3 {
  ANALYZE;
  DELETE FROM sqlite_stat1 WHERE tbl='t1';
}
db close
sqlite3 db test.db
do_eqp_test 5.4 {
  SELECT * FROM t1, rt WHERE x==id;
} {
  QUERY PLAN
  |--SCAN TABLE rt VIRTUAL TABLE INDEX 2:
  `--SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (x=?)
}

# Delete the ANALYZE data. "t1" should be the outer loop again.
#
do_execsql_test 5.5 { DROP TABLE sqlite_stat1; }
db close
sqlite3 db test.db
do_eqp_test 5.6 {
  SELECT * FROM t1, rt WHERE x==id;
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCAN TABLE rt VIRTUAL TABLE INDEX 1:
}

# This time create and attach a database that contains ANALYZE data for
# tables of the same names as those used internally by virtual table
# "rt". Check that the rtree module is not fooled into using this data.
# Table "t1" should remain the outer loop.
#
237
238
239
240
241
242
243

244
245
246
247
248
249
250
251
252
  db close
  sqlite3 db test.db
  execsql { ATTACH 'test.db2' AS aux; }
} {}
do_eqp_test 5.8 {
  SELECT * FROM t1, rt WHERE x==id;
} {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 1:}
}

#--------------------------------------------------------------------
# Test that having a second connection drop the sqlite_stat1 table
# before it is required by rtreeConnect() does not cause problems.
#
ifcapable rtree {







>
|
|







253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
  db close
  sqlite3 db test.db
  execsql { ATTACH 'test.db2' AS aux; }
} {}
do_eqp_test 5.8 {
  SELECT * FROM t1, rt WHERE x==id;
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCAN TABLE rt VIRTUAL TABLE INDEX 1:
}

#--------------------------------------------------------------------
# Test that having a second connection drop the sqlite_stat1 table
# before it is required by rtreeConnect() does not cause problems.
#
ifcapable rtree {
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312
313
314

315
316
317
318
319
320
321
322

323
324
325
326
327
328
329
330
331
332
333
334
335
336

337
338
339

340
341
342
343
344
345
346
347

348
349
350

351
352
353
354
  INSERT INTO rt VALUES(1, 2, 7, 12, 14);      -- Not a hit
  INSERT INTO rt VALUES(2, 2, 7, 8, 12);       -- A hit!
  INSERT INTO rt VALUES(3, 7, 11, 8, 12);      -- Not a hit!
  INSERT INTO rt VALUES(4, 5, 5, 10, 10);      -- A hit!

}

proc do_eqp_execsql_test {tn sql res} {
  set query "EXPLAIN QUERY PLAN $sql ; $sql "
  uplevel [list do_execsql_test $tn $query $res]
}

do_eqp_execsql_test 7.1 {
  SELECT id FROM xdir, rt, ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {

  0 0 0 {SCAN TABLE xdir} 
  0 1 2 {SCAN TABLE ydir} 
  0 2 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 2:B2D3B0D1}

  2 4
}

do_eqp_execsql_test 7.2 {
  SELECT * FROM xdir, rt LEFT JOIN ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {

  0 0 0 {SCAN TABLE xdir} 
  0 1 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1}
  0 2 2 {SCAN TABLE ydir} 

  5 1 2 7 12 14 {}
  5 2 2 7  8 12 10
  5 4 5 5 10 10 10
}

do_eqp_execsql_test 7.3 {
  SELECT id FROM xdir, rt CROSS JOIN ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {

  0 0 0 {SCAN TABLE xdir} 
  0 1 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1}
  0 2 2 {SCAN TABLE ydir} 

  2 4
}

do_eqp_execsql_test 7.4 {
  SELECT id FROM rt, xdir CROSS JOIN ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {

  0 0 1 {SCAN TABLE xdir} 
  0 1 0 {SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1}
  0 2 2 {SCAN TABLE ydir} 

  2 4
}

finish_test







|
|
|







>
|
|
|
>








>
|
|
|
|










>
|
|
|
>








>
|
|
|
>




312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
  INSERT INTO rt VALUES(1, 2, 7, 12, 14);      -- Not a hit
  INSERT INTO rt VALUES(2, 2, 7, 8, 12);       -- A hit!
  INSERT INTO rt VALUES(3, 7, 11, 8, 12);      -- Not a hit!
  INSERT INTO rt VALUES(4, 5, 5, 10, 10);      -- A hit!

}

proc do_eqp_execsql_test {tn sql res1 res2} {
  do_eqp_test $tn.1 $sql $res1
  do_execsql_test $tn.2 $sql $res2
}

do_eqp_execsql_test 7.1 {
  SELECT id FROM xdir, rt, ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {
  QUERY PLAN
  |--SCAN TABLE xdir
  |--SCAN TABLE ydir
  `--SCAN TABLE rt VIRTUAL TABLE INDEX 2:B2D3B0D1
} {
  2 4
}

do_eqp_execsql_test 7.2 {
  SELECT * FROM xdir, rt LEFT JOIN ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {
  QUERY PLAN
  |--SCAN TABLE xdir
  |--SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1
  `--SCAN TABLE ydir
} {
  5 1 2 7 12 14 {}
  5 2 2 7  8 12 10
  5 4 5 5 10 10 10
}

do_eqp_execsql_test 7.3 {
  SELECT id FROM xdir, rt CROSS JOIN ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {
  QUERY PLAN
  |--SCAN TABLE xdir
  |--SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1
  `--SCAN TABLE ydir
} {
  2 4
}

do_eqp_execsql_test 7.4 {
  SELECT id FROM rt, xdir CROSS JOIN ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {
  QUERY PLAN
  |--SCAN TABLE xdir
  |--SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1
  `--SCAN TABLE ydir
} {
  2 4
}

finish_test
Changes to main.mk.
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
         memdb.o memjournal.o \
         mutex.o mutex_noop.o mutex_unix.o mutex_w32.o \
         notify.o opcodes.o os.o os_unix.o os_win.o \
         pager.o pcache.o pcache1.o pragma.o prepare.o printf.o \
         random.o resolve.o rowset.o rtree.o \
         select.o sqlite3rbu.o status.o stmt.o \
         table.o threads.o tokenize.o treeview.o trigger.o \
         update.o userauth.o util.o vacuum.o \
         vdbeapi.o vdbeaux.o vdbeblob.o vdbemem.o vdbesort.o \
	 vdbetrace.o wal.o walker.o where.o wherecode.o whereexpr.o \
         utf.o vtab.o

LIBOBJ += sqlite3session.o

# All of the source code files.







|







68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
         memdb.o memjournal.o \
         mutex.o mutex_noop.o mutex_unix.o mutex_w32.o \
         notify.o opcodes.o os.o os_unix.o os_win.o \
         pager.o pcache.o pcache1.o pragma.o prepare.o printf.o \
         random.o resolve.o rowset.o rtree.o \
         select.o sqlite3rbu.o status.o stmt.o \
         table.o threads.o tokenize.o treeview.o trigger.o \
         update.o upsert.o userauth.o util.o vacuum.o \
         vdbeapi.o vdbeaux.o vdbeblob.o vdbemem.o vdbesort.o \
	 vdbetrace.o wal.o walker.o where.o wherecode.o whereexpr.o \
         utf.o vtab.o

LIBOBJ += sqlite3session.o

# All of the source code files.
158
159
160
161
162
163
164

165
166
167
168
169
170
171
  $(TOP)/src/tclsqlite.c \
  $(TOP)/src/threads.c \
  $(TOP)/src/tokenize.c \
  $(TOP)/src/treeview.c \
  $(TOP)/src/trigger.c \
  $(TOP)/src/utf.c \
  $(TOP)/src/update.c \

  $(TOP)/src/util.c \
  $(TOP)/src/vacuum.c \
  $(TOP)/src/vdbe.c \
  $(TOP)/src/vdbe.h \
  $(TOP)/src/vdbeapi.c \
  $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbeblob.c \







>







158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
  $(TOP)/src/tclsqlite.c \
  $(TOP)/src/threads.c \
  $(TOP)/src/tokenize.c \
  $(TOP)/src/treeview.c \
  $(TOP)/src/trigger.c \
  $(TOP)/src/utf.c \
  $(TOP)/src/update.c \
  $(TOP)/src/upsert.c \
  $(TOP)/src/util.c \
  $(TOP)/src/vacuum.c \
  $(TOP)/src/vdbe.c \
  $(TOP)/src/vdbe.h \
  $(TOP)/src/vdbeapi.c \
  $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbeblob.c \
Changes to src/attach.c.
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    }
    assert( pVfs );
    flags |= SQLITE_OPEN_MAIN_DB;
    rc = sqlite3BtreeOpen(pVfs, zPath, db, &pNew->pBt, 0, flags);
    sqlite3_free( zPath );
    db->nDb++;
  }
  db->skipBtreeMutex = 0;
  if( rc==SQLITE_CONSTRAINT ){
    rc = SQLITE_ERROR;
    zErrDyn = sqlite3MPrintf(db, "database is already attached");
  }else if( rc==SQLITE_OK ){
    Pager *pPager;
    pNew->pSchema = sqlite3SchemaGet(db, pNew->pBt);
    if( !pNew->pSchema ){







|







154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    }
    assert( pVfs );
    flags |= SQLITE_OPEN_MAIN_DB;
    rc = sqlite3BtreeOpen(pVfs, zPath, db, &pNew->pBt, 0, flags);
    sqlite3_free( zPath );
    db->nDb++;
  }
  db->noSharedCache = 0;
  if( rc==SQLITE_CONSTRAINT ){
    rc = SQLITE_ERROR;
    zErrDyn = sqlite3MPrintf(db, "database is already attached");
  }else if( rc==SQLITE_OK ){
    Pager *pPager;
    pNew->pSchema = sqlite3SchemaGet(db, pNew->pBt);
    if( !pNew->pSchema ){
226
227
228
229
230
231
232

233
234
235
236
237
238
239
  ** If this fails, or if opening the file failed, then close the file and 
  ** remove the entry from the db->aDb[] array. i.e. put everything back the
  ** way we found it.
  */
  if( rc==SQLITE_OK ){
    sqlite3BtreeEnterAll(db);
    db->init.iDb = 0;

    rc = sqlite3Init(db, &zErrDyn);
    sqlite3BtreeLeaveAll(db);
    assert( zErrDyn==0 || rc!=SQLITE_OK );
  }
#ifdef SQLITE_USER_AUTHENTICATION
  if( rc==SQLITE_OK ){
    u8 newAuth = 0;







>







226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
  ** If this fails, or if opening the file failed, then close the file and 
  ** remove the entry from the db->aDb[] array. i.e. put everything back the
  ** way we found it.
  */
  if( rc==SQLITE_OK ){
    sqlite3BtreeEnterAll(db);
    db->init.iDb = 0;
    db->mDbFlags &= ~(DBFLAG_SchemaKnownOk);
    rc = sqlite3Init(db, &zErrDyn);
    sqlite3BtreeLeaveAll(db);
    assert( zErrDyn==0 || rc!=SQLITE_OK );
  }
#ifdef SQLITE_USER_AUTHENTICATION
  if( rc==SQLITE_OK ){
    u8 newAuth = 0;
498
499
500
501
502
503
504



505
506
507
508
509
510
511
      pItem->zDatabase = 0;
      pItem->pSchema = pFix->pSchema;
    }
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
    if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1;
    if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1;
#endif



  }
  return 0;
}
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
int sqlite3FixSelect(
  DbFixer *pFix,       /* Context of the fixation */
  Select *pSelect      /* The SELECT statement to be fixed to one database */







>
>
>







499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
      pItem->zDatabase = 0;
      pItem->pSchema = pFix->pSchema;
    }
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
    if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1;
    if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1;
#endif
    if( pItem->fg.isTabFunc && sqlite3FixExprList(pFix, pItem->u1.pFuncArg) ){
      return 1;
    }
  }
  return 0;
}
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
int sqlite3FixSelect(
  DbFixer *pFix,       /* Context of the fixation */
  Select *pSelect      /* The SELECT statement to be fixed to one database */
597
598
599
600
601
602
603












604
605
606
607
608
    }
    if( sqlite3FixExpr(pFix, pStep->pWhere) ){
      return 1;
    }
    if( sqlite3FixExprList(pFix, pStep->pExprList) ){
      return 1;
    }












    pStep = pStep->pNext;
  }
  return 0;
}
#endif







>
>
>
>
>
>
>
>
>
>
>
>





601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    }
    if( sqlite3FixExpr(pFix, pStep->pWhere) ){
      return 1;
    }
    if( sqlite3FixExprList(pFix, pStep->pExprList) ){
      return 1;
    }
#ifndef SQLITE_OMIT_UPSERT
    if( pStep->pUpsert ){
      Upsert *pUp = pStep->pUpsert;
      if( sqlite3FixExprList(pFix, pUp->pUpsertTarget)
       || sqlite3FixExpr(pFix, pUp->pUpsertTargetWhere)
       || sqlite3FixExprList(pFix, pUp->pUpsertSet)
       || sqlite3FixExpr(pFix, pUp->pUpsertWhere)
      ){
        return 1;
      }
    }
#endif
    pStep = pStep->pNext;
  }
  return 0;
}
#endif
Changes to src/btmutex.c.
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
  for(i=0; i<db->nDb; i++){
    p = db->aDb[i].pBt;
    if( p && p->sharable ){
      sqlite3BtreeEnter(p);
      skipOk = 0;
    }
  }
  db->skipBtreeMutex = skipOk;
}
void sqlite3BtreeEnterAll(sqlite3 *db){
  if( db->skipBtreeMutex==0 ) btreeEnterAll(db);
}
static void SQLITE_NOINLINE btreeLeaveAll(sqlite3 *db){
  int i;
  Btree *p;
  assert( sqlite3_mutex_held(db->mutex) );
  for(i=0; i<db->nDb; i++){
    p = db->aDb[i].pBt;
    if( p ) sqlite3BtreeLeave(p);
  }
}
void sqlite3BtreeLeaveAll(sqlite3 *db){
  if( db->skipBtreeMutex==0 ) btreeLeaveAll(db);
}

#ifndef NDEBUG
/*
** Return true if the current thread holds the database connection
** mutex and all required BtShared mutexes.
**







|


|











|







191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
  for(i=0; i<db->nDb; i++){
    p = db->aDb[i].pBt;
    if( p && p->sharable ){
      sqlite3BtreeEnter(p);
      skipOk = 0;
    }
  }
  db->noSharedCache = skipOk;
}
void sqlite3BtreeEnterAll(sqlite3 *db){
  if( db->noSharedCache==0 ) btreeEnterAll(db);
}
static void SQLITE_NOINLINE btreeLeaveAll(sqlite3 *db){
  int i;
  Btree *p;
  assert( sqlite3_mutex_held(db->mutex) );
  for(i=0; i<db->nDb; i++){
    p = db->aDb[i].pBt;
    if( p ) sqlite3BtreeLeave(p);
  }
}
void sqlite3BtreeLeaveAll(sqlite3 *db){
  if( db->noSharedCache==0 ) btreeLeaveAll(db);
}

#ifndef NDEBUG
/*
** Return true if the current thread holds the database connection
** mutex and all required BtShared mutexes.
**
Changes to src/btree.c.
2973
2974
2975
2976
2977
2978
2979




2980
2981
2982
2983
2984
2985
2986
          pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
    }
  }
}
#else
# define setDefaultSyncFlag(pBt,safety_level)
#endif





/*
** Get a reference to pPage1 of the database file.  This will
** also acquire a readlock on that file.
**
** SQLITE_OK is returned on success.  If the file is not a
** well-formed database file, then SQLITE_CORRUPT is returned.







>
>
>
>







2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
          pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
    }
  }
}
#else
# define setDefaultSyncFlag(pBt,safety_level)
#endif

/* Forward declaration */
static int newDatabase(BtShared*);


/*
** Get a reference to pPage1 of the database file.  This will
** also acquire a readlock on that file.
**
** SQLITE_OK is returned on success.  If the file is not a
** well-formed database file, then SQLITE_CORRUPT is returned.
3004
3005
3006
3007
3008
3009
3010



3011
3012
3013
3014
3015
3016
3017
  /* Do some checking to help insure the file we opened really is
  ** a valid database file. 
  */
  nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
  sqlite3PagerPagecount(pBt->pPager, &nPageFile);
  if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
    nPage = nPageFile;



  }
  if( nPage>0 ){
    u32 pageSize;
    u32 usableSize;
    u8 *page1 = pPage1->aData;
    rc = SQLITE_NOTADB;
    /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins







>
>
>







3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
  /* Do some checking to help insure the file we opened really is
  ** a valid database file. 
  */
  nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
  sqlite3PagerPagecount(pBt->pPager, &nPageFile);
  if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
    nPage = nPageFile;
  }
  if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
    nPage = 0;
  }
  if( nPage>0 ){
    u32 pageSize;
    u32 usableSize;
    u8 *page1 = pPage1->aData;
    rc = SQLITE_NOTADB;
    /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
Changes to src/build.c.
339
340
341
342
343
344
345

346
347
348

349

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
Table *sqlite3LocateTable(
  Parse *pParse,         /* context in which to report errors */
  u32 flags,             /* LOCATE_VIEW or LOCATE_NOERR */
  const char *zName,     /* Name of the table we are looking for */
  const char *zDbase     /* Name of the database.  Might be NULL */
){
  Table *p;


  /* Read the database schema. If an error occurs, leave an error message
  ** and code in pParse and return NULL. */

  if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){

    return 0;
  }

  p = sqlite3FindTable(pParse->db, zName, zDbase);
  if( p==0 ){
    const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
      /* If zName is the not the name of a table in the schema created using
      ** CREATE, then check to see if it is the name of an virtual table that
      ** can be an eponymous virtual table. */
      Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
      if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
        pMod = sqlite3PragmaVtabRegister(pParse->db, zName);
      }
      if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
        return pMod->pEpoTab;
      }
    }
#endif
    if( (flags & LOCATE_NOERR)==0 ){







>



>
|
>



|



|



|

|







339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
Table *sqlite3LocateTable(
  Parse *pParse,         /* context in which to report errors */
  u32 flags,             /* LOCATE_VIEW or LOCATE_NOERR */
  const char *zName,     /* Name of the table we are looking for */
  const char *zDbase     /* Name of the database.  Might be NULL */
){
  Table *p;
  sqlite3 *db = pParse->db;

  /* Read the database schema. If an error occurs, leave an error message
  ** and code in pParse and return NULL. */
  if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 
   && SQLITE_OK!=sqlite3ReadSchema(pParse)
  ){
    return 0;
  }

  p = sqlite3FindTable(db, zName, zDbase);
  if( p==0 ){
    const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( sqlite3FindDbName(db, zDbase)<1 ){
      /* If zName is the not the name of a table in the schema created using
      ** CREATE, then check to see if it is the name of an virtual table that
      ** can be an eponymous virtual table. */
      Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
      if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
        pMod = sqlite3PragmaVtabRegister(db, zName);
      }
      if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
        return pMod->pEpoTab;
      }
    }
#endif
    if( (flags & LOCATE_NOERR)==0 ){
521
522
523
524
525
526
527

528
529
530
531
532
533
534
  int i;
  assert( iDb<db->nDb );

  if( iDb>=0 ){
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    DbSetProperty(db, iDb, DB_ResetWanted);
    DbSetProperty(db, 1, DB_ResetWanted);

  }

  if( db->nSchemaLock==0 ){
    for(i=0; i<db->nDb; i++){
      if( DbHasProperty(db, i, DB_ResetWanted) ){
        sqlite3SchemaClear(db->aDb[i].pSchema);
      }







>







524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
  int i;
  assert( iDb<db->nDb );

  if( iDb>=0 ){
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    DbSetProperty(db, iDb, DB_ResetWanted);
    DbSetProperty(db, 1, DB_ResetWanted);
    db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
  }

  if( db->nSchemaLock==0 ){
    for(i=0; i<db->nDb; i++){
      if( DbHasProperty(db, i, DB_ResetWanted) ){
        sqlite3SchemaClear(db->aDb[i].pSchema);
      }
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
  assert( db->nSchemaLock==0 );
  for(i=0; i<db->nDb; i++){
    Db *pDb = &db->aDb[i];
    if( pDb->pSchema ){
      sqlite3SchemaClear(pDb->pSchema);
    }
  }
  db->mDbFlags &= ~DBFLAG_SchemaChange;
  sqlite3VtabUnlockList(db);
  sqlite3BtreeLeaveAll(db);
  sqlite3CollapseDatabaseArray(db);
}

/*
** This routine is called when a commit occurs.







|







550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
  assert( db->nSchemaLock==0 );
  for(i=0; i<db->nDb; i++){
    Db *pDb = &db->aDb[i];
    if( pDb->pSchema ){
      sqlite3SchemaClear(pDb->pSchema);
    }
  }
  db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
  sqlite3VtabUnlockList(db);
  sqlite3BtreeLeaveAll(db);
  sqlite3CollapseDatabaseArray(db);
}

/*
** This routine is called when a commit occurs.
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100





1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
  pCol = &p->aCol[p->nCol];
  memset(pCol, 0, sizeof(p->aCol[0]));
  pCol->zName = z;
  sqlite3ColumnPropertiesFromName(p, pCol);
 
  if( pType->n==0 ){
    /* If there is no type specified, columns have the default affinity
    ** 'BLOB'. */
    pCol->affinity = SQLITE_AFF_BLOB;
    pCol->szEst = 1;





  }else{
    zType = z + sqlite3Strlen30(z) + 1;
    memcpy(zType, pType->z, pType->n);
    zType[pType->n] = 0;
    sqlite3Dequote(zType);
    pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
    pCol->colFlags |= COLFLAG_HASTYPE;
  }
  p->nCol++;
  pParse->constraintName.n = 0;
}

/*







|


>
>
>
>
>





|







1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
  pCol = &p->aCol[p->nCol];
  memset(pCol, 0, sizeof(p->aCol[0]));
  pCol->zName = z;
  sqlite3ColumnPropertiesFromName(p, pCol);
 
  if( pType->n==0 ){
    /* If there is no type specified, columns have the default affinity
    ** 'BLOB' with a default size of 4 bytes. */
    pCol->affinity = SQLITE_AFF_BLOB;
    pCol->szEst = 1;
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    if( 4>=sqlite3GlobalConfig.szSorterRef ){
      pCol->colFlags |= COLFLAG_SORTERREF;
    }
#endif
  }else{
    zType = z + sqlite3Strlen30(z) + 1;
    memcpy(zType, pType->z, pType->n);
    zType[pType->n] = 0;
    sqlite3Dequote(zType);
    pCol->affinity = sqlite3AffinityType(zType, pCol);
    pCol->colFlags |= COLFLAG_HASTYPE;
  }
  p->nCol++;
  pParse->constraintName.n = 0;
}

/*
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
** 'REAL'        | SQLITE_AFF_REAL
** 'FLOA'        | SQLITE_AFF_REAL
** 'DOUB'        | SQLITE_AFF_REAL
**
** If none of the substrings in the above table are found,
** SQLITE_AFF_NUMERIC is returned.
*/
char sqlite3AffinityType(const char *zIn, u8 *pszEst){
  u32 h = 0;
  char aff = SQLITE_AFF_NUMERIC;
  const char *zChar = 0;

  assert( zIn!=0 );
  while( zIn[0] ){
    h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];







|







1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
** 'REAL'        | SQLITE_AFF_REAL
** 'FLOA'        | SQLITE_AFF_REAL
** 'DOUB'        | SQLITE_AFF_REAL
**
** If none of the substrings in the above table are found,
** SQLITE_AFF_NUMERIC is returned.
*/
char sqlite3AffinityType(const char *zIn, Column *pCol){
  u32 h = 0;
  char aff = SQLITE_AFF_NUMERIC;
  const char *zChar = 0;

  assert( zIn!=0 );
  while( zIn[0] ){
    h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223








1224
1225
1226
1227
1228
1229
1230
#endif
    }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
      aff = SQLITE_AFF_INTEGER;
      break;
    }
  }

  /* If pszEst is not NULL, store an estimate of the field size.  The
  ** estimate is scaled so that the size of an integer is 1.  */
  if( pszEst ){
    *pszEst = 1;   /* default size is approx 4 bytes */
    if( aff<SQLITE_AFF_NUMERIC ){
      if( zChar ){
        while( zChar[0] ){
          if( sqlite3Isdigit(zChar[0]) ){
            int v = 0;
            sqlite3GetInt32(zChar, &v);
            v = v/4 + 1;
            if( v>255 ) v = 255;
            *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
            break;
          }
          zChar++;
        }
      }else{
        *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
      }
    }








  }
  return aff;
}

/*
** The expression is the default value for the most recently added column
** of the table currently under construction.







|

|
|




|

<
<
<





|


>
>
>
>
>
>
>
>







1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221



1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
#endif
    }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
      aff = SQLITE_AFF_INTEGER;
      break;
    }
  }

  /* If pCol is not NULL, store an estimate of the field size.  The
  ** estimate is scaled so that the size of an integer is 1.  */
  if( pCol ){
    int v = 0;   /* default size is approx 4 bytes */
    if( aff<SQLITE_AFF_NUMERIC ){
      if( zChar ){
        while( zChar[0] ){
          if( sqlite3Isdigit(zChar[0]) ){
            /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
            sqlite3GetInt32(zChar, &v);



            break;
          }
          zChar++;
        }
      }else{
        v = 16;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
      }
    }
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    if( v>=sqlite3GlobalConfig.szSorterRef ){
      pCol->colFlags |= COLFLAG_SORTERREF;
    }
#endif
    v = v/4 + 1;
    if( v>255 ) v = 255;
    pCol->szEst = v;
  }
  return aff;
}

/*
** The expression is the default value for the most recently added column
** of the table currently under construction.
3006
3007
3008
3009
3010
3011
3012



3013

3014
3015
3016
3017
3018
3019
3020
  assert( pTab!=0 );
  assert( pParse->nErr==0 );
  if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 
       && db->init.busy==0
#if SQLITE_USER_AUTHENTICATION
       && sqlite3UserAuthTable(pTab->zName)==0
#endif



       && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){

    sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
    goto exit_create_index;
  }
#ifndef SQLITE_OMIT_VIEW
  if( pTab->pSelect ){
    sqlite3ErrorMsg(pParse, "views may not be indexed");
    goto exit_create_index;







>
>
>
|
>







3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
  assert( pTab!=0 );
  assert( pParse->nErr==0 );
  if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 
       && db->init.busy==0
#if SQLITE_USER_AUTHENTICATION
       && sqlite3UserAuthTable(pTab->zName)==0
#endif
#ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX
       && sqlite3StrICmp(&pTab->zName[7],"master")!=0
#endif
       && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0
 ){
    sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
    goto exit_create_index;
  }
#ifndef SQLITE_OMIT_VIEW
  if( pTab->pSelect ){
    sqlite3ErrorMsg(pParse, "views may not be indexed");
    goto exit_create_index;
Changes to src/ctime.c.
281
282
283
284
285
286
287



288
289
290
291
292
293
294
  "ENABLE_SELECTTRACE",
#endif
#if SQLITE_ENABLE_SESSION
  "ENABLE_SESSION",
#endif
#if SQLITE_ENABLE_SNAPSHOT
  "ENABLE_SNAPSHOT",



#endif
#if SQLITE_ENABLE_SQLLOG
  "ENABLE_SQLLOG",
#endif
#if defined(SQLITE_ENABLE_STAT4)
  "ENABLE_STAT4",
#elif defined(SQLITE_ENABLE_STAT3)







>
>
>







281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
  "ENABLE_SELECTTRACE",
#endif
#if SQLITE_ENABLE_SESSION
  "ENABLE_SESSION",
#endif
#if SQLITE_ENABLE_SNAPSHOT
  "ENABLE_SNAPSHOT",
#endif
#if SQLITE_ENABLE_SORTER_REFERENCES
  "ENABLE_SORTER_REFERENCES",
#endif
#if SQLITE_ENABLE_SQLLOG
  "ENABLE_SQLLOG",
#endif
#if defined(SQLITE_ENABLE_STAT4)
  "ENABLE_STAT4",
#elif defined(SQLITE_ENABLE_STAT3)
Changes to src/delete.c.
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
  int iDataCur = 0;      /* VDBE cursor for the canonical data source */
  int iIdxCur = 0;       /* Cursor number of the first index */
  int nIdx;              /* Number of indices */
  sqlite3 *db;           /* Main database structure */
  AuthContext sContext;  /* Authorization context */
  NameContext sNC;       /* Name context to resolve expressions in */
  int iDb;               /* Database number */
  int memCnt = -1;       /* Memory cell used for change counting */
  int rcauth;            /* Value returned by authorization callback */
  int eOnePass;          /* ONEPASS_OFF or _SINGLE or _MULTI */
  int aiCurOnePass[2];   /* The write cursors opened by WHERE_ONEPASS */
  u8 *aToOpen = 0;       /* Open cursor iTabCur+j if aToOpen[j] is true */
  Index *pPk;            /* The PRIMARY KEY index on the table */
  int iPk = 0;           /* First of nPk registers holding PRIMARY KEY value */
  i16 nPk = 1;           /* Number of columns in the PRIMARY KEY */







|







234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
  int iDataCur = 0;      /* VDBE cursor for the canonical data source */
  int iIdxCur = 0;       /* Cursor number of the first index */
  int nIdx;              /* Number of indices */
  sqlite3 *db;           /* Main database structure */
  AuthContext sContext;  /* Authorization context */
  NameContext sNC;       /* Name context to resolve expressions in */
  int iDb;               /* Database number */
  int memCnt = 0;        /* Memory cell used for change counting */
  int rcauth;            /* Value returned by authorization callback */
  int eOnePass;          /* ONEPASS_OFF or _SINGLE or _MULTI */
  int aiCurOnePass[2];   /* The write cursors opened by WHERE_ONEPASS */
  u8 *aToOpen = 0;       /* Open cursor iTabCur+j if aToOpen[j] is true */
  Index *pPk;            /* The PRIMARY KEY index on the table */
  int iPk = 0;           /* First of nPk registers holding PRIMARY KEY value */
  i16 nPk = 1;           /* Number of columns in the PRIMARY KEY */
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ){
    goto delete_from_cleanup;
  }
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, 1, iDb);

  /* If we are trying to delete from a view, realize that view into
  ** an ephemeral table.
  */
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
  if( isView ){
    sqlite3MaterializeView(pParse, pTab, 







|







339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ){
    goto delete_from_cleanup;
  }
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, bComplex, iDb);

  /* If we are trying to delete from a view, realize that view into
  ** an ephemeral table.
  */
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
  if( isView ){
    sqlite3MaterializeView(pParse, pTab, 
367
368
369
370
371
372
373
374



375
376
377
378
379
380
381
  if( sqlite3ResolveExprNames(&sNC, pWhere) ){
    goto delete_from_cleanup;
  }

  /* Initialize the counter of the number of rows deleted, if
  ** we are counting rows.
  */
  if( db->flags & SQLITE_CountRows ){



    memCnt = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
  }

#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
  /* Special case: A DELETE without a WHERE clause deletes everything.
  ** It is easier just to erase the whole table. Prior to version 3.6.5,







|
>
>
>







367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
  if( sqlite3ResolveExprNames(&sNC, pWhere) ){
    goto delete_from_cleanup;
  }

  /* Initialize the counter of the number of rows deleted, if
  ** we are counting rows.
  */
  if( (db->flags & SQLITE_CountRows)!=0
   && !pParse->nested
   && !pParse->pTriggerTab
  ){
    memCnt = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
  }

#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
  /* Special case: A DELETE without a WHERE clause deletes everything.
  ** It is easier just to erase the whole table. Prior to version 3.6.5,
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
   && db->xPreUpdateCallback==0
#endif
  ){
    assert( !isView );
    sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
    if( HasRowid(pTab) ){
      sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt,
                        pTab->zName, P4_STATIC);
    }
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      assert( pIdx->pSchema==pTab->pSchema );
      sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
    }
  }else







|







398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
   && db->xPreUpdateCallback==0
#endif
  ){
    assert( !isView );
    sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
    if( HasRowid(pTab) ){
      sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt ? memCnt : -1,
                        pTab->zName, P4_STATIC);
    }
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      assert( pIdx->pSchema==pTab->pSchema );
      sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
    }
  }else
440
441
442
443
444
445
446

447
448
449
450
451
452
453
454
455
456
    **  ONEPASS_MULTI:  One-pass approach - any number of rows may be deleted.
    */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, wcf, iTabCur+1);
    if( pWInfo==0 ) goto delete_from_cleanup;
    eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);
    assert( IsVirtual(pTab)==0 || eOnePass!=ONEPASS_MULTI );
    assert( IsVirtual(pTab) || bComplex || eOnePass!=ONEPASS_OFF );

  
    /* Keep track of the number of rows to be deleted */
    if( db->flags & SQLITE_CountRows ){
      sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
    }
  
    /* Extract the rowid or primary key for the current row */
    if( pPk ){
      for(i=0; i<nPk; i++){
        assert( pPk->aiColumn[i]>=0 );







>


|







443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    **  ONEPASS_MULTI:  One-pass approach - any number of rows may be deleted.
    */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, wcf, iTabCur+1);
    if( pWInfo==0 ) goto delete_from_cleanup;
    eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);
    assert( IsVirtual(pTab)==0 || eOnePass!=ONEPASS_MULTI );
    assert( IsVirtual(pTab) || bComplex || eOnePass!=ONEPASS_OFF );
    if( eOnePass!=ONEPASS_SINGLE ) sqlite3MultiWrite(pParse);
  
    /* Keep track of the number of rows to be deleted */
    if( memCnt ){
      sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
    }
  
    /* Extract the rowid or primary key for the current row */
    if( pPk ){
      for(i=0; i<nPk; i++){
        assert( pPk->aiColumn[i]>=0 );
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
    sqlite3AutoincrementEnd(pParse);
  }

  /* Return the number of rows that were deleted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC);
  }

delete_from_cleanup:
  sqlite3AuthContextPop(&sContext);







|







589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
    sqlite3AutoincrementEnd(pParse);
  }

  /* Return the number of rows that were deleted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( memCnt ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC);
  }

delete_from_cleanup:
  sqlite3AuthContextPop(&sContext);
Changes to src/expr.c.
1359
1360
1361
1362
1363
1364
1365

1366
1367
1368
1369
1370
1371
1372
      }
    }
    pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
    pItem->sortOrder = pOldItem->sortOrder;
    pItem->done = 0;
    pItem->bSpanIsTab = pOldItem->bSpanIsTab;

    pItem->u = pOldItem->u;
  }
  return pNew;
}

/*
** If cursors, triggers, views and subqueries are all omitted from







>







1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
      }
    }
    pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
    pItem->sortOrder = pOldItem->sortOrder;
    pItem->done = 0;
    pItem->bSpanIsTab = pOldItem->bSpanIsTab;
    pItem->bSorterRef = pOldItem->bSorterRef;
    pItem->u = pOldItem->u;
  }
  return pNew;
}

/*
** If cursors, triggers, views and subqueries are all omitted from
1821
1822
1823
1824
1825
1826
1827


1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
      testcase( pExpr->op==TK_AGG_FUNCTION );
      testcase( pExpr->op==TK_AGG_COLUMN );
      if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
        return WRC_Continue;
      }
      /* Fall through */
    case TK_IF_NULL_ROW:


      testcase( pExpr->op==TK_IF_NULL_ROW );
      pWalker->eCode = 0;
      return WRC_Abort;
    case TK_VARIABLE:
      if( pWalker->eCode==5 ){
        /* Silently convert bound parameters that appear inside of CREATE
        ** statements into a NULL when parsing the CREATE statement text out
        ** of the sqlite_master table */
        pExpr->op = TK_NULL;
      }else if( pWalker->eCode==4 ){
        /* A bound parameter in a CREATE statement that originates from
        ** sqlite3_prepare() causes an error */
        pWalker->eCode = 0;
        return WRC_Abort;
      }
      /* Fall through */
    default:
      testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail will disallow */
      testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail will disallow */
      return WRC_Continue;
  }
}
static int exprIsConst(Expr *p, int initFlag, int iCur){
  Walker w;
  w.eCode = initFlag;
  w.xExprCallback = exprNodeIsConstant;







>
>

















|
|







1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
      testcase( pExpr->op==TK_AGG_FUNCTION );
      testcase( pExpr->op==TK_AGG_COLUMN );
      if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
        return WRC_Continue;
      }
      /* Fall through */
    case TK_IF_NULL_ROW:
    case TK_REGISTER:
      testcase( pExpr->op==TK_REGISTER );
      testcase( pExpr->op==TK_IF_NULL_ROW );
      pWalker->eCode = 0;
      return WRC_Abort;
    case TK_VARIABLE:
      if( pWalker->eCode==5 ){
        /* Silently convert bound parameters that appear inside of CREATE
        ** statements into a NULL when parsing the CREATE statement text out
        ** of the sqlite_master table */
        pExpr->op = TK_NULL;
      }else if( pWalker->eCode==4 ){
        /* A bound parameter in a CREATE statement that originates from
        ** sqlite3_prepare() causes an error */
        pWalker->eCode = 0;
        return WRC_Abort;
      }
      /* Fall through */
    default:
      testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
      testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
      return WRC_Continue;
  }
}
static int exprIsConst(Expr *p, int initFlag, int iCur){
  Walker w;
  w.eCode = initFlag;
  w.xExprCallback = exprNodeIsConstant;
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
            if( aiMap ) aiMap[i] = j;
          }
  
          assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
          if( colUsed==(MASKBIT(nExpr)-1) ){
            /* If we reach this point, that means the index pIdx is usable */
            int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
#ifndef SQLITE_OMIT_EXPLAIN
            sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0,
              sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName),
              P4_DYNAMIC);
#endif
            sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
            sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
            VdbeComment((v, "%s", pIdx->zName));
            assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
            eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
  
            if( prRhsHasNull ){







<
|
|
<
<







2406
2407
2408
2409
2410
2411
2412

2413
2414


2415
2416
2417
2418
2419
2420
2421
            if( aiMap ) aiMap[i] = j;
          }
  
          assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
          if( colUsed==(MASKBIT(nExpr)-1) ){
            /* If we reach this point, that means the index pIdx is usable */
            int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);

            ExplainQueryPlan((pParse, 0,
                              "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));


            sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
            sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
            VdbeComment((v, "%s", pIdx->zName));
            assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
            eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
  
            if( prRhsHasNull ){
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
  ** If all of the above are false, then we can run this code just once
  ** save the results, and reuse the same result on subsequent invocations.
  */
  if( !ExprHasProperty(pExpr, EP_VarSelect) ){
    jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
  }

#ifndef SQLITE_OMIT_EXPLAIN
  if( pParse->explain==2 ){
    char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
        jmpIfDynamic>=0?"":"CORRELATED ",
        pExpr->op==TK_IN?"LIST":"SCALAR",
        pParse->iNextSelectId
    );
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
#endif

  switch( pExpr->op ){
    case TK_IN: {
      int addr;                   /* Address of OP_OpenEphemeral instruction */
      Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
      KeyInfo *pKeyInfo = 0;      /* Key information */
      int nVal;                   /* Size of vector pLeft */
      







<
<
<
<
<
<
<
<
<
<
<







2602
2603
2604
2605
2606
2607
2608











2609
2610
2611
2612
2613
2614
2615
  ** If all of the above are false, then we can run this code just once
  ** save the results, and reuse the same result on subsequent invocations.
  */
  if( !ExprHasProperty(pExpr, EP_VarSelect) ){
    jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
  }












  switch( pExpr->op ){
    case TK_IN: {
      int addr;                   /* Address of OP_OpenEphemeral instruction */
      Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
      KeyInfo *pKeyInfo = 0;      /* Key information */
      int nVal;                   /* Size of vector pLeft */
      
2650
2651
2652
2653
2654
2655
2656



2657
2658
2659
2660
2661
2662
2663
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */
        Select *pSelect = pExpr->x.pSelect;
        ExprList *pEList = pSelect->pEList;




        assert( !isRowid );
        /* If the LHS and RHS of the IN operator do not match, that
        ** error will have been caught long before we reach this point. */
        if( ALWAYS(pEList->nExpr==nVal) ){
          SelectDest dest;
          int i;
          sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);







>
>
>







2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */
        Select *pSelect = pExpr->x.pSelect;
        ExprList *pEList = pSelect->pEList;

        ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY",
            jmpIfDynamic>=0?"":"CORRELATED "
        ));
        assert( !isRowid );
        /* If the LHS and RHS of the IN operator do not match, that
        ** error will have been caught long before we reach this point. */
        if( ALWAYS(pEList->nExpr==nVal) ){
          SelectDest dest;
          int i;
          sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
        ** a column, use numeric affinity.
        */
        char affinity;            /* Affinity of the LHS of the IN */
        int i;
        ExprList *pList = pExpr->x.pList;
        struct ExprList_item *pItem;
        int r1, r2, r3;

        affinity = sqlite3ExprAffinity(pLeft);
        if( !affinity ){
          affinity = SQLITE_AFF_BLOB;
        }
        if( pKeyInfo ){
          assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
          pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);







<







2683
2684
2685
2686
2687
2688
2689

2690
2691
2692
2693
2694
2695
2696
        ** a column, use numeric affinity.
        */
        char affinity;            /* Affinity of the LHS of the IN */
        int i;
        ExprList *pList = pExpr->x.pList;
        struct ExprList_item *pItem;
        int r1, r2, r3;

        affinity = sqlite3ExprAffinity(pLeft);
        if( !affinity ){
          affinity = SQLITE_AFF_BLOB;
        }
        if( pKeyInfo ){
          assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
          pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2772
2773
2774
2775
2776
2777
2778


2779
2780
2781
2782
2783
2784
2785

      testcase( pExpr->op==TK_EXISTS );
      testcase( pExpr->op==TK_SELECT );
      assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
      assert( ExprHasProperty(pExpr, EP_xIsSelect) );

      pSel = pExpr->x.pSelect;


      nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
      sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
      pParse->nMem += nReg;
      if( pExpr->op==TK_SELECT ){
        dest.eDest = SRT_Mem;
        dest.iSdst = dest.iSDParm;
        dest.nSdst = nReg;







>
>







2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778

      testcase( pExpr->op==TK_EXISTS );
      testcase( pExpr->op==TK_SELECT );
      assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
      assert( ExprHasProperty(pExpr, EP_xIsSelect) );

      pSel = pExpr->x.pSelect;
      ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY",
            jmpIfDynamic>=0?"":"CORRELATED "));
      nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
      sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
      pParse->nMem += nReg;
      if( pExpr->op==TK_SELECT ){
        dest.eDest = SRT_Mem;
        dest.iSdst = dest.iSDParm;
        dest.nSdst = nReg;
3534
3535
3536
3537
3538
3539
3540

3541
3542
3543
3544
3545
3546
3547

  assert( target>0 && target<=pParse->nMem );
  if( v==0 ){
    assert( pParse->db->mallocFailed );
    return 0;
  }


  if( pExpr==0 ){
    op = TK_NULL;
  }else{
    op = pExpr->op;
  }
  switch( op ){
    case TK_AGG_COLUMN: {







>







3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541

  assert( target>0 && target<=pParse->nMem );
  if( v==0 ){
    assert( pParse->db->mallocFailed );
    return 0;
  }

expr_code_doover:
  if( pExpr==0 ){
    op = TK_NULL;
  }else{
    op = pExpr->op;
  }
  switch( op ){
    case TK_AGG_COLUMN: {
3994
3995
3996
3997
3998
3999
4000
4001

4002
4003
4004
4005
4006
4007
4008
    case TK_BETWEEN: {
      exprCodeBetween(pParse, pExpr, target, 0, 0);
      return target;
    }
    case TK_SPAN:
    case TK_COLLATE: 
    case TK_UPLUS: {
      return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);

    }

    case TK_TRIGGER: {
      /* If the opcode is TK_TRIGGER, then the expression is a reference
      ** to a column in the new.* or old.* pseudo-tables available to
      ** trigger programs. In this case Expr.iTable is set to 1 for the
      ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn







|
>







3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
    case TK_BETWEEN: {
      exprCodeBetween(pParse, pExpr, target, 0, 0);
      return target;
    }
    case TK_SPAN:
    case TK_COLLATE: 
    case TK_UPLUS: {
      pExpr = pExpr->pLeft;
      goto expr_code_doover;
    }

    case TK_TRIGGER: {
      /* If the opcode is TK_TRIGGER, then the expression is a reference
      ** to a column in the new.* or old.* pseudo-tables available to
      ** trigger programs. In this case Expr.iTable is set to 1 for the
      ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

      assert( pExpr->iTable==0 || pExpr->iTable==1 );
      assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
      assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
      assert( p1>=0 && p1<(pTab->nCol*2+2) );

      sqlite3VdbeAddOp2(v, OP_Param, p1, target);
      VdbeComment((v, "%s.%s -> $%d",
        (pExpr->iTable ? "new" : "old"),
        (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
        target
      ));

#ifndef SQLITE_OMIT_FLOATING_POINT
      /* If the column has REAL affinity, it may currently be stored as an
      ** integer. Use OP_RealAffinity to make sure it is really real.
      **
      ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to







|

|
<







4027
4028
4029
4030
4031
4032
4033
4034
4035
4036

4037
4038
4039
4040
4041
4042
4043

      assert( pExpr->iTable==0 || pExpr->iTable==1 );
      assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
      assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
      assert( p1>=0 && p1<(pTab->nCol*2+2) );

      sqlite3VdbeAddOp2(v, OP_Param, p1, target);
      VdbeComment((v, "r[%d]=%s.%s", target,
        (pExpr->iTable ? "new" : "old"),
        (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName)

      ));

#ifndef SQLITE_OMIT_FLOATING_POINT
      /* If the column has REAL affinity, it may currently be stored as an
      ** integer. Use OP_RealAffinity to make sure it is really real.
      **
      ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4367
4368
4369
4370
4371
4372
4373






4374
4375
4376
4377
4378
4379
4380
  assert( pList!=0 );
  assert( target>0 );
  assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
  n = pList->nExpr;
  if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
  for(pItem=pList->a, i=0; i<n; i++, pItem++){
    Expr *pExpr = pItem->pExpr;






    if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
      if( flags & SQLITE_ECEL_OMITREF ){
        i--;
        n--;
      }else{
        sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
      }







>
>
>
>
>
>







4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
  assert( pList!=0 );
  assert( target>0 );
  assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
  n = pList->nExpr;
  if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
  for(pItem=pList->a, i=0; i<n; i++, pItem++){
    Expr *pExpr = pItem->pExpr;
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    if( pItem->bSorterRef ){
      i--;
      n--;
    }else
#endif
    if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
      if( flags & SQLITE_ECEL_OMITREF ){
        i--;
        n--;
      }else{
        sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
      }
4895
4896
4897
4898
4899
4900
4901


4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912

4913
4914
4915
4916
4917
4918
4919
      return 1;
    }
    return 2;
  }
  if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
    if( pA->op==TK_FUNCTION ){
      if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;


    }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
      return pA->op==TK_COLLATE ? 1 : 2;
    }
  }
  if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
  if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
    if( combinedFlags & EP_xIsSelect ) return 2;
    if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
    if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
    if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
    if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){

      if( pA->iColumn!=pB->iColumn ) return 2;
      if( pA->iTable!=pB->iTable 
       && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
    }
  }
  return 0;
}







>
>

|








|
>







4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
      return 1;
    }
    return 2;
  }
  if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
    if( pA->op==TK_FUNCTION ){
      if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
    }else if( pA->op==TK_COLLATE ){
      if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
    }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
      return 2;
    }
  }
  if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
  if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
    if( combinedFlags & EP_xIsSelect ) return 2;
    if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
    if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
    if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
    assert( (combinedFlags & EP_Reduced)==0 );
    if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE ){
      if( pA->iColumn!=pB->iColumn ) return 2;
      if( pA->iTable!=pB->iTable 
       && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
    }
  }
  return 0;
}
5251
5252
5253
5254
5255
5256
5257
5258
5259

5260
5261
5262
5263
5264
5265
5266
** for additional information.
*/
static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
  int i;
  NameContext *pNC = pWalker->u.pNC;
  Parse *pParse = pNC->pParse;
  SrcList *pSrcList = pNC->pSrcList;
  AggInfo *pAggInfo = pNC->pAggInfo;


  switch( pExpr->op ){
    case TK_AGG_COLUMN:
    case TK_COLUMN: {
      testcase( pExpr->op==TK_AGG_COLUMN );
      testcase( pExpr->op==TK_COLUMN );
      /* Check to see if the column is in one of the tables in the FROM
      ** clause of the aggregate query */







|

>







5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
** for additional information.
*/
static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
  int i;
  NameContext *pNC = pWalker->u.pNC;
  Parse *pParse = pNC->pParse;
  SrcList *pSrcList = pNC->pSrcList;
  AggInfo *pAggInfo = pNC->uNC.pAggInfo;

  assert( pNC->ncFlags & NC_UAggInfo );
  switch( pExpr->op ){
    case TK_AGG_COLUMN:
    case TK_COLUMN: {
      testcase( pExpr->op==TK_AGG_COLUMN );
      testcase( pExpr->op==TK_COLUMN );
      /* Check to see if the column is in one of the tables in the FROM
      ** clause of the aggregate query */
Changes to src/global.c.
236
237
238
239
240
241
242
243

244
245
246
247
248
249
250
   0,                         /* xVdbeBranch */
   0,                         /* pVbeBranchArg */
#endif
#ifndef SQLITE_UNTESTABLE
   0,                         /* xTestCallback */
#endif
   0,                         /* bLocaltimeFault */
   0x7ffffffe                 /* iOnceResetThreshold */

};

/*
** Hash table for global functions - functions common to all
** database connections.  After initialization, this table is
** read-only.
*/







|
>







236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
   0,                         /* xVdbeBranch */
   0,                         /* pVbeBranchArg */
#endif
#ifndef SQLITE_UNTESTABLE
   0,                         /* xTestCallback */
#endif
   0,                         /* bLocaltimeFault */
   0x7ffffffe,                /* iOnceResetThreshold */
   SQLITE_DEFAULT_SORTERREF_SIZE   /* szSorterRef */
};

/*
** Hash table for global functions - functions common to all
** database connections.  After initialization, this table is
** read-only.
*/
Changes to src/insert.c.
484
485
486
487
488
489
490
491

492
493
494
495
496
497
498
**      D: cleanup
*/
void sqlite3Insert(
  Parse *pParse,        /* Parser context */
  SrcList *pTabList,    /* Name of table into which we are inserting */
  Select *pSelect,      /* A SELECT statement to use as the data source */
  IdList *pColumn,      /* Column names corresponding to IDLIST. */
  int onError           /* How to handle constraint errors */

){
  sqlite3 *db;          /* The main database structure */
  Table *pTab;          /* The table to insert into.  aka TABLE */
  int i, j;             /* Loop counters */
  Vdbe *v;              /* Generate code into this virtual machine */
  Index *pIdx;          /* For looping over indices of the table */
  int nColumn;          /* Number of columns in the data */







|
>







484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
**      D: cleanup
*/
void sqlite3Insert(
  Parse *pParse,        /* Parser context */
  SrcList *pTabList,    /* Name of table into which we are inserting */
  Select *pSelect,      /* A SELECT statement to use as the data source */
  IdList *pColumn,      /* Column names corresponding to IDLIST. */
  int onError,          /* How to handle constraint errors */
  Upsert *pUpsert       /* ON CONFLICT clauses for upsert, or NULL */
){
  sqlite3 *db;          /* The main database structure */
  Table *pTab;          /* The table to insert into.  aka TABLE */
  int i, j;             /* Loop counters */
  Vdbe *v;              /* Generate code into this virtual machine */
  Index *pIdx;          /* For looping over indices of the table */
  int nColumn;          /* Number of columns in the data */
779
780
781
782
783
784
785
786



787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805













806
807
808
809
810
811
812
  if( pColumn!=0 && nColumn!=pColumn->nId ){
    sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
    goto insert_cleanup;
  }
    
  /* Initialize the count of rows to be inserted
  */
  if( db->flags & SQLITE_CountRows ){



    regRowCount = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
  }

  /* If this is not a view, open the table and and all indices */
  if( !isView ){
    int nIdx;
    nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
                                      &iDataCur, &iIdxCur);
    aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1));
    if( aRegIdx==0 ){
      goto insert_cleanup;
    }
    for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
      assert( pIdx );
      aRegIdx[i] = ++pParse->nMem;
      pParse->nMem += pIdx->nColumn;
    }
  }














  /* This is the top of the main insertion loop */
  if( useTempTable ){
    /* This block codes the top of loop only.  The complete loop is the
    ** following pseudocode (template 4):
    **
    **         rewind temp table, if empty goto D







|
>
>
>



















>
>
>
>
>
>
>
>
>
>
>
>
>







780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
  if( pColumn!=0 && nColumn!=pColumn->nId ){
    sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
    goto insert_cleanup;
  }
    
  /* Initialize the count of rows to be inserted
  */
  if( (db->flags & SQLITE_CountRows)!=0
   && !pParse->nested
   && !pParse->pTriggerTab
  ){
    regRowCount = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
  }

  /* If this is not a view, open the table and and all indices */
  if( !isView ){
    int nIdx;
    nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
                                      &iDataCur, &iIdxCur);
    aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1));
    if( aRegIdx==0 ){
      goto insert_cleanup;
    }
    for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
      assert( pIdx );
      aRegIdx[i] = ++pParse->nMem;
      pParse->nMem += pIdx->nColumn;
    }
  }
#ifndef SQLITE_OMIT_UPSERT
  if( pUpsert ){
    pTabList->a[0].iCursor = iDataCur;
    pUpsert->pUpsertSrc = pTabList;
    pUpsert->regData = regData;
    pUpsert->iDataCur = iDataCur;
    pUpsert->iIdxCur = iIdxCur;
    if( pUpsert->pUpsertTarget ){
      sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert);
    }
  }
#endif


  /* This is the top of the main insertion loop */
  if( useTempTable ){
    /* This block codes the top of loop only.  The complete loop is the
    ** following pseudocode (template 4):
    **
    **         rewind temp table, if empty goto D
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
      sqlite3MayAbort(pParse);
    }else
#endif
    {
      int isReplace;    /* Set to true if constraints may cause a replace */
      int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */
      sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
          regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0
      );
      sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);

      /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
      ** constraints or (b) there are no triggers and this table is not a
      ** parent table in a foreign key constraint. It is safe to set the
      ** flag in the second case as if any REPLACE constraint is hit, an







|







1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
      sqlite3MayAbort(pParse);
    }else
#endif
    {
      int isReplace;    /* Set to true if constraints may cause a replace */
      int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */
      sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
          regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
      );
      sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);

      /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
      ** constraints or (b) there are no triggers and this table is not a
      ** parent table in a foreign key constraint. It is safe to set the
      ** flag in the second case as if any REPLACE constraint is hit, an
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
          regIns, aRegIdx, 0, appendFlag, bUseSeek
      );
    }
  }

  /* Update the count of rows that are inserted
  */
  if( (db->flags & SQLITE_CountRows)!=0 ){
    sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
  }

  if( pTrigger ){
    /* Code AFTER triggers */
    sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 
        pTab, regData-2-pTab->nCol, onError, endOfLoop);







|







1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
          regIns, aRegIdx, 0, appendFlag, bUseSeek
      );
    }
  }

  /* Update the count of rows that are inserted
  */
  if( regRowCount ){
    sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
  }

  if( pTrigger ){
    /* Code AFTER triggers */
    sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 
        pTab, regData-2-pTab->nCol, onError, endOfLoop);
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076

1077
1078
1079
1080
1081
1082
1083
  }

  /*
  ** Return the number of rows inserted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
  }

insert_cleanup:
  sqlite3SrcListDelete(db, pTabList);
  sqlite3ExprListDelete(db, pList);

  sqlite3SelectDelete(db, pSelect);
  sqlite3IdListDelete(db, pColumn);
  sqlite3DbFree(db, aRegIdx);
}

/* Make sure "isView" and other macros defined above are undefined. Otherwise
** they may interfere with compilation of other functions in this file







|








>







1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
  }

  /*
  ** Return the number of rows inserted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( regRowCount ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
  }

insert_cleanup:
  sqlite3SrcListDelete(db, pTabList);
  sqlite3ExprListDelete(db, pList);
  sqlite3UpsertDelete(db, pUpsert);
  sqlite3SelectDelete(db, pSelect);
  sqlite3IdListDelete(db, pColumn);
  sqlite3DbFree(db, aRegIdx);
}

/* Make sure "isView" and other macros defined above are undefined. Otherwise
** they may interfere with compilation of other functions in this file
1140
1141
1142
1143
1144
1145
1146






































1147
1148
1149
1150
1151
1152
1153
  }
  testcase( w.eCode==0 );
  testcase( w.eCode==CKCNSTRNT_COLUMN );
  testcase( w.eCode==CKCNSTRNT_ROWID );
  testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
  return !w.eCode;
}







































/*
** Generate code to do constraint checks prior to an INSERT or an UPDATE
** on table pTab.
**
** The regNewData parameter is the first register in a range that contains
** the data to be inserted or the data after the update.  There will be







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
  }
  testcase( w.eCode==0 );
  testcase( w.eCode==CKCNSTRNT_COLUMN );
  testcase( w.eCode==CKCNSTRNT_ROWID );
  testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
  return !w.eCode;
}

/*
** An instance of the ConstraintAddr object remembers the byte-code addresses
** for sections of the constraint checks that deal with uniqueness constraints
** on the rowid and on the upsert constraint.
**
** This information is passed into checkReorderConstraintChecks() to insert
** some OP_Goto operations so that the rowid and upsert constraints occur
** in the correct order relative to other constraints.
*/
typedef struct ConstraintAddr ConstraintAddr;
struct ConstraintAddr {
  int ipkTop;          /* Subroutine for rowid constraint check */
  int upsertTop;       /* Label for upsert constraint check subroutine */
  int upsertTop2;      /* Copy of upsertTop not cleared by the call */
  int upsertBtm;       /* upsert constraint returns to this label */
  int ipkBtm;          /* Return opcode rowid constraint check */
};

/*
** Generate any OP_Goto operations needed to cause constraints to be
** run that haven't already been run.
*/
static void reorderConstraintChecks(Vdbe *v, ConstraintAddr *p){
  if( p->upsertTop ){
    testcase( sqlite3VdbeLabelHasBeenResolved(v, p->upsertTop) );
    sqlite3VdbeGoto(v, p->upsertTop);
    VdbeComment((v, "call upsert subroutine"));
    sqlite3VdbeResolveLabel(v, p->upsertBtm);
    p->upsertTop = 0;
  }
  if( p->ipkTop ){
    sqlite3VdbeGoto(v, p->ipkTop);
    VdbeComment((v, "call rowid unique-check subroutine"));
    sqlite3VdbeJumpHere(v, p->ipkBtm);
    p->ipkTop = 0;
  }
}

/*
** Generate code to do constraint checks prior to an INSERT or an UPDATE
** on table pTab.
**
** The regNewData parameter is the first register in a range that contains
** the data to be inserted or the data after the update.  There will be
1236
1237
1238
1239
1240
1241
1242
1243

1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

1260
1261
1262
1263
1264
1265
1266

1267
1268
1269
1270
1271
1272
1273
  int iIdxCur,         /* First index cursor */
  int regNewData,      /* First register in a range holding values to insert */
  int regOldData,      /* Previous content.  0 for INSERTs */
  u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
  u8 overrideError,    /* Override onError to this if not OE_Default */
  int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
  int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
  int *aiChng          /* column i is unchanged if aiChng[i]<0 */

){
  Vdbe *v;             /* VDBE under constrution */
  Index *pIdx;         /* Pointer to one of the indices */
  Index *pPk = 0;      /* The PRIMARY KEY index */
  sqlite3 *db;         /* Database connection */
  int i;               /* loop counter */
  int ix;              /* Index loop counter */
  int nCol;            /* Number of columns */
  int onError;         /* Conflict resolution strategy */
  int addr1;           /* Address of jump instruction */
  int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
  int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
  int ipkTop = 0;      /* Top of the rowid change constraint check */
  int ipkBottom = 0;   /* Bottom of the rowid change constraint check */
  u8 isUpdate;         /* True if this is an UPDATE operation */
  u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */


  isUpdate = regOldData!=0;
  db = pParse->db;
  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  nCol = pTab->nCol;

  
  /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
  ** normal rowid tables.  nPkField is the number of key fields in the 
  ** pPk index or 1 for a rowid table.  In other words, nPkField is the
  ** number of fields in the true primary key of the table. */
  if( HasRowid(pTab) ){
    pPk = 0;







|
>












|
|


>







>







1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
  int iIdxCur,         /* First index cursor */
  int regNewData,      /* First register in a range holding values to insert */
  int regOldData,      /* Previous content.  0 for INSERTs */
  u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
  u8 overrideError,    /* Override onError to this if not OE_Default */
  int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
  int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
  int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
  Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
){
  Vdbe *v;             /* VDBE under constrution */
  Index *pIdx;         /* Pointer to one of the indices */
  Index *pPk = 0;      /* The PRIMARY KEY index */
  sqlite3 *db;         /* Database connection */
  int i;               /* loop counter */
  int ix;              /* Index loop counter */
  int nCol;            /* Number of columns */
  int onError;         /* Conflict resolution strategy */
  int addr1;           /* Address of jump instruction */
  int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
  int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
  ConstraintAddr sAddr;/* Address information for constraint reordering */
  Index *pUpIdx = 0;   /* Index to which to apply the upsert */
  u8 isUpdate;         /* True if this is an UPDATE operation */
  u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
  int upsertBypass = 0;  /* Address of Goto to bypass upsert subroutine */

  isUpdate = regOldData!=0;
  db = pParse->db;
  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  nCol = pTab->nCol;
  memset(&sAddr, 0, sizeof(sAddr));
  
  /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
  ** normal rowid tables.  nPkField is the number of key fields in the 
  ** pPk index or 1 for a rowid table.  In other words, nPkField is the
  ** number of fields in the true primary key of the table. */
  if( HasRowid(pTab) ){
    pPk = 0;
1358
1359
1360
1361
1362
1363
1364








































1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378


























1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416



1417
1418
1419
1420
1421
1422
1423
                              P5_ConstraintCheck);
      }
      sqlite3VdbeResolveLabel(v, allOk);
    }
    pParse->iSelfTab = 0;
  }
#endif /* !defined(SQLITE_OMIT_CHECK) */









































  /* If rowid is changing, make sure the new rowid does not previously
  ** exist in the table.
  */
  if( pkChng && pPk==0 ){
    int addrRowidOk = sqlite3VdbeMakeLabel(v);

    /* Figure out what action to take in case of a rowid collision */
    onError = pTab->keyConf;
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }



























    if( isUpdate ){
      /* pkChng!=0 does not mean that the rowid has changed, only that
      ** it might have changed.  Skip the conflict logic below if the rowid
      ** is unchanged. */
      sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
      sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
      VdbeCoverage(v);
    }

    /* If the response to a rowid conflict is REPLACE but the response
    ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
    ** to defer the running of the rowid conflict checking until after
    ** the UNIQUE constraints have run.
    */
    if( onError==OE_Replace && overrideError!=OE_Replace ){
      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
        if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
          ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
          break;
        }
      }
    }

    /* Check to see if the new rowid already exists in the table.  Skip
    ** the following conflict logic if it does not. */

    sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
    VdbeCoverage(v);

    /* Generate code that deals with a rowid collision */
    switch( onError ){
      default: {
        onError = OE_Abort;
        /* Fall thru into the next case */
      }
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {



        sqlite3RowidConstraint(pParse, onError, pTab);
        break;
      }
      case OE_Replace: {
        /* If there are DELETE triggers on this table and the
        ** recursive-triggers flag is set, call GenerateRowDelete() to
        ** remove the conflicting row from the table. This will fire







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>














>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>










<
<
<
<
<
<
<
<
<
<
<
<
<
<


>



<








>
>
>







1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513














1514
1515
1516
1517
1518
1519

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
                              P5_ConstraintCheck);
      }
      sqlite3VdbeResolveLabel(v, allOk);
    }
    pParse->iSelfTab = 0;
  }
#endif /* !defined(SQLITE_OMIT_CHECK) */

  /* UNIQUE and PRIMARY KEY constraints should be handled in the following
  ** order:
  **
  **   (1)  OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
  **   (2)  OE_Update
  **   (3)  OE_Replace
  **
  ** OE_Fail and OE_Ignore must happen before any changes are made.
  ** OE_Update guarantees that only a single row will change, so it
  ** must happen before OE_Replace.  Technically, OE_Abort and OE_Rollback
  ** could happen in any order, but they are grouped up front for
  ** convenience.
  **
  ** Constraint checking code is generated in this order:
  **   (A)  The rowid constraint
  **   (B)  Unique index constraints that do not have OE_Replace as their
  **        default conflict resolution strategy
  **   (C)  Unique index that do use OE_Replace by default.
  **
  ** The ordering of (2) and (3) is accomplished by making sure the linked
  ** list of indexes attached to a table puts all OE_Replace indexes last
  ** in the list.  See sqlite3CreateIndex() for where that happens.
  */

  if( pUpsert ){
    if( pUpsert->pUpsertTarget==0 ){
      /* An ON CONFLICT DO NOTHING clause, without a constraint-target.
      ** Make all unique constraint resolution be OE_Ignore */
      assert( pUpsert->pUpsertSet==0 );
      overrideError = OE_Ignore;
      pUpsert = 0;
    }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){
      /* If the constraint-target is on some column other than
      ** then ROWID, then we might need to move the UPSERT around
      ** so that it occurs in the correct order. */
      sAddr.upsertTop = sAddr.upsertTop2 = sqlite3VdbeMakeLabel(v);
      sAddr.upsertBtm = sqlite3VdbeMakeLabel(v);
    }
  }

  /* If rowid is changing, make sure the new rowid does not previously
  ** exist in the table.
  */
  if( pkChng && pPk==0 ){
    int addrRowidOk = sqlite3VdbeMakeLabel(v);

    /* Figure out what action to take in case of a rowid collision */
    onError = pTab->keyConf;
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }

    /* figure out whether or not upsert applies in this case */
    if( pUpsert && pUpsert->pUpsertIdx==0 ){
      if( pUpsert->pUpsertSet==0 ){
        onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
      }else{
        onError = OE_Update;  /* DO UPDATE */
      }
    }

    /* If the response to a rowid conflict is REPLACE but the response
    ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
    ** to defer the running of the rowid conflict checking until after
    ** the UNIQUE constraints have run.
    */
    assert( OE_Update>OE_Replace );
    assert( OE_Ignore<OE_Replace );
    assert( OE_Fail<OE_Replace );
    assert( OE_Abort<OE_Replace );
    assert( OE_Rollback<OE_Replace );
    if( onError>=OE_Replace
     && (pUpsert || onError!=overrideError)
     && pTab->pIndex
    ){
      sAddr.ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
    }

    if( isUpdate ){
      /* pkChng!=0 does not mean that the rowid has changed, only that
      ** it might have changed.  Skip the conflict logic below if the rowid
      ** is unchanged. */
      sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
      sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
      VdbeCoverage(v);
    }















    /* Check to see if the new rowid already exists in the table.  Skip
    ** the following conflict logic if it does not. */
    VdbeNoopComment((v, "uniqueness check for ROWID"));
    sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
    VdbeCoverage(v);


    switch( onError ){
      default: {
        onError = OE_Abort;
        /* Fall thru into the next case */
      }
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        testcase( onError==OE_Rollback );
        testcase( onError==OE_Abort );
        testcase( onError==OE_Fail );
        sqlite3RowidConstraint(pParse, onError, pTab);
        break;
      }
      case OE_Replace: {
        /* If there are DELETE triggers on this table and the
        ** recursive-triggers flag is set, call GenerateRowDelete() to
        ** remove the conflicting row from the table. This will fire
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469






1470
1471

1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496









1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
        }
        if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
          sqlite3MultiWrite(pParse);
          sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
                                   regNewData, 1, 0, OE_Replace, 1, -1);
        }else{
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
          if( HasRowid(pTab) ){
            /* This OP_Delete opcode fires the pre-update-hook only. It does
            ** not modify the b-tree. It is more efficient to let the coming
            ** OP_Insert replace the existing entry than it is to delete the
            ** existing entry and then insert a new one. */
            sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
            sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
          }
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
          if( pTab->pIndex ){
            sqlite3MultiWrite(pParse);
            sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
          }
        }
        seenReplace = 1;
        break;
      }






      case OE_Ignore: {
        /*assert( seenReplace==0 );*/

        sqlite3VdbeGoto(v, ignoreDest);
        break;
      }
    }
    sqlite3VdbeResolveLabel(v, addrRowidOk);
    if( ipkTop ){
      ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
      sqlite3VdbeJumpHere(v, ipkTop);
    }
  }

  /* Test all UNIQUE constraints by creating entries for each UNIQUE
  ** index and making sure that duplicate entries do not already exist.
  ** Compute the revised record entries for indices as we go.
  **
  ** This loop also handles the case of the PRIMARY KEY index for a
  ** WITHOUT ROWID table.
  */
  for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
    int regIdx;          /* Range of registers hold conent for pIdx */
    int regR;            /* Range of registers holding conflicting PK */
    int iThisCur;        /* Cursor for this UNIQUE index */
    int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */

    if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */









    if( bAffinityDone==0 ){
      sqlite3TableAffinity(v, pTab, regNewData+1);
      bAffinityDone = 1;
    }
    iThisCur = iIdxCur+ix;
    addrUniqueOk = sqlite3VdbeMakeLabel(v);

    /* Skip partial indices for which the WHERE clause is not true */
    if( pIdx->pPartIdxWhere ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
      pParse->iSelfTab = -(regNewData+1);
      sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
                            SQLITE_JUMPIFNULL);







|
|
|
|
|
|
|
<









>
>
>
>
>
>

<
>





|
|
|

















>
>
>
>
>
>
>
>
>





|







1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573

1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589

1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
        }
        if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
          sqlite3MultiWrite(pParse);
          sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
                                   regNewData, 1, 0, OE_Replace, 1, -1);
        }else{
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
          assert( HasRowid(pTab) );
          /* This OP_Delete opcode fires the pre-update-hook only. It does
          ** not modify the b-tree. It is more efficient to let the coming
          ** OP_Insert replace the existing entry than it is to delete the
          ** existing entry and then insert a new one. */
          sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
          sqlite3VdbeAppendP4(v, pTab, P4_TABLE);

#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
          if( pTab->pIndex ){
            sqlite3MultiWrite(pParse);
            sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
          }
        }
        seenReplace = 1;
        break;
      }
#ifndef SQLITE_OMIT_UPSERT
      case OE_Update: {
        sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
        /* Fall through */
      }
#endif
      case OE_Ignore: {

        testcase( onError==OE_Ignore );
        sqlite3VdbeGoto(v, ignoreDest);
        break;
      }
    }
    sqlite3VdbeResolveLabel(v, addrRowidOk);
    if( sAddr.ipkTop ){
      sAddr.ipkBtm = sqlite3VdbeAddOp0(v, OP_Goto);
      sqlite3VdbeJumpHere(v, sAddr.ipkTop-1);
    }
  }

  /* Test all UNIQUE constraints by creating entries for each UNIQUE
  ** index and making sure that duplicate entries do not already exist.
  ** Compute the revised record entries for indices as we go.
  **
  ** This loop also handles the case of the PRIMARY KEY index for a
  ** WITHOUT ROWID table.
  */
  for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
    int regIdx;          /* Range of registers hold conent for pIdx */
    int regR;            /* Range of registers holding conflicting PK */
    int iThisCur;        /* Cursor for this UNIQUE index */
    int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */

    if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
    if( pUpIdx==pIdx ){
      addrUniqueOk = sAddr.upsertBtm;
      upsertBypass = sqlite3VdbeGoto(v, 0);
      VdbeComment((v, "Skip upsert subroutine"));
      sqlite3VdbeResolveLabel(v, sAddr.upsertTop2);
    }else{
      addrUniqueOk = sqlite3VdbeMakeLabel(v);
    }
    VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName));
    if( bAffinityDone==0 ){
      sqlite3TableAffinity(v, pTab, regNewData+1);
      bAffinityDone = 1;
    }
    iThisCur = iIdxCur+ix;


    /* Skip partial indices for which the WHERE clause is not true */
    if( pIdx->pPartIdxWhere ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
      pParse->iSelfTab = -(regNewData+1);
      sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
                            SQLITE_JUMPIFNULL);
1554
1555
1556
1557
1558
1559
1560


















1561
1562
1563
1564
1565
1566
1567
      continue;  /* pIdx is not a UNIQUE index */
    }
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }



















    /* Collision detection may be omitted if all of the following are true:
    **   (1) The conflict resolution algorithm is REPLACE
    **   (2) The table is a WITHOUT ROWID table
    **   (3) There are no secondary indexes on the table
    **   (4) No delete triggers need to be fired if there is a conflict
    **   (5) No FK constraint counters need to be updated if a conflict occurs.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
      continue;  /* pIdx is not a UNIQUE index */
    }
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }

    /* Figure out if the upsert clause applies to this index */
    if( pUpIdx==pIdx ){
      if( pUpsert->pUpsertSet==0 ){
        onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
      }else{
        onError = OE_Update;  /* DO UPDATE */
      }
    }

    /* Invoke subroutines to handle IPK replace and upsert prior to running
    ** the first REPLACE constraint check. */
    if( onError==OE_Replace ){
      testcase( sAddr.ipkTop );
      testcase( sAddr.upsertTop
             && sqlite3VdbeLabelHasBeenResolved(v,sAddr.upsertTop) );
      reorderConstraintChecks(v, &sAddr);
    }

    /* Collision detection may be omitted if all of the following are true:
    **   (1) The conflict resolution algorithm is REPLACE
    **   (2) The table is a WITHOUT ROWID table
    **   (3) There are no secondary indexes on the table
    **   (4) No delete triggers need to be fired if there is a conflict
    **   (5) No FK constraint counters need to be updated if a conflict occurs.
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648



1649
1650
1651






1652

1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669



1670

1671
1672
1673
1674
1675
1676
1677




1678
1679
1680
1681
1682
1683
1684
          }
        }
      }
    }

    /* Generate code that executes if the new index entry is not unique */
    assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
        || onError==OE_Ignore || onError==OE_Replace );
    switch( onError ){
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {



        sqlite3UniqueConstraint(pParse, onError, pIdx);
        break;
      }






      case OE_Ignore: {

        sqlite3VdbeGoto(v, ignoreDest);
        break;
      }
      default: {
        Trigger *pTrigger = 0;
        assert( onError==OE_Replace );
        sqlite3MultiWrite(pParse);
        if( db->flags&SQLITE_RecTriggers ){
          pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
        }
        sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
            regR, nPkField, 0, OE_Replace,
            (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
        seenReplace = 1;
        break;
      }
    }



    sqlite3VdbeResolveLabel(v, addrUniqueOk);

    sqlite3ExprCachePop(pParse);
    if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
  }
  if( ipkTop ){
    sqlite3VdbeGoto(v, ipkTop+1);
    sqlite3VdbeJumpHere(v, ipkBottom);
  }




  
  *pbMayReplace = seenReplace;
  VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
}

#ifdef SQLITE_ENABLE_NULL_TRIM
/*







|




>
>
>



>
>
>
>
>
>

>

















>
>
>
|
>


|
<
<
<

>
>
>
>







1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833



1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
          }
        }
      }
    }

    /* Generate code that executes if the new index entry is not unique */
    assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
        || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
    switch( onError ){
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        testcase( onError==OE_Rollback );
        testcase( onError==OE_Abort );
        testcase( onError==OE_Fail );
        sqlite3UniqueConstraint(pParse, onError, pIdx);
        break;
      }
#ifndef SQLITE_OMIT_UPSERT
      case OE_Update: {
        sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
        /* Fall through */
      }
#endif
      case OE_Ignore: {
        testcase( onError==OE_Ignore );
        sqlite3VdbeGoto(v, ignoreDest);
        break;
      }
      default: {
        Trigger *pTrigger = 0;
        assert( onError==OE_Replace );
        sqlite3MultiWrite(pParse);
        if( db->flags&SQLITE_RecTriggers ){
          pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
        }
        sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
            regR, nPkField, 0, OE_Replace,
            (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
        seenReplace = 1;
        break;
      }
    }
    if( pUpIdx==pIdx ){
      sqlite3VdbeJumpHere(v, upsertBypass);
    }else{
      sqlite3VdbeResolveLabel(v, addrUniqueOk);
    }
    sqlite3ExprCachePop(pParse);
    if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);




  }
  testcase( sAddr.ipkTop!=0 );
  testcase( sAddr.upsertTop
         && sqlite3VdbeLabelHasBeenResolved(v,sAddr.upsertTop) );
  reorderConstraintChecks(v, &sAddr);
  
  *pbMayReplace = seenReplace;
  VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
}

#ifdef SQLITE_ENABLE_NULL_TRIM
/*
Changes to src/main.c.
641
642
643
644
645
646
647











648
649
650
651
652
653
654
    }

    case SQLITE_CONFIG_STMTJRNL_SPILL: {
      sqlite3GlobalConfig.nStmtSpill = va_arg(ap, int);
      break;
    }












    default: {
      rc = SQLITE_ERROR;
      break;
    }
  }
  va_end(ap);
  return rc;







>
>
>
>
>
>
>
>
>
>
>







641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
    }

    case SQLITE_CONFIG_STMTJRNL_SPILL: {
      sqlite3GlobalConfig.nStmtSpill = va_arg(ap, int);
      break;
    }

#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    case SQLITE_CONFIG_SORTERREF_SIZE: {
      int iVal = va_arg(ap, int);
      if( iVal<0 ){
        iVal = SQLITE_DEFAULT_SORTERREF_SIZE;
      }
      sqlite3GlobalConfig.szSorterRef = (u32)iVal;
      break;
    }
#endif /* SQLITE_ENABLE_SORTER_REFERENCES */

    default: {
      rc = SQLITE_ERROR;
      break;
    }
  }
  va_end(ap);
  return rc;
822
823
824
825
826
827
828

829
830
831
832
833
834
835
        { SQLITE_DBCONFIG_ENABLE_FKEY,           SQLITE_ForeignKeys    },
        { SQLITE_DBCONFIG_ENABLE_TRIGGER,        SQLITE_EnableTrigger  },
        { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer  },
        { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension  },
        { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE,      SQLITE_NoCkptOnClose  },
        { SQLITE_DBCONFIG_ENABLE_QPSG,           SQLITE_EnableQPSG     },
        { SQLITE_DBCONFIG_TRIGGER_EQP,           SQLITE_TriggerEQP     },

      };
      unsigned int i;
      rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
      for(i=0; i<ArraySize(aFlagOp); i++){
        if( aFlagOp[i].op==op ){
          int onoff = va_arg(ap, int);
          int *pRes = va_arg(ap, int*);







>







833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
        { SQLITE_DBCONFIG_ENABLE_FKEY,           SQLITE_ForeignKeys    },
        { SQLITE_DBCONFIG_ENABLE_TRIGGER,        SQLITE_EnableTrigger  },
        { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer  },
        { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension  },
        { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE,      SQLITE_NoCkptOnClose  },
        { SQLITE_DBCONFIG_ENABLE_QPSG,           SQLITE_EnableQPSG     },
        { SQLITE_DBCONFIG_TRIGGER_EQP,           SQLITE_TriggerEQP     },
        { SQLITE_DBCONFIG_RESET_DATABASE,        SQLITE_ResetDatabase  },
      };
      unsigned int i;
      rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
      for(i=0; i<ArraySize(aFlagOp); i++){
        if( aFlagOp[i].op==op ){
          int onoff = va_arg(ap, int);
          int *pRes = va_arg(ap, int*);
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
    */
    case SQLITE_TESTCTRL_OPTIMIZATIONS: {
      sqlite3 *db = va_arg(ap, sqlite3*);
      db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff);
      break;
    }

#ifdef SQLITE_N_KEYWORD
    /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord)
    **
    ** If zWord is a keyword recognized by the parser, then return the
    ** number of keywords.  Or if zWord is not a keyword, return 0.
    ** 
    ** This test feature is only available in the amalgamation since
    ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite
    ** is built using separate source files.
    */
    case SQLITE_TESTCTRL_ISKEYWORD: {
      const char *zWord = va_arg(ap, const char*);
      int n = sqlite3Strlen30(zWord);
      rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0;
      break;
    }
#endif 

    /*   sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff);
    **
    ** If parameter onoff is non-zero, configure the wrappers so that all
    ** subsequent calls to localtime() and variants fail. If onoff is zero,
    ** undo this setting.
    */
    case SQLITE_TESTCTRL_LOCALTIME_FAULT: {







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







3987
3988
3989
3990
3991
3992
3993


















3994
3995
3996
3997
3998
3999
4000
    */
    case SQLITE_TESTCTRL_OPTIMIZATIONS: {
      sqlite3 *db = va_arg(ap, sqlite3*);
      db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff);
      break;
    }



















    /*   sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff);
    **
    ** If parameter onoff is non-zero, configure the wrappers so that all
    ** subsequent calls to localtime() and variants fail. If onoff is zero,
    ** undo this setting.
    */
    case SQLITE_TESTCTRL_LOCALTIME_FAULT: {
Changes to src/os_win.c.
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/*
 * The size of the buffer used by sqlite3_win32_write_debug().
 */
#ifndef SQLITE_WIN32_DBG_BUF_SIZE
#  define SQLITE_WIN32_DBG_BUF_SIZE   ((int)(4096-sizeof(DWORD)))
#endif

/*
 * The value used with sqlite3_win32_set_directory() to specify that
 * the data directory should be changed.
 */
#ifndef SQLITE_WIN32_DATA_DIRECTORY_TYPE
#  define SQLITE_WIN32_DATA_DIRECTORY_TYPE (1)
#endif

/*
 * The value used with sqlite3_win32_set_directory() to specify that
 * the temporary directory should be changed.
 */
#ifndef SQLITE_WIN32_TEMP_DIRECTORY_TYPE
#  define SQLITE_WIN32_TEMP_DIRECTORY_TYPE (2)
#endif

/*
 * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the
 * various Win32 API heap functions instead of our own.
 */
#ifdef SQLITE_WIN32_MALLOC

/*







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







311
312
313
314
315
316
317
















318
319
320
321
322
323
324
/*
 * The size of the buffer used by sqlite3_win32_write_debug().
 */
#ifndef SQLITE_WIN32_DBG_BUF_SIZE
#  define SQLITE_WIN32_DBG_BUF_SIZE   ((int)(4096-sizeof(DWORD)))
#endif

















/*
 * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the
 * various Win32 API heap functions instead of our own.
 */
#ifdef SQLITE_WIN32_MALLOC

/*
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936



1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964

































1965
1966
1967
1968
1969
1970
1971
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return winUtf8ToMbcs(zText, useAnsi);
}

/*
** This function sets the data directory or the temporary directory based on
** the provided arguments.  The type argument must be 1 in order to set the
** data directory or 2 in order to set the temporary directory.  The zValue
** argument is the name of the directory to use.  The return value will be
** SQLITE_OK if successful.
*/
int sqlite3_win32_set_directory(DWORD type, LPCWSTR zValue){



  char **ppDirectory = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return rc;
#endif
  if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){
    ppDirectory = &sqlite3_data_directory;
  }else if( type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ){
    ppDirectory = &sqlite3_temp_directory;
  }
  assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE
          || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE
  );
  assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) );
  if( ppDirectory ){
    char *zValueUtf8 = 0;
    if( zValue && zValue[0] ){
      zValueUtf8 = winUnicodeToUtf8(zValue);
      if ( zValueUtf8==0 ){
        return SQLITE_NOMEM_BKPT;
      }
    }
    sqlite3_free(*ppDirectory);
    *ppDirectory = zValueUtf8;
    return SQLITE_OK;
  }
  return SQLITE_ERROR;
}


































/*
** The return value of winGetLastErrorMsg
** is zero if the error message fits in the buffer, or non-zero
** otherwise (if the message was truncated).
*/
static int winGetLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){







|
<
<
<
|

|
>
>
>















|

|
|




|




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1907
1908
1909
1910
1911
1912
1913
1914



1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return winUtf8ToMbcs(zText, useAnsi);
}

/*
** This function is the same as sqlite3_win32_set_directory (below); however,



** it accepts a UTF-8 string.
*/
int sqlite3_win32_set_directory8(
  unsigned long type, /* Identifier for directory being set or reset */
  const char *zValue  /* New value for directory being set or reset */
){
  char **ppDirectory = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return rc;
#endif
  if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){
    ppDirectory = &sqlite3_data_directory;
  }else if( type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ){
    ppDirectory = &sqlite3_temp_directory;
  }
  assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE
          || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE
  );
  assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) );
  if( ppDirectory ){
    char *zCopy = 0;
    if( zValue && zValue[0] ){
      zCopy = sqlite3_mprintf("%s", zValue);
      if ( zCopy==0 ){
        return SQLITE_NOMEM_BKPT;
      }
    }
    sqlite3_free(*ppDirectory);
    *ppDirectory = zCopy;
    return SQLITE_OK;
  }
  return SQLITE_ERROR;
}

/*
** This function is the same as sqlite3_win32_set_directory (below); however,
** it accepts a UTF-16 string.
*/
int sqlite3_win32_set_directory16(
  unsigned long type, /* Identifier for directory being set or reset */
  const void *zValue  /* New value for directory being set or reset */
){
  int rc;
  char *zUtf8 = 0;
  if( zValue ){
    zUtf8 = sqlite3_win32_unicode_to_utf8(zValue);
    if( zUtf8==0 ) return SQLITE_NOMEM_BKPT;
  }
  rc = sqlite3_win32_set_directory8(type, zUtf8);
  if( zUtf8 ) sqlite3_free(zUtf8);
  return rc;
}

/*
** This function sets the data directory or the temporary directory based on
** the provided arguments.  The type argument must be 1 in order to set the
** data directory or 2 in order to set the temporary directory.  The zValue
** argument is the name of the directory to use.  The return value will be
** SQLITE_OK if successful.
*/
int sqlite3_win32_set_directory(
  unsigned long type, /* Identifier for directory being set or reset */
  void *zValue        /* New value for directory being set or reset */
){
  return sqlite3_win32_set_directory16(type, zValue);
}

/*
** The return value of winGetLastErrorMsg
** is zero if the error message fits in the buffer, or non-zero
** otherwise (if the message was truncated).
*/
static int winGetLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){
Changes to src/parse.y.
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35

// The type of the data attached to each token is Token.  This is also the
// default type for non-terminals.
//
%token_type {Token}
%default_type {Token}


// The generated parser function takes a 4th argument as follows:
%extra_argument {Parse *pParse}

// This code runs whenever there is a syntax error
//
%syntax_error {
  UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
  if( TOKEN.z[0] ){
    sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);







>
|
|







20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

// The type of the data attached to each token is Token.  This is also the
// default type for non-terminals.
//
%token_type {Token}
%default_type {Token}

// An extra argument to the constructor for the parser, which is available
// to all actions.
%extra_context {Parse *pParse}

// This code runs whenever there is a syntax error
//
%syntax_error {
  UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
  if( TOKEN.z[0] ){
    sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
110
111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
} // end %include

// Input is a single SQL command
input ::= cmdlist.
cmdlist ::= cmdlist ecmd.
cmdlist ::= ecmd.
ecmd ::= SEMI.
ecmd ::= explain cmdx SEMI.
explain ::= .
%ifndef SQLITE_OMIT_EXPLAIN

explain ::= EXPLAIN.              { pParse->explain = 1; }
explain ::= EXPLAIN QUERY PLAN.   { pParse->explain = 2; }
%endif  SQLITE_OMIT_EXPLAIN
cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }

///////////////////// Begin and end transactions. ////////////////////////////
//







|
<

>







111
112
113
114
115
116
117
118

119
120
121
122
123
124
125
126
127
} // end %include

// Input is a single SQL command
input ::= cmdlist.
cmdlist ::= cmdlist ecmd.
cmdlist ::= ecmd.
ecmd ::= SEMI.
ecmd ::= cmdx SEMI.

%ifndef SQLITE_OMIT_EXPLAIN
ecmd ::= explain cmdx.
explain ::= EXPLAIN.              { pParse->explain = 1; }
explain ::= EXPLAIN QUERY PLAN.   { pParse->explain = 2; }
%endif  SQLITE_OMIT_EXPLAIN
cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }

///////////////////// Begin and end transactions. ////////////////////////////
//
201
202
203
204
205
206
207
208

209
210
211
212
213
214
215

// The following directive causes tokens ABORT, AFTER, ASC, etc. to
// fallback to ID if they will not parse as their original value.
// This obviates the need for the "id" nonterminal.
//
%fallback ID
  ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
  CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR

  IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
  QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW
  ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT
%ifdef SQLITE_OMIT_COMPOUND_SELECT
  EXCEPT INTERSECT UNION
%endif SQLITE_OMIT_COMPOUND_SELECT
  REINDEX RENAME CTIME_KW IF







|
>







202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

// The following directive causes tokens ABORT, AFTER, ASC, etc. to
// fallback to ID if they will not parse as their original value.
// This obviates the need for the "id" nonterminal.
//
%fallback ID
  ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
  CONFLICT DATABASE DEFERRED DESC DETACH DO
  EACH END EXCLUSIVE EXPLAIN FAIL FOR
  IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
  QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW
  ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT
%ifdef SQLITE_OMIT_COMPOUND_SELECT
  EXCEPT INTERSECT UNION
%endif SQLITE_OMIT_COMPOUND_SELECT
  REINDEX RENAME CTIME_KW IF
235
236
237
238
239
240
241

242
243
244
245
246
247
248
%right ESCAPE.
%left BITAND BITOR LSHIFT RSHIFT.
%left PLUS MINUS.
%left STAR SLASH REM.
%left CONCAT.
%left COLLATE.
%right BITNOT.


// An IDENTIFIER can be a generic identifier, or one of several
// keywords.  Any non-standard keyword can also be an identifier.
//
%token_class id  ID|INDEXED.









>







237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
%right ESCAPE.
%left BITAND BITOR LSHIFT RSHIFT.
%left PLUS MINUS.
%left STAR SLASH REM.
%left CONCAT.
%left COLLATE.
%right BITNOT.
%nonassoc ON.

// An IDENTIFIER can be a generic identifier, or one of several
// keywords.  Any non-standard keyword can also be an identifier.
//
%token_class id  ID|INDEXED.


683
684
685
686
687
688
689















690
691
692
693
694
695
696
697
698
699

















700
701
702
703
704
705
706
707
708
709
710

%type fullname {SrcList*}
%destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
fullname(A) ::= nm(X).  
   {A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/}
fullname(A) ::= nm(X) DOT nm(Y).  
   {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/}
















%type joinop {int}
joinop(X) ::= COMMA|JOIN.              { X = JT_INNER; }
joinop(X) ::= JOIN_KW(A) JOIN.
                  {X = sqlite3JoinType(pParse,&A,0,0);  /*X-overwrites-A*/}
joinop(X) ::= JOIN_KW(A) nm(B) JOIN.
                  {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/}
joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
                  {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/}


















%type on_opt {Expr*}
%destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
on_opt(N) ::= ON expr(E).   {N = E;}
on_opt(N) ::= .             {N = 0;}

// Note that this block abuses the Token type just a little. If there is
// no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
// there is an INDEXED BY clause, then the token is populated as per normal,
// with z pointing to the token data and n containing the number of bytes
// in the token.
//







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>










>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|
|







686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745

%type fullname {SrcList*}
%destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
fullname(A) ::= nm(X).  
   {A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/}
fullname(A) ::= nm(X) DOT nm(Y).  
   {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/}

%type xfullname {SrcList*}
%destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);}
xfullname(A) ::= nm(X).  
   {A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/}
xfullname(A) ::= nm(X) DOT nm(Y).  
   {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/}
xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z).  {
   A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/
   if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z);
}
xfullname(A) ::= nm(X) AS nm(Z). {  
   A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/
   if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z);
}

%type joinop {int}
joinop(X) ::= COMMA|JOIN.              { X = JT_INNER; }
joinop(X) ::= JOIN_KW(A) JOIN.
                  {X = sqlite3JoinType(pParse,&A,0,0);  /*X-overwrites-A*/}
joinop(X) ::= JOIN_KW(A) nm(B) JOIN.
                  {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/}
joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
                  {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/}

// There is a parsing abiguity in an upsert statement that uses a
// SELECT on the RHS of a the INSERT:
//
//      INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ...
//                                        here ----^^
//
// When the ON token is encountered, the parser does not know if it is
// the beginning of an ON CONFLICT clause, or the beginning of an ON
// clause associated with the JOIN.  The conflict is resolved in favor
// of the JOIN.  If an ON CONFLICT clause is intended, insert a dummy
// WHERE clause in between, like this:
//
//      INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ...
//
// The [AND] and [OR] precedence marks in the rules for on_opt cause the
// ON in this context to always be interpreted as belonging to the JOIN.
//
%type on_opt {Expr*}
%destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
on_opt(N) ::= ON expr(E).  {N = E;}
on_opt(N) ::= .     [OR]   {N = 0;}

// Note that this block abuses the Token type just a little. If there is
// no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
// there is an INDEXED BY clause, then the token is populated as per normal,
// with z pointing to the token data and n containing the number of bytes
// in the token.
//
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
                         {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);}
limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 
                         {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);}

/////////////////////////// The DELETE statement /////////////////////////////
//
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 
        orderby_opt(O) limit_opt(L). {
  sqlite3SrcListIndexedBy(pParse, X, &I);
  sqlite3DeleteFrom(pParse,X,W,O,L);
}
%endif
%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
  sqlite3SrcListIndexedBy(pParse, X, &I);
  sqlite3DeleteFrom(pParse,X,W,0,0);
}
%endif

%type where_opt {Expr*}
%destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}

where_opt(A) ::= .                    {A = 0;}
where_opt(A) ::= WHERE expr(X).       {A = X;}

////////////////////////// The UPDATE command ////////////////////////////////
//
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
        where_opt(W) orderby_opt(O) limit_opt(L).  {
  sqlite3SrcListIndexedBy(pParse, X, &I);
  sqlite3ExprListCheckLength(pParse,Y,"set list"); 
  sqlite3Update(pParse,X,Y,W,R,O,L);
}
%endif
%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
        where_opt(W).  {
  sqlite3SrcListIndexedBy(pParse, X, &I);
  sqlite3ExprListCheckLength(pParse,Y,"set list"); 
  sqlite3Update(pParse,X,Y,W,R,0,0);
}
%endif

%type setlist {ExprList*}
%destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}

setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {







|






|














|



|



|



|







812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
                         {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);}
limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 
                         {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);}

/////////////////////////// The DELETE statement /////////////////////////////
//
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W) 
        orderby_opt(O) limit_opt(L). {
  sqlite3SrcListIndexedBy(pParse, X, &I);
  sqlite3DeleteFrom(pParse,X,W,O,L);
}
%endif
%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W). {
  sqlite3SrcListIndexedBy(pParse, X, &I);
  sqlite3DeleteFrom(pParse,X,W,0,0);
}
%endif

%type where_opt {Expr*}
%destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}

where_opt(A) ::= .                    {A = 0;}
where_opt(A) ::= WHERE expr(X).       {A = X;}

////////////////////////// The UPDATE command ////////////////////////////////
//
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y)
        where_opt(W) orderby_opt(O) limit_opt(L).  {
  sqlite3SrcListIndexedBy(pParse, X, &I);
  sqlite3ExprListCheckLength(pParse,Y,"set list"); 
  sqlite3Update(pParse,X,Y,W,R,O,L,0);
}
%endif
%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y)
        where_opt(W).  {
  sqlite3SrcListIndexedBy(pParse, X, &I);
  sqlite3ExprListCheckLength(pParse,Y,"set list"); 
  sqlite3Update(pParse,X,Y,W,R,0,0,0);
}
%endif

%type setlist {ExprList*}
%destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}

setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {
835
836
837
838
839
840
841
842

843
844
845
846
847
848
849
















850
851
852
853
854
855
856
}
setlist(A) ::= LP idlist(X) RP EQ expr(Y). {
  A = sqlite3ExprListAppendVector(pParse, 0, X, Y);
}

////////////////////////// The INSERT command /////////////////////////////////
//
cmd ::= with insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). {

  sqlite3Insert(pParse, X, S, F, R);
}
cmd ::= with insert_cmd(R) INTO fullname(X) idlist_opt(F) DEFAULT VALUES.
{
  sqlite3Insert(pParse, X, 0, F, R);
}

















%type insert_cmd {int}
insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}

%type idlist_opt {IdList*}
%destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}
%type idlist {IdList*}







|
>
|

|

|


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
}
setlist(A) ::= LP idlist(X) RP EQ expr(Y). {
  A = sqlite3ExprListAppendVector(pParse, 0, X, Y);
}

////////////////////////// The INSERT command /////////////////////////////////
//
cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S)
        upsert(U). {
  sqlite3Insert(pParse, X, S, F, R, U);
}
cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES.
{
  sqlite3Insert(pParse, X, 0, F, R, 0);
}

%type upsert {Upsert*}

// Because upsert only occurs at the tip end of the INSERT rule for cmd,
// there is never a case where the value of the upsert pointer will not
// be destroyed by the cmd action.  So comment-out the destructor to
// avoid unreachable code.
//%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);}
upsert(A) ::= . { A = 0; }
upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW)
              DO UPDATE SET setlist(Z) where_opt(W).
              { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W);}
upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING.
              { A = sqlite3UpsertNew(pParse->db,T,TW,0,0); }
upsert(A) ::= ON CONFLICT DO NOTHING.
              { A = sqlite3UpsertNew(pParse->db,0,0,0,0); }

%type insert_cmd {int}
insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}

%type idlist_opt {IdList*}
%destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}
%type idlist {IdList*}
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
// UPDATE 
trigger_cmd(A) ::=
   UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z) scanpt(E).  
   {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R, B.z, E);}

// INSERT
trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO
                      trnm(X) idlist_opt(F) select(S) scanpt(Z).
   {A = sqlite3TriggerInsertStep(pParse->db,&X,F,S,R,B,Z);/*A-overwrites-R*/}

// DELETE
trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E).
   {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y, B.z, E);}

// SELECT
trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E).
   {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/}







|
|
|







1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
// UPDATE 
trigger_cmd(A) ::=
   UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z) scanpt(E).  
   {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R, B.z, E);}

// INSERT
trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO
                      trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). {
   A = sqlite3TriggerInsertStep(pParse->db,&X,F,S,R,U,B,Z);/*A-overwrites-R*/
}
// DELETE
trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E).
   {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y, B.z, E);}

// SELECT
trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E).
   {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/}
Changes to src/prepare.c.
144
145
146
147
148
149
150

151
152
153
154
155
156
157
  Db *pDb;
  char const *azArg[4];
  int meta[5];
  InitData initData;
  const char *zMasterName;
  int openedTransaction = 0;


  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pSchema );
  assert( sqlite3_mutex_held(db->mutex) );
  assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );

  db->init.busy = 1;








>







144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
  Db *pDb;
  char const *azArg[4];
  int meta[5];
  InitData initData;
  const char *zMasterName;
  int openedTransaction = 0;

  assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 );
  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pSchema );
  assert( sqlite3_mutex_held(db->mutex) );
  assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );

  db->init.busy = 1;

213
214
215
216
217
218
219



220
221
222
223
224
225
226
  **    meta[9]   unused
  **
  ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
  ** the possible values of meta[4].
  */
  for(i=0; i<ArraySize(meta); i++){
    sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);



  }
  pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1];

  /* If opening a non-empty database, check the text encoding. For the
  ** main database, set sqlite3.enc to the encoding of the main database.
  ** For an attached db, it is an error if the encoding is not the same
  ** as sqlite3.enc.







>
>
>







214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
  **    meta[9]   unused
  **
  ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
  ** the possible values of meta[4].
  */
  for(i=0; i<ArraySize(meta); i++){
    sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
  }
  if( (db->flags & SQLITE_ResetDatabase)!=0 ){
    memset(meta, 0, sizeof(meta));
  }
  pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1];

  /* If opening a non-empty database, check the text encoding. For the
  ** main database, set sqlite3.enc to the encoding of the main database.
  ** For an attached db, it is an error if the encoding is not the same
  ** as sqlite3.enc.
373
374
375
376
377
378
379

380
381
382
383
384
385
386
  /* Do the main schema first */
  if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){
    rc = sqlite3InitOne(db, 0, pzErrMsg);
    if( rc ) return rc;
  }
  /* All other schemas after the main schema. The "temp" schema must be last */
  for(i=db->nDb-1; i>0; i--){

    if( !DbHasProperty(db, i, DB_SchemaLoaded) ){
      rc = sqlite3InitOne(db, i, pzErrMsg);
      if( rc ) return rc;
    }
  }
  if( commit_internal ){
    sqlite3CommitInternalChanges(db);







>







377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
  /* Do the main schema first */
  if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){
    rc = sqlite3InitOne(db, 0, pzErrMsg);
    if( rc ) return rc;
  }
  /* All other schemas after the main schema. The "temp" schema must be last */
  for(i=db->nDb-1; i>0; i--){
    assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) );
    if( !DbHasProperty(db, i, DB_SchemaLoaded) ){
      rc = sqlite3InitOne(db, i, pzErrMsg);
      if( rc ) return rc;
    }
  }
  if( commit_internal ){
    sqlite3CommitInternalChanges(db);
394
395
396
397
398
399
400
401
402
403
404



405
406
407
408
409
410
411
*/
int sqlite3ReadSchema(Parse *pParse){
  int rc = SQLITE_OK;
  sqlite3 *db = pParse->db;
  assert( sqlite3_mutex_held(db->mutex) );
  if( !db->init.busy ){
    rc = sqlite3Init(db, &pParse->zErrMsg);
  }
  if( rc!=SQLITE_OK ){
    pParse->rc = rc;
    pParse->nErr++;



  }
  return rc;
}


/*
** Check schema cookies in all databases.  If any cookie is out







<
|
|
|
>
>
>







399
400
401
402
403
404
405

406
407
408
409
410
411
412
413
414
415
416
417
418
*/
int sqlite3ReadSchema(Parse *pParse){
  int rc = SQLITE_OK;
  sqlite3 *db = pParse->db;
  assert( sqlite3_mutex_held(db->mutex) );
  if( !db->init.busy ){
    rc = sqlite3Init(db, &pParse->zErrMsg);

    if( rc!=SQLITE_OK ){
      pParse->rc = rc;
      pParse->nErr++;
    }else if( db->noSharedCache ){
      db->mDbFlags |= DBFLAG_SchemaKnownOk;
    }
  }
  return rc;
}


/*
** Check schema cookies in all databases.  If any cookie is out
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
  }
  rc = sParse.rc;

#ifndef SQLITE_OMIT_EXPLAIN
  if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){
    static const char * const azColName[] = {
       "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
       "selectid", "order", "from", "detail"
    };
    int iFirst, mx;
    if( sParse.explain==2 ){
      sqlite3VdbeSetNumCols(sParse.pVdbe, 4);
      iFirst = 8;
      mx = 12;
    }else{







|







615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
  }
  rc = sParse.rc;

#ifndef SQLITE_OMIT_EXPLAIN
  if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){
    static const char * const azColName[] = {
       "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
       "id", "parent", "notused", "detail"
    };
    int iFirst, mx;
    if( sParse.explain==2 ){
      sqlite3VdbeSetNumCols(sParse.pVdbe, 4);
      iFirst = 8;
      mx = 12;
    }else{
Changes to src/resolve.c.
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  int cntTab = 0;                   /* Number of matching table names */
  int nSubquery = 0;                /* How many levels of subquery */
  sqlite3 *db = pParse->db;         /* The database connection */
  struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
  struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
  NameContext *pTopNC = pNC;        /* First namecontext in the list */
  Schema *pSchema = 0;              /* Schema of the expression */
  int isTrigger = 0;                /* True if resolved to a trigger column */
  Table *pTab = 0;                  /* Table hold the row */
  Column *pCol;                     /* A column of pTab */

  assert( pNC );     /* the name context cannot be NULL. */
  assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
  assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );








|







187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  int cntTab = 0;                   /* Number of matching table names */
  int nSubquery = 0;                /* How many levels of subquery */
  sqlite3 *db = pParse->db;         /* The database connection */
  struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
  struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
  NameContext *pTopNC = pNC;        /* First namecontext in the list */
  Schema *pSchema = 0;              /* Schema of the expression */
  int eNewExprOp = TK_COLUMN;       /* New value for pExpr->op on success */
  Table *pTab = 0;                  /* Table hold the row */
  Column *pCol;                     /* A column of pTab */

  assert( pNC );     /* the name context cannot be NULL. */
  assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
  assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );

292
293
294
295
296
297
298
299
300
301

302
303



304
305
306
307
308
309
310
311




312


313

314


315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333









334
335
336
337
338
339
340
341
342
343
344

345
346
347

348
349
350

351
352
353
354
355
356
357
358
        if( (pMatch->fg.jointype & JT_LEFT)!=0 ){
          ExprSetProperty(pExpr, EP_CanBeNull);
        }
        pSchema = pExpr->pTab->pSchema;
      }
    } /* if( pSrcList ) */

#ifndef SQLITE_OMIT_TRIGGER
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference

    */
    if( zDb==0 && zTab!=0 && cntTab==0 && pParse->pTriggerTab!=0 ){



      int op = pParse->eTriggerOp;
      assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT );
      if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){
        pExpr->iTable = 1;
        pTab = pParse->pTriggerTab;
      }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){
        pExpr->iTable = 0;
        pTab = pParse->pTriggerTab;




      }else{


        pTab = 0;

      }



      if( pTab ){ 
        int iCol;
        pSchema = pTab->pSchema;
        cntTab++;
        for(iCol=0, pCol=pTab->aCol; iCol<pTab->nCol; iCol++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            if( iCol==pTab->iPKey ){
              iCol = -1;
            }
            break;
          }
        }
        if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) && VisibleRowid(pTab) ){
          /* IMP: R-51414-32910 */
          iCol = -1;
        }
        if( iCol<pTab->nCol ){
          cnt++;









          if( iCol<0 ){
            pExpr->affinity = SQLITE_AFF_INTEGER;
          }else if( pExpr->iTable==0 ){
            testcase( iCol==31 );
            testcase( iCol==32 );
            pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
          }else{
            testcase( iCol==31 );
            testcase( iCol==32 );
            pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
          }

          pExpr->iColumn = (i16)iCol;
          pExpr->pTab = pTab;
          isTrigger = 1;

        }
      }
    }

#endif /* !defined(SQLITE_OMIT_TRIGGER) */

    /*
    ** Perhaps the name is a reference to the ROWID
    */
    if( cnt==0
     && cntTab==1
     && pMatch







|

|
>

|
>
>
>
|
|
|
|
|
|
|
|
>
>
>
>
|
>
>
|
>
|
>
>



















>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
>
|
|
<
>
|
|
|
>
|







292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

370
371
372
373
374
375
376
377
378
379
380
381
382
        if( (pMatch->fg.jointype & JT_LEFT)!=0 ){
          ExprSetProperty(pExpr, EP_CanBeNull);
        }
        pSchema = pExpr->pTab->pSchema;
      }
    } /* if( pSrcList ) */

#if !defined(SQLITE_OMIT_TRIGGER) || !defined(SQLITE_OMIT_UPSERT)
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference.  Or
    ** maybe it is an excluded.* from an upsert.
    */
    if( zDb==0 && zTab!=0 && cntTab==0 ){
      pTab = 0;
#ifndef SQLITE_OMIT_TRIGGER
      if( pParse->pTriggerTab!=0 ){
        int op = pParse->eTriggerOp;
        assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT );
        if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){
          pExpr->iTable = 1;
          pTab = pParse->pTriggerTab;
        }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){
          pExpr->iTable = 0;
          pTab = pParse->pTriggerTab;
        }
      }
#endif /* SQLITE_OMIT_TRIGGER */
#ifndef SQLITE_OMIT_UPSERT
      if( (pNC->ncFlags & NC_UUpsert)!=0 ){
        Upsert *pUpsert = pNC->uNC.pUpsert;
        if( pUpsert && sqlite3StrICmp("excluded",zTab)==0 ){
          pTab = pUpsert->pUpsertSrc->a[0].pTab;
          pExpr->iTable = 2;
        }
      }
#endif /* SQLITE_OMIT_UPSERT */

      if( pTab ){ 
        int iCol;
        pSchema = pTab->pSchema;
        cntTab++;
        for(iCol=0, pCol=pTab->aCol; iCol<pTab->nCol; iCol++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            if( iCol==pTab->iPKey ){
              iCol = -1;
            }
            break;
          }
        }
        if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) && VisibleRowid(pTab) ){
          /* IMP: R-51414-32910 */
          iCol = -1;
        }
        if( iCol<pTab->nCol ){
          cnt++;
#ifndef SQLITE_OMIT_UPSERT
          if( pExpr->iTable==2 ){
            testcase( iCol==(-1) );
            pExpr->iTable = pNC->uNC.pUpsert->regData + iCol;
            eNewExprOp = TK_REGISTER;
          }else
#endif /* SQLITE_OMIT_UPSERT */
          {
#ifndef SQLITE_OMIT_TRIGGER
            if( iCol<0 ){
              pExpr->affinity = SQLITE_AFF_INTEGER;
            }else if( pExpr->iTable==0 ){
              testcase( iCol==31 );
              testcase( iCol==32 );
              pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
            }else{
              testcase( iCol==31 );
              testcase( iCol==32 );
              pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
            }
            pExpr->pTab = pTab;
            pExpr->iColumn = (i16)iCol;
            eNewExprOp = TK_TRIGGER;

#endif /* SQLITE_OMIT_TRIGGER */
          }
        }
      }
    }
#endif /* !defined(SQLITE_OMIT_TRIGGER) || !defined(SQLITE_OMIT_UPSERT) */

    /*
    ** Perhaps the name is a reference to the ROWID
    */
    if( cnt==0
     && cntTab==1
     && pMatch
379
380
381
382
383
384
385
386
387
388

389


390
391
392
393
394
395
396
    **
    ** The ability to use an output result-set column in the WHERE, GROUP BY,
    ** or HAVING clauses, or as part of a larger expression in the ORDER BY
    ** clause is not standard SQL.  This is a (goofy) SQLite extension, that
    ** is supported for backwards compatibility only. Hence, we issue a warning
    ** on sqlite3_log() whenever the capability is used.
    */
    if( (pEList = pNC->pEList)!=0
     && zTab==0
     && cnt==0

    ){


      for(j=0; j<pEList->nExpr; j++){
        char *zAs = pEList->a[j].zName;
        if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
          Expr *pOrig;
          assert( pExpr->pLeft==0 && pExpr->pRight==0 );
          assert( pExpr->x.pList==0 );
          assert( pExpr->x.pSelect==0 );







|
<

>

>
>







403
404
405
406
407
408
409
410

411
412
413
414
415
416
417
418
419
420
421
422
    **
    ** The ability to use an output result-set column in the WHERE, GROUP BY,
    ** or HAVING clauses, or as part of a larger expression in the ORDER BY
    ** clause is not standard SQL.  This is a (goofy) SQLite extension, that
    ** is supported for backwards compatibility only. Hence, we issue a warning
    ** on sqlite3_log() whenever the capability is used.
    */
    if( (pNC->ncFlags & NC_UEList)!=0

     && cnt==0
     && zTab==0
    ){
      pEList = pNC->uNC.pEList;
      assert( pEList!=0 );
      for(j=0; j<pEList->nExpr; j++){
        char *zAs = pEList->a[j].zName;
        if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
          Expr *pOrig;
          assert( pExpr->pLeft==0 && pExpr->pRight==0 );
          assert( pExpr->x.pList==0 );
          assert( pExpr->x.pSelect==0 );
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

  /* Clean up and return
  */
  sqlite3ExprDelete(db, pExpr->pLeft);
  pExpr->pLeft = 0;
  sqlite3ExprDelete(db, pExpr->pRight);
  pExpr->pRight = 0;
  pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN);
  ExprSetProperty(pExpr, EP_Leaf);
lookupname_end:
  if( cnt==1 ){
    assert( pNC!=0 );
    if( !ExprHasProperty(pExpr, EP_Alias) ){
      sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
    }







|







505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

  /* Clean up and return
  */
  sqlite3ExprDelete(db, pExpr->pLeft);
  pExpr->pLeft = 0;
  sqlite3ExprDelete(db, pExpr->pRight);
  pExpr->pRight = 0;
  pExpr->op = eNewExprOp;
  ExprSetProperty(pExpr, EP_Leaf);
lookupname_end:
  if( cnt==1 ){
    assert( pNC!=0 );
    if( !ExprHasProperty(pExpr, EP_Alias) ){
      sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
    }
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
  pEList = pSelect->pEList;

  /* Resolve all names in the ORDER BY term expression
  */
  memset(&nc, 0, sizeof(nc));
  nc.pParse = pParse;
  nc.pSrcList = pSelect->pSrc;
  nc.pEList = pEList;
  nc.ncFlags = NC_AllowAgg;
  nc.nErr = 0;
  db = pParse->db;
  savedSuppErr = db->suppressErr;
  db->suppressErr = 1;
  rc = sqlite3ResolveExprNames(&nc, pE);
  db->suppressErr = savedSuppErr;
  if( rc ) return 0;







|
|







937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
  pEList = pSelect->pEList;

  /* Resolve all names in the ORDER BY term expression
  */
  memset(&nc, 0, sizeof(nc));
  nc.pParse = pParse;
  nc.pSrcList = pSelect->pSrc;
  nc.uNC.pEList = pEList;
  nc.ncFlags = NC_AllowAgg|NC_UEList;
  nc.nErr = 0;
  db = pParse->db;
  savedSuppErr = db->suppressErr;
  db->suppressErr = 1;
  rc = sqlite3ResolveExprNames(&nc, pE);
  db->suppressErr = savedSuppErr;
  if( rc ) return 0;
1295
1296
1297
1298
1299
1300
1301

1302

1303
1304
1305
1306
1307
1308
1309
    ** other expressions in the SELECT statement. This is so that
    ** expressions in the WHERE clause (etc.) can refer to expressions by
    ** aliases in the result set.
    **
    ** Minor point: If this is the case, then the expression will be
    ** re-evaluated for each reference to it.
    */

    sNC.pEList = p->pEList;

    if( sqlite3ResolveExprNames(&sNC, p->pHaving) ) return WRC_Abort;
    if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort;

    /* Resolve names in table-valued-function arguments */
    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];
      if( pItem->fg.isTabFunc







>
|
>







1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
    ** other expressions in the SELECT statement. This is so that
    ** expressions in the WHERE clause (etc.) can refer to expressions by
    ** aliases in the result set.
    **
    ** Minor point: If this is the case, then the expression will be
    ** re-evaluated for each reference to it.
    */
    assert( (sNC.ncFlags & (NC_UAggInfo|NC_UUpsert))==0 );
    sNC.uNC.pEList = p->pEList;
    sNC.ncFlags |= NC_UEList;
    if( sqlite3ResolveExprNames(&sNC, p->pHaving) ) return WRC_Abort;
    if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort;

    /* Resolve names in table-valued-function arguments */
    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];
      if( pItem->fg.isTabFunc
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
** Any errors cause an error message to be set in pParse.
*/
void sqlite3ResolveSelfReference(
  Parse *pParse,      /* Parsing context */
  Table *pTab,        /* The table being referenced */
  int type,           /* NC_IsCheck or NC_PartIdx or NC_IdxExpr */
  Expr *pExpr,        /* Expression to resolve.  May be NULL. */
  ExprList *pList     /* Expression list to resolve.  May be NUL. */
){
  SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
  NameContext sNC;                /* Name context for pParse->pNewTable */

  assert( type==NC_IsCheck || type==NC_PartIdx || type==NC_IdxExpr );
  memset(&sNC, 0, sizeof(sNC));
  memset(&sSrc, 0, sizeof(sSrc));







|







1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
** Any errors cause an error message to be set in pParse.
*/
void sqlite3ResolveSelfReference(
  Parse *pParse,      /* Parsing context */
  Table *pTab,        /* The table being referenced */
  int type,           /* NC_IsCheck or NC_PartIdx or NC_IdxExpr */
  Expr *pExpr,        /* Expression to resolve.  May be NULL. */
  ExprList *pList     /* Expression list to resolve.  May be NULL. */
){
  SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
  NameContext sNC;                /* Name context for pParse->pNewTable */

  assert( type==NC_IsCheck || type==NC_PartIdx || type==NC_IdxExpr );
  memset(&sNC, 0, sizeof(sNC));
  memset(&sSrc, 0, sizeof(sSrc));
Changes to src/select.c.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/*
** Trace output macros
*/
#if SELECTTRACE_ENABLED
/***/ int sqlite3SelectTrace = 0;
# define SELECTTRACE(K,P,S,X)  \
  if(sqlite3SelectTrace&(K))   \
    sqlite3DebugPrintf("%s/%p: ",(S)->zSelName,(S)),\
    sqlite3DebugPrintf X
#else
# define SELECTTRACE(K,P,S,X)
#endif


/*







|







17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/*
** Trace output macros
*/
#if SELECTTRACE_ENABLED
/***/ int sqlite3SelectTrace = 0;
# define SELECTTRACE(K,P,S,X)  \
  if(sqlite3SelectTrace&(K))   \
    sqlite3DebugPrintf("%s/%d/%p: ",(S)->zSelName,(P)->addrExplain,(S)),\
    sqlite3DebugPrintf X
#else
# define SELECTTRACE(K,P,S,X)
#endif


/*
40
41
42
43
44
45
46














47
48
49
50
51
52
53
54
55
56
57
58









59
60
61
62
63
64
65
  int tabTnct;    /* Ephemeral table used for DISTINCT processing */
  int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
};

/*
** An instance of the following object is used to record information about
** the ORDER BY (or GROUP BY) clause of query is being coded.














*/
typedef struct SortCtx SortCtx;
struct SortCtx {
  ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
  int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
  int iECursor;         /* Cursor number for the sorter */
  int regReturn;        /* Register holding block-output return address */
  int labelBkOut;       /* Start label for the block-output subroutine */
  int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
  int labelDone;        /* Jump here when done, ex: LIMIT reached */
  u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
  u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */









};
#define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */

/*
** Delete all the content of a Select structure.  Deallocate the structure
** itself only if bFree is true.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>












>
>
>
>
>
>
>
>
>







40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
  int tabTnct;    /* Ephemeral table used for DISTINCT processing */
  int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
};

/*
** An instance of the following object is used to record information about
** the ORDER BY (or GROUP BY) clause of query is being coded.
**
** The aDefer[] array is used by the sorter-references optimization. For
** example, assuming there is no index that can be used for the ORDER BY,
** for the query:
**
**     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
**
** it may be more efficient to add just the "a" values to the sorter, and
** retrieve the associated "bigblob" values directly from table t1 as the
** 10 smallest "a" values are extracted from the sorter.
**
** When the sorter-reference optimization is used, there is one entry in the
** aDefer[] array for each database table that may be read as values are
** extracted from the sorter.
*/
typedef struct SortCtx SortCtx;
struct SortCtx {
  ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
  int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
  int iECursor;         /* Cursor number for the sorter */
  int regReturn;        /* Register holding block-output return address */
  int labelBkOut;       /* Start label for the block-output subroutine */
  int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
  int labelDone;        /* Jump here when done, ex: LIMIT reached */
  u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
  u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
  u8 nDefer;            /* Number of valid entries in aDefer[] */
  struct DeferredCsr {
    Table *pTab;        /* Table definition */
    int iCsr;           /* Cursor number for table */
    int nKey;           /* Number of PK columns for table pTab (>=1) */
  } aDefer[4];
#endif
  struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
};
#define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */

/*
** Delete all the content of a Select structure.  Deallocate the structure
** itself only if bFree is true.
*/
509
510
511
512
513
514
515
























































516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

539
540













541

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

569
570
571
572
573
574
575
/* Forward reference */
static KeyInfo *keyInfoFromExprList(
  Parse *pParse,       /* Parsing context */
  ExprList *pList,     /* Form the KeyInfo object from this ExprList */
  int iStart,          /* Begin with this column of pList */
  int nExtra           /* Add this many extra columns to the end */
);

























































/*
** Generate code that will push the record in registers regData
** through regData+nData-1 onto the sorter.
*/
static void pushOntoSorter(
  Parse *pParse,         /* Parser context */
  SortCtx *pSort,        /* Information about the ORDER BY clause */
  Select *pSelect,       /* The whole SELECT statement */
  int regData,           /* First register holding data to be sorted */
  int regOrigData,       /* First register holding data before packing */
  int nData,             /* Number of elements in the data array */
  int nPrefixReg         /* No. of reg prior to regData available for use */
){
  Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
  int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
  int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
  int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
  int regBase;                                     /* Regs for sorter record */
  int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
  int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
  int op;                            /* Opcode to add sorter record to sorter */
  int iLimit;                        /* LIMIT counter */


  assert( bSeq==0 || bSeq==1 );













  assert( nData==1 || regData==regOrigData || regOrigData==0 );

  if( nPrefixReg ){
    assert( nPrefixReg==nExpr+bSeq );
    regBase = regData - nExpr - bSeq;
  }else{
    regBase = pParse->nMem + 1;
    pParse->nMem += nBase;
  }
  assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
  iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
  pSort->labelDone = sqlite3VdbeMakeLabel(v);
  sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
                          SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
  if( bSeq ){
    sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
  }
  if( nPrefixReg==0 && nData>0 ){
    sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
  }
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
  if( nOBSat>0 ){
    int regPrevKey;   /* The first nOBSat columns of the previous row */
    int addrFirst;    /* Address of the OP_IfNot opcode */
    int addrJmp;      /* Address of the OP_Jump opcode */
    VdbeOp *pOp;      /* Opcode that opens the sorter */
    int nKey;         /* Number of sorting key columns, including OP_Sequence */
    KeyInfo *pKI;     /* Original KeyInfo on the sorter table */


    regPrevKey = pParse->nMem+1;
    pParse->nMem += pSort->nOBSat;
    nKey = nExpr - pSort->nOBSat + bSeq;
    if( bSeq ){
      addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 
    }else{
      addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











|







|



>


>
>
>
>
>
>
>
>
>
>
>
>
>

>


|















<








>







532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
/* Forward reference */
static KeyInfo *keyInfoFromExprList(
  Parse *pParse,       /* Parsing context */
  ExprList *pList,     /* Form the KeyInfo object from this ExprList */
  int iStart,          /* Begin with this column of pList */
  int nExtra           /* Add this many extra columns to the end */
);

/*
** An instance of this object holds information (beyond pParse and pSelect)
** needed to load the next result row that is to be added to the sorter.
*/
typedef struct RowLoadInfo RowLoadInfo;
struct RowLoadInfo {
  int regResult;               /* Store results in array of registers here */
  u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
  ExprList *pExtra;            /* Extra columns needed by sorter refs */
  int regExtraResult;          /* Where to load the extra columns */
#endif
};

/*
** This routine does the work of loading query data into an array of
** registers so that it can be added to the sorter.
*/
static void innerLoopLoadRow(
  Parse *pParse,             /* Statement under construction */
  Select *pSelect,           /* The query being coded */
  RowLoadInfo *pInfo         /* Info needed to complete the row load */
){
  sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
                          0, pInfo->ecelFlags);
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
  if( pInfo->pExtra ){
    sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
    sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
  }
#endif
}

/*
** Code the OP_MakeRecord instruction that generates the entry to be
** added into the sorter.
**
** Return the register in which the result is stored.
*/
static int makeSorterRecord(
  Parse *pParse,
  SortCtx *pSort,
  Select *pSelect,
  int regBase,
  int nBase
){
  int nOBSat = pSort->nOBSat;
  Vdbe *v = pParse->pVdbe;
  int regOut = ++pParse->nMem;
  if( pSort->pDeferredRowLoad ){
    innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
  }
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
  return regOut;
}

/*
** Generate code that will push the record in registers regData
** through regData+nData-1 onto the sorter.
*/
static void pushOntoSorter(
  Parse *pParse,         /* Parser context */
  SortCtx *pSort,        /* Information about the ORDER BY clause */
  Select *pSelect,       /* The whole SELECT statement */
  int regData,           /* First register holding data to be sorted */
  int regOrigData,       /* First register holding data before packing */
  int nData,             /* Number of elements in the regData data array */
  int nPrefixReg         /* No. of reg prior to regData available for use */
){
  Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
  int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
  int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
  int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
  int regBase;                                     /* Regs for sorter record */
  int regRecord = 0;                               /* Assembled sorter record */
  int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
  int op;                            /* Opcode to add sorter record to sorter */
  int iLimit;                        /* LIMIT counter */
  int iSkip = 0;                     /* End of the sorter insert loop */

  assert( bSeq==0 || bSeq==1 );

  /* Three cases:
  **   (1) The data to be sorted has already been packed into a Record
  **       by a prior OP_MakeRecord.  In this case nData==1 and regData
  **       will be completely unrelated to regOrigData.
  **   (2) All output columns are included in the sort record.  In that
  **       case regData==regOrigData.
  **   (3) Some output columns are omitted from the sort record due to
  **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
  **       SQLITE_ECEL_OMITREF optimization.  In that case, regOrigData==0
  **       to prevent this routine from trying to copy values that might
  **       not exist.
  */
  assert( nData==1 || regData==regOrigData || regOrigData==0 );

  if( nPrefixReg ){
    assert( nPrefixReg==nExpr+bSeq );
    regBase = regData - nPrefixReg;
  }else{
    regBase = pParse->nMem + 1;
    pParse->nMem += nBase;
  }
  assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
  iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
  pSort->labelDone = sqlite3VdbeMakeLabel(v);
  sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
                          SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
  if( bSeq ){
    sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
  }
  if( nPrefixReg==0 && nData>0 ){
    sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
  }

  if( nOBSat>0 ){
    int regPrevKey;   /* The first nOBSat columns of the previous row */
    int addrFirst;    /* Address of the OP_IfNot opcode */
    int addrJmp;      /* Address of the OP_Jump opcode */
    VdbeOp *pOp;      /* Opcode that opens the sorter */
    int nKey;         /* Number of sorting key columns, including OP_Sequence */
    KeyInfo *pKI;     /* Original KeyInfo on the sorter table */

    regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
    regPrevKey = pParse->nMem+1;
    pParse->nMem += pSort->nOBSat;
    nKey = nExpr - pSort->nOBSat + bSeq;
    if( bSeq ){
      addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 
    }else{
      addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
595
596
597
598
599
600
601




























602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
      sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
      VdbeCoverage(v);
    }
    sqlite3VdbeJumpHere(v, addrFirst);
    sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
    sqlite3VdbeJumpHere(v, addrJmp);
  }




























  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    op = OP_SorterInsert;
  }else{
    op = OP_IdxInsert;
  }
  sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
                       regBase+nOBSat, nBase-nOBSat);
  if( iLimit ){
    int addr;
    int r1 = 0;
    /* Fill the sorter until it contains LIMIT+OFFSET entries.  (The iLimit
    ** register is initialized with value of LIMIT+OFFSET.)  After the sorter
    ** fills up, delete the least entry in the sorter after each insert.
    ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
    addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v);
    sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
    if( pSort->bOrderedInnerLoop ){
      r1 = ++pParse->nMem;
      sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
      VdbeComment((v, "seq"));
    }
    sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
    if( pSort->bOrderedInnerLoop ){
      /* If the inner loop is driven by an index such that values from
      ** the same iteration of the inner loop are in sorted order, then
      ** immediately jump to the next iteration of an inner loop if the
      ** entry from the current iteration does not fit into the top
      ** LIMIT+OFFSET entries of the sorter. */
      int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
      sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
      sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
      VdbeCoverage(v);
    }
    sqlite3VdbeJumpHere(v, addr);
  }
}

/*
** Add code to implement the OFFSET
*/
static void codeOffset(







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







|
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
|







689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731








732













733


734
735
736
737
738
739
740
741
      sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
      VdbeCoverage(v);
    }
    sqlite3VdbeJumpHere(v, addrFirst);
    sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
    sqlite3VdbeJumpHere(v, addrJmp);
  }
  if( iLimit ){
    /* At this point the values for the new sorter entry are stored
    ** in an array of registers. They need to be composed into a record
    ** and inserted into the sorter if either (a) there are currently
    ** less than LIMIT+OFFSET items or (b) the new record is smaller than 
    ** the largest record currently in the sorter. If (b) is true and there
    ** are already LIMIT+OFFSET items in the sorter, delete the largest
    ** entry before inserting the new one. This way there are never more 
    ** than LIMIT+OFFSET items in the sorter.
    **
    ** If the new record does not need to be inserted into the sorter,
    ** jump to the next iteration of the loop. Or, if the
    ** pSort->bOrderedInnerLoop flag is set to indicate that the inner
    ** loop delivers items in sorted order, jump to the next iteration
    ** of the outer loop.
    */
    int iCsr = pSort->iECursor;
    sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
    VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
    iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
                                 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
    VdbeCoverage(v);
    sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
  }
  if( regRecord==0 ){
    regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
  }
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    op = OP_SorterInsert;
  }else{
    op = OP_IdxInsert;
  }
  sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
                       regBase+nOBSat, nBase-nOBSat);
  if( iSkip ){








    assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 );













    sqlite3VdbeChangeP2(v, iSkip,


         sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop);
  }
}

/*
** Add code to implement the OFFSET
*/
static void codeOffset(
674
675
676
677
678
679
680

















































































681
682
683
684
685
686
687
  sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
  sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
  sqlite3ReleaseTempReg(pParse, r1);
}


















































































/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
** If srcTab is negative, then the p->pEList expressions
** are evaluated in order to get the data for this row.  If srcTab is
** zero or more, then data is pulled from srcTab and p->pEList is used only 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
  sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
  sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
  sqlite3ReleaseTempReg(pParse, r1);
}

#ifdef SQLITE_ENABLE_SORTER_REFERENCES
/*
** This function is called as part of inner-loop generation for a SELECT
** statement with an ORDER BY that is not optimized by an index. It 
** determines the expressions, if any, that the sorter-reference 
** optimization should be used for. The sorter-reference optimization
** is used for SELECT queries like:
**
**   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
**
** If the optimization is used for expression "bigblob", then instead of
** storing values read from that column in the sorter records, the PK of
** the row from table t1 is stored instead. Then, as records are extracted from
** the sorter to return to the user, the required value of bigblob is
** retrieved directly from table t1. If the values are very large, this 
** can be more efficient than storing them directly in the sorter records.
**
** The ExprList_item.bSorterRef flag is set for each expression in pEList 
** for which the sorter-reference optimization should be enabled. 
** Additionally, the pSort->aDefer[] array is populated with entries
** for all cursors required to evaluate all selected expressions. Finally.
** output variable (*ppExtra) is set to an expression list containing
** expressions for all extra PK values that should be stored in the
** sorter records.
*/
static void selectExprDefer(
  Parse *pParse,                  /* Leave any error here */
  SortCtx *pSort,                 /* Sorter context */
  ExprList *pEList,               /* Expressions destined for sorter */
  ExprList **ppExtra              /* Expressions to append to sorter record */
){
  int i;
  int nDefer = 0;
  ExprList *pExtra = 0;
  for(i=0; i<pEList->nExpr; i++){
    struct ExprList_item *pItem = &pEList->a[i];
    if( pItem->u.x.iOrderByCol==0 ){
      Expr *pExpr = pItem->pExpr;
      Table *pTab = pExpr->pTab;
      if( pExpr->op==TK_COLUMN && pTab && !IsVirtual(pTab)
       && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
      ){
        int j;
        for(j=0; j<nDefer; j++){
          if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
        }
        if( j==nDefer ){
          if( nDefer==ArraySize(pSort->aDefer) ){
            continue;
          }else{
            int nKey = 1;
            int k;
            Index *pPk = 0;
            if( !HasRowid(pTab) ){
              pPk = sqlite3PrimaryKeyIndex(pTab);
              nKey = pPk->nKeyCol;
            }
            for(k=0; k<nKey; k++){
              Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
              if( pNew ){
                pNew->iTable = pExpr->iTable;
                pNew->pTab = pExpr->pTab;
                pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
                pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
              }
            }
            pSort->aDefer[nDefer].pTab = pExpr->pTab;
            pSort->aDefer[nDefer].iCsr = pExpr->iTable;
            pSort->aDefer[nDefer].nKey = nKey;
            nDefer++;
          }
        }
        pItem->bSorterRef = 1;
      }
    }
  }
  pSort->nDefer = (u8)nDefer;
  *ppExtra = pExtra;
}
#endif

/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
** If srcTab is negative, then the p->pEList expressions
** are evaluated in order to get the data for this row.  If srcTab is
** zero or more, then data is pulled from srcTab and p->pEList is used only 
700
701
702
703
704
705
706

707
708
709
710
711
712
713
  Vdbe *v = pParse->pVdbe;
  int i;
  int hasDistinct;            /* True if the DISTINCT keyword is present */
  int eDest = pDest->eDest;   /* How to dispose of results */
  int iParm = pDest->iSDParm; /* First argument to disposal method */
  int nResultCol;             /* Number of result columns */
  int nPrefixReg = 0;         /* Number of extra registers before regResult */


  /* Usually, regResult is the first cell in an array of memory cells
  ** containing the current result row. In this case regOrig is set to the
  ** same value. However, if the results are being sent to the sorter, the
  ** values for any expressions that are also part of the sort-key are omitted
  ** from this array. In this case regOrig is set to zero.  */
  int regResult;              /* Start of memory holding current results */







>







880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
  Vdbe *v = pParse->pVdbe;
  int i;
  int hasDistinct;            /* True if the DISTINCT keyword is present */
  int eDest = pDest->eDest;   /* How to dispose of results */
  int iParm = pDest->iSDParm; /* First argument to disposal method */
  int nResultCol;             /* Number of result columns */
  int nPrefixReg = 0;         /* Number of extra registers before regResult */
  RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */

  /* Usually, regResult is the first cell in an array of memory cells
  ** containing the current result row. In this case regOrig is set to the
  ** same value. However, if the results are being sent to the sorter, the
  ** values for any expressions that are also part of the sort-key are omitted
  ** from this array. In this case regOrig is set to zero.  */
  int regResult;              /* Start of memory holding current results */
746
747
748
749
750
751
752



753
754
755
756

757
758
759
760
761
762
763
764
765
766
767
768
769

770
771
772
773
774
775

























776








777
778
779
780
781















782
783
784
785
786
787
788
  regOrig = regResult = pDest->iSdst;
  if( srcTab>=0 ){
    for(i=0; i<nResultCol; i++){
      sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
      VdbeComment((v, "%s", p->pEList->a[i].zName));
    }
  }else if( eDest!=SRT_Exists ){



    /* If the destination is an EXISTS(...) expression, the actual
    ** values returned by the SELECT are not required.
    */
    u8 ecelFlags;

    if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
      ecelFlags = SQLITE_ECEL_DUP;
    }else{
      ecelFlags = 0;
    }
    if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
      /* For each expression in p->pEList that is a copy of an expression in
      ** the ORDER BY clause (pSort->pOrderBy), set the associated 
      ** iOrderByCol value to one more than the index of the ORDER BY 
      ** expression within the sort-key that pushOntoSorter() will generate.
      ** This allows the p->pEList field to be omitted from the sorted record,
      ** saving space and CPU cycles.  */
      ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);

      for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
        int j;
        if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
          p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
        }
      }

























      regOrig = 0;








      assert( eDest==SRT_Set || eDest==SRT_Mem 
           || eDest==SRT_Coroutine || eDest==SRT_Output );
    }
    nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult,
                                         0,ecelFlags);















  }

  /* If the DISTINCT keyword was present on the SELECT statement
  ** and this row has been seen before, then do not make this row
  ** part of the result.
  */
  if( hasDistinct ){







>
>
>



|
>













>






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>



|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
  regOrig = regResult = pDest->iSdst;
  if( srcTab>=0 ){
    for(i=0; i<nResultCol; i++){
      sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
      VdbeComment((v, "%s", p->pEList->a[i].zName));
    }
  }else if( eDest!=SRT_Exists ){
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    ExprList *pExtra = 0;
#endif
    /* If the destination is an EXISTS(...) expression, the actual
    ** values returned by the SELECT are not required.
    */
    u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
    ExprList *pEList;
    if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
      ecelFlags = SQLITE_ECEL_DUP;
    }else{
      ecelFlags = 0;
    }
    if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
      /* For each expression in p->pEList that is a copy of an expression in
      ** the ORDER BY clause (pSort->pOrderBy), set the associated 
      ** iOrderByCol value to one more than the index of the ORDER BY 
      ** expression within the sort-key that pushOntoSorter() will generate.
      ** This allows the p->pEList field to be omitted from the sorted record,
      ** saving space and CPU cycles.  */
      ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);

      for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
        int j;
        if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
          p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
        }
      }
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
      selectExprDefer(pParse, pSort, p->pEList, &pExtra);
      if( pExtra && pParse->db->mallocFailed==0 ){
        /* If there are any extra PK columns to add to the sorter records,
        ** allocate extra memory cells and adjust the OpenEphemeral 
        ** instruction to account for the larger records. This is only
        ** required if there are one or more WITHOUT ROWID tables with
        ** composite primary keys in the SortCtx.aDefer[] array.  */
        VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
        pOp->p2 += (pExtra->nExpr - pSort->nDefer);
        pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
        pParse->nMem += pExtra->nExpr;
      }
#endif

      /* Adjust nResultCol to account for columns that are omitted
      ** from the sorter by the optimizations in this branch */
      pEList = p->pEList;
      for(i=0; i<pEList->nExpr; i++){
        if( pEList->a[i].u.x.iOrderByCol>0
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
         || pEList->a[i].bSorterRef
#endif
        ){
          nResultCol--;
          regOrig = 0;
        }
      }

      testcase( regOrig );
      testcase( eDest==SRT_Set );
      testcase( eDest==SRT_Mem );
      testcase( eDest==SRT_Coroutine );
      testcase( eDest==SRT_Output );
      assert( eDest==SRT_Set || eDest==SRT_Mem 
           || eDest==SRT_Coroutine || eDest==SRT_Output );
    }
    sRowLoadInfo.regResult = regResult;
    sRowLoadInfo.ecelFlags = ecelFlags;
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    sRowLoadInfo.pExtra = pExtra;
    sRowLoadInfo.regExtraResult = regResult + nResultCol;
    if( pExtra ) nResultCol += pExtra->nExpr;
#endif
    if( p->iLimit
     && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 
     && nPrefixReg>0
    ){
      assert( pSort!=0 );
      assert( hasDistinct==0 );
      pSort->pDeferredRowLoad = &sRowLoadInfo;
    }else{
      innerLoopLoadRow(pParse, p, &sRowLoadInfo);
    }
  }

  /* If the DISTINCT keyword was present on the SELECT statement
  ** and this row has been seen before, then do not make this row
  ** part of the result.
  */
  if( hasDistinct ){
890
891
892
893
894
895
896

897
898
899
900
901
902
903
904
        sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
        VdbeCoverage(v);
        sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
        assert( pSort==0 );
      }
#endif
      if( pSort ){

        pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
      }else{
        int r2 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
        sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
        sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
        sqlite3ReleaseTempReg(pParse, r2);
      }







>
|







1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
        sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
        VdbeCoverage(v);
        sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
        assert( pSort==0 );
      }
#endif
      if( pSort ){
        assert( regResult==regOrig );
        pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
      }else{
        int r2 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
        sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
        sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
        sqlite3ReleaseTempReg(pParse, r2);
      }
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

1253
1254
1255
1256
1257
1258
1259
1260











1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291



1292
1293































1294






1295
1296
1297
1298
1299
1300
1301
1302

1303
1304
1305
1306
1307
1308
1309
**
**   "USE TEMP B-TREE FOR xxx"
**
** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
** is determined by the zUsage argument.
*/
static void explainTempTable(Parse *pParse, const char *zUsage){
  if( pParse->explain==2 ){
    Vdbe *v = pParse->pVdbe;
    char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
}

/*
** Assign expression b to lvalue a. A second, no-op, version of this macro
** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
** in sqlite3Select() to assign values to structure member variables that
** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
** code with #ifndef directives.
*/
# define explainSetInteger(a, b) a = b

#else
/* No-op versions of the explainXXX() functions and macros. */
# define explainTempTable(y,z)
# define explainSetInteger(y,z)
#endif

#if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
/*
** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
** is a no-op. Otherwise, it adds a single row of output to the EQP result,
** where the caption is of one of the two forms:
**
**   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
**   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
**
** where iSub1 and iSub2 are the integers passed as the corresponding
** function parameters, and op is the text representation of the parameter
** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 
** false, or the second form if it is true.
*/
static void explainComposite(
  Parse *pParse,                  /* Parse context */
  int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
  int iSub1,                      /* Subquery id 1 */
  int iSub2,                      /* Subquery id 2 */
  int bUseTmp                     /* True if a temp table was used */
){
  assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
  if( pParse->explain==2 ){
    Vdbe *v = pParse->pVdbe;
    char *zMsg = sqlite3MPrintf(
        pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
        bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
    );
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
}
#else
/* No-op versions of the explainXXX() functions and macros. */
# define explainComposite(v,w,x,y,z)
#endif

/*
** If the inner loop was generated using a non-null pOrderBy argument,
** then the results were placed in a sorter.  After the loop is terminated
** we need to run the sorter and output the results.  The following
** routine generates the code needed to do that.
*/
static void generateSortTail(
  Parse *pParse,    /* Parsing context */
  Select *p,        /* The SELECT statement */
  SortCtx *pSort,   /* Information on the ORDER BY clause */
  int nColumn,      /* Number of columns of data */
  SelectDest *pDest /* Write the sorted results here */
){
  Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
  int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
  int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
  int addr;
  int addrOnce = 0;
  int iTab;
  ExprList *pOrderBy = pSort->pOrderBy;
  int eDest = pDest->eDest;
  int iParm = pDest->iSDParm;
  int regRow;
  int regRowid;
  int iCol;
  int nKey;
  int iSortTab;                   /* Sorter cursor to read from */
  int nSortData;                  /* Trailing values to read from sorter */
  int i;
  int bSeq;                       /* True if sorter record includes seq. no. */

  struct ExprList_item *aOutEx = p->pEList->a;

  assert( addrBreak<0 );
  if( pSort->labelBkOut ){
    sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
    sqlite3VdbeGoto(v, addrBreak);
    sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
  }











  iTab = pSort->iECursor;
  if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
    regRowid = 0;
    regRow = pDest->iSdst;
    nSortData = nColumn;
  }else{
    regRowid = sqlite3GetTempReg(pParse);
    regRow = sqlite3GetTempRange(pParse, nColumn);
    nSortData = nColumn;
  }
  nKey = pOrderBy->nExpr - pSort->nOBSat;
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    int regSortOut = ++pParse->nMem;
    iSortTab = pParse->nTab++;
    if( pSort->labelBkOut ){
      addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
    }
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);

    if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
    addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
    VdbeCoverage(v);
    codeOffset(v, p->iOffset, addrContinue);
    sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
    bSeq = 0;
  }else{
    addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
    codeOffset(v, p->iOffset, addrContinue);
    iSortTab = iTab;
    bSeq = 1;
  }
  for(i=0, iCol=nKey+bSeq-1; i<nSortData; i++){



    if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
  }































  for(i=nSortData-1; i>=0; i--){






    int iRead;
    if( aOutEx[i].u.x.iOrderByCol ){
      iRead = aOutEx[i].u.x.iOrderByCol-1;
    }else{
      iRead = iCol--;
    }
    sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
    VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));

  }
  switch( eDest ){
    case SRT_Table:
    case SRT_EphemTab: {
      sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);







<
<
|
<
<

















<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

















|








|

<


>








>
>
>
>
>
>
>
>
>
>
>




<



<








|
>












|
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
|
|
|
|
|
|
|
|
>







1392
1393
1394
1395
1396
1397
1398


1399


1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416




































1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444

1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

1471
1472
1473

1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
**
**   "USE TEMP B-TREE FOR xxx"
**
** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
** is determined by the zUsage argument.
*/
static void explainTempTable(Parse *pParse, const char *zUsage){


  ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));


}

/*
** Assign expression b to lvalue a. A second, no-op, version of this macro
** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
** in sqlite3Select() to assign values to structure member variables that
** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
** code with #ifndef directives.
*/
# define explainSetInteger(a, b) a = b

#else
/* No-op versions of the explainXXX() functions and macros. */
# define explainTempTable(y,z)
# define explainSetInteger(y,z)
#endif






































/*
** If the inner loop was generated using a non-null pOrderBy argument,
** then the results were placed in a sorter.  After the loop is terminated
** we need to run the sorter and output the results.  The following
** routine generates the code needed to do that.
*/
static void generateSortTail(
  Parse *pParse,    /* Parsing context */
  Select *p,        /* The SELECT statement */
  SortCtx *pSort,   /* Information on the ORDER BY clause */
  int nColumn,      /* Number of columns of data */
  SelectDest *pDest /* Write the sorted results here */
){
  Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
  int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
  int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
  int addr;                       /* Top of output loop. Jump for Next. */
  int addrOnce = 0;
  int iTab;
  ExprList *pOrderBy = pSort->pOrderBy;
  int eDest = pDest->eDest;
  int iParm = pDest->iSDParm;
  int regRow;
  int regRowid;
  int iCol;
  int nKey;                       /* Number of key columns in sorter record */
  int iSortTab;                   /* Sorter cursor to read from */

  int i;
  int bSeq;                       /* True if sorter record includes seq. no. */
  int nRefKey = 0;
  struct ExprList_item *aOutEx = p->pEList->a;

  assert( addrBreak<0 );
  if( pSort->labelBkOut ){
    sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
    sqlite3VdbeGoto(v, addrBreak);
    sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
  }

#ifdef SQLITE_ENABLE_SORTER_REFERENCES
  /* Open any cursors needed for sorter-reference expressions */
  for(i=0; i<pSort->nDefer; i++){
    Table *pTab = pSort->aDefer[i].pTab;
    int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
    sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
    nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
  }
#endif

  iTab = pSort->iECursor;
  if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
    regRowid = 0;
    regRow = pDest->iSdst;

  }else{
    regRowid = sqlite3GetTempReg(pParse);
    regRow = sqlite3GetTempRange(pParse, nColumn);

  }
  nKey = pOrderBy->nExpr - pSort->nOBSat;
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    int regSortOut = ++pParse->nMem;
    iSortTab = pParse->nTab++;
    if( pSort->labelBkOut ){
      addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
    }
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 
        nKey+1+nColumn+nRefKey);
    if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
    addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
    VdbeCoverage(v);
    codeOffset(v, p->iOffset, addrContinue);
    sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
    bSeq = 0;
  }else{
    addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
    codeOffset(v, p->iOffset, addrContinue);
    iSortTab = iTab;
    bSeq = 1;
  }
  for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    if( aOutEx[i].bSorterRef ) continue;
#endif
    if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
  }
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
  if( pSort->nDefer ){
    int iKey = iCol+1;
    int regKey = sqlite3GetTempRange(pParse, nRefKey);

    for(i=0; i<pSort->nDefer; i++){
      int iCsr = pSort->aDefer[i].iCsr;
      Table *pTab = pSort->aDefer[i].pTab;
      int nKey = pSort->aDefer[i].nKey;

      sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
      if( HasRowid(pTab) ){
        sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
        sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 
            sqlite3VdbeCurrentAddr(v)+1, regKey);
      }else{
        int k;
        int iJmp;
        assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
        for(k=0; k<nKey; k++){
          sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
        }
        iJmp = sqlite3VdbeCurrentAddr(v);
        sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
        sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
        sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
      }
    }
    sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
  }
#endif
  for(i=nColumn-1; i>=0; i--){
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    if( aOutEx[i].bSorterRef ){
      sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
    }else
#endif
    {
      int iRead;
      if( aOutEx[i].u.x.iOrderByCol ){
        iRead = aOutEx[i].u.x.iOrderByCol-1;
      }else{
        iRead = iCol--;
      }
      sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
      VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
    }
  }
  switch( eDest ){
    case SRT_Table:
    case SRT_EphemTab: {
      sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;
  }
#endif

  if( pParse->colNamesSet || db->mallocFailed ) return;
  /* Column names are determined by the left-most term of a compound select */
  while( pSelect->pPrior ) pSelect = pSelect->pPrior;
  SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
  pTabList = pSelect->pSrc;
  pEList = pSelect->pEList;
  assert( v!=0 );
  assert( pTabList!=0 );







|







1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;
  }
#endif

  if( pParse->colNamesSet ) return;
  /* Column names are determined by the left-most term of a compound select */
  while( pSelect->pPrior ) pSelect = pSelect->pPrior;
  SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
  pTabList = pSelect->pSrc;
  pEList = pSelect->pEList;
  assert( v!=0 );
  assert( pTabList!=0 );
2140
2141
2142
2143
2144
2145
2146

2147
2148
2149
2150
2151
2152
2153
  }

  /* Detach the ORDER BY clause from the compound SELECT */
  p->pOrderBy = 0;

  /* Store the results of the setup-query in Queue. */
  pSetup->pNext = 0;

  rc = sqlite3Select(pParse, pSetup, &destQueue);
  pSetup->pNext = p;
  if( rc ) goto end_of_recursive_query;

  /* Find the next row in the Queue and output that row */
  addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);








>







2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
  }

  /* Detach the ORDER BY clause from the compound SELECT */
  p->pOrderBy = 0;

  /* Store the results of the setup-query in Queue. */
  pSetup->pNext = 0;
  ExplainQueryPlan((pParse, 1, "SETUP"));
  rc = sqlite3Select(pParse, pSetup, &destQueue);
  pSetup->pNext = p;
  if( rc ) goto end_of_recursive_query;

  /* Find the next row in the Queue and output that row */
  addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);

2174
2175
2176
2177
2178
2179
2180

2181
2182
2183
2184
2185
2186
2187
  /* Execute the recursive SELECT taking the single row in Current as
  ** the value for the recursive-table. Store the results in the Queue.
  */
  if( p->selFlags & SF_Aggregate ){
    sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
  }else{
    p->pPrior = 0;

    sqlite3Select(pParse, p, &destQueue);
    assert( p->pPrior==0 );
    p->pPrior = pSetup;
  }

  /* Keep running the loop until the Queue is empty */
  sqlite3VdbeGoto(v, addrTop);







>







2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
  /* Execute the recursive SELECT taking the single row in Current as
  ** the value for the recursive-table. Store the results in the Queue.
  */
  if( p->selFlags & SF_Aggregate ){
    sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
  }else{
    p->pPrior = 0;
    ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
    sqlite3Select(pParse, p, &destQueue);
    assert( p->pPrior==0 );
    p->pPrior = pSetup;
  }

  /* Keep running the loop until the Queue is empty */
  sqlite3VdbeGoto(v, addrTop);
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229

2230
2231
2232
2233
2234
2235
2236
2237
2238
2239


2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
*/
static int multiSelectValues(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
){
  Select *pPrior;
  Select *pRightmost = p;
  int nRow = 1;
  int rc = 0;

  assert( p->selFlags & SF_MultiValue );
  do{
    assert( p->selFlags & SF_Values );
    assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
    assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
    if( p->pPrior==0 ) break;
    assert( p->pPrior->pNext==p );
    p = p->pPrior;
    nRow++;
  }while(1);


  while( p ){
    pPrior = p->pPrior;
    p->pPrior = 0;
    rc = sqlite3Select(pParse, p, pDest);
    p->pPrior = pPrior;
    if( rc || pRightmost->pLimit ) break;
    p->nSelectRow = nRow;
    p = p->pNext;
  }
  return rc;
}

/*







<
<


>








|

>
>

<
<
|
<
|







2467
2468
2469
2470
2471
2472
2473


2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489


2490

2491
2492
2493
2494
2495
2496
2497
2498
** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
*/
static int multiSelectValues(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
){


  int nRow = 1;
  int rc = 0;
  int bShowAll = p->pLimit==0;
  assert( p->selFlags & SF_MultiValue );
  do{
    assert( p->selFlags & SF_Values );
    assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
    assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
    if( p->pPrior==0 ) break;
    assert( p->pPrior->pNext==p );
    p = p->pPrior;
    nRow += bShowAll;
  }while(1);
  ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
                    nRow==1 ? "" : "S"));
  while( p ){


    selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);

    if( !bShowAll ) break;
    p->nSelectRow = nRow;
    p = p->pNext;
  }
  return rc;
}

/*
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
){
  int rc = SQLITE_OK;   /* Success code from a subroutine */
  Select *pPrior;       /* Another SELECT immediately to our left */
  Vdbe *v;              /* Generate code to this VDBE */
  SelectDest dest;      /* Alternative data destination */
  Select *pDelete = 0;  /* Chain of simple selects to delete */
  sqlite3 *db;          /* Database connection */
#ifndef SQLITE_OMIT_EXPLAIN
  int iSub1 = 0;        /* EQP id of left-hand query */
  int iSub2 = 0;        /* EQP id of right-hand query */
#endif

  /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
  ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
  */
  assert( p && p->pPrior );  /* Calling function guarantees this much */
  assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
  db = pParse->db;







<
<
<
<







2533
2534
2535
2536
2537
2538
2539




2540
2541
2542
2543
2544
2545
2546
){
  int rc = SQLITE_OK;   /* Success code from a subroutine */
  Select *pPrior;       /* Another SELECT immediately to our left */
  Vdbe *v;              /* Generate code to this VDBE */
  SelectDest dest;      /* Alternative data destination */
  Select *pDelete = 0;  /* Chain of simple selects to delete */
  sqlite3 *db;          /* Database connection */





  /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
  ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
  */
  assert( p && p->pPrior );  /* Calling function guarantees this much */
  assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
  db = pParse->db;
2341
2342
2343
2344
2345
2346
2347
2348
2349







2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446

2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524

2525
2526
2527
2528
2529
2530


2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544

2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556


2557
2558



2559
2560
2561
2562
2563
2564
2565
  }else
#endif

  /* Compound SELECTs that have an ORDER BY clause are handled separately.
  */
  if( p->pOrderBy ){
    return multiSelectOrderBy(pParse, p, pDest);
  }else








  /* Generate code for the left and right SELECT statements.
  */
  switch( p->op ){
    case TK_ALL: {
      int addr = 0;
      int nLimit;
      assert( !pPrior->pLimit );
      pPrior->iLimit = p->iLimit;
      pPrior->iOffset = p->iOffset;
      pPrior->pLimit = p->pLimit;
      explainSetInteger(iSub1, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, pPrior, &dest);
      p->pLimit = 0;
      if( rc ){
        goto multi_select_end;
      }
      p->pPrior = 0;
      p->iLimit = pPrior->iLimit;
      p->iOffset = pPrior->iOffset;
      if( p->iLimit ){
        addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
        VdbeComment((v, "Jump ahead if LIMIT reached"));
        if( p->iOffset ){
          sqlite3VdbeAddOp3(v, OP_OffsetLimit,
                            p->iLimit, p->iOffset+1, p->iOffset);
        }
      }
      explainSetInteger(iSub2, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, p, &dest);
      testcase( rc!=SQLITE_OK );
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
      if( pPrior->pLimit
       && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
       && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 
      ){
        p->nSelectRow = sqlite3LogEst((u64)nLimit);
      }
      if( addr ){
        sqlite3VdbeJumpHere(v, addr);
      }
      break;
    }
    case TK_EXCEPT:
    case TK_UNION: {
      int unionTab;    /* Cursor number of the temporary table holding result */
      u8 op = 0;       /* One of the SRT_ operations to apply to self */
      int priorOp;     /* The SRT_ operation to apply to prior selects */
      Expr *pLimit;    /* Saved values of p->nLimit  */
      int addr;
      SelectDest uniondest;

      testcase( p->op==TK_EXCEPT );
      testcase( p->op==TK_UNION );
      priorOp = SRT_Union;
      if( dest.eDest==priorOp ){
        /* We can reuse a temporary table generated by a SELECT to our
        ** right.
        */
        assert( p->pLimit==0 );      /* Not allowed on leftward elements */
        unionTab = dest.iSDParm;
      }else{
        /* We will need to create our own temporary table to hold the
        ** intermediate results.
        */
        unionTab = pParse->nTab++;
        assert( p->pOrderBy==0 );
        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
        assert( p->addrOpenEphm[0] == -1 );
        p->addrOpenEphm[0] = addr;
        findRightmost(p)->selFlags |= SF_UsesEphemeral;
        assert( p->pEList );
      }

      /* Code the SELECT statements to our left
      */
      assert( !pPrior->pOrderBy );
      sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
      explainSetInteger(iSub1, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, pPrior, &uniondest);
      if( rc ){
        goto multi_select_end;
      }

      /* Code the current SELECT statement
      */
      if( p->op==TK_EXCEPT ){
        op = SRT_Except;
      }else{
        assert( p->op==TK_UNION );
        op = SRT_Union;
      }
      p->pPrior = 0;
      pLimit = p->pLimit;
      p->pLimit = 0;
      uniondest.eDest = op;

      explainSetInteger(iSub2, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, p, &uniondest);
      testcase( rc!=SQLITE_OK );
      /* Query flattening in sqlite3Select() might refill p->pOrderBy.
      ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
      sqlite3ExprListDelete(db, p->pOrderBy);
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      p->pOrderBy = 0;
      if( p->op==TK_UNION ){
        p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
      }
      sqlite3ExprDelete(db, p->pLimit);
      p->pLimit = pLimit;
      p->iLimit = 0;
      p->iOffset = 0;

      /* Convert the data in the temporary table into whatever form
      ** it is that we currently need.
      */
      assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
      if( dest.eDest!=priorOp ){
        int iCont, iBreak, iStart;
        assert( p->pEList );
        iBreak = sqlite3VdbeMakeLabel(v);
        iCont = sqlite3VdbeMakeLabel(v);
        computeLimitRegisters(pParse, p, iBreak);
        sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
        iStart = sqlite3VdbeCurrentAddr(v);
        selectInnerLoop(pParse, p, unionTab,
                        0, 0, &dest, iCont, iBreak);
        sqlite3VdbeResolveLabel(v, iCont);
        sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
        sqlite3VdbeResolveLabel(v, iBreak);
        sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
      }
      break;
    }
    default: assert( p->op==TK_INTERSECT ); {
      int tab1, tab2;
      int iCont, iBreak, iStart;
      Expr *pLimit;
      int addr;
      SelectDest intersectdest;
      int r1;

      /* INTERSECT is different from the others since it requires
      ** two temporary tables.  Hence it has its own case.  Begin
      ** by allocating the tables we will need.
      */
      tab1 = pParse->nTab++;
      tab2 = pParse->nTab++;
      assert( p->pOrderBy==0 );

      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
      assert( p->addrOpenEphm[0] == -1 );
      p->addrOpenEphm[0] = addr;
      findRightmost(p)->selFlags |= SF_UsesEphemeral;
      assert( p->pEList );

      /* Code the SELECTs to our left into temporary table "tab1".
      */
      sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
      explainSetInteger(iSub1, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, pPrior, &intersectdest);
      if( rc ){
        goto multi_select_end;
      }

      /* Code the current SELECT into temporary table "tab2"
      */
      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
      assert( p->addrOpenEphm[1] == -1 );
      p->addrOpenEphm[1] = addr;
      p->pPrior = 0;
      pLimit = p->pLimit;
      p->pLimit = 0;
      intersectdest.iSDParm = tab2;

      explainSetInteger(iSub2, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, p, &intersectdest);
      testcase( rc!=SQLITE_OK );
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;


      sqlite3ExprDelete(db, p->pLimit);
      p->pLimit = pLimit;

      /* Generate code to take the intersection of the two temporary
      ** tables.
      */
      assert( p->pEList );
      iBreak = sqlite3VdbeMakeLabel(v);
      iCont = sqlite3VdbeMakeLabel(v);
      computeLimitRegisters(pParse, p, iBreak);
      sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
      r1 = sqlite3GetTempReg(pParse);
      iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
      sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);

      sqlite3ReleaseTempReg(pParse, r1);
      selectInnerLoop(pParse, p, tab1,
                      0, 0, &dest, iCont, iBreak);
      sqlite3VdbeResolveLabel(v, iCont);
      sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
      sqlite3VdbeResolveLabel(v, iBreak);
      sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
      sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
      break;
    }
  }



  explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);




  /* Compute collating sequences used by 
  ** temporary tables needed to implement the compound select.
  ** Attach the KeyInfo structure to all temporary tables.
  **
  ** This section is run by the right-most SELECT statement only.
  ** SELECT statements to the left always skip this part.  The right-most
  ** SELECT might also skip this part if it has no ORDER BY clause and







|

>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
>
>
|
|
>
>
>







2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608

2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676

2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757

2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
  }else
#endif

  /* Compound SELECTs that have an ORDER BY clause are handled separately.
  */
  if( p->pOrderBy ){
    return multiSelectOrderBy(pParse, p, pDest);
  }else{

#ifndef SQLITE_OMIT_EXPLAIN
    if( pPrior->pPrior==0 ){
      ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
      ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
    }
#endif

    /* Generate code for the left and right SELECT statements.
    */
    switch( p->op ){
      case TK_ALL: {
        int addr = 0;
        int nLimit;
        assert( !pPrior->pLimit );
        pPrior->iLimit = p->iLimit;
        pPrior->iOffset = p->iOffset;
        pPrior->pLimit = p->pLimit;

        rc = sqlite3Select(pParse, pPrior, &dest);
        p->pLimit = 0;
        if( rc ){
          goto multi_select_end;
        }
        p->pPrior = 0;
        p->iLimit = pPrior->iLimit;
        p->iOffset = pPrior->iOffset;
        if( p->iLimit ){
          addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
          VdbeComment((v, "Jump ahead if LIMIT reached"));
          if( p->iOffset ){
            sqlite3VdbeAddOp3(v, OP_OffsetLimit,
                              p->iLimit, p->iOffset+1, p->iOffset);
          }
        }
        ExplainQueryPlan((pParse, 1, "UNION ALL"));
        rc = sqlite3Select(pParse, p, &dest);
        testcase( rc!=SQLITE_OK );
        pDelete = p->pPrior;
        p->pPrior = pPrior;
        p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
        if( pPrior->pLimit
         && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
         && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 
        ){
          p->nSelectRow = sqlite3LogEst((u64)nLimit);
        }
        if( addr ){
          sqlite3VdbeJumpHere(v, addr);
        }
        break;
      }
      case TK_EXCEPT:
      case TK_UNION: {
        int unionTab;    /* Cursor number of the temp table holding result */
        u8 op = 0;       /* One of the SRT_ operations to apply to self */
        int priorOp;     /* The SRT_ operation to apply to prior selects */
        Expr *pLimit;    /* Saved values of p->nLimit  */
        int addr;
        SelectDest uniondest;
  
        testcase( p->op==TK_EXCEPT );
        testcase( p->op==TK_UNION );
        priorOp = SRT_Union;
        if( dest.eDest==priorOp ){
          /* We can reuse a temporary table generated by a SELECT to our
          ** right.
          */
          assert( p->pLimit==0 );      /* Not allowed on leftward elements */
          unionTab = dest.iSDParm;
        }else{
          /* We will need to create our own temporary table to hold the
          ** intermediate results.
          */
          unionTab = pParse->nTab++;
          assert( p->pOrderBy==0 );
          addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
          assert( p->addrOpenEphm[0] == -1 );
          p->addrOpenEphm[0] = addr;
          findRightmost(p)->selFlags |= SF_UsesEphemeral;
          assert( p->pEList );
        }
  
        /* Code the SELECT statements to our left
        */
        assert( !pPrior->pOrderBy );
        sqlite3SelectDestInit(&uniondest, priorOp, unionTab);

        rc = sqlite3Select(pParse, pPrior, &uniondest);
        if( rc ){
          goto multi_select_end;
        }
  
        /* Code the current SELECT statement
        */
        if( p->op==TK_EXCEPT ){
          op = SRT_Except;
        }else{
          assert( p->op==TK_UNION );
          op = SRT_Union;
        }
        p->pPrior = 0;
        pLimit = p->pLimit;
        p->pLimit = 0;
        uniondest.eDest = op;
        ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
                          selectOpName(p->op)));
        rc = sqlite3Select(pParse, p, &uniondest);
        testcase( rc!=SQLITE_OK );
        /* Query flattening in sqlite3Select() might refill p->pOrderBy.
        ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
        sqlite3ExprListDelete(db, p->pOrderBy);
        pDelete = p->pPrior;
        p->pPrior = pPrior;
        p->pOrderBy = 0;
        if( p->op==TK_UNION ){
          p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
        }
        sqlite3ExprDelete(db, p->pLimit);
        p->pLimit = pLimit;
        p->iLimit = 0;
        p->iOffset = 0;
  
        /* Convert the data in the temporary table into whatever form
        ** it is that we currently need.
        */
        assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
        if( dest.eDest!=priorOp ){
          int iCont, iBreak, iStart;
          assert( p->pEList );
          iBreak = sqlite3VdbeMakeLabel(v);
          iCont = sqlite3VdbeMakeLabel(v);
          computeLimitRegisters(pParse, p, iBreak);
          sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
          iStart = sqlite3VdbeCurrentAddr(v);
          selectInnerLoop(pParse, p, unionTab,
                          0, 0, &dest, iCont, iBreak);
          sqlite3VdbeResolveLabel(v, iCont);
          sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
          sqlite3VdbeResolveLabel(v, iBreak);
          sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
        }
        break;
      }
      default: assert( p->op==TK_INTERSECT ); {
        int tab1, tab2;
        int iCont, iBreak, iStart;
        Expr *pLimit;
        int addr;
        SelectDest intersectdest;
        int r1;
  
        /* INTERSECT is different from the others since it requires
        ** two temporary tables.  Hence it has its own case.  Begin
        ** by allocating the tables we will need.
        */
        tab1 = pParse->nTab++;
        tab2 = pParse->nTab++;
        assert( p->pOrderBy==0 );
  
        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
        assert( p->addrOpenEphm[0] == -1 );
        p->addrOpenEphm[0] = addr;
        findRightmost(p)->selFlags |= SF_UsesEphemeral;
        assert( p->pEList );
  
        /* Code the SELECTs to our left into temporary table "tab1".
        */
        sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);

        rc = sqlite3Select(pParse, pPrior, &intersectdest);
        if( rc ){
          goto multi_select_end;
        }
  
        /* Code the current SELECT into temporary table "tab2"
        */
        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
        assert( p->addrOpenEphm[1] == -1 );
        p->addrOpenEphm[1] = addr;
        p->pPrior = 0;
        pLimit = p->pLimit;
        p->pLimit = 0;
        intersectdest.iSDParm = tab2;
        ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
                          selectOpName(p->op)));
        rc = sqlite3Select(pParse, p, &intersectdest);
        testcase( rc!=SQLITE_OK );
        pDelete = p->pPrior;
        p->pPrior = pPrior;
        if( p->nSelectRow>pPrior->nSelectRow ){
          p->nSelectRow = pPrior->nSelectRow;
        }
        sqlite3ExprDelete(db, p->pLimit);
        p->pLimit = pLimit;
  
        /* Generate code to take the intersection of the two temporary
        ** tables.
        */
        assert( p->pEList );
        iBreak = sqlite3VdbeMakeLabel(v);
        iCont = sqlite3VdbeMakeLabel(v);
        computeLimitRegisters(pParse, p, iBreak);
        sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
        r1 = sqlite3GetTempReg(pParse);
        iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
        sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
        VdbeCoverage(v);
        sqlite3ReleaseTempReg(pParse, r1);
        selectInnerLoop(pParse, p, tab1,
                        0, 0, &dest, iCont, iBreak);
        sqlite3VdbeResolveLabel(v, iCont);
        sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
        sqlite3VdbeResolveLabel(v, iBreak);
        sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
        sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
        break;
      }
    }
  
  #ifndef SQLITE_OMIT_EXPLAIN
    if( p->pNext==0 ){
      ExplainQueryPlanPop(pParse);
    }
  #endif
  }
  
  /* Compute collating sequences used by 
  ** temporary tables needed to implement the compound select.
  ** Attach the KeyInfo structure to all temporary tables.
  **
  ** This section is run by the right-most SELECT statement only.
  ** SELECT statements to the left always skip this part.  The right-most
  ** SELECT might also skip this part if it has no ORDER BY clause and
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
  int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
  KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
  KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
  sqlite3 *db;          /* Database connection */
  ExprList *pOrderBy;   /* The ORDER BY clause */
  int nOrderBy;         /* Number of terms in the ORDER BY clause */
  int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
#ifndef SQLITE_OMIT_EXPLAIN
  int iSub1;            /* EQP id of left-hand query */
  int iSub2;            /* EQP id of right-hand query */
#endif

  assert( p->pOrderBy!=0 );
  assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
  db = pParse->db;
  v = pParse->pVdbe;
  assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
  labelEnd = sqlite3VdbeMakeLabel(v);







<
<
<
<







3145
3146
3147
3148
3149
3150
3151




3152
3153
3154
3155
3156
3157
3158
  int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
  KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
  KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
  sqlite3 *db;          /* Database connection */
  ExprList *pOrderBy;   /* The ORDER BY clause */
  int nOrderBy;         /* Number of terms in the ORDER BY clause */
  int *aPermute;        /* Mapping from ORDER BY terms to result set columns */





  assert( p->pOrderBy!=0 );
  assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
  db = pParse->db;
  v = pParse->pVdbe;
  assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
  labelEnd = sqlite3VdbeMakeLabel(v);
3012
3013
3014
3015
3016
3017
3018


3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
  regAddrA = ++pParse->nMem;
  regAddrB = ++pParse->nMem;
  regOutA = ++pParse->nMem;
  regOutB = ++pParse->nMem;
  sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
  sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);



  /* Generate a coroutine to evaluate the SELECT statement to the
  ** left of the compound operator - the "A" select.
  */
  addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
  addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
  VdbeComment((v, "left SELECT"));
  pPrior->iLimit = regLimitA;
  explainSetInteger(iSub1, pParse->iNextSelectId);
  sqlite3Select(pParse, pPrior, &destA);
  sqlite3VdbeEndCoroutine(v, regAddrA);
  sqlite3VdbeJumpHere(v, addr1);

  /* Generate a coroutine to evaluate the SELECT statement on 
  ** the right - the "B" select
  */
  addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
  addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
  VdbeComment((v, "right SELECT"));
  savedLimit = p->iLimit;
  savedOffset = p->iOffset;
  p->iLimit = regLimitB;
  p->iOffset = 0;  
  explainSetInteger(iSub2, pParse->iNextSelectId);
  sqlite3Select(pParse, p, &destB);
  p->iLimit = savedLimit;
  p->iOffset = savedOffset;
  sqlite3VdbeEndCoroutine(v, regAddrB);

  /* Generate a subroutine that outputs the current row of the A
  ** select as the next output row of the compound select.







>
>







|














|







3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
  regAddrA = ++pParse->nMem;
  regAddrB = ++pParse->nMem;
  regOutA = ++pParse->nMem;
  regOutB = ++pParse->nMem;
  sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
  sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);

  ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));

  /* Generate a coroutine to evaluate the SELECT statement to the
  ** left of the compound operator - the "A" select.
  */
  addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
  addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
  VdbeComment((v, "left SELECT"));
  pPrior->iLimit = regLimitA;
  ExplainQueryPlan((pParse, 1, "LEFT"));
  sqlite3Select(pParse, pPrior, &destA);
  sqlite3VdbeEndCoroutine(v, regAddrA);
  sqlite3VdbeJumpHere(v, addr1);

  /* Generate a coroutine to evaluate the SELECT statement on 
  ** the right - the "B" select
  */
  addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
  addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
  VdbeComment((v, "right SELECT"));
  savedLimit = p->iLimit;
  savedOffset = p->iOffset;
  p->iLimit = regLimitB;
  p->iOffset = 0;  
  ExplainQueryPlan((pParse, 1, "RIGHT"));
  sqlite3Select(pParse, p, &destB);
  p->iLimit = savedLimit;
  p->iOffset = savedOffset;
  sqlite3VdbeEndCoroutine(v, regAddrB);

  /* Generate a subroutine that outputs the current row of the A
  ** select as the next output row of the compound select.
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
    sqlite3SelectDelete(db, p->pPrior);
  }
  p->pPrior = pPrior;
  pPrior->pNext = p;

  /*** TBD:  Insert subroutine calls to close cursors on incomplete
  **** subqueries ****/
  explainComposite(pParse, p->op, iSub1, iSub2, 0);
  return pParse->nErr!=0;
}
#endif

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)

/* An instance of the SubstContext object describes an substitution edit







|







3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
    sqlite3SelectDelete(db, p->pPrior);
  }
  p->pPrior = pPrior;
  pPrior->pNext = p;

  /*** TBD:  Insert subroutine calls to close cursors on incomplete
  **** subqueries ****/
  ExplainQueryPlanPop(pParse);
  return pParse->nErr!=0;
}
#endif

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)

/* An instance of the SubstContext object describes an substitution edit
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
    if( pNew==0 ){
      p->pPrior = pPrior;
    }else{
      pNew->pPrior = pPrior;
      if( pPrior ) pPrior->pNext = pNew;
      pNew->pNext = p;
      p->pPrior = pNew;
      SELECTTRACE(2,pParse,p,
         ("compound-subquery flattener creates %s.%p as peer\n",
         pNew->zSelName, pNew));
    }
    if( db->mallocFailed ) return 1;
  }

  /* Begin flattening the iFrom-th entry of the FROM clause 
  ** in the outer query.
  */







|
<
|







3887
3888
3889
3890
3891
3892
3893
3894

3895
3896
3897
3898
3899
3900
3901
3902
    if( pNew==0 ){
      p->pPrior = pPrior;
    }else{
      pNew->pPrior = pPrior;
      if( pPrior ) pPrior->pNext = pNew;
      pNew->pNext = p;
      p->pPrior = pNew;
      SELECTTRACE(2,pParse,p,("compound-subquery flattener"

                              " creates %s.%p as peer\n",pNew->zSelName, pNew));
    }
    if( db->mallocFailed ) return 1;
  }

  /* Begin flattening the iFrom-th entry of the FROM clause 
  ** in the outer query.
  */
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
static void explainSimpleCount(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being queried */
  Index *pIdx                     /* Index used to optimize scan, or NULL */
){
  if( pParse->explain==2 ){
    int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
    char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
        pTab->zName,
        bCover ? " USING COVERING INDEX " : "",
        bCover ? pIdx->zName : ""
    );
    sqlite3VdbeAddOp4(
        pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
    );
  }
}
#else
# define explainSimpleCount(a,b,c)
#endif

/*







|




<
<
<







5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199



5200
5201
5202
5203
5204
5205
5206
static void explainSimpleCount(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being queried */
  Index *pIdx                     /* Index used to optimize scan, or NULL */
){
  if( pParse->explain==2 ){
    int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
    sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
        pTab->zName,
        bCover ? " USING COVERING INDEX " : "",
        bCover ? pIdx->zName : ""
    );



  }
}
#else
# define explainSimpleCount(a,b,c)
#endif

/*
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167

5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
  SortCtx sSort;         /* Info on how to code the ORDER BY clause */
  AggInfo sAggInfo;      /* Information used by aggregate queries */
  int iEnd;              /* Address of the end of the query */
  sqlite3 *db;           /* The database connection */
  ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
  u8 minMaxFlag;                 /* Flag for min/max queries */

#ifndef SQLITE_OMIT_EXPLAIN
  int iRestoreSelectId = pParse->iSelectId;
  pParse->iSelectId = pParse->iNextSelectId++;
#endif

  db = pParse->db;

  if( p==0 || db->mallocFailed || pParse->nErr ){
    return 1;
  }
  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
  memset(&sAggInfo, 0, sizeof(sAggInfo));
#if SELECTTRACE_ENABLED
  SELECTTRACE(1,pParse,p, ("begin processing:\n"));
  if( sqlite3SelectTrace & 0x100 ){
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif

  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );







<
<
<
<
<

>






|







5405
5406
5407
5408
5409
5410
5411





5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
  SortCtx sSort;         /* Info on how to code the ORDER BY clause */
  AggInfo sAggInfo;      /* Information used by aggregate queries */
  int iEnd;              /* Address of the end of the query */
  sqlite3 *db;           /* The database connection */
  ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
  u8 minMaxFlag;                 /* Flag for min/max queries */






  db = pParse->db;
  v = sqlite3GetVdbe(pParse);
  if( p==0 || db->mallocFailed || pParse->nErr ){
    return 1;
  }
  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
  memset(&sAggInfo, 0, sizeof(sAggInfo));
#if SELECTTRACE_ENABLED
  SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
  if( sqlite3SelectTrace & 0x100 ){
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif

  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
  pTabList = p->pSrc;
  if( pParse->nErr || db->mallocFailed ){
    goto select_end;
  }
  assert( p->pEList!=0 );
  isAgg = (p->selFlags & SF_Aggregate)!=0;
#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x100 ){
    SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif

  /* Get a pointer the VDBE under construction, allocating a new VDBE if one
  ** does not already exist */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto select_end;
  if( pDest->eDest==SRT_Output ){
    generateColumnNames(pParse, p);
  }

  /* Try to various optimizations (flattening subqueries, and strength
  ** reduction of join operators) in the FROM clause up into the main query
  */







|
|




<
<
<
<







5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456




5457
5458
5459
5460
5461
5462
5463
  pTabList = p->pSrc;
  if( pParse->nErr || db->mallocFailed ){
    goto select_end;
  }
  assert( p->pEList!=0 );
  isAgg = (p->selFlags & SF_Aggregate)!=0;
#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x104 ){
    SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif





  if( pDest->eDest==SRT_Output ){
    generateColumnNames(pParse, p);
  }

  /* Try to various optimizations (flattening subqueries, and strength
  ** reduction of join operators) in the FROM clause up into the main query
  */
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309



5310

5311
5312
5313
5314
5315
5316
5317

#ifndef SQLITE_OMIT_COMPOUND_SELECT
  /* Handle compound SELECT statements using the separate multiSelect()
  ** procedure.
  */
  if( p->pPrior ){
    rc = multiSelect(pParse, p, pDest);
    explainSetInteger(pParse->iSelectId, iRestoreSelectId);
#if SELECTTRACE_ENABLED
    SELECTTRACE(1,pParse,p,("end compound-select processing\n"));



#endif

    return rc;
  }
#endif

  /* For each term in the FROM clause, do two things:
  ** (1) Authorized unreferenced tables
  ** (2) Generate code for all sub-queries







<

|
>
>
>

>







5542
5543
5544
5545
5546
5547
5548

5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562

#ifndef SQLITE_OMIT_COMPOUND_SELECT
  /* Handle compound SELECT statements using the separate multiSelect()
  ** procedure.
  */
  if( p->pPrior ){
    rc = multiSelect(pParse, p, pDest);

#if SELECTTRACE_ENABLED
    SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
    if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
      sqlite3TreeViewSelect(0, p, 0);
    }
#endif
    if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
    return rc;
  }
#endif

  /* For each term in the FROM clause, do two things:
  ** (1) Authorized unreferenced tables
  ** (2) Generate code for all sub-queries
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
      int addrTop = sqlite3VdbeCurrentAddr(v)+1;
     
      pItem->regReturn = ++pParse->nMem;
      sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
      VdbeComment((v, "%s", pItem->pTab->zName));
      pItem->addrFillSub = addrTop;
      sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
      explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
      sqlite3Select(pParse, pSub, &dest);
      pItem->pTab->nRowLogEst = pSub->nSelectRow;
      pItem->fg.viaCoroutine = 1;
      pItem->regResult = dest.iSdst;
      sqlite3VdbeEndCoroutine(v, pItem->regReturn);
      sqlite3VdbeJumpHere(v, addrTop-1);
      sqlite3ClearTempRegCache(pParse);







|







5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
      int addrTop = sqlite3VdbeCurrentAddr(v)+1;
     
      pItem->regReturn = ++pParse->nMem;
      sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
      VdbeComment((v, "%s", pItem->pTab->zName));
      pItem->addrFillSub = addrTop;
      sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
      ExplainQueryPlan((pParse, 1, "CO-ROUTINE 0x%p", pSub));
      sqlite3Select(pParse, pSub, &dest);
      pItem->pTab->nRowLogEst = pSub->nSelectRow;
      pItem->fg.viaCoroutine = 1;
      pItem->regResult = dest.iSdst;
      sqlite3VdbeEndCoroutine(v, pItem->regReturn);
      sqlite3VdbeJumpHere(v, addrTop-1);
      sqlite3ClearTempRegCache(pParse);
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
        VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }else{
        VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }
      pPrior = isSelfJoinView(pTabList, pItem);
      if( pPrior ){
        sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
        explainSetInteger(pItem->iSelectId, pPrior->iSelectId);
        assert( pPrior->pSelect!=0 );
        pSub->nSelectRow = pPrior->pSelect->nSelectRow;
      }else{
        sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
        explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
        sqlite3Select(pParse, pSub, &dest);
      }
      pItem->pTab->nRowLogEst = pSub->nSelectRow;
      if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
      retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
      VdbeComment((v, "end %s", pItem->pTab->zName));
      sqlite3VdbeChangeP1(v, topAddr, retAddr);







<




|







5695
5696
5697
5698
5699
5700
5701

5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
        VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }else{
        VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }
      pPrior = isSelfJoinView(pTabList, pItem);
      if( pPrior ){
        sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);

        assert( pPrior->pSelect!=0 );
        pSub->nSelectRow = pPrior->pSelect->nSelectRow;
      }else{
        sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
        ExplainQueryPlan((pParse, 1, "MATERIALIZE 0x%p", pSub));
        sqlite3Select(pParse, pSub, &dest);
      }
      pItem->pTab->nRowLogEst = pSub->nSelectRow;
      if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
      retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
      VdbeComment((v, "end %s", pItem->pTab->zName));
      sqlite3VdbeChangeP1(v, topAddr, retAddr);
5682
5683
5684
5685
5686
5687
5688
5689

5690
5691
5692
5693
5694
5695
5696
    /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
    ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
    ** SELECT statement.
    */
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    sNC.pSrcList = pTabList;
    sNC.pAggInfo = &sAggInfo;

    sAggInfo.mnReg = pParse->nMem+1;
    sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
    sAggInfo.pGroupBy = pGroupBy;
    sqlite3ExprAnalyzeAggList(&sNC, pEList);
    sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
    if( pHaving ){
      if( pGroupBy ){







|
>







5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
    /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
    ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
    ** SELECT statement.
    */
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    sNC.pSrcList = pTabList;
    sNC.uNC.pAggInfo = &sAggInfo;
    VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
    sAggInfo.mnReg = pParse->nMem+1;
    sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
    sAggInfo.pGroupBy = pGroupBy;
    sqlite3ExprAnalyzeAggList(&sNC, pEList);
    sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
    if( pHaving ){
      if( pGroupBy ){
6071
6072
6073
6074
6075
6076
6077

6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098



6099

6100
6101

  /* If there is an ORDER BY clause, then we need to sort the results
  ** and send them to the callback one by one.
  */
  if( sSort.pOrderBy ){
    explainTempTable(pParse,
                     sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");

    generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
  }

  /* Jump here to skip this query
  */
  sqlite3VdbeResolveLabel(v, iEnd);

  /* The SELECT has been coded. If there is an error in the Parse structure,
  ** set the return code to 1. Otherwise 0. */
  rc = (pParse->nErr>0);

  /* Control jumps to here if an error is encountered above, or upon
  ** successful coding of the SELECT.
  */
select_end:
  explainSetInteger(pParse->iSelectId, iRestoreSelectId);
  sqlite3ExprListDelete(db, pMinMaxOrderBy);
  sqlite3DbFree(db, sAggInfo.aCol);
  sqlite3DbFree(db, sAggInfo.aFunc);
#if SELECTTRACE_ENABLED
  SELECTTRACE(1,pParse,p,("end processing\n"));



#endif

  return rc;
}







>















<




|
>
>
>

>


6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338

6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350

  /* If there is an ORDER BY clause, then we need to sort the results
  ** and send them to the callback one by one.
  */
  if( sSort.pOrderBy ){
    explainTempTable(pParse,
                     sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
    assert( p->pEList==pEList );
    generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
  }

  /* Jump here to skip this query
  */
  sqlite3VdbeResolveLabel(v, iEnd);

  /* The SELECT has been coded. If there is an error in the Parse structure,
  ** set the return code to 1. Otherwise 0. */
  rc = (pParse->nErr>0);

  /* Control jumps to here if an error is encountered above, or upon
  ** successful coding of the SELECT.
  */
select_end:

  sqlite3ExprListDelete(db, pMinMaxOrderBy);
  sqlite3DbFree(db, sAggInfo.aCol);
  sqlite3DbFree(db, sAggInfo.aFunc);
#if SELECTTRACE_ENABLED
  SELECTTRACE(0x1,pParse,p,("end processing\n"));
  if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif
  ExplainQueryPlanPop(pParse);
  return rc;
}
Changes to src/shell.c.in.
431
432
433
434
435
436
437






438
439
440
441
442
443
444
/*
** Render output like fprintf().  This should not be used on anything that
** includes string formatting (e.g. "%s").
*/
#if !defined(raw_printf)
# define raw_printf fprintf
#endif







/*
** Write I/O traces to the following stream.
*/
#ifdef SQLITE_ENABLE_IOTRACE
static FILE *iotrace = 0;
#endif







>
>
>
>
>
>







431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/*
** Render output like fprintf().  This should not be used on anything that
** includes string formatting (e.g. "%s").
*/
#if !defined(raw_printf)
# define raw_printf fprintf
#endif

/* Indicate out-of-memory and exit. */
static void shell_out_of_memory(void){
  raw_printf(stderr,"Error: out of memory\n");
  exit(1);
}

/*
** Write I/O traces to the following stream.
*/
#ifdef SQLITE_ENABLE_IOTRACE
static FILE *iotrace = 0;
#endif
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
** because it contains non-alphanumeric characters, or because it is an
** SQLite keyword.  Be conservative in this estimate:  When in doubt assume
** that quoting is required.
**
** Return '"' if quoting is required.  Return 0 if no quoting is required.
*/
static char quoteChar(const char *zName){
  /* All SQLite keywords, in alphabetical order */
  static const char *azKeywords[] = {
    "ABORT", "ACTION", "ADD", "AFTER", "ALL", "ALTER", "ANALYZE", "AND", "AS",
    "ASC", "ATTACH", "AUTOINCREMENT", "BEFORE", "BEGIN", "BETWEEN", "BY",
    "CASCADE", "CASE", "CAST", "CHECK", "COLLATE", "COLUMN", "COMMIT",
    "CONFLICT", "CONSTRAINT", "CREATE", "CROSS", "CURRENT_DATE",
    "CURRENT_TIME", "CURRENT_TIMESTAMP", "DATABASE", "DEFAULT", "DEFERRABLE",
    "DEFERRED", "DELETE", "DESC", "DETACH", "DISTINCT", "DROP", "EACH",
    "ELSE", "END", "ESCAPE", "EXCEPT", "EXCLUSIVE", "EXISTS", "EXPLAIN",
    "FAIL", "FOR", "FOREIGN", "FROM", "FULL", "GLOB", "GROUP", "HAVING", "IF",
    "IGNORE", "IMMEDIATE", "IN", "INDEX", "INDEXED", "INITIALLY", "INNER",
    "INSERT", "INSTEAD", "INTERSECT", "INTO", "IS", "ISNULL", "JOIN", "KEY",
    "LEFT", "LIKE", "LIMIT", "MATCH", "NATURAL", "NO", "NOT", "NOTNULL",
    "NULL", "OF", "OFFSET", "ON", "OR", "ORDER", "OUTER", "PLAN", "PRAGMA",
    "PRIMARY", "QUERY", "RAISE", "RECURSIVE", "REFERENCES", "REGEXP",
    "REINDEX", "RELEASE", "RENAME", "REPLACE", "RESTRICT", "RIGHT",
    "ROLLBACK", "ROW", "SAVEPOINT", "SELECT", "SET", "TABLE", "TEMP",
    "TEMPORARY", "THEN", "TO", "TRANSACTION", "TRIGGER", "UNION", "UNIQUE",
    "UPDATE", "USING", "VACUUM", "VALUES", "VIEW", "VIRTUAL", "WHEN", "WHERE",
    "WITH", "WITHOUT",
  };
  int i, lwr, upr, mid, c;
  if( !isalpha((unsigned char)zName[0]) && zName[0]!='_' ) return '"';
  for(i=0; zName[i]; i++){
    if( !isalnum((unsigned char)zName[i]) && zName[i]!='_' ) return '"';
  }
  lwr = 0;
  upr = sizeof(azKeywords)/sizeof(azKeywords[0]) - 1;
  while( lwr<=upr ){
    mid = (lwr+upr)/2;
    c = sqlite3_stricmp(azKeywords[mid], zName);
    if( c==0 ) return '"';
    if( c<0 ){
      lwr = mid+1;
    }else{
      upr = mid-1;
    }
  }
  return 0;
}

/*
** Construct a fake object name and column list to describe the structure
** of the view, virtual table, or table valued function zSchema.zName.
*/
static char *shellFakeSchema(







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|




<
<
<
<
<
<
<
<
<
<
<
<
|







770
771
772
773
774
775
776





















777
778
779
780
781












782
783
784
785
786
787
788
789
** because it contains non-alphanumeric characters, or because it is an
** SQLite keyword.  Be conservative in this estimate:  When in doubt assume
** that quoting is required.
**
** Return '"' if quoting is required.  Return 0 if no quoting is required.
*/
static char quoteChar(const char *zName){





















  int i;
  if( !isalpha((unsigned char)zName[0]) && zName[0]!='_' ) return '"';
  for(i=0; zName[i]; i++){
    if( !isalnum((unsigned char)zName[i]) && zName[i]!='_' ) return '"';
  }












  return sqlite3_keyword_check(zName, i) ? '"' : 0;
}

/*
** Construct a fake object name and column list to describe the structure
** of the view, virtual table, or table valued function zSchema.zName.
*/
static char *shellFakeSchema(
1001
1002
1003
1004
1005
1006
1007

















1008
1009
1010
1011
1012
1013
1014
1015
1016

1017
1018
1019
1020


1021
1022
1023
1024
1025
1026
1027

typedef struct ExpertInfo ExpertInfo;
struct ExpertInfo {
  sqlite3expert *pExpert;
  int bVerbose;
};


















/*
** State information about the database connection is contained in an
** instance of the following structure.
*/
typedef struct ShellState ShellState;
struct ShellState {
  sqlite3 *db;           /* The database */
  u8 autoExplain;        /* Automatically turn on .explain mode */
  u8 autoEQP;            /* Run EXPLAIN QUERY PLAN prior to seach SQL stmt */

  u8 statsOn;            /* True to display memory stats before each finalize */
  u8 scanstatsOn;        /* True to display scan stats before each finalize */
  u8 openMode;           /* SHELL_OPEN_NORMAL, _APPENDVFS, or _ZIPFILE */
  u8 doXdgOpen;          /* Invoke start/open/xdg-open in output_reset() */


  int outCount;          /* Revert to stdout when reaching zero */
  int cnt;               /* Number of records displayed so far */
  FILE *out;             /* Write results here */
  FILE *traceOut;        /* Output for sqlite3_trace() */
  int nErr;              /* Number of errors seen */
  int mode;              /* An output mode setting */
  int modePrior;         /* Saved mode */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









>




>
>







974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

typedef struct ExpertInfo ExpertInfo;
struct ExpertInfo {
  sqlite3expert *pExpert;
  int bVerbose;
};

/* A single line in the EQP output */
typedef struct EQPGraphRow EQPGraphRow;
struct EQPGraphRow {
  int iEqpId;           /* ID for this row */
  int iParentId;        /* ID of the parent row */
  EQPGraphRow *pNext;   /* Next row in sequence */
  char zText[1];        /* Text to display for this row */
};

/* All EQP output is collected into an instance of the following */
typedef struct EQPGraph EQPGraph;
struct EQPGraph {
  EQPGraphRow *pRow;    /* Linked list of all rows of the EQP output */
  EQPGraphRow *pLast;   /* Last element of the pRow list */
  char zPrefix[100];    /* Graph prefix */
};

/*
** State information about the database connection is contained in an
** instance of the following structure.
*/
typedef struct ShellState ShellState;
struct ShellState {
  sqlite3 *db;           /* The database */
  u8 autoExplain;        /* Automatically turn on .explain mode */
  u8 autoEQP;            /* Run EXPLAIN QUERY PLAN prior to seach SQL stmt */
  u8 autoEQPtest;        /* autoEQP is in test mode */
  u8 statsOn;            /* True to display memory stats before each finalize */
  u8 scanstatsOn;        /* True to display scan stats before each finalize */
  u8 openMode;           /* SHELL_OPEN_NORMAL, _APPENDVFS, or _ZIPFILE */
  u8 doXdgOpen;          /* Invoke start/open/xdg-open in output_reset() */
  u8 nEqpLevel;          /* Depth of the EQP output graph */
  unsigned mEqpLines;    /* Mask of veritical lines in the EQP output graph */
  int outCount;          /* Revert to stdout when reaching zero */
  int cnt;               /* Number of records displayed so far */
  FILE *out;             /* Write results here */
  FILE *traceOut;        /* Output for sqlite3_trace() */
  int nErr;              /* Number of errors seen */
  int mode;              /* An output mode setting */
  int modePrior;         /* Saved mode */
1047
1048
1049
1050
1051
1052
1053

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
  char *zFreeOnClose;         /* Filename to free when closing */
  const char *zVfs;           /* Name of VFS to use */
  sqlite3_stmt *pStmt;   /* Current statement if any. */
  FILE *pLog;            /* Write log output here */
  int *aiIndent;         /* Array of indents used in MODE_Explain */
  int nIndent;           /* Size of array aiIndent[] */
  int iIndent;           /* Index of current op in aiIndent[] */

#if defined(SQLITE_ENABLE_SESSION)
  int nSession;             /* Number of active sessions */
  OpenSession aSession[4];  /* Array of sessions.  [0] is in focus. */
#endif
  ExpertInfo expert;        /* Valid if previous command was ".expert OPT..." */
};


/* Allowed values for ShellState.autoEQP
*/
#define AUTOEQP_off      0
#define AUTOEQP_on       1
#define AUTOEQP_trigger  2
#define AUTOEQP_full     3

/* Allowed values for ShellState.openMode
*/
#define SHELL_OPEN_UNSPEC     0      /* No open-mode specified */
#define SHELL_OPEN_NORMAL     1      /* Normal database file */
#define SHELL_OPEN_APPENDVFS  2      /* Use appendvfs */
#define SHELL_OPEN_ZIPFILE    3      /* Use the zipfile virtual table */







>










|
|
|
|







1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
  char *zFreeOnClose;         /* Filename to free when closing */
  const char *zVfs;           /* Name of VFS to use */
  sqlite3_stmt *pStmt;   /* Current statement if any. */
  FILE *pLog;            /* Write log output here */
  int *aiIndent;         /* Array of indents used in MODE_Explain */
  int nIndent;           /* Size of array aiIndent[] */
  int iIndent;           /* Index of current op in aiIndent[] */
  EQPGraph sGraph;       /* Information for the graphical EXPLAIN QUERY PLAN */
#if defined(SQLITE_ENABLE_SESSION)
  int nSession;             /* Number of active sessions */
  OpenSession aSession[4];  /* Array of sessions.  [0] is in focus. */
#endif
  ExpertInfo expert;        /* Valid if previous command was ".expert OPT..." */
};


/* Allowed values for ShellState.autoEQP
*/
#define AUTOEQP_off      0           /* Automatic EXPLAIN QUERY PLAN is off */
#define AUTOEQP_on       1           /* Automatic EQP is on */
#define AUTOEQP_trigger  2           /* On and also show plans for triggers */
#define AUTOEQP_full     3           /* Show full EXPLAIN */

/* Allowed values for ShellState.openMode
*/
#define SHELL_OPEN_UNSPEC     0      /* No open-mode specified */
#define SHELL_OPEN_NORMAL     1      /* Normal database file */
#define SHELL_OPEN_APPENDVFS  2      /* Use appendvfs */
#define SHELL_OPEN_ZIPFILE    3      /* Use the zipfile virtual table */
1103
1104
1105
1106
1107
1108
1109

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123

1124
1125
1126
1127
1128
1129
1130
#define MODE_Insert   5  /* Generate SQL "insert" statements */
#define MODE_Quote    6  /* Quote values as for SQL */
#define MODE_Tcl      7  /* Generate ANSI-C or TCL quoted elements */
#define MODE_Csv      8  /* Quote strings, numbers are plain */
#define MODE_Explain  9  /* Like MODE_Column, but do not truncate data */
#define MODE_Ascii   10  /* Use ASCII unit and record separators (0x1F/0x1E) */
#define MODE_Pretty  11  /* Pretty-print schemas */


static const char *modeDescr[] = {
  "line",
  "column",
  "list",
  "semi",
  "html",
  "insert",
  "quote",
  "tcl",
  "csv",
  "explain",
  "ascii",
  "prettyprint",

};

/*
** These are the column/row/line separators used by the various
** import/export modes.
*/
#define SEP_Column    "|"







>














>







1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
#define MODE_Insert   5  /* Generate SQL "insert" statements */
#define MODE_Quote    6  /* Quote values as for SQL */
#define MODE_Tcl      7  /* Generate ANSI-C or TCL quoted elements */
#define MODE_Csv      8  /* Quote strings, numbers are plain */
#define MODE_Explain  9  /* Like MODE_Column, but do not truncate data */
#define MODE_Ascii   10  /* Use ASCII unit and record separators (0x1F/0x1E) */
#define MODE_Pretty  11  /* Pretty-print schemas */
#define MODE_EQP     12  /* Converts EXPLAIN QUERY PLAN output into a graph */

static const char *modeDescr[] = {
  "line",
  "column",
  "list",
  "semi",
  "html",
  "insert",
  "quote",
  "tcl",
  "csv",
  "explain",
  "ascii",
  "prettyprint",
  "eqp"
};

/*
** These are the column/row/line separators used by the various
** import/export modes.
*/
#define SEP_Column    "|"
1665
1666
1667
1668
1669
1670
1671
1672






















































































1673
1674
1675
1676
1677
1678
1679
    if( z[i]=='\n' ) return 1;
    if( IsSpace(z[i]) ) continue;
    if( z[i]=='-' && z[i+1]=='-' ) return 1;
    return 0;
  }
  return 1;
}
    























































































/*
** This is the callback routine that the shell
** invokes for each row of a query result.
*/
static int shell_callback(
  void *pArg,







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
    if( z[i]=='\n' ) return 1;
    if( IsSpace(z[i]) ) continue;
    if( z[i]=='-' && z[i+1]=='-' ) return 1;
    return 0;
  }
  return 1;
}

/*
** Add a new entry to the EXPLAIN QUERY PLAN data
*/
static void eqp_append(ShellState *p, int iEqpId, int p2, const char *zText){
  EQPGraphRow *pNew;
  int nText = strlen30(zText);
  if( p->autoEQPtest ){
    utf8_printf(p->out, "%d,%d,%s\n", iEqpId, p2, zText);
  }
  pNew = sqlite3_malloc64( sizeof(*pNew) + nText );
  if( pNew==0 ) shell_out_of_memory();
  pNew->iEqpId = iEqpId;
  pNew->iParentId = p2;
  memcpy(pNew->zText, zText, nText+1);
  pNew->pNext = 0;
  if( p->sGraph.pLast ){
    p->sGraph.pLast->pNext = pNew;
  }else{
    p->sGraph.pRow = pNew;
  }
  p->sGraph.pLast = pNew;
}

/*
** Free and reset the EXPLAIN QUERY PLAN data that has been collected
** in p->sGraph.
*/
static void eqp_reset(ShellState *p){
  EQPGraphRow *pRow, *pNext;
  for(pRow = p->sGraph.pRow; pRow; pRow = pNext){
    pNext = pRow->pNext;
    sqlite3_free(pRow);
  }
  memset(&p->sGraph, 0, sizeof(p->sGraph));
}

/* Return the next EXPLAIN QUERY PLAN line with iEqpId that occurs after
** pOld, or return the first such line if pOld is NULL
*/
static EQPGraphRow *eqp_next_row(ShellState *p, int iEqpId, EQPGraphRow *pOld){
  EQPGraphRow *pRow = pOld ? pOld->pNext : p->sGraph.pRow;
  while( pRow && pRow->iParentId!=iEqpId ) pRow = pRow->pNext;
  return pRow;
}

/* Render a single level of the graph that has iEqpId as its parent.  Called
** recursively to render sublevels.
*/
static void eqp_render_level(ShellState *p, int iEqpId){
  EQPGraphRow *pRow, *pNext;
  int n = strlen30(p->sGraph.zPrefix);
  char *z;
  for(pRow = eqp_next_row(p, iEqpId, 0); pRow; pRow = pNext){
    pNext = eqp_next_row(p, iEqpId, pRow);
    z = pRow->zText;
    utf8_printf(p->out, "%s%s%s\n", p->sGraph.zPrefix, pNext ? "|--" : "`--", z);
    if( n<sizeof(p->sGraph.zPrefix)-7 ){
      memcpy(&p->sGraph.zPrefix[n], pNext ? "|  " : "   ", 4);
      eqp_render_level(p, pRow->iEqpId);
      p->sGraph.zPrefix[n] = 0;
    }
  }
}

/*
** Display and reset the EXPLAIN QUERY PLAN data
*/
static void eqp_render(ShellState *p){
  EQPGraphRow *pRow = p->sGraph.pRow;
  if( pRow ){
    if( pRow->zText[0]=='-' ){
      if( pRow->pNext==0 ){
        eqp_reset(p);
        return;
      }
      utf8_printf(p->out, "%s\n", pRow->zText+3);
      p->sGraph.pRow = pRow->pNext;
      sqlite3_free(pRow);
    }else{
      utf8_printf(p->out, "QUERY PLAN\n");
    }
    p->sGraph.zPrefix[0] = 0;
    eqp_render_level(p, 0);
    eqp_reset(p);
  }
}

/*
** This is the callback routine that the shell
** invokes for each row of a query result.
*/
static int shell_callback(
  void *pArg,
2016
2017
2018
2019
2020
2021
2022




2023
2024
2025
2026
2027
2028
2029
      for(i=0; i<nArg; i++){
        if( i>0 ) utf8_printf(p->out, "%s", p->colSeparator);
        utf8_printf(p->out,"%s",azArg[i] ? azArg[i] : p->nullValue);
      }
      utf8_printf(p->out, "%s", p->rowSeparator);
      break;
    }




  }
  return 0;
}

/*
** This is the callback routine that the SQLite library
** invokes for each row of a query result.







>
>
>
>







2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
      for(i=0; i<nArg; i++){
        if( i>0 ) utf8_printf(p->out, "%s", p->colSeparator);
        utf8_printf(p->out,"%s",azArg[i] ? azArg[i] : p->nullValue);
      }
      utf8_printf(p->out, "%s", p->rowSeparator);
      break;
    }
    case MODE_EQP: {
      eqp_append(p, atoi(azArg[0]), atoi(azArg[1]), azArg[3]);
      break;
    }
  }
  return 0;
}

/*
** This is the callback routine that the SQLite library
** invokes for each row of a query result.
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
    p->zDestTable = 0;
  }
  if( zName==0 ) return;
  cQuote = quoteChar(zName);
  n = strlen30(zName);
  if( cQuote ) n += n+2;
  z = p->zDestTable = malloc( n+1 );
  if( z==0 ){
    raw_printf(stderr,"Error: out of memory\n");
    exit(1);
  }
  n = 0;
  if( cQuote ) z[n++] = cQuote;
  for(i=0; zName[i]; i++){
    z[n++] = zName[i];
    if( zName[i]==cQuote ) z[n++] = cQuote;
  }
  if( cQuote ) z[n++] = cQuote;







|
<
<
<







2200
2201
2202
2203
2204
2205
2206
2207



2208
2209
2210
2211
2212
2213
2214
    p->zDestTable = 0;
  }
  if( zName==0 ) return;
  cQuote = quoteChar(zName);
  n = strlen30(zName);
  if( cQuote ) n += n+2;
  z = p->zDestTable = malloc( n+1 );
  if( z==0 ) shell_out_of_memory();



  n = 0;
  if( cQuote ) z[n++] = cQuote;
  for(i=0; zName[i]; i++){
    z[n++] = zName[i];
    if( zName[i]==cQuote ) z[n++] = cQuote;
  }
  if( cQuote ) z[n++] = cQuote;
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867

2868

2869
2870
2871
2872
2873
2874
2875
        if( pArg->autoEQP>=AUTOEQP_trigger ){
          sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 1, 0);
        }
        zEQP = sqlite3_mprintf("EXPLAIN QUERY PLAN %s", zStmtSql);
        rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);
        if( rc==SQLITE_OK ){
          while( sqlite3_step(pExplain)==SQLITE_ROW ){
            raw_printf(pArg->out,"--EQP-- %d,",sqlite3_column_int(pExplain, 0));
            raw_printf(pArg->out,"%d,", sqlite3_column_int(pExplain, 1));
            raw_printf(pArg->out,"%d,", sqlite3_column_int(pExplain, 2));
            utf8_printf(pArg->out,"%s\n", sqlite3_column_text(pExplain, 3));

          }

        }
        sqlite3_finalize(pExplain);
        sqlite3_free(zEQP);
        if( pArg->autoEQP>=AUTOEQP_full ){
          /* Also do an EXPLAIN for ".eqp full" mode */
          zEQP = sqlite3_mprintf("EXPLAIN %s", zStmtSql);
          rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);







|
|
|
|
>

>







2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
        if( pArg->autoEQP>=AUTOEQP_trigger ){
          sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 1, 0);
        }
        zEQP = sqlite3_mprintf("EXPLAIN QUERY PLAN %s", zStmtSql);
        rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);
        if( rc==SQLITE_OK ){
          while( sqlite3_step(pExplain)==SQLITE_ROW ){
            const char *zEQPLine = (const char*)sqlite3_column_text(pExplain,3);
            int iEqpId = sqlite3_column_int(pExplain, 0);
            int iParentId = sqlite3_column_int(pExplain, 1);
            if( zEQPLine[0]=='-' ) eqp_render(pArg);
            eqp_append(pArg, iEqpId, iParentId, zEQPLine);
          }
          eqp_render(pArg);
        }
        sqlite3_finalize(pExplain);
        sqlite3_free(zEQP);
        if( pArg->autoEQP>=AUTOEQP_full ){
          /* Also do an EXPLAIN for ".eqp full" mode */
          zEQP = sqlite3_mprintf("EXPLAIN %s", zStmtSql);
          rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900





2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911

2912
2913
2914
2915
2916
2917
2918
          sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
        }
        restore_debug_trace_modes();
      }

      if( pArg ){
        pArg->cMode = pArg->mode;
        if( pArg->autoExplain
         && sqlite3_column_count(pStmt)==8
         && sqlite3_strlike("EXPLAIN%", zStmtSql,0)==0
        ){
          pArg->cMode = MODE_Explain;





        }

        /* If the shell is currently in ".explain" mode, gather the extra
        ** data required to add indents to the output.*/
        if( pArg->cMode==MODE_Explain ){
          explain_data_prepare(pArg, pStmt);
        }
      }

      exec_prepared_stmt(pArg, pStmt);
      explain_data_delete(pArg);


      /* print usage stats if stats on */
      if( pArg && pArg->statsOn ){
        display_stats(db, pArg, 0);
      }

      /* print loop-counters if required */







|
|
|
|
|
>
>
>
>
>











>







2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
          sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
        }
        restore_debug_trace_modes();
      }

      if( pArg ){
        pArg->cMode = pArg->mode;
        if( pArg->autoExplain ){
          if( sqlite3_column_count(pStmt)==8
           && sqlite3_strlike("EXPLAIN%", zStmtSql,0)==0
          ){
            pArg->cMode = MODE_Explain;
          }
          if( sqlite3_column_count(pStmt)==4
           && sqlite3_strlike("EXPLAIN QUERY PLAN%", zStmtSql,0)==0 ){
            pArg->cMode = MODE_EQP;
          }
        }

        /* If the shell is currently in ".explain" mode, gather the extra
        ** data required to add indents to the output.*/
        if( pArg->cMode==MODE_Explain ){
          explain_data_prepare(pArg, pStmt);
        }
      }

      exec_prepared_stmt(pArg, pStmt);
      explain_data_delete(pArg);
      eqp_render(pArg);

      /* print usage stats if stats on */
      if( pArg && pArg->statsOn ){
        display_stats(db, pArg, 0);
      }

      /* print loop-counters if required */
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
  rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
  sqlite3_free(zSql);
  if( rc ) return 0;
  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    if( nCol>=nAlloc-2 ){
      nAlloc = nAlloc*2 + nCol + 10;
      azCol = sqlite3_realloc(azCol, nAlloc*sizeof(azCol[0]));
      if( azCol==0 ){
        raw_printf(stderr, "Error: out of memory\n");
        exit(1);
      }
    }
    azCol[++nCol] = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1));
    if( sqlite3_column_int(pStmt, 5) ){
      nPK++;
      if( nPK==1
       && sqlite3_stricmp((const char*)sqlite3_column_text(pStmt,2),
                          "INTEGER")==0







|
<
<
<







3073
3074
3075
3076
3077
3078
3079
3080



3081
3082
3083
3084
3085
3086
3087
  rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
  sqlite3_free(zSql);
  if( rc ) return 0;
  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    if( nCol>=nAlloc-2 ){
      nAlloc = nAlloc*2 + nCol + 10;
      azCol = sqlite3_realloc(azCol, nAlloc*sizeof(azCol[0]));
      if( azCol==0 ) shell_out_of_memory();



    }
    azCol[++nCol] = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1));
    if( sqlite3_column_int(pStmt, 5) ){
      nPK++;
      if( nPK==1
       && sqlite3_stricmp((const char*)sqlite3_column_text(pStmt,2),
                          "INTEGER")==0
3238
3239
3240
3241
3242
3243
3244

3245
3246
3247
3248
3249
3250
3251
  ".bail on|off           Stop after hitting an error.  Default OFF\n"
  ".binary on|off         Turn binary output on or off.  Default OFF\n"
  ".cd DIRECTORY          Change the working directory to DIRECTORY\n"
  ".changes on|off        Show number of rows changed by SQL\n"
  ".check GLOB            Fail if output since .testcase does not match\n"
  ".clone NEWDB           Clone data into NEWDB from the existing database\n"
  ".databases             List names and files of attached databases\n"

  ".dbinfo ?DB?           Show status information about the database\n"
  ".dump ?TABLE? ...      Dump the database in an SQL text format\n"
  "                         If TABLE specified, only dump tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".echo on|off           Turn command echo on or off\n"
  ".eqp on|off|full       Enable or disable automatic EXPLAIN QUERY PLAN\n"
  ".excel                 Display the output of next command in a spreadsheet\n"







>







3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
  ".bail on|off           Stop after hitting an error.  Default OFF\n"
  ".binary on|off         Turn binary output on or off.  Default OFF\n"
  ".cd DIRECTORY          Change the working directory to DIRECTORY\n"
  ".changes on|off        Show number of rows changed by SQL\n"
  ".check GLOB            Fail if output since .testcase does not match\n"
  ".clone NEWDB           Clone data into NEWDB from the existing database\n"
  ".databases             List names and files of attached databases\n"
  ".dbconfig ?op? ?val?   List or change sqlite3_db_config() options\n"
  ".dbinfo ?DB?           Show status information about the database\n"
  ".dump ?TABLE? ...      Dump the database in an SQL text format\n"
  "                         If TABLE specified, only dump tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".echo on|off           Turn command echo on or off\n"
  ".eqp on|off|full       Enable or disable automatic EXPLAIN QUERY PLAN\n"
  ".excel                 Display the output of next command in a spreadsheet\n"
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494

/*
** Make sure the database is open.  If it is not, then open it.  If
** the database fails to open, print an error message and exit.
*/
static void open_db(ShellState *p, int keepAlive){
  if( p->db==0 ){
    sqlite3_initialize();
    if( p->openMode==SHELL_OPEN_UNSPEC && access(p->zDbFilename,0)==0 ){
      p->openMode = (u8)deduceDatabaseType(p->zDbFilename, 0);
    }
    switch( p->openMode ){
      case SHELL_OPEN_APPENDVFS: {
        sqlite3_open_v2(p->zDbFilename, &p->db, 
           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, "apndvfs");







<







3569
3570
3571
3572
3573
3574
3575

3576
3577
3578
3579
3580
3581
3582

/*
** Make sure the database is open.  If it is not, then open it.  If
** the database fails to open, print an error message and exit.
*/
static void open_db(ShellState *p, int keepAlive){
  if( p->db==0 ){

    if( p->openMode==SHELL_OPEN_UNSPEC && access(p->zDbFilename,0)==0 ){
      p->openMode = (u8)deduceDatabaseType(p->zDbFilename, 0);
    }
    switch( p->openMode ){
      case SHELL_OPEN_APPENDVFS: {
        sqlite3_open_v2(p->zDbFilename, &p->db, 
           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, "apndvfs");
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
};

/* Append a single byte to z[] */
static void import_append_char(ImportCtx *p, int c){
  if( p->n+1>=p->nAlloc ){
    p->nAlloc += p->nAlloc + 100;
    p->z = sqlite3_realloc64(p->z, p->nAlloc);
    if( p->z==0 ){
      raw_printf(stderr, "out of memory\n");
      exit(1);
    }
  }
  p->z[p->n++] = (char)c;
}

/* Read a single field of CSV text.  Compatible with rfc4180 and extended
** with the option of having a separator other than ",".
**







|
<
<
<







3871
3872
3873
3874
3875
3876
3877
3878



3879
3880
3881
3882
3883
3884
3885
};

/* Append a single byte to z[] */
static void import_append_char(ImportCtx *p, int c){
  if( p->n+1>=p->nAlloc ){
    p->nAlloc += p->nAlloc + 100;
    p->z = sqlite3_realloc64(p->z, p->nAlloc);
    if( p->z==0 ) shell_out_of_memory();



  }
  p->z[p->n++] = (char)c;
}

/* Read a single field of CSV text.  Compatible with rfc4180 and extended
** with the option of having a separator other than ",".
**
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
    utf8_printf(stderr, "Error %d: %s on [%s]\n",
            sqlite3_extended_errcode(p->db), sqlite3_errmsg(p->db),
            zQuery);
    goto end_data_xfer;
  }
  n = sqlite3_column_count(pQuery);
  zInsert = sqlite3_malloc64(200 + nTable + n*3);
  if( zInsert==0 ){
    raw_printf(stderr, "out of memory\n");
    goto end_data_xfer;
  }
  sqlite3_snprintf(200+nTable,zInsert,
                   "INSERT OR IGNORE INTO \"%s\" VALUES(?", zTable);
  i = strlen30(zInsert);
  for(j=1; j<n; j++){
    memcpy(zInsert+i, ",?", 2);
    i += 2;
  }







|
<
<
<







4032
4033
4034
4035
4036
4037
4038
4039



4040
4041
4042
4043
4044
4045
4046
    utf8_printf(stderr, "Error %d: %s on [%s]\n",
            sqlite3_extended_errcode(p->db), sqlite3_errmsg(p->db),
            zQuery);
    goto end_data_xfer;
  }
  n = sqlite3_column_count(pQuery);
  zInsert = sqlite3_malloc64(200 + nTable + n*3);
  if( zInsert==0 ) shell_out_of_memory();



  sqlite3_snprintf(200+nTable,zInsert,
                   "INSERT OR IGNORE INTO \"%s\" VALUES(?", zTable);
  i = strlen30(zInsert);
  for(j=1; j<n; j++){
    memcpy(zInsert+i, ",?", 2);
    i += 2;
  }
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
*/
static int shellDatabaseError(sqlite3 *db){
  const char *zErr = sqlite3_errmsg(db);
  utf8_printf(stderr, "Error: %s\n", zErr);
  return 1;
}

/*
** Print an out-of-memory message to stderr and return 1.
*/
static int shellNomemError(void){
  raw_printf(stderr, "Error: out of memory\n");
  return 1;
}

/*
** Compare the pattern in zGlob[] against the text in z[].  Return TRUE
** if they match and FALSE (0) if they do not match.
**
** Globbing rules:
**
**      '*'       Matches any sequence of zero or more characters.







<
<
<
<
<
<
<
<







4373
4374
4375
4376
4377
4378
4379








4380
4381
4382
4383
4384
4385
4386
*/
static int shellDatabaseError(sqlite3 *db){
  const char *zErr = sqlite3_errmsg(db);
  utf8_printf(stderr, "Error: %s\n", zErr);
  return 1;
}









/*
** Compare the pattern in zGlob[] against the text in z[].  Return TRUE
** if they match and FALSE (0) if they do not match.
**
** Globbing rules:
**
**      '*'       Matches any sequence of zero or more characters.
5695
5696
5697
5698
5699
5700
5701




























5702
5703
5704
5705
5706
5707
5708
5709
    if( zErrMsg ){
      utf8_printf(stderr,"Error: %s\n", zErrMsg);
      sqlite3_free(zErrMsg);
      rc = 1;
    }
  }else





























  if( c=='d' && strncmp(azArg[0], "dbinfo", n)==0 ){
    rc = shell_dbinfo_command(p, nArg, azArg);
  }else

  if( c=='d' && strncmp(azArg[0], "dump", n)==0 ){
    const char *zLike = 0;
    int i;
    int savedShowHeader = p->showHeader;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|







5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
    if( zErrMsg ){
      utf8_printf(stderr,"Error: %s\n", zErrMsg);
      sqlite3_free(zErrMsg);
      rc = 1;
    }
  }else

  if( c=='d' && n>=3 && strncmp(azArg[0], "dbconfig", n)==0 ){
    static const struct DbConfigChoices {const char *zName; int op;} aDbConfig[] = {
        { "enable_fkey",      SQLITE_DBCONFIG_ENABLE_FKEY            },
        { "enable_trigger",   SQLITE_DBCONFIG_ENABLE_TRIGGER         },
        { "fts3_tokenizer",   SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER  },
        { "load_extension",   SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION  },
        { "no_ckpt_on_close", SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE       },
        { "enable_qpsg",      SQLITE_DBCONFIG_ENABLE_QPSG            },
        { "trigger_eqp",      SQLITE_DBCONFIG_TRIGGER_EQP            },
        { "reset_database",   SQLITE_DBCONFIG_RESET_DATABASE         },
    };
    int ii, v;
    open_db(p, 0);
    for(ii=0; ii<ArraySize(aDbConfig); ii++){
      if( nArg>1 && strcmp(azArg[1], aDbConfig[ii].zName)!=0 ) continue;
      if( nArg>=3 ){
        sqlite3_db_config(p->db, aDbConfig[ii].op, booleanValue(azArg[2]), 0);
      }
      sqlite3_db_config(p->db, aDbConfig[ii].op, -1, &v);
      utf8_printf(p->out, "%18s %s\n", aDbConfig[ii].zName, v ? "on" : "off");
      if( nArg>1 ) break;
    }
    if( nArg>1 && ii==ArraySize(aDbConfig) ){
      utf8_printf(stderr, "Error: unknown dbconfig \"%s\"\n", azArg[1]);
      utf8_printf(stderr, "Enter \".dbconfig\" with no arguments for a list\n");
    }   
  }else

  if( c=='d' && n>=3 && strncmp(azArg[0], "dbinfo", n)==0 ){
    rc = shell_dbinfo_command(p, nArg, azArg);
  }else

  if( c=='d' && strncmp(azArg[0], "dump", n)==0 ){
    const char *zLike = 0;
    int i;
    int savedShowHeader = p->showHeader;
5798
5799
5800
5801
5802
5803
5804

5805
5806
5807
5808



5809
5810
5811
5812
5813
5814
5815
      raw_printf(stderr, "Usage: .echo on|off\n");
      rc = 1;
    }
  }else

  if( c=='e' && strncmp(azArg[0], "eqp", n)==0 ){
    if( nArg==2 ){

      if( strcmp(azArg[1],"full")==0 ){
        p->autoEQP = AUTOEQP_full;
      }else if( strcmp(azArg[1],"trigger")==0 ){
        p->autoEQP = AUTOEQP_trigger;



      }else{
        p->autoEQP = (u8)booleanValue(azArg[1]);
      }
    }else{
      raw_printf(stderr, "Usage: .eqp off|on|trigger|full\n");
      rc = 1;
    }







>




>
>
>







5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
      raw_printf(stderr, "Usage: .echo on|off\n");
      rc = 1;
    }
  }else

  if( c=='e' && strncmp(azArg[0], "eqp", n)==0 ){
    if( nArg==2 ){
      p->autoEQPtest = 0;
      if( strcmp(azArg[1],"full")==0 ){
        p->autoEQP = AUTOEQP_full;
      }else if( strcmp(azArg[1],"trigger")==0 ){
        p->autoEQP = AUTOEQP_trigger;
      }else if( strcmp(azArg[1],"test")==0 ){
        p->autoEQP = AUTOEQP_on;
        p->autoEQPtest = 1;
      }else{
        p->autoEQP = (u8)booleanValue(azArg[1]);
      }
    }else{
      raw_printf(stderr, "Usage: .eqp off|on|trigger|full\n");
      rc = 1;
    }
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001

6002
6003
6004
6005
6006
6007
6008
      utf8_printf(stderr, "Error: cannot open \"%s\"\n", zFile);
      return 1;
    }
    sCtx.cColSep = p->colSeparator[0];
    sCtx.cRowSep = p->rowSeparator[0];
    zSql = sqlite3_mprintf("SELECT * FROM %s", zTable);
    if( zSql==0 ){
      raw_printf(stderr, "Error: out of memory\n");
      xCloser(sCtx.in);
      return 1;

    }
    nByte = strlen30(zSql);
    rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
    import_append_char(&sCtx, 0);    /* To ensure sCtx.z is allocated */
    if( rc && sqlite3_strglob("no such table: *", sqlite3_errmsg(p->db))==0 ){
      char *zCreate = sqlite3_mprintf("CREATE TABLE %s", zTable);
      char cSep = '(';







<

<
>







6098
6099
6100
6101
6102
6103
6104

6105

6106
6107
6108
6109
6110
6111
6112
6113
      utf8_printf(stderr, "Error: cannot open \"%s\"\n", zFile);
      return 1;
    }
    sCtx.cColSep = p->colSeparator[0];
    sCtx.cRowSep = p->rowSeparator[0];
    zSql = sqlite3_mprintf("SELECT * FROM %s", zTable);
    if( zSql==0 ){

      xCloser(sCtx.in);

      shell_out_of_memory();
    }
    nByte = strlen30(zSql);
    rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
    import_append_char(&sCtx, 0);    /* To ensure sCtx.z is allocated */
    if( rc && sqlite3_strglob("no such table: *", sqlite3_errmsg(p->db))==0 ){
      char *zCreate = sqlite3_mprintf("CREATE TABLE %s", zTable);
      char cSep = '(';
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048

6049
6050
6051
6052
6053
6054
6055
    }
    nCol = sqlite3_column_count(pStmt);
    sqlite3_finalize(pStmt);
    pStmt = 0;
    if( nCol==0 ) return 0; /* no columns, no error */
    zSql = sqlite3_malloc64( nByte*2 + 20 + nCol*2 );
    if( zSql==0 ){
      raw_printf(stderr, "Error: out of memory\n");
      xCloser(sCtx.in);
      return 1;

    }
    sqlite3_snprintf(nByte+20, zSql, "INSERT INTO \"%w\" VALUES(?", zTable);
    j = strlen30(zSql);
    for(i=1; i<nCol; i++){
      zSql[j++] = ',';
      zSql[j++] = '?';
    }







<

<
>







6144
6145
6146
6147
6148
6149
6150

6151

6152
6153
6154
6155
6156
6157
6158
6159
    }
    nCol = sqlite3_column_count(pStmt);
    sqlite3_finalize(pStmt);
    pStmt = 0;
    if( nCol==0 ) return 0; /* no columns, no error */
    zSql = sqlite3_malloc64( nByte*2 + 20 + nCol*2 );
    if( zSql==0 ){

      xCloser(sCtx.in);

      shell_out_of_memory();
    }
    sqlite3_snprintf(nByte+20, zSql, "INSERT INTO \"%w\" VALUES(?", zTable);
    j = strlen30(zSql);
    for(i=1; i<nCol; i++){
      zSql[j++] = ',';
      zSql[j++] = '?';
    }
6117
6118
6119
6120
6121
6122
6123
6124
6125

6126
6127
6128
6129




6130
6131
6132
6133
6134
6135
6136
#ifndef SQLITE_UNTESTABLE
  if( c=='i' && strncmp(azArg[0], "imposter", n)==0 ){
    char *zSql;
    char *zCollist = 0;
    sqlite3_stmt *pStmt;
    int tnum = 0;
    int i;
    if( nArg!=3 ){
      utf8_printf(stderr, "Usage: .imposter INDEX IMPOSTER\n");

      rc = 1;
      goto meta_command_exit;
    }
    open_db(p, 0);




    zSql = sqlite3_mprintf("SELECT rootpage FROM sqlite_master"
                           " WHERE name='%q' AND type='index'", azArg[1]);
    sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
    sqlite3_free(zSql);
    if( sqlite3_step(pStmt)==SQLITE_ROW ){
      tnum = sqlite3_column_int(pStmt, 0);
    }







|
|
>




>
>
>
>







6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
#ifndef SQLITE_UNTESTABLE
  if( c=='i' && strncmp(azArg[0], "imposter", n)==0 ){
    char *zSql;
    char *zCollist = 0;
    sqlite3_stmt *pStmt;
    int tnum = 0;
    int i;
    if( !(nArg==3 || (nArg==2 && sqlite3_stricmp(azArg[1],"off")==0)) ){
      utf8_printf(stderr, "Usage: .imposter INDEX IMPOSTER\n"
                          "       .imposter off\n");
      rc = 1;
      goto meta_command_exit;
    }
    open_db(p, 0);
    if( nArg==2 ){
      sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->db, "main", 0, 1);
      goto meta_command_exit;
    }
    zSql = sqlite3_mprintf("SELECT rootpage FROM sqlite_master"
                           " WHERE name='%q' AND type='index'", azArg[1]);
    sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
    sqlite3_free(zSql);
    if( sqlite3_step(pStmt)==SQLITE_ROW ){
      tnum = sqlite3_column_int(pStmt, 0);
    }
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
      sqlite3_bind_text(pStmt, 1, "%", -1, SQLITE_STATIC);
    }
    while( sqlite3_step(pStmt)==SQLITE_ROW ){
      if( nRow>=nAlloc ){
        char **azNew;
        int n2 = nAlloc*2 + 10;
        azNew = sqlite3_realloc64(azResult, sizeof(azResult[0])*n2);
        if( azNew==0 ){
          rc = shellNomemError();
          break;
        }
        nAlloc = n2;
        azResult = azNew;
      }
      azResult[nRow] = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 0));
      if( 0==azResult[nRow] ){
        rc = shellNomemError();
        break;
      }
      nRow++;
    }
    if( sqlite3_finalize(pStmt)!=SQLITE_OK ){
      rc = shellDatabaseError(p->db);
    }

    /* Pretty-print the contents of array azResult[] to the output */







|
<
<
<




|
<
<
<







7416
7417
7418
7419
7420
7421
7422
7423



7424
7425
7426
7427
7428



7429
7430
7431
7432
7433
7434
7435
      sqlite3_bind_text(pStmt, 1, "%", -1, SQLITE_STATIC);
    }
    while( sqlite3_step(pStmt)==SQLITE_ROW ){
      if( nRow>=nAlloc ){
        char **azNew;
        int n2 = nAlloc*2 + 10;
        azNew = sqlite3_realloc64(azResult, sizeof(azResult[0])*n2);
        if( azNew==0 ) shell_out_of_memory();



        nAlloc = n2;
        azResult = azNew;
      }
      azResult[nRow] = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 0));
      if( 0==azResult[nRow] ) shell_out_of_memory();



      nRow++;
    }
    if( sqlite3_finalize(pStmt)!=SQLITE_OK ){
      rc = shellDatabaseError(p->db);
    }

    /* Pretty-print the contents of array azResult[] to the output */
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
      { "always",             SQLITE_TESTCTRL_ALWAYS,        "BOOLEAN"            },
      { "assert",             SQLITE_TESTCTRL_ASSERT,        "BOOLEAN"            },
    /*{ "benign_malloc_hooks",SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS, ""          },*/
    /*{ "bitvec_test",        SQLITE_TESTCTRL_BITVEC_TEST,   ""                },*/
      { "byteorder",          SQLITE_TESTCTRL_BYTEORDER,     ""                   },
    /*{ "fault_install",      SQLITE_TESTCTRL_FAULT_INSTALL, ""                }, */
      { "imposter",           SQLITE_TESTCTRL_IMPOSTER,   "SCHEMA ON/OFF ROOTPAGE"},
#ifdef SQLITE_N_KEYWORD
      { "iskeyword",          SQLITE_TESTCTRL_ISKEYWORD,     "IDENTIFIER"         },
#endif
      { "localtime_fault",    SQLITE_TESTCTRL_LOCALTIME_FAULT,"BOOLEAN"           },
      { "never_corrupt",      SQLITE_TESTCTRL_NEVER_CORRUPT, "BOOLEAN"            },
      { "optimizations",      SQLITE_TESTCTRL_OPTIMIZATIONS, "DISABLE-MASK"       },
#ifdef YYCOVERAGE
      { "parser_coverage",    SQLITE_TESTCTRL_PARSER_COVERAGE, ""                 },
#endif
      { "pending_byte",       SQLITE_TESTCTRL_PENDING_BYTE,  "OFFSET  "           },







<
<
<







7482
7483
7484
7485
7486
7487
7488



7489
7490
7491
7492
7493
7494
7495
      { "always",             SQLITE_TESTCTRL_ALWAYS,        "BOOLEAN"            },
      { "assert",             SQLITE_TESTCTRL_ASSERT,        "BOOLEAN"            },
    /*{ "benign_malloc_hooks",SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS, ""          },*/
    /*{ "bitvec_test",        SQLITE_TESTCTRL_BITVEC_TEST,   ""                },*/
      { "byteorder",          SQLITE_TESTCTRL_BYTEORDER,     ""                   },
    /*{ "fault_install",      SQLITE_TESTCTRL_FAULT_INSTALL, ""                }, */
      { "imposter",           SQLITE_TESTCTRL_IMPOSTER,   "SCHEMA ON/OFF ROOTPAGE"},



      { "localtime_fault",    SQLITE_TESTCTRL_LOCALTIME_FAULT,"BOOLEAN"           },
      { "never_corrupt",      SQLITE_TESTCTRL_NEVER_CORRUPT, "BOOLEAN"            },
      { "optimizations",      SQLITE_TESTCTRL_OPTIMIZATIONS, "DISABLE-MASK"       },
#ifdef YYCOVERAGE
      { "parser_coverage",    SQLITE_TESTCTRL_PARSER_COVERAGE, ""                 },
#endif
      { "pending_byte",       SQLITE_TESTCTRL_PENDING_BYTE,  "OFFSET  "           },
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
          if( nArg==3 ){
            int opt = booleanValue(azArg[2]);
            rc2 = sqlite3_test_control(testctrl, opt);
            isOk = 3;
          }
          break;

        /* sqlite3_test_control(int, char *) */
#ifdef SQLITE_N_KEYWORD
        case SQLITE_TESTCTRL_ISKEYWORD:
          if( nArg==3 ){
            const char *opt = azArg[2];
            rc2 = sqlite3_test_control(testctrl, opt);
            isOk = 1;
          }
          break;
#endif

        case SQLITE_TESTCTRL_IMPOSTER:
          if( nArg==5 ){
            rc2 = sqlite3_test_control(testctrl, p->db,
                          azArg[2],
                          integerValue(azArg[3]),
                          integerValue(azArg[4]));
            isOk = 3;







<
<
<
<
<
<
<
<
<
<
<







7593
7594
7595
7596
7597
7598
7599











7600
7601
7602
7603
7604
7605
7606
          if( nArg==3 ){
            int opt = booleanValue(azArg[2]);
            rc2 = sqlite3_test_control(testctrl, opt);
            isOk = 3;
          }
          break;












        case SQLITE_TESTCTRL_IMPOSTER:
          if( nArg==5 ){
            rc2 = sqlite3_test_control(testctrl, p->db,
                          azArg[2],
                          integerValue(azArg[3]),
                          integerValue(azArg[4]));
            isOk = 3;
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
    if( line_is_command_terminator(zLine) && line_is_complete(zSql, nSql) ){
      memcpy(zLine,";",2);
    }
    nLine = strlen30(zLine);
    if( nSql+nLine+2>=nAlloc ){
      nAlloc = nSql+nLine+100;
      zSql = realloc(zSql, nAlloc);
      if( zSql==0 ){
        raw_printf(stderr, "Error: out of memory\n");
        exit(1);
      }
    }
    nSqlPrior = nSql;
    if( nSql==0 ){
      int i;
      for(i=0; zLine[i] && IsSpace(zLine[i]); i++){}
      assert( nAlloc>0 && zSql!=0 );
      memcpy(zSql, zLine+i, nLine+1-i);







|
<
<
<







7978
7979
7980
7981
7982
7983
7984
7985



7986
7987
7988
7989
7990
7991
7992
    if( line_is_command_terminator(zLine) && line_is_complete(zSql, nSql) ){
      memcpy(zLine,";",2);
    }
    nLine = strlen30(zLine);
    if( nSql+nLine+2>=nAlloc ){
      nAlloc = nSql+nLine+100;
      zSql = realloc(zSql, nAlloc);
      if( zSql==0 ) shell_out_of_memory();



    }
    nSqlPrior = nSql;
    if( nSql==0 ){
      int i;
      for(i=0; zLine[i] && IsSpace(zLine[i]); i++){}
      assert( nAlloc>0 && zSql!=0 );
      memcpy(zSql, zLine+i, nLine+1-i);
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
  if (sqliterc == NULL) {
    home_dir = find_home_dir(0);
    if( home_dir==0 ){
      raw_printf(stderr, "-- warning: cannot find home directory;"
                      " cannot read ~/.sqliterc\n");
      return;
    }
    sqlite3_initialize();
    zBuf = sqlite3_mprintf("%s/.sqliterc",home_dir);
    sqliterc = zBuf;
  }
  in = fopen(sqliterc,"rb");
  if( in ){
    if( stdin_is_interactive ){
      utf8_printf(stderr,"-- Loading resources from %s\n",sqliterc);







<







8107
8108
8109
8110
8111
8112
8113

8114
8115
8116
8117
8118
8119
8120
  if (sqliterc == NULL) {
    home_dir = find_home_dir(0);
    if( home_dir==0 ){
      raw_printf(stderr, "-- warning: cannot find home directory;"
                      " cannot read ~/.sqliterc\n");
      return;
    }

    zBuf = sqlite3_mprintf("%s/.sqliterc",home_dir);
    sqliterc = zBuf;
  }
  in = fopen(sqliterc,"rb");
  if( in ){
    if( stdin_is_interactive ){
      utf8_printf(stderr,"-- Loading resources from %s\n",sqliterc);
8072
8073
8074
8075
8076
8077
8078



8079
8080
8081
8082
8083
8084
8085
#endif
  "   -newline SEP         set output row separator. Default: '\\n'\n"
  "   -nullvalue TEXT      set text string for NULL values. Default ''\n"
  "   -pagecache SIZE N    use N slots of SZ bytes each for page cache memory\n"
  "   -quote               set output mode to 'quote'\n"
  "   -readonly            open the database read-only\n"
  "   -separator SEP       set output column separator. Default: '|'\n"



  "   -stats               print memory stats before each finalize\n"
  "   -version             show SQLite version\n"
  "   -vfs NAME            use NAME as the default VFS\n"
#ifdef SQLITE_ENABLE_VFSTRACE
  "   -vfstrace            enable tracing of all VFS calls\n"
#endif
#ifdef SQLITE_HAVE_ZLIB







>
>
>







8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
#endif
  "   -newline SEP         set output row separator. Default: '\\n'\n"
  "   -nullvalue TEXT      set text string for NULL values. Default ''\n"
  "   -pagecache SIZE N    use N slots of SZ bytes each for page cache memory\n"
  "   -quote               set output mode to 'quote'\n"
  "   -readonly            open the database read-only\n"
  "   -separator SEP       set output column separator. Default: '|'\n"
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
  "   -sorterref SIZE      sorter references threshold size\n"
#endif
  "   -stats               print memory stats before each finalize\n"
  "   -version             show SQLite version\n"
  "   -vfs NAME            use NAME as the default VFS\n"
#ifdef SQLITE_ENABLE_VFSTRACE
  "   -vfstrace            enable tracing of all VFS calls\n"
#endif
#ifdef SQLITE_HAVE_ZLIB
8094
8095
8096
8097
8098
8099
8100











8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112

8113
8114
8115
8116
8117
8118
8119
  if( showDetail ){
    utf8_printf(stderr, "OPTIONS include:\n%s", zOptions);
  }else{
    raw_printf(stderr, "Use the -help option for additional information\n");
  }
  exit(1);
}












/*
** Initialize the state information in data
*/
static void main_init(ShellState *data) {
  memset(data, 0, sizeof(*data));
  data->normalMode = data->cMode = data->mode = MODE_List;
  data->autoExplain = 1;
  memcpy(data->colSeparator,SEP_Column, 2);
  memcpy(data->rowSeparator,SEP_Row, 2);
  data->showHeader = 0;
  data->shellFlgs = SHFLG_Lookaside;

  sqlite3_config(SQLITE_CONFIG_URI, 1);
  sqlite3_config(SQLITE_CONFIG_LOG, shellLog, data);
  sqlite3_config(SQLITE_CONFIG_MULTITHREAD);
  sqlite3_snprintf(sizeof(mainPrompt), mainPrompt,"sqlite> ");
  sqlite3_snprintf(sizeof(continuePrompt), continuePrompt,"   ...> ");
}








>
>
>
>
>
>
>
>
>
>
>












>







8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
  if( showDetail ){
    utf8_printf(stderr, "OPTIONS include:\n%s", zOptions);
  }else{
    raw_printf(stderr, "Use the -help option for additional information\n");
  }
  exit(1);
}

/*
** Internal check:  Verify that the SQLite is uninitialized.  Print a
** error message if it is initialized.
*/
static void verify_uninitialized(void){
  if( sqlite3_config(-1)==SQLITE_MISUSE ){
    utf8_printf(stdout, "WARNING: attempt to configuration SQLite after"
                        " initialization.\n");
  }
}

/*
** Initialize the state information in data
*/
static void main_init(ShellState *data) {
  memset(data, 0, sizeof(*data));
  data->normalMode = data->cMode = data->mode = MODE_List;
  data->autoExplain = 1;
  memcpy(data->colSeparator,SEP_Column, 2);
  memcpy(data->rowSeparator,SEP_Row, 2);
  data->showHeader = 0;
  data->shellFlgs = SHFLG_Lookaside;
  verify_uninitialized();
  sqlite3_config(SQLITE_CONFIG_URI, 1);
  sqlite3_config(SQLITE_CONFIG_LOG, shellLog, data);
  sqlite3_config(SQLITE_CONFIG_MULTITHREAD);
  sqlite3_snprintf(sizeof(mainPrompt), mainPrompt,"sqlite> ");
  sqlite3_snprintf(sizeof(continuePrompt), continuePrompt,"   ...> ");
}

8169
8170
8171
8172
8173
8174
8175

8176
8177
8178
8179
8180
8181
8182
  const char *zInitFile = 0;
  int i;
  int rc = 0;
  int warnInmemoryDb = 0;
  int readStdin = 1;
  int nCmd = 0;
  char **azCmd = 0;


  setBinaryMode(stdin, 0);
  setvbuf(stderr, 0, _IONBF, 0); /* Make sure stderr is unbuffered */
  stdin_is_interactive = isatty(0);
  stdout_is_console = isatty(1);

#if USE_SYSTEM_SQLITE+0!=1







>







8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
  const char *zInitFile = 0;
  int i;
  int rc = 0;
  int warnInmemoryDb = 0;
  int readStdin = 1;
  int nCmd = 0;
  char **azCmd = 0;
  const char *zVfs = 0;           /* Value of -vfs command-line option */

  setBinaryMode(stdin, 0);
  setvbuf(stderr, 0, _IONBF, 0); /* Make sure stderr is unbuffered */
  stdin_is_interactive = isatty(0);
  stdout_is_console = isatty(1);

#if USE_SYSTEM_SQLITE+0!=1
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
  ** do this.  But we want to run an sqlite3_shutdown() afterwards so that
  ** subsequent sqlite3_config() calls will work.  So copy all results into
  ** memory that does not come from the SQLite memory allocator.
  */
#if !SQLITE_SHELL_IS_UTF8
  sqlite3_initialize();
  argv = malloc(sizeof(argv[0])*argc);
  if( argv==0 ){
    raw_printf(stderr, "out of memory\n");
    exit(1);
  }
  for(i=0; i<argc; i++){
    char *z = sqlite3_win32_unicode_to_utf8(wargv[i]);
    int n;
    if( z==0 ){
      raw_printf(stderr, "out of memory\n");
      exit(1);
    }
    n = (int)strlen(z);
    argv[i] = malloc( n+1 );
    if( argv[i]==0 ){
      raw_printf(stderr, "out of memory\n");
      exit(1);
    }
    memcpy(argv[i], z, n+1);
    sqlite3_free(z);
  }
  sqlite3_shutdown();
#endif

  assert( argc>=1 && argv && argv[0] );







|
<
<
<



|
<
<
<


|
<
<
<







8294
8295
8296
8297
8298
8299
8300
8301



8302
8303
8304
8305



8306
8307
8308



8309
8310
8311
8312
8313
8314
8315
  ** do this.  But we want to run an sqlite3_shutdown() afterwards so that
  ** subsequent sqlite3_config() calls will work.  So copy all results into
  ** memory that does not come from the SQLite memory allocator.
  */
#if !SQLITE_SHELL_IS_UTF8
  sqlite3_initialize();
  argv = malloc(sizeof(argv[0])*argc);
  if( argv==0 ) shell_out_of_memory();



  for(i=0; i<argc; i++){
    char *z = sqlite3_win32_unicode_to_utf8(wargv[i]);
    int n;
    if( z==0 ) shell_out_of_memory();



    n = (int)strlen(z);
    argv[i] = malloc( n+1 );
    if( argv[i]==0 ) shell_out_of_memory();



    memcpy(argv[i], z, n+1);
    sqlite3_free(z);
  }
  sqlite3_shutdown();
#endif

  assert( argc>=1 && argv && argv[0] );
8245
8246
8247
8248
8249
8250
8251

8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
#endif

  /* Do an initial pass through the command-line argument to locate
  ** the name of the database file, the name of the initialization file,
  ** the size of the alternative malloc heap,
  ** and the first command to execute.
  */

  for(i=1; i<argc; i++){
    char *z;
    z = argv[i];
    if( z[0]!='-' ){
      if( data.zDbFilename==0 ){
        data.zDbFilename = z;
      }else{
        /* Excesss arguments are interpreted as SQL (or dot-commands) and
        ** mean that nothing is read from stdin */
        readStdin = 0;
        nCmd++;
        azCmd = realloc(azCmd, sizeof(azCmd[0])*nCmd);
        if( azCmd==0 ){
          raw_printf(stderr, "out of memory\n");
          exit(1);
        }
        azCmd[nCmd-1] = z;
      }
    }
    if( z[1]=='-' ) z++;
    if( strcmp(z,"-separator")==0
     || strcmp(z,"-nullvalue")==0
     || strcmp(z,"-newline")==0







>












|
<
<
<







8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357



8358
8359
8360
8361
8362
8363
8364
#endif

  /* Do an initial pass through the command-line argument to locate
  ** the name of the database file, the name of the initialization file,
  ** the size of the alternative malloc heap,
  ** and the first command to execute.
  */
  verify_uninitialized();
  for(i=1; i<argc; i++){
    char *z;
    z = argv[i];
    if( z[0]!='-' ){
      if( data.zDbFilename==0 ){
        data.zDbFilename = z;
      }else{
        /* Excesss arguments are interpreted as SQL (or dot-commands) and
        ** mean that nothing is read from stdin */
        readStdin = 0;
        nCmd++;
        azCmd = realloc(azCmd, sizeof(azCmd[0])*nCmd);
        if( azCmd==0 ) shell_out_of_memory();



        azCmd[nCmd-1] = z;
      }
    }
    if( z[1]=='-' ) z++;
    if( strcmp(z,"-separator")==0
     || strcmp(z,"-nullvalue")==0
     || strcmp(z,"-newline")==0
8327
8328
8329
8330
8331
8332
8333

8334
8335

8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357




























8358
8359
8360
8361
8362
8363
8364
    }else if( strcmp(z,"-multiplex")==0 ){
      extern int sqlite3_multiple_initialize(const char*,int);
      sqlite3_multiplex_initialize(0, 1);
#endif
    }else if( strcmp(z,"-mmap")==0 ){
      sqlite3_int64 sz = integerValue(cmdline_option_value(argc,argv,++i));
      sqlite3_config(SQLITE_CONFIG_MMAP_SIZE, sz, sz);

    }else if( strcmp(z,"-vfs")==0 ){
      sqlite3_vfs *pVfs = sqlite3_vfs_find(cmdline_option_value(argc,argv,++i));

      if( pVfs ){
        sqlite3_vfs_register(pVfs, 1);
      }else{
        utf8_printf(stderr, "no such VFS: \"%s\"\n", argv[i]);
        exit(1);
      }
#ifdef SQLITE_HAVE_ZLIB
    }else if( strcmp(z,"-zip")==0 ){
      data.openMode = SHELL_OPEN_ZIPFILE;
#endif
    }else if( strcmp(z,"-append")==0 ){
      data.openMode = SHELL_OPEN_APPENDVFS;
    }else if( strcmp(z,"-readonly")==0 ){
      data.openMode = SHELL_OPEN_READONLY;
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB)
    }else if( strncmp(z, "-A",2)==0 ){
      /* All remaining command-line arguments are passed to the ".archive"
      ** command, so ignore them */
      break;
#endif
    }
  }




























  if( data.zDbFilename==0 ){
#ifndef SQLITE_OMIT_MEMORYDB
    data.zDbFilename = ":memory:";
    warnInmemoryDb = argc==1;
#else
    utf8_printf(stderr,"%s: Error: no database filename specified\n", Argv0);
    return 1;







>
|
|
>
|
<
|
|
<
<
















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428

8429
8430


8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
    }else if( strcmp(z,"-multiplex")==0 ){
      extern int sqlite3_multiple_initialize(const char*,int);
      sqlite3_multiplex_initialize(0, 1);
#endif
    }else if( strcmp(z,"-mmap")==0 ){
      sqlite3_int64 sz = integerValue(cmdline_option_value(argc,argv,++i));
      sqlite3_config(SQLITE_CONFIG_MMAP_SIZE, sz, sz);
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    }else if( strcmp(z,"-sorterref")==0 ){
      sqlite3_int64 sz = integerValue(cmdline_option_value(argc,argv,++i));
      sqlite3_config(SQLITE_CONFIG_SORTERREF_SIZE, (int)sz);
#endif

    }else if( strcmp(z,"-vfs")==0 ){
      zVfs = cmdline_option_value(argc, argv, ++i);


#ifdef SQLITE_HAVE_ZLIB
    }else if( strcmp(z,"-zip")==0 ){
      data.openMode = SHELL_OPEN_ZIPFILE;
#endif
    }else if( strcmp(z,"-append")==0 ){
      data.openMode = SHELL_OPEN_APPENDVFS;
    }else if( strcmp(z,"-readonly")==0 ){
      data.openMode = SHELL_OPEN_READONLY;
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB)
    }else if( strncmp(z, "-A",2)==0 ){
      /* All remaining command-line arguments are passed to the ".archive"
      ** command, so ignore them */
      break;
#endif
    }
  }
  verify_uninitialized();


#ifdef SQLITE_SHELL_INIT_PROC
  {
    /* If the SQLITE_SHELL_INIT_PROC macro is defined, then it is the name
    ** of a C-function that will perform initialization actions on SQLite that
    ** occur just before or after sqlite3_initialize(). Use this compile-time
    ** option to embed this shell program in larger applications. */
    extern void SQLITE_SHELL_INIT_PROC(void);
    SQLITE_SHELL_INIT_PROC();
  }
#else
  /* All the sqlite3_config() calls have now been made. So it is safe
  ** to call sqlite3_initialize() and process any command line -vfs option. */
  sqlite3_initialize();
#endif

  if( zVfs ){
    sqlite3_vfs *pVfs = sqlite3_vfs_find(zVfs);
    if( pVfs ){
      sqlite3_vfs_register(pVfs, 1);
    }else{
      utf8_printf(stderr, "no such VFS: \"%s\"\n", argv[i]);
      exit(1);
    }
  }

  if( data.zDbFilename==0 ){
#ifndef SQLITE_OMIT_MEMORYDB
    data.zDbFilename = ":memory:";
    warnInmemoryDb = argc==1;
#else
    utf8_printf(stderr,"%s: Error: no database filename specified\n", Argv0);
    return 1;
8463
8464
8465
8466
8467
8468
8469




8470
8471
8472
8473
8474
8475
8476
      i++;
    }else if( strcmp(z,"-pagecache")==0 ){
      i+=2;
    }else if( strcmp(z,"-lookaside")==0 ){
      i+=2;
    }else if( strcmp(z,"-mmap")==0 ){
      i++;




    }else if( strcmp(z,"-vfs")==0 ){
      i++;
#ifdef SQLITE_ENABLE_VFSTRACE
    }else if( strcmp(z,"-vfstrace")==0 ){
      i++;
#endif
#ifdef SQLITE_ENABLE_MULTIPLEX







>
>
>
>







8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
      i++;
    }else if( strcmp(z,"-pagecache")==0 ){
      i+=2;
    }else if( strcmp(z,"-lookaside")==0 ){
      i+=2;
    }else if( strcmp(z,"-mmap")==0 ){
      i++;
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    }else if( strcmp(z,"-sorterref")==0 ){
      i++;
#endif
    }else if( strcmp(z,"-vfs")==0 ){
      i++;
#ifdef SQLITE_ENABLE_VFSTRACE
    }else if( strcmp(z,"-vfstrace")==0 ){
      i++;
#endif
#ifdef SQLITE_ENABLE_MULTIPLEX
Changes to src/sqlite.h.in.
1927
1928
1929
1930
1931
1932
1933
















1934
1935
1936
1937
1938
1939
1940
** Or if the threshold is -1, statement journals are always held
** exclusively in memory.
** Since many statement journals never become large, setting the spill
** threshold to a value such as 64KiB can greatly reduce the amount of
** I/O required to support statement rollback.
** The default value for this setting is controlled by the
** [SQLITE_STMTJRNL_SPILL] compile-time option.
















** </dl>
*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */
#define SQLITE_CONFIG_MALLOC        4  /* sqlite3_mem_methods* */
#define SQLITE_CONFIG_GETMALLOC     5  /* sqlite3_mem_methods* */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
** Or if the threshold is -1, statement journals are always held
** exclusively in memory.
** Since many statement journals never become large, setting the spill
** threshold to a value such as 64KiB can greatly reduce the amount of
** I/O required to support statement rollback.
** The default value for this setting is controlled by the
** [SQLITE_STMTJRNL_SPILL] compile-time option.
**
** [[SQLITE_CONFIG_SORTERREF_SIZE]]
** <dt>SQLITE_CONFIG_SORTERREF_SIZE
** <dd>The SQLITE_CONFIG_SORTERREF_SIZE option accepts a single parameter
** of type (int) - the new value of the sorter-reference size threshold.
** Usually, when SQLite uses an external sort to order records according
** to an ORDER BY clause, all fields required by the caller are present in the
** sorted records. However, if SQLite determines based on the declared type
** of a table column that its values are likely to be very large - larger
** than the configured sorter-reference size threshold - then a reference
** is stored in each sorted record and the required column values loaded
** from the database as records are returned in sorted order. The default
** value for this option is to never use this optimization. Specifying a 
** negative value for this option restores the default behaviour.
** This option is only available if SQLite is compiled with the
** [SQLITE_ENABLE_SORTER_REFERENCES] compile-time option.
** </dl>
*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */
#define SQLITE_CONFIG_MALLOC        4  /* sqlite3_mem_methods* */
#define SQLITE_CONFIG_GETMALLOC     5  /* sqlite3_mem_methods* */
1956
1957
1958
1959
1960
1961
1962

1963
1964
1965
1966
1967
1968
1969
#define SQLITE_CONFIG_SQLLOG       21  /* xSqllog, void* */
#define SQLITE_CONFIG_MMAP_SIZE    22  /* sqlite3_int64, sqlite3_int64 */
#define SQLITE_CONFIG_WIN32_HEAPSIZE      23  /* int nByte */
#define SQLITE_CONFIG_PCACHE_HDRSZ        24  /* int *psz */
#define SQLITE_CONFIG_PMASZ               25  /* unsigned int szPma */
#define SQLITE_CONFIG_STMTJRNL_SPILL      26  /* int nByte */
#define SQLITE_CONFIG_SMALL_MALLOC        27  /* boolean */


/*
** CAPI3REF: Database Connection Configuration Options
**
** These constants are the available integer configuration options that
** can be passed as the second argument to the [sqlite3_db_config()] interface.
**







>







1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
#define SQLITE_CONFIG_SQLLOG       21  /* xSqllog, void* */
#define SQLITE_CONFIG_MMAP_SIZE    22  /* sqlite3_int64, sqlite3_int64 */
#define SQLITE_CONFIG_WIN32_HEAPSIZE      23  /* int nByte */
#define SQLITE_CONFIG_PCACHE_HDRSZ        24  /* int *psz */
#define SQLITE_CONFIG_PMASZ               25  /* unsigned int szPma */
#define SQLITE_CONFIG_STMTJRNL_SPILL      26  /* int nByte */
#define SQLITE_CONFIG_SMALL_MALLOC        27  /* boolean */
#define SQLITE_CONFIG_SORTERREF_SIZE      28  /* int nByte */

/*
** CAPI3REF: Database Connection Configuration Options
**
** These constants are the available integer configuration options that
** can be passed as the second argument to the [sqlite3_db_config()] interface.
**
2092
2093
2094
2095
2096
2097
2098















2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109

2110
2111
2112
2113
2114
2115
2116
2117
** behavior. The first parameter passed to this operation is an integer -
** positive to enable output for trigger programs, or zero to disable it,
** or negative to leave the setting unchanged.
** The second parameter is a pointer to an integer into which is written 
** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if 
** it is not disabled, 1 if it is.  
** </dd>















** </dl>
*/
#define SQLITE_DBCONFIG_MAINDBNAME            1000 /* const char* */
#define SQLITE_DBCONFIG_LOOKASIDE             1001 /* void* int int */
#define SQLITE_DBCONFIG_ENABLE_FKEY           1002 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_TRIGGER        1003 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE      1006 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_QPSG           1007 /* int int* */
#define SQLITE_DBCONFIG_TRIGGER_EQP           1008 /* int int* */

#define SQLITE_DBCONFIG_MAX                   1008 /* Largest DBCONFIG */

/*
** CAPI3REF: Enable Or Disable Extended Result Codes
** METHOD: sqlite3
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











>
|







2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
** behavior. The first parameter passed to this operation is an integer -
** positive to enable output for trigger programs, or zero to disable it,
** or negative to leave the setting unchanged.
** The second parameter is a pointer to an integer into which is written 
** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if 
** it is not disabled, 1 if it is.  
** </dd>
**
** <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt>
** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run
** [VACUUM] in order to reset a database back to an empty database
** with no schema and no content. The following process works even for
** a badly corrupted database file:
** <ol>
** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0);
** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0);
** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0);
** </ol>
** Because resetting a database is destructive and irreversible, the
** process requires the use of this obscure API and multiple steps to help
** ensure that it does not happen by accident.
** </dd>
** </dl>
*/
#define SQLITE_DBCONFIG_MAINDBNAME            1000 /* const char* */
#define SQLITE_DBCONFIG_LOOKASIDE             1001 /* void* int int */
#define SQLITE_DBCONFIG_ENABLE_FKEY           1002 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_TRIGGER        1003 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE      1006 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_QPSG           1007 /* int int* */
#define SQLITE_DBCONFIG_TRIGGER_EQP           1008 /* int int* */
#define SQLITE_DBCONFIG_RESET_DATABASE        1009 /* int int* */
#define SQLITE_DBCONFIG_MAX                   1009 /* Largest DBCONFIG */

/*
** CAPI3REF: Enable Or Disable Extended Result Codes
** METHOD: sqlite3
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result
5489
5490
5491
5492
5493
5494
5495



































5496
5497
5498
5499
5500
5501
5502
** using [sqlite3_free].
** Hence, if this variable is modified directly, either it should be
** made NULL or made to point to memory obtained from [sqlite3_malloc]
** or else the use of the [data_store_directory pragma] should be avoided.
*/
SQLITE_EXTERN char *sqlite3_data_directory;




































/*
** CAPI3REF: Test For Auto-Commit Mode
** KEYWORDS: {autocommit mode}
** METHOD: sqlite3
**
** ^The sqlite3_get_autocommit() interface returns non-zero or
** zero if the given database connection is or is not in autocommit mode,







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
** using [sqlite3_free].
** Hence, if this variable is modified directly, either it should be
** made NULL or made to point to memory obtained from [sqlite3_malloc]
** or else the use of the [data_store_directory pragma] should be avoided.
*/
SQLITE_EXTERN char *sqlite3_data_directory;

/*
** CAPI3REF: Win32 Specific Interface
**
** These interfaces are available only on Windows.  The
** [sqlite3_win32_set_directory] interface is used to set the value associated
** with the [sqlite3_temp_directory] or [sqlite3_data_directory] variable, to
** zValue, depending on the value of the type parameter.  The zValue parameter
** should be NULL to cause the previous value to be freed via [sqlite3_free];
** a non-NULL value will be copied into memory obtained from [sqlite3_malloc]
** prior to being used.  The [sqlite3_win32_set_directory] interface returns
** [SQLITE_OK] to indicate success, [SQLITE_ERROR] if the type is unsupported,
** or [SQLITE_NOMEM] if memory could not be allocated.  The value of the
** [sqlite3_data_directory] variable is intended to act as a replacement for
** the current directory on the sub-platforms of Win32 where that concept is
** not present, e.g. WinRT and UWP.  The [sqlite3_win32_set_directory8] and
** [sqlite3_win32_set_directory16] interfaces behave exactly the same as the
** sqlite3_win32_set_directory interface except the string parameter must be
** UTF-8 or UTF-16, respectively.
*/
int sqlite3_win32_set_directory(
  unsigned long type, /* Identifier for directory being set or reset */
  void *zValue        /* New value for directory being set or reset */
);
int sqlite3_win32_set_directory8(unsigned long type, const char *zValue);
int sqlite3_win32_set_directory16(unsigned long type, const void *zValue);

/*
** CAPI3REF: Win32 Directory Types
**
** These macros are only available on Windows.  They define the allowed values
** for the type argument to the [sqlite3_win32_set_directory] interface.
*/
#define SQLITE_WIN32_DATA_DIRECTORY_TYPE  1
#define SQLITE_WIN32_TEMP_DIRECTORY_TYPE  2

/*
** CAPI3REF: Test For Auto-Commit Mode
** KEYWORDS: {autocommit mode}
** METHOD: sqlite3
**
** ^The sqlite3_get_autocommit() interface returns non-zero or
** zero if the given database connection is or is not in autocommit mode,
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016



















































7017
7018
7019
7020
7021
7022
7023
#define SQLITE_TESTCTRL_FAULT_INSTALL            9
#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS     10
#define SQLITE_TESTCTRL_PENDING_BYTE            11
#define SQLITE_TESTCTRL_ASSERT                  12
#define SQLITE_TESTCTRL_ALWAYS                  13
#define SQLITE_TESTCTRL_RESERVE                 14
#define SQLITE_TESTCTRL_OPTIMIZATIONS           15
#define SQLITE_TESTCTRL_ISKEYWORD               16
#define SQLITE_TESTCTRL_SCRATCHMALLOC           17  /* NOT USED */
#define SQLITE_TESTCTRL_LOCALTIME_FAULT         18
#define SQLITE_TESTCTRL_EXPLAIN_STMT            19  /* NOT USED */
#define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD    19
#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
#define SQLITE_TESTCTRL_BYTEORDER               22
#define SQLITE_TESTCTRL_ISINIT                  23
#define SQLITE_TESTCTRL_SORTER_MMAP             24
#define SQLITE_TESTCTRL_IMPOSTER                25
#define SQLITE_TESTCTRL_PARSER_COVERAGE         26
#define SQLITE_TESTCTRL_LAST                    26  /* Largest TESTCTRL */




















































/*
** CAPI3REF: SQLite Runtime Status
**
** ^These interfaces are used to retrieve runtime status information
** about the performance of SQLite, and optionally to reset various
** highwater marks.  ^The first argument is an integer code for
** the specific parameter to measure.  ^(Recognized integer codes







|













>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
#define SQLITE_TESTCTRL_FAULT_INSTALL            9
#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS     10
#define SQLITE_TESTCTRL_PENDING_BYTE            11
#define SQLITE_TESTCTRL_ASSERT                  12
#define SQLITE_TESTCTRL_ALWAYS                  13
#define SQLITE_TESTCTRL_RESERVE                 14
#define SQLITE_TESTCTRL_OPTIMIZATIONS           15
#define SQLITE_TESTCTRL_ISKEYWORD               16  /* NOT USED */
#define SQLITE_TESTCTRL_SCRATCHMALLOC           17  /* NOT USED */
#define SQLITE_TESTCTRL_LOCALTIME_FAULT         18
#define SQLITE_TESTCTRL_EXPLAIN_STMT            19  /* NOT USED */
#define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD    19
#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
#define SQLITE_TESTCTRL_BYTEORDER               22
#define SQLITE_TESTCTRL_ISINIT                  23
#define SQLITE_TESTCTRL_SORTER_MMAP             24
#define SQLITE_TESTCTRL_IMPOSTER                25
#define SQLITE_TESTCTRL_PARSER_COVERAGE         26
#define SQLITE_TESTCTRL_LAST                    26  /* Largest TESTCTRL */

/*
** CAPI3REF: SQL Keyword Checking
**
** These routines provide access to the set of SQL language keywords 
** recognized by SQLite.  Applications can uses these routines to determine
** whether or not a specific identifier needs to be escaped (for example,
** by enclosing in double-quotes) so as not to confuse the parser.
**
** The sqlite3_keyword_count() interface returns the number of distinct
** keywords understood by SQLite.
**
** The sqlite3_keyword_name(N,Z,L) interface finds the N-th keyword and
** makes *Z point to that keyword expressed as UTF8 and writes the number
** of bytes in the keyword into *L.  The string that *Z points to is not
** zero-terminated.  The sqlite3_keyword_name(N,Z,L) routine returns
** SQLITE_OK if N is within bounds and SQLITE_ERROR if not. If either Z
** or L are NULL or invalid pointers then calls to
** sqlite3_keyword_name(N,Z,L) result in undefined behavior.
**
** The sqlite3_keyword_check(Z,L) interface checks to see whether or not
** the L-byte UTF8 identifier that Z points to is a keyword, returning non-zero
** if it is and zero if not.
**
** The parser used by SQLite is forgiving.  It is often possible to use
** a keyword as an identifier as long as such use does not result in a
** parsing ambiguity.  For example, the statement
** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and
** creates a new table named "BEGIN" with three columns named
** "REPLACE", "PRAGMA", and "END".  Nevertheless, best practice is to avoid
** using keywords as identifiers.  Common techniques used to avoid keyword
** name collisions include:
** <ul>
** <li> Put all indentifier names inside double-quotes.  This is the official
**      SQL way to escape identifier names.
** <li> Put identifier names inside &#91;...&#93;.  This is not standard SQL,
**      but it is what SQL Server does and so lots of programmers use this
**      technique.
** <li> Begin every identifier with the letter "Z" as no SQL keywords start
**      with "Z".
** <li> Include a digit somewhere in every identifier name.
** </ul>
**
** Note that the number of keywords understood by SQLite can depend on
** compile-time options.  For example, "VACUUM" is not a keyword if
** SQLite is compiled with the [-DSQLITE_OMIT_VACUUM] option.  Also,
** new keywords may be added to future releases of SQLite.
*/
int sqlite3_keyword_count(void);
int sqlite3_keyword_name(int,const char**,int*);
int sqlite3_keyword_check(const char*,int);

/*
** CAPI3REF: SQLite Runtime Status
**
** ^These interfaces are used to retrieve runtime status information
** about the performance of SQLite, and optionally to reset various
** highwater marks.  ^The first argument is an integer code for
** the specific parameter to measure.  ^(Recognized integer codes
Changes to src/sqliteInt.h.
633
634
635
636
637
638
639







640
641
642
643
644
645
646
** The default value of "20" was choosen to minimize the run-time of the
** speedtest1 test program with options: --shrink-memory --reprepare
*/
#ifndef SQLITE_DEFAULT_PCACHE_INITSZ
# define SQLITE_DEFAULT_PCACHE_INITSZ 20
#endif








/*
** The compile-time options SQLITE_MMAP_READWRITE and 
** SQLITE_ENABLE_BATCH_ATOMIC_WRITE are not compatible with one another.
** You must choose one or the other (or neither) but not both.
*/
#if defined(SQLITE_MMAP_READWRITE) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
#error Cannot use both SQLITE_MMAP_READWRITE and SQLITE_ENABLE_BATCH_ATOMIC_WRITE







>
>
>
>
>
>
>







633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
** The default value of "20" was choosen to minimize the run-time of the
** speedtest1 test program with options: --shrink-memory --reprepare
*/
#ifndef SQLITE_DEFAULT_PCACHE_INITSZ
# define SQLITE_DEFAULT_PCACHE_INITSZ 20
#endif

/*
** Default value for the SQLITE_CONFIG_SORTERREF_SIZE option.
*/
#ifndef SQLITE_DEFAULT_SORTERREF_SIZE
# define SQLITE_DEFAULT_SORTERREF_SIZE 0x7fffffff
#endif

/*
** The compile-time options SQLITE_MMAP_READWRITE and 
** SQLITE_ENABLE_BATCH_ATOMIC_WRITE are not compatible with one another.
** You must choose one or the other (or neither) but not both.
*/
#if defined(SQLITE_MMAP_READWRITE) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
#error Cannot use both SQLITE_MMAP_READWRITE and SQLITE_ENABLE_BATCH_ATOMIC_WRITE
1091
1092
1093
1094
1095
1096
1097

1098
1099
1100
1101
1102
1103
1104
typedef struct TableLock TableLock;
typedef struct Token Token;
typedef struct TreeView TreeView;
typedef struct Trigger Trigger;
typedef struct TriggerPrg TriggerPrg;
typedef struct TriggerStep TriggerStep;
typedef struct UnpackedRecord UnpackedRecord;

typedef struct VTable VTable;
typedef struct VtabCtx VtabCtx;
typedef struct Walker Walker;
typedef struct WhereInfo WhereInfo;
typedef struct With With;

/* A VList object records a mapping between parameters/variables/wildcards







>







1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
typedef struct TableLock TableLock;
typedef struct Token Token;
typedef struct TreeView TreeView;
typedef struct Trigger Trigger;
typedef struct TriggerPrg TriggerPrg;
typedef struct TriggerStep TriggerStep;
typedef struct UnpackedRecord UnpackedRecord;
typedef struct Upsert Upsert;
typedef struct VTable VTable;
typedef struct VtabCtx VtabCtx;
typedef struct Walker Walker;
typedef struct WhereInfo WhereInfo;
typedef struct With With;

/* A VList object records a mapping between parameters/variables/wildcards
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
  u8 bBenignMalloc;             /* Do not require OOMs if true */
  u8 dfltLockMode;              /* Default locking-mode for attached dbs */
  signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
  u8 suppressErr;               /* Do not issue error messages if true */
  u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
  u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
  u8 mTrace;                    /* zero or more SQLITE_TRACE flags */
  u8 skipBtreeMutex;            /* True if no shared-cache backends */
  u8 nSqlExec;                  /* Number of pending OP_SqlExec opcodes */
  int nextPagesize;             /* Pagesize after VACUUM if >0 */
  u32 magic;                    /* Magic number for detect library misuse */
  int nChange;                  /* Value returned by sqlite3_changes() */
  int nTotalChange;             /* Value returned by sqlite3_total_changes() */
  int aLimit[SQLITE_N_LIMIT];   /* Limits */
  int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */







|







1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
  u8 bBenignMalloc;             /* Do not require OOMs if true */
  u8 dfltLockMode;              /* Default locking-mode for attached dbs */
  signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
  u8 suppressErr;               /* Do not issue error messages if true */
  u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
  u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
  u8 mTrace;                    /* zero or more SQLITE_TRACE flags */
  u8 noSharedCache;             /* True if no shared-cache backends */
  u8 nSqlExec;                  /* Number of pending OP_SqlExec opcodes */
  int nextPagesize;             /* Pagesize after VACUUM if >0 */
  u32 magic;                    /* Magic number for detect library misuse */
  int nChange;                  /* Value returned by sqlite3_changes() */
  int nTotalChange;             /* Value returned by sqlite3_total_changes() */
  int aLimit[SQLITE_N_LIMIT];   /* Limits */
  int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
1494
1495
1496
1497
1498
1499
1500

1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516

1517
1518
1519
1520
1521
1522
1523
#define SQLITE_EnableTrigger  0x00040000  /* True to enable triggers */
#define SQLITE_DeferFKs       0x00080000  /* Defer all FK constraints */
#define SQLITE_QueryOnly      0x00100000  /* Disable database changes */
#define SQLITE_CellSizeCk     0x00200000  /* Check btree cell sizes on load */
#define SQLITE_Fts3Tokenizer  0x00400000  /* Enable fts3_tokenizer(2) */
#define SQLITE_EnableQPSG     0x00800000  /* Query Planner Stability Guarantee*/
#define SQLITE_TriggerEQP     0x01000000  /* Show trigger EXPLAIN QUERY PLAN */


/* Flags used only if debugging */
#ifdef SQLITE_DEBUG
#define SQLITE_SqlTrace       0x08000000  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x10000000  /* Debug listings of VDBE programs */
#define SQLITE_VdbeTrace      0x20000000  /* True to trace VDBE execution */
#define SQLITE_VdbeAddopTrace 0x40000000  /* Trace sqlite3VdbeAddOp() calls */
#define SQLITE_VdbeEQP        0x80000000  /* Debug EXPLAIN QUERY PLAN */
#endif

/*
** Allowed values for sqlite3.mDbFlags
*/
#define DBFLAG_SchemaChange   0x0001  /* Uncommitted Hash table changes */
#define DBFLAG_PreferBuiltin  0x0002  /* Preference to built-in funcs */
#define DBFLAG_Vacuum         0x0004  /* Currently in a VACUUM */


/*
** Bits of the sqlite3.dbOptFlags field that are used by the
** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
** selectively disable various optimizations.
*/
#define SQLITE_QueryFlattener 0x0001   /* Query flattening */







>
















>







1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
#define SQLITE_EnableTrigger  0x00040000  /* True to enable triggers */
#define SQLITE_DeferFKs       0x00080000  /* Defer all FK constraints */
#define SQLITE_QueryOnly      0x00100000  /* Disable database changes */
#define SQLITE_CellSizeCk     0x00200000  /* Check btree cell sizes on load */
#define SQLITE_Fts3Tokenizer  0x00400000  /* Enable fts3_tokenizer(2) */
#define SQLITE_EnableQPSG     0x00800000  /* Query Planner Stability Guarantee*/
#define SQLITE_TriggerEQP     0x01000000  /* Show trigger EXPLAIN QUERY PLAN */
#define SQLITE_ResetDatabase  0x02000000  /* Reset the database */

/* Flags used only if debugging */
#ifdef SQLITE_DEBUG
#define SQLITE_SqlTrace       0x08000000  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x10000000  /* Debug listings of VDBE programs */
#define SQLITE_VdbeTrace      0x20000000  /* True to trace VDBE execution */
#define SQLITE_VdbeAddopTrace 0x40000000  /* Trace sqlite3VdbeAddOp() calls */
#define SQLITE_VdbeEQP        0x80000000  /* Debug EXPLAIN QUERY PLAN */
#endif

/*
** Allowed values for sqlite3.mDbFlags
*/
#define DBFLAG_SchemaChange   0x0001  /* Uncommitted Hash table changes */
#define DBFLAG_PreferBuiltin  0x0002  /* Preference to built-in funcs */
#define DBFLAG_Vacuum         0x0004  /* Currently in a VACUUM */
#define DBFLAG_SchemaKnownOk  0x0008  /* Schema is known to be valid */

/*
** Bits of the sqlite3.dbOptFlags field that are used by the
** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
** selectively disable various optimizations.
*/
#define SQLITE_QueryFlattener 0x0001   /* Query flattening */
1755
1756
1757
1758
1759
1760
1761

1762
1763
1764
1765
1766
1767
1768

/* Allowed values for Column.colFlags:
*/
#define COLFLAG_PRIMKEY  0x0001    /* Column is part of the primary key */
#define COLFLAG_HIDDEN   0x0002    /* A hidden column in a virtual table */
#define COLFLAG_HASTYPE  0x0004    /* Type name follows column name */
#define COLFLAG_UNIQUE   0x0008    /* Column def contains "UNIQUE" or "PK" */


/*
** A "Collating Sequence" is defined by an instance of the following
** structure. Conceptually, a collating sequence consists of a name and
** a comparison routine that defines the order of that sequence.
**
** If CollSeq.xCmp is NULL, it means that the







>







1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779

/* Allowed values for Column.colFlags:
*/
#define COLFLAG_PRIMKEY  0x0001    /* Column is part of the primary key */
#define COLFLAG_HIDDEN   0x0002    /* A hidden column in a virtual table */
#define COLFLAG_HASTYPE  0x0004    /* Type name follows column name */
#define COLFLAG_UNIQUE   0x0008    /* Column def contains "UNIQUE" or "PK" */
#define COLFLAG_SORTERREF 0x0010   /* Use sorter-refs with this column */

/*
** A "Collating Sequence" is defined by an instance of the following
** structure. Conceptually, a collating sequence consists of a name and
** a comparison routine that defines the order of that sequence.
**
** If CollSeq.xCmp is NULL, it means that the
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
*/
#define OE_None     0   /* There is no constraint to check */
#define OE_Rollback 1   /* Fail the operation and rollback the transaction */
#define OE_Abort    2   /* Back out changes but do no rollback transaction */
#define OE_Fail     3   /* Stop the operation but leave all prior changes */
#define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
#define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */

#define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
#define OE_SetNull  7   /* Set the foreign key value to NULL */
#define OE_SetDflt  8   /* Set the foreign key value to its default */
#define OE_Cascade  9   /* Cascade the changes */

#define OE_Default  10  /* Do whatever the default action is */


/*
** An instance of the following structure is passed as the first
** argument to sqlite3VdbeKeyCompare and is used to control the
** comparison of the two index keys.
**







|
|
|
|
|
<
|







2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064

2065
2066
2067
2068
2069
2070
2071
2072
*/
#define OE_None     0   /* There is no constraint to check */
#define OE_Rollback 1   /* Fail the operation and rollback the transaction */
#define OE_Abort    2   /* Back out changes but do no rollback transaction */
#define OE_Fail     3   /* Stop the operation but leave all prior changes */
#define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
#define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
#define OE_Update   6   /* Process as a DO UPDATE in an upsert */
#define OE_Restrict 7   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
#define OE_SetNull  8   /* Set the foreign key value to NULL */
#define OE_SetDflt  9   /* Set the foreign key value to its default */
#define OE_Cascade  10  /* Cascade the changes */

#define OE_Default  11  /* Do whatever the default action is */


/*
** An instance of the following structure is passed as the first
** argument to sqlite3VdbeKeyCompare and is used to control the
** comparison of the two index keys.
**
2495
2496
2497
2498
2499
2500
2501

2502
2503
2504
2505
2506
2507
2508
    Expr *pExpr;            /* The parse tree for this expression */
    char *zName;            /* Token associated with this expression */
    char *zSpan;            /* Original text of the expression */
    u8 sortOrder;           /* 1 for DESC or 0 for ASC */
    unsigned done :1;       /* A flag to indicate when processing is finished */
    unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
    unsigned reusable :1;   /* Constant expression is reusable */

    union {
      struct {
        u16 iOrderByCol;      /* For ORDER BY, column number in result set */
        u16 iAlias;           /* Index into Parse.aAlias[] for zName */
      } x;
      int iConstExprReg;      /* Register in which Expr value is cached */
    } u;







>







2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
    Expr *pExpr;            /* The parse tree for this expression */
    char *zName;            /* Token associated with this expression */
    char *zSpan;            /* Original text of the expression */
    u8 sortOrder;           /* 1 for DESC or 0 for ASC */
    unsigned done :1;       /* A flag to indicate when processing is finished */
    unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
    unsigned reusable :1;   /* Constant expression is reusable */
    unsigned bSorterRef :1; /* Defer evaluation until after sorting */
    union {
      struct {
        u16 iOrderByCol;      /* For ORDER BY, column number in result set */
        u16 iAlias;           /* Index into Parse.aAlias[] for zName */
      } x;
      int iConstExprReg;      /* Register in which Expr value is cached */
    } u;
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
      unsigned notIndexed :1;    /* True if there is a NOT INDEXED clause */
      unsigned isIndexedBy :1;   /* True if there is an INDEXED BY clause */
      unsigned isTabFunc :1;     /* True if table-valued-function syntax */
      unsigned isCorrelated :1;  /* True if sub-query is correlated */
      unsigned viaCoroutine :1;  /* Implemented as a co-routine */
      unsigned isRecursive :1;   /* True for recursive reference in WITH */
    } fg;
#ifndef SQLITE_OMIT_EXPLAIN
    u8 iSelectId;     /* If pSelect!=0, the id of the sub-select in EQP */
#endif
    int iCursor;      /* The VDBE cursor number used to access this table */
    Expr *pOn;        /* The ON clause of a join */
    IdList *pUsing;   /* The USING clause of a join */
    Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
    union {
      char *zIndexedBy;    /* Identifier from "INDEXED BY <zIndex>" clause */
      ExprList *pFuncArg;  /* Arguments to table-valued-function */







<
<
<







2605
2606
2607
2608
2609
2610
2611



2612
2613
2614
2615
2616
2617
2618
      unsigned notIndexed :1;    /* True if there is a NOT INDEXED clause */
      unsigned isIndexedBy :1;   /* True if there is an INDEXED BY clause */
      unsigned isTabFunc :1;     /* True if table-valued-function syntax */
      unsigned isCorrelated :1;  /* True if sub-query is correlated */
      unsigned viaCoroutine :1;  /* Implemented as a co-routine */
      unsigned isRecursive :1;   /* True for recursive reference in WITH */
    } fg;



    int iCursor;      /* The VDBE cursor number used to access this table */
    Expr *pOn;        /* The ON clause of a join */
    IdList *pUsing;   /* The USING clause of a join */
    Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
    union {
      char *zIndexedBy;    /* Identifier from "INDEXED BY <zIndex>" clause */
      ExprList *pFuncArg;  /* Arguments to table-valued-function */
2678
2679
2680
2681
2682
2683
2684

2685
2686


2687
2688
2689
2690
2691
2692
2693
** NameContext in the parent query.  Thus the process of scanning the
** NameContext list corresponds to searching through successively outer
** subqueries looking for a match.
*/
struct NameContext {
  Parse *pParse;       /* The parser */
  SrcList *pSrcList;   /* One or more tables used to resolve names */

  ExprList *pEList;    /* Optional list of result-set columns */
  AggInfo *pAggInfo;   /* Information about aggregates at this level */


  NameContext *pNext;  /* Next outer name context.  NULL for outermost */
  int nRef;            /* Number of names resolved by this context */
  int nErr;            /* Number of errors encountered while resolving names */
  u16 ncFlags;         /* Zero or more NC_* flags defined below */
};

/*







>
|
|
>
>







2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
** NameContext in the parent query.  Thus the process of scanning the
** NameContext list corresponds to searching through successively outer
** subqueries looking for a match.
*/
struct NameContext {
  Parse *pParse;       /* The parser */
  SrcList *pSrcList;   /* One or more tables used to resolve names */
  union {
    ExprList *pEList;    /* Optional list of result-set columns */
    AggInfo *pAggInfo;   /* Information about aggregates at this level */
    Upsert *pUpsert;     /* ON CONFLICT clause information from an upsert */
  } uNC;
  NameContext *pNext;  /* Next outer name context.  NULL for outermost */
  int nRef;            /* Number of names resolved by this context */
  int nErr;            /* Number of errors encountered while resolving names */
  u16 ncFlags;         /* Zero or more NC_* flags defined below */
};

/*
2701
2702
2703
2704
2705
2706
2707



2708
2709






























2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
#define NC_AllowAgg  0x0001  /* Aggregate functions are allowed here */
#define NC_PartIdx   0x0002  /* True if resolving a partial index WHERE */
#define NC_IsCheck   0x0004  /* True if resolving names in a CHECK constraint */
#define NC_InAggFunc 0x0008  /* True if analyzing arguments to an agg func */
#define NC_HasAgg    0x0010  /* One or more aggregate functions seen */
#define NC_IdxExpr   0x0020  /* True if resolving columns of CREATE INDEX */
#define NC_VarSelect 0x0040  /* A correlated subquery has been seen */



#define NC_MinMaxAgg 0x1000  /* min/max aggregates seen.  See note above */
#define NC_Complex   0x2000  /* True if a function or subquery seen */































/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
**
** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
** If there is a LIMIT clause, the parser sets nLimit to the value of the
** limit and nOffset to the value of the offset (or 0 if there is not
** offset).  But later on, nLimit and nOffset become the memory locations
** in the VDBE that record the limit and offset counters.
**
** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
** These addresses must be stored so that we can go back and fill in
** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
** the number of columns in P2 can be computed at the same time
** as the OP_OpenEphm instruction is coded because not
** enough information about the compound query is known at that point.







>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>





|
<
<
|
<







2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759


2760

2761
2762
2763
2764
2765
2766
2767
#define NC_AllowAgg  0x0001  /* Aggregate functions are allowed here */
#define NC_PartIdx   0x0002  /* True if resolving a partial index WHERE */
#define NC_IsCheck   0x0004  /* True if resolving names in a CHECK constraint */
#define NC_InAggFunc 0x0008  /* True if analyzing arguments to an agg func */
#define NC_HasAgg    0x0010  /* One or more aggregate functions seen */
#define NC_IdxExpr   0x0020  /* True if resolving columns of CREATE INDEX */
#define NC_VarSelect 0x0040  /* A correlated subquery has been seen */
#define NC_UEList    0x0080  /* True if uNC.pEList is used */
#define NC_UAggInfo  0x0100  /* True if uNC.pAggInfo is used */
#define NC_UUpsert   0x0200  /* True if uNC.pUpsert is used */
#define NC_MinMaxAgg 0x1000  /* min/max aggregates seen.  See note above */
#define NC_Complex   0x2000  /* True if a function or subquery seen */

/*
** An instance of the following object describes a single ON CONFLICT
** clause in an upsert.
**
** The pUpsertTarget field is only set if the ON CONFLICT clause includes
** conflict-target clause.  (In "ON CONFLICT(a,b)" the "(a,b)" is the
** conflict-target clause.)  The pUpsertTargetWhere is the optional
** WHERE clause used to identify partial unique indexes.
**
** pUpsertSet is the list of column=expr terms of the UPDATE statement. 
** The pUpsertSet field is NULL for a ON CONFLICT DO NOTHING.  The
** pUpsertWhere is the WHERE clause for the UPDATE and is NULL if the
** WHERE clause is omitted.
*/
struct Upsert {
  ExprList *pUpsertTarget;  /* Optional description of conflicting index */
  Expr *pUpsertTargetWhere; /* WHERE clause for partial index targets */
  ExprList *pUpsertSet;     /* The SET clause from an ON CONFLICT UPDATE */
  Expr *pUpsertWhere;       /* WHERE clause for the ON CONFLICT UPDATE */
  /* The fields above comprise the parse tree for the upsert clause.
  ** The fields below are used to transfer information from the INSERT
  ** processing down into the UPDATE processing while generating code.
  ** Upsert owns the memory allocated above, but not the memory below. */
  Index *pUpsertIdx;        /* Constraint that pUpsertTarget identifies */
  SrcList *pUpsertSrc;      /* Table to be updated */
  int regData;              /* First register holding array of VALUES */
  int iDataCur;             /* Index of the data cursor */
  int iIdxCur;              /* Index of the first index cursor */
};

/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
**
** See the header comment on the computeLimitRegisters() routine for a


** detailed description of the meaning of the iLimit and iOffset fields.

**
** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
** These addresses must be stored so that we can go back and fill in
** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
** the number of columns in P2 can be computed at the same time
** as the OP_OpenEphm instruction is coded because not
** enough information about the compound query is known at that point.
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
#define SF_NestedFrom     0x00800  /* Part of a parenthesized FROM clause */
#define SF_MinMaxAgg      0x01000  /* Aggregate containing min() or max() */
#define SF_Recursive      0x02000  /* The recursive part of a recursive CTE */
#define SF_FixedLimit     0x04000  /* nSelectRow set by a constant LIMIT */
#define SF_MaybeConvert   0x08000  /* Need convertCompoundSelectToSubquery() */
#define SF_Converted      0x10000  /* By convertCompoundSelectToSubquery() */
#define SF_IncludeHidden  0x20000  /* Include hidden columns in output */
#define SF_ComplexResult  0x40000  /* Result set contains subquery or function */


/*
** The results of a SELECT can be distributed in several ways, as defined
** by one of the following macros.  The "SRT" prefix means "SELECT Result
** Type".
**
**     SRT_Union       Store results as a key in a temporary index







|
<







2813
2814
2815
2816
2817
2818
2819
2820

2821
2822
2823
2824
2825
2826
2827
#define SF_NestedFrom     0x00800  /* Part of a parenthesized FROM clause */
#define SF_MinMaxAgg      0x01000  /* Aggregate containing min() or max() */
#define SF_Recursive      0x02000  /* The recursive part of a recursive CTE */
#define SF_FixedLimit     0x04000  /* nSelectRow set by a constant LIMIT */
#define SF_MaybeConvert   0x08000  /* Need convertCompoundSelectToSubquery() */
#define SF_Converted      0x10000  /* By convertCompoundSelectToSubquery() */
#define SF_IncludeHidden  0x20000  /* Include hidden columns in output */
#define SF_ComplexResult  0x40000  /* Result contains subquery or function */


/*
** The results of a SELECT can be distributed in several ways, as defined
** by one of the following macros.  The "SRT" prefix means "SELECT Result
** Type".
**
**     SRT_Union       Store results as a key in a temporary index
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
  u8 explain;               /* True if the EXPLAIN flag is found on the query */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
  int nVtabLock;            /* Number of virtual tables to lock */
#endif
  int nHeight;              /* Expression tree height of current sub-select */
#ifndef SQLITE_OMIT_EXPLAIN
  int iSelectId;            /* ID of current select for EXPLAIN output */
  int iNextSelectId;        /* Next available select ID for EXPLAIN output */
#endif
  VList *pVList;            /* Mapping between variable names and numbers */
  Vdbe *pReprepare;         /* VM being reprepared (sqlite3Reprepare()) */
  const char *zTail;        /* All SQL text past the last semicolon parsed */
  Table *pNewTable;         /* A table being constructed by CREATE TABLE */
  Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
  const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */







|
<







3083
3084
3085
3086
3087
3088
3089
3090

3091
3092
3093
3094
3095
3096
3097
  u8 explain;               /* True if the EXPLAIN flag is found on the query */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
  int nVtabLock;            /* Number of virtual tables to lock */
#endif
  int nHeight;              /* Expression tree height of current sub-select */
#ifndef SQLITE_OMIT_EXPLAIN
  int addrExplain;          /* Address of current OP_Explain opcode */

#endif
  VList *pVList;            /* Mapping between variable names and numbers */
  Vdbe *pReprepare;         /* VM being reprepared (sqlite3Reprepare()) */
  const char *zTail;        /* All SQL text past the last semicolon parsed */
  Table *pNewTable;         /* A table being constructed by CREATE TABLE */
  Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
  const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
3203
3204
3205
3206
3207
3208
3209
3210
3211

3212
3213
3214
3215
3216
3217
3218
struct TriggerStep {
  u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
  u8 orconf;           /* OE_Rollback etc. */
  Trigger *pTrig;      /* The trigger that this step is a part of */
  Select *pSelect;     /* SELECT statement or RHS of INSERT INTO SELECT ... */
  char *zTarget;       /* Target table for DELETE, UPDATE, INSERT */
  Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
  ExprList *pExprList; /* SET clause for UPDATE. */
  IdList *pIdList;     /* Column names for INSERT */

  char *zSpan;         /* Original SQL text of this command */
  TriggerStep *pNext;  /* Next in the link-list */
  TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
};

/*
** The following structure contains information used by the sqliteFix...







|

>







3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
struct TriggerStep {
  u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
  u8 orconf;           /* OE_Rollback etc. */
  Trigger *pTrig;      /* The trigger that this step is a part of */
  Select *pSelect;     /* SELECT statement or RHS of INSERT INTO SELECT ... */
  char *zTarget;       /* Target table for DELETE, UPDATE, INSERT */
  Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
  ExprList *pExprList; /* SET clause for UPDATE */
  IdList *pIdList;     /* Column names for INSERT */
  Upsert *pUpsert;     /* Upsert clauses on an INSERT */
  char *zSpan;         /* Original SQL text of this command */
  TriggerStep *pNext;  /* Next in the link-list */
  TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
};

/*
** The following structure contains information used by the sqliteFix...
3316
3317
3318
3319
3320
3321
3322

3323
3324
3325
3326
3327
3328
3329
  void *pVdbeBranchArg;                                     /* 1st argument */
#endif
#ifndef SQLITE_UNTESTABLE
  int (*xTestCallback)(int);        /* Invoked by sqlite3FaultSim() */
#endif
  int bLocaltimeFault;              /* True to fail localtime() calls */
  int iOnceResetThreshold;          /* When to reset OP_Once counters */

};

/*
** This macro is used inside of assert() statements to indicate that
** the assert is only valid on a well-formed database.  Instead of:
**
**     assert( X );







>







3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
  void *pVdbeBranchArg;                                     /* 1st argument */
#endif
#ifndef SQLITE_UNTESTABLE
  int (*xTestCallback)(int);        /* Invoked by sqlite3FaultSim() */
#endif
  int bLocaltimeFault;              /* True to fail localtime() calls */
  int iOnceResetThreshold;          /* When to reset OP_Once counters */
  u32 szSorterRef;                  /* Min size in bytes to use sorter-refs */
};

/*
** This macro is used inside of assert() statements to indicate that
** the assert is only valid on a well-formed database.  Instead of:
**
**     assert( X );
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
#ifndef SQLITE_OMIT_AUTOINCREMENT
  void sqlite3AutoincrementBegin(Parse *pParse);
  void sqlite3AutoincrementEnd(Parse *pParse);
#else
# define sqlite3AutoincrementBegin(X)
# define sqlite3AutoincrementEnd(X)
#endif
void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int);
void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
int sqlite3IdListIndex(IdList*,const char*);
SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
                                      Token*, Select*, Expr*, IdList*);







|







3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
#ifndef SQLITE_OMIT_AUTOINCREMENT
  void sqlite3AutoincrementBegin(Parse *pParse);
  void sqlite3AutoincrementEnd(Parse *pParse);
#else
# define sqlite3AutoincrementBegin(X)
# define sqlite3AutoincrementEnd(X)
#endif
void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int, Upsert*);
void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
int sqlite3IdListIndex(IdList*,const char*);
SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
                                      Token*, Select*, Expr*, IdList*);
3766
3767
3768
3769
3770
3771
3772
3773

3774
3775
3776
3777
3778
3779
3780
Table *sqlite3SrcListLookup(Parse*, SrcList*);
int sqlite3IsReadOnly(Parse*, Table*, int);
void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,char*);
#endif
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*, ExprList*, Expr*);
void sqlite3Update(Parse*, SrcList*, ExprList*,Expr*,int,ExprList*,Expr*);

WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
void sqlite3WhereEnd(WhereInfo*);
LogEst sqlite3WhereOutputRowCount(WhereInfo*);
int sqlite3WhereIsDistinct(WhereInfo*);
int sqlite3WhereIsOrdered(WhereInfo*);
int sqlite3WhereOrderedInnerLoop(WhereInfo*);
int sqlite3WhereIsSorted(WhereInfo*);







|
>







3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
Table *sqlite3SrcListLookup(Parse*, SrcList*);
int sqlite3IsReadOnly(Parse*, Table*, int);
void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,char*);
#endif
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*, ExprList*, Expr*);
void sqlite3Update(Parse*, SrcList*, ExprList*,Expr*,int,ExprList*,Expr*,
                   Upsert*);
WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
void sqlite3WhereEnd(WhereInfo*);
LogEst sqlite3WhereOutputRowCount(WhereInfo*);
int sqlite3WhereIsDistinct(WhereInfo*);
int sqlite3WhereIsOrdered(WhereInfo*);
int sqlite3WhereOrderedInnerLoop(WhereInfo*);
int sqlite3WhereIsSorted(WhereInfo*);
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
int sqlite3IsRowid(const char*);
void sqlite3GenerateRowDelete(
    Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
void sqlite3ResolvePartIdxLabel(Parse*,int);
void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
                                     u8,u8,int,int*,int*);
#ifdef SQLITE_ENABLE_NULL_TRIM
  void sqlite3SetMakeRecordP5(Vdbe*,Table*);
#else
# define sqlite3SetMakeRecordP5(A,B)
#endif
void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*);







|







3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
int sqlite3IsRowid(const char*);
void sqlite3GenerateRowDelete(
    Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
void sqlite3ResolvePartIdxLabel(Parse*,int);
void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
                                     u8,u8,int,int*,int*,Upsert*);
#ifdef SQLITE_ENABLE_NULL_TRIM
  void sqlite3SetMakeRecordP5(Vdbe*,Table*);
#else
# define sqlite3SetMakeRecordP5(A,B)
#endif
void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*);
3912
3913
3914
3915
3916
3917
3918

3919
3920
3921
3922
3923
3924
3925
3926
                            int, int, int);
  void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
  void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
  void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
  TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*,
                                        const char*,const char*);
  TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,

                                        Select*,u8,const char*,const char*);
  TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8,
                                        const char*,const char*);
  TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*,
                                        const char*,const char*);
  void sqlite3DeleteTrigger(sqlite3*, Trigger*);
  void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
  u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);







>
|







3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
                            int, int, int);
  void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
  void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
  void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
  TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*,
                                        const char*,const char*);
  TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
                                        Select*,u8,Upsert*,
                                        const char*,const char*);
  TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8,
                                        const char*,const char*);
  TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*,
                                        const char*,const char*);
  void sqlite3DeleteTrigger(sqlite3*, Trigger*);
  void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
  u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
void sqlite3AlterFinishAddColumn(Parse *, Token *);
void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
char sqlite3AffinityType(const char*, u8*);
void sqlite3Analyze(Parse*, Token*, Token*);
int sqlite3InvokeBusyHandler(BusyHandler*, sqlite3_file*);
int sqlite3FindDb(sqlite3*, Token*);
int sqlite3FindDbName(sqlite3 *, const char *);
int sqlite3AnalysisLoad(sqlite3*,int iDB);
void sqlite3DeleteIndexSamples(sqlite3*,Index*);
void sqlite3DefaultRowEst(Index*);







|







4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
void sqlite3AlterFinishAddColumn(Parse *, Token *);
void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
char sqlite3AffinityType(const char*, Column*);
void sqlite3Analyze(Parse*, Token*, Token*);
int sqlite3InvokeBusyHandler(BusyHandler*, sqlite3_file*);
int sqlite3FindDb(sqlite3*, Token*);
int sqlite3FindDbName(sqlite3 *, const char *);
int sqlite3AnalysisLoad(sqlite3*,int iDB);
void sqlite3DeleteIndexSamples(sqlite3*,Index*);
void sqlite3DefaultRowEst(Index*);
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
char sqlite3IndexColumnAffinity(sqlite3*, Index*, int);
#endif

/*
** The interface to the LEMON-generated parser
*/
#ifndef SQLITE_AMALGAMATION
  void *sqlite3ParserAlloc(void*(*)(u64));
  void sqlite3ParserFree(void*, void(*)(void*));
#endif
void sqlite3Parser(void*, int, Token, Parse*);
#ifdef YYTRACKMAXSTACKDEPTH
  int sqlite3ParserStackPeak(void*);
#endif

void sqlite3AutoLoadExtensions(sqlite3*);
#ifndef SQLITE_OMIT_LOAD_EXTENSION
  void sqlite3CloseExtensions(sqlite3*);







|


|







4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
char sqlite3IndexColumnAffinity(sqlite3*, Index*, int);
#endif

/*
** The interface to the LEMON-generated parser
*/
#ifndef SQLITE_AMALGAMATION
  void *sqlite3ParserAlloc(void*(*)(u64), Parse*);
  void sqlite3ParserFree(void*, void(*)(void*));
#endif
void sqlite3Parser(void*, int, Token);
#ifdef YYTRACKMAXSTACKDEPTH
  int sqlite3ParserStackPeak(void*);
#endif

void sqlite3AutoLoadExtensions(sqlite3*);
#ifndef SQLITE_OMIT_LOAD_EXTENSION
  void sqlite3CloseExtensions(sqlite3*);
4251
4252
4253
4254
4255
4256
4257












4258
4259
4260
4261
4262
4263
4264
  With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*);
  void sqlite3WithDelete(sqlite3*,With*);
  void sqlite3WithPush(Parse*, With*, u8);
#else
#define sqlite3WithPush(x,y,z)
#define sqlite3WithDelete(x,y)
#endif













/* Declarations for functions in fkey.c. All of these are replaced by
** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
** key functionality is available. If OMIT_TRIGGER is defined but
** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
** this case foreign keys are parsed, but no other functionality is
** provided (enforcement of FK constraints requires the triggers sub-system).







>
>
>
>
>
>
>
>
>
>
>
>







4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
  With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*);
  void sqlite3WithDelete(sqlite3*,With*);
  void sqlite3WithPush(Parse*, With*, u8);
#else
#define sqlite3WithPush(x,y,z)
#define sqlite3WithDelete(x,y)
#endif
#ifndef SQLITE_OMIT_UPSERT
  Upsert *sqlite3UpsertNew(sqlite3*,ExprList*,Expr*,ExprList*,Expr*);
  void sqlite3UpsertDelete(sqlite3*,Upsert*);
  Upsert *sqlite3UpsertDup(sqlite3*,Upsert*);
  int sqlite3UpsertAnalyzeTarget(Parse*,SrcList*,Upsert*);
  void sqlite3UpsertDoUpdate(Parse*,Upsert*,Table*,Index*,int);
#else
#define sqlite3UpsertNew(v,w,x,y,z) ((Upsert*)0)
#define sqlite3UpsertDelete(x,y)
#define sqlite3UpsertDup(x,y)       ((Upsert*)0)
#endif


/* Declarations for functions in fkey.c. All of these are replaced by
** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
** key functionality is available. If OMIT_TRIGGER is defined but
** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
** this case foreign keys are parsed, but no other functionality is
** provided (enforcement of FK constraints requires the triggers sub-system).
Changes to src/test1.c.
2251
2252
2253
2254
2255
2256
2257





















2258
2259
2260
2261
2262
2263
2264
    Tcl_WrongNumArgs(interp, 1, objv, "");
    return TCL_ERROR;
  }
  sqlite3_config(SQLITE_CONFIG_SQLLOG, 0, 0);
  return TCL_OK;
}
#endif






















/*
** Usage: vfs_current_time_int64
**
** Return the value returned by the default VFS's xCurrentTimeInt64 method.
*/
static int SQLITE_TCLAPI vfsCurrentTimeInt64(







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
    Tcl_WrongNumArgs(interp, 1, objv, "");
    return TCL_ERROR;
  }
  sqlite3_config(SQLITE_CONFIG_SQLLOG, 0, 0);
  return TCL_OK;
}
#endif

/*
** Usage:  sqlite3_config_sorterref
**
** Set the SQLITE_CONFIG_SORTERREF_SIZE configuration option
*/
static int SQLITE_TCLAPI test_config_sorterref(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int iVal;
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "NBYTE");
    return TCL_ERROR;
  }
  if( Tcl_GetIntFromObj(interp, objv[1], &iVal) ) return TCL_ERROR;
  sqlite3_config(SQLITE_CONFIG_SORTERREF_SIZE, iVal);
  return TCL_OK;
}

/*
** Usage: vfs_current_time_int64
**
** Return the value returned by the default VFS's xCurrentTimeInt64 method.
*/
static int SQLITE_TCLAPI vfsCurrentTimeInt64(
7584
7585
7586
7587
7588
7589
7590


7591
7592
7593
7594
7595
7596
7597
  } aSetting[] = {
    { "FKEY",            SQLITE_DBCONFIG_ENABLE_FKEY },
    { "TRIGGER",         SQLITE_DBCONFIG_ENABLE_TRIGGER },
    { "FTS3_TOKENIZER",  SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER },
    { "LOAD_EXTENSION",  SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION },
    { "NO_CKPT_ON_CLOSE",SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE },
    { "QPSG",            SQLITE_DBCONFIG_ENABLE_QPSG },


  };
  int i;
  int v;
  const char *zSetting;
  sqlite3 *db;

  if( objc!=4 ){







>
>







7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
  } aSetting[] = {
    { "FKEY",            SQLITE_DBCONFIG_ENABLE_FKEY },
    { "TRIGGER",         SQLITE_DBCONFIG_ENABLE_TRIGGER },
    { "FTS3_TOKENIZER",  SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER },
    { "LOAD_EXTENSION",  SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION },
    { "NO_CKPT_ON_CLOSE",SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE },
    { "QPSG",            SQLITE_DBCONFIG_ENABLE_QPSG },
    { "TRIGGER_EQP",     SQLITE_DBCONFIG_TRIGGER_EQP },
    { "RESET_DB",        SQLITE_DBCONFIG_RESET_DATABASE },
  };
  int i;
  int v;
  const char *zSetting;
  sqlite3 *db;

  if( objc!=4 ){
7945
7946
7947
7948
7949
7950
7951

7952
7953
7954
7955
7956
7957
7958
     { "sqlite3_snapshot_get_blob", test_snapshot_get_blob, 0 },
     { "sqlite3_snapshot_open_blob", test_snapshot_open_blob, 0 },
     { "sqlite3_snapshot_cmp_blob", test_snapshot_cmp_blob, 0 },
#endif
     { "sqlite3_delete_database", test_delete_database,    0 },
     { "atomic_batch_write",      test_atomic_batch_write, 0 },
     { "sqlite3_mmap_warm",       test_mmap_warm,          0 },

  };
  static int bitmask_size = sizeof(Bitmask)*8;
  static int longdouble_size = sizeof(LONGDOUBLE_TYPE);
  int i;
  extern int sqlite3_sync_count, sqlite3_fullsync_count;
  extern int sqlite3_opentemp_count;
  extern int sqlite3_like_count;







>







7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
     { "sqlite3_snapshot_get_blob", test_snapshot_get_blob, 0 },
     { "sqlite3_snapshot_open_blob", test_snapshot_open_blob, 0 },
     { "sqlite3_snapshot_cmp_blob", test_snapshot_cmp_blob, 0 },
#endif
     { "sqlite3_delete_database", test_delete_database,    0 },
     { "atomic_batch_write",      test_atomic_batch_write, 0 },
     { "sqlite3_mmap_warm",       test_mmap_warm,          0 },
     { "sqlite3_config_sorterref", test_config_sorterref,   0 },
  };
  static int bitmask_size = sizeof(Bitmask)*8;
  static int longdouble_size = sizeof(LONGDOUBLE_TYPE);
  int i;
  extern int sqlite3_sync_count, sqlite3_fullsync_count;
  extern int sqlite3_opentemp_count;
  extern int sqlite3_like_count;
Changes to src/tokenize.c.
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  assert( pzErrMsg!=0 );
  /* sqlite3ParserTrace(stdout, "parser: "); */
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
  pEngine = &sEngine;
  sqlite3ParserInit(pEngine);
#else
  pEngine = sqlite3ParserAlloc(sqlite3Malloc);
  if( pEngine==0 ){
    sqlite3OomFault(db);
    return SQLITE_NOMEM_BKPT;
  }
#endif
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );







|

|







492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  assert( pzErrMsg!=0 );
  /* sqlite3ParserTrace(stdout, "parser: "); */
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
  pEngine = &sEngine;
  sqlite3ParserInit(pEngine, pParse);
#else
  pEngine = sqlite3ParserAlloc(sqlite3Malloc, pParse);
  if( pEngine==0 ){
    sqlite3OomFault(db);
    return SQLITE_NOMEM_BKPT;
  }
#endif
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
        sqlite3ErrorMsg(pParse, "unrecognized token: \"%.*s\"", n, zSql);
        break;
      }
      zSql += n;
    }else{
      pParse->sLastToken.z = zSql;
      pParse->sLastToken.n = n;
      sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
      lastTokenParsed = tokenType;
      zSql += n;
      if( pParse->rc!=SQLITE_OK || db->mallocFailed ) break;
    }
  }
  assert( nErr==0 );
  pParse->zTail = zSql;







|







538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
        sqlite3ErrorMsg(pParse, "unrecognized token: \"%.*s\"", n, zSql);
        break;
      }
      zSql += n;
    }else{
      pParse->sLastToken.z = zSql;
      pParse->sLastToken.n = n;
      sqlite3Parser(pEngine, tokenType, pParse->sLastToken);
      lastTokenParsed = tokenType;
      zSql += n;
      if( pParse->rc!=SQLITE_OK || db->mallocFailed ) break;
    }
  }
  assert( nErr==0 );
  pParse->zTail = zSql;
Changes to src/treeview.c.
58
59
60
61
62
63
64

65
66
67
68
69

70
71
72
73
74
75
76
  sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
  if( p ){
    for(i=0; i<p->iLevel && i<sizeof(p->bLine)-1; i++){
      sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|   " : "    ", 4);
    }
    sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|-- " : "'-- ", 4);
  }

  va_start(ap, zFormat);
  sqlite3VXPrintf(&acc, zFormat, ap);
  va_end(ap);
  assert( acc.nChar>0 );
  if( zBuf[acc.nChar-1]!='\n' ) sqlite3StrAccumAppend(&acc, "\n", 1);

  sqlite3StrAccumFinish(&acc);
  fprintf(stdout,"%s", zBuf);
  fflush(stdout);
}

/*
** Shorthand for starting a new tree item that consists of a single label







>
|
|
|
|
|
>







58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
  sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
  if( p ){
    for(i=0; i<p->iLevel && i<sizeof(p->bLine)-1; i++){
      sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|   " : "    ", 4);
    }
    sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|-- " : "'-- ", 4);
  }
  if( zFormat!=0 ){
    va_start(ap, zFormat);
    sqlite3VXPrintf(&acc, zFormat, ap);
    va_end(ap);
    assert( acc.nChar>0 );
    sqlite3StrAccumAppend(&acc, "\n", 1);
  }
  sqlite3StrAccumFinish(&acc);
  fprintf(stdout,"%s", zBuf);
  fflush(stdout);
}

/*
** Shorthand for starting a new tree item that consists of a single label
532
533
534
535
536
537
538

539
540
541


542
543
544
545
546
547



548
549
550
551
552
553
554
555
    sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
  }else{
    int i;
    sqlite3TreeViewLine(pView, "%s", zLabel);
    for(i=0; i<pList->nExpr; i++){
      int j = pList->a[i].u.x.iOrderByCol;
      char *zName = pList->a[i].zName;

      if( j || zName ){
        sqlite3TreeViewPush(pView, 0);
      }


      if( zName ){
        sqlite3TreeViewLine(pView, "AS %s", zName);
      }
      if( j ){
        sqlite3TreeViewLine(pView, "iOrderByCol=%d", j);
      }



      sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);
      if( j || zName ){
        sqlite3TreeViewPop(pView);
      }
    }
  }
}
void sqlite3TreeViewExprList(







>

|
<
>
>
|
|
|
|
|
|
>
>
>
|







534
535
536
537
538
539
540
541
542
543

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
    sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
  }else{
    int i;
    sqlite3TreeViewLine(pView, "%s", zLabel);
    for(i=0; i<pList->nExpr; i++){
      int j = pList->a[i].u.x.iOrderByCol;
      char *zName = pList->a[i].zName;
      int moreToFollow = i<pList->nExpr - 1;
      if( j || zName ){
        sqlite3TreeViewPush(pView, moreToFollow);

        moreToFollow = 0;
        sqlite3TreeViewLine(pView, 0);
        if( zName ){
          fprintf(stdout, "AS %s ", zName);
        }
        if( j ){
          fprintf(stdout, "iOrderByCol=%d", j);
        }
        fprintf(stdout, "\n");
        fflush(stdout);
      }
      sqlite3TreeViewExpr(pView, pList->a[i].pExpr, moreToFollow);
      if( j || zName ){
        sqlite3TreeViewPop(pView);
      }
    }
  }
}
void sqlite3TreeViewExprList(
Changes to src/trigger.c.
21
22
23
24
25
26
27

28
29
30
31
32
33
34
    TriggerStep * pTmp = pTriggerStep;
    pTriggerStep = pTriggerStep->pNext;

    sqlite3ExprDelete(db, pTmp->pWhere);
    sqlite3ExprListDelete(db, pTmp->pExprList);
    sqlite3SelectDelete(db, pTmp->pSelect);
    sqlite3IdListDelete(db, pTmp->pIdList);

    sqlite3DbFree(db, pTmp->zSpan);

    sqlite3DbFree(db, pTmp);
  }
}

/*







>







21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
    TriggerStep * pTmp = pTriggerStep;
    pTriggerStep = pTriggerStep->pNext;

    sqlite3ExprDelete(db, pTmp->pWhere);
    sqlite3ExprListDelete(db, pTmp->pExprList);
    sqlite3SelectDelete(db, pTmp->pSelect);
    sqlite3IdListDelete(db, pTmp->pIdList);
    sqlite3UpsertDelete(db, pTmp->pUpsert);
    sqlite3DbFree(db, pTmp->zSpan);

    sqlite3DbFree(db, pTmp);
  }
}

/*
412
413
414
415
416
417
418

419
420
421
422
423
424
425
426
427
428
429

430
431

432


433
434
435
436
437
438
439
*/
TriggerStep *sqlite3TriggerInsertStep(
  sqlite3 *db,        /* The database connection */
  Token *pTableName,  /* Name of the table into which we insert */
  IdList *pColumn,    /* List of columns in pTableName to insert into */
  Select *pSelect,    /* A SELECT statement that supplies values */
  u8 orconf,          /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */

  const char *zStart, /* Start of SQL text */
  const char *zEnd    /* End of SQL text */
){
  TriggerStep *pTriggerStep;

  assert(pSelect != 0 || db->mallocFailed);

  pTriggerStep = triggerStepAllocate(db, TK_INSERT, pTableName, zStart, zEnd);
  if( pTriggerStep ){
    pTriggerStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
    pTriggerStep->pIdList = pColumn;

    pTriggerStep->orconf = orconf;
  }else{

    sqlite3IdListDelete(db, pColumn);


  }
  sqlite3SelectDelete(db, pSelect);

  return pTriggerStep;
}

/*







>











>


>

>
>







413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
*/
TriggerStep *sqlite3TriggerInsertStep(
  sqlite3 *db,        /* The database connection */
  Token *pTableName,  /* Name of the table into which we insert */
  IdList *pColumn,    /* List of columns in pTableName to insert into */
  Select *pSelect,    /* A SELECT statement that supplies values */
  u8 orconf,          /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
  Upsert *pUpsert,    /* ON CONFLICT clauses for upsert */
  const char *zStart, /* Start of SQL text */
  const char *zEnd    /* End of SQL text */
){
  TriggerStep *pTriggerStep;

  assert(pSelect != 0 || db->mallocFailed);

  pTriggerStep = triggerStepAllocate(db, TK_INSERT, pTableName, zStart, zEnd);
  if( pTriggerStep ){
    pTriggerStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
    pTriggerStep->pIdList = pColumn;
    pTriggerStep->pUpsert = pUpsert;
    pTriggerStep->orconf = orconf;
  }else{
    testcase( pColumn );
    sqlite3IdListDelete(db, pColumn);
    testcase( pUpsert );
    sqlite3UpsertDelete(db, pUpsert);
  }
  sqlite3SelectDelete(db, pSelect);

  return pTriggerStep;
}

/*
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758

759
760
761
762
763
764
765

    switch( pStep->op ){
      case TK_UPDATE: {
        sqlite3Update(pParse, 
          targetSrcList(pParse, pStep),
          sqlite3ExprListDup(db, pStep->pExprList, 0), 
          sqlite3ExprDup(db, pStep->pWhere, 0), 
          pParse->eOrconf, 0, 0
        );
        break;
      }
      case TK_INSERT: {
        sqlite3Insert(pParse, 
          targetSrcList(pParse, pStep),
          sqlite3SelectDup(db, pStep->pSelect, 0), 
          sqlite3IdListDup(db, pStep->pIdList), 
          pParse->eOrconf

        );
        break;
      }
      case TK_DELETE: {
        sqlite3DeleteFrom(pParse, 
          targetSrcList(pParse, pStep),
          sqlite3ExprDup(db, pStep->pWhere, 0), 0, 0







|








|
>







748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772

    switch( pStep->op ){
      case TK_UPDATE: {
        sqlite3Update(pParse, 
          targetSrcList(pParse, pStep),
          sqlite3ExprListDup(db, pStep->pExprList, 0), 
          sqlite3ExprDup(db, pStep->pWhere, 0), 
          pParse->eOrconf, 0, 0, 0
        );
        break;
      }
      case TK_INSERT: {
        sqlite3Insert(pParse, 
          targetSrcList(pParse, pStep),
          sqlite3SelectDup(db, pStep->pSelect, 0), 
          sqlite3IdListDup(db, pStep->pIdList), 
          pParse->eOrconf,
          sqlite3UpsertDup(db, pStep->pUpsert)
        );
        break;
      }
      case TK_DELETE: {
        sqlite3DeleteFrom(pParse, 
          targetSrcList(pParse, pStep),
          sqlite3ExprDup(db, pStep->pWhere, 0), 0, 0
Changes to src/update.c.
89
90
91
92
93
94
95
96

97
98
99
100
101
102
103
void sqlite3Update(
  Parse *pParse,         /* The parser context */
  SrcList *pTabList,     /* The table in which we should change things */
  ExprList *pChanges,    /* Things to be changed */
  Expr *pWhere,          /* The WHERE clause.  May be null */
  int onError,           /* How to handle constraint errors */
  ExprList *pOrderBy,    /* ORDER BY clause. May be null */
  Expr *pLimit           /* LIMIT clause. May be null */

){
  int i, j;              /* Loop counters */
  Table *pTab;           /* The table to be updated */
  int addrTop = 0;       /* VDBE instruction address of the start of the loop */
  WhereInfo *pWInfo;     /* Information about the WHERE clause */
  Vdbe *v;               /* The virtual database engine */
  Index *pIdx;           /* For looping over indices */







|
>







89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
void sqlite3Update(
  Parse *pParse,         /* The parser context */
  SrcList *pTabList,     /* The table in which we should change things */
  ExprList *pChanges,    /* Things to be changed */
  Expr *pWhere,          /* The WHERE clause.  May be null */
  int onError,           /* How to handle constraint errors */
  ExprList *pOrderBy,    /* ORDER BY clause. May be null */
  Expr *pLimit,          /* LIMIT clause. May be null */
  Upsert *pUpsert        /* ON CONFLICT clause, or null */
){
  int i, j;              /* Loop counters */
  Table *pTab;           /* The table to be updated */
  int addrTop = 0;       /* VDBE instruction address of the start of the loop */
  WhereInfo *pWInfo;     /* Information about the WHERE clause */
  Vdbe *v;               /* The virtual database engine */
  Index *pIdx;           /* For looping over indices */
196
197
198
199
200
201
202
203
204
205

206
207
208
209
210
211
212







213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228


229
230
231
232
233
234
235
  }

  /* Allocate a cursors for the main database table and for all indices.
  ** The index cursors might not be used, but if they are used they
  ** need to occur right after the database cursor.  So go ahead and
  ** allocate enough space, just in case.
  */
  pTabList->a[0].iCursor = iBaseCur = iDataCur = pParse->nTab++;
  iIdxCur = iDataCur+1;
  pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);

  for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
    if( IsPrimaryKeyIndex(pIdx) && pPk!=0 ){
      iDataCur = pParse->nTab;
      pTabList->a[0].iCursor = iDataCur;
    }
    pParse->nTab++;
  }








  /* Allocate space for aXRef[], aRegIdx[], and aToOpen[].  
  ** Initialize aXRef[] and aToOpen[] to their default values.
  */
  aXRef = sqlite3DbMallocRawNN(db, sizeof(int) * (pTab->nCol+nIdx) + nIdx+2 );
  if( aXRef==0 ) goto update_cleanup;
  aRegIdx = aXRef+pTab->nCol;
  aToOpen = (u8*)(aRegIdx+nIdx);
  memset(aToOpen, 1, nIdx+1);
  aToOpen[nIdx+1] = 0;
  for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;

  /* Initialize the name-context */
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pParse;
  sNC.pSrcList = pTabList;



  /* Resolve the column names in all the expressions of the
  ** of the UPDATE statement.  Also find the column index
  ** for each column to be updated in the pChanges array.  For each
  ** column to be updated, make sure we have authorization to change
  ** that column.
  */







|


>

|

<



>
>
>
>
>
>
>
















>
>







197
198
199
200
201
202
203
204
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
  }

  /* Allocate a cursors for the main database table and for all indices.
  ** The index cursors might not be used, but if they are used they
  ** need to occur right after the database cursor.  So go ahead and
  ** allocate enough space, just in case.
  */
  iBaseCur = iDataCur = pParse->nTab++;
  iIdxCur = iDataCur+1;
  pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
  testcase( pPk!=0 && pPk!=pTab->pIndex );
  for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
    if( pPk==pIdx ){
      iDataCur = pParse->nTab;

    }
    pParse->nTab++;
  }
  if( pUpsert ){
    /* On an UPSERT, reuse the same cursors already opened by INSERT */
    iDataCur = pUpsert->iDataCur;
    iIdxCur = pUpsert->iIdxCur;
    pParse->nTab = iBaseCur;
  }
  pTabList->a[0].iCursor = iDataCur;

  /* Allocate space for aXRef[], aRegIdx[], and aToOpen[].  
  ** Initialize aXRef[] and aToOpen[] to their default values.
  */
  aXRef = sqlite3DbMallocRawNN(db, sizeof(int) * (pTab->nCol+nIdx) + nIdx+2 );
  if( aXRef==0 ) goto update_cleanup;
  aRegIdx = aXRef+pTab->nCol;
  aToOpen = (u8*)(aRegIdx+nIdx);
  memset(aToOpen, 1, nIdx+1);
  aToOpen[nIdx+1] = 0;
  for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;

  /* Initialize the name-context */
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pParse;
  sNC.pSrcList = pTabList;
  sNC.uNC.pUpsert = pUpsert;
  sNC.ncFlags = NC_UUpsert;

  /* Resolve the column names in all the expressions of the
  ** of the UPDATE statement.  Also find the column index
  ** for each column to be updated in the pChanges array.  For each
  ** column to be updated, make sure we have authorization to change
  ** that column.
  */
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    memset(aToOpen, 1, nIdx+1);
  }

  /* Begin generating code. */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto update_cleanup;
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, 1, iDb);

  /* Allocate required registers. */
  if( !IsVirtual(pTab) ){
    regRowSet = ++pParse->nMem;
    regOldRowid = regNewRowid = ++pParse->nMem;
    if( chngPk || pTrigger || hasFK ){
      regOld = pParse->nMem + 1;







|







335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    memset(aToOpen, 1, nIdx+1);
  }

  /* Begin generating code. */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto update_cleanup;
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, pTrigger || hasFK, iDb);

  /* Allocate required registers. */
  if( !IsVirtual(pTab) ){
    regRowSet = ++pParse->nMem;
    regOldRowid = regNewRowid = ++pParse->nMem;
    if( chngPk || pTrigger || hasFK ){
      regOld = pParse->nMem + 1;
376
377
378
379
380
381
382




383

384



385
386
387
388
389
390
391
392
393
394
395
396

397
398
399
400
401
402
403











404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428


429
430
431
432
433
434
435
436


437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

517
518
519
520
521
522
523
524
525
  if( IsVirtual(pTab) ){
    updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
                       pWhere, onError);
    goto update_cleanup;
  }
#endif





  /* Initialize the count of updated rows */

  if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab ){



    regRowCount = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
  }

  if( HasRowid(pTab) ){
    sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid);
  }else{
    assert( pPk!=0 );
    nPk = pPk->nKeyCol;
    iPk = pParse->nMem+1;
    pParse->nMem += nPk;
    regKey = ++pParse->nMem;

    iEph = pParse->nTab++;

    sqlite3VdbeAddOp3(v, OP_Null, 0, iPk, iPk+nPk-1);
    addrOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEph, nPk);
    sqlite3VdbeSetP4KeyInfo(pParse, pPk);
  }












  /* Begin the database scan. 
  **
  ** Do not consider a single-pass strategy for a multi-row update if
  ** there are any triggers or foreign keys to process, or rows may
  ** be deleted as a result of REPLACE conflict handling. Any of these
  ** things might disturb a cursor being used to scan through the table
  ** or index, causing a single-pass approach to malfunction.  */
  flags = WHERE_ONEPASS_DESIRED|WHERE_SEEK_UNIQ_TABLE;
  if( !pParse->nested && !pTrigger && !hasFK && !chngKey && !bReplace ){
    flags |= WHERE_ONEPASS_MULTIROW;
  }
  pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, flags, iIdxCur);
  if( pWInfo==0 ) goto update_cleanup;

  /* A one-pass strategy that might update more than one row may not
  ** be used if any column of the index used for the scan is being
  ** updated. Otherwise, if there is an index on "b", statements like
  ** the following could create an infinite loop:
  **
  **   UPDATE t1 SET b=b+1 WHERE b>?
  **
  ** Fall back to ONEPASS_OFF if where.c has selected a ONEPASS_MULTI
  ** strategy that uses an index for which one or more columns are being
  ** updated.  */
  eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);


  if( eOnePass==ONEPASS_MULTI ){
    int iCur = aiCurOnePass[1];
    if( iCur>=0 && iCur!=iDataCur && aToOpen[iCur-iBaseCur] ){
      eOnePass = ONEPASS_OFF;
    }
    assert( iCur!=iDataCur || !HasRowid(pTab) );
  }
  


  if( HasRowid(pTab) ){
    /* Read the rowid of the current row of the WHERE scan. In ONEPASS_OFF
    ** mode, write the rowid into the FIFO. In either of the one-pass modes,
    ** leave it in register regOldRowid.  */
    sqlite3VdbeAddOp2(v, OP_Rowid, iDataCur, regOldRowid);
    if( eOnePass==ONEPASS_OFF ){
      sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid);
    }
  }else{
    /* Read the PK of the current row into an array of registers. In
    ** ONEPASS_OFF mode, serialize the array into a record and store it in
    ** the ephemeral table. Or, in ONEPASS_SINGLE or MULTI mode, change
    ** the OP_OpenEphemeral instruction to a Noop (the ephemeral table 
    ** is not required) and leave the PK fields in the array of registers.  */
    for(i=0; i<nPk; i++){
      assert( pPk->aiColumn[i]>=0 );
      sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur,pPk->aiColumn[i],iPk+i);
    }
    if( eOnePass ){
      sqlite3VdbeChangeToNoop(v, addrOpen);
      nKey = nPk;
      regKey = iPk;
    }else{
      sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey,
                        sqlite3IndexAffinityStr(db, pPk), nPk);
      sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEph, regKey, iPk, nPk);
    }
  }


  if( eOnePass!=ONEPASS_MULTI ){
    sqlite3WhereEnd(pWInfo);
  }

  labelBreak = sqlite3VdbeMakeLabel(v);
  if( !isView ){
    int addrOnce = 0;

    /* Open every index that needs updating. */
    if( eOnePass!=ONEPASS_OFF ){
      if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0;
      if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0;
    }

    if( eOnePass==ONEPASS_MULTI && (nIdx-(aiCurOnePass[1]>=0))>0 ){
      addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
    }
    sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, iBaseCur, aToOpen,
                               0, 0);
    if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
  }

  /* Top of the update loop */
  if( eOnePass!=ONEPASS_OFF ){
    if( !isView && aiCurOnePass[0]!=iDataCur && aiCurOnePass[1]!=iDataCur ){
      assert( pPk );
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey);
      VdbeCoverageNeverTaken(v);
    }
    if( eOnePass==ONEPASS_SINGLE ){
      labelContinue = labelBreak;
    }else{
      labelContinue = sqlite3VdbeMakeLabel(v);
    }
    sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak);
    VdbeCoverageIf(v, pPk==0);
    VdbeCoverageIf(v, pPk!=0);
  }else if( pPk ){
    labelContinue = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v);
    addrTop = sqlite3VdbeAddOp2(v, OP_RowData, iEph, regKey);
    sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey, 0);
    VdbeCoverage(v);
  }else{
    labelContinue = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, labelBreak,
                             regOldRowid);
    VdbeCoverage(v);
    sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid);
    VdbeCoverage(v);
  }


  /* If the record number will change, set register regNewRowid to
  ** contain the new value. If the record number is not being modified,
  ** then regNewRowid is the same register as regOldRowid, which is
  ** already populated.  */
  assert( chngKey || pTrigger || hasFK || regOldRowid==regNewRowid );
  if( chngRowid ){
    sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
    sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); VdbeCoverage(v);
  }







>
>
>
>
|
>
|
>
>
>












>
|
<
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
|
|
|
|
|
|
|
|
>
>



















|









>
|
|
|
|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|







386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528


529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
  if( IsVirtual(pTab) ){
    updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
                       pWhere, onError);
    goto update_cleanup;
  }
#endif

  /* Jump to labelBreak to abandon further processing of this UPDATE */
  labelContinue = labelBreak = sqlite3VdbeMakeLabel(v);

  /* Not an UPSERT.  Normal processing.  Begin by
  ** initialize the count of updated rows */
  if( (db->flags&SQLITE_CountRows)!=0
   && !pParse->pTriggerTab
   && !pParse->nested
   && pUpsert==0
  ){
    regRowCount = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
  }

  if( HasRowid(pTab) ){
    sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid);
  }else{
    assert( pPk!=0 );
    nPk = pPk->nKeyCol;
    iPk = pParse->nMem+1;
    pParse->nMem += nPk;
    regKey = ++pParse->nMem;
    if( pUpsert==0 ){
      iEph = pParse->nTab++;

        sqlite3VdbeAddOp3(v, OP_Null, 0, iPk, iPk+nPk-1);
      addrOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEph, nPk);
      sqlite3VdbeSetP4KeyInfo(pParse, pPk);
    }
  }
  
  if( pUpsert ){
    /* If this is an UPSERT, then all cursors have already been opened by
    ** the outer INSERT and the data cursor should be pointing at the row
    ** that is to be updated.  So bypass the code that searches for the
    ** row(s) to be updated.
    */
    pWInfo = 0;
    eOnePass = ONEPASS_SINGLE;
    sqlite3ExprIfFalse(pParse, pWhere, labelBreak, SQLITE_JUMPIFNULL);
  }else{
    /* Begin the database scan. 
    **
    ** Do not consider a single-pass strategy for a multi-row update if
    ** there are any triggers or foreign keys to process, or rows may
    ** be deleted as a result of REPLACE conflict handling. Any of these
    ** things might disturb a cursor being used to scan through the table
    ** or index, causing a single-pass approach to malfunction.  */
    flags = WHERE_ONEPASS_DESIRED|WHERE_SEEK_UNIQ_TABLE;
    if( !pParse->nested && !pTrigger && !hasFK && !chngKey && !bReplace ){
      flags |= WHERE_ONEPASS_MULTIROW;
    }
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, flags, iIdxCur);
    if( pWInfo==0 ) goto update_cleanup;
  
    /* A one-pass strategy that might update more than one row may not
    ** be used if any column of the index used for the scan is being
    ** updated. Otherwise, if there is an index on "b", statements like
    ** the following could create an infinite loop:
    **
    **   UPDATE t1 SET b=b+1 WHERE b>?
    **
    ** Fall back to ONEPASS_OFF if where.c has selected a ONEPASS_MULTI
    ** strategy that uses an index for which one or more columns are being
    ** updated.  */
    eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);
    if( eOnePass!=ONEPASS_SINGLE ){
      sqlite3MultiWrite(pParse);
      if( eOnePass==ONEPASS_MULTI ){
        int iCur = aiCurOnePass[1];
        if( iCur>=0 && iCur!=iDataCur && aToOpen[iCur-iBaseCur] ){
          eOnePass = ONEPASS_OFF;
        }
        assert( iCur!=iDataCur || !HasRowid(pTab) );
      }
    }
  }

  if( HasRowid(pTab) ){
    /* Read the rowid of the current row of the WHERE scan. In ONEPASS_OFF
    ** mode, write the rowid into the FIFO. In either of the one-pass modes,
    ** leave it in register regOldRowid.  */
    sqlite3VdbeAddOp2(v, OP_Rowid, iDataCur, regOldRowid);
    if( eOnePass==ONEPASS_OFF ){
      sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid);
    }
  }else{
    /* Read the PK of the current row into an array of registers. In
    ** ONEPASS_OFF mode, serialize the array into a record and store it in
    ** the ephemeral table. Or, in ONEPASS_SINGLE or MULTI mode, change
    ** the OP_OpenEphemeral instruction to a Noop (the ephemeral table 
    ** is not required) and leave the PK fields in the array of registers.  */
    for(i=0; i<nPk; i++){
      assert( pPk->aiColumn[i]>=0 );
      sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur,pPk->aiColumn[i],iPk+i);
    }
    if( eOnePass ){
      if( addrOpen ) sqlite3VdbeChangeToNoop(v, addrOpen);
      nKey = nPk;
      regKey = iPk;
    }else{
      sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey,
                        sqlite3IndexAffinityStr(db, pPk), nPk);
      sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEph, regKey, iPk, nPk);
    }
  }

  if( pUpsert==0 ){
    if( eOnePass!=ONEPASS_MULTI ){
      sqlite3WhereEnd(pWInfo);
    }
  

    if( !isView ){
      int addrOnce = 0;
  
      /* Open every index that needs updating. */
      if( eOnePass!=ONEPASS_OFF ){
        if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0;
        if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0;
      }
  
      if( eOnePass==ONEPASS_MULTI && (nIdx-(aiCurOnePass[1]>=0))>0 ){
        addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
      }
      sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, iBaseCur,
                                 aToOpen, 0, 0);
      if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
    }
  
    /* Top of the update loop */
    if( eOnePass!=ONEPASS_OFF ){
      if( !isView && aiCurOnePass[0]!=iDataCur && aiCurOnePass[1]!=iDataCur ){
        assert( pPk );
        sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey,nKey);
        VdbeCoverageNeverTaken(v);
      }
      if( eOnePass!=ONEPASS_SINGLE ){


        labelContinue = sqlite3VdbeMakeLabel(v);
      }
      sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak);
      VdbeCoverageIf(v, pPk==0);
      VdbeCoverageIf(v, pPk!=0);
    }else if( pPk ){
      labelContinue = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v);
      addrTop = sqlite3VdbeAddOp2(v, OP_RowData, iEph, regKey);
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey, 0);
      VdbeCoverage(v);
    }else{
      labelContinue = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet,labelBreak,
                               regOldRowid);
      VdbeCoverage(v);
      sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid);
      VdbeCoverage(v);
    }
  }

  /* If the rowid value will change, set register regNewRowid to
  ** contain the new value. If the rowid is not being modified,
  ** then regNewRowid is the same register as regOldRowid, which is
  ** already populated.  */
  assert( chngKey || pTrigger || hasFK || regOldRowid==regNewRowid );
  if( chngRowid ){
    sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
    sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); VdbeCoverage(v);
  }
575
576
577
578
579
580
581






582
583
584
585
586
587
588
        ** into a register. This is done if there are no BEFORE triggers, or
        ** if there are one or more BEFORE triggers that use this value via
        ** a new.* reference in a trigger program.
        */
        testcase( i==31 );
        testcase( i==32 );
        sqlite3ExprCodeGetColumnToReg(pParse, pTab, i, iDataCur, regNew+i);






      }else{
        sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);
      }
    }
  }

  /* Fire any BEFORE UPDATE triggers. This happens before constraints are







>
>
>
>
>
>







607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
        ** into a register. This is done if there are no BEFORE triggers, or
        ** if there are one or more BEFORE triggers that use this value via
        ** a new.* reference in a trigger program.
        */
        testcase( i==31 );
        testcase( i==32 );
        sqlite3ExprCodeGetColumnToReg(pParse, pTab, i, iDataCur, regNew+i);
        if( tmask & TRIGGER_BEFORE ){
          /* This value will be recomputed in After-BEFORE-trigger-reload-loop
          ** below, so make sure that it is not cached and reused.
          ** Ticket d85fffd6ffe856092ed8daefa811b1e399706b28. */
          sqlite3ExprCacheRemove(pParse, regNew+i, 1);
        }
      }else{
        sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);
      }
    }
  }

  /* Fire any BEFORE UPDATE triggers. This happens before constraints are
603
604
605
606
607
608
609

610
611
612
613



614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue,regKey,nKey);
      VdbeCoverage(v);
    }else{
      sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid);
      VdbeCoverage(v);
    }


    /* If it did not delete it, the row-trigger may still have modified 
    ** some of the columns of the row being updated. Load the values for 
    ** all columns not modified by the update statement into their 
    ** registers in case this has happened.



    */
    for(i=0; i<pTab->nCol; i++){
      if( aXRef[i]<0 && i!=pTab->iPKey ){
        sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, regNew+i);
      }
    }
  }

  if( !isView ){
    int addr1 = 0;        /* Address of jump instruction */

    /* Do constraint checks. */
    assert( regOldRowid>0 );
    sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
        regNewRowid, regOldRowid, chngKey, onError, labelContinue, &bReplace,
        aXRef);

    /* Do FK constraint checks. */
    if( hasFK ){
      sqlite3FkCheck(pParse, pTab, regOldRowid, 0, aXRef, chngKey);
    }

    /* Delete the index entries associated with the current record.  */







>
|

|
|
>
>
>















|







641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue,regKey,nKey);
      VdbeCoverage(v);
    }else{
      sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid);
      VdbeCoverage(v);
    }

    /* After-BEFORE-trigger-reload-loop:
    ** If it did not delete it, the BEFORE trigger may still have modified 
    ** some of the columns of the row being updated. Load the values for 
    ** all columns not modified by the update statement into their registers
    ** in case this has happened. Only unmodified columns are reloaded.
    ** The values computed for modified columns use the values before the
    ** BEFORE trigger runs.  See test case trigger1-18.0 (added 2018-04-26)
    ** for an example.
    */
    for(i=0; i<pTab->nCol; i++){
      if( aXRef[i]<0 && i!=pTab->iPKey ){
        sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, regNew+i);
      }
    }
  }

  if( !isView ){
    int addr1 = 0;        /* Address of jump instruction */

    /* Do constraint checks. */
    assert( regOldRowid>0 );
    sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
        regNewRowid, regOldRowid, chngKey, onError, labelContinue, &bReplace,
        aXRef, 0);

    /* Do FK constraint checks. */
    if( hasFK ){
      sqlite3FkCheck(pParse, pTab, regOldRowid, 0, aXRef, chngKey);
    }

    /* Delete the index entries associated with the current record.  */
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
    if( hasFK ){
      sqlite3FkActions(pParse, pTab, pChanges, regOldRowid, aXRef, chngKey);
    }
  }

  /* Increment the row counter 
  */
  if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab){
    sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
  }

  sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, 
      TRIGGER_AFTER, pTab, regOldRowid, onError, labelContinue);

  /* Repeat the above with the next record to be updated, until







|







734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
    if( hasFK ){
      sqlite3FkActions(pParse, pTab, pChanges, regOldRowid, aXRef, chngKey);
    }
  }

  /* Increment the row counter 
  */
  if( regRowCount ){
    sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
  }

  sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, 
      TRIGGER_AFTER, pTab, regOldRowid, onError, labelContinue);

  /* Repeat the above with the next record to be updated, until
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
  }
  sqlite3VdbeResolveLabel(v, labelBreak);

  /* Update the sqlite_sequence table by storing the content of the
  ** maximum rowid counter values recorded while inserting into
  ** autoincrement tables.
  */
  if( pParse->nested==0 && pParse->pTriggerTab==0 ){
    sqlite3AutoincrementEnd(pParse);
  }

  /*
  ** Return the number of rows that were changed. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( (db->flags&SQLITE_CountRows) && !pParse->pTriggerTab && !pParse->nested ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC);
  }

update_cleanup:
  sqlite3AuthContextPop(&sContext);







|




|
<
|

|







761
762
763
764
765
766
767
768
769
770
771
772
773

774
775
776
777
778
779
780
781
782
783
  }
  sqlite3VdbeResolveLabel(v, labelBreak);

  /* Update the sqlite_sequence table by storing the content of the
  ** maximum rowid counter values recorded while inserting into
  ** autoincrement tables.
  */
  if( pParse->nested==0 && pParse->pTriggerTab==0 && pUpsert==0 ){
    sqlite3AutoincrementEnd(pParse);
  }

  /*
  ** Return the number of rows that were changed, if we are tracking

  ** that information.
  */
  if( regRowCount ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC);
  }

update_cleanup:
  sqlite3AuthContextPop(&sContext);
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

865
866
867
868
869
870
871
    sqlite3VdbeAddOp2(v, OP_SCopy, regArg+2+iPk, regArg+1);
  }

  bOnePass = sqlite3WhereOkOnePass(pWInfo, aDummy);

  if( bOnePass ){
    /* If using the onepass strategy, no-op out the OP_OpenEphemeral coded
    ** above. Also, if this is a top-level parse (not a trigger), clear the
    ** multi-write flag so that the VM does not open a statement journal */
    sqlite3VdbeChangeToNoop(v, addr);
    if( sqlite3IsToplevel(pParse) ){
      pParse->isMultiWrite = 0;
    }
  }else{
    /* Create a record from the argument register contents and insert it into
    ** the ephemeral table. */

    sqlite3VdbeAddOp3(v, OP_MakeRecord, regArg, nArg, regRec);
#ifdef SQLITE_DEBUG
    /* Signal an assert() within OP_MakeRecord that it is allowed to
    ** accept no-change records with serial_type 10 */
    sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC);
#endif
    sqlite3VdbeAddOp2(v, OP_NewRowid, ephemTab, regRowid);







|
<

<
<
<



>







890
891
892
893
894
895
896
897

898



899
900
901
902
903
904
905
906
907
908
909
    sqlite3VdbeAddOp2(v, OP_SCopy, regArg+2+iPk, regArg+1);
  }

  bOnePass = sqlite3WhereOkOnePass(pWInfo, aDummy);

  if( bOnePass ){
    /* If using the onepass strategy, no-op out the OP_OpenEphemeral coded
    ** above. */

    sqlite3VdbeChangeToNoop(v, addr);



  }else{
    /* Create a record from the argument register contents and insert it into
    ** the ephemeral table. */
    sqlite3MultiWrite(pParse);
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regArg, nArg, regRec);
#ifdef SQLITE_DEBUG
    /* Signal an assert() within OP_MakeRecord that it is allowed to
    ** accept no-change records with serial_type 10 */
    sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC);
#endif
    sqlite3VdbeAddOp2(v, OP_NewRowid, ephemTab, regRowid);
Added src/upsert.c.


















































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*
** 2018-04-12
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code to implement various aspects of UPSERT
** processing and handling of the Upsert object.
*/
#include "sqliteInt.h"

#ifndef SQLITE_OMIT_UPSERT
/*
** Free a list of Upsert objects
*/
void sqlite3UpsertDelete(sqlite3 *db, Upsert *p){
  if( p ){
    sqlite3ExprListDelete(db, p->pUpsertTarget);
    sqlite3ExprDelete(db, p->pUpsertTargetWhere);
    sqlite3ExprListDelete(db, p->pUpsertSet);
    sqlite3ExprDelete(db, p->pUpsertWhere);
    sqlite3DbFree(db, p);
  }
}

/*
** Duplicate an Upsert object.
*/
Upsert *sqlite3UpsertDup(sqlite3 *db, Upsert *p){
  if( p==0 ) return 0;
  return sqlite3UpsertNew(db,
           sqlite3ExprListDup(db, p->pUpsertTarget, 0),
           sqlite3ExprDup(db, p->pUpsertTargetWhere, 0),
           sqlite3ExprListDup(db, p->pUpsertSet, 0),
           sqlite3ExprDup(db, p->pUpsertWhere, 0)
         );
}

/*
** Create a new Upsert object.
*/
Upsert *sqlite3UpsertNew(
  sqlite3 *db,           /* Determines which memory allocator to use */
  ExprList *pTarget,     /* Target argument to ON CONFLICT, or NULL */
  Expr *pTargetWhere,    /* Optional WHERE clause on the target */
  ExprList *pSet,        /* UPDATE columns, or NULL for a DO NOTHING */
  Expr *pWhere           /* WHERE clause for the ON CONFLICT UPDATE */
){
  Upsert *pNew;
  pNew = sqlite3DbMallocRaw(db, sizeof(Upsert));
  if( pNew==0 ){
    sqlite3ExprListDelete(db, pTarget);
    sqlite3ExprDelete(db, pTargetWhere);
    sqlite3ExprListDelete(db, pSet);
    sqlite3ExprDelete(db, pWhere);
    return 0;
  }else{
    pNew->pUpsertTarget = pTarget;
    pNew->pUpsertTargetWhere = pTargetWhere;
    pNew->pUpsertSet = pSet;
    pNew->pUpsertWhere = pWhere;
    pNew->pUpsertIdx = 0;
  }
  return pNew;
}

/*
** Analyze the ON CONFLICT clause described by pUpsert.  Resolve all
** symbols in the conflict-target.
**
** Return SQLITE_OK if everything works, or an error code is something
** is wrong.
*/
int sqlite3UpsertAnalyzeTarget(
  Parse *pParse,     /* The parsing context */
  SrcList *pTabList, /* Table into which we are inserting */
  Upsert *pUpsert    /* The ON CONFLICT clauses */
){
  Table *pTab;            /* That table into which we are inserting */
  int rc;                 /* Result code */
  int iCursor;            /* Cursor used by pTab */
  Index *pIdx;            /* One of the indexes of pTab */
  ExprList *pTarget;      /* The conflict-target clause */
  Expr *pTerm;            /* One term of the conflict-target clause */
  NameContext sNC;        /* Context for resolving symbolic names */
  Expr sCol[2];           /* Index column converted into an Expr */

  assert( pTabList->nSrc==1 );
  assert( pTabList->a[0].pTab!=0 );
  assert( pUpsert!=0 );
  assert( pUpsert->pUpsertTarget!=0 );

  /* Resolve all symbolic names in the conflict-target clause, which
  ** includes both the list of columns and the optional partial-index
  ** WHERE clause.
  */
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pParse;
  sNC.pSrcList = pTabList;
  rc = sqlite3ResolveExprListNames(&sNC, pUpsert->pUpsertTarget);
  if( rc ) return rc;
  rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertTargetWhere);
  if( rc ) return rc;

  /* Check to see if the conflict target matches the rowid. */  
  pTab = pTabList->a[0].pTab;
  pTarget = pUpsert->pUpsertTarget;
  iCursor = pTabList->a[0].iCursor;
  if( HasRowid(pTab) 
   && pTarget->nExpr==1
   && (pTerm = pTarget->a[0].pExpr)->op==TK_COLUMN
   && pTerm->iColumn==XN_ROWID
  ){
    /* The conflict-target is the rowid of the primary table */
    assert( pUpsert->pUpsertIdx==0 );
    return SQLITE_OK;
  }

  /* Initialize sCol[0..1] to be an expression parse tree for a
  ** single column of an index.  The sCol[0] node will be the TK_COLLATE
  ** operator and sCol[1] will be the TK_COLUMN operator.  Code below
  ** will populate the specific collation and column number values
  ** prior to comparing against the conflict-target expression.
  */
  memset(sCol, 0, sizeof(sCol));
  sCol[0].op = TK_COLLATE;
  sCol[0].pLeft = &sCol[1];
  sCol[1].op = TK_COLUMN;
  sCol[1].iTable = pTabList->a[0].iCursor;

  /* Check for matches against other indexes */
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int ii, jj, nn;
    if( !IsUniqueIndex(pIdx) ) continue;
    if( pTarget->nExpr!=pIdx->nKeyCol ) continue;
    if( pIdx->pPartIdxWhere ){
      if( pUpsert->pUpsertTargetWhere==0 ) continue;
      if( sqlite3ExprCompare(pParse, pUpsert->pUpsertTargetWhere,
                             pIdx->pPartIdxWhere, iCursor)!=0 ){
        continue;
      }
    }
    nn = pIdx->nKeyCol;
    for(ii=0; ii<nn; ii++){
      Expr *pExpr;
      sCol[0].u.zToken = (char*)pIdx->azColl[ii];
      if( pIdx->aiColumn[ii]==XN_EXPR ){
        assert( pIdx->aColExpr!=0 );
        assert( pIdx->aColExpr->nExpr>ii );
        pExpr = pIdx->aColExpr->a[ii].pExpr;
        if( pExpr->op!=TK_COLLATE ){
          sCol[0].pLeft = pExpr;
          pExpr = &sCol[0];
        }
      }else{
        sCol[0].pLeft = &sCol[1];
        sCol[1].iColumn = pIdx->aiColumn[ii];
        pExpr = &sCol[0];
      }
      for(jj=0; jj<nn; jj++){
        if( sqlite3ExprCompare(pParse, pTarget->a[jj].pExpr, pExpr,iCursor)<2 ){
          break;  /* Column ii of the index matches column jj of target */
        }
      }
      if( jj>=nn ){
        /* The target contains no match for column jj of the index */
        break;
      }
    }
    if( ii<nn ){
      /* Column ii of the index did not match any term of the conflict target.
      ** Continue the search with the next index. */
      continue;
    }
    pUpsert->pUpsertIdx = pIdx;
    return SQLITE_OK;
  }
  sqlite3ErrorMsg(pParse, "ON CONFLICT clause does not match any "
                          "PRIMARY KEY or UNIQUE constraint");
  return SQLITE_ERROR;
}

/*
** Generate bytecode that does an UPDATE as part of an upsert.
**
** If pIdx is NULL, then the UNIQUE constraint that failed was the IPK.
** In this case parameter iCur is a cursor open on the table b-tree that
** currently points to the conflicting table row. Otherwise, if pIdx
** is not NULL, then pIdx is the constraint that failed and iCur is a
** cursor points to the conflicting row.
*/
void sqlite3UpsertDoUpdate(
  Parse *pParse,        /* The parsing and code-generating context */
  Upsert *pUpsert,      /* The ON CONFLICT clause for the upsert */
  Table *pTab,          /* The table being updated */
  Index *pIdx,          /* The UNIQUE constraint that failed */
  int iCur              /* Cursor for pIdx (or pTab if pIdx==NULL) */
){
  Vdbe *v = pParse->pVdbe;
  sqlite3 *db = pParse->db;
  SrcList *pSrc;            /* FROM clause for the UPDATE */
  int iDataCur = pUpsert->iDataCur;

  assert( v!=0 );
  VdbeNoopComment((v, "Begin DO UPDATE of UPSERT"));
  if( pIdx && iCur!=iDataCur ){
    if( HasRowid(pTab) ){
      int regRowid = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp2(v, OP_IdxRowid, iCur, regRowid);
      sqlite3VdbeAddOp3(v, OP_SeekRowid, iDataCur, 0, regRowid);
      VdbeCoverage(v);
      sqlite3ReleaseTempReg(pParse, regRowid);
    }else{
      Index *pPk = sqlite3PrimaryKeyIndex(pTab);
      int nPk = pPk->nKeyCol;
      int iPk = pParse->nMem+1;
      int i;
      pParse->nMem += nPk;
      for(i=0; i<nPk; i++){
        int k;
        assert( pPk->aiColumn[i]>=0 );
        k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
        sqlite3VdbeAddOp3(v, OP_Column, iCur, k, iPk+i);
        VdbeComment((v, "%s.%s", pIdx->zName,
                    pTab->aCol[pPk->aiColumn[i]].zName));
      }
      i = sqlite3VdbeAddOp4Int(v, OP_Found, iDataCur, 0, iPk, nPk);
      VdbeCoverage(v);
      sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CORRUPT, OE_Abort, 0, 
            "corrupt database", P4_STATIC);
      sqlite3VdbeJumpHere(v, i);
    }
  }
  /* pUpsert does not own pUpsertSrc - the outer INSERT statement does.  So
  ** we have to make a copy before passing it down into sqlite3Update() */
  pSrc = sqlite3SrcListDup(db, pUpsert->pUpsertSrc, 0);
  sqlite3Update(pParse, pSrc, pUpsert->pUpsertSet,
      pUpsert->pUpsertWhere, OE_Abort, 0, 0, pUpsert);
  pUpsert->pUpsertSet = 0;    /* Will have been deleted by sqlite3Update() */
  pUpsert->pUpsertWhere = 0;  /* Will have been deleted by sqlite3Update() */
  VdbeNoopComment((v, "End DO UPDATE of UPSERT"));
}

#endif /* SQLITE_OMIT_UPSERT */
Changes to src/vacuum.c.
35
36
37
38
39
40
41
42




43


44
45
46
47
48
49
50

  /* printf("SQL: [%s]\n", zSql); fflush(stdout); */
  rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;
  while( SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
    const char *zSubSql = (const char*)sqlite3_column_text(pStmt,0);
    assert( sqlite3_strnicmp(zSql,"SELECT",6)==0 );
    assert( sqlite3_strnicmp(zSubSql,"SELECT",6)!=0 || CORRUPT_DB );




    if( zSubSql && zSubSql[0]!='S' ){


      rc = execSql(db, pzErrMsg, zSubSql);
      if( rc!=SQLITE_OK ) break;
    }
  }
  assert( rc!=SQLITE_ROW );
  if( rc==SQLITE_DONE ) rc = SQLITE_OK;
  if( rc ){







|
>
>
>
>
|
>
>







35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

  /* printf("SQL: [%s]\n", zSql); fflush(stdout); */
  rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;
  while( SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
    const char *zSubSql = (const char*)sqlite3_column_text(pStmt,0);
    assert( sqlite3_strnicmp(zSql,"SELECT",6)==0 );
    /* The secondary SQL must be one of CREATE TABLE, CREATE INDEX,
    ** or INSERT.  Historically there have been attacks that first
    ** corrupt the sqlite_master.sql field with other kinds of statements
    ** then run VACUUM to get those statements to execute at inappropriate
    ** times. */
    if( zSubSql
     && (strncmp(zSubSql,"CRE",3)==0 || strncmp(zSubSql,"INS",3)==0)
    ){
      rc = execSql(db, pzErrMsg, zSubSql);
      if( rc!=SQLITE_OK ) break;
    }
  }
  assert( rc!=SQLITE_ROW );
  if( rc==SQLITE_DONE ) rc = SQLITE_OK;
  if( rc ){
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
      " WHERE type='table'AND name<>'sqlite_sequence'"
      " AND coalesce(rootpage,1)>0",
      zDbMain
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  rc = execSqlF(db, pzErrMsg,
      "SELECT sql FROM \"%w\".sqlite_master"
      " WHERE type='index' AND length(sql)>10",
      zDbMain
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  db->init.iDb = 0;

  /* Loop through the tables in the main database. For each, do
  ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy







|







255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
      " WHERE type='table'AND name<>'sqlite_sequence'"
      " AND coalesce(rootpage,1)>0",
      zDbMain
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  rc = execSqlF(db, pzErrMsg,
      "SELECT sql FROM \"%w\".sqlite_master"
      " WHERE type='index'",
      zDbMain
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  db->init.iDb = 0;

  /* Loop through the tables in the main database. For each, do
  ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy
Changes to src/vdbe.h.
193
194
195
196
197
198
199
200












201
202
203
204
205
206
207
#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
  void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N);
  void sqlite3VdbeVerifyNoResultRow(Vdbe *p);
#else
# define sqlite3VdbeVerifyNoMallocRequired(A,B)
# define sqlite3VdbeVerifyNoResultRow(A)
#endif
VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp, int iLineno);












void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*);
void sqlite3VdbeChangeOpcode(Vdbe*, u32 addr, u8);
void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2);
void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3);
void sqlite3VdbeChangeP5(Vdbe*, u16 P5);
void sqlite3VdbeJumpHere(Vdbe*, int addr);







|
>
>
>
>
>
>
>
>
>
>
>
>







193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
  void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N);
  void sqlite3VdbeVerifyNoResultRow(Vdbe *p);
#else
# define sqlite3VdbeVerifyNoMallocRequired(A,B)
# define sqlite3VdbeVerifyNoResultRow(A)
#endif
VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp,int iLineno);
#ifndef SQLITE_OMIT_EXPLAIN
  void sqlite3VdbeExplain(Parse*,u8,const char*,...);
  void sqlite3VdbeExplainPop(Parse*);
  int sqlite3VdbeExplainParent(Parse*);
# define ExplainQueryPlan(P)        sqlite3VdbeExplain P
# define ExplainQueryPlanPop(P)     sqlite3VdbeExplainPop(P)
# define ExplainQueryPlanParent(P)  sqlite3VdbeExplainParent(P)
#else
# define ExplainQueryPlan(P)
# define ExplainQueryPlanPop(P)
# define ExplainQueryPlanParent(P) 0
#endif
void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*);
void sqlite3VdbeChangeOpcode(Vdbe*, u32 addr, u8);
void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2);
void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3);
void sqlite3VdbeChangeP5(Vdbe*, u16 P5);
void sqlite3VdbeJumpHere(Vdbe*, int addr);
216
217
218
219
220
221
222



223
224
225
226
227
228
229
void sqlite3VdbeRunOnlyOnce(Vdbe*);
void sqlite3VdbeReusable(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
void sqlite3VdbeClearObject(sqlite3*,Vdbe*);
void sqlite3VdbeMakeReady(Vdbe*,Parse*);
int sqlite3VdbeFinalize(Vdbe*);
void sqlite3VdbeResolveLabel(Vdbe*, int);



int sqlite3VdbeCurrentAddr(Vdbe*);
#ifdef SQLITE_DEBUG
  int sqlite3VdbeAssertMayAbort(Vdbe *, int);
#endif
void sqlite3VdbeResetStepResult(Vdbe*);
void sqlite3VdbeRewind(Vdbe*);
int sqlite3VdbeReset(Vdbe*);







>
>
>







228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
void sqlite3VdbeRunOnlyOnce(Vdbe*);
void sqlite3VdbeReusable(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
void sqlite3VdbeClearObject(sqlite3*,Vdbe*);
void sqlite3VdbeMakeReady(Vdbe*,Parse*);
int sqlite3VdbeFinalize(Vdbe*);
void sqlite3VdbeResolveLabel(Vdbe*, int);
#ifdef SQLITE_COVERAGE_TEST
  int sqlite3VdbeLabelHasBeenResolved(Vdbe*,int);
#endif
int sqlite3VdbeCurrentAddr(Vdbe*);
#ifdef SQLITE_DEBUG
  int sqlite3VdbeAssertMayAbort(Vdbe *, int);
#endif
void sqlite3VdbeResetStepResult(Vdbe*);
void sqlite3VdbeRewind(Vdbe*);
int sqlite3VdbeReset(Vdbe*);
Changes to src/vdbeaux.c.
299
300
301
302
303
304
305











































306
307
308
309
310
311
312
  int p4type          /* P4 operand type */
){
  char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
  if( p4copy ) memcpy(p4copy, zP4, 8);
  return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
}












































/*
** Add an OP_ParseSchema opcode.  This routine is broken out from
** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
** as having been used.
**
** The zWhere string must have been obtained from sqlite3_malloc().
** This routine will take ownership of the allocated memory.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
  int p4type          /* P4 operand type */
){
  char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
  if( p4copy ) memcpy(p4copy, zP4, 8);
  return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
}

#ifndef SQLITE_OMIT_EXPLAIN
/*
** Return the address of the current EXPLAIN QUERY PLAN baseline.
** 0 means "none".
*/
int sqlite3VdbeExplainParent(Parse *pParse){
  VdbeOp *pOp;
  if( pParse->addrExplain==0 ) return 0;
  pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
  return pOp->p2;
}

/*
** Add a new OP_Explain opcode.
**
** If the bPush flag is true, then make this opcode the parent for
** subsequent Explains until sqlite3VdbeExplainPop() is called.
*/
void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
  if( pParse->explain==2 ){
    char *zMsg;
    Vdbe *v = pParse->pVdbe;
    va_list ap;
    int iThis;
    va_start(ap, zFmt);
    zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
    va_end(ap);
    v = pParse->pVdbe;
    iThis = v->nOp;
    sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
                      zMsg, P4_DYNAMIC);
    if( bPush) pParse->addrExplain = iThis;
  }
}

/*
** Pop the EXPLAIN QUERY PLAN stack one level.
*/
void sqlite3VdbeExplainPop(Parse *pParse){
  pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
}
#endif /* SQLITE_OMIT_EXPLAIN */

/*
** Add an OP_ParseSchema opcode.  This routine is broken out from
** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
** as having been used.
**
** The zWhere string must have been obtained from sqlite3_malloc().
** This routine will take ownership of the allocated memory.
388
389
390
391
392
393
394






395
396
397
398













399
400
401
402
403
404
405
void sqlite3VdbeResolveLabel(Vdbe *v, int x){
  Parse *p = v->pParse;
  int j = ADDR(x);
  assert( v->magic==VDBE_MAGIC_INIT );
  assert( j<p->nLabel );
  assert( j>=0 );
  if( p->aLabel ){






    p->aLabel[j] = v->nOp;
  }
}














/*
** Mark the VDBE as one that can only be run one time.
*/
void sqlite3VdbeRunOnlyOnce(Vdbe *p){
  p->runOnlyOnce = 1;
}








>
>
>
>
>
>




>
>
>
>
>
>
>
>
>
>
>
>
>







431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
void sqlite3VdbeResolveLabel(Vdbe *v, int x){
  Parse *p = v->pParse;
  int j = ADDR(x);
  assert( v->magic==VDBE_MAGIC_INIT );
  assert( j<p->nLabel );
  assert( j>=0 );
  if( p->aLabel ){
#ifdef SQLITE_DEBUG
    if( p->db->flags & SQLITE_VdbeAddopTrace ){
      printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
    }
#endif
    assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
    p->aLabel[j] = v->nOp;
  }
}

#ifdef SQLITE_COVERAGE_TEST
/*
** Return TRUE if and only if the label x has already been resolved.
** Return FALSE (zero) if label x is still unresolved.
**
** This routine is only used inside of testcase() macros, and so it
** only exists when measuring test coverage.
*/
int sqlite3VdbeLabelHasBeenResolved(Vdbe *v, int x){
  return v->pParse->aLabel && v->pParse->aLabel[ADDR(x)]>=0;
}
#endif /* SQLITE_COVERAGE_TEST */

/*
** Mark the VDBE as one that can only be run one time.
*/
void sqlite3VdbeRunOnlyOnce(Vdbe *p){
  p->runOnlyOnce = 1;
}

1622
1623
1624
1625
1626
1627
1628



1629
1630
1631
1632
1633
1634
1635
** running the code, it invokes the callback once for each instruction.
** This feature is used to implement "EXPLAIN".
**
** When p->explain==1, each instruction is listed.  When
** p->explain==2, only OP_Explain instructions are listed and these
** are shown in a different format.  p->explain==2 is used to implement
** EXPLAIN QUERY PLAN.



**
** When p->explain==1, first the main program is listed, then each of
** the trigger subprograms are listed one by one.
*/
int sqlite3VdbeList(
  Vdbe *p                   /* The VDBE */
){







>
>
>







1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
** running the code, it invokes the callback once for each instruction.
** This feature is used to implement "EXPLAIN".
**
** When p->explain==1, each instruction is listed.  When
** p->explain==2, only OP_Explain instructions are listed and these
** are shown in a different format.  p->explain==2 is used to implement
** EXPLAIN QUERY PLAN.
** 2018-04-24:  In p->explain==2 mode, the OP_Init opcodes of triggers
** are also shown, so that the boundaries between the main program and
** each trigger are clear.
**
** When p->explain==1, first the main program is listed, then each of
** the trigger subprograms are listed one by one.
*/
int sqlite3VdbeList(
  Vdbe *p                   /* The VDBE */
){
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
      apSub = (SubProgram **)pSub->z;
    }
    for(i=0; i<nSub; i++){
      nRow += apSub[i]->nOp;
    }
  }

  do{
    i = p->pc++;
    if( i>=nRow ){
      p->rc = SQLITE_OK;
      rc = SQLITE_DONE;
      break;
    }
    if( i<p->nOp ){







|







1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
      apSub = (SubProgram **)pSub->z;
    }
    for(i=0; i<nSub; i++){
      nRow += apSub[i]->nOp;
    }
  }

  while(1){  /* Loop exits via break */
    i = p->pc++;
    if( i>=nRow ){
      p->rc = SQLITE_OK;
      rc = SQLITE_DONE;
      break;
    }
    if( i<p->nOp ){
1730
1731
1732
1733
1734
1735
1736
1737



1738
1739
1740
1741
1742
1743
1744
        apSub = (SubProgram **)pSub->z;
        apSub[nSub++] = pOp->p4.pProgram;
        pSub->flags |= MEM_Blob;
        pSub->n = nSub*sizeof(SubProgram*);
        nRow += pOp->p4.pProgram->nOp;
      }
    }
  }while( p->explain==2 && pOp->opcode!=OP_Explain );




  if( rc==SQLITE_OK ){
    if( db->u1.isInterrupted ){
      p->rc = SQLITE_INTERRUPT;
      rc = SQLITE_ERROR;
      sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
    }else{







|
>
>
>







1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
        apSub = (SubProgram **)pSub->z;
        apSub[nSub++] = pOp->p4.pProgram;
        pSub->flags |= MEM_Blob;
        pSub->n = nSub*sizeof(SubProgram*);
        nRow += pOp->p4.pProgram->nOp;
      }
    }
    if( p->explain<2 ) break;
    if( pOp->opcode==OP_Explain ) break;
    if( pOp->opcode==OP_Init && p->pc>1 ) break;
  }

  if( rc==SQLITE_OK ){
    if( db->u1.isInterrupted ){
      p->rc = SQLITE_INTERRUPT;
      rc = SQLITE_ERROR;
      sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
    }else{
Changes to src/vdbemem.c.
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486





1487
1488
1489
1490
1491
1492
1493
    zVal = &pExpr->u.zToken[2];
    nVal = sqlite3Strlen30(zVal)-1;
    assert( zVal[nVal]=='\'' );
    sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
                         0, SQLITE_DYNAMIC);
  }
#endif

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  else if( op==TK_FUNCTION && pCtx!=0 ){
    rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
  }
#endif






  *ppVal = pVal;
  return rc;

no_mem:
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( pCtx==0 || pCtx->pParse->nErr==0 )







<





>
>
>
>
>







1474
1475
1476
1477
1478
1479
1480

1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
    zVal = &pExpr->u.zToken[2];
    nVal = sqlite3Strlen30(zVal)-1;
    assert( zVal[nVal]=='\'' );
    sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
                         0, SQLITE_DYNAMIC);
  }
#endif

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  else if( op==TK_FUNCTION && pCtx!=0 ){
    rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
  }
#endif
  else if( op==TK_TRUEFALSE ){
     pVal = valueNew(db, pCtx);
     pVal->flags = MEM_Int;
     pVal->u.i = pExpr->u.zToken[4]==0;
  }

  *ppVal = pVal;
  return rc;

no_mem:
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( pCtx==0 || pCtx->pParse->nErr==0 )
Changes to src/where.c.
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
    }
    if( pTerm->prereqRight & pNew->maskSelf ) continue;

    /* Do not allow the upper bound of a LIKE optimization range constraint
    ** to mix with a lower range bound from some other source */
    if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;

    /* Do not allow IS constraints from the WHERE clause to be used by the
    ** right table of a LEFT JOIN.  Only constraints in the ON clause are
    ** allowed */
    if( (pSrc->fg.jointype & JT_LEFT)!=0
     && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
     && (eOp & (WO_IS|WO_ISNULL))!=0
    ){
      testcase( eOp & WO_IS );
      testcase( eOp & WO_ISNULL );
      continue;
    }

    if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
      pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE;
    }else{
      pBuilder->bldFlags |= SQLITE_BLDF_INDEXED;







|




<

<
<







2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427

2428


2429
2430
2431
2432
2433
2434
2435
    }
    if( pTerm->prereqRight & pNew->maskSelf ) continue;

    /* Do not allow the upper bound of a LIKE optimization range constraint
    ** to mix with a lower range bound from some other source */
    if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;

    /* Do not allow constraints from the WHERE clause to be used by the
    ** right table of a LEFT JOIN.  Only constraints in the ON clause are
    ** allowed */
    if( (pSrc->fg.jointype & JT_LEFT)!=0
     && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)

    ){


      continue;
    }

    if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
      pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE;
    }else{
      pBuilder->bldFlags |= SQLITE_BLDF_INDEXED;
4591
4592
4593
4594
4595
4596
4597

4598
4599
4600
4601
4602
4603
4604
  /* Special case: No FROM clause
  */
  if( nTabList==0 ){
    if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
    if( wctrlFlags & WHERE_WANT_DISTINCT ){
      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
    }

  }else{
    /* Assign a bit from the bitmask to every term in the FROM clause.
    **
    ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
    **
    ** The rule of the previous sentence ensures thta if X is the bitmask for
    ** a table T, then X-1 is the bitmask for all other tables to the left of T.







>







4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
  /* Special case: No FROM clause
  */
  if( nTabList==0 ){
    if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
    if( wctrlFlags & WHERE_WANT_DISTINCT ){
      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
    }
    ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
  }else{
    /* Assign a bit from the bitmask to every term in the FROM clause.
    **
    ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
    **
    ** The rule of the previous sentence ensures thta if X is the bitmask for
    ** a table T, then X-1 is the bitmask for all other tables to the left of T.
Changes to src/wherecode.c.
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
  if( sqlite3ParseToplevel(pParse)->explain==2 )
#endif
  {
    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */
    int iId = pParse->iSelectId;  /* Select id (left-most output column) */
    int isSearch;                 /* True for a SEARCH. False for SCAN. */
    WhereLoop *pLoop;             /* The controlling WhereLoop object */
    u32 flags;                    /* Flags that describe this loop */
    char *zMsg;                   /* Text to add to EQP output */
    StrAccum str;                 /* EQP output string */
    char zBuf[100];               /* Initial space for EQP output string */

    pLoop = pLevel->pWLoop;
    flags = pLoop->wsFlags;
    if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;

    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
    sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
    if( pItem->pSelect ){
      sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId);
    }else{
      sqlite3XPrintf(&str, " TABLE %s", pItem->zName);
    }

    if( pItem->zAlias ){
      sqlite3XPrintf(&str, " AS %s", pItem->zAlias);
    }







<


















|







130
131
132
133
134
135
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
  if( sqlite3ParseToplevel(pParse)->explain==2 )
#endif
  {
    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */

    int isSearch;                 /* True for a SEARCH. False for SCAN. */
    WhereLoop *pLoop;             /* The controlling WhereLoop object */
    u32 flags;                    /* Flags that describe this loop */
    char *zMsg;                   /* Text to add to EQP output */
    StrAccum str;                 /* EQP output string */
    char zBuf[100];               /* Initial space for EQP output string */

    pLoop = pLevel->pWLoop;
    flags = pLoop->wsFlags;
    if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;

    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
    sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
    if( pItem->pSelect ){
      sqlite3XPrintf(&str, " SUBQUERY 0x%p", pItem->pSelect);
    }else{
      sqlite3XPrintf(&str, " TABLE %s", pItem->zName);
    }

    if( pItem->zAlias ){
      sqlite3XPrintf(&str, " AS %s", pItem->zAlias);
    }
210
211
212
213
214
215
216
217

218
219
220
221
222
223
224
    if( pLoop->nOut>=10 ){
      sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
    }else{
      sqlite3StrAccumAppend(&str, " (~1 row)", 9);
    }
#endif
    zMsg = sqlite3StrAccumFinish(&str);
    ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);

  }
  return ret;
}
#endif /* SQLITE_OMIT_EXPLAIN */

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
/*







|
>







209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    if( pLoop->nOut>=10 ){
      sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
    }else{
      sqlite3StrAccumAppend(&str, " (~1 row)", 9);
    }
#endif
    zMsg = sqlite3StrAccumFinish(&str);
    ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
                            pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
  }
  return ret;
}
#endif /* SQLITE_OMIT_EXPLAIN */

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
/*
1211
1212
1213
1214
1215
1216
1217



1218
1219
1220
1221
1222
1223
1224
  addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
  addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);

  /* If this is the right table of a LEFT OUTER JOIN, allocate and
  ** initialize a memory cell that records if this table matches any
  ** row of the left table of the join.
  */



  if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
    pLevel->iLeftJoin = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
    VdbeComment((v, "init LEFT JOIN no-match flag"));
  }

  /* Compute a safe address to jump to if we discover that the table for







>
>
>







1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
  addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
  addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);

  /* If this is the right table of a LEFT OUTER JOIN, allocate and
  ** initialize a memory cell that records if this table matches any
  ** row of the left table of the join.
  */
  assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
       || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
  );
  if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
    pLevel->iLeftJoin = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
    VdbeComment((v, "init LEFT JOIN no-match flag"));
  }

  /* Compute a safe address to jump to if we discover that the table for
1744
1745
1746
1747
1748
1749
1750






1751

1752
1753
1754
1755
1756
1757
1758
1759
1760
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
                           iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
    }

    /* If pIdx is an index on one or more expressions, then look through
    ** all the expressions in pWInfo and try to transform matching expressions
    ** into reference to index columns.






    */

    whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);


    /* Record the instruction used to terminate the loop. */
    if( pLoop->wsFlags & WHERE_ONEROW ){
      pLevel->op = OP_Noop;
    }else if( bRev ){
      pLevel->op = OP_Prev;
    }else{







>
>
>
>
>
>

>
|
|







1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
                           iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
    }

    /* If pIdx is an index on one or more expressions, then look through
    ** all the expressions in pWInfo and try to transform matching expressions
    ** into reference to index columns.
    **
    ** Do not do this for the RHS of a LEFT JOIN. This is because the 
    ** expression may be evaluated after OP_NullRow has been executed on
    ** the cursor. In this case it is important to do the full evaluation,
    ** as the result of the expression may not be NULL, even if all table
    ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
    */
    if( pLevel->iLeftJoin==0 ){
      whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
    }

    /* Record the instruction used to terminate the loop. */
    if( pLoop->wsFlags & WHERE_ONEROW ){
      pLevel->op = OP_Noop;
    }else if( bRev ){
      pLevel->op = OP_Prev;
    }else{
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927

1928
1929
1930
1931
1932
1933

1934


1935
1936
1937
1938
1939
1940
1941
    ** See ticket http://www.sqlite.org/src/info/f2369304e4
    */
    if( pWC->nTerm>1 ){
      int iTerm;
      for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
        Expr *pExpr = pWC->a[iTerm].pExpr;
        if( &pWC->a[iTerm] == pTerm ) continue;
        if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
        testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
        testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
        if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
        if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
        testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
        pExpr = sqlite3ExprDup(db, pExpr, 0);
        pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
      }
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr);
      }
    }

    /* Run a separate WHERE clause for each term of the OR clause.  After
    ** eliminating duplicates from other WHERE clauses, the action for each
    ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
    */
    wctrlFlags =  WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
        WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
        int jmp1 = 0;                   /* Address of jump operation */

        if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){


          pAndExpr->pLeft = pOrExpr;
          pOrExpr = pAndExpr;
        }
        /* Loop through table entries that match term pOrTerm. */
        WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                                      wctrlFlags, iCovCur);







<


















>






>
|
>
>







1912
1913
1914
1915
1916
1917
1918

1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
    ** See ticket http://www.sqlite.org/src/info/f2369304e4
    */
    if( pWC->nTerm>1 ){
      int iTerm;
      for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
        Expr *pExpr = pWC->a[iTerm].pExpr;
        if( &pWC->a[iTerm] == pTerm ) continue;

        testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
        testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
        if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
        if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
        testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
        pExpr = sqlite3ExprDup(db, pExpr, 0);
        pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
      }
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr);
      }
    }

    /* Run a separate WHERE clause for each term of the OR clause.  After
    ** eliminating duplicates from other WHERE clauses, the action for each
    ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
    */
    wctrlFlags =  WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
    ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
        WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
        int jmp1 = 0;                   /* Address of jump operation */
        assert( (pTabItem[0].fg.jointype & JT_LEFT)==0 
             || ExprHasProperty(pOrExpr, EP_FromJoin) 
        );
        if( pAndExpr ){
          pAndExpr->pLeft = pOrExpr;
          pOrExpr = pAndExpr;
        }
        /* Loop through table entries that match term pOrTerm. */
        WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                                      wctrlFlags, iCovCur);
2038
2039
2040
2041
2042
2043
2044

2045
2046
2047
2048
2049
2050
2051
          }

          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
      }
    }

    pLevel->u.pCovidx = pCov;
    if( pCov ) pLevel->iIdxCur = iCovCur;
    if( pAndExpr ){
      pAndExpr->pLeft = 0;
      sqlite3ExprDelete(db, pAndExpr);
    }
    sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));







>







2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
          }

          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
      }
    }
    ExplainQueryPlanPop(pParse);
    pLevel->u.pCovidx = pCov;
    if( pCov ) pLevel->iIdxCur = iCovCur;
    if( pAndExpr ){
      pAndExpr->pLeft = 0;
      sqlite3ExprDelete(db, pAndExpr);
    }
    sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
        testcase( pWInfo->untestedTerms==0
            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
        pWInfo->untestedTerms = 1;
        continue;
      }
      pE = pTerm->pExpr;
      assert( pE!=0 );
      if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
        continue;
      }
      
      if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
        iNext = 2;
        continue;
      }







|







2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
        testcase( pWInfo->untestedTerms==0
            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
        pWInfo->untestedTerms = 1;
        continue;
      }
      pE = pTerm->pExpr;
      assert( pE!=0 );
      if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
        continue;
      }
      
      if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
        iNext = 2;
        continue;
      }
Changes to src/whereexpr.c.
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
        testcase( idxNew==0 );
        exprAnalyze(pSrc, pWC, idxNew);
        pTerm = &pWC->a[idxTerm];
        markTermAsChild(pWC, idxNew, idxTerm);
      }else{
        sqlite3ExprListDelete(db, pList);
      }
      pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 3 */
    }
  }
}
#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */

/*
** We already know that pExpr is a binary operator where both operands are







<







814
815
816
817
818
819
820

821
822
823
824
825
826
827
        testcase( idxNew==0 );
        exprAnalyze(pSrc, pWC, idxNew);
        pTerm = &pWC->a[idxTerm];
        markTermAsChild(pWC, idxNew, idxTerm);
      }else{
        sqlite3ExprListDelete(db, pList);
      }

    }
  }
}
#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */

/*
** We already know that pExpr is a binary operator where both operands are
Changes to test/analyze3.test.
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

# The first of the following two SELECT statements visits 99 rows. So
# it is better to use the index. But the second visits every row in 
# the table (1000 in total) so it is better to do a full-table scan.
#
do_eqp_test analyze3-1.1.2 {
  SELECT sum(y) FROM t1 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
do_eqp_test analyze3-1.1.3 {
  SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 
} {0 0 0 {SCAN TABLE t1}}

# 2017-06-26:  Verify that the SQLITE_DBCONFIG_ENABLE_QPSG setting disables
# the use of bound parameters by STAT4
#
db cache flush
unset -nocomplain l
unset -nocomplain u
do_eqp_test analyze3-1.1.3.100 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
set l 200
set u 300
do_eqp_test analyze3-1.1.3.101 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
set l 0
set u 1100
do_eqp_test analyze3-1.1.3.102 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {0 0 0 {SCAN TABLE t1}}
db cache flush
sqlite3_db_config db ENABLE_QPSG 1
do_eqp_test analyze3-1.1.3.103 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
db cache flush
sqlite3_db_config db ENABLE_QPSG 0
do_eqp_test analyze3-1.1.3.104 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {0 0 0 {SCAN TABLE t1}}

do_test analyze3-1.1.4 {
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.1.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]







|


|









|




|




|




|




|







114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

# The first of the following two SELECT statements visits 99 rows. So
# it is better to use the index. But the second visits every row in 
# the table (1000 in total) so it is better to do a full-table scan.
#
do_eqp_test analyze3-1.1.2 {
  SELECT sum(y) FROM t1 WHERE x>200 AND x<300
} {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}
do_eqp_test analyze3-1.1.3 {
  SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 
} {SCAN TABLE t1}

# 2017-06-26:  Verify that the SQLITE_DBCONFIG_ENABLE_QPSG setting disables
# the use of bound parameters by STAT4
#
db cache flush
unset -nocomplain l
unset -nocomplain u
do_eqp_test analyze3-1.1.3.100 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}
set l 200
set u 300
do_eqp_test analyze3-1.1.3.101 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}
set l 0
set u 1100
do_eqp_test analyze3-1.1.3.102 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {SCAN TABLE t1}
db cache flush
sqlite3_db_config db ENABLE_QPSG 1
do_eqp_test analyze3-1.1.3.103 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}
db cache flush
sqlite3_db_config db ENABLE_QPSG 0
do_eqp_test analyze3-1.1.3.104 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {SCAN TABLE t1}

do_test analyze3-1.1.4 {
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.1.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
} {}
do_execsql_test analyze3-2.1.x {
  SELECT count(*) FROM t2 WHERE x>1 AND x<2;
  SELECT count(*) FROM t2 WHERE x>0 AND x<99;
} {200 990}
do_eqp_test analyze3-1.2.2 {
  SELECT sum(y) FROM t2 WHERE x>1 AND x<2
} {0 0 0 {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?)}}
do_eqp_test analyze3-1.2.3 {
  SELECT sum(y) FROM t2 WHERE x>0 AND x<99
} {0 0 0 {SCAN TABLE t2}}

do_test analyze3-1.2.4 {
  sf_execsql { SELECT sum(y) FROM t2 WHERE x>12 AND x<20 }
} {161 0 4760}
do_test analyze3-1.2.5 {
  set l [string range "12" 0 end]
  set u [string range "20" 0 end]







|


|







197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
} {}
do_execsql_test analyze3-2.1.x {
  SELECT count(*) FROM t2 WHERE x>1 AND x<2;
  SELECT count(*) FROM t2 WHERE x>0 AND x<99;
} {200 990}
do_eqp_test analyze3-1.2.2 {
  SELECT sum(y) FROM t2 WHERE x>1 AND x<2
} {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?)}
do_eqp_test analyze3-1.2.3 {
  SELECT sum(y) FROM t2 WHERE x>0 AND x<99
} {SCAN TABLE t2}

do_test analyze3-1.2.4 {
  sf_execsql { SELECT sum(y) FROM t2 WHERE x>12 AND x<20 }
} {161 0 4760}
do_test analyze3-1.2.5 {
  set l [string range "12" 0 end]
  set u [string range "20" 0 end]
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
} {}
do_execsql_test analyze3-1.3.x {
  SELECT count(*) FROM t3 WHERE x>200 AND x<300;
  SELECT count(*) FROM t3 WHERE x>0 AND x<1100
} {99 1000}
do_eqp_test analyze3-1.3.2 {
  SELECT sum(y) FROM t3 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?)}}
do_eqp_test analyze3-1.3.3 {
  SELECT sum(y) FROM t3 WHERE x>0 AND x<1100
} {0 0 0 {SCAN TABLE t3}}

do_test analyze3-1.3.4 {
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.3.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]







|


|







249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
} {}
do_execsql_test analyze3-1.3.x {
  SELECT count(*) FROM t3 WHERE x>200 AND x<300;
  SELECT count(*) FROM t3 WHERE x>0 AND x<1100
} {99 1000}
do_eqp_test analyze3-1.3.2 {
  SELECT sum(y) FROM t3 WHERE x>200 AND x<300
} {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?)}
do_eqp_test analyze3-1.3.3 {
  SELECT sum(y) FROM t3 WHERE x>0 AND x<1100
} {SCAN TABLE t3}

do_test analyze3-1.3.4 {
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.3.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    append t [lindex {a b c d e f g h i j} [expr ($i%10)]]
    execsql { INSERT INTO t1 VALUES($i, $t) }
  }
  execsql COMMIT
} {}
do_eqp_test analyze3-2.2 {
  SELECT count(a) FROM t1 WHERE b LIKE 'a%'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?)}}
do_eqp_test analyze3-2.3 {
  SELECT count(a) FROM t1 WHERE b LIKE '%a'
} {0 0 0 {SCAN TABLE t1}}

# Return the first argument if like_match_blobs is true (the default)
# or the second argument if not
#
proc ilmb {a b} {
  ifcapable like_match_blobs {return $a}
  return $b







|


|







304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    append t [lindex {a b c d e f g h i j} [expr ($i%10)]]
    execsql { INSERT INTO t1 VALUES($i, $t) }
  }
  execsql COMMIT
} {}
do_eqp_test analyze3-2.2 {
  SELECT count(a) FROM t1 WHERE b LIKE 'a%'
} {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?)}
do_eqp_test analyze3-2.3 {
  SELECT count(a) FROM t1 WHERE b LIKE '%a'
} {SCAN TABLE t1}

# Return the first argument if like_match_blobs is true (the default)
# or the second argument if not
#
proc ilmb {a b} {
  ifcapable like_match_blobs {return $a}
  return $b
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
  }
  execsql COMMIT
  execsql ANALYZE
} {}

do_eqp_test analyze3-6-3 {
  SELECT * FROM t1 WHERE a = 5 AND c = 13;
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (c=?)}}

do_eqp_test analyze3-6-2 {
  SELECT * FROM t1 WHERE a = 5 AND b > 'w' AND c = 13;
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (c=?)}}

#-----------------------------------------------------------------------------
# 2015-04-20.
# Memory leak in sqlite3Stat4ProbeFree().  (Discovered while fuzzing.)
#
do_execsql_test analyze-7.1 {
  DROP TABLE IF EXISTS t1;







|



|







694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
  }
  execsql COMMIT
  execsql ANALYZE
} {}

do_eqp_test analyze3-6-3 {
  SELECT * FROM t1 WHERE a = 5 AND c = 13;
} {SEARCH TABLE t1 USING INDEX i2 (c=?)}

do_eqp_test analyze3-6-2 {
  SELECT * FROM t1 WHERE a = 5 AND b > 'w' AND c = 13;
} {SEARCH TABLE t1 USING INDEX i2 (c=?)}

#-----------------------------------------------------------------------------
# 2015-04-20.
# Memory leak in sqlite3Stat4ProbeFree().  (Discovered while fuzzing.)
#
do_execsql_test analyze-7.1 {
  DROP TABLE IF EXISTS t1;
Changes to test/analyze4.test.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    INSERT INTO t1 SELECT a+32, b FROM t1;
    INSERT INTO t1 SELECT a+64, b FROM t1;
    ANALYZE;
  }

  # Should choose the t1a index since it is more specific than t1b.
  db eval {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=5 AND b IS NULL}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}

# Verify that the t1b index shows that it does not narrow down the
# search any at all.
#
do_test analyze4-1.1 {
  db eval {
    SELECT idx, stat FROM sqlite_stat1 WHERE tbl='t1' ORDER BY idx;







|







34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    INSERT INTO t1 SELECT a+32, b FROM t1;
    INSERT INTO t1 SELECT a+64, b FROM t1;
    ANALYZE;
  }

  # Should choose the t1a index since it is more specific than t1b.
  db eval {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=5 AND b IS NULL}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}

# Verify that the t1b index shows that it does not narrow down the
# search any at all.
#
do_test analyze4-1.1 {
  db eval {
    SELECT idx, stat FROM sqlite_stat1 WHERE tbl='t1' ORDER BY idx;
Changes to test/analyze6.test.
57
58
59
60
61
62
63
64
65
66
67
68
69
70



71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# The lowest cost plan is to scan CAT and for each integer there, do a single
# lookup of the first corresponding entry in EV then read off the equal values
# in EV.  (Prior to the 2011-03-04 enhancement to where.c, this query would
# have used EV for the outer loop instead of CAT - which was about 3x slower.)
#
do_test analyze6-1.1 {
  eqp {SELECT count(*) FROM ev, cat WHERE x=y}
} {0 0 1 {SCAN TABLE cat USING COVERING INDEX catx} 0 1 0 {SEARCH TABLE ev USING COVERING INDEX evy (y=?)}}

# The same plan is chosen regardless of the order of the tables in the
# FROM clause.
#
do_test analyze6-1.2 {
  eqp {SELECT count(*) FROM cat, ev WHERE x=y}



} {0 0 0 {SCAN TABLE cat USING COVERING INDEX catx} 0 1 1 {SEARCH TABLE ev USING COVERING INDEX evy (y=?)}}



# Ticket [83ea97620bd3101645138b7b0e71c12c5498fe3d] 2011-03-30
# If ANALYZE is run on an empty table, make sure indices are used
# on the table.
#
do_test analyze6-2.1 {
  execsql {
    CREATE TABLE t201(x INTEGER PRIMARY KEY, y UNIQUE, z);
    CREATE INDEX t201z ON t201(z);
    ANALYZE;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?)}}
do_test analyze6-2.2 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
do_test analyze6-2.3 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)}}
do_test analyze6-2.4 {
  execsql {
    INSERT INTO t201 VALUES(1,2,3),(2,3,4),(3,4,5);
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?)}}
do_test analyze6-2.5 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
do_test analyze6-2.6 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)}}
do_test analyze6-2.7 {
  execsql {
    INSERT INTO t201 VALUES(4,5,7);
    INSERT INTO t201 SELECT x+100, y+100, z+100 FROM t201;
    INSERT INTO t201 SELECT x+200, y+200, z+200 FROM t201;
    INSERT INTO t201 SELECT x+400, y+400, z+400 FROM t201;
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?)}}
do_test analyze6-2.8 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
do_test analyze6-2.9 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)}}

finish_test







|




|
|
>
>
>
|
>













|


|


|






|


|


|









|


|


|


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# The lowest cost plan is to scan CAT and for each integer there, do a single
# lookup of the first corresponding entry in EV then read off the equal values
# in EV.  (Prior to the 2011-03-04 enhancement to where.c, this query would
# have used EV for the outer loop instead of CAT - which was about 3x slower.)
#
do_test analyze6-1.1 {
  eqp {SELECT count(*) FROM ev, cat WHERE x=y}
} {/*SCAN TABLE cat USING COVERING INDEX catx*SEARCH TABLE ev USING COVERING INDEX evy (y=?)*/}

# The same plan is chosen regardless of the order of the tables in the
# FROM clause.
#
do_eqp_test analyze6-1.2 {
  SELECT count(*) FROM cat, ev WHERE x=y
} {
  QUERY PLAN
  |--SCAN TABLE cat USING COVERING INDEX catx
  `--SEARCH TABLE ev USING COVERING INDEX evy (y=?)
}


# Ticket [83ea97620bd3101645138b7b0e71c12c5498fe3d] 2011-03-30
# If ANALYZE is run on an empty table, make sure indices are used
# on the table.
#
do_test analyze6-2.1 {
  execsql {
    CREATE TABLE t201(x INTEGER PRIMARY KEY, y UNIQUE, z);
    CREATE INDEX t201z ON t201(z);
    ANALYZE;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {/*SEARCH TABLE t201 USING INDEX t201z (z=?)*/}
do_test analyze6-2.2 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {/*SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)*/}
do_test analyze6-2.3 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {/*SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)*/}
do_test analyze6-2.4 {
  execsql {
    INSERT INTO t201 VALUES(1,2,3),(2,3,4),(3,4,5);
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {/*SEARCH TABLE t201 USING INDEX t201z (z=?)*/}
do_test analyze6-2.5 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {/*SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)*/}
do_test analyze6-2.6 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {/*SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)*/}
do_test analyze6-2.7 {
  execsql {
    INSERT INTO t201 VALUES(4,5,7);
    INSERT INTO t201 SELECT x+100, y+100, z+100 FROM t201;
    INSERT INTO t201 SELECT x+200, y+200, z+200 FROM t201;
    INSERT INTO t201 SELECT x+400, y+400, z+400 FROM t201;
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {/*SEARCH TABLE t201 USING INDEX t201z (z=?)*/}
do_test analyze6-2.8 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {/*SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)*/}
do_test analyze6-2.9 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {/*SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)*/}

finish_test
Changes to test/analyze7.test.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    CREATE INDEX t1b ON t1(b);
    CREATE INDEX t1cd ON t1(c,d);
    CREATE VIRTUAL TABLE nums USING wholenumber;
    INSERT INTO t1 SELECT value, value, value/100, value FROM nums
                    WHERE value BETWEEN 1 AND 256;
    EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;
  }
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test analyze7-1.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test analyze7-1.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}

# Run an analyze on one of the three indices.  Verify that this
# effects the row-count estimate on the one query that uses that
# one index.
#
do_test analyze7-2.0 {
  execsql {ANALYZE t1a;}
  db cache flush
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test analyze7-2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test analyze7-2.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}

# Verify that since the query planner now things that t1a is more
# selective than t1b, it prefers to use t1a.
#
do_test analyze7-2.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}

# Run an analysis on another of the three indices.  Verify  that this
# new analysis works and does not disrupt the previous analysis.
#
do_test analyze7-3.0 {
  execsql {ANALYZE t1cd;}
  db cache flush;
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test analyze7-3.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test analyze7-3.2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=?;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
ifcapable stat4||stat3 {
  # If ENABLE_STAT4 is defined, SQLite comes up with a different estimated
  # row count for (c=2) than it does for (c=?).
  do_test analyze7-3.2.2 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
} else {
  # If ENABLE_STAT4 is not defined, the expected row count for (c=2) is the
  # same as that for (c=?).
  do_test analyze7-3.2.3 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
}
do_test analyze7-3.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}

ifcapable {!stat4 && !stat3} {
  do_test analyze7-3.4 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND b=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
  do_test analyze7-3.5 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND c=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
}
do_test analyze7-3.6 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND d=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=? AND d=?)}}

finish_test







|


|


|









|


|


|






|








|


|


|





|





|



|




|


|



|


33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    CREATE INDEX t1b ON t1(b);
    CREATE INDEX t1cd ON t1(c,d);
    CREATE VIRTUAL TABLE nums USING wholenumber;
    INSERT INTO t1 SELECT value, value, value/100, value FROM nums
                    WHERE value BETWEEN 1 AND 256;
    EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;
  }
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test analyze7-1.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/}
do_test analyze7-1.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/}

# Run an analyze on one of the three indices.  Verify that this
# effects the row-count estimate on the one query that uses that
# one index.
#
do_test analyze7-2.0 {
  execsql {ANALYZE t1a;}
  db cache flush
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test analyze7-2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/}
do_test analyze7-2.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/}

# Verify that since the query planner now things that t1a is more
# selective than t1b, it prefers to use t1a.
#
do_test analyze7-2.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}

# Run an analysis on another of the three indices.  Verify  that this
# new analysis works and does not disrupt the previous analysis.
#
do_test analyze7-3.0 {
  execsql {ANALYZE t1cd;}
  db cache flush;
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test analyze7-3.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/}
do_test analyze7-3.2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=?;}
} {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/}
ifcapable stat4||stat3 {
  # If ENABLE_STAT4 is defined, SQLite comes up with a different estimated
  # row count for (c=2) than it does for (c=?).
  do_test analyze7-3.2.2 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/}
} else {
  # If ENABLE_STAT4 is not defined, the expected row count for (c=2) is the
  # same as that for (c=?).
  do_test analyze7-3.2.3 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/}
}
do_test analyze7-3.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}

ifcapable {!stat4 && !stat3} {
  do_test analyze7-3.4 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND b=123}
  } {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/}
  do_test analyze7-3.5 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND c=123}
  } {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
}
do_test analyze7-3.6 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND d=123 AND b=123}
} {/*SEARCH TABLE t1 USING INDEX t1cd (c=? AND d=?)*/}

finish_test
Changes to test/analyze8.test.
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# with a==100.  And so for those cases, choose the t1b index.
#
# Buf ro a==99 and a==101, there are far fewer rows so choose
# the t1a index.
#
do_test 1.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test 1.2 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 1.3 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 1.4 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test 1.5 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 1.6 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 2.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b BETWEEN 50 AND 54}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

# There are many more values of c between 0 and 100000 than there are
# between 800000 and 900000.  So t1c is more selective for the latter
# range.
# 
# Test 3.2 is a little unstable. It depends on the planner estimating
# that (b BETWEEN 30 AND 34) will match more rows than (c BETWEEN
# 800000 AND 900000). Which is a pretty close call (50 vs. 32), so
# the planner could get it wrong with an unlucky set of samples. This
# case happens to work, but others ("b BETWEEN 40 AND 44" for example) 
# will fail.
#
do_execsql_test 3.0 {
  SELECT count(*) FROM t1 WHERE b BETWEEN 30 AND 34;
  SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 100000;
  SELECT count(*) FROM t1 WHERE c BETWEEN 800000 AND 900000;
} {50 376 32}
do_test 3.1 {
  eqp {SELECT * FROM t1 WHERE b BETWEEN 30 AND 34 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}
do_test 3.2 {
  eqp {SELECT * FROM t1
       WHERE b BETWEEN 30 AND 34 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}
do_test 3.3 {
  eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 3.4 {
  eqp {SELECT * FROM t1
       WHERE a=100 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}

finish_test







|


|


|


|


|


|


|



















|



|


|



|


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# with a==100.  And so for those cases, choose the t1b index.
#
# Buf ro a==99 and a==101, there are far fewer rows so choose
# the t1a index.
#
do_test 1.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=55}
} {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/}
do_test 1.2 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=55}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test 1.3 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=55}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test 1.4 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=56}
} {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/}
do_test 1.5 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=56}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test 1.6 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=56}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test 2.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b BETWEEN 50 AND 54}
} {/*SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)*/}

# There are many more values of c between 0 and 100000 than there are
# between 800000 and 900000.  So t1c is more selective for the latter
# range.
# 
# Test 3.2 is a little unstable. It depends on the planner estimating
# that (b BETWEEN 30 AND 34) will match more rows than (c BETWEEN
# 800000 AND 900000). Which is a pretty close call (50 vs. 32), so
# the planner could get it wrong with an unlucky set of samples. This
# case happens to work, but others ("b BETWEEN 40 AND 44" for example) 
# will fail.
#
do_execsql_test 3.0 {
  SELECT count(*) FROM t1 WHERE b BETWEEN 30 AND 34;
  SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 100000;
  SELECT count(*) FROM t1 WHERE c BETWEEN 800000 AND 900000;
} {50 376 32}
do_test 3.1 {
  eqp {SELECT * FROM t1 WHERE b BETWEEN 30 AND 34 AND c BETWEEN 0 AND 100000}
} {/*SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)*/}
do_test 3.2 {
  eqp {SELECT * FROM t1
       WHERE b BETWEEN 30 AND 34 AND c BETWEEN 800000 AND 900000}
} {/*SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)*/}
do_test 3.3 {
  eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 0 AND 100000}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test 3.4 {
  eqp {SELECT * FROM t1
       WHERE a=100 AND c BETWEEN 800000 AND 900000}
} {/*SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)*/}

finish_test
Changes to test/analyze9.test.
983
984
985
986
987
988
989

990
991
992
993
994
995
996
997
} {/*USING INTEGER PRIMARY KEY*/}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 22.0 {
  CREATE TABLE t3(a, b, c, d, PRIMARY KEY(a, b)) WITHOUT ROWID;

}
do_execsql_test 22.1 {
  WITH r(x) AS (
    SELECT 1
    UNION ALL
    SELECT x+1 FROM r WHERE x<=100
  )








>
|







983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
} {/*USING INTEGER PRIMARY KEY*/}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 22.0 {
  CREATE TABLE t3(a, b, c, d, PRIMARY KEY(a, b)) WITHOUT ROWID;
  SELECT * FROM t3;
} {}
do_execsql_test 22.1 {
  WITH r(x) AS (
    SELECT 1
    UNION ALL
    SELECT x+1 FROM r WHERE x<=100
  )

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

do_eqp_test 23.1 {
  SELECT * FROM t4 WHERE 
    (e=1 AND b='xyz' AND c='zyx' AND a<'AEA') AND f<300
  -- Formerly used index i41.  But i41 is not a covering index whereas
  -- the PRIMARY KEY is a covering index, and so as of 2017-10-15, the
  -- PRIMARY KEY is preferred.
} {
  0 0 0 {SEARCH TABLE t4 USING PRIMARY KEY (c=? AND b=? AND a<?)}
}
do_eqp_test 23.2 {
  SELECT * FROM t4 WHERE 
    (e=1 AND b='xyz' AND c='zyx' AND a<'JJJ') AND f<300
} {
  0 0 0 {SEARCH TABLE t4 USING INDEX i42 (f<?)}
}

do_execsql_test 24.0 {
  CREATE TABLE t5(c, d, b, e, a, PRIMARY KEY(a, b, c)) WITHOUT ROWID;
  WITH data(a, b, c, d, e) AS (
    SELECT 'z', 'y', 0, 0, 0
    UNION ALL
    SELECT 







<
|
<



<
|
<







1052
1053
1054
1055
1056
1057
1058

1059

1060
1061
1062

1063

1064
1065
1066
1067
1068
1069
1070

do_eqp_test 23.1 {
  SELECT * FROM t4 WHERE 
    (e=1 AND b='xyz' AND c='zyx' AND a<'AEA') AND f<300
  -- Formerly used index i41.  But i41 is not a covering index whereas
  -- the PRIMARY KEY is a covering index, and so as of 2017-10-15, the
  -- PRIMARY KEY is preferred.

} {SEARCH TABLE t4 USING PRIMARY KEY (c=? AND b=? AND a<?)}

do_eqp_test 23.2 {
  SELECT * FROM t4 WHERE 
    (e=1 AND b='xyz' AND c='zyx' AND a<'JJJ') AND f<300

} {SEARCH TABLE t4 USING INDEX i42 (f<?)}


do_execsql_test 24.0 {
  CREATE TABLE t5(c, d, b, e, a, PRIMARY KEY(a, b, c)) WITHOUT ROWID;
  WITH data(a, b, c, d, e) AS (
    SELECT 'z', 'y', 0, 0, 0
    UNION ALL
    SELECT 
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
    CREATE INDEX aa ON t6(a);
    CREATE INDEX bb ON t6(b);
    ANALYZE;
  }

  # Term (b<?) is estimated at 25%. Better than (a<30) but not as
  # good as (a<20).
  do_eqp_test 25.2.1 { SELECT * FROM t6 WHERE a<30 AND b<? } {
    0 0 0 {SEARCH TABLE t6 USING INDEX bb (b<?)}
  }
  do_eqp_test 25.2.2 { SELECT * FROM t6 WHERE a<20 AND b<? } {
    0 0 0 {SEARCH TABLE t6 USING INDEX aa (a<?)}
  }

  # Term (b BETWEEN ? AND ?) is estimated at 1/64.
  do_eqp_test 25.3.1 { 
    SELECT * FROM t6 WHERE a BETWEEN 5 AND 10 AND b BETWEEN ? AND ? 
  } {
    0 0 0 {SEARCH TABLE t6 USING INDEX bb (b>? AND b<?)}
  }
  
  # Term (b BETWEEN ? AND 60) is estimated to return roughly 15 rows -
  # 60 from (b<=60) multiplied by 0.25 for the b>=? term. Better than
  # (a<20) but not as good as (a<10).
  do_eqp_test 25.4.1 { 
    SELECT * FROM t6 WHERE a < 10 AND (b BETWEEN ? AND 60)
  } {
    0 0 0 {SEARCH TABLE t6 USING INDEX aa (a<?)}
  }
  do_eqp_test 25.4.2 { 
    SELECT * FROM t6 WHERE a < 20 AND (b BETWEEN ? AND 60)
  } {
    0 0 0 {SEARCH TABLE t6 USING INDEX bb (b>? AND b<?)}
  }
}

#-------------------------------------------------------------------------
# Check that a problem in they way stat4 data is used has been 
# resolved (see below).
#
reset_db







|
|
<
|
|
<




<
|
<






<
|
|


<
|
<







1101
1102
1103
1104
1105
1106
1107
1108
1109

1110
1111

1112
1113
1114
1115

1116

1117
1118
1119
1120
1121
1122

1123
1124
1125
1126

1127

1128
1129
1130
1131
1132
1133
1134
    CREATE INDEX aa ON t6(a);
    CREATE INDEX bb ON t6(b);
    ANALYZE;
  }

  # Term (b<?) is estimated at 25%. Better than (a<30) but not as
  # good as (a<20).
  do_eqp_test 25.2.1 { SELECT * FROM t6 WHERE a<30 AND b<? } \
    {SEARCH TABLE t6 USING INDEX bb (b<?)}

  do_eqp_test 25.2.2 { SELECT * FROM t6 WHERE a<20 AND b<? } \
    {SEARCH TABLE t6 USING INDEX aa (a<?)}


  # Term (b BETWEEN ? AND ?) is estimated at 1/64.
  do_eqp_test 25.3.1 { 
    SELECT * FROM t6 WHERE a BETWEEN 5 AND 10 AND b BETWEEN ? AND ? 

  } {SEARCH TABLE t6 USING INDEX bb (b>? AND b<?)}

  
  # Term (b BETWEEN ? AND 60) is estimated to return roughly 15 rows -
  # 60 from (b<=60) multiplied by 0.25 for the b>=? term. Better than
  # (a<20) but not as good as (a<10).
  do_eqp_test 25.4.1 { 
    SELECT * FROM t6 WHERE a < 10 AND (b BETWEEN ? AND 60)

  } {SEARCH TABLE t6 USING INDEX aa (a<?)}

  do_eqp_test 25.4.2 { 
    SELECT * FROM t6 WHERE a < 20 AND (b BETWEEN ? AND 60)

  } {SEARCH TABLE t6 USING INDEX bb (b>? AND b<?)}

}

#-------------------------------------------------------------------------
# Check that a problem in they way stat4 data is used has been 
# resolved (see below).
#
reset_db
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
# no more than that. Guessing less than 20 is therefore unreasonable.
#
# At one point though, due to a problem in whereKeyStats(), the planner was
# estimating that (x=10000 AND y<50) would match only 2 rows.
#
do_eqp_test 26.1.4 {
  SELECT * FROM t1 WHERE x = 10000 AND y < 50 AND z = 444;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX t1z (z=?)}
}


# This test - 26.2.* - tests that another manifestation of the same problem
# is no longer present in the library. Assuming:
# 
#   CREATE INDEX t1xy ON t1(x, y)
#







<
|
<







1176
1177
1178
1179
1180
1181
1182

1183

1184
1185
1186
1187
1188
1189
1190
# no more than that. Guessing less than 20 is therefore unreasonable.
#
# At one point though, due to a problem in whereKeyStats(), the planner was
# estimating that (x=10000 AND y<50) would match only 2 rows.
#
do_eqp_test 26.1.4 {
  SELECT * FROM t1 WHERE x = 10000 AND y < 50 AND z = 444;

} {SEARCH TABLE t1 USING INDEX t1z (z=?)}



# This test - 26.2.* - tests that another manifestation of the same problem
# is no longer present in the library. Assuming:
# 
#   CREATE INDEX t1xy ON t1(x, y)
#
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
    UPDATE t1 SET z = (rowid / 95);
    ANALYZE;
  COMMIT;
}

do_eqp_test 26.2.2 {
  SELECT * FROM t1 WHERE x='B' AND y>25 AND z=?;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x=? AND y>?)}
}


finish_test







<
|
<



1225
1226
1227
1228
1229
1230
1231

1232

1233
1234
1235
    UPDATE t1 SET z = (rowid / 95);
    ANALYZE;
  COMMIT;
}

do_eqp_test 26.2.2 {
  SELECT * FROM t1 WHERE x='B' AND y>25 AND z=?;

} {SEARCH TABLE t1 USING INDEX i1 (x=? AND y>?)}



finish_test
Changes to test/analyzeA.test.
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
  do_execsql_test 1.$tn.2.1 { SELECT count(*) FROM t1 WHERE b=31 } 1
  do_execsql_test 1.$tn.2.2 { SELECT count(*) FROM t1 WHERE c=0  } 49
  do_execsql_test 1.$tn.2.3 { SELECT count(*) FROM t1 WHERE b=125  } 49
  do_execsql_test 1.$tn.2.4 { SELECT count(*) FROM t1 WHERE c=16  } 1

  do_eqp_test 1.$tn.2.5 {
    SELECT * FROM t1 WHERE b = 31 AND c = 0;
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
  do_eqp_test 1.$tn.2.6 {
    SELECT * FROM t1 WHERE b = 125 AND c = 16;
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c=?)}}

  do_execsql_test 1.$tn.3.1 { 
    SELECT count(*) FROM t1 WHERE b BETWEEN 0 AND 50
  } {6}
  do_execsql_test 1.$tn.3.2 { 
    SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 50
  } {90}
  do_execsql_test 1.$tn.3.3 { 
    SELECT count(*) FROM t1 WHERE b BETWEEN 75 AND 125
  } {90}
  do_execsql_test 1.$tn.3.4 { 
    SELECT count(*) FROM t1 WHERE c BETWEEN 75 AND 125
  } {6}

  do_eqp_test 1.$tn.3.5 {
    SELECT * FROM t1 WHERE b BETWEEN 0 AND 50 AND c BETWEEN 0 AND 50
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

  do_eqp_test 1.$tn.3.6 {
    SELECT * FROM t1 WHERE b BETWEEN 75 AND 125 AND c BETWEEN 75 AND 125
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}

  do_eqp_test 1.$tn.3.7 {
    SELECT * FROM t1 WHERE b BETWEEN +0 AND +50 AND c BETWEEN +0 AND +50
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

  do_eqp_test 1.$tn.3.8 {
    SELECT * FROM t1
     WHERE b BETWEEN cast('0' AS int) AND cast('50.0' AS real)
       AND c BETWEEN cast('0' AS numeric) AND cast('50.0' AS real)
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

  do_eqp_test 1.$tn.3.9 {
    SELECT * FROM t1 WHERE b BETWEEN +75 AND +125 AND c BETWEEN +75 AND +125
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}

  do_eqp_test 1.$tn.3.10 {
    SELECT * FROM t1
     WHERE b BETWEEN cast('75' AS int) AND cast('125.0' AS real)
       AND c BETWEEN cast('75' AS numeric) AND cast('125.0' AS real)
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}
}

finish_test







|


|
















|



|



|





|



|





|



132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
  do_execsql_test 1.$tn.2.1 { SELECT count(*) FROM t1 WHERE b=31 } 1
  do_execsql_test 1.$tn.2.2 { SELECT count(*) FROM t1 WHERE c=0  } 49
  do_execsql_test 1.$tn.2.3 { SELECT count(*) FROM t1 WHERE b=125  } 49
  do_execsql_test 1.$tn.2.4 { SELECT count(*) FROM t1 WHERE c=16  } 1

  do_eqp_test 1.$tn.2.5 {
    SELECT * FROM t1 WHERE b = 31 AND c = 0;
  } {SEARCH TABLE t1 USING INDEX t1b (b=?)}
  do_eqp_test 1.$tn.2.6 {
    SELECT * FROM t1 WHERE b = 125 AND c = 16;
  } {SEARCH TABLE t1 USING INDEX t1c (c=?)}

  do_execsql_test 1.$tn.3.1 { 
    SELECT count(*) FROM t1 WHERE b BETWEEN 0 AND 50
  } {6}
  do_execsql_test 1.$tn.3.2 { 
    SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 50
  } {90}
  do_execsql_test 1.$tn.3.3 { 
    SELECT count(*) FROM t1 WHERE b BETWEEN 75 AND 125
  } {90}
  do_execsql_test 1.$tn.3.4 { 
    SELECT count(*) FROM t1 WHERE c BETWEEN 75 AND 125
  } {6}

  do_eqp_test 1.$tn.3.5 {
    SELECT * FROM t1 WHERE b BETWEEN 0 AND 50 AND c BETWEEN 0 AND 50
  } {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}

  do_eqp_test 1.$tn.3.6 {
    SELECT * FROM t1 WHERE b BETWEEN 75 AND 125 AND c BETWEEN 75 AND 125
  } {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}

  do_eqp_test 1.$tn.3.7 {
    SELECT * FROM t1 WHERE b BETWEEN +0 AND +50 AND c BETWEEN +0 AND +50
  } {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}

  do_eqp_test 1.$tn.3.8 {
    SELECT * FROM t1
     WHERE b BETWEEN cast('0' AS int) AND cast('50.0' AS real)
       AND c BETWEEN cast('0' AS numeric) AND cast('50.0' AS real)
  } {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}

  do_eqp_test 1.$tn.3.9 {
    SELECT * FROM t1 WHERE b BETWEEN +75 AND +125 AND c BETWEEN +75 AND +125
  } {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}

  do_eqp_test 1.$tn.3.10 {
    SELECT * FROM t1
     WHERE b BETWEEN cast('75' AS int) AND cast('125.0' AS real)
       AND c BETWEEN cast('75' AS numeric) AND cast('125.0' AS real)
  } {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}
}

finish_test
Changes to test/analyzeD.test.
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
} {}

# With full ANALYZE data, SQLite sees that c=150 (5 rows) is better than
# a=3001 (7 rows).
#
do_eqp_test 1.2 {
  SELECT * FROM t1 WHERE a=3001 AND c=150;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX t1_c (c=?)}
}

do_test 1.3 {
  execsql { DELETE FROM sqlite_stat1 }
  db close
  sqlite3 db test.db
} {}

# Without stat1, because 3001 is larger than all samples in the stat4
# table, SQLite thinks that a=3001 matches just 1 row. So it (incorrectly)
# chooses it over the c=150 index (5 rows). Even with stat1 data, things
# worked this way before commit [e6f7f97dbc].
#
do_eqp_test 1.4 {
  SELECT * FROM t1 WHERE a=3001 AND c=150;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX t1_ab (a=?)}
}

do_test 1.5 {
  execsql { 
    UPDATE t1 SET a=13 WHERE a = 3001;
    ANALYZE;
  }
} {}

do_eqp_test 1.6 {
  SELECT * FROM t1 WHERE a=13 AND c=150;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX t1_c (c=?)}
}

do_test 1.7 {
  execsql { DELETE FROM sqlite_stat1 }
  db close
  sqlite3 db test.db
} {}

# Same test as 1.4, except this time the 7 rows that match the a=? condition 
# do not feature larger values than all rows in the stat4 table. So SQLite
# gets this right, even without stat1 data.
do_eqp_test 1.8 {
  SELECT * FROM t1 WHERE a=13 AND c=150;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX t1_c (c=?)}
}

finish_test







<
|
<














<
|
<










<
|
<












<
|
|
<

59
60
61
62
63
64
65

66

67
68
69
70
71
72
73
74
75
76
77
78
79
80

81

82
83
84
85
86
87
88
89
90
91

92

93
94
95
96
97
98
99
100
101
102
103
104

105
106

107
} {}

# With full ANALYZE data, SQLite sees that c=150 (5 rows) is better than
# a=3001 (7 rows).
#
do_eqp_test 1.2 {
  SELECT * FROM t1 WHERE a=3001 AND c=150;

} {SEARCH TABLE t1 USING INDEX t1_c (c=?)}


do_test 1.3 {
  execsql { DELETE FROM sqlite_stat1 }
  db close
  sqlite3 db test.db
} {}

# Without stat1, because 3001 is larger than all samples in the stat4
# table, SQLite thinks that a=3001 matches just 1 row. So it (incorrectly)
# chooses it over the c=150 index (5 rows). Even with stat1 data, things
# worked this way before commit [e6f7f97dbc].
#
do_eqp_test 1.4 {
  SELECT * FROM t1 WHERE a=3001 AND c=150;

} {SEARCH TABLE t1 USING INDEX t1_ab (a=?)}


do_test 1.5 {
  execsql { 
    UPDATE t1 SET a=13 WHERE a = 3001;
    ANALYZE;
  }
} {}

do_eqp_test 1.6 {
  SELECT * FROM t1 WHERE a=13 AND c=150;

} {SEARCH TABLE t1 USING INDEX t1_c (c=?)}


do_test 1.7 {
  execsql { DELETE FROM sqlite_stat1 }
  db close
  sqlite3 db test.db
} {}

# Same test as 1.4, except this time the 7 rows that match the a=? condition 
# do not feature larger values than all rows in the stat4 table. So SQLite
# gets this right, even without stat1 data.
do_eqp_test 1.8 {
  SELECT * FROM t1 WHERE a=13 AND c=150;

} {SEARCH TABLE t1 USING INDEX t1_c (c=?)}


finish_test
Changes to test/analyzeF.test.
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

  9  "x = str('19') AND y = str('4')" {t1y (y=?)}
  10 "x = str('4') AND y = str('19')" {t1y (y=?)}

  11 "x = nullif('19', 0) AND y = nullif('4', 0)" {t1y (y=?)}
  12 "x = nullif('4', 0) AND y = nullif('19', 0)" {t1y (y=?)}
} {
  set res "0 0 0 {SEARCH TABLE t1 USING INDEX $idx}"
  do_eqp_test 1.$tn "SELECT * FROM t1 WHERE $where" $res
}

# Test that functions that do not exist - "func()" - do not cause an error.
#
do_catchsql_test 2.1 {
  SELECT * FROM t1 WHERE x = substr('145', 2, 1) AND y = func(1, 2, 3)







|







58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

  9  "x = str('19') AND y = str('4')" {t1y (y=?)}
  10 "x = str('4') AND y = str('19')" {t1y (y=?)}

  11 "x = nullif('19', 0) AND y = nullif('4', 0)" {t1y (y=?)}
  12 "x = nullif('4', 0) AND y = nullif('19', 0)" {t1y (y=?)}
} {
  set res "SEARCH TABLE t1 USING INDEX $idx"
  do_eqp_test 1.$tn "SELECT * FROM t1 WHERE $where" $res
}

# Test that functions that do not exist - "func()" - do not cause an error.
#
do_catchsql_test 2.1 {
  SELECT * FROM t1 WHERE x = substr('145', 2, 1) AND y = func(1, 2, 3)
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
foreach {tn where idx} {
  1 "x = det4() AND y = det19()"     {t1x (x=?)}
  2 "x = det19() AND y = det4()"     {t1y (y=?)}

  3 "x = nondet4() AND y = nondet19()"     {t1y (y=?)}
  4 "x = nondet19() AND y = nondet4()"     {t1y (y=?)}
} {
  set res "0 0 0 {SEARCH TABLE t1 USING INDEX $idx}"
  do_eqp_test 3.$tn "SELECT * FROM t1 WHERE $where" $res
}


execsql { DELETE FROM t1 }

proc throw_error {err} { error $err }







|







88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
foreach {tn where idx} {
  1 "x = det4() AND y = det19()"     {t1x (x=?)}
  2 "x = det19() AND y = det4()"     {t1y (y=?)}

  3 "x = nondet4() AND y = nondet19()"     {t1y (y=?)}
  4 "x = nondet19() AND y = nondet4()"     {t1y (y=?)}
} {
  set res "SEARCH TABLE t1 USING INDEX $idx"
  do_eqp_test 3.$tn "SELECT * FROM t1 WHERE $where" $res
}


execsql { DELETE FROM t1 }

proc throw_error {err} { error $err }
Changes to test/autoinc.test.
671
672
673
674
675
676
677

678






679
680
  CREATE TABLE t10a(a INTEGER PRIMARY KEY AUTOINCREMENT, b UNIQUE);
  INSERT INTO t10a VALUES(888,9999);
  CREATE TABLE t10b(x INTEGER PRIMARY KEY AUTOINCREMENT, y UNIQUE);
  INSERT INTO t10b SELECT * FROM t10a;
  SELECT * FROM sqlite_sequence;
} {t10a 888 t10b 888}










finish_test







>
|
>
>
>
>
>
>


671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
  CREATE TABLE t10a(a INTEGER PRIMARY KEY AUTOINCREMENT, b UNIQUE);
  INSERT INTO t10a VALUES(888,9999);
  CREATE TABLE t10b(x INTEGER PRIMARY KEY AUTOINCREMENT, y UNIQUE);
  INSERT INTO t10b SELECT * FROM t10a;
  SELECT * FROM sqlite_sequence;
} {t10a 888 t10b 888}

# 2018-04-21 autoincrement does not cause problems for upsert
#
do_execsql_test autoinc-11.1 {
  CREATE TABLE t11(a INTEGER PRIMARY KEY AUTOINCREMENT,b UNIQUE);
  INSERT INTO t11(a,b) VALUES(2,3),(5,6),(4,3),(1,2)
    ON CONFLICT(b) DO UPDATE SET a=a+1000;
  SELECT seq FROM sqlite_sequence WHERE name='t11';
} {5}

finish_test
Changes to test/autoindex1.test.
173
174
175
176
177
178
179
180


181
182
183

184
185
186
187
188
189
190
191
192

193
194
195
196
197
198
199
200
201
202

203
204
205
206
207
208
209
210
211
212
213
214
#
do_execsql_test autoindex1-500 {
  CREATE TABLE t501(a INTEGER PRIMARY KEY, b);
  CREATE TABLE t502(x INTEGER PRIMARY KEY, y);
  INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t501',null,'1000000');
  INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t502',null,'1000');
  ANALYZE sqlite_master;
  EXPLAIN QUERY PLAN


  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=?);
} {

  0 0 0 {SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t502}
}
do_execsql_test autoindex1-501 {
  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {

  0 0 0 {SCAN TABLE t501} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SEARCH TABLE t502 USING AUTOMATIC COVERING INDEX (y=?)}
}
do_execsql_test autoindex1-502 {
  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a=123
     AND t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {

  0 0 0 {SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t502}
}


# The following code checks a performance regression reported on the
# mailing list on 2010-10-19.  The problem is that the nRowEst field
# of ephermeral tables was not being initialized correctly and so no
# automatic index was being created for the emphemeral table when it was
# used as part of a join.
#







<
>
>



>
|
|
|

|
<



>
|
|
|

|
<




>
|
|
|

<







173
174
175
176
177
178
179

180
181
182
183
184
185
186
187
188
189
190

191
192
193
194
195
196
197
198
199

200
201
202
203
204
205
206
207
208

209
210
211
212
213
214
215
#
do_execsql_test autoindex1-500 {
  CREATE TABLE t501(a INTEGER PRIMARY KEY, b);
  CREATE TABLE t502(x INTEGER PRIMARY KEY, y);
  INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t501',null,'1000000');
  INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t502',null,'1000');
  ANALYZE sqlite_master;

}
do_eqp_test autoindex1-500.1 {
  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=?);
} {
  QUERY PLAN
  |--SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?)
  `--LIST SUBQUERY
     `--SCAN TABLE t502
}
do_eqp_test autoindex1-501 {

  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {
  QUERY PLAN
  |--SCAN TABLE t501
  `--CORRELATED LIST SUBQUERY
     `--SEARCH TABLE t502 USING AUTOMATIC COVERING INDEX (y=?)
}
do_eqp_test autoindex1-502 {

  SELECT b FROM t501
   WHERE t501.a=123
     AND t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {
  QUERY PLAN
  |--SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?)
  `--CORRELATED LIST SUBQUERY
     `--SCAN TABLE t502
}


# The following code checks a performance regression reported on the
# mailing list on 2010-10-19.  The problem is that the nRowEst field
# of ephermeral tables was not being initialized correctly and so no
# automatic index was being created for the emphemeral table when it was
# used as part of a join.
#
253
254
255
256
257
258
259
260


261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276


277
278
279
280
281
282
283
284
285
286
287


288
289

290
291
292
293
294
295
296
297
298
              ON flock_owner (owner_change_date);
  CREATE INDEX fo_owner_person_id_index  
              ON flock_owner (owner_person_id);
  CREATE INDEX sheep_org_flock_index  
           ON sheep (originating_flock);
  CREATE INDEX sheep_reg_flock_index  
           ON sheep (registering_flock);
  EXPLAIN QUERY PLAN


  SELECT x.sheep_no, x.registering_flock, x.date_of_registration
   FROM sheep x LEFT JOIN
       (SELECT s.sheep_no, prev.flock_no, prev.owner_person_id,
       s.date_of_registration, prev.owner_change_date
       FROM sheep s JOIN flock_owner prev ON s.registering_flock =
   prev.flock_no
       AND (prev.owner_change_date <= s.date_of_registration || ' 00:00:00')
       WHERE NOT EXISTS
           (SELECT 'x' FROM flock_owner later
           WHERE prev.flock_no = later.flock_no
           AND later.owner_change_date > prev.owner_change_date
           AND later.owner_change_date <= s.date_of_registration||' 00:00:00')
       ) y ON x.sheep_no = y.sheep_no
   WHERE y.sheep_no IS NULL
   ORDER BY x.registering_flock;
} {


  1 0 0 {SCAN TABLE sheep AS s} 
  1 1 1 {SEARCH TABLE flock_owner AS prev USING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date<?)} 
  1 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2} 
  2 0 0 {SEARCH TABLE flock_owner AS later USING COVERING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date>? AND owner_change_date<?)} 
  0 0 0 {SCAN TABLE sheep AS x USING INDEX sheep_reg_flock_index} 
  0 1 1 {SEARCH SUBQUERY 1 AS y USING AUTOMATIC COVERING INDEX (sheep_no=?)}
}


do_execsql_test autoindex1-700 {
  CREATE TABLE t5(a, b, c);


  EXPLAIN QUERY PLAN SELECT a FROM t5 WHERE b=10 ORDER BY c;
} {

  0 0 0 {SCAN TABLE t5} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# The following checks a performance issue reported on the sqlite-dev
# mailing list on 2013-01-10
#
do_execsql_test autoindex1-800 {
  CREATE TABLE accounts(







<
>
>
















>
>
|
|
|
|
|
|





>
>
|

>
|
|







254
255
256
257
258
259
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
              ON flock_owner (owner_change_date);
  CREATE INDEX fo_owner_person_id_index  
              ON flock_owner (owner_person_id);
  CREATE INDEX sheep_org_flock_index  
           ON sheep (originating_flock);
  CREATE INDEX sheep_reg_flock_index  
           ON sheep (registering_flock);

}
do_eqp_test autoindex1-600a {
  SELECT x.sheep_no, x.registering_flock, x.date_of_registration
   FROM sheep x LEFT JOIN
       (SELECT s.sheep_no, prev.flock_no, prev.owner_person_id,
       s.date_of_registration, prev.owner_change_date
       FROM sheep s JOIN flock_owner prev ON s.registering_flock =
   prev.flock_no
       AND (prev.owner_change_date <= s.date_of_registration || ' 00:00:00')
       WHERE NOT EXISTS
           (SELECT 'x' FROM flock_owner later
           WHERE prev.flock_no = later.flock_no
           AND later.owner_change_date > prev.owner_change_date
           AND later.owner_change_date <= s.date_of_registration||' 00:00:00')
       ) y ON x.sheep_no = y.sheep_no
   WHERE y.sheep_no IS NULL
   ORDER BY x.registering_flock;
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  |--SCAN TABLE sheep AS s
  |  |--SEARCH TABLE flock_owner AS prev USING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date<?)
  |  `--CORRELATED SCALAR SUBQUERY
  |     `--SEARCH TABLE flock_owner AS later USING COVERING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date>? AND owner_change_date<?)
  |--SCAN TABLE sheep AS x USING INDEX sheep_reg_flock_index
  `--SEARCH SUBQUERY xxxxxx AS y USING AUTOMATIC COVERING INDEX (sheep_no=?)
}


do_execsql_test autoindex1-700 {
  CREATE TABLE t5(a, b, c);
}
do_eqp_test autoindex1-700a {
  SELECT a FROM t5 WHERE b=10 ORDER BY c;
} {
  QUERY PLAN
  |--SCAN TABLE t5
  `--USE TEMP B-TREE FOR ORDER BY
}

# The following checks a performance issue reported on the sqlite-dev
# mailing list on 2013-01-10
#
do_execsql_test autoindex1-800 {
  CREATE TABLE accounts(
Changes to test/autoindex3.test.
80
81
82
83
84
85
86

87
88
89
90
91
92
# on the basis that the real index "uab" must be better than the automatic
# index. This is not right - a skip-scan is not necessarily better than an
# automatic index scan.
#
do_eqp_test 220 {
  select count(*) from u, v where u.b = v.b and v.e > 34;
} {

  0 0 1 {SEARCH TABLE v USING INDEX ve (e>?)} 
  0 1 0 {SEARCH TABLE u USING AUTOMATIC COVERING INDEX (b=?)}
}


finish_test







>
|
|




80
81
82
83
84
85
86
87
88
89
90
91
92
93
# on the basis that the real index "uab" must be better than the automatic
# index. This is not right - a skip-scan is not necessarily better than an
# automatic index scan.
#
do_eqp_test 220 {
  select count(*) from u, v where u.b = v.b and v.e > 34;
} {
  QUERY PLAN
  |--SEARCH TABLE v USING INDEX ve (e>?)
  `--SEARCH TABLE u USING AUTOMATIC COVERING INDEX (b=?)
}


finish_test
Changes to test/autoindex5.test.
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
              AND debian_bugs.note = package_notes.id
              ORDER BY debian_bugs.bug;
} {}

# The following query should use an automatic index for the view
# in FROM clause of the subquery of the second result column.
#
do_execsql_test autoindex5-1.1 {
  EXPLAIN QUERY PLAN
  SELECT
    st.bug_name,
    (SELECT ALL debian_cve.bug FROM debian_cve
      WHERE debian_cve.bug_name = st.bug_name
      ORDER BY debian_cve.bug),
    sp.release
  FROM
     source_package_status AS st,
     source_packages AS sp,
     bugs
  WHERE
     sp.rowid = st.package
     AND st.bug_name = bugs.name
     AND ( st.bug_name LIKE 'CVE-%' OR st.bug_name LIKE 'TEMP-%' )
     AND ( sp.release = 'sid' OR sp.release = 'stretch' OR sp.release = 'jessie'
            OR sp.release = 'wheezy' OR sp.release = 'squeeze' )
  ORDER BY sp.name, st.bug_name, sp.release, sp.subrelease;
} {/SEARCH SUBQUERY 2 USING AUTOMATIC COVERING INDEX .bug_name=/}

#-------------------------------------------------------------------------
# Test that ticket [8a2adec1] has been fixed.
#
do_execsql_test 2.1 {
  CREATE TABLE one(o);
  INSERT INTO one DEFAULT VALUES;







|
<

















|







80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
              AND debian_bugs.note = package_notes.id
              ORDER BY debian_bugs.bug;
} {}

# The following query should use an automatic index for the view
# in FROM clause of the subquery of the second result column.
#
do_eqp_test autoindex5-1.1 {

  SELECT
    st.bug_name,
    (SELECT ALL debian_cve.bug FROM debian_cve
      WHERE debian_cve.bug_name = st.bug_name
      ORDER BY debian_cve.bug),
    sp.release
  FROM
     source_package_status AS st,
     source_packages AS sp,
     bugs
  WHERE
     sp.rowid = st.package
     AND st.bug_name = bugs.name
     AND ( st.bug_name LIKE 'CVE-%' OR st.bug_name LIKE 'TEMP-%' )
     AND ( sp.release = 'sid' OR sp.release = 'stretch' OR sp.release = 'jessie'
            OR sp.release = 'wheezy' OR sp.release = 'squeeze' )
  ORDER BY sp.name, st.bug_name, sp.release, sp.subrelease;
} {SEARCH SUBQUERY * USING AUTOMATIC COVERING INDEX (bug_name=?)}

#-------------------------------------------------------------------------
# Test that ticket [8a2adec1] has been fixed.
#
do_execsql_test 2.1 {
  CREATE TABLE one(o);
  INSERT INTO one DEFAULT VALUES;
Changes to test/bestindex1.test.
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE x1 USING tcl(vtab_command);
} {}

do_eqp_test 1.1 {
  SELECT * FROM x1 WHERE a = 'abc'
} {
  0 0 0 {SCAN TABLE x1 VIRTUAL TABLE INDEX 555:eq!}
}

do_eqp_test 1.2 {
  SELECT * FROM x1 WHERE a IN ('abc', 'def');
} {
  0 0 0 {SCAN TABLE x1 VIRTUAL TABLE INDEX 555:eq!}
  0 0 0 {EXECUTE LIST SUBQUERY 1}
}

#-------------------------------------------------------------------------
#
reset_db
register_tcl_module db

# Parameter $mode may be one of:







<
|
<



<
|
<
<







47
48
49
50
51
52
53

54

55
56
57

58


59
60
61
62
63
64
65

do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE x1 USING tcl(vtab_command);
} {}

do_eqp_test 1.1 {
  SELECT * FROM x1 WHERE a = 'abc'

} {SCAN TABLE x1 VIRTUAL TABLE INDEX 555:eq!}


do_eqp_test 1.2 {
  SELECT * FROM x1 WHERE a IN ('abc', 'def');

} {SCAN TABLE x1 VIRTUAL TABLE INDEX 555:eq!}



#-------------------------------------------------------------------------
#
reset_db
register_tcl_module db

# Parameter $mode may be one of:
141
142
143
144
145
146
147

148
149
150
151
152

153
154
155
156
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
  do_execsql_test 2.2.$mode.4 {SELECT rowid FROM t1 WHERE a='two'} {2} 

  do_execsql_test 2.2.$mode.5 {
    SELECT rowid FROM t1 WHERE a IN ('one', 'four') ORDER BY +rowid
  } {1 4} 

  set plan(use) {

    0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x WHERE a='%1%'}
    0 0 0 {EXECUTE LIST SUBQUERY 1}
    0 0 0 {USE TEMP B-TREE FOR ORDER BY}
  }
  set plan(omit) {

    0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x WHERE a='%1%'}
    0 0 0 {EXECUTE LIST SUBQUERY 1}
    0 0 0 {USE TEMP B-TREE FOR ORDER BY}
  }
  set plan(use2) {

    0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x}
    0 0 0 {EXECUTE LIST SUBQUERY 1}
    0 0 0 {USE TEMP B-TREE FOR ORDER BY}
  }

  do_eqp_test 2.2.$mode.6 { 
    SELECT rowid FROM t1 WHERE a IN ('one', 'four') ORDER BY +rowid
  } $plan($mode)
}

# 2016-04-09.
# Demonstrate a register overwrite problem when using two virtual
# tables where the outer loop uses the IN operator.
#
set G(collist) [list PrimaryKey flagA columnA]







>
|
<
|


>
|
<
|


>
|
<
|




|







136
137
138
139
140
141
142
143
144

145
146
147
148
149

150
151
152
153
154

155
156
157
158
159
160
161
162
163
164
165
166
167
  do_execsql_test 2.2.$mode.4 {SELECT rowid FROM t1 WHERE a='two'} {2} 

  do_execsql_test 2.2.$mode.5 {
    SELECT rowid FROM t1 WHERE a IN ('one', 'four') ORDER BY +rowid
  } {1 4} 

  set plan(use) {
    QUERY PLAN
    |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x WHERE a='%1%'

    `--USE TEMP B-TREE FOR ORDER BY
  }
  set plan(omit) {
    QUERY PLAN
    |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x WHERE a='%1%'

    `--USE TEMP B-TREE FOR ORDER BY
  }
  set plan(use2) {
    QUERY PLAN
    |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x

    `--USE TEMP B-TREE FOR ORDER BY
  }

  do_eqp_test 2.2.$mode.6 { 
    SELECT rowid FROM t1 WHERE a IN ('one', 'four') ORDER BY +rowid
  } [string map {"\n  " "\n"} $plan($mode)]
}

# 2016-04-09.
# Demonstrate a register overwrite problem when using two virtual
# tables where the outer loop uses the IN operator.
#
set G(collist) [list PrimaryKey flagA columnA]
Changes to test/bestindex2.test.
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114

115
116
117
118
119
120
121
122

123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
  CREATE VIRTUAL TABLE t1 USING tcl("vtab_cmd t1 {a b}");
  CREATE VIRTUAL TABLE t2 USING tcl("vtab_cmd t2 {c d}");
  CREATE VIRTUAL TABLE t3 USING tcl("vtab_cmd t3 {e f}");
}

do_eqp_test 1.1 {
  SELECT * FROM t1 WHERE a='abc'
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=?)}
}
do_eqp_test 1.2 {
  SELECT * FROM t1 WHERE a='abc' AND b='def'
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=? AND b=?)}
}
do_eqp_test 1.3 {
  SELECT * FROM t1 WHERE a='abc' AND a='def'
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=?)}
}
do_eqp_test 1.4 {
  SELECT * FROM t1,t2 WHERE c=a
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:} 
  0 1 1 {SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)}
}

do_eqp_test 1.5 {
  SELECT * FROM t1, t2 CROSS JOIN t3 WHERE t2.c = +t1.b AND t3.e=t2.d
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:} 
  0 1 1 {SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)} 
  0 2 2 {SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?)}
}

do_eqp_test 1.6 {
  SELECT * FROM t1, t2, t3 WHERE t2.c = +t1.b AND t3.e = t2.d
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:} 
  0 1 1 {SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)} 
  0 2 2 {SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?)}
}

do_execsql_test 1.7.1 {
  CREATE TABLE x1(a, b);
}
do_eqp_test 1.7.2 {
  SELECT * FROM x1 CROSS JOIN t1, t2, t3 
    WHERE t1.a = t2.c AND t1.b = t3.e
} {

  0 0 0 {SCAN TABLE x1} 
  0 1 1 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:}
  0 2 2 {SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)} 
  0 3 3 {SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?)}
}

finish_test







<
|
|


<
|
|


<
|
|



>
|
|





>
|
|
|





>
|
|
|









>
|
|
|
|



85
86
87
88
89
90
91

92
93
94
95

96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
  CREATE VIRTUAL TABLE t1 USING tcl("vtab_cmd t1 {a b}");
  CREATE VIRTUAL TABLE t2 USING tcl("vtab_cmd t2 {c d}");
  CREATE VIRTUAL TABLE t3 USING tcl("vtab_cmd t3 {e f}");
}

do_eqp_test 1.1 {
  SELECT * FROM t1 WHERE a='abc'

} {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=?)}

do_eqp_test 1.2 {
  SELECT * FROM t1 WHERE a='abc' AND b='def'

} {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=? AND b=?)}

do_eqp_test 1.3 {
  SELECT * FROM t1 WHERE a='abc' AND a='def'

} {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=?)}

do_eqp_test 1.4 {
  SELECT * FROM t1,t2 WHERE c=a
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:
  `--SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)
}

do_eqp_test 1.5 {
  SELECT * FROM t1, t2 CROSS JOIN t3 WHERE t2.c = +t1.b AND t3.e=t2.d
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:
  |--SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)
  `--SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?)
}

do_eqp_test 1.6 {
  SELECT * FROM t1, t2, t3 WHERE t2.c = +t1.b AND t3.e = t2.d
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:
  |--SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)
  `--SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?)
}

do_execsql_test 1.7.1 {
  CREATE TABLE x1(a, b);
}
do_eqp_test 1.7.2 {
  SELECT * FROM x1 CROSS JOIN t1, t2, t3 
    WHERE t1.a = t2.c AND t1.b = t3.e
} {
  QUERY PLAN
  |--SCAN TABLE x1
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:
  |--SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)
  `--SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?)
}

finish_test
Changes to test/bestindex3.test.
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94


95
96
97
98
99
100
101


102
103
104
105
106
107
108
109
110

do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE t1 USING tcl("vtab_cmd 0");
}

do_eqp_test 1.1 {
  SELECT * FROM t1 WHERE a LIKE 'abc';
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a LIKE ?}
}

do_eqp_test 1.2 {
  SELECT * FROM t1 WHERE a = 'abc';
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a EQ ?}
}

do_eqp_test 1.3 {
  SELECT * FROM t1 WHERE a = 'abc' OR b = 'def';
} {


  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a EQ ?}
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:b EQ ?}
}

do_eqp_test 1.4 {
  SELECT * FROM t1 WHERE a LIKE 'abc%' OR b = 'def';
} {


  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a LIKE ?}
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:b EQ ?}
}

do_execsql_test 1.5 {
  CREATE TABLE ttt(a, b, c);

  INSERT INTO ttt VALUES(1, 'two',   'three');
  INSERT INTO ttt VALUES(2, 'one',   'two');







<
|
<



<
|
<




>
>
|
|





>
>
|
|







75
76
77
78
79
80
81

82

83
84
85

86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE t1 USING tcl("vtab_cmd 0");
}

do_eqp_test 1.1 {
  SELECT * FROM t1 WHERE a LIKE 'abc';

} {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a LIKE ?}


do_eqp_test 1.2 {
  SELECT * FROM t1 WHERE a = 'abc';

} {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a EQ ?}


do_eqp_test 1.3 {
  SELECT * FROM t1 WHERE a = 'abc' OR b = 'def';
} {
  QUERY PLAN
  `--MULTI-INDEX OR
     |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a EQ ?
     `--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:b EQ ?
}

do_eqp_test 1.4 {
  SELECT * FROM t1 WHERE a LIKE 'abc%' OR b = 'def';
} {
  QUERY PLAN
  `--MULTI-INDEX OR
     |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a LIKE ?
     `--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:b EQ ?
}

do_execsql_test 1.5 {
  CREATE TABLE ttt(a, b, c);

  INSERT INTO ttt VALUES(1, 'two',   'three');
  INSERT INTO ttt VALUES(2, 'one',   'two');
143
144
145
146
147
148
149

150

151
152
153
154
155
156
157
158
159
160
    CREATE TABLE t2(x TEXT COLLATE nocase, y TEXT);
    CREATE INDEX t2x ON t2(x COLLATE nocase);
    CREATE INDEX t2y ON t2(y);
  }

  do_eqp_test 2.2 {
    SELECT * FROM t2 WHERE x LIKE 'abc%' OR y = 'def'

  } {

    0 0 0 {SEARCH TABLE t2 USING INDEX t2x (x>? AND x<?)}
    0 0 0 {SEARCH TABLE t2 USING INDEX t2y (y=?)}
  }
}

#-------------------------------------------------------------------------
# Test that any PRIMARY KEY within a sqlite3_decl_vtab() CREATE TABLE 
# statement is currently ignored.
#
proc vvv_command {method args} {







>
|
>
|
|
|







143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    CREATE TABLE t2(x TEXT COLLATE nocase, y TEXT);
    CREATE INDEX t2x ON t2(x COLLATE nocase);
    CREATE INDEX t2y ON t2(y);
  }

  do_eqp_test 2.2 {
    SELECT * FROM t2 WHERE x LIKE 'abc%' OR y = 'def'
  } [string map {"\n  " \n} {
    QUERY PLAN
    `--MULTI-INDEX OR
       |--SEARCH TABLE t2 USING INDEX t2x (x>? AND x<?)
       `--SEARCH TABLE t2 USING INDEX t2y (y=?)
  }]
}

#-------------------------------------------------------------------------
# Test that any PRIMARY KEY within a sqlite3_decl_vtab() CREATE TABLE 
# statement is currently ignored.
#
proc vvv_command {method args} {
Changes to test/bigmmap.test.
88
89
90
91
92
93
94

95
96
97
98
99
100
101
102
103
104
      ORDER BY b, c;
    " {}
    
    do_eqp_test 2.$i.$t.3 "
      SELECT * FROM t$t AS o WHERE 
        NOT EXISTS( SELECT * FROM t$t AS i WHERE a=o.a AND +b=o.b AND +c=o.c )
      ORDER BY b, c;

    " "
      0 0 0 {SCAN TABLE t$t AS o USING COVERING INDEX sqlite_autoindex_t${t}_1}
      0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 1}
      1 0 0 {SEARCH TABLE t$t AS i USING INTEGER PRIMARY KEY (rowid=?)}
    "
  }
}

finish_test








>
|
|
|
|
|




<
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

      ORDER BY b, c;
    " {}
    
    do_eqp_test 2.$i.$t.3 "
      SELECT * FROM t$t AS o WHERE 
        NOT EXISTS( SELECT * FROM t$t AS i WHERE a=o.a AND +b=o.b AND +c=o.c )
      ORDER BY b, c;
    " [string map {"\n    " "\n"} "
      QUERY PLAN
      |--SCAN TABLE t$t AS o USING COVERING INDEX sqlite_autoindex_t${t}_1
      `--CORRELATED SCALAR SUBQUERY
         `--SEARCH TABLE t$t AS i USING INTEGER PRIMARY KEY (rowid=?)
    "]
  }
}

finish_test

Changes to test/closure01.test.
268
269
270
271
272
273
274



















275
276
   WHERE root=1
     AND depth=3
     AND tablename='t1'
     AND idcolumn='x'
     AND parentcolumn='y'
  ORDER BY id;
} {8 9 10 11 12 13 14 15}




















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
   WHERE root=1
     AND depth=3
     AND tablename='t1'
     AND idcolumn='x'
     AND parentcolumn='y'
  ORDER BY id;
} {8 9 10 11 12 13 14 15}

#-------------------------------------------------------------------------
# At one point the following join query was causing a malfunction in
# xBestIndex.
#
do_execsql_test 6.0 {
  CREATE TABLE t4 (
    id INTEGER PRIMARY KEY, 
    name TEXT NOT NULL,
    parent_id INTEGER
  );
  CREATE VIRTUAL TABLE vt4 USING transitive_closure (
    idcolumn=id, parentcolumn=parent_id, tablename=t4
  );
}

do_execsql_test 6.1 {
  SELECT * FROM t4, vt4 WHERE t4.id = vt4.root AND vt4.id=4 AND vt4.depth=2;
}

finish_test
Changes to test/cost.test.
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59


60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103
104
105
106
107
108
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124


125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147


148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
  CREATE TABLE t4(c, d, e);
  CREATE UNIQUE INDEX i3 ON t3(b);
  CREATE UNIQUE INDEX i4 ON t4(c, d);
}
do_eqp_test 1.2 {
  SELECT e FROM t3, t4 WHERE b=c ORDER BY b, d;
} {

  0 0 0 {SCAN TABLE t3 USING COVERING INDEX i3} 
  0 1 1 {SEARCH TABLE t4 USING INDEX i4 (c=?)}
}


do_execsql_test 2.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
}

# It is better to use an index for ORDER BY than sort externally, even 
# if the index is a non-covering index.
do_eqp_test 2.2 {
  SELECT * FROM t1 ORDER BY a;
} {
  0 0 0 {SCAN TABLE t1 USING INDEX i1}
}

do_execsql_test 3.1 {
  CREATE TABLE t5(a INTEGER PRIMARY KEY,b,c,d,e,f,g);
  CREATE INDEX t5b ON t5(b);
  CREATE INDEX t5c ON t5(c);
  CREATE INDEX t5d ON t5(d);
  CREATE INDEX t5e ON t5(e);
  CREATE INDEX t5f ON t5(f);
  CREATE INDEX t5g ON t5(g);
}

do_eqp_test 3.2 {
  SELECT a FROM t5 
  WHERE b IS NULL OR c IS NULL OR d IS NULL 
  ORDER BY a;
} {


  0 0 0 {SEARCH TABLE t5 USING INDEX t5b (b=?)} 
  0 0 0 {SEARCH TABLE t5 USING INDEX t5c (c=?)} 
  0 0 0 {SEARCH TABLE t5 USING INDEX t5d (d=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

#-------------------------------------------------------------------------
# If there is no likelihood() or stat3 data, SQLite assumes that a closed
# range scan (e.g. one constrained by "col BETWEEN ? AND ?" constraint)
# visits 1/64 of the rows in a table.
#
# Note: 1/63 =~ 0.016
# Note: 1/65 =~ 0.015
#
reset_db
do_execsql_test 4.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
  CREATE INDEX i2 ON t1(b);
}
do_eqp_test 4.2 {
  SELECT * FROM t1 WHERE likelihood(a=?, 0.014) AND b BETWEEN ? AND ?;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}
}
do_eqp_test 4.3 {
  SELECT * FROM t1 WHERE likelihood(a=?, 0.016) AND b BETWEEN ? AND ?;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b>? AND b<?)}
}


#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 5.1 {
  CREATE TABLE t2(x, y);
  CREATE INDEX t2i1 ON t2(x);
}

do_eqp_test 5.2 {
  SELECT * FROM t2 ORDER BY x, y;
} {

  0 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  0 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY}
}

do_eqp_test 5.3 {
  SELECT * FROM t2 WHERE x BETWEEN ? AND ? ORDER BY rowid;
} {

  0 0 0 {SEARCH TABLE t2 USING INDEX t2i1 (x>? AND x<?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# where7.test, where8.test:
#
do_execsql_test 6.1 {
  CREATE TABLE t3(a INTEGER PRIMARY KEY, b, c);
  CREATE INDEX t3i1 ON t3(b);
  CREATE INDEX t3i2 ON t3(c);
}

do_eqp_test 6.2 {
  SELECT a FROM t3 WHERE (b BETWEEN 2 AND 4) OR c=100 ORDER BY a
} {


  0 0 0 {SEARCH TABLE t3 USING INDEX t3i1 (b>? AND b<?)} 
  0 0 0 {SEARCH TABLE t3 USING INDEX t3i2 (c=?)}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 7.1 {
  CREATE TABLE t1(a INTEGER PRIMARY KEY,b,c,d,e,f,g);
  CREATE INDEX t1b ON t1(b);
  CREATE INDEX t1c ON t1(c);
  CREATE INDEX t1d ON t1(d);
  CREATE INDEX t1e ON t1(e);
  CREATE INDEX t1f ON t1(f);
  CREATE INDEX t1g ON t1(g);
}

do_eqp_test 7.2 {
  SELECT a FROM t1
     WHERE (b>=950 AND b<=1010) OR (b IS NULL AND c NOT NULL)
  ORDER BY a
} {


  0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)} 
  0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

do_eqp_test 7.3 {
  SELECT rowid FROM t1
  WHERE (+b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
} {
  0 0 0 {SCAN TABLE t1}
}

do_eqp_test 7.4 {
  SELECT rowid FROM t1 WHERE (+b IS NULL AND c NOT NULL) OR c IS NULL
} {
  0 0 0 {SCAN TABLE t1}
}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 8.1 {
  CREATE TABLE composer(
    cid INTEGER PRIMARY KEY,







>
|
|












<
|
<
















>
>
|
|
|
|


















<
|
|


<
|
<













>
|
|





>
|
|













>
>
|
|
|




















>
>
|
|
|







<
|
<



<
|
<







20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83
84
85
86

87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162

163
164
165

166

167
168
169
170
171
172
173
  CREATE TABLE t4(c, d, e);
  CREATE UNIQUE INDEX i3 ON t3(b);
  CREATE UNIQUE INDEX i4 ON t4(c, d);
}
do_eqp_test 1.2 {
  SELECT e FROM t3, t4 WHERE b=c ORDER BY b, d;
} {
  QUERY PLAN
  |--SCAN TABLE t3 USING COVERING INDEX i3
  `--SEARCH TABLE t4 USING INDEX i4 (c=?)
}


do_execsql_test 2.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
}

# It is better to use an index for ORDER BY than sort externally, even 
# if the index is a non-covering index.
do_eqp_test 2.2 {
  SELECT * FROM t1 ORDER BY a;

} {SCAN TABLE t1 USING INDEX i1}


do_execsql_test 3.1 {
  CREATE TABLE t5(a INTEGER PRIMARY KEY,b,c,d,e,f,g);
  CREATE INDEX t5b ON t5(b);
  CREATE INDEX t5c ON t5(c);
  CREATE INDEX t5d ON t5(d);
  CREATE INDEX t5e ON t5(e);
  CREATE INDEX t5f ON t5(f);
  CREATE INDEX t5g ON t5(g);
}

do_eqp_test 3.2 {
  SELECT a FROM t5 
  WHERE b IS NULL OR c IS NULL OR d IS NULL 
  ORDER BY a;
} {
  QUERY PLAN
  |--MULTI-INDEX OR
  |  |--SEARCH TABLE t5 USING INDEX t5b (b=?)
  |  |--SEARCH TABLE t5 USING INDEX t5c (c=?)
  |  `--SEARCH TABLE t5 USING INDEX t5d (d=?)
  `--USE TEMP B-TREE FOR ORDER BY
}

#-------------------------------------------------------------------------
# If there is no likelihood() or stat3 data, SQLite assumes that a closed
# range scan (e.g. one constrained by "col BETWEEN ? AND ?" constraint)
# visits 1/64 of the rows in a table.
#
# Note: 1/63 =~ 0.016
# Note: 1/65 =~ 0.015
#
reset_db
do_execsql_test 4.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
  CREATE INDEX i2 ON t1(b);
}
do_eqp_test 4.2 {
  SELECT * FROM t1 WHERE likelihood(a=?, 0.014) AND b BETWEEN ? AND ?;

} {SEARCH TABLE t1 USING INDEX i1 (a=?)}

do_eqp_test 4.3 {
  SELECT * FROM t1 WHERE likelihood(a=?, 0.016) AND b BETWEEN ? AND ?;

} {SEARCH TABLE t1 USING INDEX i2 (b>? AND b<?)}



#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 5.1 {
  CREATE TABLE t2(x, y);
  CREATE INDEX t2i1 ON t2(x);
}

do_eqp_test 5.2 {
  SELECT * FROM t2 ORDER BY x, y;
} {
  QUERY PLAN
  |--SCAN TABLE t2 USING INDEX t2i1
  `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY
}

do_eqp_test 5.3 {
  SELECT * FROM t2 WHERE x BETWEEN ? AND ? ORDER BY rowid;
} {
  QUERY PLAN
  |--SEARCH TABLE t2 USING INDEX t2i1 (x>? AND x<?)
  `--USE TEMP B-TREE FOR ORDER BY
}

# where7.test, where8.test:
#
do_execsql_test 6.1 {
  CREATE TABLE t3(a INTEGER PRIMARY KEY, b, c);
  CREATE INDEX t3i1 ON t3(b);
  CREATE INDEX t3i2 ON t3(c);
}

do_eqp_test 6.2 {
  SELECT a FROM t3 WHERE (b BETWEEN 2 AND 4) OR c=100 ORDER BY a
} {
  QUERY PLAN
  |--MULTI-INDEX OR
  |  |--SEARCH TABLE t3 USING INDEX t3i1 (b>? AND b<?)
  |  `--SEARCH TABLE t3 USING INDEX t3i2 (c=?)
  `--USE TEMP B-TREE FOR ORDER BY
}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 7.1 {
  CREATE TABLE t1(a INTEGER PRIMARY KEY,b,c,d,e,f,g);
  CREATE INDEX t1b ON t1(b);
  CREATE INDEX t1c ON t1(c);
  CREATE INDEX t1d ON t1(d);
  CREATE INDEX t1e ON t1(e);
  CREATE INDEX t1f ON t1(f);
  CREATE INDEX t1g ON t1(g);
}

do_eqp_test 7.2 {
  SELECT a FROM t1
     WHERE (b>=950 AND b<=1010) OR (b IS NULL AND c NOT NULL)
  ORDER BY a
} {
  QUERY PLAN
  |--MULTI-INDEX OR
  |  |--SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)
  |  `--SEARCH TABLE t1 USING INDEX t1b (b=?)
  `--USE TEMP B-TREE FOR ORDER BY
}

do_eqp_test 7.3 {
  SELECT rowid FROM t1
  WHERE (+b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)

} {SCAN TABLE t1}


do_eqp_test 7.4 {
  SELECT rowid FROM t1 WHERE (+b IS NULL AND c NOT NULL) OR c IS NULL

} {SCAN TABLE t1}


#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 8.1 {
  CREATE TABLE composer(
    cid INTEGER PRIMARY KEY,
190
191
192
193
194
195
196

197
198
199
200
201
202
203
204
205
206
207
do_eqp_test 8.2 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE cname LIKE '%bach%'
     AND unlikely(composer.cid=track.cid)
     AND unlikely(album.aid=track.aid);
} {

  0 0 2 {SCAN TABLE track} 
  0 1 0 {SEARCH TABLE album USING INTEGER PRIMARY KEY (rowid=?)}
  0 2 1 {SEARCH TABLE composer USING INTEGER PRIMARY KEY (rowid=?)}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}

#-------------------------------------------------------------------------
#
do_execsql_test 9.1 {
  CREATE TABLE t1(
    a,b,c,d,e, f,g,h,i,j,







>
|
|
|
|







190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
do_eqp_test 8.2 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE cname LIKE '%bach%'
     AND unlikely(composer.cid=track.cid)
     AND unlikely(album.aid=track.aid);
} {
  QUERY PLAN
  |--SCAN TABLE track
  |--SEARCH TABLE album USING INTEGER PRIMARY KEY (rowid=?)
  |--SEARCH TABLE composer USING INTEGER PRIMARY KEY (rowid=?)
  `--USE TEMP B-TREE FOR DISTINCT
}

#-------------------------------------------------------------------------
#
do_execsql_test 9.1 {
  CREATE TABLE t1(
    a,b,c,d,e, f,g,h,i,j,
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
      execsql { INSERT INTO t6 VALUES($i%4, 'xyz', $i%8) }
    }
    execsql ANALYZE
  } {}

  do_eqp_test 10.3 {
    SELECT rowid FROM t6 WHERE a=0 AND c=0
  } {
    0 0 0 {SEARCH TABLE t6 USING INDEX t6i2 (c=?)}
  }

  do_eqp_test 10.4 {
    SELECT rowid FROM t6 WHERE a=0 AND b='xyz' AND c=0
  } {
    0 0 0 {SEARCH TABLE t6 USING INDEX t6i2 (c=?)}
  }

  do_eqp_test 10.5 {
    SELECT rowid FROM t6 WHERE likelihood(a=0, 0.1) AND c=0
  } {
    0 0 0 {SEARCH TABLE t6 USING INDEX t6i1 (a=?)}
  }

  do_eqp_test 10.6 {
    SELECT rowid FROM t6 WHERE likelihood(a=0, 0.1) AND b='xyz' AND c=0
  } {
    0 0 0 {SEARCH TABLE t6 USING INDEX t6i1 (a=? AND b=?)}
  }
}

finish_test







<
|
<



<
|
<



<
|
<



<
|
<



260
261
262
263
264
265
266

267

268
269
270

271

272
273
274

275

276
277
278

279

280
281
282
      execsql { INSERT INTO t6 VALUES($i%4, 'xyz', $i%8) }
    }
    execsql ANALYZE
  } {}

  do_eqp_test 10.3 {
    SELECT rowid FROM t6 WHERE a=0 AND c=0

  } {SEARCH TABLE t6 USING INDEX t6i2 (c=?)}


  do_eqp_test 10.4 {
    SELECT rowid FROM t6 WHERE a=0 AND b='xyz' AND c=0

  } {SEARCH TABLE t6 USING INDEX t6i2 (c=?)}


  do_eqp_test 10.5 {
    SELECT rowid FROM t6 WHERE likelihood(a=0, 0.1) AND c=0

  } {SEARCH TABLE t6 USING INDEX t6i1 (a=?)}


  do_eqp_test 10.6 {
    SELECT rowid FROM t6 WHERE likelihood(a=0, 0.1) AND b='xyz' AND c=0

  } {SEARCH TABLE t6 USING INDEX t6i1 (a=? AND b=?)}

}

finish_test
Changes to test/coveridxscan.test.
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

  CREATE TABLE t2(i INTEGER PRIMARY KEY, $cols);
  CREATE INDEX i2 ON t2($cols);
"

do_eqp_test 5.1.1 {
  SELECT * FROM t1 ORDER BY c1, c2;
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}
}

do_eqp_test 5.1.2 {
  SELECT * FROM t2 ORDER BY c1, c2;
} {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i2}
}



finish_test







<
|
<



<
|
<
<



105
106
107
108
109
110
111

112

113
114
115

116


117
118
119

  CREATE TABLE t2(i INTEGER PRIMARY KEY, $cols);
  CREATE INDEX i2 ON t2($cols);
"

do_eqp_test 5.1.1 {
  SELECT * FROM t1 ORDER BY c1, c2;

} {SCAN TABLE t1 USING COVERING INDEX i1}


do_eqp_test 5.1.2 {
  SELECT * FROM t2 ORDER BY c1, c2;

} {SCAN TABLE t2 USING COVERING INDEX i2}




finish_test
Changes to test/csv01.test.
136
137
138
139
140
141
142







143
144
      columns=4,
      schema=
      'CREATE TABLE t3(a,b,c,d) WITHOUT ROWID',
      testflags=1
      );
} {1 {vtable constructor failed: t5}}









finish_test







>
>
>
>
>
>
>


136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
      columns=4,
      schema=
      'CREATE TABLE t3(a,b,c,d) WITHOUT ROWID',
      testflags=1
      );
} {1 {vtable constructor failed: t5}}

# 2018-04-24
# Memory leak reported on the sqlite-users mailing list by Ralf Junker.
#
do_catchsql_test 4.3 {
  CREATE VIRTUAL TABLE IF NOT EXISTS temp.t1
  USING csv(filename='FileDoesNotExist.csv');
} {1 {cannot open 'FileDoesNotExist.csv' for reading}}

finish_test
Changes to test/delete.test.
398
399
400
401
402
403
404












405
406
407
do_execsql_test delete-10.1 {
  DELETE FROM t1 WHERE a='1' AND b='2';
}

do_execsql_test delete-10.2 {
  SELECT * FROM t1 WHERE a='1' AND b='2';
}














finish_test







>
>
>
>
>
>
>
>
>
>
>
>



398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
do_execsql_test delete-10.1 {
  DELETE FROM t1 WHERE a='1' AND b='2';
}

do_execsql_test delete-10.2 {
  SELECT * FROM t1 WHERE a='1' AND b='2';
}

do_execsql_test delete-11.0 {
  CREATE TABLE t11(a INTEGER PRIMARY KEY, b INT);
  WITH RECURSIVE cnt(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM cnt WHERE x<20)
    INSERT INTO t11(a,b) SELECT x, (x*17)%100 FROM cnt;
  SELECT * FROM t11;
} {1 17 2 34 3 51 4 68 5 85 6 2 7 19 8 36 9 53 10 70 11 87 12 4 13 21 14 38 15 55 16 72 17 89 18 6 19 23 20 40}
do_execsql_test delete-11.1 {
  DELETE FROM t11 AS xyz
   WHERE EXISTS(SELECT 1 FROM t11 WHERE t11.a>xyz.a AND t11.b<=xyz.b);
  SELECT * FROM t11;
} {6 2 12 4 18 6 19 23 20 40}


finish_test
Changes to test/e_createtable.test.
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
  1    "CREATE TABLE x1 AS SELECT * FROM t1"                     {a b c}
  2    "CREATE TABLE x1 AS SELECT c, b, a FROM t1"               {c b a}
  3    "CREATE TABLE x1 AS SELECT * FROM t1, t2"                 {a b c d e f}
  4    "CREATE TABLE x1 AS SELECT count(*) FROM t1"              {count(*)}
  5    "CREATE TABLE x1 AS SELECT count(a) AS a, max(b) FROM t1" {a max(b)}
}

# EVIDENCE-OF: R-37111-22855 The declared type of each column is
# determined by the expression affinity of the corresponding expression
# in the result set of the SELECT statement, as follows: Expression
# Affinity Column Declared Type TEXT "TEXT" NUMERIC "NUM" INTEGER "INT"
# REAL "REAL" NONE "" (empty string)
#
do_createtable_tests 2.2 -tclquery {
  table_column_decltypes x1
} -repair {
  catchsql { DROP TABLE x1 }
} {
  1    "CREATE TABLE x1 AS SELECT a FROM t1"     {""}







|



|







652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
  1    "CREATE TABLE x1 AS SELECT * FROM t1"                     {a b c}
  2    "CREATE TABLE x1 AS SELECT c, b, a FROM t1"               {c b a}
  3    "CREATE TABLE x1 AS SELECT * FROM t1, t2"                 {a b c d e f}
  4    "CREATE TABLE x1 AS SELECT count(*) FROM t1"              {count(*)}
  5    "CREATE TABLE x1 AS SELECT count(a) AS a, max(b) FROM t1" {a max(b)}
}

# EVIDENCE-OF: R-55407-45319 The declared type of each column is
# determined by the expression affinity of the corresponding expression
# in the result set of the SELECT statement, as follows: Expression
# Affinity Column Declared Type TEXT "TEXT" NUMERIC "NUM" INTEGER "INT"
# REAL "REAL" BLOB (a.k.a "NONE") "" (empty string)
#
do_createtable_tests 2.2 -tclquery {
  table_column_decltypes x1
} -repair {
  catchsql { DROP TABLE x1 }
} {
  1    "CREATE TABLE x1 AS SELECT a FROM t1"     {""}
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
#
do_execsql_test 4.10.0 {
  CREATE TABLE t1(a, b PRIMARY KEY);
  CREATE TABLE t2(a, b, c, UNIQUE(b, c));
}
do_createtable_tests 4.10 {
  1    "EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 5" 
       {0 0 0 {SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (b=?)}}

  2    "EXPLAIN QUERY PLAN SELECT * FROM t2 ORDER BY b, c"
       {0 0 0 {SCAN TABLE t2 USING INDEX sqlite_autoindex_t2_1}}

  3    "EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE b=10 AND c>10"
       {0 0 0 {SEARCH TABLE t2 USING INDEX sqlite_autoindex_t2_1 (b=? AND c>?)}}
}

# EVIDENCE-OF: R-45493-35653 A CHECK constraint may be attached to a
# column definition or specified as a table constraint. In practice it
# makes no difference.
#
#   All the tests that deal with CHECK constraints below (4.11.* and 







|


|


|







1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
#
do_execsql_test 4.10.0 {
  CREATE TABLE t1(a, b PRIMARY KEY);
  CREATE TABLE t2(a, b, c, UNIQUE(b, c));
}
do_createtable_tests 4.10 {
  1    "EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 5" 
       {/*SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (b=?)*/}

  2    "EXPLAIN QUERY PLAN SELECT * FROM t2 ORDER BY b, c"
       {/*SCAN TABLE t2 USING INDEX sqlite_autoindex_t2_1*/}

  3    "EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE b=10 AND c>10"
       {/*SEARCH TABLE t2 USING INDEX sqlite_autoindex_t2_1 (b=? AND c>?)*/}
}

# EVIDENCE-OF: R-45493-35653 A CHECK constraint may be attached to a
# column definition or specified as a table constraint. In practice it
# makes no difference.
#
#   All the tests that deal with CHECK constraints below (4.11.* and 
Changes to test/eqp.test.
39
40
41
42
43
44
45


46
47
48
49
50
51
52

53

54
55
56
57
58
59

60
61
62
63
64

65
66
67
68
69
70

71
72
73
74
75

76
77
78
79
80
81
82
83



84
85
86
87
88
89





90

91
92
93
94
95
96




97
98

99
100
101
102
103
104






105
106
107
108
109
110
111
112
113






114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137

138
139
140
141
142

143
144
145
146

147
148
149
150
151

152
153
154
155
156
157

158
159
160
161
162

163
164
165

166
167
168

169
170
171
172

173
174
175
176
177
178
179
180
181
182
183

184
185
186
187
188
189
190

191
192
193
194
195
196
197

198
199
200
201
202
203
204
205

206
207
208
209
210
211
212
213


214
215
216
217
218
219
220
221
222
223
224


225
226

227
228
229
230
231
232
233
234
235

236
237
238
239
240
241
242

243
244
245
246
247
248
249

250
251
252
253
254
255
256
257
258
259
260



261

262
263
264
265
266
267



268
269

270
271
272
273
274
275
276



277
278

279
280
281
282
283
284
285



286
287

288
289
290
291
292
293
294



295
296

297
298
299
300
301
302
303
304



305
306

307
308
309
310
311
312



313
314

315
316
317
318
319
320
321



322
323

324
325
326
327
328
329
330



331
332

333
334
335
336
337
338
339
340



341

342
343
344
345
346
347
348



349

350
351
352
353
354
355
356
357





358
359

360
361

362
363
364
365
366

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
  CREATE TABLE t2(a INT, b INT, ex TEXT);
  CREATE TABLE t3(a INT, b INT, ex TEXT);
}

do_eqp_test 1.2 {
  SELECT * FROM t2, t1 WHERE t1.a=1 OR t1.b=2;
} {


  0 0 1 {SEARCH TABLE t1 USING INDEX i1 (a=?)} 
  0 0 1 {SEARCH TABLE t1 USING INDEX i2 (b=?)} 
  0 1 0 {SCAN TABLE t2}
}
do_eqp_test 1.3 {
  SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=1 OR t1.b=2;
} {

  0 0 0 {SCAN TABLE t2}

  0 1 1 {SEARCH TABLE t1 USING INDEX i1 (a=?)} 
  0 1 1 {SEARCH TABLE t1 USING INDEX i2 (b=?)} 
}
do_eqp_test 1.3 {
  SELECT a FROM t1 ORDER BY a
} {

  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}
}
do_eqp_test 1.4 {
  SELECT a FROM t1 ORDER BY +a
} {

  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_eqp_test 1.5 {
  SELECT a FROM t1 WHERE a=4
} {

  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}
}
do_eqp_test 1.6 {
  SELECT DISTINCT count(*) FROM t3 GROUP BY a;
} {

  0 0 0 {SCAN TABLE t3}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}

do_eqp_test 1.7 {
  SELECT * FROM t3 JOIN (SELECT 1)
} {



  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}
do_eqp_test 1.8 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION SELECT 2)
} {





  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (UNION)}

  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}
do_eqp_test 1.9 {
  SELECT * FROM t3 JOIN (SELECT 1 EXCEPT SELECT a FROM t3 LIMIT 17)
} {




  3 0 0 {SCAN TABLE t3}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (EXCEPT)}

  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}
do_eqp_test 1.10 {
  SELECT * FROM t3 JOIN (SELECT 1 INTERSECT SELECT a FROM t3 LIMIT 17)
} {






  3 0 0 {SCAN TABLE t3}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (INTERSECT)}
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}

do_eqp_test 1.11 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION ALL SELECT a FROM t3 LIMIT 17)
} {






  3 0 0 {SCAN TABLE t3}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 (UNION ALL)}
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}

#-------------------------------------------------------------------------
# Test cases eqp-2.* - tests for single select statements.
#
drop_all_tables
do_execsql_test 2.1 {
  CREATE TABLE t1(x INT, y INT, ex TEXT);

  CREATE TABLE t2(x INT, y INT, ex TEXT);
  CREATE INDEX t2i1 ON t2(x);
}

det 2.2.1 "SELECT DISTINCT min(x), max(x) FROM t1 GROUP BY x ORDER BY 1" {

  0 0 0 {SCAN TABLE t1}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.2 "SELECT DISTINCT min(x), max(x) FROM t2 GROUP BY x ORDER BY 1" {

  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.3 "SELECT DISTINCT * FROM t1" {

  0 0 0 {SCAN TABLE t1}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}
det 2.2.4 "SELECT DISTINCT * FROM t1, t2" {

  0 0 0 {SCAN TABLE t1}
  0 1 1 {SCAN TABLE t2}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}
det 2.2.5 "SELECT DISTINCT * FROM t1, t2 ORDER BY t1.x" {

  0 0 0 {SCAN TABLE t1}
  0 1 1 {SCAN TABLE t2}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.6 "SELECT DISTINCT t2.x FROM t1, t2 ORDER BY t2.x" {

  0 0 1 {SCAN TABLE t2 USING COVERING INDEX t2i1}
  0 1 0 {SCAN TABLE t1}
}

det 2.3.1 "SELECT max(x) FROM t2" {

  0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2i1}
}
det 2.3.2 "SELECT min(x) FROM t2" {

  0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2i1}
}
det 2.3.3 "SELECT min(x), max(x) FROM t2" {

  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1}
}

det 2.4.1 "SELECT * FROM t1 WHERE rowid=?" {

  0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)}
}



#-------------------------------------------------------------------------
# Test cases eqp-3.* - tests for select statements that use sub-selects.
#
do_eqp_test 3.1.1 {
  SELECT (SELECT x FROM t1 AS sub) FROM t1;
} {

  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub}
}
do_eqp_test 3.1.2 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub);
} {

  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub}
}
do_eqp_test 3.1.3 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub ORDER BY y);
} {

  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub}
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_eqp_test 3.1.4 {
  SELECT * FROM t1 WHERE (SELECT x FROM t2 ORDER BY x);
} {

  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1}
}

det 3.2.1 {
  SELECT * FROM (SELECT * FROM t1 ORDER BY x LIMIT 10) ORDER BY y LIMIT 5
} {


  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  0 0 0 {SCAN SUBQUERY 1} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 3.2.2 {
  SELECT * FROM 
    (SELECT * FROM t1 ORDER BY x LIMIT 10) AS x1,
    (SELECT * FROM t2 ORDER BY x LIMIT 10) AS x2
  ORDER BY x2.y LIMIT 5
} {


  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY} 

  2 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  0 0 0 {SCAN SUBQUERY 1 AS x1} 
  0 1 1 {SCAN SUBQUERY 2 AS x2} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

det 3.3.1 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2)
} {

  0 0 0 {SCAN TABLE t1} 
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2}
}
det 3.3.2 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {

  0 0 0 {SCAN TABLE t1} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2}
}
det 3.3.3 {
  SELECT * FROM t1 WHERE EXISTS (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {

  0 0 0 {SCAN TABLE t1} 
  0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2}
}

#-------------------------------------------------------------------------
# Test cases eqp-4.* - tests for composite select statements.
#
do_eqp_test 4.1.1 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2
} {



  1 0 0 {SCAN TABLE t1} 

  2 0 0 {SCAN TABLE t2} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.1.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 2
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.1.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 2
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION)} 
}
do_eqp_test 4.1.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 2
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (INTERSECT)} 
}
do_eqp_test 4.1.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 2
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)} 
}

do_eqp_test 4.2.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 1
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.2.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 1
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  2 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION)} 
}
do_eqp_test 4.2.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 1
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  2 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (INTERSECT)} 
}
do_eqp_test 4.2.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 1
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  2 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)} 
}

do_eqp_test 4.3.1 {
  SELECT x FROM t1 UNION SELECT x FROM t2
} {



  1 0 0 {SCAN TABLE t1} 

  2 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)} 
}

do_eqp_test 4.3.2 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1
} {



  2 0 0 {SCAN TABLE t1} 

  3 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1} 
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (UNION)}
  4 0 0 {SCAN TABLE t1} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 4 USING TEMP B-TREE (UNION)}
}
do_eqp_test 4.3.3 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1 ORDER BY 1
} {





  2 0 0 {SCAN TABLE t1} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY} 

  3 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1} 
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 (UNION)} 

  4 0 0 {SCAN TABLE t1} 
  4 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 4 (UNION)}
}


#-------------------------------------------------------------------------
# This next block of tests verifies that the examples on the 
# lang_explain.html page are correct.
#
drop_all_tables

# EVIDENCE-OF: R-47779-47605 sqlite> EXPLAIN QUERY PLAN SELECT a, b
# FROM t1 WHERE a=1;
# 0|0|0|SCAN TABLE t1
#
do_execsql_test 5.1.0 { CREATE TABLE t1(a INT, b INT, ex TEXT) }
det 5.1.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SCAN TABLE t1}
}

# EVIDENCE-OF: R-55852-17599 sqlite> CREATE INDEX i1 ON t1(a);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING INDEX i1
#
do_execsql_test 5.2.0 { CREATE INDEX i1 ON t1(a) }
det 5.2.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}
}

# EVIDENCE-OF: R-21179-11011 sqlite> CREATE INDEX i2 ON t1(a, b);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
#
do_execsql_test 5.3.0 { CREATE INDEX i2 ON t1(a, b) }
det 5.3.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
}

# EVIDENCE-OF: R-09991-48941 sqlite> EXPLAIN QUERY PLAN
# SELECT t1.*, t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)
# 0|1|1|SCAN TABLE t2
#
do_execsql_test 5.4.0 {CREATE TABLE t2(c INT, d INT, ex TEXT)}
det 5.4.1 "SELECT t1.a, t2.c FROM t1, t2 WHERE t1.a=1 AND t1.b>2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)}
  0 1 1 {SCAN TABLE t2}
}

# EVIDENCE-OF: R-33626-61085 sqlite> EXPLAIN QUERY PLAN
# SELECT t1.*, t2.* FROM t2, t1 WHERE t1.a=1 AND t1.b>2;
# 0|0|1|SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)
# 0|1|0|SCAN TABLE t2
#
det 5.5 "SELECT t1.a, t2.c FROM t2, t1 WHERE t1.a=1 AND t1.b>2" {
  0 0 1 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)}
  0 1 0 {SCAN TABLE t2}
}

# EVIDENCE-OF: R-04002-25654 sqlite> CREATE INDEX i3 ON t1(b);
# sqlite> EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=1 OR b=2;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
# 0|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?)
#
do_execsql_test 5.5.0 {CREATE INDEX i3 ON t1(b)}
det 5.6.1 "SELECT a, b FROM t1 WHERE a=1 OR b=2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
  0 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?)}
}

# EVIDENCE-OF: R-24577-38891 sqlite> EXPLAIN QUERY PLAN
# SELECT c, d FROM t2 ORDER BY c;
# 0|0|0|SCAN TABLE t2
# 0|0|0|USE TEMP B-TREE FOR ORDER BY
#
det 5.7 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# EVIDENCE-OF: R-58157-12355 sqlite> CREATE INDEX i4 ON t2(c);
# sqlite> EXPLAIN QUERY PLAN SELECT c, d FROM t2 ORDER BY c;
# 0|0|0|SCAN TABLE t2 USING INDEX i4
#
do_execsql_test 5.8.0 {CREATE INDEX i4 ON t2(c)}
det 5.8.1 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2 USING INDEX i4}
}

# EVIDENCE-OF: R-13931-10421 sqlite> EXPLAIN QUERY PLAN SELECT
# (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2;
# 0|0|0|SCAN TABLE t2
# 0|0|0|EXECUTE SCALAR SUBQUERY 1
# 1|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
# 0|0|0|EXECUTE CORRELATED SCALAR SUBQUERY 2
# 2|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?)
#
det 5.9 {
  SELECT (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2
} {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i4}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
  0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2}
  2 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?)}
}

# EVIDENCE-OF: R-50892-45943 sqlite> EXPLAIN QUERY PLAN
# SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x;
# 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2
# 0|0|0|SCAN SUBQUERY 1
# 0|0|0|USE TEMP B-TREE FOR GROUP BY
#
det 5.10 {
  SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x
} {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2}
  0 0 0 {SCAN SUBQUERY 1}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
}

# EVIDENCE-OF: R-46219-33846 sqlite> EXPLAIN QUERY PLAN
# SELECT * FROM (SELECT * FROM t2 WHERE c=1), t1;
# 0|0|0|SEARCH TABLE t2 USING INDEX i4 (c=?)
# 0|1|1|SCAN TABLE t1
#
det 5.11 "SELECT a, b FROM (SELECT * FROM t2 WHERE c=1), t1" {
  0 0 0 {SEARCH TABLE t2 USING INDEX i4 (c=?)}
  0 1 1 {SCAN TABLE t1 USING COVERING INDEX i2}
}

# EVIDENCE-OF: R-37879-39987 sqlite> EXPLAIN QUERY PLAN
# SELECT a FROM t1 UNION SELECT c FROM t2;
# 1|0|0|SCAN TABLE t1
# 2|0|0|SCAN TABLE t2
# 0|0|0|COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)
#
det 5.12 "SELECT a,b FROM t1 UNION SELECT c, 99 FROM t2" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2}
  2 0 0 {SCAN TABLE t2 USING COVERING INDEX i4}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)}
}

# EVIDENCE-OF: R-44864-63011 sqlite> EXPLAIN QUERY PLAN
# SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1;
# 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2
# 2|0|0|SCAN TABLE t2 2|0|0|USE TEMP B-TREE FOR ORDER BY
# 0|0|0|COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)
#
det 5.13 "SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}
  2 0 0 {SCAN TABLE t2}
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)}
}


if {![nonzero_reserved_bytes]} {
  #-------------------------------------------------------------------------
  # The following tests - eqp-6.* - test that the example C code on 
  # documentation page eqp.html works. The C code is duplicated in test1.c
  # and wrapped in Tcl command [print_explain_query_plan] 
  #







>
>
|
|
|




>
|
>
|
|




>
|




>
|
|




>
|




>
|
|
|





>
>
>
|
|




>
>
>
>
>
|
>
|
|




>
>
>
>
|
|
>
|
|




>
>
>
>
>
>
|
<
|
|





>
>
>
>
>
>
|
<
|
|














>
|
|
|
|


>
|
|
|


>
|
|


>
|
|
|


>
|
|
|
|


>
|
|



>
|


>
|


>
|



>
|










>
|
|
|




>
|
|
|




>
|
|
|
|




>
|
|
|





>
>
|
|
|
|







>
>
|
|
>
|
|
|
|





>
|
|
|




>
|
|
|




>
|
|
|








>
>
>
|
>
|
<




>
>
>
|
|
>
|
|
<




>
>
>
|
|
>
|
|
<




>
>
>
|
|
>
|
|
<




>
>
>
|
|
>
|
|
<





>
>
>
|
|
>
|
<




>
>
>
|
|
>
|
|
<




>
>
>
|
|
>
|
|
<




>
>
>
|
|
>
|
|
<





>
>
>
|
>
|
<





>
>
>
|
>
|
|
|
<




>
>
>
>
>
|
|
>
|
<
>
|
|
<


>






|








|








|








|










|









|










|









|








|

















|













|









|











|











<







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

321
322
323
324
325
326
327
328
329
330
331
332

333
334
335
336
337
338
339
340
341
342
343
344

345
346
347
348
349
350
351
352
353
354
355
356

357
358
359
360
361
362
363
364
365
366
367
368

369
370
371
372
373
374
375
376
377
378
379
380

381
382
383
384
385
386
387
388
389
390
391
392

393
394
395
396
397
398
399
400
401
402
403
404

405
406
407
408
409
410
411
412
413
414
415
416

417
418
419
420
421
422
423
424
425
426
427

428
429
430
431
432
433
434
435
436
437
438
439
440

441
442
443
444
445
446
447
448
449
450
451
452
453

454
455
456

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

610
611
612
613
614
615
616
  CREATE TABLE t2(a INT, b INT, ex TEXT);
  CREATE TABLE t3(a INT, b INT, ex TEXT);
}

do_eqp_test 1.2 {
  SELECT * FROM t2, t1 WHERE t1.a=1 OR t1.b=2;
} {
  QUERY PLAN
  |--MULTI-INDEX OR
  |  |--SEARCH TABLE t1 USING INDEX i1 (a=?)
  |  `--SEARCH TABLE t1 USING INDEX i2 (b=?)
  `--SCAN TABLE t2
}
do_eqp_test 1.3 {
  SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=1 OR t1.b=2;
} {
  QUERY PLAN
  |--SCAN TABLE t2
  `--MULTI-INDEX OR
     |--SEARCH TABLE t1 USING INDEX i1 (a=?)
     `--SEARCH TABLE t1 USING INDEX i2 (b=?)
}
do_eqp_test 1.3 {
  SELECT a FROM t1 ORDER BY a
} {
  QUERY PLAN
  `--SCAN TABLE t1 USING COVERING INDEX i1
}
do_eqp_test 1.4 {
  SELECT a FROM t1 ORDER BY +a
} {
  QUERY PLAN
  |--SCAN TABLE t1 USING COVERING INDEX i1
  `--USE TEMP B-TREE FOR ORDER BY
}
do_eqp_test 1.5 {
  SELECT a FROM t1 WHERE a=4
} {
  QUERY PLAN
  `--SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)
}
do_eqp_test 1.6 {
  SELECT DISTINCT count(*) FROM t3 GROUP BY a;
} {
  QUERY PLAN
  |--SCAN TABLE t3
  |--USE TEMP B-TREE FOR GROUP BY
  `--USE TEMP B-TREE FOR DISTINCT
}

do_eqp_test 1.7 {
  SELECT * FROM t3 JOIN (SELECT 1)
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  `--SCAN CONSTANT ROW
  |--SCAN SUBQUERY xxxxxx
  `--SCAN TABLE t3
}
do_eqp_test 1.8 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION SELECT 2)
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  `--COMPOUND QUERY
  |     |--LEFT-MOST SUBQUERY
  |     |  `--SCAN CONSTANT ROW
  |     `--UNION USING TEMP B-TREE
  |        `--SCAN CONSTANT ROW
  |--SCAN SUBQUERY xxxxxx
  `--SCAN TABLE t3
}
do_eqp_test 1.9 {
  SELECT * FROM t3 JOIN (SELECT 1 EXCEPT SELECT a FROM t3 LIMIT 17)
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  `--COMPOUND QUERY
  |     |--LEFT-MOST SUBQUERY
  |     |  `--SCAN CONSTANT ROW
  |     `--EXCEPT USING TEMP B-TREE
  |        `--SCAN TABLE t3
  |--SCAN SUBQUERY xxxxxx
  `--SCAN TABLE t3
}
do_eqp_test 1.10 {
  SELECT * FROM t3 JOIN (SELECT 1 INTERSECT SELECT a FROM t3 LIMIT 17)
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  `--COMPOUND QUERY
  |     |--LEFT-MOST SUBQUERY
  |     |  `--SCAN CONSTANT ROW
  |     `--INTERSECT USING TEMP B-TREE
  |        `--SCAN TABLE t3

  |--SCAN SUBQUERY xxxxxx
  `--SCAN TABLE t3
}

do_eqp_test 1.11 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION ALL SELECT a FROM t3 LIMIT 17)
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  `--COMPOUND QUERY
  |     |--LEFT-MOST SUBQUERY
  |     |  `--SCAN CONSTANT ROW
  |     `--UNION ALL
  |        `--SCAN TABLE t3

  |--SCAN SUBQUERY xxxxxx
  `--SCAN TABLE t3
}

#-------------------------------------------------------------------------
# Test cases eqp-2.* - tests for single select statements.
#
drop_all_tables
do_execsql_test 2.1 {
  CREATE TABLE t1(x INT, y INT, ex TEXT);

  CREATE TABLE t2(x INT, y INT, ex TEXT);
  CREATE INDEX t2i1 ON t2(x);
}

det 2.2.1 "SELECT DISTINCT min(x), max(x) FROM t1 GROUP BY x ORDER BY 1" {
  QUERY PLAN
  |--SCAN TABLE t1
  |--USE TEMP B-TREE FOR GROUP BY
  |--USE TEMP B-TREE FOR DISTINCT
  `--USE TEMP B-TREE FOR ORDER BY
}
det 2.2.2 "SELECT DISTINCT min(x), max(x) FROM t2 GROUP BY x ORDER BY 1" {
  QUERY PLAN
  |--SCAN TABLE t2 USING COVERING INDEX t2i1
  |--USE TEMP B-TREE FOR DISTINCT
  `--USE TEMP B-TREE FOR ORDER BY
}
det 2.2.3 "SELECT DISTINCT * FROM t1" {
  QUERY PLAN
  |--SCAN TABLE t1
  `--USE TEMP B-TREE FOR DISTINCT
}
det 2.2.4 "SELECT DISTINCT * FROM t1, t2" {
  QUERY PLAN
  |--SCAN TABLE t1
  |--SCAN TABLE t2
  `--USE TEMP B-TREE FOR DISTINCT
}
det 2.2.5 "SELECT DISTINCT * FROM t1, t2 ORDER BY t1.x" {
  QUERY PLAN
  |--SCAN TABLE t1
  |--SCAN TABLE t2
  |--USE TEMP B-TREE FOR DISTINCT
  `--USE TEMP B-TREE FOR ORDER BY
}
det 2.2.6 "SELECT DISTINCT t2.x FROM t1, t2 ORDER BY t2.x" {
  QUERY PLAN
  |--SCAN TABLE t2 USING COVERING INDEX t2i1
  `--SCAN TABLE t1
}

det 2.3.1 "SELECT max(x) FROM t2" {
  QUERY PLAN
  `--SEARCH TABLE t2 USING COVERING INDEX t2i1
}
det 2.3.2 "SELECT min(x) FROM t2" {
  QUERY PLAN
  `--SEARCH TABLE t2 USING COVERING INDEX t2i1
}
det 2.3.3 "SELECT min(x), max(x) FROM t2" {
  QUERY PLAN
  `--SCAN TABLE t2 USING COVERING INDEX t2i1
}

det 2.4.1 "SELECT * FROM t1 WHERE rowid=?" {
  QUERY PLAN
  `--SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)
}



#-------------------------------------------------------------------------
# Test cases eqp-3.* - tests for select statements that use sub-selects.
#
do_eqp_test 3.1.1 {
  SELECT (SELECT x FROM t1 AS sub) FROM t1;
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCALAR SUBQUERY
     `--SCAN TABLE t1 AS sub
}
do_eqp_test 3.1.2 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub);
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCALAR SUBQUERY
     `--SCAN TABLE t1 AS sub
}
do_eqp_test 3.1.3 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub ORDER BY y);
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCALAR SUBQUERY
     |--SCAN TABLE t1 AS sub
     `--USE TEMP B-TREE FOR ORDER BY
}
do_eqp_test 3.1.4 {
  SELECT * FROM t1 WHERE (SELECT x FROM t2 ORDER BY x);
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCALAR SUBQUERY
     `--SCAN TABLE t2 USING COVERING INDEX t2i1
}

det 3.2.1 {
  SELECT * FROM (SELECT * FROM t1 ORDER BY x LIMIT 10) ORDER BY y LIMIT 5
} {
  QUERY PLAN
  |--CO-ROUTINE xxxxxx
  |  |--SCAN TABLE t1
  |  `--USE TEMP B-TREE FOR ORDER BY
  |--SCAN SUBQUERY xxxxxx
  `--USE TEMP B-TREE FOR ORDER BY
}
det 3.2.2 {
  SELECT * FROM 
    (SELECT * FROM t1 ORDER BY x LIMIT 10) AS x1,
    (SELECT * FROM t2 ORDER BY x LIMIT 10) AS x2
  ORDER BY x2.y LIMIT 5
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  |--SCAN TABLE t1
  |  `--USE TEMP B-TREE FOR ORDER BY
  |--MATERIALIZE xxxxxx
  |  `--SCAN TABLE t2 USING INDEX t2i1
  |--SCAN SUBQUERY xxxxxx AS x1
  |--SCAN SUBQUERY xxxxxx AS x2
  `--USE TEMP B-TREE FOR ORDER BY
}

det 3.3.1 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2)
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--LIST SUBQUERY
     `--SCAN TABLE t2
}
det 3.3.2 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--CORRELATED LIST SUBQUERY
     `--SCAN TABLE t2
}
det 3.3.3 {
  SELECT * FROM t1 WHERE EXISTS (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--CORRELATED SCALAR SUBQUERY
     `--SCAN TABLE t2
}

#-------------------------------------------------------------------------
# Test cases eqp-4.* - tests for composite select statements.
#
do_eqp_test 4.1.1 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2
} {
  QUERY PLAN
  `--COMPOUND QUERY
     |--LEFT-MOST SUBQUERY
     |  `--SCAN TABLE t1
     `--UNION ALL
        `--SCAN TABLE t2

}
do_eqp_test 4.1.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 2
} {
  QUERY PLAN
  `--MERGE (UNION ALL)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        |--SCAN TABLE t2
        `--USE TEMP B-TREE FOR ORDER BY

}
do_eqp_test 4.1.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 2
} {
  QUERY PLAN
  `--MERGE (UNION)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        |--SCAN TABLE t2
        `--USE TEMP B-TREE FOR ORDER BY

}
do_eqp_test 4.1.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 2
} {
  QUERY PLAN
  `--MERGE (INTERSECT)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        |--SCAN TABLE t2
        `--USE TEMP B-TREE FOR ORDER BY

}
do_eqp_test 4.1.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 2
} {
  QUERY PLAN
  `--MERGE (EXCEPT)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        |--SCAN TABLE t2
        `--USE TEMP B-TREE FOR ORDER BY

}

do_eqp_test 4.2.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 1
} {
  QUERY PLAN
  `--MERGE (UNION ALL)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        `--SCAN TABLE t2 USING INDEX t2i1

}
do_eqp_test 4.2.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 1
} {
  QUERY PLAN
  `--MERGE (UNION)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        |--SCAN TABLE t2 USING INDEX t2i1
        `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY

}
do_eqp_test 4.2.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 1
} {
  QUERY PLAN
  `--MERGE (INTERSECT)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        |--SCAN TABLE t2 USING INDEX t2i1
        `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY

}
do_eqp_test 4.2.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 1
} {
  QUERY PLAN
  `--MERGE (EXCEPT)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        |--SCAN TABLE t2 USING INDEX t2i1
        `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY

}

do_eqp_test 4.3.1 {
  SELECT x FROM t1 UNION SELECT x FROM t2
} {
  QUERY PLAN
  `--COMPOUND QUERY
     |--LEFT-MOST SUBQUERY
     |  `--SCAN TABLE t1
     `--UNION USING TEMP B-TREE
        `--SCAN TABLE t2 USING COVERING INDEX t2i1

}

do_eqp_test 4.3.2 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1
} {
  QUERY PLAN
  `--COMPOUND QUERY
     |--LEFT-MOST SUBQUERY
     |  `--SCAN TABLE t1
     |--UNION USING TEMP B-TREE
     |  `--SCAN TABLE t2 USING COVERING INDEX t2i1
     `--UNION USING TEMP B-TREE
        `--SCAN TABLE t1

}
do_eqp_test 4.3.3 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1 ORDER BY 1
} {
  QUERY PLAN
  `--MERGE (UNION)
     |--LEFT
     |  `--MERGE (UNION)
     |     |--LEFT
     |     |  |--SCAN TABLE t1
     |     |  `--USE TEMP B-TREE FOR ORDER BY
     |     `--RIGHT
     |        `--SCAN TABLE t2 USING COVERING INDEX t2i1

     `--RIGHT
        |--SCAN TABLE t1
        `--USE TEMP B-TREE FOR ORDER BY

}

if 0 {
#-------------------------------------------------------------------------
# This next block of tests verifies that the examples on the 
# lang_explain.html page are correct.
#
drop_all_tables

# XVIDENCE-OF: R-47779-47605 sqlite> EXPLAIN QUERY PLAN SELECT a, b
# FROM t1 WHERE a=1;
# 0|0|0|SCAN TABLE t1
#
do_execsql_test 5.1.0 { CREATE TABLE t1(a INT, b INT, ex TEXT) }
det 5.1.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SCAN TABLE t1}
}

# XVIDENCE-OF: R-55852-17599 sqlite> CREATE INDEX i1 ON t1(a);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING INDEX i1
#
do_execsql_test 5.2.0 { CREATE INDEX i1 ON t1(a) }
det 5.2.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}
}

# XVIDENCE-OF: R-21179-11011 sqlite> CREATE INDEX i2 ON t1(a, b);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
#
do_execsql_test 5.3.0 { CREATE INDEX i2 ON t1(a, b) }
det 5.3.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
}

# XVIDENCE-OF: R-09991-48941 sqlite> EXPLAIN QUERY PLAN
# SELECT t1.*, t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)
# 0|1|1|SCAN TABLE t2
#
do_execsql_test 5.4.0 {CREATE TABLE t2(c INT, d INT, ex TEXT)}
det 5.4.1 "SELECT t1.a, t2.c FROM t1, t2 WHERE t1.a=1 AND t1.b>2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)}
  0 1 1 {SCAN TABLE t2}
}

# XVIDENCE-OF: R-33626-61085 sqlite> EXPLAIN QUERY PLAN
# SELECT t1.*, t2.* FROM t2, t1 WHERE t1.a=1 AND t1.b>2;
# 0|0|1|SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)
# 0|1|0|SCAN TABLE t2
#
det 5.5 "SELECT t1.a, t2.c FROM t2, t1 WHERE t1.a=1 AND t1.b>2" {
  0 0 1 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)}
  0 1 0 {SCAN TABLE t2}
}

# XVIDENCE-OF: R-04002-25654 sqlite> CREATE INDEX i3 ON t1(b);
# sqlite> EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=1 OR b=2;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
# 0|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?)
#
do_execsql_test 5.5.0 {CREATE INDEX i3 ON t1(b)}
det 5.6.1 "SELECT a, b FROM t1 WHERE a=1 OR b=2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
  0 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?)}
}

# XVIDENCE-OF: R-24577-38891 sqlite> EXPLAIN QUERY PLAN
# SELECT c, d FROM t2 ORDER BY c;
# 0|0|0|SCAN TABLE t2
# 0|0|0|USE TEMP B-TREE FOR ORDER BY
#
det 5.7 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# XVIDENCE-OF: R-58157-12355 sqlite> CREATE INDEX i4 ON t2(c);
# sqlite> EXPLAIN QUERY PLAN SELECT c, d FROM t2 ORDER BY c;
# 0|0|0|SCAN TABLE t2 USING INDEX i4
#
do_execsql_test 5.8.0 {CREATE INDEX i4 ON t2(c)}
det 5.8.1 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2 USING INDEX i4}
}

# XVIDENCE-OF: R-13931-10421 sqlite> EXPLAIN QUERY PLAN SELECT
# (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2;
# 0|0|0|SCAN TABLE t2
# 0|0|0|EXECUTE SCALAR SUBQUERY 1
# 1|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
# 0|0|0|EXECUTE CORRELATED SCALAR SUBQUERY 2
# 2|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?)
#
det 5.9 {
  SELECT (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2
} {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i4}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
  0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2}
  2 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?)}
}

# XVIDENCE-OF: R-50892-45943 sqlite> EXPLAIN QUERY PLAN
# SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x;
# 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2
# 0|0|0|SCAN SUBQUERY 1
# 0|0|0|USE TEMP B-TREE FOR GROUP BY
#
det 5.10 {
  SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x
} {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2}
  0 0 0 {SCAN SUBQUERY 1}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
}

# XVIDENCE-OF: R-46219-33846 sqlite> EXPLAIN QUERY PLAN
# SELECT * FROM (SELECT * FROM t2 WHERE c=1), t1;
# 0|0|0|SEARCH TABLE t2 USING INDEX i4 (c=?)
# 0|1|1|SCAN TABLE t1
#
det 5.11 "SELECT a, b FROM (SELECT * FROM t2 WHERE c=1), t1" {
  0 0 0 {SEARCH TABLE t2 USING INDEX i4 (c=?)}
  0 1 1 {SCAN TABLE t1 USING COVERING INDEX i2}
}

# XVIDENCE-OF: R-37879-39987 sqlite> EXPLAIN QUERY PLAN
# SELECT a FROM t1 UNION SELECT c FROM t2;
# 1|0|0|SCAN TABLE t1
# 2|0|0|SCAN TABLE t2
# 0|0|0|COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)
#
det 5.12 "SELECT a,b FROM t1 UNION SELECT c, 99 FROM t2" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2}
  2 0 0 {SCAN TABLE t2 USING COVERING INDEX i4}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)}
}

# XVIDENCE-OF: R-44864-63011 sqlite> EXPLAIN QUERY PLAN
# SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1;
# 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2
# 2|0|0|SCAN TABLE t2 2|0|0|USE TEMP B-TREE FOR ORDER BY
# 0|0|0|COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)
#
det 5.13 "SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}
  2 0 0 {SCAN TABLE t2}
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)}
}


if {![nonzero_reserved_bytes]} {
  #-------------------------------------------------------------------------
  # The following tests - eqp-6.* - test that the example C code on 
  # documentation page eqp.html works. The C code is duplicated in test1.c
  # and wrapped in Tcl command [print_explain_query_plan] 
  #
553
554
555
556
557
558
559

560
561
562
563
564
565
566
567
568
569
570
571
572
573

574
575
576
577

578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

596
597
598
599

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614

615
616
617
618

619
620
621
622

623
624
625
626

627
628
629
630

631
632
633
634

635
636
637
638

639
640
641
642
643
644
645
646
647
648
  } [string trimleft {
1 0 0 SCAN TABLE t1 USING COVERING INDEX i2
2 0 0 SCAN TABLE t2
2 0 0 USE TEMP B-TREE FOR ORDER BY
0 0 0 COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)
}]
}


#-------------------------------------------------------------------------
# The following tests - eqp-7.* - test that queries that use the OP_Count
# optimization return something sensible with EQP.
#
drop_all_tables

do_execsql_test 7.0 {
  CREATE TABLE t1(a INT, b INT, ex CHAR(100));
  CREATE TABLE t2(a INT, b INT, ex CHAR(100));
  CREATE INDEX i1 ON t2(a);
}

det 7.1 "SELECT count(*) FROM t1" {

  0 0 0 {SCAN TABLE t1}
}

det 7.2 "SELECT count(*) FROM t2" {

  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i1}
}

do_execsql_test 7.3 {
  INSERT INTO t1(a,b) VALUES(1, 2);
  INSERT INTO t1(a,b) VALUES(3, 4);

  INSERT INTO t2(a,b) VALUES(1, 2);
  INSERT INTO t2(a,b) VALUES(3, 4);
  INSERT INTO t2(a,b) VALUES(5, 6);
 
  ANALYZE;
}

db close
sqlite3 db test.db

det 7.4 "SELECT count(*) FROM t1" {

  0 0 0 {SCAN TABLE t1}
}

det 7.5 "SELECT count(*) FROM t2" {

  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i1}
}

#-------------------------------------------------------------------------
# The following tests - eqp-8.* - test that queries that use the OP_Count
# optimization return something sensible with EQP.
#
drop_all_tables

do_execsql_test 8.0 {
  CREATE TABLE t1(a, b, c, PRIMARY KEY(b, c)) WITHOUT ROWID;
  CREATE TABLE t2(a, b, c);
}

det 8.1.1 "SELECT * FROM t2" {

  0 0 0 {SCAN TABLE t2}
}

det 8.1.2 "SELECT * FROM t2 WHERE rowid=?" {

  0 0 0 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

det 8.1.3 "SELECT count(*) FROM t2" {

  0 0 0 {SCAN TABLE t2}
}

det 8.2.1 "SELECT * FROM t1" {

  0 0 0 {SCAN TABLE t1}
}

det 8.2.2 "SELECT * FROM t1 WHERE b=?" {

  0 0 0 {SEARCH TABLE t1 USING PRIMARY KEY (b=?)}
}

det 8.2.3 "SELECT * FROM t1 WHERE b=? AND c=?" {

  0 0 0 {SEARCH TABLE t1 USING PRIMARY KEY (b=? AND c=?)}
}

det 8.2.4 "SELECT count(*) FROM t1" {

  0 0 0 {SCAN TABLE t1}
}







finish_test







>














>
|



>
|

















>
|



>
|














>
|



>
|



>
|



>
|



>
|



>
|



>
|









645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
  } [string trimleft {
1 0 0 SCAN TABLE t1 USING COVERING INDEX i2
2 0 0 SCAN TABLE t2
2 0 0 USE TEMP B-TREE FOR ORDER BY
0 0 0 COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)
}]
}
}

#-------------------------------------------------------------------------
# The following tests - eqp-7.* - test that queries that use the OP_Count
# optimization return something sensible with EQP.
#
drop_all_tables

do_execsql_test 7.0 {
  CREATE TABLE t1(a INT, b INT, ex CHAR(100));
  CREATE TABLE t2(a INT, b INT, ex CHAR(100));
  CREATE INDEX i1 ON t2(a);
}

det 7.1 "SELECT count(*) FROM t1" {
  QUERY PLAN
  `--SCAN TABLE t1
}

det 7.2 "SELECT count(*) FROM t2" {
  QUERY PLAN
  `--SCAN TABLE t2 USING COVERING INDEX i1
}

do_execsql_test 7.3 {
  INSERT INTO t1(a,b) VALUES(1, 2);
  INSERT INTO t1(a,b) VALUES(3, 4);

  INSERT INTO t2(a,b) VALUES(1, 2);
  INSERT INTO t2(a,b) VALUES(3, 4);
  INSERT INTO t2(a,b) VALUES(5, 6);
 
  ANALYZE;
}

db close
sqlite3 db test.db

det 7.4 "SELECT count(*) FROM t1" {
  QUERY PLAN
  `--SCAN TABLE t1
}

det 7.5 "SELECT count(*) FROM t2" {
  QUERY PLAN
  `--SCAN TABLE t2 USING COVERING INDEX i1
}

#-------------------------------------------------------------------------
# The following tests - eqp-8.* - test that queries that use the OP_Count
# optimization return something sensible with EQP.
#
drop_all_tables

do_execsql_test 8.0 {
  CREATE TABLE t1(a, b, c, PRIMARY KEY(b, c)) WITHOUT ROWID;
  CREATE TABLE t2(a, b, c);
}

det 8.1.1 "SELECT * FROM t2" {
  QUERY PLAN
  `--SCAN TABLE t2
}

det 8.1.2 "SELECT * FROM t2 WHERE rowid=?" {
  QUERY PLAN
  `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)
}

det 8.1.3 "SELECT count(*) FROM t2" {
  QUERY PLAN
  `--SCAN TABLE t2
}

det 8.2.1 "SELECT * FROM t1" {
  QUERY PLAN
  `--SCAN TABLE t1
}

det 8.2.2 "SELECT * FROM t1 WHERE b=?" {
  QUERY PLAN
  `--SEARCH TABLE t1 USING PRIMARY KEY (b=?)
}

det 8.2.3 "SELECT * FROM t1 WHERE b=? AND c=?" {
  QUERY PLAN
  `--SEARCH TABLE t1 USING PRIMARY KEY (b=? AND c=?)
}

det 8.2.4 "SELECT count(*) FROM t1" {
  QUERY PLAN
  `--SCAN TABLE t1
}







finish_test
Changes to test/fts3aux1.test.
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
db func rec rec

# Use EQP to show that the WHERE expression "term='braid'" uses a different
# index number (1) than "+term='braid'" (0).
#
do_execsql_test 2.1.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term='braid'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 1:} }
do_execsql_test 2.1.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term='braid'
} {0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:}}

# Now show that using "term='braid'" means the virtual table returns
# only 1 row to SQLite, but "+term='braid'" means all 19 are returned.
#
do_test 2.1.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms_v WHERE rec('cnt', term) AND term='braid' }







|


|







101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
db func rec rec

# Use EQP to show that the WHERE expression "term='braid'" uses a different
# index number (1) than "+term='braid'" (0).
#
do_execsql_test 2.1.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term='braid'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 1:*/}
do_execsql_test 2.1.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term='braid'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 0:*/}

# Now show that using "term='braid'" means the virtual table returns
# only 1 row to SQLite, but "+term='braid'" means all 19 are returned.
#
do_test 2.1.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms_v WHERE rec('cnt', term) AND term='braid' }
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

# Special case: term=NULL
#
do_execsql_test 2.1.5 { SELECT * FROM terms WHERE term=NULL } {}

do_execsql_test 2.2.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term>'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 2:} }
do_execsql_test 2.2.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term>'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} }

do_execsql_test 2.2.1.3 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term<'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 4:} }
do_execsql_test 2.2.1.4 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term<'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} }

do_execsql_test 2.2.1.5 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term BETWEEN 'brags' AND 'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 6:} }
do_execsql_test 2.2.1.6 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term BETWEEN 'brags' AND 'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} }

do_test 2.2.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms WHERE rec('cnt', term) AND term>'brain' }
  set cnt
} {18}
do_test 2.2.2.2 {







|


|



|


|



|


|







150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

# Special case: term=NULL
#
do_execsql_test 2.1.5 { SELECT * FROM terms WHERE term=NULL } {}

do_execsql_test 2.2.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term>'brain'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 2:*/}
do_execsql_test 2.2.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term>'brain'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 0:*/}

do_execsql_test 2.2.1.3 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term<'brain'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 4:*/}
do_execsql_test 2.2.1.4 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term<'brain'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 0:*/}

do_execsql_test 2.2.1.5 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term BETWEEN 'brags' AND 'brain'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 6:*/}
do_execsql_test 2.2.1.6 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term BETWEEN 'brags' AND 'brain'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 0:*/}

do_test 2.2.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms WHERE rec('cnt', term) AND term>'brain' }
  set cnt
} {18}
do_test 2.2.2.2 {
331
332
333
334
335
336
337
338
339

340
341
342
343
344
345
346
  5    1    "ORDER BY documents"
  6    1    "ORDER BY documents DESC"
  7    1    "ORDER BY occurrences ASC"
  8    1    "ORDER BY occurrences"
  9    1    "ORDER BY occurrences DESC"
} {

  set res [list 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:}]
  if {$sort} { lappend res 0 0 0 {USE TEMP B-TREE FOR ORDER BY} }


  set sql "SELECT * FROM terms $orderby"
  do_execsql_test 2.3.1.$tn "EXPLAIN QUERY PLAN $sql" $res
}

#-------------------------------------------------------------------------
# The next set of tests, fts3aux1-3.*, test error conditions in the 







|
|
>







331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
  5    1    "ORDER BY documents"
  6    1    "ORDER BY documents DESC"
  7    1    "ORDER BY occurrences ASC"
  8    1    "ORDER BY occurrences"
  9    1    "ORDER BY occurrences DESC"
} {

  set res {SCAN TABLE terms VIRTUAL TABLE INDEX 0:}
  if {$sort} { append res {*USE TEMP B-TREE FOR ORDER BY} }
  set res "/*$res*/"

  set sql "SELECT * FROM terms $orderby"
  do_execsql_test 2.3.1.$tn "EXPLAIN QUERY PLAN $sql" $res
}

#-------------------------------------------------------------------------
# The next set of tests, fts3aux1-3.*, test error conditions in the 
399
400
401
402
403
404
405
406

407
408
409
410
411
412

413
414

415
416
417
418
419
420

421
422

423
424
425
426
427
428

429
430

431
432
433
434
435
436

437
438

439
440
441
442
443
444
445
  INSERT INTO x1 VALUES('f g h i j');
  INSERT INTO x1 VALUES('k k l l a');

  INSERT INTO x2 SELECT term FROM terms WHERE col = '*';
  INSERT INTO x3 SELECT term FROM terms WHERE col = '*';
}

proc do_plansql_test {tn sql r} {

  uplevel do_execsql_test $tn [list "EXPLAIN QUERY PLAN $sql ; $sql"] [list $r]
}

do_plansql_test 4.2 {
  SELECT y FROM x2, terms WHERE y = term AND col = '*'
} {

  0 0 0 {SCAN TABLE x2} 
  0 1 1 {SCAN TABLE terms VIRTUAL TABLE INDEX 1:} 

  a b c d e f g h i j k l
}

do_plansql_test 4.3 {
  SELECT y FROM terms, x2 WHERE y = term AND col = '*'
} {

  0 0 1 {SCAN TABLE x2} 
  0 1 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 1:} 

  a b c d e f g h i j k l
}

do_plansql_test 4.4 {
  SELECT y FROM x3, terms WHERE y = term AND col = '*'
} {

  0 0 1 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} 
  0 1 0 {SEARCH TABLE x3 USING COVERING INDEX i1 (y=?)}

  a b c d e f g h i j k l
}

do_plansql_test 4.5 {
  SELECT y FROM terms, x3 WHERE y = term AND occurrences>1 AND col = '*'
} {

  0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} 
  0 1 1 {SEARCH TABLE x3 USING COVERING INDEX i1 (y=?)}

  a k l
}

#-------------------------------------------------------------------------
# The following tests check that fts4aux can handle an fts table with an
# odd name (one that requires quoting for use in SQL statements). And that
# the argument to the fts4aux constructor is properly dequoted before use.







|
>
|





>
|
|
>






>
|
|
>






>
|
|
>






>
|
|
>







400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
  INSERT INTO x1 VALUES('f g h i j');
  INSERT INTO x1 VALUES('k k l l a');

  INSERT INTO x2 SELECT term FROM terms WHERE col = '*';
  INSERT INTO x3 SELECT term FROM terms WHERE col = '*';
}

proc do_plansql_test {tn sql r1 r2} {
  do_eqp_test $tn.eqp $sql $r1
  do_execsql_test $tn $sql $r2
}

do_plansql_test 4.2 {
  SELECT y FROM x2, terms WHERE y = term AND col = '*'
} {
  QUERY PLAN
  |--SCAN TABLE x2
  `--SCAN TABLE terms VIRTUAL TABLE INDEX 1:
} {
  a b c d e f g h i j k l
}

do_plansql_test 4.3 {
  SELECT y FROM terms, x2 WHERE y = term AND col = '*'
} {
  QUERY PLAN
  |--SCAN TABLE x2
  `--SCAN TABLE terms VIRTUAL TABLE INDEX 1:
} {
  a b c d e f g h i j k l
}

do_plansql_test 4.4 {
  SELECT y FROM x3, terms WHERE y = term AND col = '*'
} {
  QUERY PLAN
  |--SCAN TABLE terms VIRTUAL TABLE INDEX 0:
  `--SEARCH TABLE x3 USING COVERING INDEX i1 (y=?)
} {
  a b c d e f g h i j k l
}

do_plansql_test 4.5 {
  SELECT y FROM terms, x3 WHERE y = term AND occurrences>1 AND col = '*'
} {
  QUERY PLAN
  |--SCAN TABLE terms VIRTUAL TABLE INDEX 0:
  `--SEARCH TABLE x3 USING COVERING INDEX i1 (y=?)
} {
  a k l
}

#-------------------------------------------------------------------------
# The following tests check that fts4aux can handle an fts table with an
# odd name (one that requires quoting for use in SQL statements). And that
# the argument to the fts4aux constructor is properly dequoted before use.
Changes to test/fts3expr.test.
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# cases in the test code, which makes test coverage easier to measure.
# 
do_test fts3expr-5.1 {
  catchsql { SELECT fts3_exprtest('simple', 'a b') }
} {1 {Usage: fts3_exprtest(tokenizer, expr, col1, ...}}
do_test fts3expr-5.2 {
  catchsql { SELECT fts3_exprtest('doesnotexist', 'a b', 'c') }
} {1 {No such tokenizer module}}
do_test fts3expr-5.3 {
  catchsql { SELECT fts3_exprtest('simple', 'a b OR', 'c') }
} {1 {Error parsing expression}}

#------------------------------------------------------------------------
# The next set of tests verifies that things actually work as they are
# supposed to when using the new syntax.







|







405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# cases in the test code, which makes test coverage easier to measure.
# 
do_test fts3expr-5.1 {
  catchsql { SELECT fts3_exprtest('simple', 'a b') }
} {1 {Usage: fts3_exprtest(tokenizer, expr, col1, ...}}
do_test fts3expr-5.2 {
  catchsql { SELECT fts3_exprtest('doesnotexist', 'a b', 'c') }
} {1 {unknown tokenizer: doesnotexist}}
do_test fts3expr-5.3 {
  catchsql { SELECT fts3_exprtest('simple', 'a b OR', 'c') }
} {1 {Error parsing expression}}

#------------------------------------------------------------------------
# The next set of tests verifies that things actually work as they are
# supposed to when using the new syntax.
Changes to test/fts3expr4.test.
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
set sqlite_fts3_enable_parentheses 1

proc test_fts3expr {tokenizer expr} {
  db one {SELECT fts3_exprtest($tokenizer, $expr, 'a', 'b', 'c')}
}

proc do_icu_expr_test {tn expr res} {

  uplevel [list do_test $tn [list test_fts3expr icu $expr] [list {*}$res]]
}

proc do_simple_expr_test {tn expr res} {
  uplevel [list do_test $tn [list test_fts3expr simple $expr] [list {*}$res]]
}

#-------------------------------------------------------------------------







>
|







25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
set sqlite_fts3_enable_parentheses 1

proc test_fts3expr {tokenizer expr} {
  db one {SELECT fts3_exprtest($tokenizer, $expr, 'a', 'b', 'c')}
}

proc do_icu_expr_test {tn expr res} {
  set res2 [list {*}$res]
  uplevel [list do_test $tn [list test_fts3expr "icu en_US" $expr] $res2]
}

proc do_simple_expr_test {tn expr res} {
  uplevel [list do_test $tn [list test_fts3expr simple $expr] [list {*}$res]]
}

#-------------------------------------------------------------------------
Changes to test/fts3join.test.
92
93
94
95
96
97
98


99
100
101
102
103
104

do_eqp_test 4.2 {
  SELECT * FROM t4 LEFT JOIN (
      SELECT docid, * FROM ft4 WHERE ft4 MATCH ?
  ) AS rr ON t4.rowid=rr.docid 
  WHERE t4.y = ?;
} {


  1 0 0 {SCAN TABLE ft4 VIRTUAL TABLE INDEX 3:} 
  0 0 0 {SCAN TABLE t4}
  0 1 1 {SEARCH SUBQUERY 1 AS rr USING AUTOMATIC COVERING INDEX (docid=?)}
}

finish_test







>
>
|
|
|



92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

do_eqp_test 4.2 {
  SELECT * FROM t4 LEFT JOIN (
      SELECT docid, * FROM ft4 WHERE ft4 MATCH ?
  ) AS rr ON t4.rowid=rr.docid 
  WHERE t4.y = ?;
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  `--SCAN TABLE ft4 VIRTUAL TABLE INDEX 3:
  |--SCAN TABLE t4
  `--SEARCH SUBQUERY xxxxxx AS rr USING AUTOMATIC COVERING INDEX (docid=?)
}

finish_test
Changes to test/fts3query.test.
114
115
116
117
118
119
120

121
122
123
124
125
126

127
128
129
130
131
132

133
134
135
136
137
138

139
140
141
142
143
144
145
146
147
    CREATE VIRTUAL TABLE ft USING fts3(title);
    CREATE TABLE bt(title);
  }
} {}
do_eqp_test fts3query-4.2 {
  SELECT t1.number FROM t1, ft WHERE t1.number=ft.rowid ORDER BY t1.date
} {

  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 1 {SCAN TABLE ft VIRTUAL TABLE INDEX 1:}
}
do_eqp_test fts3query-4.3 {
  SELECT t1.number FROM ft, t1 WHERE t1.number=ft.rowid ORDER BY t1.date
} {

  0 0 1 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 0 {SCAN TABLE ft VIRTUAL TABLE INDEX 1:}
}
do_eqp_test fts3query-4.4 {
  SELECT t1.number FROM t1, bt WHERE t1.number=bt.rowid ORDER BY t1.date
} {

  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 1 {SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?)}
}
do_eqp_test fts3query-4.5 {
  SELECT t1.number FROM bt, t1 WHERE t1.number=bt.rowid ORDER BY t1.date
} {

  0 0 1 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 0 {SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?)}
}


# Test that calling matchinfo() with the wrong number of arguments, or with
# an invalid argument returns an error.
#
do_execsql_test 5.1 {







>
|
|




>
|
|




>
|
|




>
|
|







114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    CREATE VIRTUAL TABLE ft USING fts3(title);
    CREATE TABLE bt(title);
  }
} {}
do_eqp_test fts3query-4.2 {
  SELECT t1.number FROM t1, ft WHERE t1.number=ft.rowid ORDER BY t1.date
} {
  QUERY PLAN
  |--SCAN TABLE t1 USING COVERING INDEX i1
  `--SCAN TABLE ft VIRTUAL TABLE INDEX 1:
}
do_eqp_test fts3query-4.3 {
  SELECT t1.number FROM ft, t1 WHERE t1.number=ft.rowid ORDER BY t1.date
} {
  QUERY PLAN
  |--SCAN TABLE t1 USING COVERING INDEX i1
  `--SCAN TABLE ft VIRTUAL TABLE INDEX 1:
}
do_eqp_test fts3query-4.4 {
  SELECT t1.number FROM t1, bt WHERE t1.number=bt.rowid ORDER BY t1.date
} {
  QUERY PLAN
  |--SCAN TABLE t1 USING COVERING INDEX i1
  `--SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?)
}
do_eqp_test fts3query-4.5 {
  SELECT t1.number FROM bt, t1 WHERE t1.number=bt.rowid ORDER BY t1.date
} {
  QUERY PLAN
  |--SCAN TABLE t1 USING COVERING INDEX i1
  `--SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?)
}


# Test that calling matchinfo() with the wrong number of arguments, or with
# an invalid argument returns an error.
#
do_execsql_test 5.1 {
Changes to test/fuzz_malloc.test.
53
54
55
56
57
58
59
60
61

62










63
64
65
66
67
68
69
  execsql $::prep
  set jj 0
  for {set ii 0} {$ii < $::fuzzyopts(-repeats)} {incr ii} {
    expr srand($jj)
    incr jj
    set ::sql [subst $::fuzzyopts(-template)]
    # puts fuzyy-sql=\[$::sql\]; flush stdout
    foreach {rc res} [catchsql "$::sql"] {}
    if {$rc==0} {

      do_malloc_test $testname-$ii -sqlbody $::sql -sqlprep $::prep










    } else {
      incr ii -1
    }
  }
}

#----------------------------------------------------------------







|

>
|
>
>
>
>
>
>
>
>
>
>







53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
  execsql $::prep
  set jj 0
  for {set ii 0} {$ii < $::fuzzyopts(-repeats)} {incr ii} {
    expr srand($jj)
    incr jj
    set ::sql [subst $::fuzzyopts(-template)]
    # puts fuzyy-sql=\[$::sql\]; flush stdout
    foreach {rc ::fmtres} [catchsql "$::sql"] {}
    if {$rc==0} {
      set nErr1 [set_test_counter errors]
      do_faultsim_test $testname-$ii -faults oom* -body {
        execsql $::sql
      } -test {
        if {$testrc && $testresult!="datatype mismatch"} { 
          faultsim_test_result {0 {}}
        }
      }
      if {[set_test_counter errors]>$nErr1} {
        puts "Previous fuzzy-sql=\[$::sql\]"
        flush stdout
      }
    } else {
      incr ii -1
    }
  }
}

#----------------------------------------------------------------
Changes to test/index6.test.
314
315
316
317
318
319
320

321
322
323
324
325
326
327
328
329
  INSERT INTO t8b VALUES('value', 3);
  INSERT INTO t8b VALUES('dummy', 4);
} {}

do_eqp_test index6-8.1 {
  SELECT * FROM t8a LEFT JOIN t8b ON (x = 'value' AND y = a)
} {

  0 0 0 {SCAN TABLE t8a} 
  0 1 1 {SEARCH TABLE t8b USING INDEX i8c (y=?)}
}

do_execsql_test index6-8.2 {
  SELECT * FROM t8a LEFT JOIN t8b ON (x = 'value' AND y = a)
} {
  1 one value 1 
  2 two {} {} 







>
|
|







314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
  INSERT INTO t8b VALUES('value', 3);
  INSERT INTO t8b VALUES('dummy', 4);
} {}

do_eqp_test index6-8.1 {
  SELECT * FROM t8a LEFT JOIN t8b ON (x = 'value' AND y = a)
} {
  QUERY PLAN
  |--SCAN TABLE t8a
  `--SEARCH TABLE t8b USING INDEX i8c (y=?)
}

do_execsql_test index6-8.2 {
  SELECT * FROM t8a LEFT JOIN t8b ON (x = 'value' AND y = a)
} {
  1 one value 1 
  2 two {} {} 
Changes to test/index7.test.
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
  INSERT INTO t4 VALUES('def', 'xyz');
  SELECT * FROM v4 WHERE d='xyz' AND c='def'
} {
  def xyz
}
do_eqp_test index7-6.4 {
  SELECT * FROM v4 WHERE d='xyz' AND c='def'
} {
  0 0 0 {SEARCH TABLE t4 USING INDEX i4 (c=?)}
}
do_catchsql_test index7-6.5 {
  CREATE INDEX t5a ON t5(a) WHERE a=#1;
} {1 {near "#1": syntax error}}


finish_test







<
|
|






317
318
319
320
321
322
323

324
325
326
327
328
329
330
331
  INSERT INTO t4 VALUES('def', 'xyz');
  SELECT * FROM v4 WHERE d='xyz' AND c='def'
} {
  def xyz
}
do_eqp_test index7-6.4 {
  SELECT * FROM v4 WHERE d='xyz' AND c='def'

} {SEARCH TABLE t4 USING INDEX i4 (c=?)}

do_catchsql_test index7-6.5 {
  CREATE INDEX t5a ON t5(a) WHERE a=#1;
} {1 {near "#1": syntax error}}


finish_test
Changes to test/indexedby.test.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#
proc EQP {sql} {
  uplevel "execsql {EXPLAIN QUERY PLAN $sql}"
}

# These tests are to check that "EXPLAIN QUERY PLAN" is working as expected.
#
do_execsql_test indexedby-1.2 {
  EXPLAIN QUERY PLAN select * from t1 WHERE a = 10; 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-1.3 {
  EXPLAIN QUERY PLAN select * from t1 ; 
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-1.4 {
  EXPLAIN QUERY PLAN select * from t1, t2 WHERE c = 10; 
} {

  0 0 1 {SEARCH TABLE t2 USING INDEX i3 (c=?)} 
  0 1 0 {SCAN TABLE t1}
}

# Parser tests. Test that an INDEXED BY or NOT INDEX clause can be 
# attached to a table in the FROM clause, but not to a sub-select or
# SQL view. Also test that specifying an index that does not exist or
# is attached to a different table is detected as an error.
#
# EVIDENCE-OF: R-07004-11522 -- syntax diagram qualified-table-name
# 
# EVIDENCE-OF: R-58230-57098 The "INDEXED BY index-name" phrase
# specifies that the named index must be used in order to look up values
# on the preceding table.
#
do_test indexedby-2.1 {
  execsql { SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'}







|
|
|
|
|
|
|
|

>
|
|







|







36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#
proc EQP {sql} {
  uplevel "execsql {EXPLAIN QUERY PLAN $sql}"
}

# These tests are to check that "EXPLAIN QUERY PLAN" is working as expected.
#
do_eqp_test indexedby-1.2 {
  select * from t1 WHERE a = 10; 
} {SEARCH TABLE t1 USING INDEX i1 (a=?)}
do_eqp_test indexedby-1.3 {
  select * from t1 ; 
} {SCAN TABLE t1}
do_eqp_test indexedby-1.4 {
  select * from t1, t2 WHERE c = 10; 
} {
  QUERY PLAN
  |--SEARCH TABLE t2 USING INDEX i3 (c=?)
  `--SCAN TABLE t1
}

# Parser tests. Test that an INDEXED BY or NOT INDEX clause can be 
# attached to a table in the FROM clause, but not to a sub-select or
# SQL view. Also test that specifying an index that does not exist or
# is attached to a different table is detected as an error.
#
# X-EVIDENCE-OF: R-07004-11522 -- syntax diagram qualified-table-name
# 
# EVIDENCE-OF: R-58230-57098 The "INDEXED BY index-name" phrase
# specifies that the named index must be used in order to look up values
# on the preceding table.
#
do_test indexedby-2.1 {
  execsql { SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'}
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170
171
172
173
174
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#
# EVIDENCE-OF: R-37002-28871 The "NOT INDEXED" clause specifies that no
# index shall be used when accessing the preceding table, including
# implied indices create by UNIQUE and PRIMARY KEY constraints. However,
# the rowid can still be used to look up entries even when "NOT INDEXED"
# is specified.
#
do_execsql_test indexedby-3.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a = 'one' AND b = 'two'
} {/SEARCH TABLE t1 USING INDEX/}
do_execsql_test indexedby-3.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-3.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE rowid=1
} {/SEARCH TABLE t1 USING INTEGER PRIMARY KEY .rowid=/}


do_execsql_test indexedby-3.2 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' AND b = 'two'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-3.3 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' AND b = 'two'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_test indexedby-3.4 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' }
} {1 {no query solution}}
do_test indexedby-3.5 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 ORDER BY a }
} {1 {no query solution}}
do_test indexedby-3.6 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' }
} {0 {}}
do_test indexedby-3.7 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 ORDER BY a }
} {0 {}}

do_execsql_test indexedby-3.8 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 ORDER BY e 
} {0 0 0 {SCAN TABLE t3 USING INDEX sqlite_autoindex_t3_1}}
do_execsql_test indexedby-3.9 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE e = 10 
} {0 0 0 {SEARCH TABLE t3 USING INDEX sqlite_autoindex_t3_1 (e=?)}}
do_test indexedby-3.10 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE f = 10 }
} {1 {no query solution}}
do_test indexedby-3.11 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_2 WHERE f = 10 }
} {1 {no such index: sqlite_autoindex_t3_2}}

# Tests for multiple table cases.
#
do_execsql_test indexedby-4.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1, t2 WHERE a = c 
} {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SEARCH TABLE t2 USING INDEX i3 (c=?)}
}
do_execsql_test indexedby-4.2 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 INDEXED BY i1, t2 WHERE a = c 
} {

  0 0 1 {SCAN TABLE t2} 
  0 1 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}
}
do_test indexedby-4.3 {
  catchsql {
    SELECT * FROM t1 INDEXED BY i1, t2 INDEXED BY i3 WHERE a=c
  }
} {1 {no query solution}}
do_test indexedby-4.4 {
  catchsql {
    SELECT * FROM t2 INDEXED BY i3, t1 INDEXED BY i1 WHERE a=c
  }
} {1 {no query solution}}

# Test embedding an INDEXED BY in a CREATE VIEW statement. This block
# also tests that nothing bad happens if an index refered to by
# a CREATE VIEW statement is dropped and recreated.
#
do_execsql_test indexedby-5.1 {
  CREATE VIEW v2 AS SELECT * FROM t1 INDEXED BY i1 WHERE a > 5;
  EXPLAIN QUERY PLAN SELECT * FROM v2 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?)}}
do_execsql_test indexedby-5.2 {
  EXPLAIN QUERY PLAN SELECT * FROM v2 WHERE b = 10 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?)}}
do_test indexedby-5.3 {
  execsql { DROP INDEX i1 }
  catchsql { SELECT * FROM v2 }
} {1 {no such index: i1}}
do_test indexedby-5.4 {
  # Recreate index i1 in such a way as it cannot be used by the view query.
  execsql { CREATE INDEX i1 ON t1(b) }
  catchsql { SELECT * FROM v2 }
} {1 {no query solution}}
do_test indexedby-5.5 {
  # Drop and recreate index i1 again. This time, create it so that it can
  # be used by the query.
  execsql { DROP INDEX i1 ; CREATE INDEX i1 ON t1(a) }
  catchsql { SELECT * FROM v2 }
} {0 {}}

# Test that "NOT INDEXED" may use the rowid index, but not others.
# 
do_execsql_test indexedby-6.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 10 ORDER BY rowid 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_execsql_test indexedby-6.2 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE b = 10 ORDER BY rowid 
} {0 0 0 {SCAN TABLE t1}}

# EVIDENCE-OF: R-40297-14464 The INDEXED BY phrase forces the SQLite
# query planner to use a particular named index on a DELETE, SELECT, or
# UPDATE statement.
#
# Test that "INDEXED BY" can be used in a DELETE statement.
# 
do_execsql_test indexedby-7.1 {
  EXPLAIN QUERY PLAN DELETE FROM t1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.2 {
  EXPLAIN QUERY PLAN DELETE FROM t1 NOT INDEXED WHERE a = 5 
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-7.3 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.4 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.5 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i2 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_test indexedby-7.6 {
  catchsql { DELETE FROM t1 INDEXED BY i2 WHERE a = 5}
} {1 {no query solution}}

# Test that "INDEXED BY" can be used in an UPDATE statement.
# 
do_execsql_test indexedby-8.1 {
  EXPLAIN QUERY PLAN UPDATE t1 SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}}
do_execsql_test indexedby-8.2 {
  EXPLAIN QUERY PLAN UPDATE t1 NOT INDEXED SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-8.3 {
  EXPLAIN QUERY PLAN UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}}
do_execsql_test indexedby-8.4 {
  EXPLAIN QUERY PLAN 
  UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-8.5 {
  EXPLAIN QUERY PLAN 
  UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_test indexedby-8.6 {
  catchsql { UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5}
} {1 {no query solution}}

# Test that bug #3560 is fixed.
#
do_test indexedby-9.1 {







|
|

|
|
|
|
|



|
<

|
|
<

|













|
<

|
|
<

|









|
|

>
|
|

|
|

>
|
|



















|


|


















|
|
|
|
|
|







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|






|
|
|
|
|
|
|
|
|
|
<

|
|
<

|







112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150
151
152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

262
263
264

265
266
267
268
269
270
271
272
273
#
# EVIDENCE-OF: R-37002-28871 The "NOT INDEXED" clause specifies that no
# index shall be used when accessing the preceding table, including
# implied indices create by UNIQUE and PRIMARY KEY constraints. However,
# the rowid can still be used to look up entries even when "NOT INDEXED"
# is specified.
#
do_eqp_test indexedby-3.1 {
  SELECT * FROM t1 WHERE a = 'one' AND b = 'two'
} {/SEARCH TABLE t1 USING INDEX/}
do_eqp_test indexedby-3.1.1 {
  SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'
} {SCAN TABLE t1}
do_eqp_test indexedby-3.1.2 {
  SELECT * FROM t1 NOT INDEXED WHERE rowid=1
} {/SEARCH TABLE t1 USING INTEGER PRIMARY KEY .rowid=/}


do_eqp_test indexedby-3.2 {

  SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' AND b = 'two'
} {SEARCH TABLE t1 USING INDEX i1 (a=?)}
do_eqp_test indexedby-3.3 {

  SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' AND b = 'two'
} {SEARCH TABLE t1 USING INDEX i2 (b=?)}
do_test indexedby-3.4 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' }
} {1 {no query solution}}
do_test indexedby-3.5 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 ORDER BY a }
} {1 {no query solution}}
do_test indexedby-3.6 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' }
} {0 {}}
do_test indexedby-3.7 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 ORDER BY a }
} {0 {}}

do_eqp_test indexedby-3.8 {

  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 ORDER BY e 
} {SCAN TABLE t3 USING INDEX sqlite_autoindex_t3_1}
do_eqp_test indexedby-3.9 {

  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE e = 10 
} {SEARCH TABLE t3 USING INDEX sqlite_autoindex_t3_1 (e=?)}
do_test indexedby-3.10 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE f = 10 }
} {1 {no query solution}}
do_test indexedby-3.11 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_2 WHERE f = 10 }
} {1 {no such index: sqlite_autoindex_t3_2}}

# Tests for multiple table cases.
#
do_eqp_test indexedby-4.1 {
  SELECT * FROM t1, t2 WHERE a = c 
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SEARCH TABLE t2 USING INDEX i3 (c=?)
}
do_eqp_test indexedby-4.2 {
  SELECT * FROM t1 INDEXED BY i1, t2 WHERE a = c 
} {
  QUERY PLAN
  |--SCAN TABLE t2
  `--SEARCH TABLE t1 USING INDEX i1 (a=?)
}
do_test indexedby-4.3 {
  catchsql {
    SELECT * FROM t1 INDEXED BY i1, t2 INDEXED BY i3 WHERE a=c
  }
} {1 {no query solution}}
do_test indexedby-4.4 {
  catchsql {
    SELECT * FROM t2 INDEXED BY i3, t1 INDEXED BY i1 WHERE a=c
  }
} {1 {no query solution}}

# Test embedding an INDEXED BY in a CREATE VIEW statement. This block
# also tests that nothing bad happens if an index refered to by
# a CREATE VIEW statement is dropped and recreated.
#
do_execsql_test indexedby-5.1 {
  CREATE VIEW v2 AS SELECT * FROM t1 INDEXED BY i1 WHERE a > 5;
  EXPLAIN QUERY PLAN SELECT * FROM v2 
} {/*SEARCH TABLE t1 USING INDEX i1 (a>?)*/}
do_execsql_test indexedby-5.2 {
  EXPLAIN QUERY PLAN SELECT * FROM v2 WHERE b = 10 
} {/*SEARCH TABLE t1 USING INDEX i1 (a>?)*/}
do_test indexedby-5.3 {
  execsql { DROP INDEX i1 }
  catchsql { SELECT * FROM v2 }
} {1 {no such index: i1}}
do_test indexedby-5.4 {
  # Recreate index i1 in such a way as it cannot be used by the view query.
  execsql { CREATE INDEX i1 ON t1(b) }
  catchsql { SELECT * FROM v2 }
} {1 {no query solution}}
do_test indexedby-5.5 {
  # Drop and recreate index i1 again. This time, create it so that it can
  # be used by the query.
  execsql { DROP INDEX i1 ; CREATE INDEX i1 ON t1(a) }
  catchsql { SELECT * FROM v2 }
} {0 {}}

# Test that "NOT INDEXED" may use the rowid index, but not others.
# 
do_eqp_test indexedby-6.1 {
  SELECT * FROM t1 WHERE b = 10 ORDER BY rowid 
} {SEARCH TABLE t1 USING INDEX i2 (b=?)}
do_eqp_test indexedby-6.2 {
  SELECT * FROM t1 NOT INDEXED WHERE b = 10 ORDER BY rowid 
} {SCAN TABLE t1}

# EVIDENCE-OF: R-40297-14464 The INDEXED BY phrase forces the SQLite
# query planner to use a particular named index on a DELETE, SELECT, or
# UPDATE statement.
#
# Test that "INDEXED BY" can be used in a DELETE statement.
# 
do_eqp_test indexedby-7.1 {
  DELETE FROM t1 WHERE a = 5 
} {SEARCH TABLE t1 USING INDEX i1 (a=?)}
do_eqp_test indexedby-7.2 {
  DELETE FROM t1 NOT INDEXED WHERE a = 5 
} {SCAN TABLE t1}
do_eqp_test indexedby-7.3 {
  DELETE FROM t1 INDEXED BY i1 WHERE a = 5 
} {SEARCH TABLE t1 USING INDEX i1 (a=?)}
do_eqp_test indexedby-7.4 {
  DELETE FROM t1 INDEXED BY i1 WHERE a = 5 AND b = 10
} {SEARCH TABLE t1 USING INDEX i1 (a=?)}
do_eqp_test indexedby-7.5 {
  DELETE FROM t1 INDEXED BY i2 WHERE a = 5 AND b = 10
} {SEARCH TABLE t1 USING INDEX i2 (b=?)}
do_test indexedby-7.6 {
  catchsql { DELETE FROM t1 INDEXED BY i2 WHERE a = 5}
} {1 {no query solution}}

# Test that "INDEXED BY" can be used in an UPDATE statement.
# 
do_eqp_test indexedby-8.1 {
  UPDATE t1 SET rowid=rowid+1 WHERE a = 5 
} {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}
do_eqp_test indexedby-8.2 {
  UPDATE t1 NOT INDEXED SET rowid=rowid+1 WHERE a = 5 
} {SCAN TABLE t1}
do_eqp_test indexedby-8.3 {
  UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 
} {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}
do_eqp_test indexedby-8.4 {

  UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {SEARCH TABLE t1 USING INDEX i1 (a=?)}
do_eqp_test indexedby-8.5 {

  UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {SEARCH TABLE t1 USING INDEX i2 (b=?)}
do_test indexedby-8.6 {
  catchsql { UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5}
} {1 {no query solution}}

# Test that bug #3560 is fixed.
#
do_test indexedby-9.1 {
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3';
} {1 1 3}
do_execsql_test 11.4 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0';
} {1 1 3}
do_eqp_test 11.5 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0';
} {0 0 0 {SEARCH TABLE x1 USING COVERING INDEX x1i (a=? AND b=? AND rowid=?)}}

do_execsql_test 11.6 {
  CREATE TABLE x2(c INTEGER PRIMARY KEY, a, b TEXT);
  CREATE INDEX x2i ON x2(a, b);
  INSERT INTO x2 VALUES(1, 1, 1);
  INSERT INTO x2 VALUES(2, 1, 1);
  INSERT INTO x2 VALUES(3, 1, 1);
  INSERT INTO x2 VALUES(4, 1, 1);
}
do_execsql_test 11.7 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c=3;
} {1 1 3}
do_execsql_test 11.8 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3';
} {1 1 3}
do_execsql_test 11.9 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3.0';
} {1 1 3}
do_eqp_test 11.10 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3.0';
} {0 0 0 {SEARCH TABLE x2 USING COVERING INDEX x2i (a=? AND b=? AND rowid=?)}}

#-------------------------------------------------------------------------
# Check INDEXED BY works (throws an exception) with partial indexes that 
# cannot be used.
do_execsql_test 12.1 {
  CREATE TABLE o1(x INTEGER PRIMARY KEY, y, z);
  CREATE INDEX p1 ON o1(z);







|




















|







334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3';
} {1 1 3}
do_execsql_test 11.4 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0';
} {1 1 3}
do_eqp_test 11.5 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0';
} {SEARCH TABLE x1 USING COVERING INDEX x1i (a=? AND b=? AND rowid=?)}

do_execsql_test 11.6 {
  CREATE TABLE x2(c INTEGER PRIMARY KEY, a, b TEXT);
  CREATE INDEX x2i ON x2(a, b);
  INSERT INTO x2 VALUES(1, 1, 1);
  INSERT INTO x2 VALUES(2, 1, 1);
  INSERT INTO x2 VALUES(3, 1, 1);
  INSERT INTO x2 VALUES(4, 1, 1);
}
do_execsql_test 11.7 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c=3;
} {1 1 3}
do_execsql_test 11.8 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3';
} {1 1 3}
do_execsql_test 11.9 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3.0';
} {1 1 3}
do_eqp_test 11.10 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3.0';
} {SEARCH TABLE x2 USING COVERING INDEX x2i (a=? AND b=? AND rowid=?)}

#-------------------------------------------------------------------------
# Check INDEXED BY works (throws an exception) with partial indexes that 
# cannot be used.
do_execsql_test 12.1 {
  CREATE TABLE o1(x INTEGER PRIMARY KEY, y, z);
  CREATE INDEX p1 ON o1(z);
Changes to test/indexexpr2.test.
87
88
89
90
91
92
93

94
95
96
97
98
99
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
115
116
117
118

ifcapable json1 {
  do_eqp_test 3.3.1 {
    SELECT json_extract(x, '$.b') FROM t2 
    WHERE json_extract(x, '$.b') IS NOT NULL AND json_extract(x, '$.a') IS NULL 
    GROUP BY json_extract(x, '$.b') COLLATE nocase
    ORDER BY json_extract(x, '$.b') COLLATE nocase;

  } {
    0 0 0 {SCAN TABLE t2} 
    0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  }
  
  do_execsql_test 3.3.2 {
    CREATE INDEX i3 ON t3(json_extract(x, '$.a'), json_extract(x, '$.b'));
  } {}
  
  do_eqp_test 3.3.3 {
    SELECT json_extract(x, '$.b') FROM t3 
    WHERE json_extract(x, '$.b') IS NOT NULL AND json_extract(x, '$.a') IS NULL 
    GROUP BY json_extract(x, '$.b') COLLATE nocase
    ORDER BY json_extract(x, '$.b') COLLATE nocase;

  } {
    0 0 0 {SEARCH TABLE t3 USING INDEX i3 (<expr>=?)} 
    0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  }
}

do_execsql_test 3.4.0 {
  CREATE TABLE t4(a, b);
  INSERT INTO t4 VALUES('.ABC', 1);
  INSERT INTO t4 VALUES('.abc', 2);
  INSERT INTO t4 VALUES('.ABC', 3);







>
|
|
|
|










>
|
|
|
|







87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

ifcapable json1 {
  do_eqp_test 3.3.1 {
    SELECT json_extract(x, '$.b') FROM t2 
    WHERE json_extract(x, '$.b') IS NOT NULL AND json_extract(x, '$.a') IS NULL 
    GROUP BY json_extract(x, '$.b') COLLATE nocase
    ORDER BY json_extract(x, '$.b') COLLATE nocase;
  } [string map {"\n  " \n} {
    QUERY PLAN
    |--SCAN TABLE t2
    `--USE TEMP B-TREE FOR GROUP BY
  }]
  
  do_execsql_test 3.3.2 {
    CREATE INDEX i3 ON t3(json_extract(x, '$.a'), json_extract(x, '$.b'));
  } {}
  
  do_eqp_test 3.3.3 {
    SELECT json_extract(x, '$.b') FROM t3 
    WHERE json_extract(x, '$.b') IS NOT NULL AND json_extract(x, '$.a') IS NULL 
    GROUP BY json_extract(x, '$.b') COLLATE nocase
    ORDER BY json_extract(x, '$.b') COLLATE nocase;
  } [string map {"\n  " \n} {
    QUERY PLAN
    |--SEARCH TABLE t3 USING INDEX i3 (<expr>=?)
    `--USE TEMP B-TREE FOR GROUP BY
  }]
}

do_execsql_test 3.4.0 {
  CREATE TABLE t4(a, b);
  INSERT INTO t4 VALUES('.ABC', 1);
  INSERT INTO t4 VALUES('.abc', 2);
  INSERT INTO t4 VALUES('.ABC', 3);
Changes to test/istrue.test.
139
140
141
142
143
144
145















146
    SELECT x IS TRUE FROM t1;
  } [expr {$tn in [list 5 6] ? {1} : {0}}]
  do_execsql_test istrue-600.$tn.4 {
    SELECT x IS FALSE FROM t1;
  } {0}
}
















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    SELECT x IS TRUE FROM t1;
  } [expr {$tn in [list 5 6] ? {1} : {0}}]
  do_execsql_test istrue-600.$tn.4 {
    SELECT x IS FALSE FROM t1;
  } {0}
}

do_execsql_test istrue-700 {
  CREATE TABLE t7(
    a INTEGER PRIMARY KEY,
    b BOOLEAN DEFAULT false,
    c BOOLEAN DEFAULT true
  );
  INSERT INTO t7(a) VALUES(1);
  INSERT INTO t7(a,b,c) VALUES(2,true,false);
  ALTER TABLE t7 ADD COLUMN d BOOLEAN DEFAULT false;
  ALTER TABLE t7 ADD COLUMN e BOOLEAN DEFAULT true;
  INSERT INTO t7(a,b,c) VALUES(3,true,false);
  INSERT INTO t7 VALUES(4,false,true,true,false);
  SELECT *,'x' FROM t7 ORDER BY a;
} {1 0 1 0 1 x 2 1 0 0 1 x 3 1 0 0 1 x 4 0 1 1 0 x}

finish_test
Changes to test/join2.test.
108
109
110
111
112
113
114

115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
  CREATE TABLE t3_1(k3 PRIMARY KEY, v3) WITHOUT ROWID;
  CREATE TABLE t3_2(v3, k3 PRIMARY KEY) WITHOUT ROWID;
}

do_eqp_test 3.1 {
  SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_1 USING (k3);
} {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test 3.2 {
  SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_2 USING (k3);
} {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

#-------------------------------------------------------------------------
# Test that tables other than the rightmost can be omitted from a
# LEFT JOIN query.
#
do_execsql_test 4.0 {







>
|
|





>
|
|







108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
  CREATE TABLE t3_1(k3 PRIMARY KEY, v3) WITHOUT ROWID;
  CREATE TABLE t3_2(v3, k3 PRIMARY KEY) WITHOUT ROWID;
}

do_eqp_test 3.1 {
  SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_1 USING (k3);
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)
}

do_eqp_test 3.2 {
  SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_2 USING (k3);
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)
}

#-------------------------------------------------------------------------
# Test that tables other than the rightmost can be omitted from a
# LEFT JOIN query.
#
do_execsql_test 4.0 {
154
155
156
157
158
159
160

161
162
163
164
165
166
167

168
169
170
171
172
173
174
175
176
do_execsql_test 4.1.4 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1);
} {2 v3 2 v3 1112 {} 1112 {}}

do_eqp_test 4.1.5 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2);
} {

  0 0 0 {SCAN TABLE c1} 
  0 1 1 {SEARCH TABLE c2 USING INTEGER PRIMARY KEY (rowid=?)}
  0 2 2 {SEARCH TABLE c3 USING INTEGER PRIMARY KEY (rowid=?)}
}
do_eqp_test 4.1.6 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v1+1);
} {

  0 0 0 {SCAN TABLE c1} 
  0 1 2 {SEARCH TABLE c3 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_execsql_test 4.2.0 {
  DROP TABLE c1;
  DROP TABLE c2;
  DROP TABLE c3;
  CREATE TABLE c1(k UNIQUE, v1);







>
|
|
|




>
|
|







156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
do_execsql_test 4.1.4 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1);
} {2 v3 2 v3 1112 {} 1112 {}}

do_eqp_test 4.1.5 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2);
} {
  QUERY PLAN
  |--SCAN TABLE c1
  |--SEARCH TABLE c2 USING INTEGER PRIMARY KEY (rowid=?)
  `--SEARCH TABLE c3 USING INTEGER PRIMARY KEY (rowid=?)
}
do_eqp_test 4.1.6 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v1+1);
} {
  QUERY PLAN
  |--SCAN TABLE c1
  `--SEARCH TABLE c3 USING INTEGER PRIMARY KEY (rowid=?)
}

do_execsql_test 4.2.0 {
  DROP TABLE c1;
  DROP TABLE c2;
  DROP TABLE c3;
  CREATE TABLE c1(k UNIQUE, v1);
199
200
201
202
203
204
205

206
207
208
209
210
211
212

213
214
215
216
217
218
219
220
221
do_execsql_test 4.2.4 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1);
} {2 v3 2 v3 1112 {} 1112 {}}

do_eqp_test 4.2.5 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2);
} {

  0 0 0 {SCAN TABLE c1} 
  0 1 1 {SEARCH TABLE c2 USING INDEX sqlite_autoindex_c2_1 (k=?)}
  0 2 2 {SEARCH TABLE c3 USING INDEX sqlite_autoindex_c3_1 (k=?)}
}
do_eqp_test 4.2.6 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v1+1);
} {

  0 0 0 {SCAN TABLE c1} 
  0 1 2 {SEARCH TABLE c3 USING INDEX sqlite_autoindex_c3_1 (k=?)}
}

# 2017-11-23 (Thanksgiving day)
# OSSFuzz found an assertion fault in the new LEFT JOIN eliminator code.
#
do_execsql_test 4.3.0 {
  DROP TABLE IF EXISTS t1;







>
|
|
|




>
|
|







203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
do_execsql_test 4.2.4 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1);
} {2 v3 2 v3 1112 {} 1112 {}}

do_eqp_test 4.2.5 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2);
} {
  QUERY PLAN
  |--SCAN TABLE c1
  |--SEARCH TABLE c2 USING INDEX sqlite_autoindex_c2_1 (k=?)
  `--SEARCH TABLE c3 USING INDEX sqlite_autoindex_c3_1 (k=?)
}
do_eqp_test 4.2.6 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v1+1);
} {
  QUERY PLAN
  |--SCAN TABLE c1
  `--SEARCH TABLE c3 USING INDEX sqlite_autoindex_c3_1 (k=?)
}

# 2017-11-23 (Thanksgiving day)
# OSSFuzz found an assertion fault in the new LEFT JOIN eliminator code.
#
do_execsql_test 4.3.0 {
  DROP TABLE IF EXISTS t1;
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
  CREATE TABLE s1 (a INTEGER PRIMARY KEY);
  CREATE TABLE s2 (a INTEGER PRIMARY KEY);
  CREATE TABLE s3 (a INTEGER);
  CREATE UNIQUE INDEX ndx on s3(a);
}
do_eqp_test 5.1 {
  SELECT s1.a FROM s1 left join s2 using (a);
} {
  0 0 0 {SCAN TABLE s1}
}
do_eqp_test 5.2 {
  SELECT s1.a FROM s1 left join s3 using (a);
} {
  0 0 0 {SCAN TABLE s1}
}

do_execsql_test 6.0 {
  CREATE TABLE u1(a INTEGER PRIMARY KEY, b, c);
  CREATE TABLE u2(a INTEGER PRIMARY KEY, b, c);
  CREATE INDEX u1ab ON u1(b, c);
}
do_eqp_test 6.1 {
  SELECT u2.* FROM u2 LEFT JOIN u1 ON( u1.a=u2.a AND u1.b=u2.b AND u1.c=u2.c );
} {
  0 0 0 {SCAN TABLE u2}
}

db close
sqlite3 db :memory:
do_execsql_test 7.0 {
  CREATE TABLE t1(a,b);  INSERT INTO t1 VALUES(1,2),(3,4),(5,6);
  CREATE TABLE t2(c,d);  INSERT INTO t2 VALUES(2,4),(3,6);
  CREATE TABLE t3(x);    INSERT INTO t3 VALUES(9);







<
|
|


<
|
<








<
|
<







247
248
249
250
251
252
253

254
255
256
257

258

259
260
261
262
263
264
265
266

267

268
269
270
271
272
273
274
  CREATE TABLE s1 (a INTEGER PRIMARY KEY);
  CREATE TABLE s2 (a INTEGER PRIMARY KEY);
  CREATE TABLE s3 (a INTEGER);
  CREATE UNIQUE INDEX ndx on s3(a);
}
do_eqp_test 5.1 {
  SELECT s1.a FROM s1 left join s2 using (a);

} {SCAN TABLE s1}

do_eqp_test 5.2 {
  SELECT s1.a FROM s1 left join s3 using (a);

} {SCAN TABLE s1}


do_execsql_test 6.0 {
  CREATE TABLE u1(a INTEGER PRIMARY KEY, b, c);
  CREATE TABLE u2(a INTEGER PRIMARY KEY, b, c);
  CREATE INDEX u1ab ON u1(b, c);
}
do_eqp_test 6.1 {
  SELECT u2.* FROM u2 LEFT JOIN u1 ON( u1.a=u2.a AND u1.b=u2.b AND u1.c=u2.c );

} {SCAN TABLE u2}


db close
sqlite3 db :memory:
do_execsql_test 7.0 {
  CREATE TABLE t1(a,b);  INSERT INTO t1 VALUES(1,2),(3,4),(5,6);
  CREATE TABLE t2(c,d);  INSERT INTO t2 VALUES(2,4),(3,6);
  CREATE TABLE t3(x);    INSERT INTO t3 VALUES(9);
Changes to test/join5.test.
207
208
209
210
211
212
213
















































































214
215
do_execsql_test 5.4 {
  SELECT count(z) FROM ( SELECT * FROM y1 ) LEFT JOIN y2 ON x
} 1

do_execsql_test 5.5 {
  SELECT * FROM ( SELECT * FROM y1 ) LEFT JOIN y2 ON x
} {0 0 1 {}}

















































































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
do_execsql_test 5.4 {
  SELECT count(z) FROM ( SELECT * FROM y1 ) LEFT JOIN y2 ON x
} 1

do_execsql_test 5.5 {
  SELECT * FROM ( SELECT * FROM y1 ) LEFT JOIN y2 ON x
} {0 0 1 {}}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 6.1 {
  CREATE TABLE t1(x); 
  INSERT INTO t1 VALUES(1);

  CREATE TABLE t2(y INTEGER PRIMARY KEY,a,b);
  INSERT INTO t2 VALUES(1,2,3);
  CREATE INDEX t2a ON t2(a); 
  CREATE INDEX t2b ON t2(b); 
}

do_execsql_test 6.2 {
  SELECT * FROM t1 LEFT JOIN t2 ON a=2 OR b=3 WHERE y IS NULL;
} {}

do_execsql_test 6.3.1 {
  CREATE TABLE t3(x);
  INSERT INTO t3 VALUES(1);
  CREATE TABLE t4(y, z);
  SELECT ifnull(z, '!!!') FROM t3 LEFT JOIN t4 ON (x=y);
} {!!!}

do_execsql_test 6.3.2 {
  CREATE INDEX t4i ON t4(y, ifnull(z, '!!!'));
  SELECT ifnull(z, '!!!') FROM t3 LEFT JOIN t4 ON (x=y);
} {!!!}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 7.0 {
  CREATE TABLE t1(x);
  INSERT INTO t1 VALUES(1);
}

do_execsql_test 7.1 {
  CREATE TABLE t2(x, y, z);
  CREATE INDEX t2xy ON t2(x, y);
  WITH s(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<50000
  )
  INSERT INTO t2 SELECT i/10, i, NULL FROM s;
  ANALYZE;
}

do_eqp_test 7.2 {
  SELECT * FROM t1 LEFT JOIN t2 ON (
    t2.x = t1.x AND (t2.y=? OR (t2.y=? AND t2.z IS NOT NULL))
  );
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--MULTI-INDEX OR
     |--SEARCH TABLE t2 USING INDEX t2xy (x=? AND y=?)
     `--SEARCH TABLE t2 USING INDEX t2xy (x=? AND y=?)
}

do_execsql_test 7.3 {
  CREATE TABLE t3(x);

  CREATE TABLE t4(x, y, z);
  CREATE INDEX t4xy ON t4(x, y);
  CREATE INDEX t4xz ON t4(x, z);

  WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<50000)
  INSERT INTO t4 SELECT i/10, i, i FROM s;

  ANALYZE;
}

do_eqp_test 7.4 {
  SELECT * FROM t3 LEFT JOIN t4 ON (t4.x = t3.x) WHERE (t4.y = ? OR t4.z = ?);
} {
  QUERY PLAN
  |--SCAN TABLE t3
  `--SEARCH TABLE t4 USING INDEX t4xz (x=?)
} 

finish_test
Changes to test/mallocK.test.
117
118
119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134

  SELECT 'x' > '.';
} {1}

ifcapable stat4 {
  do_eqp_test 6.1 {
    SELECT DISTINCT c FROM t3 WHERE b BETWEEN '.xx..' AND '.xxxx';

  } {
    0 0 0 {SEARCH TABLE t3 USING INDEX i3 (ANY(a) AND b>? AND b<?)} 
    0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  }
}

do_faultsim_test 6 -faults oom* -body {
  db cache flush
  db eval { SELECT DISTINCT c FROM t3 WHERE b BETWEEN '.xx..' AND '.xxxx' }
} -test {
  faultsim_test_result {0 {12 13 14 15}} 







>
|
|
|
|







117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

  SELECT 'x' > '.';
} {1}

ifcapable stat4 {
  do_eqp_test 6.1 {
    SELECT DISTINCT c FROM t3 WHERE b BETWEEN '.xx..' AND '.xxxx';
  } [string map {"\n  " \n} {
    QUERY PLAN
    |--SEARCH TABLE t3 USING INDEX i3 (ANY(a) AND b>? AND b<?)
    `--USE TEMP B-TREE FOR DISTINCT
  }]
}

do_faultsim_test 6 -faults oom* -body {
  db cache flush
  db eval { SELECT DISTINCT c FROM t3 WHERE b BETWEEN '.xx..' AND '.xxxx' }
} -test {
  faultsim_test_result {0 {12 13 14 15}} 
Changes to test/orderby1.test.
450
451
452
453
454
455
456
457
458
459



460
461
462
463
464
465
466
    
    SELECT b, y FROM t41 CROSS JOIN t42 ON x=a ORDER BY b, y;
  }
} {1 13 1 14 1 15 1 16}

# No sorting of queries that omit the FROM clause.
#
do_execsql_test 5.0 {
  EXPLAIN QUERY PLAN SELECT 5 ORDER BY 1
} {}



do_execsql_test 5.1 {
  EXPLAIN QUERY PLAN SELECT 5 UNION ALL SELECT 3 ORDER BY 1
} {~/B-TREE/}
do_execsql_test 5.2 {
  SELECT 5 UNION ALL SELECT 3 ORDER BY 1
} {3 5}
do_execsql_test 5.3 {







|
|
|
>
>
>







450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    
    SELECT b, y FROM t41 CROSS JOIN t42 ON x=a ORDER BY b, y;
  }
} {1 13 1 14 1 15 1 16}

# No sorting of queries that omit the FROM clause.
#
do_eqp_test 5.0 {
  SELECT 5 ORDER BY 1
} {
  QUERY PLAN
  `--SCAN CONSTANT ROW
}
do_execsql_test 5.1 {
  EXPLAIN QUERY PLAN SELECT 5 UNION ALL SELECT 3 ORDER BY 1
} {~/B-TREE/}
do_execsql_test 5.2 {
  SELECT 5 UNION ALL SELECT 3 ORDER BY 1
} {3 5}
do_execsql_test 5.3 {
508
509
510
511
512
513
514

515
516
517
518
519
520
521
522
523
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
}

do_eqp_test 8.1 {
  SELECT * FROM t1 ORDER BY a, b;
} {

  0 0 0 {SCAN TABLE t1 USING INDEX i1} 
  0 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY}
}

do_execsql_test 8.2 {
  WITH cnt(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM cnt WHERE i<10000
  )
  INSERT INTO t1 SELECT i%2, randomblob(500) FROM cnt;







>
|
|







511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
}

do_eqp_test 8.1 {
  SELECT * FROM t1 ORDER BY a, b;
} {
  QUERY PLAN
  |--SCAN TABLE t1 USING INDEX i1
  `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY
}

do_execsql_test 8.2 {
  WITH cnt(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM cnt WHERE i<10000
  )
  INSERT INTO t1 SELECT i%2, randomblob(500) FROM cnt;
Changes to test/permutations.test.
1068
1069
1070
1071
1072
1073
1074




















1075
1076
1077
1078
1079
1080
1081
} -dbconfig {
  $::dbhandle version -use-legacy-prepare 1
  #$::dbhandle cache size 0
} -files [
  test_set $allquicktests -exclude *malloc* *ioerr* *fault* \
      stmtvtab1.test index9.test
]





















# End of tests
#############################################################################

# run_tests NAME OPTIONS
#
# where available options are:  







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
} -dbconfig {
  $::dbhandle version -use-legacy-prepare 1
  #$::dbhandle cache size 0
} -files [
  test_set $allquicktests -exclude *malloc* *ioerr* *fault* \
      stmtvtab1.test index9.test
]

test_suite "sorterref" -prefix "" -description {
  Run the "veryquick" test suite with SQLITE_CONFIG_SORTERREF_SIZE set
  to 0 so that sorter-references are used whenever possible.
} -files [
  test_set $allquicktests -exclude *malloc* *ioerr* *fault* *bigfile* *_err* \
      *fts5corrupt* *fts5big* *fts5aj*
] -initialize {
  catch {db close}
  sqlite3_shutdown
  sqlite3_config_sorterref 0
  sqlite3_initialize
  autoinstall_test_functions
} -shutdown {
  catch {db close}
  sqlite3_shutdown
  sqlite3_config_sorterref -1
  sqlite3_initialize
  autoinstall_test_functions
}

# End of tests
#############################################################################

# run_tests NAME OPTIONS
#
# where available options are:  
Added test/resetdb.test.




















































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# 2018-04-28
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# Test cases for SQLITE_DBCONFIG_RESET_DATABASE
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix resetdb

ifcapable !vtab||!compound {
  finish_test
  return
}

# Create a sample database
do_execsql_test 100 {
  PRAGMA page_size=4096;
  CREATE TABLE t1(a,b);
  WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20)
    INSERT INTO t1(a,b) SELECT x, randomblob(300) FROM c;
  CREATE INDEX t1a ON t1(a);
  CREATE INDEX t1b ON t1(b);
  SELECT sum(a), sum(length(b)) FROM t1;
  PRAGMA integrity_check;
  PRAGMA journal_mode;
  PRAGMA page_count;
} {210 6000 ok delete 8}

# Verify that the same content is seen from a separate database connection
sqlite3 db2 test.db
do_test 110 {
  execsql {
    SELECT sum(a), sum(length(b)) FROM t1;
    PRAGMA integrity_check;
    PRAGMA journal_mode;
    PRAGMA page_count;
  } db2
} {210 6000 ok delete 8}

do_test 200 {
  # Thoroughly corrupt the database file by overwriting the first
  # page with randomness.
  catchsql {
    UPDATE sqlite_dbpage SET data=randomblob(4096) WHERE pgno=1;
    PRAGMA quick_check;
  }
} {1 {unsupported file format}}
do_test 201 {
  catchsql {
    PRAGMA quick_check;
  } db2
} {1 {unsupported file format}}

do_test 210 {
  # Reset the database file using SQLITE_DBCONFIG_RESET_DATABASE
  sqlite3_db_config db RESET_DB 1
  db eval VACUUM
  sqlite3_db_config db RESET_DB 0

  # Verify that the reset took, even on the separate database connection
  catchsql {
     PRAGMA page_count;
     PRAGMA page_size;
     PRAGMA quick_check;
     PRAGMA journal_mode;
  } db2
} {0 {1 4096 ok delete}}

# Delete the old connections and database and start over again
# with a different page size and in WAL mode.
#
db close
db2 close
forcedelete test.db
sqlite3 db test.db
do_execsql_test 300 {
  PRAGMA page_size=8192;
  PRAGMA journal_mode=WAL;
  CREATE TABLE t1(a,b);
  WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20)
    INSERT INTO t1(a,b) SELECT x, randomblob(1300) FROM c;
  CREATE INDEX t1a ON t1(a);
  CREATE INDEX t1b ON t1(b);
  SELECT sum(a), sum(length(b)) FROM t1;
  PRAGMA integrity_check;
  PRAGMA journal_mode;
  PRAGMA page_size;
  PRAGMA page_count;
} {wal 210 26000 ok wal 8192 12}
sqlite3 db2 test.db
do_test 310 {
  execsql {
    SELECT sum(a), sum(length(b)) FROM t1;
    PRAGMA integrity_check;
    PRAGMA journal_mode;
    PRAGMA page_size;
    PRAGMA page_count;
  } db2
} {210 26000 ok wal 8192 12}

# Corrupt the database again
do_catchsql_test 320 {
  UPDATE sqlite_dbpage SET data=randomblob(8192) WHERE pgno=1;
  PRAGMA quick_check
} {1 {file is not a database}}

do_test 330 {
  catchsql {
    PRAGMA quick_check
  } db2
} {1 {file is not a database}}

# Reset the database yet again.  Verify that the page size and
# journal mode are preserved.
#
do_test 400 {
  sqlite3_db_config db RESET_DB 1
  db eval VACUUM
  sqlite3_db_config db RESET_DB 0
  catchsql {
     PRAGMA page_count;
     PRAGMA page_size;
     PRAGMA journal_mode;
     PRAGMA quick_check;
  } db2
} {0 {1 8192 wal ok}}
db2 close


finish_test
Changes to test/rollback2.test.
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
}

#--------------------------------------------------------------------
# Try with some index scans
#
do_eqp_test 3.1 {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC;
} {0 0 0 {SCAN TABLE t1 USING INDEX i1}}
do_rollback_test 3.2 -setup {
  BEGIN;
    DELETE FROM t1 WHERE (i%2)==1;
} -select {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC;
} -result {
  40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10  8  6  4  2







|







97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
}

#--------------------------------------------------------------------
# Try with some index scans
#
do_eqp_test 3.1 {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC;
} {SCAN TABLE t1 USING INDEX i1}
do_rollback_test 3.2 -setup {
  BEGIN;
    DELETE FROM t1 WHERE (i%2)==1;
} -select {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC;
} -result {
  40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10  8  6  4  2
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Now with some index scans that feature overflow keys.
#
set leader [string repeat "abcdefghij" 70]
do_execsql_test 4.1 { UPDATE t1 SET h = $leader || h; }

do_eqp_test 4.2 {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC;
} {0 0 0 {SCAN TABLE t1 USING INDEX i1}}
do_rollback_test 4.3 -setup {
  BEGIN;
    DELETE FROM t1 WHERE (i%2)==1;
} -select {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC;
} -result {
  2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40







|







127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Now with some index scans that feature overflow keys.
#
set leader [string repeat "abcdefghij" 70]
do_execsql_test 4.1 { UPDATE t1 SET h = $leader || h; }

do_eqp_test 4.2 {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC;
} {SCAN TABLE t1 USING INDEX i1}
do_rollback_test 4.3 -setup {
  BEGIN;
    DELETE FROM t1 WHERE (i%2)==1;
} -select {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC;
} -result {
  2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Changes to test/rowvalue.test.
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
  INSERT INTO xy VALUES(3, 3, 3);
  INSERT INTO xy VALUES(4, 4, 4);
}


foreach {tn sql res eqp} {
  1 "SELECT * FROM xy WHERE (i, j) IS (2, 2)" {2 2 2} 
    "0 0 0 {SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid=?)}"

  2 "SELECT * FROM xy WHERE (k, j) < (2, 3)" {1 1 1 2 2 2}
    "0 0 0 {SCAN TABLE xy}"

  3 "SELECT * FROM xy WHERE (i, j) < (2, 3)" {1 1 1 2 2 2}
    "0 0 0 {SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid<?)}"

  4 "SELECT * FROM xy WHERE (i, j) > (2, 1)" {2 2 2 3 3 3 4 4 4}
    "0 0 0 {SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid>?)}"

  5 "SELECT * FROM xy WHERE (i, j) > ('2', 1)" {2 2 2 3 3 3 4 4 4}
    "0 0 0 {SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid>?)}"

} {
  do_eqp_test 7.$tn.1 $sql $eqp
  do_execsql_test 7.$tn.2 $sql $res
}

do_execsql_test 8.0 {







|


|


|


|


|







171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
  INSERT INTO xy VALUES(3, 3, 3);
  INSERT INTO xy VALUES(4, 4, 4);
}


foreach {tn sql res eqp} {
  1 "SELECT * FROM xy WHERE (i, j) IS (2, 2)" {2 2 2} 
    "SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid=?)"

  2 "SELECT * FROM xy WHERE (k, j) < (2, 3)" {1 1 1 2 2 2}
    "SCAN TABLE xy"

  3 "SELECT * FROM xy WHERE (i, j) < (2, 3)" {1 1 1 2 2 2}
    "SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid<?)"

  4 "SELECT * FROM xy WHERE (i, j) > (2, 1)" {2 2 2 3 3 3 4 4 4}
    "SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid>?)"

  5 "SELECT * FROM xy WHERE (i, j) > ('2', 1)" {2 2 2 3 3 3 4 4 4}
    "SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid>?)"

} {
  do_eqp_test 7.$tn.1 $sql $eqp
  do_execsql_test 7.$tn.2 $sql $res
}

do_execsql_test 8.0 {
Changes to test/rowvalue4.test.
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    INSERT INTO c1(c, d) SELECT a, b FROM c1;

    CREATE INDEX c1ab ON c1(a, b);
    CREATE INDEX c1cd ON c1(c, d);
    ANALYZE;
  }

  do_eqp_test 3.1.1 { SELECT * FROM c1 WHERE a=1 AND c=2 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1cd (c=?)}
  }
  do_eqp_test 3.1.2 { SELECT * FROM c1 WHERE a=1 AND b>'d' AND c=2 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1cd (c=?)}
  }
  do_eqp_test 3.1.3 { SELECT * FROM c1 WHERE a=1 AND b>'l' AND c=2 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=? AND b>?)}
  }

  do_eqp_test 3.2.1 { SELECT * FROM c1 WHERE a=1 AND c>1 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1cd (c>?)}
  }
  do_eqp_test 3.2.2 { SELECT * FROM c1 WHERE a=1 AND c>0 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=?)}
  }
  do_eqp_test 3.2.3 { SELECT * FROM c1 WHERE a=1 AND c>=1 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=?)}
  }
  do_eqp_test 3.2.4 { SELECT * FROM c1 WHERE a=1 AND (c, d)>(1, 'c') } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=?)}
  }
  do_eqp_test 3.2.5 { SELECT * FROM c1 WHERE a=1 AND (c, d)>(1, 'o') } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1cd ((c,d)>(?,?))}
  }
  do_eqp_test 3.2.6 { SELECT * FROM c1 WHERE a=1 AND (c, +b)>(1, 'c') } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=?)}
  }
}

#------------------------------------------------------------------------

do_execsql_test 5.0 {
  CREATE TABLE d1(x, y);
  CREATE TABLE d2(a, b, c);







|
|
|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    INSERT INTO c1(c, d) SELECT a, b FROM c1;

    CREATE INDEX c1ab ON c1(a, b);
    CREATE INDEX c1cd ON c1(c, d);
    ANALYZE;
  }

  do_eqp_test 3.1.1 { SELECT * FROM c1 WHERE a=1 AND c=2 } \
     {SEARCH TABLE c1 USING INDEX c1cd (c=?)}

  do_eqp_test 3.1.2 { SELECT * FROM c1 WHERE a=1 AND b>'d' AND c=2 } \
     {SEARCH TABLE c1 USING INDEX c1cd (c=?)}

  do_eqp_test 3.1.3 { SELECT * FROM c1 WHERE a=1 AND b>'l' AND c=2 } \
     {SEARCH TABLE c1 USING INDEX c1ab (a=? AND b>?)}


  do_eqp_test 3.2.1 { SELECT * FROM c1 WHERE a=1 AND c>1 } \
     {SEARCH TABLE c1 USING INDEX c1cd (c>?)}

  do_eqp_test 3.2.2 { SELECT * FROM c1 WHERE a=1 AND c>0 } \
     {SEARCH TABLE c1 USING INDEX c1ab (a=?)}

  do_eqp_test 3.2.3 { SELECT * FROM c1 WHERE a=1 AND c>=1 } \
     {SEARCH TABLE c1 USING INDEX c1ab (a=?)}

  do_eqp_test 3.2.4 { SELECT * FROM c1 WHERE a=1 AND (c, d)>(1, 'c') } \
     {SEARCH TABLE c1 USING INDEX c1ab (a=?)}

  do_eqp_test 3.2.5 { SELECT * FROM c1 WHERE a=1 AND (c, d)>(1, 'o') } \
     {SEARCH TABLE c1 USING INDEX c1cd ((c,d)>(?,?))}

  do_eqp_test 3.2.6 { SELECT * FROM c1 WHERE a=1 AND (c, +b)>(1, 'c') } \
     {SEARCH TABLE c1 USING INDEX c1ab (a=?)}

}

#------------------------------------------------------------------------

do_execsql_test 5.0 {
  CREATE TABLE d1(x, y);
  CREATE TABLE d2(a, b, c);
230
231
232
233
234
235
236

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
}

do_eqp_test 5.1 {
  SELECT * FROM d2 WHERE 
    (a, b) IN (SELECT x, y FROM d1) AND
    (c) IN (SELECT y FROM d1)
} {

  0 0 0 {SEARCH TABLE d2 USING INDEX d2ab (a=? AND b=?)}
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE d1}
  0 0 0 {EXECUTE LIST SUBQUERY 2} 
  2 0 0 {SCAN TABLE d1}
}

do_execsql_test 6.0 {
  CREATE TABLE e1(a, b, c, d, e);
  CREATE INDEX e1ab ON e1(a, b);
  CREATE INDEX e1cde ON e1(c, d, e);
}

do_eqp_test 6.1 {
  SELECT * FROM e1 WHERE (a, b) > (?, ?)
} {
  0 0 0 {SEARCH TABLE e1 USING INDEX e1ab ((a,b)>(?,?))}
}
do_eqp_test 6.2 {
  SELECT * FROM e1 WHERE (a, b) < (?, ?)
} {
  0 0 0 {SEARCH TABLE e1 USING INDEX e1ab ((a,b)<(?,?))}
}
do_eqp_test 6.3 {
  SELECT * FROM e1 WHERE c = ? AND (d, e) > (?, ?)
} {
  0 0 0 {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)>(?,?))}
}
do_eqp_test 6.4 {
  SELECT * FROM e1 WHERE c = ? AND (d, e) < (?, ?)
} {
  0 0 0 {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)<(?,?))}
}

do_eqp_test 6.5 {
  SELECT * FROM e1 WHERE (d, e) BETWEEN (?, ?) AND (?, ?) AND c = ?
} {
  0 0 0 
  {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)>(?,?) AND (d,e)<(?,?))}
}

#-------------------------------------------------------------------------

do_execsql_test 7.1 {
  CREATE TABLE f1(a, b, c);
  CREATE INDEX f1ab ON f1(a, b);
}







>
|
|
|
|
|










<
|
|


<
|
|


<
|
|


<
|
<



<
<
|
<







229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

252
253
254
255

256
257
258
259

260
261
262
263

264

265
266
267


268

269
270
271
272
273
274
275
}

do_eqp_test 5.1 {
  SELECT * FROM d2 WHERE 
    (a, b) IN (SELECT x, y FROM d1) AND
    (c) IN (SELECT y FROM d1)
} {
  QUERY PLAN
  |--SEARCH TABLE d2 USING INDEX d2ab (a=? AND b=?)
  |--LIST SUBQUERY
  |  `--SCAN TABLE d1
  `--LIST SUBQUERY
     `--SCAN TABLE d1
}

do_execsql_test 6.0 {
  CREATE TABLE e1(a, b, c, d, e);
  CREATE INDEX e1ab ON e1(a, b);
  CREATE INDEX e1cde ON e1(c, d, e);
}

do_eqp_test 6.1 {
  SELECT * FROM e1 WHERE (a, b) > (?, ?)

} {SEARCH TABLE e1 USING INDEX e1ab ((a,b)>(?,?))}

do_eqp_test 6.2 {
  SELECT * FROM e1 WHERE (a, b) < (?, ?)

} {SEARCH TABLE e1 USING INDEX e1ab ((a,b)<(?,?))}

do_eqp_test 6.3 {
  SELECT * FROM e1 WHERE c = ? AND (d, e) > (?, ?)

} {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)>(?,?))}

do_eqp_test 6.4 {
  SELECT * FROM e1 WHERE c = ? AND (d, e) < (?, ?)

} {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)<(?,?))}


do_eqp_test 6.5 {
  SELECT * FROM e1 WHERE (d, e) BETWEEN (?, ?) AND (?, ?) AND c = ?


} {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)>(?,?) AND (d,e)<(?,?))}


#-------------------------------------------------------------------------

do_execsql_test 7.1 {
  CREATE TABLE f1(a, b, c);
  CREATE INDEX f1ab ON f1(a, b);
}
Changes to test/scanstatus.test.
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

359
360
361
362
363
364
365
366
367
do_scanstatus_test 5.2.2 { 
  nLoop 1 nVisit 2 nEst 2.0 zName sqlite_autoindex_t1_1
  zExplain {SEARCH TABLE t1 USING COVERING INDEX sqlite_autoindex_t1_1 (a=?)}
}

do_eqp_test 5.3.1 {
  SELECT count(*) FROM t2 WHERE y = 'j';
} {0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}}
do_execsql_test 5.3.2 {
  SELECT count(*) FROM t2 WHERE y = 'j';
} {19}
do_scanstatus_test 5.3.3 { 
  nLoop 1 nVisit 19 nEst 56.0 zName t2xy zExplain
  {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
}

do_eqp_test 5.4.1 {
  SELECT count(*) FROM t1, t2 WHERE y = c;
} {

  0 0 0 {SCAN TABLE t1 USING COVERING INDEX t1bc}
  0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
}
do_execsql_test 5.4.2 {
  SELECT count(*) FROM t1, t2 WHERE y = c;
} {200}
do_scanstatus_test 5.4.3 { 
  nLoop 1 nVisit 10 nEst 10.0 zName t1bc 
  zExplain {SCAN TABLE t1 USING COVERING INDEX t1bc}
  nLoop 10 nVisit 200 nEst 56.0 zName t2xy 
  zExplain {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
}

do_eqp_test 5.5.1 {
  SELECT count(*) FROM t1, t3 WHERE y = c;
} {

  0 0 1 {SCAN TABLE t3} 
  0 1 0 {SEARCH TABLE t1 USING AUTOMATIC COVERING INDEX (c=?)}
}
do_execsql_test 5.5.2 {
  SELECT count(*) FROM t1, t3 WHERE y = c;
} {200}
do_scanstatus_test 5.5.3 { 
  nLoop 1 nVisit 501 nEst 480.0 zName t3 zExplain {SCAN TABLE t3}
  nLoop 501 nVisit 200 nEst 20.0 zName auto-index zExplain







|











>
|
|














>
|
|







324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
do_scanstatus_test 5.2.2 { 
  nLoop 1 nVisit 2 nEst 2.0 zName sqlite_autoindex_t1_1
  zExplain {SEARCH TABLE t1 USING COVERING INDEX sqlite_autoindex_t1_1 (a=?)}
}

do_eqp_test 5.3.1 {
  SELECT count(*) FROM t2 WHERE y = 'j';
} {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
do_execsql_test 5.3.2 {
  SELECT count(*) FROM t2 WHERE y = 'j';
} {19}
do_scanstatus_test 5.3.3 { 
  nLoop 1 nVisit 19 nEst 56.0 zName t2xy zExplain
  {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
}

do_eqp_test 5.4.1 {
  SELECT count(*) FROM t1, t2 WHERE y = c;
} {
  QUERY PLAN
  |--SCAN TABLE t1 USING COVERING INDEX t1bc
  `--SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)
}
do_execsql_test 5.4.2 {
  SELECT count(*) FROM t1, t2 WHERE y = c;
} {200}
do_scanstatus_test 5.4.3 { 
  nLoop 1 nVisit 10 nEst 10.0 zName t1bc 
  zExplain {SCAN TABLE t1 USING COVERING INDEX t1bc}
  nLoop 10 nVisit 200 nEst 56.0 zName t2xy 
  zExplain {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
}

do_eqp_test 5.5.1 {
  SELECT count(*) FROM t1, t3 WHERE y = c;
} {
  QUERY PLAN
  |--SCAN TABLE t3
  `--SEARCH TABLE t1 USING AUTOMATIC COVERING INDEX (c=?)
}
do_execsql_test 5.5.2 {
  SELECT count(*) FROM t1, t3 WHERE y = c;
} {200}
do_scanstatus_test 5.5.3 { 
  nLoop 1 nVisit 501 nEst 480.0 zName t3 zExplain {SCAN TABLE t3}
  nLoop 501 nVisit 200 nEst 20.0 zName auto-index zExplain
Changes to test/selectA.test.
1332
1333
1334
1335
1336
1337
1338



1339
1340

1341
1342
1343
1344
1345
1346
1347
1348
1349
1350

do_eqp_test 4.1.2 {
  SELECT c, d FROM t5 
  UNION ALL
  SELECT a, b FROM t4 WHERE f()==f()
  ORDER BY 1,2
} {



  1 0 0 {SCAN TABLE t5 USING INDEX i2} 
  1 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY}

  2 0 0 {SCAN TABLE t4 USING INDEX i1} 
  2 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)}
}

do_execsql_test 4.1.3 {
  SELECT c, d FROM t5 
  UNION ALL
  SELECT a, b FROM t4 WHERE f()==f()
  ORDER BY 1,2







>
>
>
|
|
>
|
|
<







1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

1347
1348
1349
1350
1351
1352
1353

do_eqp_test 4.1.2 {
  SELECT c, d FROM t5 
  UNION ALL
  SELECT a, b FROM t4 WHERE f()==f()
  ORDER BY 1,2
} {
  QUERY PLAN
  `--MERGE (UNION ALL)
     |--LEFT
     |  |--SCAN TABLE t5 USING INDEX i2
     |  `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY
     `--RIGHT
        |--SCAN TABLE t4 USING INDEX i1
        `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY

}

do_execsql_test 4.1.3 {
  SELECT c, d FROM t5 
  UNION ALL
  SELECT a, b FROM t4 WHERE f()==f()
  ORDER BY 1,2
Changes to test/selectD.test.
165
166
167
168
169
170
171
172
173
174
  SELECT * 
   FROM t41
   LEFT JOIN (SELECT count(*) AS cnt, x1.d
                FROM (t42 INNER JOIN t43 ON d=g) AS x1
               WHERE x1.d>5
               GROUP BY x1.d) AS x2
                  ON t41.b=x2.d;
} {/.*SEARCH SUBQUERY 1 AS x2 USING AUTOMATIC.*/}

finish_test







|


165
166
167
168
169
170
171
172
173
174
  SELECT * 
   FROM t41
   LEFT JOIN (SELECT count(*) AS cnt, x1.d
                FROM (t42 INNER JOIN t43 ON d=g) AS x1
               WHERE x1.d>5
               GROUP BY x1.d) AS x2
                  ON t41.b=x2.d;
} {/*SEARCH SUBQUERY 0x* AS x2 USING AUTOMATIC*/}

finish_test
Changes to test/skipscan2.test.
195
196
197
198
199
200
201
202
203
204
205
  for {set i 0} {$i < 1000} {incr i} {
    execsql { INSERT INTO t3 VALUES($i%2, $i, 'xyz') }
  }
  execsql { ANALYZE }
} {}
do_eqp_test skipscan2-3.3eqp {
  SELECT * FROM t3 WHERE b=42;
} {0 0 0 {SEARCH TABLE t3 USING PRIMARY KEY (ANY(a) AND b=?)}}


finish_test







|



195
196
197
198
199
200
201
202
203
204
205
  for {set i 0} {$i < 1000} {incr i} {
    execsql { INSERT INTO t3 VALUES($i%2, $i, 'xyz') }
  }
  execsql { ANALYZE }
} {}
do_eqp_test skipscan2-3.3eqp {
  SELECT * FROM t3 WHERE b=42;
} {SEARCH TABLE t3 USING PRIMARY KEY (ANY(a) AND b=?)}


finish_test
Changes to test/skipscan6.test.
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  t3 t3_ba   {100 20 1 1}
}

# Use index "t3_a", as (a=?) is expected to match only a single row.
#
do_eqp_test 3.1 {
  SELECT * FROM t3 WHERE a = ? AND c = ?
} {
  0 0 0 {SEARCH TABLE t3 USING INDEX t3_a (a=?)}
}

# The same query on table t2. This should use index "t2_a", for the
# same reason. At one point though, it was mistakenly using a skip-scan.
#
do_eqp_test 3.2 {
  SELECT * FROM t2 WHERE a = ? AND c = ?
} {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2_a (a=?)}
}

finish_test




finish_test







<
|
<






<
|
<
<
<
<
<
<


175
176
177
178
179
180
181

182

183
184
185
186
187
188

189






190
191
  t3 t3_ba   {100 20 1 1}
}

# Use index "t3_a", as (a=?) is expected to match only a single row.
#
do_eqp_test 3.1 {
  SELECT * FROM t3 WHERE a = ? AND c = ?

} {SEARCH TABLE t3 USING INDEX t3_a (a=?)}


# The same query on table t2. This should use index "t2_a", for the
# same reason. At one point though, it was mistakenly using a skip-scan.
#
do_eqp_test 3.2 {
  SELECT * FROM t2 WHERE a = ? AND c = ?

} {SEARCH TABLE t2 USING INDEX t2_a (a=?)}







finish_test
Changes to test/soak.test.
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  fuzz_malloc.test
  trans.test
  corruptC.test
}

set G(isquick) 1

set soak_starttime  [clock seconds]
set soak_finishtime [expr {$soak_starttime + $TIMEOUT}]

# Loop until the timeout is reached or an error occurs.
#
for {set iRun 0} {[clock seconds] < $soak_finishtime} {incr iRun} {

  set iIdx [expr {$iRun % [llength $SOAKTESTS]}]
  source [file join $testdir [lindex $SOAKTESTS $iIdx]]
  catch {db close}

  if {$sqlite_open_file_count>0} {
    puts "$tail did not close all files: $sqlite_open_file_count"







|




|







63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  fuzz_malloc.test
  trans.test
  corruptC.test
}

set G(isquick) 1

set soak_starttime  [clock_seconds]
set soak_finishtime [expr {$soak_starttime + $TIMEOUT}]

# Loop until the timeout is reached or an error occurs.
#
for {set iRun 0} {[clock_seconds] < $soak_finishtime} {incr iRun} {

  set iIdx [expr {$iRun % [llength $SOAKTESTS]}]
  source [file join $testdir [lindex $SOAKTESTS $iIdx]]
  catch {db close}

  if {$sqlite_open_file_count>0} {
    puts "$tail did not close all files: $sqlite_open_file_count"
Added test/sorterref.test.




































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# 2018 April 14.
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix sorterref

do_execsql_test 1.0 {
  CREATE TABLE t1(a, b, c);
  INSERT INTO t1 VALUES(1, 2, 3);
  INSERT INTO t1 VALUES(4, 5, 6);
  ALTER TABLE t1 ADD COLUMN d DEFAULT 'string';
  INSERT INTO t1 VALUES(7, 8, 9, 'text');
}

do_execsql_test 1.1 {
  SELECT * FROM t1 ORDER BY b;
} {
  1 2 3 string 4 5 6 string 7 8 9 text
}

do_execsql_test 2.0 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(c, d, PRIMARY KEY(c)) WITHOUT ROWID;

  INSERT INTO t1 VALUES(1, 2);
  INSERT INTO t1 VALUES(2, 3);
  INSERT INTO t1 VALUES(3, 4);

  INSERT INTO t2 VALUES(1, 'one');
  INSERT INTO t2 VALUES(3, 'three');
}

do_execsql_test 2.1 {
  SELECT * FROM t1 LEFT JOIN t2 ON (a=c) ORDER BY b;
} {1 2 1 one 2 3 {} {} 3 4 3 three}



finish_test
Changes to test/tester.tcl.
980
981
982
983
984
985
986































































987






988
989


990
991
992
993
994
995
996
  uplevel do_test [list $testname] [list "catchsql {$sql}"] [list $result]
}
proc do_timed_execsql_test {testname sql {result {}}} {
  fix_testname testname
  uplevel do_test [list $testname] [list "execsql_timed {$sql}"]\
                                   [list [list {*}$result]]
}































































proc do_eqp_test {name sql res} {






  uplevel do_execsql_test $name [list "EXPLAIN QUERY PLAN $sql"] [list $res]
}



#-------------------------------------------------------------------------
#   Usage: do_select_tests PREFIX ?SWITCHES? TESTLIST
#
# Where switches are:
#
#   -errorformat FMTSTRING







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
|
|
>
>







980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
  uplevel do_test [list $testname] [list "catchsql {$sql}"] [list $result]
}
proc do_timed_execsql_test {testname sql {result {}}} {
  fix_testname testname
  uplevel do_test [list $testname] [list "execsql_timed {$sql}"]\
                                   [list [list {*}$result]]
}

# Run an EXPLAIN QUERY PLAN $sql in database "db".  Then rewrite the output
# as an ASCII-art graph and return a string that is that graph.
#
# Hexadecimal literals in the output text are converted into "xxxxxx" since those
# literals are pointer values that might very from one run of the test to the
# next, yet we want the output to be consistent.
#
proc query_plan_graph {sql} {
  db eval "EXPLAIN QUERY PLAN $sql" {
    set dx($id) $detail
    lappend cx($parent) $id
  }
  set a "\n  QUERY PLAN\n"
  append a [append_graph "  " dx cx 0]
  return [regsub -all { 0x[A-F0-9]+\y} $a { xxxxxx}]
}

# Helper routine for [query_plan_graph SQL]:
#
# Output rows of the graph that are children of $level.
#
#   prefix:  Prepend to every output line
#
#   dxname:  Name of an array variable that stores text describe
#            The description for $id is $dx($id)
#
#   cxname:  Name of an array variable holding children of item.
#            Children of $id are $cx($id)
#
#   level:   Render all lines that are children of $level
# 
proc append_graph {prefix dxname cxname level} {
  upvar $dxname dx $cxname cx
  set a ""
  set x $cx($level)
  set n [llength $x]
  for {set i 0} {$i<$n} {incr i} {
    set id [lindex $x $i]
    if {$i==$n-1} {
      set p1 "`--"
      set p2 "   "
    } else {
      set p1 "|--"
      set p2 "|  "
    }
    append a $prefix$p1$dx($id)\n
    if {[info exists cx($id)]} {
      append a [append_graph "$prefix$p2" dx cx $id]
    }
  }
  return $a
}

# Do an EXPLAIN QUERY PLAN test on input $sql with expected results $res
#
# If $res begins with a "\s+QUERY PLAN\n" then it is assumed to be the 
# complete graph which must match the output of [query_plan_graph $sql]
# exactly.
#
# If $res does not begin with "\s+QUERY PLAN\n" then take it is a string
# that must be found somewhere in the query plan output.
#
proc do_eqp_test {name sql res} {
  if {[regexp {^\s+QUERY PLAN\n} $res]} {
    uplevel do_test $name [list [list query_plan_graph $sql]] [list $res]
  } else {
    if {[string index $res 0]!="/"} {
      set res "/*$res*/"
    }
    uplevel do_execsql_test $name [list "EXPLAIN QUERY PLAN $sql"] [list $res]
  }
}


#-------------------------------------------------------------------------
#   Usage: do_select_tests PREFIX ?SWITCHES? TESTLIST
#
# Where switches are:
#
#   -errorformat FMTSTRING
Changes to test/tkt-385a5b56b9.test.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

do_execsql_test 2.0 {
  CREATE TABLE t2(x, y NOT NULL);
  CREATE UNIQUE INDEX t2x ON t2(x);
  CREATE UNIQUE INDEX t2y ON t2(y);
}

do_eqp_test 2.1 { SELECT DISTINCT x FROM t2 } {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2x}
}

do_eqp_test 2.2 { SELECT DISTINCT y FROM t2 } {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2y}
}

do_eqp_test 2.3 { SELECT DISTINCT x, y FROM t2 WHERE y=10 } {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2y (y=?)}
}

do_eqp_test 2.4 { SELECT DISTINCT x, y FROM t2 WHERE x=10 } {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2x (x=?)}
}

finish_test







|
|
|
<
|
|
|
<
|
|
|
<
|
|
|


30
31
32
33
34
35
36
37
38
39

40
41
42

43
44
45

46
47
48
49
50

do_execsql_test 2.0 {
  CREATE TABLE t2(x, y NOT NULL);
  CREATE UNIQUE INDEX t2x ON t2(x);
  CREATE UNIQUE INDEX t2y ON t2(y);
}

do_eqp_test 2.1 { SELECT DISTINCT x FROM t2 } \
  {SCAN TABLE t2 USING COVERING INDEX t2x}


do_eqp_test 2.2 { SELECT DISTINCT y FROM t2 } \
  {SCAN TABLE t2 USING COVERING INDEX t2y}


do_eqp_test 2.3 { SELECT DISTINCT x, y FROM t2 WHERE y=10 } \
  {SEARCH TABLE t2 USING INDEX t2y (y=?)}


do_eqp_test 2.4 { SELECT DISTINCT x, y FROM t2 WHERE x=10 } \
  {SEARCH TABLE t2 USING INDEX t2x (x=?)}


finish_test
Changes to test/tkt-78e04e52ea.test.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
} {0 {} {} 0 {} 0 1 x CHAR(100) 0 {} 0}
do_test tkt-78e04-1.3 {
  execsql {
    CREATE INDEX i1 ON ""("" COLLATE nocase);
  }
} {}
do_test tkt-78e04-1.4 {
  execsql {
    EXPLAIN QUERY PLAN SELECT "" FROM "" WHERE "" LIKE '1abc%';
  }
} {0 0 0 {SCAN TABLE  USING COVERING INDEX i1}}
do_test tkt-78e04-1.5 {
  execsql {
    DROP TABLE "";
    SELECT name FROM sqlite_master;
  }
} {t2}

do_test tkt-78e04-2.1 {
  execsql {
    CREATE INDEX "" ON t2(x);
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=5;
  }
} {0 0 0 {SEARCH TABLE t2 USING COVERING INDEX  (x=?)}}
do_test tkt-78e04-2.2 {
  execsql {
    DROP INDEX "";
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=2;
  }
} {0 0 0 {SCAN TABLE t2}}

finish_test







<
|
<
|












|





|


37
38
39
40
41
42
43

44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
} {0 {} {} 0 {} 0 1 x CHAR(100) 0 {} 0}
do_test tkt-78e04-1.3 {
  execsql {
    CREATE INDEX i1 ON ""("" COLLATE nocase);
  }
} {}
do_test tkt-78e04-1.4 {

 db eval {EXPLAIN QUERY PLAN SELECT "" FROM "" WHERE "" LIKE '1abc%';}

} {/*SCAN TABLE  USING COVERING INDEX i1*/}
do_test tkt-78e04-1.5 {
  execsql {
    DROP TABLE "";
    SELECT name FROM sqlite_master;
  }
} {t2}

do_test tkt-78e04-2.1 {
  execsql {
    CREATE INDEX "" ON t2(x);
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=5;
  }
} {/*SEARCH TABLE t2 USING COVERING INDEX  (x=?)*/}
do_test tkt-78e04-2.2 {
  execsql {
    DROP INDEX "";
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=2;
  }
} {/*SCAN TABLE t2*/}

finish_test
Changes to test/tkt-b75a9ca6b0.test.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
  INSERT INTO t1 VALUES (3, 1);
}

do_execsql_test 1.1 {
  CREATE INDEX i1 ON t1(x, y);
} 

set idxscan {0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}}
set tblscan {0 0 0 {SCAN TABLE t1}}
set grpsort {0 0 0 {USE TEMP B-TREE FOR GROUP BY}}
set sort    {0 0 0 {USE TEMP B-TREE FOR ORDER BY}}

foreach {tn q res eqp} [subst -nocommands {
  1 "SELECT * FROM t1 GROUP BY x, y ORDER BY x,y"
  {1 3  2 2  3 1} {$idxscan}

  2 "SELECT * FROM t1 GROUP BY x, y ORDER BY x"
  {1 3  2 2  3 1} {$idxscan $sort}

  3 "SELECT * FROM t1 GROUP BY y, x ORDER BY y, x"
  {3 1  2 2  1 3} {$idxscan $sort}
  
  4 "SELECT * FROM t1 GROUP BY x ORDER BY x"
  {1 3  2 2  3 1} {$idxscan}

  5 "SELECT * FROM t1 GROUP BY y ORDER BY y"
  {3 1  2 2  1 3} {$tblscan $grpsort}

  6 "SELECT * FROM t1 GROUP BY y ORDER BY x"
  {1 3  2 2  3 1} {$tblscan $grpsort $sort}

  7 "SELECT * FROM t1 GROUP BY x, y ORDER BY x, y DESC"
  {1 3  2 2  3 1} {$idxscan $sort}

  8 "SELECT * FROM t1 GROUP BY x, y ORDER BY x DESC, y DESC"
  {3 1  2 2  1 3} {$idxscan $sort}

  9 "SELECT * FROM t1 GROUP BY x, y ORDER BY x ASC, y ASC"
  {1 3  2 2  3 1} {$idxscan}

  10 "SELECT * FROM t1 GROUP BY x, y ORDER BY x COLLATE nocase, y"
  {1 3  2 2  3 1} {$idxscan $sort}

}] {
  do_execsql_test 1.$tn.1 $q $res
  do_eqp_test     1.$tn.2 $q $eqp
}









|
|
|
|






|


|





|


|


|


|





|







28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
  INSERT INTO t1 VALUES (3, 1);
}

do_execsql_test 1.1 {
  CREATE INDEX i1 ON t1(x, y);
} 

set idxscan {SCAN TABLE t1 USING COVERING INDEX i1}
set tblscan {SCAN TABLE t1}
set grpsort {USE TEMP B-TREE FOR GROUP BY}
set sort    {USE TEMP B-TREE FOR ORDER BY}

foreach {tn q res eqp} [subst -nocommands {
  1 "SELECT * FROM t1 GROUP BY x, y ORDER BY x,y"
  {1 3  2 2  3 1} {$idxscan}

  2 "SELECT * FROM t1 GROUP BY x, y ORDER BY x"
  {1 3  2 2  3 1} {$idxscan*$sort}

  3 "SELECT * FROM t1 GROUP BY y, x ORDER BY y, x"
  {3 1  2 2  1 3} {$idxscan*$sort}
  
  4 "SELECT * FROM t1 GROUP BY x ORDER BY x"
  {1 3  2 2  3 1} {$idxscan}

  5 "SELECT * FROM t1 GROUP BY y ORDER BY y"
  {3 1  2 2  1 3} {$tblscan*$grpsort}

  6 "SELECT * FROM t1 GROUP BY y ORDER BY x"
  {1 3  2 2  3 1} {$tblscan*$grpsort*$sort}

  7 "SELECT * FROM t1 GROUP BY x, y ORDER BY x, y DESC"
  {1 3  2 2  3 1} {$idxscan*$sort}

  8 "SELECT * FROM t1 GROUP BY x, y ORDER BY x DESC, y DESC"
  {3 1  2 2  1 3} {$idxscan*$sort}

  9 "SELECT * FROM t1 GROUP BY x, y ORDER BY x ASC, y ASC"
  {1 3  2 2  3 1} {$idxscan}

  10 "SELECT * FROM t1 GROUP BY x, y ORDER BY x COLLATE nocase, y"
  {1 3  2 2  3 1} {$idxscan*$sort}

}] {
  do_execsql_test 1.$tn.1 $q $res
  do_eqp_test     1.$tn.2 $q $eqp
}


Changes to test/tkt3442.test.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
       id TEXT,
       node INTEGER
     );
     CREATE UNIQUE INDEX ididx ON listhash(id);
  }
} {}


# Explain Query Plan
#
proc EQP {sql} {
  uplevel "execsql {EXPLAIN QUERY PLAN $sql}"
}


# These tests perform an EXPLAIN QUERY PLAN on both versions of the 
# SELECT referenced in ticket #3442 (both '5000' and "5000") 
# and verify that the query plan is the same.
#
ifcapable explain {
  do_test tkt3442-1.2 {
    EQP { SELECT node FROM listhash WHERE id='5000' LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?)}}
  do_test tkt3442-1.3 {
    EQP { SELECT node FROM listhash WHERE id="5000" LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?)}}
}


# Some extra tests testing other permutations of 5000.
#
ifcapable explain {
  do_test tkt3442-1.4 {
    EQP { SELECT node FROM listhash WHERE id=5000 LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?)}}
}
do_test tkt3442-1.5 {
  catchsql {
    SELECT node FROM listhash WHERE id=[5000] LIMIT 1;
  }
} {1 {no such column: 5000}}

finish_test







<
<
<
<
<
<
<
<




<
|
|
|
|
|
|
<




<
|
|
|
|







30
31
32
33
34
35
36








37
38
39
40

41
42
43
44
45
46

47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
       id TEXT,
       node INTEGER
     );
     CREATE UNIQUE INDEX ididx ON listhash(id);
  }
} {}









# These tests perform an EXPLAIN QUERY PLAN on both versions of the 
# SELECT referenced in ticket #3442 (both '5000' and "5000") 
# and verify that the query plan is the same.
#

do_eqp_test tkt3442-1.2 {
  SELECT node FROM listhash WHERE id='5000' LIMIT 1;
} {SEARCH TABLE listhash USING INDEX ididx (id=?)}
do_eqp_test tkt3442-1.3 {
  SELECT node FROM listhash WHERE id="5000" LIMIT 1;
} {SEARCH TABLE listhash USING INDEX ididx (id=?)}



# Some extra tests testing other permutations of 5000.
#

do_eqp_test tkt3442-1.4 {
  SELECT node FROM listhash WHERE id=5000 LIMIT 1;
} {SEARCH TABLE listhash USING INDEX ididx (id=?)}

do_test tkt3442-1.5 {
  catchsql {
    SELECT node FROM listhash WHERE id=[5000] LIMIT 1;
  }
} {1 {no such column: 5000}}

finish_test
Changes to test/tpch01.test.
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
                               and p_type = 'LARGE PLATED STEEL'
               ) as all_nations
       group by
               o_year
       order by
               o_year;}]
  set ::eqpres
} {/0 0 0 {SEARCH TABLE part USING INDEX bootleg_pti .P_TYPE=..} 0 1 2 {SEARCH TABLE lineitem USING INDEX lpki2 .L_PARTKEY=..}.*/}
do_test tpch01-1.1b {
  set ::eqpres
} {/.* customer .* nation AS n1 .*/}
do_test tpch01-1.1c {
  set ::eqpres
} {/.* supplier .* nation AS n2 .*/}








|







161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
                               and p_type = 'LARGE PLATED STEEL'
               ) as all_nations
       group by
               o_year
       order by
               o_year;}]
  set ::eqpres
} {/*SEARCH TABLE part USING INDEX bootleg_pti *SEARCH TABLE lineitem USING INDEX lpki2*/}
do_test tpch01-1.1b {
  set ::eqpres
} {/.* customer .* nation AS n1 .*/}
do_test tpch01-1.1c {
  set ::eqpres
} {/.* supplier .* nation AS n2 .*/}

183
184
185
186
187
188
189


190





191

192
    c_custkey = o_custkey    and l_orderkey = o_orderkey
    and o_orderdate >=  '1994-08-01'    and o_orderdate < date('1994-08-01', '+3 month')
    and l_returnflag = 'R'    and c_nationkey = n_nationkey
group by
    c_custkey,    c_name,    c_acctbal,    c_phone,    n_name, c_address,    c_comment
order by
    revenue desc;


} {0 0 1 {SEARCH TABLE orders USING INDEX odi (O_ORDERDATE>? AND O_ORDERDATE<?)} 0 1 0 {SEARCH TABLE customer USING INDEX cpki (C_CUSTKEY=?)} 0 2 3 {SEARCH TABLE nation USING INDEX npki (N_NATIONKEY=?)} 0 3 2 {SEARCH TABLE lineitem USING INDEX lpki (L_ORDERKEY=?)} 0 0 0 {USE TEMP B-TREE FOR GROUP BY} 0 0 0 {USE TEMP B-TREE FOR ORDER BY}}







finish_test







>
>
|
>
>
>
>
>
|
>

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    c_custkey = o_custkey    and l_orderkey = o_orderkey
    and o_orderdate >=  '1994-08-01'    and o_orderdate < date('1994-08-01', '+3 month')
    and l_returnflag = 'R'    and c_nationkey = n_nationkey
group by
    c_custkey,    c_name,    c_acctbal,    c_phone,    n_name, c_address,    c_comment
order by
    revenue desc;
} {
  QUERY PLAN
  |--SEARCH TABLE orders USING INDEX odi (O_ORDERDATE>? AND O_ORDERDATE<?)
  |--SEARCH TABLE customer USING INDEX cpki (C_CUSTKEY=?)
  |--SEARCH TABLE nation USING INDEX npki (N_NATIONKEY=?)
  |--SEARCH TABLE lineitem USING INDEX lpki (L_ORDERKEY=?)
  |--USE TEMP B-TREE FOR GROUP BY
  `--USE TEMP B-TREE FOR ORDER BY
}

finish_test
Changes to test/trigger1.test.
723
724
725
726
727
728
729








































730
731
  END;
  CREATE TRIGGER t17b_ai AFTER INSERT ON t17b BEGIN
    UPDATE t17b SET ss = 4;
  END;
  INSERT INTO t17a(ii) VALUES('1');
  PRAGMA integrity_check;
} {ok}









































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
  END;
  CREATE TRIGGER t17b_ai AFTER INSERT ON t17b BEGIN
    UPDATE t17b SET ss = 4;
  END;
  INSERT INTO t17a(ii) VALUES('1');
  PRAGMA integrity_check;
} {ok}

# 2018-04-26
# When a BEFORE UPDATE trigger changes a column value in a row being
# updated, and that column value is used by the UPDATE to change other
# column, the value used to compute the update is from before the trigger.
# In the example that follows, the value of "b" in "c=b" is 2 (the value
# prior to running the BEFORE UPDATE trigger) not 1000.
#
do_execsql_test trigger1-18.0 {
  CREATE TABLE t18(a PRIMARY KEY,b,c);
  INSERT INTO t18(a,b,c) VALUES(1,2,3);
  CREATE TRIGGER t18r1 BEFORE UPDATE ON t18 BEGIN
    UPDATE t18 SET b=1000 WHERE a=old.a;
  END;
  UPDATE t18 SET c=b WHERE a=1;
  SELECT * FROM t18;
} {1 1000 2}  ;# Not: 1 1000 1000 
do_execsql_test trigger1-18.1 {
  DELETE FROM t18;
  INSERT INTO t18(a,b,c) VALUES(1,2,3);
  UPDATE t18 SET c=b, b=b+1 WHERE a=1;
  SELECT * FROM t18;
} {1 3 2}     ;# Not: 1 1001 1000

# 2018-04-26 ticket [https://www.sqlite.org/src/tktview/d85fffd6ffe856092e]
# VDBE Program uses an expired value.
#
do_execsql_test trigger1-19.0 {
  CREATE TABLE t19(a INT PRIMARY KEY, b, c)WITHOUT ROWID;
  INSERT INTO t19(a,b,c) VALUES(1,2,3);
  CREATE TRIGGER t19r3 BEFORE UPDATE ON t19 BEGIN SELECT new.b; END;
  UPDATE t19 SET c=b WHERE a=1;
  SELECT * FROM t19;
} {1 2 2}
do_execsql_test trigger1-19.1 {
  DELETE FROM t19;
  INSERT INTO t19(a,b,c) VALUES(1,2,3);
  UPDATE t19 SET c=CASE WHEN b=2 THEN b ELSE b+99 END WHERE a=1;
  SELECT * FROM t19;
} {1 2 2}

finish_test
Changes to test/triggerE.test.
53
54
55
56
57
58
59

60
61
62
63
64
65
66
  2 { BEFORE DELETE ON t1 BEGIN SELECT ?; END; }
  3 { BEFORE DELETE ON t1 BEGIN SELECT * FROM (SELECT * FROM (SELECT ?)); END; }
  5 { BEFORE DELETE ON t1 BEGIN SELECT * FROM t2 GROUP BY ?; END; }
  6 { BEFORE DELETE ON t1 BEGIN SELECT * FROM t2 LIMIT ?; END; }
  7 { BEFORE DELETE ON t1 BEGIN SELECT * FROM t2 ORDER BY ?; END; }
  8 { BEFORE UPDATE ON t1 BEGIN UPDATE t2 SET c = ?; END; }
  9 { BEFORE UPDATE ON t1 BEGIN UPDATE t2 SET c = 1 WHERE d = ?; END; }

} {
  catchsql {drop trigger tr1}
  do_catchsql_test 1.1.$tn "CREATE TRIGGER tr1 $defn" [list 1 $errmsg]
  do_catchsql_test 1.2.$tn "CREATE TEMP TRIGGER tr1 $defn" [list 1 $errmsg]
}

#-------------------------------------------------------------------------







>







53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
  2 { BEFORE DELETE ON t1 BEGIN SELECT ?; END; }
  3 { BEFORE DELETE ON t1 BEGIN SELECT * FROM (SELECT * FROM (SELECT ?)); END; }
  5 { BEFORE DELETE ON t1 BEGIN SELECT * FROM t2 GROUP BY ?; END; }
  6 { BEFORE DELETE ON t1 BEGIN SELECT * FROM t2 LIMIT ?; END; }
  7 { BEFORE DELETE ON t1 BEGIN SELECT * FROM t2 ORDER BY ?; END; }
  8 { BEFORE UPDATE ON t1 BEGIN UPDATE t2 SET c = ?; END; }
  9 { BEFORE UPDATE ON t1 BEGIN UPDATE t2 SET c = 1 WHERE d = ?; END; }
 10 { AFTER INSERT ON t1 BEGIN SELECT * FROM pragma_stats(?); END; }
} {
  catchsql {drop trigger tr1}
  do_catchsql_test 1.1.$tn "CREATE TRIGGER tr1 $defn" [list 1 $errmsg]
  do_catchsql_test 1.2.$tn "CREATE TEMP TRIGGER tr1 $defn" [list 1 $errmsg]
}

#-------------------------------------------------------------------------
Changes to test/unordered.test.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
  if {$idxmode == "unordered"} {
    execsql { UPDATE sqlite_stat1 SET stat = stat || ' unordered' }
  }
  db close
  sqlite3 db test.db
  foreach {tn sql r(ordered) r(unordered)} {
    1   "SELECT * FROM t1 ORDER BY a"
        {0 0 0 {SCAN TABLE t1 USING INDEX i1}}
        {0 0 0 {SCAN TABLE t1} 0 0 0 {USE TEMP B-TREE FOR ORDER BY}}
    2   "SELECT * FROM t1 WHERE a > 100"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?)}}
        {0 0 0 {SCAN TABLE t1}}
    3   "SELECT * FROM t1 WHERE a = ? ORDER BY rowid"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)} 
         0 0 0 {USE TEMP B-TREE FOR ORDER BY}}
    4   "SELECT max(a) FROM t1"
        {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1}}
        {0 0 0 {SEARCH TABLE t1}}
    5   "SELECT group_concat(b) FROM t1 GROUP BY a"
        {0 0 0 {SCAN TABLE t1 USING INDEX i1}}
        {0 0 0 {SCAN TABLE t1} 0 0 0 {USE TEMP B-TREE FOR GROUP BY}}

    6   "SELECT * FROM t1 WHERE a = ?"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
    7   "SELECT count(*) FROM t1"
        {0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}}
        {0 0 0 {SCAN TABLE t1}}
  } {
    do_eqp_test 1.$idxmode.$tn $sql $r($idxmode)
  }
}

finish_test







|
|

|
|

|
|
<

|
|

|
|


|
|

|
|






36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
  if {$idxmode == "unordered"} {
    execsql { UPDATE sqlite_stat1 SET stat = stat || ' unordered' }
  }
  db close
  sqlite3 db test.db
  foreach {tn sql r(ordered) r(unordered)} {
    1   "SELECT * FROM t1 ORDER BY a"
        {SCAN TABLE t1 USING INDEX i1}
        {SCAN TABLE t1*USE TEMP B-TREE FOR ORDER BY}
    2   "SELECT * FROM t1 WHERE a > 100"
        {SEARCH TABLE t1 USING INDEX i1 (a>?)}
        {SCAN TABLE t1}
    3   "SELECT * FROM t1 WHERE a = ? ORDER BY rowid"
        {SEARCH TABLE t1 USING INDEX i1 (a=?)}
        {SEARCH TABLE t1 USING INDEX i1 (a=?)*USE TEMP B-TREE FOR ORDER BY}

    4   "SELECT max(a) FROM t1"
        {SEARCH TABLE t1 USING COVERING INDEX i1}
        {SEARCH TABLE t1}
    5   "SELECT group_concat(b) FROM t1 GROUP BY a"
        {SCAN TABLE t1 USING INDEX i1}
        {SCAN TABLE t1*USE TEMP B-TREE FOR GROUP BY}

    6   "SELECT * FROM t1 WHERE a = ?"
        {SEARCH TABLE t1 USING INDEX i1 (a=?)}
        {SEARCH TABLE t1 USING INDEX i1 (a=?)}
    7   "SELECT count(*) FROM t1"
        {SCAN TABLE t1 USING COVERING INDEX i1}
        {SCAN TABLE t1}
  } {
    do_eqp_test 1.$idxmode.$tn $sql $r($idxmode)
  }
}

finish_test
Changes to test/update.test.
504
505
506
507
508
509
510












511
512
513
514
515
516
517
  } {2 14 3 7}
  do_test update-11.2 {
    execsql {
      UPDATE t1 SET e=e+1 WHERE a IN (SELECT a FROM t1);
      SELECT a,e FROM t1;
    }
  } {1 15 2 8}












}

integrity_check update-12.1

# Ticket 602.  Updates should occur in the same order as the records
# were discovered in the WHERE clause.
#







>
>
>
>
>
>
>
>
>
>
>
>







504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
  } {2 14 3 7}
  do_test update-11.2 {
    execsql {
      UPDATE t1 SET e=e+1 WHERE a IN (SELECT a FROM t1);
      SELECT a,e FROM t1;
    }
  } {1 15 2 8}
  do_test update-11.3 {
    execsql {
      UPDATE t1 AS xyz SET e=e+1 WHERE xyz.a IN (SELECT a FROM t1);
      SELECT a,e FROM t1;
    }
  } {1 16 2 9}
  do_test update-11.4 {
    execsql {
      UPDATE t1 AS xyz SET e=e+1 WHERE EXISTS(SELECT 1 FROM t1 WHERE t1.a<xyz.a);
      SELECT a,e FROM t1;
    }
  } {1 16 2 10}
}

integrity_check update-12.1

# Ticket 602.  Updates should occur in the same order as the records
# were discovered in the WHERE clause.
#
614
615
616
617
618
619
620



621







622
  CREATE INDEX t15c ON t15(c);
  INSERT INTO t15(a,b)
   VALUES(5,'zyx'),(15,'wvu'),(25,'tsr'),(35,'qpo');
  UPDATE t15 SET c=printf("y%d",a) WHERE c IS NULL;
  SELECT a,b,c,'|' FROM t15 ORDER BY a;
} {5 zyx y5 | 10 abc y10 | 15 wvu y15 | 20 def y20 | 25 tsr y25 | 30 ghi y30 | 35 qpo y35 |}












finish_test







>
>
>
|
>
>
>
>
>
>
>

626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
  CREATE INDEX t15c ON t15(c);
  INSERT INTO t15(a,b)
   VALUES(5,'zyx'),(15,'wvu'),(25,'tsr'),(35,'qpo');
  UPDATE t15 SET c=printf("y%d",a) WHERE c IS NULL;
  SELECT a,b,c,'|' FROM t15 ORDER BY a;
} {5 zyx y5 | 10 abc y10 | 15 wvu y15 | 20 def y20 | 25 tsr y25 | 30 ghi y30 | 35 qpo y35 |}

# Unreleased bug in UPDATE caused by the UPSERT changes.
# Found by OSSFuzz as soon as the UPSERT changes landed on trunk.
# Never released into the wild.  2018-04-19.
#
do_execsql_test update-16.1 {
  CREATE TABLE t16(a INTEGER PRIMARY KEY ON CONFLICT REPLACE, b UNIQUE);
  INSERT INTO t16(a,b) VALUES(1,2),(3,4),(5,6);
  UPDATE t16 SET a=a;
  SELECT * FROM t16 ORDER BY +a;
} {1 2 3 4 5 6}

finish_test
Added test/upsert1.test.






































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# 2018-04-12
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Test cases for UPSERT

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix zipfile

do_execsql_test upsert1-100 {
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT, c DEFAULT 0);
  CREATE UNIQUE INDEX t1x1 ON t1(b);
  INSERT INTO t1(a,b) VALUES(1,2) ON CONFLICT DO NOTHING;
  INSERT INTO t1(a,b) VALUES(1,99),(99,2) ON CONFLICT DO NOTHING;
  SELECT * FROM t1;
} {1 2 0}
do_execsql_test upsert1-101 {
  DELETE FROM t1;
  INSERT INTO t1(a,b) VALUES(2,3) ON CONFLICT(a) DO NOTHING;
  INSERT INTO t1(a,b) VALUES(2,99) ON CONFLICT(a) DO NOTHING;
  SELECT * FROM t1;
} {2 3 0}
do_execsql_test upsert1-102 {
  DELETE FROM t1;
  INSERT INTO t1(a,b) VALUES(3,4) ON CONFLICT(b) DO NOTHING;
  INSERT INTO t1(a,b) VALUES(99,4) ON CONFLICT(b) DO NOTHING;
  SELECT * FROM t1;
} {3 4 0}
do_catchsql_test upsert1-110 {
  INSERT INTO t1(a,b) VALUES(5,6) ON CONFLICT(x) DO NOTHING;
  SELECT * FROM t1;
} {1 {no such column: x}}
do_catchsql_test upsert1-120 {
  INSERT INTO t1(a,b) VALUES(5,6) ON CONFLICT(c) DO NOTHING;
  SELECT * FROM t1;
} {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}}
breakpoint
do_catchsql_test upsert1-130 {
  INSERT INTO t1(a,b) VALUES(5,6) ON CONFLICT(b COLLATE nocase) DO NOTHING;
  SELECT * FROM t1;
} {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}}
do_execsql_test upsert1-140 {
  DELETE FROM t1;
  INSERT INTO t1(a,b) VALUES(5,6) ON CONFLICT(b COLLATE binary) DO NOTHING;
  SELECT * FROM t1;
} {5 6 0}

do_catchsql_test upsert1-200 {
  DROP TABLE t1;
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT, c DEFAULT 0);
  CREATE UNIQUE INDEX t1x1 ON t1(a+b);
  INSERT INTO t1(a,b) VALUES(7,8) ON CONFLICT(a+b) DO NOTHING;
  INSERT INTO t1(a,b) VALUES(8,7),(9,6) ON CONFLICT(a+b) DO NOTHING;
  SELECT * FROM t1;
} {0 {7 8 0}}
do_catchsql_test upsert1-201 {
  INSERT INTO t1(a,b) VALUES(8,7),(9,6) ON CONFLICT(a) DO NOTHING;
} {1 {UNIQUE constraint failed: index 't1x1'}}
do_catchsql_test upsert1-210 {
  DELETE FROM t1;
  INSERT INTO t1(a,b) VALUES(9,10) ON CONFLICT(a+(+b)) DO NOTHING;
  SELECT * FROM t1;
} {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}}

do_catchsql_test upsert1-300 {
  DROP INDEX t1x1;
  DELETE FROM t1;
  CREATE UNIQUE INDEX t1x1 ON t1(b) WHERE b>10;
  INSERT INTO t1(a,b) VALUES(1,2),(3,2) ON CONFLICT(b) DO NOTHING;
  SELECT * FROM t1;
} {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}}
do_catchsql_test upsert1-310 {
  DELETE FROM t1;
  INSERT INTO t1(a,b) VALUES(1,2),(3,2) ON CONFLICT(b) WHERE b!=10 DO NOTHING;
  SELECT * FROM t1;
} {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}}
do_execsql_test upsert1-320 {
  DELETE FROM t1;
  INSERT INTO t1(a,b) VALUES(1,2),(3,2),(4,20),(5,20)
         ON CONFLICT(b) WHERE b>10 DO NOTHING;
  SELECT *, 'x' FROM t1 ORDER BY b, a;
} {1 2 0 x 3 2 0 x 4 20 0 x}

# Upsert works with count_changes=on;
do_execsql_test upsert1-400 {
  DROP TABLE IF EXISTS t2;
  CREATE TABLE t2(a TEXT UNIQUE, b INT DEFAULT 1);
  INSERT INTO t2(a) VALUES('one'),('two'),('three');
  PRAGMA count_changes=ON;
  INSERT INTO t2(a) VALUES('one'),('one'),('three'),('four')
      ON CONFLICT(a) DO UPDATE SET b=b+1;
} {1}
do_execsql_test upsert1-410 {
  PRAGMA count_changes=OFF;
  SELECT a, b FROM t2 ORDER BY a;
} {four 1 one 3 three 2 two 1}

# Problem found by AFL prior to any release
do_execsql_test upsert1-500 {
  DROP TABLE t1;
  CREATE TABLE t1(x INTEGER PRIMARY KEY, y INT UNIQUE);
  INSERT INTO t1(x,y) SELECT 1,2 WHERE true
    ON CONFLICT(x) DO UPDATE SET y=max(t1.y,excluded.y) AND true;
  SELECT * FROM t1;
} {1 2}

finish_test
Added test/upsert2.test.




















































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# 2018-04-17
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Test cases for UPSERT

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix zipfile

do_execsql_test upsert2-100 {
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b int, c DEFAULT 0);
  INSERT INTO t1(a,b) VALUES(1,2),(3,4);
  INSERT INTO t1(a,b) VALUES(1,8),(2,11),(3,1)
    ON CONFLICT(a) DO UPDATE SET b=excluded.b, c=c+1 WHERE t1.b<excluded.b;
  SELECT *, 'x' FROM t1 ORDER BY a;
} {1 8 1 x 2 11 0 x 3 4 0 x}
do_execsql_test upsert2-110 {
  DROP TABLE t1;
  CREATE TABLE t1(a INT PRIMARY KEY, b int, c DEFAULT 0) WITHOUT ROWID;
  INSERT INTO t1(a,b) VALUES(1,2),(3,4);
  INSERT INTO t1(a,b) VALUES(1,8),(2,11),(3,1)
    ON CONFLICT(a) DO UPDATE SET b=excluded.b, c=c+1 WHERE t1.b<excluded.b;
  SELECT *, 'x' FROM t1 ORDER BY a;
} {1 8 1 x 2 11 0 x 3 4 0 x}

do_execsql_test upsert2-200 {
  DROP TABLE t1;
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b int, c DEFAULT 0);
  INSERT INTO t1(a,b) VALUES(1,2),(3,4);
  WITH nx(a,b) AS (VALUES(1,8),(2,11),(3,1),(2,15),(1,4),(1,99))
  INSERT INTO t1(a,b) SELECT a, b FROM nx WHERE true
    ON CONFLICT(a) DO UPDATE SET b=excluded.b, c=c+1 WHERE t1.b<excluded.b;
  SELECT *, 'x' FROM t1 ORDER BY a;
} {1 99 2 x 2 15 1 x 3 4 0 x}
do_execsql_test upsert2-201 {
  DELETE FROM t1;
  INSERT INTO t1(a,b) VALUES(1,2),(3,4);
  WITH nx(a,b) AS (VALUES(1,8),(2,11),(3,1),(2,15),(1,4),(1,99))
  INSERT INTO main.t1 AS t2(a,b) SELECT a, b FROM nx WHERE true
    ON CONFLICT(a) DO UPDATE SET b=excluded.b, c=t2.c+1 WHERE t2.b<excluded.b;
  SELECT *, 'x' FROM t1 ORDER BY a;
} {1 99 2 x 2 15 1 x 3 4 0 x}
do_catchsql_test upsert2-202 {
  WITH nx(a,b) AS (VALUES(1,8),(2,11),(3,1),(2,15),(1,4),(1,99))
  INSERT INTO t1 AS t2(a,b) SELECT a, b FROM nx WHERE true
    ON CONFLICT(a) DO UPDATE SET b=excluded.b, c=t1.c+1 WHERE t1.b<excluded.b;
} {1 {no such column: t1.c}}
do_execsql_test upsert2-210 {
  DROP TABLE t1;
  CREATE TABLE t1(a INT PRIMARY KEY, b int, c DEFAULT 0) WITHOUT ROWID;
  INSERT INTO t1(a,b) VALUES(1,2),(3,4);
  WITH nx(a,b) AS (VALUES(1,8),(2,11),(3,1),(2,15),(1,4),(1,99))
  INSERT INTO t1(a,b) SELECT a, b FROM nx WHERE true
    ON CONFLICT(a) DO UPDATE SET b=excluded.b, c=c+1 WHERE t1.b<excluded.b;
  SELECT *, 'x' FROM t1 ORDER BY a;
} {1 99 2 x 2 15 1 x 3 4 0 x}

# On an ON CONFLICT DO UPDATE, the before-insert, before-update, and
# after-update triggers fire.
#
do_execsql_test upsert2-300 {
  DROP TABLE t1;
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b int, c DEFAULT 0);
  CREATE TABLE record(x TEXT, y TEXT);
  CREATE TRIGGER r1 BEFORE INSERT ON t1 BEGIN
    INSERT INTO record(x,y)
        VALUES('before-insert',printf('%d,%d,%d',new.a,new.b,new.c));
  END;
  CREATE TRIGGER r2 AFTER INSERT ON t1 BEGIN
    INSERT INTO record(x,y)
        VALUES('after-insert',printf('%d,%d,%d',new.a,new.b,new.c));
  END;
  CREATE TRIGGER r3 BEFORE UPDATE ON t1 BEGIN
    INSERT INTO record(x,y)
        VALUES('before-update',printf('%d,%d,%d/%d,%d,%d',
                                      old.a,old.b,old.c,new.a,new.b,new.c));
  END;
  CREATE TRIGGER r4 AFTER UPDATE ON t1 BEGIN
    INSERT INTO record(x,y)
        VALUES('after-update',printf('%d,%d,%d/%d,%d,%d',
                                      old.a,old.b,old.c,new.a,new.b,new.c));
  END;
  INSERT INTO t1(a,b) VALUES(1,2);
  DELETE FROM record;
  INSERT INTO t1(a,b) VALUES(1,2)
    ON CONFLICT(a) DO UPDATE SET c=t1.c+1;
  SELECT * FROM record
} {before-insert 1,2,0 before-update 1,2,0/1,2,1 after-update 1,2,0/1,2,1}

# On an ON CONFLICT DO NOTHING, only the before-insert trigger fires.
#
do_execsql_test upsert2-310 {
  DELETE FROM record;
  INSERT INTO t1(a,b) VALUES(1,2) ON CONFLICT DO NOTHING;
  SELECT * FROM record;
} {before-insert 1,2,0}

# With ON CONFLICT DO UPDATE and a failed WHERE, only the before-insert
# trigger fires.
#
do_execsql_test upsert2-320 {
  DELETE FROM record;
  INSERT INTO t1(a,b) VALUES(1,2)
    ON CONFLICT(a) DO UPDATE SET c=c+1 WHERE c<0;
  SELECT * FROM record;
} {before-insert 1,2,0}
do_execsql_test upsert2-321 {
  SELECT * FROM t1;
} {1 2 1}

# Trigger tests repeated for a WITHOUT ROWID table.
#
do_execsql_test upsert2-400 {
  DROP TABLE t1;
  CREATE TABLE t1(a INT PRIMARY KEY, b int, c DEFAULT 0) WITHOUT ROWID;
  CREATE TRIGGER r1 BEFORE INSERT ON t1 BEGIN
    INSERT INTO record(x,y)
        VALUES('before-insert',printf('%d,%d,%d',new.a,new.b,new.c));
  END;
  CREATE TRIGGER r2 AFTER INSERT ON t1 BEGIN
    INSERT INTO record(x,y)
        VALUES('after-insert',printf('%d,%d,%d',new.a,new.b,new.c));
  END;
  CREATE TRIGGER r3 BEFORE UPDATE ON t1 BEGIN
    INSERT INTO record(x,y)
        VALUES('before-update',printf('%d,%d,%d/%d,%d,%d',
                                      old.a,old.b,old.c,new.a,new.b,new.c));
  END;
  CREATE TRIGGER r4 AFTER UPDATE ON t1 BEGIN
    INSERT INTO record(x,y)
        VALUES('after-update',printf('%d,%d,%d/%d,%d,%d',
                                      old.a,old.b,old.c,new.a,new.b,new.c));
  END;
  INSERT INTO t1(a,b) VALUES(1,2);
  DELETE FROM record;
  INSERT INTO t1(a,b) VALUES(1,2)
    ON CONFLICT(a) DO UPDATE SET c=t1.c+1;
  SELECT * FROM record
} {before-insert 1,2,0 before-update 1,2,0/1,2,1 after-update 1,2,0/1,2,1}

# On an ON CONFLICT DO NOTHING, only the before-insert trigger fires.
#
do_execsql_test upsert2-410 {
  DELETE FROM record;
  INSERT INTO t1(a,b) VALUES(1,2) ON CONFLICT DO NOTHING;
  SELECT * FROM record;
} {before-insert 1,2,0}

# With ON CONFLICT DO UPDATE and a failed WHERE, only the before-insert
# trigger fires.
#
do_execsql_test upsert2-420 {
  DELETE FROM record;
  INSERT INTO t1(a,b) VALUES(1,2)
    ON CONFLICT(a) DO UPDATE SET c=c+1 WHERE c<0;
  SELECT * FROM record;
} {before-insert 1,2,0}
do_execsql_test upsert2-421 {
  SELECT * FROM t1;
} {1 2 1}

finish_test
Added test/upsert3.test.




















































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# 2018-04-17
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Test cases for UPSERT
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix zipfile

do_execsql_test upsert3-100 {
  CREATE TABLE t1(k int, v text);
  CREATE UNIQUE INDEX x1 ON t1(k, v);
} {}
do_catchsql_test upsert3-110 {
  INSERT INTO t1 VALUES(0,'abcdefghij')
     ON CONFLICT(k) DO NOTHING;
} {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}}
do_catchsql_test upsert3-120 {
  INSERT INTO t1 VALUES(0,'abcdefghij')
     ON CONFLICT(v) DO NOTHING;
} {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}}

do_execsql_test upsert3-130 {
  INSERT INTO t1 VALUES(0, 'abcdefghij')
      ON CONFLICT(k,v) DO NOTHING;
  SELECT * FROM t1;
} {0 abcdefghij}
do_execsql_test upsert3-140 {
  INSERT INTO t1 VALUES(0, 'abcdefghij')
      ON CONFLICT(v,k) DO NOTHING;
  SELECT * FROM t1;
} {0 abcdefghij}

do_execsql_test upsert3-200 {
  CREATE TABLE excluded(a INT, b INT, c INT DEFAULT 0);
  CREATE UNIQUE INDEX excludedab ON excluded(a,b);
  INSERT INTO excluded(a,b) VALUES(1,2),(1,2),(3,4),(1,2),(5,6),(3,4)
    ON CONFLICT(b,a) DO UPDATE SET c=excluded.c+1;
  SELECT *, 'x' FROM excluded ORDER BY a;
} {1 2 2 x 3 4 1 x 5 6 0 x}
do_execsql_test upsert3-210 {
  INSERT INTO excluded AS base(a,b,c) VALUES(1,2,8),(1,2,3)
    ON CONFLICT(b,a) DO UPDATE SET c=excluded.c+1 WHERE base.c<excluded.c;
  SELECT *, 'x' FROM excluded ORDER BY a;
} {1 2 9 x 3 4 1 x 5 6 0 x}



finish_test
Added test/upsert4.test.














































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# 2018-04-17
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Test cases for UPSERT

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix upsert4

foreach {tn sql} {
  1 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c UNIQUE) }
  2 { CREATE TABLE t1(a INT PRIMARY KEY, b, c UNIQUE) }
  3 { CREATE TABLE t1(a INT PRIMARY KEY, b, c UNIQUE) WITHOUT ROWID}
} {
  reset_db
  execsql $sql

  do_execsql_test 1.$tn.0 {
    INSERT INTO t1 VALUES(1, NULL, 'one');
    INSERT INTO t1 VALUES(2, NULL, 'two');
    INSERT INTO t1 VALUES(3, NULL, 'three');
  }
  
  do_execsql_test 1.$tn.1 {
    INSERT INTO t1 VALUES(1, NULL, 'xyz') ON CONFLICT DO NOTHING;
    SELECT * FROM t1;
  } {
    1 {} one 2 {} two 3 {} three
  }
  
  do_execsql_test 1.$tn.2 {
    INSERT INTO t1 VALUES(4, NULL, 'two') ON CONFLICT DO NOTHING;
    SELECT * FROM t1;
  } {
    1 {} one 2 {} two 3 {} three
  }
  
  do_execsql_test 1.$tn.3 {
    INSERT INTO t1 VALUES(4, NULL, 'two') ON CONFLICT (c) DO UPDATE SET b = 1;
    SELECT * FROM t1;
  } {
    1 {} one 2 1 two 3 {} three
  }
  
  do_execsql_test 1.$tn.4 {
    INSERT INTO t1 VALUES(2, NULL, 'zero') ON CONFLICT (a) DO UPDATE SET b=2;
    SELECT * FROM t1;
  } {1 {} one 2 2 two 3 {} three}

  do_catchsql_test 1.$tn.5 {
    INSERT INTO t1 VALUES(2, NULL, 'zero') ON CONFLICT (a) 
      DO UPDATE SET c = 'one';
  } {1 {UNIQUE constraint failed: t1.c}}

  do_execsql_test 1.$tn.6 {
    SELECT * FROM t1;
  } {1 {} one 2 2 two 3 {} three}

  do_execsql_test 1.$tn.7 {
    INSERT INTO t1 VALUES(2, NULL, 'zero') ON CONFLICT (a) 
      DO UPDATE SET (b, c) = (SELECT 'x', 'y');
    SELECT * FROM t1;
  } {1 {} one 2 x y 3 {} three}

  do_execsql_test 1.$tn.8 {
    INSERT INTO t1 VALUES(1, NULL, NULL) ON CONFLICT (a) 
      DO UPDATE SET (c, a) = ('four', 4);
    SELECT * FROM t1 ORDER BY 1;
  } {2 x y 3 {} three 4 {} four}
}

#-------------------------------------------------------------------------
# Test target analysis.
#
set rtbl(0) {0 {}}
set rtbl(1) {/1 .*failed.*/}
set rtbl(2) {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}}

foreach {tn sql} {
  1 { 
      CREATE TABLE xyz(a INTEGER PRIMARY KEY, b, c, d);
      CREATE UNIQUE INDEX xyz1 ON xyz(d, c, b COLLATE nocase);
  }

  2 { 
      CREATE TABLE xyz(a INT PRIMARY KEY, b, c, d);
      CREATE UNIQUE INDEX xyz1 ON xyz(d, c, b COLLATE nocase);
  }

  3 { 
      CREATE TABLE xyz(a INT PRIMARY KEY, b, c, d) WITHOUT ROWID;
      CREATE UNIQUE INDEX xyz1 ON xyz(d, c, b COLLATE nocase);
  }
} {
  reset_db
  execsql $sql
  do_execsql_test 2.$tn.1 {
    INSERT INTO xyz VALUES(10, 1, 1, 'one');
  }


  foreach {tn2 oc res} {
    1 "ON CONFLICT (b COLLATE nocase, c, d) DO NOTHING"   0
    2 "ON CONFLICT (b, c, d) DO NOTHING"                  0
    3 "ON CONFLICT (b, c COLLATE nocase, d) DO NOTHING"   2
    4 "ON CONFLICT (a) DO NOTHING"                        1
    5 "ON CONFLICT DO NOTHING"                            0
    6 "ON CONFLICT (b, c, d) WHERE a!=0 DO NOTHING"       0
    7 "ON CONFLICT (d, c, c) WHERE a!=0 DO NOTHING"       2
    8 "ON CONFLICT (b COLLATE nocase, c COLLATE nocase, d) DO NOTHING"   2
    9 "ON CONFLICT (b, c, d) WHERE b==45 DO NOTHING"      0
  } {

    do_catchsql_test 2.$tn.2.$tn2 "
      INSERT INTO xyz VALUES(11, 1, 1, 'one') $oc
    " $rtbl($res)
  }

  do_execsql_test 2.$tn.3 {
    SELECT * FROM xyz;
  } {10 1 1 one}
}

foreach {tn sql} {
  1 {
    CREATE TABLE abc(a INTEGER PRIMARY KEY, x, y);
    CREATE UNIQUE INDEX abc1 ON abc(('x' || x) COLLATE nocase);
  }
  2 {
    CREATE TABLE abc(a INT PRIMARY KEY, x, y);
    CREATE UNIQUE INDEX abc1 ON abc(('x' || x) COLLATE nocase);
  }
  3 { 
    CREATE TABLE abc(a INT PRIMARY KEY, x, y) WITHOUT ROWID;
    CREATE UNIQUE INDEX abc1 ON abc(('x' || x) COLLATE nocase);
  }
} {
  reset_db
  execsql $sql
  do_execsql_test 3.$tn.1 {
    INSERT INTO abc VALUES(1, 'one', 'two');
  }

  foreach {tn2 oc res} {
    1 "ON CONFLICT DO NOTHING"                             0
    2 "ON CONFLICT ('x' || x) DO NOTHING"                  0
    3 "ON CONFLICT (('x' || x) COLLATE nocase) DO NOTHING" 0
    4 "ON CONFLICT (('x' || x) COLLATE binary) DO NOTHING" 2
    5 "ON CONFLICT (x || 'x') DO NOTHING"                  2
    6 "ON CONFLICT ((('x' || x))) DO NOTHING"              0
  } {
    do_catchsql_test 3.$tn.2.$tn2 "
      INSERT INTO abc VALUES(2, 'one', NULL) $oc;
    " $rtbl($res)
  }

  do_execsql_test 3.$tn.3 {
    SELECT * FROM abc
  } {1 one two}
}

foreach {tn sql} {
  1 {
    CREATE TABLE abc(a INTEGER PRIMARY KEY, x, y);
    CREATE UNIQUE INDEX abc1 ON abc(x) WHERE y>0;
    CREATE UNIQUE INDEX abc2 ON abc(y) WHERE x='xyz' COLLATE nocase;
  }
} {
  reset_db
  execsql $sql
  do_execsql_test 4.$tn.1 {
    INSERT INTO abc VALUES(1, 'one', 1);
    INSERT INTO abc VALUES(2, 'two', 2);
    INSERT INTO abc VALUES(3, 'xyz', 3);
    INSERT INTO abc VALUES(4, 'XYZ', 4);
  }

  foreach {tn2 oc res} {
    1 "ON CONFLICT DO NOTHING"                                 0
    2 "ON CONFLICT(x) WHERE y>0 DO NOTHING"                    0
    3 "ON CONFLICT(x) DO NOTHING"                              2
    4 "ON CONFLICT(x) WHERE y>=0 DO NOTHING"                   2
    5 "ON CONFLICT(y) WHERE x='xyz' COLLATE nocase DO NOTHING" 1
  } {
    do_catchsql_test 4.$tn.2.$tn2 "
      INSERT INTO abc VALUES(5, 'one', 10) $oc
    " $rtbl($res)
  }

  do_execsql_test 4.$tn.3 {
    SELECT * FROM abc
  } {1 one 1 2 two 2 3 xyz 3 4 XYZ 4}

  foreach {tn2 oc res} {
    1 "ON CONFLICT DO NOTHING"                                 0
    2 "ON CONFLICT(y) WHERE x='xyz' COLLATE nocase DO NOTHING" 0
    3 "ON CONFLICT(y) WHERE x='xyz' COLLATE binary DO NOTHING" 2
    4 "ON CONFLICT(x) WHERE y>0 DO NOTHING"                    1
  } {
    do_catchsql_test 4.$tn.2.$tn2 "
      INSERT INTO abc VALUES(5, 'xYz', 3) $oc
    " $rtbl($res)
  }
}

do_catchsql_test 5.0 {
  CREATE TABLE w1(a INT PRIMARY KEY, x, y);
  CREATE UNIQUE INDEX w1expr ON w1(('x' || x));
  INSERT INTO w1 VALUES(2, 'one', NULL)
    ON CONFLICT (('x' || x) COLLATE nocase) DO NOTHING;
} {1 {ON CONFLICT clause does not match any PRIMARY KEY or UNIQUE constraint}}

#-------------------------------------------------------------------------
# Test that ON CONFLICT constraint processing occurs before any REPLACE
# constraint processing.
#
foreach {tn sql} {
  1 {
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b UNIQUE, c);
  }
  2 {
    CREATE TABLE t1(a INT PRIMARY KEY, b UNIQUE, c);
  }
  3 {
    CREATE TABLE t1(a INT PRIMARY KEY, b UNIQUE, c) WITHOUT ROWID;
  }
} {
  reset_db
  execsql $sql
  do_execsql_test 6.1.$tn {
    INSERT INTO t1 VALUES(1, 1, 'one');
    INSERT INTO t1 VALUES(2, 2, 'two');
    INSERT OR REPLACE INTO t1 VALUES(1, 2, 'two') ON CONFLICT(b) DO NOTHING;
    PRAGMA integrity_check;
  } {ok}
}

foreach {tn sql} {
  1 {
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b UNIQUE, c UNIQUE);
  }
} {
  reset_db
  execsql $sql

  do_execsql_test 6.2.$tn.1 {
    INSERT INTO t1 VALUES(1, 1, 1);
    INSERT INTO t1 VALUES(2, 2, 2);
  }

  do_execsql_test 6.2.$tn.2 {
    INSERT OR REPLACE INTO t1 VALUES(3, 1, 1) ON CONFLICT(b) DO NOTHING;
    SELECT * FROM t1;
    PRAGMA integrity_check;
  } {1 1 1 2 2 2 ok}

  do_execsql_test 6.2.$tn.3 {
    INSERT OR REPLACE INTO t1 VALUES(3, 2, 2) ON CONFLICT(c) DO NOTHING;
    SELECT * FROM t1;
    PRAGMA integrity_check;
  } {1 1 1 2 2 2 ok}

  do_execsql_test 6.2.$tn.2 {
    INSERT OR REPLACE INTO t1 VALUES(3, 1, 1) ON CONFLICT(b) 
      DO UPDATE SET b=b||'x';
    SELECT * FROM t1;
    PRAGMA integrity_check;
  } {1 1x 1 2 2 2 ok}

  do_execsql_test 6.2.$tn.2 {
    INSERT OR REPLACE INTO t1 VALUES(3, 2, 2) ON CONFLICT(c) 
      DO UPDATE SET c=c||'x';
    SELECT * FROM t1;
    PRAGMA integrity_check;
  } {1 1x 1 2 2 2x ok}
}

#-------------------------------------------------------------------------
# Test references to "excluded". And using an alias in an INSERT 
# statement.
#
foreach {tn sql} {
  1 {
    CREATE TABLE t1(w, x, y, z, PRIMARY KEY(x, y));
    CREATE UNIQUE INDEX zz ON t1(z);
  }
  2 {
    CREATE TABLE t1(w, x, y, z, PRIMARY KEY(x, y)) WITHOUT ROWID;
    CREATE UNIQUE INDEX zz ON t1(z);
  }
} {
  reset_db
  execsql $sql
  do_execsql_test 7.$tn.0 {
    INSERT INTO t1 VALUES('a', 1, 1, 1);
    INSERT INTO t1 VALUES('b', 2, 2, 2);
  }

  do_execsql_test 7.$tn.1 {
    INSERT INTO t1 VALUES('c', 3, 3, 1) ON CONFLICT(z) 
      DO UPDATE SET w = excluded.w;
    SELECT * FROM t1;
  } {c 1 1 1 b 2 2 2}

  do_execsql_test 7.$tn.2 {
    INSERT INTO t1 VALUES('c', 2, 2, 3) ON CONFLICT(y, x) 
      DO UPDATE SET w = w||w;
    SELECT * FROM t1;
  } {c 1 1 1 bb 2 2 2}

  do_execsql_test 7.$tn.3 {
    INSERT INTO t1 VALUES('c', 2, 2, 3) ON CONFLICT(y, x) 
      DO UPDATE SET w = w||t1.w;
    SELECT * FROM t1;
  } {c 1 1 1 bbbb 2 2 2}

  do_execsql_test 7.$tn.4 {
    INSERT INTO t1 AS tbl VALUES('c', 2, 2, 3) ON CONFLICT(y, x) 
      DO UPDATE SET w = w||tbl.w;
    SELECT * FROM t1;
  } {c 1 1 1 bbbbbbbb 2 2 2}
}

foreach {tn sql} {
  1 {
    CREATE TABLE excluded(w, x INTEGER, 'a b', z, PRIMARY KEY(x, 'a b'));
    CREATE UNIQUE INDEX zz ON excluded(z);
    CREATE INDEX zz2 ON excluded(z);
  }
  2 {
    CREATE TABLE excluded(w, x, 'a b', z, PRIMARY KEY(x, 'a b')) WITHOUT ROWID;
    CREATE UNIQUE INDEX zz ON excluded(z);
    CREATE INDEX zz2 ON excluded(z);
  }
} {
  reset_db
  execsql $sql
  do_execsql_test 8.$tn.0 {
    INSERT INTO excluded VALUES('a', 1, 1, 1);
    INSERT INTO excluded VALUES('b', 2, 2, 2);
  }

  # Note: An error in Postgres: "table reference "excluded" is ambiguous".
  #
  do_execsql_test 8.$tn.1 {
    INSERT INTO excluded VALUES('hello', 1, 1, NULL) ON CONFLICT(x, "a b")
      DO UPDATE SET w=excluded.w;
    SELECT * FROM excluded;
  } {a 1 1 1 b 2 2 2}

  do_execsql_test 8.$tn.2 {
    INSERT INTO excluded AS x1 VALUES('hello', 1, 1, NULL) ON CONFLICT(x, [a b])
      DO UPDATE SET w=excluded.w;
    SELECT * FROM excluded;
  } {hello 1 1 1 b 2 2 2}

  do_execsql_test 8.$tn.3 {
    INSERT INTO excluded AS x1 VALUES('hello', 1, 1, NULL) ON CONFLICT(x, [a b])
      DO UPDATE SET w=w||w WHERE excluded.w!='hello';
    SELECT * FROM excluded;
  } {hello 1 1 1 b 2 2 2}

  do_execsql_test 8.$tn.4 {
    INSERT INTO excluded AS x1 VALUES('hello', 1, 1, NULL) ON CONFLICT(x, [a b])
      DO UPDATE SET w=w||w WHERE excluded.x=1;
    SELECT * FROM excluded;
  } {hellohello 1 1 1 b 2 2 2}

  do_catchsql_test 8.$tn.5 {
    INSERT INTO excluded AS x1 VALUES('hello', 1, 1, NULL) 
      ON CONFLICT(x, [a b]) WHERE y=1
      DO UPDATE SET w=w||w WHERE excluded.x=1;
  } {1 {no such column: y}}
}

#--------------------------------------------------------------------------
#
do_execsql_test 9.0 {
  CREATE TABLE v(x INTEGER);
  CREATE TABLE hist(x INTEGER PRIMARY KEY, cnt INTEGER);
  CREATE TRIGGER vt AFTER INSERT ON v BEGIN
    INSERT INTO hist VALUES(new.x, 1) ON CONFLICT(x) DO
      UPDATE SET cnt=cnt+1;
  END;
}

do_execsql_test 9.1 {
  INSERT INTO v VALUES(1), (4), (1), (5), (5), (8), (9), (1);
  SELECT * FROM hist;
} {
  1 3
  4 1
  5 2
  8 1
  9 1
}


finish_test
Added test/upsertfault.test.












































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# 2018-04-17
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Test cases for UPSERT

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix upsertfault

do_execsql_test 1.0 {
  CREATE TABLE t1(a PRIMARY KEY, b, c, d, UNIQUE(b, c));
  INSERT INTO t1 VALUES(1, 1, 1, 1);
  INSERT INTO t1 VALUES(2, 2, 2, 2);
}
faultsim_save_and_close

do_faultsim_test 1 -faults oom* -prep {
  faultsim_restore_and_reopen
  db eval { SELECT * FROM sqlite_master } 
} -body {
  execsql {
     INSERT INTO t1 VALUES(3, 2, 2, NULL) ON CONFLICT(b, c) DO
       UPDATE SET d=d+1;
  }
} -test {
  faultsim_test_result {0 {}}
}


finish_test
Changes to test/where.test.
1363
1364
1365
1366
1367
1368
1369













































1370
1371
  SELECT DISTINCT a FROM t181 LEFT JOIN t182 ON a=b ORDER BY c IS NULL, +a;
} {1 2}
do_execsql_test where-18.6 {
  INSERT INTO t181 VALUES(2);
  SELECT DISTINCT a FROM t181 LEFT JOIN t182 ON a=b ORDER BY +a, +c IS NULL;
} {1 2}















































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
  SELECT DISTINCT a FROM t181 LEFT JOIN t182 ON a=b ORDER BY c IS NULL, +a;
} {1 2}
do_execsql_test where-18.6 {
  INSERT INTO t181 VALUES(2);
  SELECT DISTINCT a FROM t181 LEFT JOIN t182 ON a=b ORDER BY +a, +c IS NULL;
} {1 2}

# Make sure the OR optimization works on a JOIN
#
do_execsql_test where-19.0 {
  CREATE TABLE t191(a INT UNIQUE NOT NULL, b INT UNIQUE NOT NULL,c,d);
  CREATE INDEX t191a ON t1(a);
  CREATE INDEX t191b ON t1(b);
  CREATE TABLE t192(x INTEGER PRIMARY KEY,y INT, z INT);

  EXPLAIN QUERY PLAN
  SELECT t191.rowid FROM t192, t191 WHERE (a=y OR b=y) AND x=?1;
} {/.* sqlite_autoindex_t191_1 .* sqlite_autoindex_t191_2 .*/}

# 2018-04-24 ticket [https://www.sqlite.org/src/info/4ba5abf65c5b0f9a]
# Index on expressions leads to an incorrect answer for a LEFT JOIN
#
do_execsql_test where-20.0 {
  CREATE TABLE t201(x);
  CREATE TABLE t202(y, z);
  INSERT INTO t201 VALUES('key');
  INSERT INTO t202 VALUES('key', -1);
  CREATE INDEX t202i ON t202(y, ifnull(z, 0));
  SELECT count(*) FROM t201 LEFT JOIN t202 ON (x=y) WHERE ifnull(z, 0) >=0;
} {0}

do_execsql_test where-21.0 {
  CREATE TABLE t12(a, b, c);
  CREATE TABLE t13(x);
  CREATE INDEX t12ab ON t12(b, a);
  CREATE INDEX t12ac ON t12(c, a);

  INSERT INTO t12 VALUES(4, 0, 1);
  INSERT INTO t12 VALUES(4, 1, 0);
  INSERT INTO t12 VALUES(5, 0, 1);
  INSERT INTO t12 VALUES(5, 1, 0);

  INSERT INTO t13 VALUES(1), (2), (3), (4);
}
do_execsql_test where-21.1 {
  SELECT * FROM t12 WHERE 
  a = (SELECT * FROM (SELECT count(*) FROM t13 LIMIT 5) ORDER BY 1 LIMIT 10) 
  AND (b=1 OR c=1);
} {
  4 1 0
  4 0 1
}

finish_test
Changes to test/where3.test.
231
232
233
234
235
236
237


238
239

240
241
242
243
244
245
246

247
248
249
250
251
252
253
254
255
  CREATE TABLE t301(a INTEGER PRIMARY KEY,b,c);
  CREATE INDEX t301c ON t301(c);
  INSERT INTO t301 VALUES(1,2,3);
  INSERT INTO t301 VALUES(2,2,3);
  CREATE TABLE t302(x, y);
  INSERT INTO t302 VALUES(4,5);
  ANALYZE;


  explain query plan SELECT * FROM t302, t301 WHERE t302.x=5 AND t301.a=t302.y;
} {

  0 0 0 {SCAN TABLE t302} 
  0 1 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)}
}
do_execsql_test where3-3.1 {
  explain query plan
  SELECT * FROM t301, t302 WHERE t302.x=5 AND t301.a=t302.y;
} {

  0 0 1 {SCAN TABLE t302} 
  0 1 0 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)}
}
do_execsql_test where3-3.2 {
  SELECT * FROM t301 WHERE c=3 AND a IS NULL;
} {}
do_execsql_test where3-3.3 {
  SELECT * FROM t301 WHERE c=3 AND a IS NOT NULL;
} {1 2 3 2 2 3}







>
>
|

>
|
|

|
<


>
|
|







231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

247
248
249
250
251
252
253
254
255
256
257
258
  CREATE TABLE t301(a INTEGER PRIMARY KEY,b,c);
  CREATE INDEX t301c ON t301(c);
  INSERT INTO t301 VALUES(1,2,3);
  INSERT INTO t301 VALUES(2,2,3);
  CREATE TABLE t302(x, y);
  INSERT INTO t302 VALUES(4,5);
  ANALYZE;
}
do_eqp_test where3-3.0a {
  SELECT * FROM t302, t301 WHERE t302.x=5 AND t301.a=t302.y;
} {
  QUERY PLAN
  |--SCAN TABLE t302
  `--SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)
}
do_eqp_test where3-3.1 {

  SELECT * FROM t301, t302 WHERE t302.x=5 AND t301.a=t302.y;
} {
  QUERY PLAN
  |--SCAN TABLE t302
  `--SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)
}
do_execsql_test where3-3.2 {
  SELECT * FROM t301 WHERE c=3 AND a IS NULL;
} {}
do_execsql_test where3-3.3 {
  SELECT * FROM t301 WHERE c=3 AND a IS NOT NULL;
} {1 2 3 2 2 3}
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

320
321
322
323
324
325
326
327
328
329
330
331
332

333
334
335
336
337
338
339
340
341
342
343
344
345

346
347
348
349
350
351
352
353
354
355
356
357
358

359
360
361
362
363
364
365
366
367
368
                    fk INTEGER DEFAULT NULL, parent INTEGER,
                    position INTEGER, title LONGVARCHAR,
                    keyword_id INTEGER, folder_type TEXT,
                    dateAdded INTEGER, lastModified INTEGER);
  CREATE INDEX bbb_111 ON bbb (fk, type);
  CREATE INDEX bbb_222 ON bbb (parent, position);
  CREATE INDEX bbb_333 ON bbb (fk, lastModified);

  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM aaa JOIN bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {

  0 0 0 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 1 {SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.1 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM aaa JOIN aaa AS bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {

  0 0 0 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 1 {SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.2 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {

  0 0 1 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 0 {SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.3 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM aaa AS bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {

  0 0 1 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 0 {SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# Name resolution with NATURAL JOIN and USING
#
do_test where3-6.setup {
  db eval {
    CREATE TABLE t6w(a, w);







|
|







>
|
|
|

|
<







>
|
|
|

|
<







>
|
|
|

|
<







>
|
|
|







307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

329
330
331
332
333
334
335
336
337
338
339
340
341

342
343
344
345
346
347
348
349
350
351
352
353
354

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
                    fk INTEGER DEFAULT NULL, parent INTEGER,
                    position INTEGER, title LONGVARCHAR,
                    keyword_id INTEGER, folder_type TEXT,
                    dateAdded INTEGER, lastModified INTEGER);
  CREATE INDEX bbb_111 ON bbb (fk, type);
  CREATE INDEX bbb_222 ON bbb (parent, position);
  CREATE INDEX bbb_333 ON bbb (fk, lastModified);
}
do_eqp_test where3-5.0a {
   SELECT bbb.title AS tag_title 
     FROM aaa JOIN bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  QUERY PLAN
  |--SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)
  |--SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?)
  `--USE TEMP B-TREE FOR ORDER BY
}
do_eqp_test where3-5.1 {

   SELECT bbb.title AS tag_title 
     FROM aaa JOIN aaa AS bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  QUERY PLAN
  |--SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)
  |--SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?)
  `--USE TEMP B-TREE FOR ORDER BY
}
do_eqp_test where3-5.2 {

   SELECT bbb.title AS tag_title 
     FROM bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  QUERY PLAN
  |--SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)
  |--SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?)
  `--USE TEMP B-TREE FOR ORDER BY
}
do_eqp_test where3-5.3 {

   SELECT bbb.title AS tag_title 
     FROM aaa AS bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  QUERY PLAN
  |--SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)
  |--SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?)
  `--USE TEMP B-TREE FOR ORDER BY
}

# Name resolution with NATURAL JOIN and USING
#
do_test where3-6.setup {
  db eval {
    CREATE TABLE t6w(a, w);
Changes to test/where7.test.
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353


23354
23355
23356
23357
23358
23359
23360
      c2 INTEGER,
      c4 INTEGER,
      FOREIGN KEY (c8) REFERENCES t301(c8)
  );
  CREATE INDEX t302_c3 on t302(c3);
  CREATE INDEX t302_c8_c3 on t302(c8, c3);
  CREATE INDEX t302_c5 on t302(c5);
  
  EXPLAIN QUERY PLAN
  SELECT t302.c1 
    FROM t302 JOIN t301 ON t302.c8 = +t301.c8
    WHERE t302.c2 = 19571
      AND t302.c3 > 1287603136
      AND (t301.c4 = 1407449685622784
           OR t301.c8 = 1407424651264000)
   ORDER BY t302.c5 LIMIT 200;
} {


  0 0 1 {SEARCH TABLE t301 USING COVERING INDEX t301_c4 (c4=?)} 
  0 0 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)} 
  0 1 0 {SEARCH TABLE t302 USING INDEX t302_c8_c3 (c8=? AND c3>?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

finish_test







|
|








>
>
|
|
|
|



23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
      c2 INTEGER,
      c4 INTEGER,
      FOREIGN KEY (c8) REFERENCES t301(c8)
  );
  CREATE INDEX t302_c3 on t302(c3);
  CREATE INDEX t302_c8_c3 on t302(c8, c3);
  CREATE INDEX t302_c5 on t302(c5);
}
do_eqp_test where7-3.2 {
  SELECT t302.c1 
    FROM t302 JOIN t301 ON t302.c8 = +t301.c8
    WHERE t302.c2 = 19571
      AND t302.c3 > 1287603136
      AND (t301.c4 = 1407449685622784
           OR t301.c8 = 1407424651264000)
   ORDER BY t302.c5 LIMIT 200;
} {
  QUERY PLAN
  |--MULTI-INDEX OR
  |  |--SEARCH TABLE t301 USING COVERING INDEX t301_c4 (c4=?)
  |  `--SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)
  |--SEARCH TABLE t302 USING INDEX t302_c8_c3 (c8=? AND c3>?)
  `--USE TEMP B-TREE FOR ORDER BY
}

finish_test
Changes to test/where8.test.
11
12
13
14
15
16
17





18
19
20
21
22
23
24
# This file implements regression tests for SQLite library. The focus
# is testing of where.c. More specifically, the focus is the optimization
# of WHERE clauses that feature the OR operator.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl






# Test organization:
#
#   where8-1.*: Tests to demonstrate simple cases work with a single table
#               in the FROM clause.
#
#   where8-2.*: Tests surrounding virtual tables and the OR optimization.







>
>
>
>
>







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# This file implements regression tests for SQLite library. The focus
# is testing of where.c. More specifically, the focus is the optimization
# of WHERE clauses that feature the OR operator.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

if {[permutation]=="sorterref"} {
  finish_test
  return
}

# Test organization:
#
#   where8-1.*: Tests to demonstrate simple cases work with a single table
#               in the FROM clause.
#
#   where8-2.*: Tests surrounding virtual tables and the OR optimization.
Changes to test/where9.test.
353
354
355
356
357
358
359
360
361
362
363

364
365

366
367
368
369
370
371
372
373

374
375

376
377
378
379
380
381
382
383
384
385
     WHERE t1.a=t3.y OR t1.b=t3.y*11 OR (t1.c=27027 AND round(t1.d)==80)
    ORDER BY 1, 2, 3
  }
} {1 80 2 1 80 28 1 80 54 1 80 80 2 80 2 2 80 28 2 80 54 2 80 80 scan 1 sort 1}


ifcapable explain {
  do_execsql_test where9-3.1 {
    EXPLAIN QUERY PLAN
    SELECT t2.a FROM t1, t2
    WHERE t1.a=80 AND ((t1.c=t2.c AND t1.d=t2.d) OR t1.f=t2.f)

  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)} 

    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?)}
  }
  do_execsql_test where9-3.2 {
    EXPLAIN QUERY PLAN
    SELECT coalesce(t2.a,9999)
    FROM t1 LEFT JOIN t2 ON (t1.c+1=t2.c AND t1.d=t2.d) OR (t1.f||'x')=t2.f
    WHERE t1.a=80

  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)} 

    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?)}
  }
} 

# Make sure that INDEXED BY and multi-index OR clauses play well with
# one another.
#
do_test where9-4.1 {
  count_steps {







|
<


>
|
|
>
|
|
|
|
<



>
|
|
>
|
|
|







353
354
355
356
357
358
359
360

361
362
363
364
365
366
367
368
369
370

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
     WHERE t1.a=t3.y OR t1.b=t3.y*11 OR (t1.c=27027 AND round(t1.d)==80)
    ORDER BY 1, 2, 3
  }
} {1 80 2 1 80 28 1 80 54 1 80 80 2 80 2 2 80 28 2 80 54 2 80 80 scan 1 sort 1}


ifcapable explain {
  do_eqp_test where9-3.1 {

    SELECT t2.a FROM t1, t2
    WHERE t1.a=80 AND ((t1.c=t2.c AND t1.d=t2.d) OR t1.f=t2.f)
  } [string map {"\n  " \n} {
    QUERY PLAN
    |--SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)
    `--MULTI-INDEX OR
       |--SEARCH TABLE t2 USING INDEX t2d (d=?)
       `--SEARCH TABLE t2 USING COVERING INDEX t2f (f=?)
  }]
  do_eqp_test where9-3.2 {

    SELECT coalesce(t2.a,9999)
    FROM t1 LEFT JOIN t2 ON (t1.c+1=t2.c AND t1.d=t2.d) OR (t1.f||'x')=t2.f
    WHERE t1.a=80
  } [string map {"\n  " \n} {
    QUERY PLAN
    |--SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)
    `--MULTI-INDEX OR
       |--SEARCH TABLE t2 USING INDEX t2d (d=?)
       `--SEARCH TABLE t2 USING COVERING INDEX t2f (f=?)
  }]
} 

# Make sure that INDEXED BY and multi-index OR clauses play well with
# one another.
#
do_test where9-4.1 {
  count_steps {
442
443
444
445
446
447
448
449
450
451
452
453
454
455


456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    SELECT a FROM t1 INDEXED BY t1d
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {no query solution}}

ifcapable explain {
  # The (c=31031 OR d IS NULL) clause is preferred over b>1000 because
  # the former is an equality test which is expected to return fewer rows.
  #
  do_execsql_test where9-5.1 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c=31031 OR d IS NULL)
  } {


    0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c=?)} 
    0 0 0 {SEARCH TABLE t1 USING INDEX t1d (d=?)}
  }

  # In contrast, b=1000 is preferred over any OR-clause.
  #
  do_execsql_test where9-5.2 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b=1000 AND (c=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}
  }

  # Likewise, inequalities in an AND are preferred over inequalities in
  # an OR.
  #
  do_execsql_test where9-5.3 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c>=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>?)}
  }
}

############################################################################
# Make sure OR-clauses work correctly on UPDATE and DELETE statements.

do_test where9-6.2.1 {
  db eval {SELECT count(*) FROM t1 UNION ALL SELECT a FROM t1 WHERE a>=85}
} {99 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99}







<
|
|
|
|
|
|
>
>
|
|
|

|
|
|
|
<
|
|
<
|
|
|
|
|
<
|
<
<







444
445
446
447
448
449
450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

467
468

469
470
471
472
473

474


475
476
477
478
479
480
481
    SELECT a FROM t1 INDEXED BY t1d
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {no query solution}}


# The (c=31031 OR d IS NULL) clause is preferred over b>1000 because
# the former is an equality test which is expected to return fewer rows.
#
do_eqp_test where9-5.1 {
  SELECT a FROM t1 WHERE b>1000 AND (c=31031 OR d IS NULL)
} {
  QUERY PLAN
  `--MULTI-INDEX OR
     |--SEARCH TABLE t1 USING INDEX t1c (c=?)
     `--SEARCH TABLE t1 USING INDEX t1d (d=?)
}

# In contrast, b=1000 is preferred over any OR-clause.
#
do_eqp_test where9-5.2 {
  SELECT a FROM t1 WHERE b=1000 AND (c=31031 OR d IS NULL)

} {SEARCH TABLE t1 USING INDEX t1b (b=?)}


# Likewise, inequalities in an AND are preferred over inequalities in
# an OR.
#
do_eqp_test where9-5.3 {
  SELECT a FROM t1 WHERE b>1000 AND (c>=31031 OR d IS NULL)

} {SEARCH TABLE t1 USING INDEX t1b (b>?)}



############################################################################
# Make sure OR-clauses work correctly on UPDATE and DELETE statements.

do_test where9-6.2.1 {
  db eval {SELECT count(*) FROM t1 UNION ALL SELECT a FROM t1 WHERE a>=85}
} {99 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99}
Changes to test/whereG.test.
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
} {}
do_eqp_test whereG-1.1 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE unlikely(cname LIKE '%bach%')
     AND composer.cid=track.cid
     AND album.aid=track.aid;
} {/.*composer.*track.*album.*/}
do_execsql_test whereG-1.2 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE unlikely(cname LIKE '%bach%')
     AND composer.cid=track.cid
     AND album.aid=track.aid;
} {{Mass in B Minor, BWV 232}}







|







62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
} {}
do_eqp_test whereG-1.1 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE unlikely(cname LIKE '%bach%')
     AND composer.cid=track.cid
     AND album.aid=track.aid;
} {composer*track*album}
do_execsql_test whereG-1.2 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE unlikely(cname LIKE '%bach%')
     AND composer.cid=track.cid
     AND album.aid=track.aid;
} {{Mass in B Minor, BWV 232}}
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

do_execsql_test 5.1 {
  CREATE TABLE t1(a, b, c);
  CREATE INDEX i1 ON t1(a, b);
}
do_eqp_test 5.1.2 {
  SELECT * FROM t1 WHERE a>?
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?)}}
do_eqp_test 5.1.3 {
  SELECT * FROM t1 WHERE likelihood(a>?, 0.9)
} {0 0 0 {SCAN TABLE t1}}
do_eqp_test 5.1.4 {
  SELECT * FROM t1 WHERE likely(a>?)
} {0 0 0 {SCAN TABLE t1}}

do_test 5.2 {
  for {set i 0} {$i < 100} {incr i} {
    execsql { INSERT INTO t1 VALUES('abc', $i, $i); }
  }
  execsql { INSERT INTO t1 SELECT 'def', b, c FROM t1; }
  execsql { ANALYZE }
} {}
do_eqp_test 5.2.2 {
  SELECT * FROM t1 WHERE likelihood(b>?, 0.01)
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (ANY(a) AND b>?)}}
do_eqp_test 5.2.3 {
  SELECT * FROM t1 WHERE likelihood(b>?, 0.9)
} {0 0 0 {SCAN TABLE t1}}
do_eqp_test 5.2.4 {
  SELECT * FROM t1 WHERE likely(b>?)
} {0 0 0 {SCAN TABLE t1}}

do_eqp_test 5.3.1 {
  SELECT * FROM t1 WHERE a=?
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_eqp_test 5.3.2 {
  SELECT * FROM t1 WHERE likelihood(a=?, 0.9)
} {0 0 0 {SCAN TABLE t1}}
do_eqp_test 5.3.3 {
  SELECT * FROM t1 WHERE likely(a=?)
} {0 0 0 {SCAN TABLE t1}}

# 2015-06-18
# Ticket [https://www.sqlite.org/see/tktview/472f0742a1868fb58862bc588ed70]
#
do_execsql_test 6.0 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(i int, x, y, z);







|


|


|










|


|


|



|


|


|







191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

do_execsql_test 5.1 {
  CREATE TABLE t1(a, b, c);
  CREATE INDEX i1 ON t1(a, b);
}
do_eqp_test 5.1.2 {
  SELECT * FROM t1 WHERE a>?
} {SEARCH TABLE t1 USING INDEX i1 (a>?)}
do_eqp_test 5.1.3 {
  SELECT * FROM t1 WHERE likelihood(a>?, 0.9)
} {SCAN TABLE t1}
do_eqp_test 5.1.4 {
  SELECT * FROM t1 WHERE likely(a>?)
} {SCAN TABLE t1}

do_test 5.2 {
  for {set i 0} {$i < 100} {incr i} {
    execsql { INSERT INTO t1 VALUES('abc', $i, $i); }
  }
  execsql { INSERT INTO t1 SELECT 'def', b, c FROM t1; }
  execsql { ANALYZE }
} {}
do_eqp_test 5.2.2 {
  SELECT * FROM t1 WHERE likelihood(b>?, 0.01)
} {SEARCH TABLE t1 USING INDEX i1 (ANY(a) AND b>?)}
do_eqp_test 5.2.3 {
  SELECT * FROM t1 WHERE likelihood(b>?, 0.9)
} {SCAN TABLE t1}
do_eqp_test 5.2.4 {
  SELECT * FROM t1 WHERE likely(b>?)
} {SCAN TABLE t1}

do_eqp_test 5.3.1 {
  SELECT * FROM t1 WHERE a=?
} {SEARCH TABLE t1 USING INDEX i1 (a=?)}
do_eqp_test 5.3.2 {
  SELECT * FROM t1 WHERE likelihood(a=?, 0.9)
} {SCAN TABLE t1}
do_eqp_test 5.3.3 {
  SELECT * FROM t1 WHERE likely(a=?)
} {SCAN TABLE t1}

# 2015-06-18
# Ticket [https://www.sqlite.org/see/tktview/472f0742a1868fb58862bc588ed70]
#
do_execsql_test 6.0 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(i int, x, y, z);
Changes to test/whereI.test.
25
26
27
28
29
30
31


32
33
34
35
36
37
38
39
40
  CREATE INDEX i1 ON t1(b);
  CREATE INDEX i2 ON t1(c);
}

do_eqp_test 1.1 {
  SELECT a FROM t1 WHERE b='b' OR c='x'
} {


  0 0 0 {SEARCH TABLE t1 USING INDEX i1 (b=?)} 
  0 0 0 {SEARCH TABLE t1 USING INDEX i2 (c=?)}
}

do_execsql_test 1.2 {
  SELECT a FROM t1 WHERE b='b' OR c='x'
} {2 3}

do_execsql_test 1.3 {







>
>
|
|







25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
  CREATE INDEX i1 ON t1(b);
  CREATE INDEX i2 ON t1(c);
}

do_eqp_test 1.1 {
  SELECT a FROM t1 WHERE b='b' OR c='x'
} {
  QUERY PLAN
  `--MULTI-INDEX OR
     |--SEARCH TABLE t1 USING INDEX i1 (b=?)
     `--SEARCH TABLE t1 USING INDEX i2 (c=?)
}

do_execsql_test 1.2 {
  SELECT a FROM t1 WHERE b='b' OR c='x'
} {2 3}

do_execsql_test 1.3 {
53
54
55
56
57
58
59


60
61
62
63
64
65
66
67
68
  CREATE INDEX i3 ON t2(b);
  CREATE INDEX i4 ON t2(c);
}

do_eqp_test 2.1 {
  SELECT a FROM t2 WHERE b='b' OR c='x'
} {


  0 0 0 {SEARCH TABLE t2 USING INDEX i3 (b=?)} 
  0 0 0 {SEARCH TABLE t2 USING INDEX i4 (c=?)}
}

do_execsql_test 2.2 {
  SELECT a FROM t2 WHERE b='b' OR c='x'
} {ii iii}

do_execsql_test 2.3 {







>
>
|
|







55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  CREATE INDEX i3 ON t2(b);
  CREATE INDEX i4 ON t2(c);
}

do_eqp_test 2.1 {
  SELECT a FROM t2 WHERE b='b' OR c='x'
} {
  QUERY PLAN
  `--MULTI-INDEX OR
     |--SEARCH TABLE t2 USING INDEX i3 (b=?)
     `--SEARCH TABLE t2 USING INDEX i4 (c=?)
}

do_execsql_test 2.2 {
  SELECT a FROM t2 WHERE b='b' OR c='x'
} {ii iii}

do_execsql_test 2.3 {
Changes to test/whereJ.test.
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

# This one should use index "idx_c".
do_eqp_test 3.4 {
  SELECT * FROM t1 WHERE 
    a = 4 AND b BETWEEN 20 AND 80           -- Matches 80 rows
      AND
    c BETWEEN 150 AND 160                   -- Matches 10 rows
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX idx_c (c>? AND c<?)}
}

# This one should use index "idx_ab".
do_eqp_test 3.5 {
  SELECT * FROM t1 WHERE 
    a = 5 AND b BETWEEN 20 AND 80           -- Matches 1 row
      AND
    c BETWEEN 150 AND 160                   -- Matches 10 rows
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX idx_ab (a=? AND b>? AND b<?)}
}

###########################################################################################

# Reset the database and setup for a test case derived from actual SQLite users
#
db close
sqlite3 db test.db







<
|
<







<
|
<







398
399
400
401
402
403
404

405

406
407
408
409
410
411
412

413

414
415
416
417
418
419
420

# This one should use index "idx_c".
do_eqp_test 3.4 {
  SELECT * FROM t1 WHERE 
    a = 4 AND b BETWEEN 20 AND 80           -- Matches 80 rows
      AND
    c BETWEEN 150 AND 160                   -- Matches 10 rows

} {SEARCH TABLE t1 USING INDEX idx_c (c>? AND c<?)}


# This one should use index "idx_ab".
do_eqp_test 3.5 {
  SELECT * FROM t1 WHERE 
    a = 5 AND b BETWEEN 20 AND 80           -- Matches 1 row
      AND
    c BETWEEN 150 AND 160                   -- Matches 10 rows

} {SEARCH TABLE t1 USING INDEX idx_ab (a=? AND b>? AND b<?)}


###########################################################################################

# Reset the database and setup for a test case derived from actual SQLite users
#
db close
sqlite3 db test.db
Changes to test/with1.test.
988
989
990
991
992
993
994
995
996
997
998


999
1000
1001
1002
1003




1004


1005
1006
1007
1008
1009
1010
1011
    FROM xyz ORDER BY 1
  )
  SELECT 1 FROM xyz;
} 1

# EXPLAIN QUERY PLAN on a self-join of a CTE
#
do_execsql_test 19.1 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(x);
  EXPLAIN QUERY PLAN


  WITH
    x1(a) AS (values(100))
  INSERT INTO t1(x)
    SELECT * FROM (WITH x2(y) AS (SELECT * FROM x1) SELECT y+a FROM x1, x2);
  SELECT * FROM t1;




} {0 0 0 {SCAN SUBQUERY 1} 0 1 1 {SCAN SUBQUERY 1}}



# 2017-10-28.
# See check-in https://sqlite.org/src/info/0926df095faf72c2
# Tried to optimize co-routine processing by changing a Copy opcode
# into SCopy.  But OSSFuzz found two (similar) cases where that optimization
# does not work.
#







|


<
>
>





>
>
>
>
|
>
>







988
989
990
991
992
993
994
995
996
997

998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
    FROM xyz ORDER BY 1
  )
  SELECT 1 FROM xyz;
} 1

# EXPLAIN QUERY PLAN on a self-join of a CTE
#
do_execsql_test 19.1a {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(x);

}
do_eqp_test 19.1b {
  WITH
    x1(a) AS (values(100))
  INSERT INTO t1(x)
    SELECT * FROM (WITH x2(y) AS (SELECT * FROM x1) SELECT y+a FROM x1, x2);
  SELECT * FROM t1;
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  `--SCAN CONSTANT ROW
  |--SCAN SUBQUERY xxxxxx
  `--SCAN SUBQUERY xxxxxx
}

# 2017-10-28.
# See check-in https://sqlite.org/src/info/0926df095faf72c2
# Tried to optimize co-routine processing by changing a Copy opcode
# into SCopy.  But OSSFuzz found two (similar) cases where that optimization
# does not work.
#
Changes to test/with3.test.
75
76
77
78
79
80
81

82




83
84
85
86
87
88
89
90
91

92




93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110




111
112

113
114
115
116
117
118
119
120
    ANALYZE;

  }

  do_eqp_test 3.1.2 {
    WITH cnt(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM cnt LIMIT 1)
    SELECT * FROM cnt, y1 WHERE i=a

  } {




    3 0 0 {SCAN TABLE cnt} 
    1 0 0 {COMPOUND SUBQUERIES 0 AND 0 (UNION ALL)}
    0 0 0 {SCAN SUBQUERY 1} 
    0 1 1 {SEARCH TABLE y1 USING INDEX y1a (a=?)}
  }

  do_eqp_test 3.1.3 {
    WITH cnt(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM cnt LIMIT 1000000)
    SELECT * FROM cnt, y1 WHERE i=a

  } {




    3 0 0 {SCAN TABLE cnt} 
    1 0 0 {COMPOUND SUBQUERIES 0 AND 0 (UNION ALL)}
    0 0 1 {SCAN TABLE y1} 
    0 1 0 {SEARCH SUBQUERY 1 USING AUTOMATIC COVERING INDEX (i=?)}
  }
}

do_execsql_test 3.2.1 {
  CREATE TABLE w1(pk INTEGER PRIMARY KEY, x INTEGER);
  CREATE TABLE w2(pk INTEGER PRIMARY KEY);
}

do_eqp_test 3.2.2 {
  WITH RECURSIVE c(w,id) AS (SELECT 0, (SELECT pk FROM w2 LIMIT 1)
     UNION ALL SELECT c.w + 1, x FROM w1, c LIMIT 1)
     SELECT * FROM c, w2, w1
     WHERE c.id=w2.pk AND c.id=w1.pk;
} {




  2 0 0 {EXECUTE SCALAR SUBQUERY 3} 
  3 0 0 {SCAN TABLE w2} 

  4 0 0 {SCAN TABLE w1}
  4 1 1 {SCAN TABLE c} 
  1 0 0 {COMPOUND SUBQUERIES 0 AND 0 (UNION ALL)} 0 0 0 {SCAN SUBQUERY 1}
  0 1 1 {SEARCH TABLE w2 USING INTEGER PRIMARY KEY (rowid=?)} 
  0 2 2 {SEARCH TABLE w1 USING INTEGER PRIMARY KEY (rowid=?)}
}

finish_test







>
|
>
>
>
>
|
<
|
|
|




>
|
>
>
>
>
|
<
|
|
|













>
>
>
>
|
|
>
|
|
|
|
|



75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    ANALYZE;

  }

  do_eqp_test 3.1.2 {
    WITH cnt(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM cnt LIMIT 1)
    SELECT * FROM cnt, y1 WHERE i=a
  } [string map {"\n  " \n} {
    QUERY PLAN
    |--MATERIALIZE xxxxxx
    |  |--SETUP
    |  |  `--SCAN CONSTANT ROW
    |  `--RECURSIVE STEP
    |     `--SCAN TABLE cnt

    |--SCAN SUBQUERY xxxxxx
    `--SEARCH TABLE y1 USING INDEX y1a (a=?)
  }]

  do_eqp_test 3.1.3 {
    WITH cnt(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM cnt LIMIT 1000000)
    SELECT * FROM cnt, y1 WHERE i=a
  } [string map {"\n  " \n} {
    QUERY PLAN
    |--MATERIALIZE xxxxxx
    |  |--SETUP
    |  |  `--SCAN CONSTANT ROW
    |  `--RECURSIVE STEP
    |     `--SCAN TABLE cnt

    |--SCAN TABLE y1
    `--SEARCH SUBQUERY xxxxxx USING AUTOMATIC COVERING INDEX (i=?)
  }]
}

do_execsql_test 3.2.1 {
  CREATE TABLE w1(pk INTEGER PRIMARY KEY, x INTEGER);
  CREATE TABLE w2(pk INTEGER PRIMARY KEY);
}

do_eqp_test 3.2.2 {
  WITH RECURSIVE c(w,id) AS (SELECT 0, (SELECT pk FROM w2 LIMIT 1)
     UNION ALL SELECT c.w + 1, x FROM w1, c LIMIT 1)
     SELECT * FROM c, w2, w1
     WHERE c.id=w2.pk AND c.id=w1.pk;
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  |--SETUP
  |  |  |--SCAN CONSTANT ROW
  |  |  `--SCALAR SUBQUERY
  |  |     `--SCAN TABLE w2
  |  `--RECURSIVE STEP
  |     |--SCAN TABLE w1
  |     `--SCAN TABLE c
  |--SCAN SUBQUERY xxxxxx
  |--SEARCH TABLE w2 USING INTEGER PRIMARY KEY (rowid=?)
  `--SEARCH TABLE w1 USING INTEGER PRIMARY KEY (rowid=?)
}

finish_test
Changes to test/without_rowid1.test.
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
  INSERT INTO t45 VALUES(5, 'two', 'x');
  INSERT INTO t45 VALUES(7, 'two', 'x');
  INSERT INTO t45 VALUES(9, 'two', 'x');
}

do_eqp_test 5.1 {
  SELECT * FROM t45 WHERE b=? AND a>?
} {/*USING INDEX i45 (b=? AND a>?)*/}

do_execsql_test 5.2 {
  SELECT * FROM t45 WHERE b='two' AND a>4
} {5 two x 7 two x 9 two x}

do_execsql_test 5.3 {
  SELECT * FROM t45 WHERE b='one' AND a<8
} { 2 one x 4 one x 6 one x }

do_execsql_test 5.4 {
  CREATE TABLE t46(a, b, c, d, PRIMARY KEY(a, b)) WITHOUT ROWID;
  WITH r(x) AS (
    SELECT 1 UNION ALL SELECT x+1 FROM r WHERE x<100
  )
  INSERT INTO t46 SELECT x / 20, x % 20, x % 10, x FROM r;
}

set queries {
  1    2    "c = 5 AND a = 1"          {/*i46 (c=? AND a=?)*/}
  2    6    "c = 4 AND a < 3"          {/*i46 (c=? AND a<?)*/}
  3    4    "c = 2 AND a >= 3"         {/*i46 (c=? AND a>?)*/}
  4    1    "c = 2 AND a = 1 AND b<10" {/*i46 (c=? AND a=? AND b<?)*/}
  5    1    "c = 0 AND a = 0 AND b>5"  {/*i46 (c=? AND a=? AND b>?)*/}
}

foreach {tn cnt where eqp} $queries {
  do_execsql_test 5.5.$tn.1 "SELECT count(*) FROM t46 WHERE $where" $cnt
}

do_execsql_test 5.6 {







|


















|
|
|
|
|







234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
  INSERT INTO t45 VALUES(5, 'two', 'x');
  INSERT INTO t45 VALUES(7, 'two', 'x');
  INSERT INTO t45 VALUES(9, 'two', 'x');
}

do_eqp_test 5.1 {
  SELECT * FROM t45 WHERE b=? AND a>?
} {USING INDEX i45 (b=? AND a>?)}

do_execsql_test 5.2 {
  SELECT * FROM t45 WHERE b='two' AND a>4
} {5 two x 7 two x 9 two x}

do_execsql_test 5.3 {
  SELECT * FROM t45 WHERE b='one' AND a<8
} { 2 one x 4 one x 6 one x }

do_execsql_test 5.4 {
  CREATE TABLE t46(a, b, c, d, PRIMARY KEY(a, b)) WITHOUT ROWID;
  WITH r(x) AS (
    SELECT 1 UNION ALL SELECT x+1 FROM r WHERE x<100
  )
  INSERT INTO t46 SELECT x / 20, x % 20, x % 10, x FROM r;
}

set queries {
  1    2    "c = 5 AND a = 1"          {i46 (c=? AND a=?)}
  2    6    "c = 4 AND a < 3"          {i46 (c=? AND a<?)}
  3    4    "c = 2 AND a >= 3"         {i46 (c=? AND a>?)}
  4    1    "c = 2 AND a = 1 AND b<10" {i46 (c=? AND a=? AND b<?)}
  5    1    "c = 0 AND a = 0 AND b>5"  {i46 (c=? AND a=? AND b>?)}
}

foreach {tn cnt where eqp} $queries {
  do_execsql_test 5.5.$tn.1 "SELECT count(*) FROM t46 WHERE $where" $cnt
}

do_execsql_test 5.6 {
Changes to test/wordcount.c.
24
25
26
27
28
29
30




31
32
33
34
35
36
37
**    (1) INSERT OR IGNORE INTO wordcount VALUES($new,0)
**    (2) UPDATE wordcount SET cnt=cnt+1 WHERE word=$new
**
** Replace mode means:
**    (1) REPLACE INTO wordcount
**        VALUES($new,ifnull((SELECT cnt FROM wordcount WHERE word=$new),0)+1);
**




** Select mode means:
**    (1) SELECT 1 FROM wordcount WHERE word=$new
**    (2) INSERT INTO wordcount VALUES($new,1) -- if (1) returns nothing
**    (3) UPDATE wordcount SET cnt=cnt+1 WHERE word=$new  --if (1) return TRUE
**
** Delete mode means:
**    (1) DELETE FROM wordcount WHERE word=$new







>
>
>
>







24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
**    (1) INSERT OR IGNORE INTO wordcount VALUES($new,0)
**    (2) UPDATE wordcount SET cnt=cnt+1 WHERE word=$new
**
** Replace mode means:
**    (1) REPLACE INTO wordcount
**        VALUES($new,ifnull((SELECT cnt FROM wordcount WHERE word=$new),0)+1);
**
** Upsert mode means:
**    (1) INSERT INTO wordcount VALUES($new,1)
**            ON CONFLICT(word) DO UPDATE SET cnt=cnt+1
**
** Select mode means:
**    (1) SELECT 1 FROM wordcount WHERE word=$new
**    (2) INSERT INTO wordcount VALUES($new,1) -- if (1) returns nothing
**    (3) UPDATE wordcount SET cnt=cnt+1 WHERE word=$new  --if (1) return TRUE
**
** Delete mode means:
**    (1) DELETE FROM wordcount WHERE word=$new
86
87
88
89
90
91
92

93
94
95
96
97
98
99
" --select             Use SELECT mode\n"
" --stats              Show sqlite3_status() results at the end.\n"
" --summary            Show summary information on the collected data.\n"
" --tag NAME           Tag all output using NAME.  Use only stdout.\n"
" --timer              Time the operation of this program\n"
" --trace              Enable sqlite3_trace() output.\n"
" --update             Use UPDATE mode\n"

" --without-rowid      Use a WITHOUT ROWID table to store the words.\n"
;

/* Output tag */
char *zTag = "--";

/* Return the current wall-clock time */







>







90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
" --select             Use SELECT mode\n"
" --stats              Show sqlite3_status() results at the end.\n"
" --summary            Show summary information on the collected data.\n"
" --tag NAME           Tag all output using NAME.  Use only stdout.\n"
" --timer              Time the operation of this program\n"
" --trace              Enable sqlite3_trace() output.\n"
" --update             Use UPDATE mode\n"
" --upsert             Use UPSERT mode\n"
" --without-rowid      Use a WITHOUT ROWID table to store the words.\n"
;

/* Output tag */
char *zTag = "--";

/* Return the current wall-clock time */
204
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220
221

222
223
224
225
226
227
228
    sqlite3_result_text(context, zResult, -1, SQLITE_TRANSIENT);
  }
}

/* Define operating modes */
#define MODE_INSERT     0
#define MODE_REPLACE    1

#define MODE_SELECT     2
#define MODE_UPDATE     3
#define MODE_DELETE     4
#define MODE_QUERY      5
#define MODE_COUNT      6
#define MODE_ALL      (-1)

/* Mode names */
static const char *azMode[] = {
  "--insert",
  "--replace",

  "--select",
  "--update",
  "--delete",
  "--query"
};

/*







>
|
|
|
|
|






>







209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    sqlite3_result_text(context, zResult, -1, SQLITE_TRANSIENT);
  }
}

/* Define operating modes */
#define MODE_INSERT     0
#define MODE_REPLACE    1
#define MODE_UPSERT     2
#define MODE_SELECT     3
#define MODE_UPDATE     4
#define MODE_DELETE     5
#define MODE_QUERY      6
#define MODE_COUNT      7
#define MODE_ALL      (-1)

/* Mode names */
static const char *azMode[] = {
  "--insert",
  "--replace",
  "--upsert",
  "--select",
  "--update",
  "--delete",
  "--query"
};

/*
288
289
290
291
292
293
294


295
296
297
298
299
300
301
    const char *z = argv[i];
    if( z[0]=='-' ){
      do{ z++; }while( z[0]=='-' );
      if( strcmp(z,"without-rowid")==0 ){
        useWithoutRowid = 1;
      }else if( strcmp(z,"replace")==0 ){
        iMode = MODE_REPLACE;


      }else if( strcmp(z,"select")==0 ){
        iMode = MODE_SELECT;
      }else if( strcmp(z,"insert")==0 ){
        iMode = MODE_INSERT;
      }else if( strcmp(z,"update")==0 ){
        iMode = MODE_UPDATE;
      }else if( strcmp(z,"delete")==0 ){







>
>







295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    const char *z = argv[i];
    if( z[0]=='-' ){
      do{ z++; }while( z[0]=='-' );
      if( strcmp(z,"without-rowid")==0 ){
        useWithoutRowid = 1;
      }else if( strcmp(z,"replace")==0 ){
        iMode = MODE_REPLACE;
      }else if( strcmp(z,"upsert")==0 ){
        iMode = MODE_UPSERT;
      }else if( strcmp(z,"select")==0 ){
        iMode = MODE_SELECT;
      }else if( strcmp(z,"insert")==0 ){
        iMode = MODE_INSERT;
      }else if( strcmp(z,"update")==0 ){
        iMode = MODE_UPDATE;
      }else if( strcmp(z,"delete")==0 ){
463
464
465
466
467
468
469








470
471
472
473
474
475
476
      rc = sqlite3_prepare_v2(db,
          "REPLACE INTO wordcount(word,cnt)"
          "VALUES(?1,coalesce((SELECT cnt FROM wordcount WHERE word=?1),0)+1)",
          -1, &pInsert, 0);
      if( rc ) fatal_error("Could not prepare the REPLACE statement: %s\n",
                            sqlite3_errmsg(db));
    }








    if( iMode2==MODE_DELETE ){
      rc = sqlite3_prepare_v2(db,
            "DELETE FROM wordcount WHERE word=?1",
            -1, &pDelete, 0);
      if( rc ) fatal_error("Could not prepare the DELETE statement: %s\n",
                           sqlite3_errmsg(db));
    }







>
>
>
>
>
>
>
>







472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
      rc = sqlite3_prepare_v2(db,
          "REPLACE INTO wordcount(word,cnt)"
          "VALUES(?1,coalesce((SELECT cnt FROM wordcount WHERE word=?1),0)+1)",
          -1, &pInsert, 0);
      if( rc ) fatal_error("Could not prepare the REPLACE statement: %s\n",
                            sqlite3_errmsg(db));
    }
    if( iMode2==MODE_UPSERT ){
      rc = sqlite3_prepare_v2(db,
          "INSERT INTO wordcount(word,cnt) VALUES(?1,1) "
          "ON CONFLICT(word) DO UPDATE SET cnt=cnt+1",
          -1, &pInsert, 0);
      if( rc ) fatal_error("Could not prepare the UPSERT statement: %s\n",
                            sqlite3_errmsg(db));
    }
    if( iMode2==MODE_DELETE ){
      rc = sqlite3_prepare_v2(db,
            "DELETE FROM wordcount WHERE word=?1",
            -1, &pDelete, 0);
      if( rc ) fatal_error("Could not prepare the DELETE statement: %s\n",
                           sqlite3_errmsg(db));
    }
Changes to test/zipfile2.test.
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64


65
66
67
68
69
70
71
72
  CREATE VIRTUAL TABLE bbb USING zipfile("testzip");
  CREATE VIRTUAL TABLE ccc USING zipfile(`testzip`);
  CREATE VIRTUAL TABLE ddd USING zipfile([testzip]);
  CREATE VIRTUAL TABLE eee USING zipfile(testzip);
  CREATE VIRTUAL TABLE fff USING zipfile('test''zip');
}

if {$::tcl_platform(platform)=="windows"} {
  set res {1 {cannot open file: testdir}}
} else {
  set res {1 {error in fread()}}
}
do_test 2.0 {
  forcedelete testdir
  file mkdir testdir
  execsql { CREATE VIRTUAL TABLE hhh USING zipfile('testdir') }

  catchsql { SELECT * FROM hhh } 


} $res


set archive {
  504B0304140000080000D4A52BEC09F3B6E0110000001100000005000900612E
  747874555405000140420F00636F6E74656E7473206F6620612E747874504B03
  04140000080000D4A52BECD98916A7110000001100000005000900622E747874
  555405000140420F00636F6E74656E7473206F6620622E747874504B01021E03







<
<
<
<
<




>
|
>
>
|







48
49
50
51
52
53
54





55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
  CREATE VIRTUAL TABLE bbb USING zipfile("testzip");
  CREATE VIRTUAL TABLE ccc USING zipfile(`testzip`);
  CREATE VIRTUAL TABLE ddd USING zipfile([testzip]);
  CREATE VIRTUAL TABLE eee USING zipfile(testzip);
  CREATE VIRTUAL TABLE fff USING zipfile('test''zip');
}






do_test 2.0 {
  forcedelete testdir
  file mkdir testdir
  execsql { CREATE VIRTUAL TABLE hhh USING zipfile('testdir') }
  lindex [catchsql { 
    SELECT * FROM hhh;
    INSERT INTO hhh(name, data) VALUES('1.txt', 'file data');
  }] 0 
} 1


set archive {
  504B0304140000080000D4A52BEC09F3B6E0110000001100000005000900612E
  747874555405000140420F00636F6E74656E7473206F6620612E747874504B03
  04140000080000D4A52BECD98916A7110000001100000005000900622E747874
  555405000140420F00636F6E74656E7473206F6620622E747874504B01021E03
Changes to tool/lemon.c.
266
267
268
269
270
271
272


273
274
275
276
277
278
279
  int destLineno;          /* Line number for start of destructor.  Set to
                           ** -1 for duplicate destructors. */
  char *datatype;          /* The data type of information held by this
                           ** object. Only used if type==NONTERMINAL */
  int dtnum;               /* The data type number.  In the parser, the value
                           ** stack is a union.  The .yy%d element of this
                           ** union is the correct data type for this object */


  /* The following fields are used by MULTITERMINALs only */
  int nsubsym;             /* Number of constituent symbols in the MULTI */
  struct symbol **subsym;  /* Array of constituent symbols */
};

/* Each production rule in the grammar is stored in the following
** structure.  */







>
>







266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
  int destLineno;          /* Line number for start of destructor.  Set to
                           ** -1 for duplicate destructors. */
  char *datatype;          /* The data type of information held by this
                           ** object. Only used if type==NONTERMINAL */
  int dtnum;               /* The data type number.  In the parser, the value
                           ** stack is a union.  The .yy%d element of this
                           ** union is the correct data type for this object */
  int bContent;            /* True if this symbol ever carries content - if
                           ** it is ever more than just syntax */
  /* The following fields are used by MULTITERMINALs only */
  int nsubsym;             /* Number of constituent symbols in the MULTI */
  struct symbol **subsym;  /* Array of constituent symbols */
};

/* Each production rule in the grammar is stored in the following
** structure.  */
392
393
394
395
396
397
398

399
400
401
402
403
404
405
  int maxAction;           /* Maximum action value of any kind */
  struct symbol **symbols; /* Sorted array of pointers to symbols */
  int errorcnt;            /* Number of errors */
  struct symbol *errsym;   /* The error symbol */
  struct symbol *wildcard; /* Token that matches anything */
  char *name;              /* Name of the generated parser */
  char *arg;               /* Declaration of the 3th argument to parser */

  char *tokentype;         /* Type of terminal symbols in the parser stack */
  char *vartype;           /* The default type of non-terminal symbols */
  char *start;             /* Name of the start symbol for the grammar */
  char *stacksize;         /* Size of the parser stack */
  char *include;           /* Code to put at the start of the C file */
  char *error;             /* Code to execute when an error is seen */
  char *overflow;          /* Code to execute on a stack overflow */







>







394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
  int maxAction;           /* Maximum action value of any kind */
  struct symbol **symbols; /* Sorted array of pointers to symbols */
  int errorcnt;            /* Number of errors */
  struct symbol *errsym;   /* The error symbol */
  struct symbol *wildcard; /* Token that matches anything */
  char *name;              /* Name of the generated parser */
  char *arg;               /* Declaration of the 3th argument to parser */
  char *ctx;               /* Declaration of 2nd argument to constructor */
  char *tokentype;         /* Type of terminal symbols in the parser stack */
  char *vartype;           /* The default type of non-terminal symbols */
  char *start;             /* Name of the start symbol for the grammar */
  char *stacksize;         /* Size of the parser stack */
  char *include;           /* Code to put at the start of the C file */
  char *error;             /* Code to execute when an error is seen */
  char *overflow;          /* Code to execute on a stack overflow */
1530
1531
1532
1533
1534
1535
1536












1537
1538
1539
1540
1541
1542
1543
    fprintf(stderr,"out of memory\n");
    exit(1);
  }
  lemon_strcpy(*paz, z);
  for(z=*paz; *z && *z!='='; z++){}
  *z = 0;
}













static char *user_templatename = NULL;
static void handle_T_option(char *z){
  user_templatename = (char *) malloc( lemonStrlen(z)+1 );
  if( user_templatename==0 ){
    memory_error();
  }







>
>
>
>
>
>
>
>
>
>
>
>







1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
    fprintf(stderr,"out of memory\n");
    exit(1);
  }
  lemon_strcpy(*paz, z);
  for(z=*paz; *z && *z!='='; z++){}
  *z = 0;
}

/* Rember the name of the output directory 
*/
static char *outputDir = NULL;
static void handle_d_option(char *z){
  outputDir = (char *) malloc( lemonStrlen(z)+1 );
  if( outputDir==0 ){
    fprintf(stderr,"out of memory\n");
    exit(1);
  }
  lemon_strcpy(outputDir, z);
}

static char *user_templatename = NULL;
static void handle_T_option(char *z){
  user_templatename = (char *) malloc( lemonStrlen(z)+1 );
  if( user_templatename==0 ){
    memory_error();
  }
1612
1613
1614
1615
1616
1617
1618

1619
1620
1621

1622
1623
1624
1625
1626
1627
1628
  static int basisflag = 0;
  static int compress = 0;
  static int quiet = 0;
  static int statistics = 0;
  static int mhflag = 0;
  static int nolinenosflag = 0;
  static int noResort = 0;

  static struct s_options options[] = {
    {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
    {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},

    {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
    {OPT_FSTR, "f", 0, "Ignored.  (Placeholder for -f compiler options.)"},
    {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
    {OPT_FSTR, "I", 0, "Ignored.  (Placeholder for '-I' compiler options.)"},
    {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
    {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
    {OPT_FSTR, "O", 0, "Ignored.  (Placeholder for '-O' compiler options.)"},







>



>







1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
  static int basisflag = 0;
  static int compress = 0;
  static int quiet = 0;
  static int statistics = 0;
  static int mhflag = 0;
  static int nolinenosflag = 0;
  static int noResort = 0;
  
  static struct s_options options[] = {
    {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
    {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
    {OPT_FSTR, "d", (char*)&handle_d_option, "Output directory.  Default '.'"},
    {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
    {OPT_FSTR, "f", 0, "Ignored.  (Placeholder for -f compiler options.)"},
    {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
    {OPT_FSTR, "I", 0, "Ignored.  (Placeholder for '-I' compiler options.)"},
    {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
    {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
    {OPT_FSTR, "O", 0, "Ignored.  (Placeholder for '-O' compiler options.)"},
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675

1676
1677
1678
1679
1680
1681
1682
  Symbol_init();
  State_init();
  lem.argv0 = argv[0];
  lem.filename = OptArg(0);
  lem.basisflag = basisflag;
  lem.nolinenosflag = nolinenosflag;
  Symbol_new("$");
  lem.errsym = Symbol_new("error");
  lem.errsym->useCnt = 0;

  /* Parse the input file */
  Parse(&lem);
  if( lem.errorcnt ) exit(lem.errorcnt);
  if( lem.nrule==0 ){
    fprintf(stderr,"Empty grammar.\n");
    exit(1);
  }


  /* Count and index the symbols of the grammar */
  Symbol_new("{default}");
  lem.nsymbol = Symbol_count();
  lem.symbols = Symbol_arrayof();
  for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
  qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp);







<
<








>







1676
1677
1678
1679
1680
1681
1682


1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
  Symbol_init();
  State_init();
  lem.argv0 = argv[0];
  lem.filename = OptArg(0);
  lem.basisflag = basisflag;
  lem.nolinenosflag = nolinenosflag;
  Symbol_new("$");



  /* Parse the input file */
  Parse(&lem);
  if( lem.errorcnt ) exit(lem.errorcnt);
  if( lem.nrule==0 ){
    fprintf(stderr,"Empty grammar.\n");
    exit(1);
  }
  lem.errsym = Symbol_find("error");

  /* Count and index the symbols of the grammar */
  Symbol_new("{default}");
  lem.nsymbol = Symbol_count();
  lem.symbols = Symbol_arrayof();
  for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
  qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp);
2359
2360
2361
2362
2363
2364
2365

2366
2367
2368
2369
2370
2371
2372
          int i;
          rp->ruleline = psp->tokenlineno;
          rp->rhs = (struct symbol**)&rp[1];
          rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
          for(i=0; i<psp->nrhs; i++){
            rp->rhs[i] = psp->rhs[i];
            rp->rhsalias[i] = psp->alias[i];

          }
          rp->lhs = psp->lhs;
          rp->lhsalias = psp->lhsalias;
          rp->nrhs = psp->nrhs;
          rp->code = 0;
          rp->noCode = 1;
          rp->precsym = 0;







>







2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
          int i;
          rp->ruleline = psp->tokenlineno;
          rp->rhs = (struct symbol**)&rp[1];
          rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
          for(i=0; i<psp->nrhs; i++){
            rp->rhs[i] = psp->rhs[i];
            rp->rhsalias[i] = psp->alias[i];
            if( rp->rhsalias[i]!=0 ){ rp->rhs[i]->bContent = 1; }
          }
          rp->lhs = psp->lhs;
          rp->lhsalias = psp->lhsalias;
          rp->nrhs = psp->nrhs;
          rp->code = 0;
          rp->noCode = 1;
          rp->precsym = 0;
2475
2476
2477
2478
2479
2480
2481



2482
2483
2484
2485
2486
2487
2488
          psp->declargslot = &(psp->gp->accept);
        }else if( strcmp(x,"parse_failure")==0 ){
          psp->declargslot = &(psp->gp->failure);
        }else if( strcmp(x,"stack_overflow")==0 ){
          psp->declargslot = &(psp->gp->overflow);
        }else if( strcmp(x,"extra_argument")==0 ){
          psp->declargslot = &(psp->gp->arg);



          psp->insertLineMacro = 0;
        }else if( strcmp(x,"token_type")==0 ){
          psp->declargslot = &(psp->gp->tokentype);
          psp->insertLineMacro = 0;
        }else if( strcmp(x,"default_type")==0 ){
          psp->declargslot = &(psp->gp->vartype);
          psp->insertLineMacro = 0;







>
>
>







2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
          psp->declargslot = &(psp->gp->accept);
        }else if( strcmp(x,"parse_failure")==0 ){
          psp->declargslot = &(psp->gp->failure);
        }else if( strcmp(x,"stack_overflow")==0 ){
          psp->declargslot = &(psp->gp->overflow);
        }else if( strcmp(x,"extra_argument")==0 ){
          psp->declargslot = &(psp->gp->arg);
          psp->insertLineMacro = 0;
        }else if( strcmp(x,"extra_context")==0 ){
          psp->declargslot = &(psp->gp->ctx);
          psp->insertLineMacro = 0;
        }else if( strcmp(x,"token_type")==0 ){
          psp->declargslot = &(psp->gp->tokentype);
          psp->insertLineMacro = 0;
        }else if( strcmp(x,"default_type")==0 ){
          psp->declargslot = &(psp->gp->vartype);
          psp->insertLineMacro = 0;
3022
3023
3024
3025
3026
3027
3028


3029








3030
3031
3032
3033
3034


3035



3036
3037
3038
3039
3040
3041
3042
** name comes from malloc() and must be freed by the calling
** function.
*/
PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
{
  char *name;
  char *cp;











  name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 );
  if( name==0 ){
    fprintf(stderr,"Can't allocate space for a filename.\n");
    exit(1);
  }


  lemon_strcpy(name,lemp->filename);



  cp = strrchr(name,'.');
  if( cp ) *cp = 0;
  lemon_strcat(name,suffix);
  return name;
}

/* Open a file with a name based on the name of the input file,







>
>

>
>
>
>
>
>
>
>
|




>
>
|
>
>
>







3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
** name comes from malloc() and must be freed by the calling
** function.
*/
PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
{
  char *name;
  char *cp;
  char *filename = lemp->filename;
  int sz;

  if( outputDir ){
    cp = strrchr(filename, '/');
    if( cp ) filename = cp + 1;
  }
  sz = lemonStrlen(filename);
  sz += lemonStrlen(suffix);
  if( outputDir ) sz += lemonStrlen(outputDir) + 1;
  sz += 5;
  name = (char*)malloc( sz );
  if( name==0 ){
    fprintf(stderr,"Can't allocate space for a filename.\n");
    exit(1);
  }
  name[0] = 0;
  if( outputDir ){
    lemon_strcpy(name, outputDir);
    lemon_strcat(name, "/");
  }
  lemon_strcat(name,filename);
  cp = strrchr(name,'.');
  if( cp ) *cp = 0;
  lemon_strcat(name,suffix);
  return name;
}

/* Open a file with a name based on the name of the input file,
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
  }
  return result;
}

/* Generate the "*.out" log file */
void ReportOutput(struct lemon *lemp)
{
  int i;
  struct state *stp;
  struct config *cfp;
  struct action *ap;
  struct rule *rp;
  FILE *fp;

  fp = file_open(lemp,".out","wb");







|







3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
  }
  return result;
}

/* Generate the "*.out" log file */
void ReportOutput(struct lemon *lemp)
{
  int i, n;
  struct state *stp;
  struct config *cfp;
  struct action *ap;
  struct rule *rp;
  FILE *fp;

  fp = file_open(lemp,".out","wb");
3286
3287
3288
3289
3290
3291
3292

3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312




















3313
3314
3315
3316
3317
3318
3319
    for(ap=stp->ap; ap; ap=ap->next){
      if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
    }
    fprintf(fp,"\n");
  }
  fprintf(fp, "----------------------------------------------------\n");
  fprintf(fp, "Symbols:\n");

  for(i=0; i<lemp->nsymbol; i++){
    int j;
    struct symbol *sp;

    sp = lemp->symbols[i];
    fprintf(fp, "  %3d: %s", i, sp->name);
    if( sp->type==NONTERMINAL ){
      fprintf(fp, ":");
      if( sp->lambda ){
        fprintf(fp, " <lambda>");
      }
      for(j=0; j<lemp->nterminal; j++){
        if( sp->firstset && SetFind(sp->firstset, j) ){
          fprintf(fp, " %s", lemp->symbols[j]->name);
        }
      }
    }
    if( sp->prec>=0 ) fprintf(fp," (precedence=%d)", sp->prec);
    fprintf(fp, "\n");
  }




















  fprintf(fp, "----------------------------------------------------\n");
  fprintf(fp, "Rules:\n");
  for(rp=lemp->rule; rp; rp=rp->next){
    fprintf(fp, "%4d: ", rp->iRule);
    rule_print(fp, rp);
    fprintf(fp,".");
    if( rp->precsym ){







>




















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
    for(ap=stp->ap; ap; ap=ap->next){
      if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
    }
    fprintf(fp,"\n");
  }
  fprintf(fp, "----------------------------------------------------\n");
  fprintf(fp, "Symbols:\n");
  fprintf(fp, "The first-set of non-terminals is shown after the name.\n\n");
  for(i=0; i<lemp->nsymbol; i++){
    int j;
    struct symbol *sp;

    sp = lemp->symbols[i];
    fprintf(fp, "  %3d: %s", i, sp->name);
    if( sp->type==NONTERMINAL ){
      fprintf(fp, ":");
      if( sp->lambda ){
        fprintf(fp, " <lambda>");
      }
      for(j=0; j<lemp->nterminal; j++){
        if( sp->firstset && SetFind(sp->firstset, j) ){
          fprintf(fp, " %s", lemp->symbols[j]->name);
        }
      }
    }
    if( sp->prec>=0 ) fprintf(fp," (precedence=%d)", sp->prec);
    fprintf(fp, "\n");
  }
  fprintf(fp, "----------------------------------------------------\n");
  fprintf(fp, "Syntax-only Symbols:\n");
  fprintf(fp, "The following symbols never carry semantic content.\n\n");
  for(i=n=0; i<lemp->nsymbol; i++){
    int w;
    struct symbol *sp = lemp->symbols[i];
    if( sp->bContent ) continue;
    w = (int)strlen(sp->name);
    if( n>0 && n+w>75 ){
      fprintf(fp,"\n");
      n = 0;
    }
    if( n>0 ){
      fprintf(fp, " ");
      n++;
    }
    fprintf(fp, "%s", sp->name);
    n += w;
  }
  if( n>0 ) fprintf(fp, "\n");
  fprintf(fp, "----------------------------------------------------\n");
  fprintf(fp, "Rules:\n");
  for(rp=lemp->rule; rp; rp=rp->next){
    fprintf(fp, "%4d: ", rp->iRule);
    rule_print(fp, rp);
    fprintf(fp,".");
    if( rp->precsym ){
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
  fprintf(out,"  int yyinit;\n"); lineno++;
  fprintf(out,"  %sTOKENTYPE yy0;\n",name); lineno++;
  for(i=0; i<arraysize; i++){
    if( types[i]==0 ) continue;
    fprintf(out,"  %s yy%d;\n",types[i],i+1); lineno++;
    free(types[i]);
  }
  if( lemp->errsym->useCnt ){
    fprintf(out,"  int yy%d;\n",lemp->errsym->dtnum); lineno++;
  }
  free(stddt);
  free(types);
  fprintf(out,"} YYMINORTYPE;\n"); lineno++;
  *plineno = lineno;
}







|







4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
  fprintf(out,"  int yyinit;\n"); lineno++;
  fprintf(out,"  %sTOKENTYPE yy0;\n",name); lineno++;
  for(i=0; i<arraysize; i++){
    if( types[i]==0 ) continue;
    fprintf(out,"  %s yy%d;\n",types[i],i+1); lineno++;
    free(types[i]);
  }
  if( lemp->errsym && lemp->errsym->useCnt ){
    fprintf(out,"  int yy%d;\n",lemp->errsym->dtnum); lineno++;
  }
  free(stddt);
  free(types);
  fprintf(out,"} YYMINORTYPE;\n"); lineno++;
  *plineno = lineno;
}
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
    }
    fprintf(out,"#endif\n"); lineno++;
  }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate the defines */
  fprintf(out,"#define YYCODETYPE %s\n",
    minimum_size_type(0, lemp->nsymbol+1, &szCodeType)); lineno++;
  fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1);  lineno++;
  fprintf(out,"#define YYACTIONTYPE %s\n",
    minimum_size_type(0,lemp->maxAction,&szActionType)); lineno++;
  if( lemp->wildcard ){
    fprintf(out,"#define YYWILDCARD %d\n",
       lemp->wildcard->index); lineno++;
  }
  print_stack_union(out,lemp,&lineno,mhflag);







|
|







4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
    }
    fprintf(out,"#endif\n"); lineno++;
  }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate the defines */
  fprintf(out,"#define YYCODETYPE %s\n",
    minimum_size_type(0, lemp->nsymbol, &szCodeType)); lineno++;
  fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol);  lineno++;
  fprintf(out,"#define YYACTIONTYPE %s\n",
    minimum_size_type(0,lemp->maxAction,&szActionType)); lineno++;
  if( lemp->wildcard ){
    fprintf(out,"#define YYWILDCARD %d\n",
       lemp->wildcard->index); lineno++;
  }
  print_stack_union(out,lemp,&lineno,mhflag);
4166
4167
4168
4169
4170
4171
4172

4173
4174
4175
4176
4177
4178
4179

4180
4181
4182


















4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
  name = lemp->name ? lemp->name : "Parse";
  if( lemp->arg && lemp->arg[0] ){
    i = lemonStrlen(lemp->arg);
    while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--;
    while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
    fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg);  lineno++;
    fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg);  lineno++;

    fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
                 name,lemp->arg,&lemp->arg[i]);  lineno++;
    fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
                 name,&lemp->arg[i],&lemp->arg[i]);  lineno++;
  }else{
    fprintf(out,"#define %sARG_SDECL\n",name);  lineno++;
    fprintf(out,"#define %sARG_PDECL\n",name);  lineno++;

    fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
    fprintf(out,"#define %sARG_STORE\n",name); lineno++;
  }


















  if( mhflag ){
    fprintf(out,"#endif\n"); lineno++;
  }
  if( lemp->errsym->useCnt ){
    fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
    fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
  }
  if( lemp->has_fallback ){
    fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
  }








>
|

|


|
|
>



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|







4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
  name = lemp->name ? lemp->name : "Parse";
  if( lemp->arg && lemp->arg[0] ){
    i = lemonStrlen(lemp->arg);
    while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--;
    while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
    fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg);  lineno++;
    fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg);  lineno++;
    fprintf(out,"#define %sARG_PARAM ,%s\n",name,&lemp->arg[i]);  lineno++;
    fprintf(out,"#define %sARG_FETCH %s=yypParser->%s;\n",
                 name,lemp->arg,&lemp->arg[i]);  lineno++;
    fprintf(out,"#define %sARG_STORE yypParser->%s=%s;\n",
                 name,&lemp->arg[i],&lemp->arg[i]);  lineno++;
  }else{
    fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
    fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
    fprintf(out,"#define %sARG_PARAM\n",name); lineno++;
    fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
    fprintf(out,"#define %sARG_STORE\n",name); lineno++;
  }
  if( lemp->ctx && lemp->ctx[0] ){
    i = lemonStrlen(lemp->ctx);
    while( i>=1 && ISSPACE(lemp->ctx[i-1]) ) i--;
    while( i>=1 && (ISALNUM(lemp->ctx[i-1]) || lemp->ctx[i-1]=='_') ) i--;
    fprintf(out,"#define %sCTX_SDECL %s;\n",name,lemp->ctx);  lineno++;
    fprintf(out,"#define %sCTX_PDECL ,%s\n",name,lemp->ctx);  lineno++;
    fprintf(out,"#define %sCTX_PARAM ,%s\n",name,&lemp->ctx[i]);  lineno++;
    fprintf(out,"#define %sCTX_FETCH %s=yypParser->%s;\n",
                 name,lemp->ctx,&lemp->ctx[i]);  lineno++;
    fprintf(out,"#define %sCTX_STORE yypParser->%s=%s;\n",
                 name,&lemp->ctx[i],&lemp->ctx[i]);  lineno++;
  }else{
    fprintf(out,"#define %sCTX_SDECL\n",name); lineno++;
    fprintf(out,"#define %sCTX_PDECL\n",name); lineno++;
    fprintf(out,"#define %sCTX_PARAM\n",name); lineno++;
    fprintf(out,"#define %sCTX_FETCH\n",name); lineno++;
    fprintf(out,"#define %sCTX_STORE\n",name); lineno++;
  }
  if( mhflag ){
    fprintf(out,"#endif\n"); lineno++;
  }
  if( lemp->errsym && lemp->errsym->useCnt ){
    fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
    fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
  }
  if( lemp->has_fallback ){
    fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
  }

Changes to tool/lempar.c.
62
63
64
65
66
67
68

69
70

71
72
73
74
75
76
77
**                       This is typically a union of many types, one of
**                       which is ParseTOKENTYPE.  The entry in the union
**                       for terminal symbols is called "yy0".
**    YYSTACKDEPTH       is the maximum depth of the parser's stack.  If
**                       zero the stack is dynamically sized using realloc()
**    ParseARG_SDECL     A static variable declaration for the %extra_argument
**    ParseARG_PDECL     A parameter declaration for the %extra_argument

**    ParseARG_STORE     Code to store %extra_argument into yypParser
**    ParseARG_FETCH     Code to extract %extra_argument from yypParser

**    YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.
**    YYNSTATE           the combined number of states.
**    YYNRULE            the number of rules in the grammar
**    YYNTOKEN           Number of terminal symbols
**    YY_MAX_SHIFT       Maximum value for shift actions
**    YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions







>


>







62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
**                       This is typically a union of many types, one of
**                       which is ParseTOKENTYPE.  The entry in the union
**                       for terminal symbols is called "yy0".
**    YYSTACKDEPTH       is the maximum depth of the parser's stack.  If
**                       zero the stack is dynamically sized using realloc()
**    ParseARG_SDECL     A static variable declaration for the %extra_argument
**    ParseARG_PDECL     A parameter declaration for the %extra_argument
**    ParseARG_PARAM     Code to pass %extra_argument as a subroutine parameter
**    ParseARG_STORE     Code to store %extra_argument into yypParser
**    ParseARG_FETCH     Code to extract %extra_argument from yypParser
**    ParseCTX_*         As ParseARG_ except for %extra_context
**    YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.
**    YYNSTATE           the combined number of states.
**    YYNRULE            the number of rules in the grammar
**    YYNTOKEN           Number of terminal symbols
**    YY_MAX_SHIFT       Maximum value for shift actions
**    YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
207
208
209
210
211
212
213

214
215
216
217
218
219
220
#ifdef YYTRACKMAXSTACKDEPTH
  int yyhwm;                    /* High-water mark of the stack */
#endif
#ifndef YYNOERRORRECOVERY
  int yyerrcnt;                 /* Shifts left before out of the error */
#endif
  ParseARG_SDECL                /* A place to hold %extra_argument */

#if YYSTACKDEPTH<=0
  int yystksz;                  /* Current side of the stack */
  yyStackEntry *yystack;        /* The parser's stack */
  yyStackEntry yystk0;          /* First stack entry */
#else
  yyStackEntry yystack[YYSTACKDEPTH];  /* The parser's stack */
  yyStackEntry *yystackEnd;            /* Last entry in the stack */







>







209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#ifdef YYTRACKMAXSTACKDEPTH
  int yyhwm;                    /* High-water mark of the stack */
#endif
#ifndef YYNOERRORRECOVERY
  int yyerrcnt;                 /* Shifts left before out of the error */
#endif
  ParseARG_SDECL                /* A place to hold %extra_argument */
  ParseCTX_SDECL                /* A place to hold %extra_context */
#if YYSTACKDEPTH<=0
  int yystksz;                  /* Current side of the stack */
  yyStackEntry *yystack;        /* The parser's stack */
  yyStackEntry yystk0;          /* First stack entry */
#else
  yyStackEntry yystack[YYSTACKDEPTH];  /* The parser's stack */
  yyStackEntry *yystackEnd;            /* Last entry in the stack */
311
312
313
314
315
316
317
318
319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359



360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
*/
#ifndef YYMALLOCARGTYPE
# define YYMALLOCARGTYPE size_t
#endif

/* Initialize a new parser that has already been allocated.
*/
void ParseInit(void *yypParser){
  yyParser *pParser = (yyParser*)yypParser;

#ifdef YYTRACKMAXSTACKDEPTH
  pParser->yyhwm = 0;
#endif
#if YYSTACKDEPTH<=0
  pParser->yytos = NULL;
  pParser->yystack = NULL;
  pParser->yystksz = 0;
  if( yyGrowStack(pParser) ){
    pParser->yystack = &pParser->yystk0;
    pParser->yystksz = 1;
  }
#endif
#ifndef YYNOERRORRECOVERY
  pParser->yyerrcnt = -1;
#endif
  pParser->yytos = pParser->yystack;
  pParser->yystack[0].stateno = 0;
  pParser->yystack[0].major = 0;
#if YYSTACKDEPTH>0
  pParser->yystackEnd = &pParser->yystack[YYSTACKDEPTH-1];
#endif
}

#ifndef Parse_ENGINEALWAYSONSTACK
/* 
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
**
** Inputs:
** A pointer to the function used to allocate memory.
**
** Outputs:
** A pointer to a parser.  This pointer is used in subsequent calls
** to Parse and ParseFree.
*/
void *ParseAlloc(void *(*mallocProc)(YYMALLOCARGTYPE)){
  yyParser *pParser;
  pParser = (yyParser*)(*mallocProc)( (YYMALLOCARGTYPE)sizeof(yyParser) );
  if( pParser ) ParseInit(pParser);



  return pParser;
}
#endif /* Parse_ENGINEALWAYSONSTACK */


/* The following function deletes the "minor type" or semantic value
** associated with a symbol.  The symbol can be either a terminal
** or nonterminal. "yymajor" is the symbol code, and "yypminor" is
** a pointer to the value to be deleted.  The code used to do the 
** deletions is derived from the %destructor and/or %token_destructor
** directives of the input grammar.
*/
static void yy_destructor(
  yyParser *yypParser,    /* The parser */
  YYCODETYPE yymajor,     /* Type code for object to destroy */
  YYMINORTYPE *yypminor   /* The object to be destroyed */
){
  ParseARG_FETCH;

  switch( yymajor ){
    /* Here is inserted the actions which take place when a
    ** terminal or non-terminal is destroyed.  This can happen
    ** when the symbol is popped from the stack during a
    ** reduce or during error processing or when a parser is 
    ** being destroyed before it is finished parsing.
    **







|
|
>

|


|
|
|
|
|
|



|

|
|
|

|
















|
|
|
|
>
>
>
|
















|
>







314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
*/
#ifndef YYMALLOCARGTYPE
# define YYMALLOCARGTYPE size_t
#endif

/* Initialize a new parser that has already been allocated.
*/
void ParseInit(void *yypRawParser ParseCTX_PDECL){
  yyParser *yypParser = (yyParser*)yypRawParser;
  ParseCTX_STORE
#ifdef YYTRACKMAXSTACKDEPTH
  yypParser->yyhwm = 0;
#endif
#if YYSTACKDEPTH<=0
  yypParser->yytos = NULL;
  yypParser->yystack = NULL;
  yypParser->yystksz = 0;
  if( yyGrowStack(yypParser) ){
    yypParser->yystack = &yypParser->yystk0;
    yypParser->yystksz = 1;
  }
#endif
#ifndef YYNOERRORRECOVERY
  yypParser->yyerrcnt = -1;
#endif
  yypParser->yytos = yypParser->yystack;
  yypParser->yystack[0].stateno = 0;
  yypParser->yystack[0].major = 0;
#if YYSTACKDEPTH>0
  yypParser->yystackEnd = &yypParser->yystack[YYSTACKDEPTH-1];
#endif
}

#ifndef Parse_ENGINEALWAYSONSTACK
/* 
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
**
** Inputs:
** A pointer to the function used to allocate memory.
**
** Outputs:
** A pointer to a parser.  This pointer is used in subsequent calls
** to Parse and ParseFree.
*/
void *ParseAlloc(void *(*mallocProc)(YYMALLOCARGTYPE) ParseCTX_PDECL){
  yyParser *yypParser;
  yypParser = (yyParser*)(*mallocProc)( (YYMALLOCARGTYPE)sizeof(yyParser) );
  if( yypParser ){
    ParseCTX_STORE
    ParseInit(yypParser ParseCTX_PARAM);
  }
  return (void*)yypParser;
}
#endif /* Parse_ENGINEALWAYSONSTACK */


/* The following function deletes the "minor type" or semantic value
** associated with a symbol.  The symbol can be either a terminal
** or nonterminal. "yymajor" is the symbol code, and "yypminor" is
** a pointer to the value to be deleted.  The code used to do the 
** deletions is derived from the %destructor and/or %token_destructor
** directives of the input grammar.
*/
static void yy_destructor(
  yyParser *yypParser,    /* The parser */
  YYCODETYPE yymajor,     /* Type code for object to destroy */
  YYMINORTYPE *yypminor   /* The object to be destroyed */
){
  ParseARG_FETCH
  ParseCTX_FETCH
  switch( yymajor ){
    /* Here is inserted the actions which take place when a
    ** terminal or non-terminal is destroyed.  This can happen
    ** when the symbol is popped from the stack during a
    ** reduce or during error processing or when a parser is 
    ** being destroyed before it is finished parsing.
    **
493
494
495
496
497
498
499
500
501
502

503
504
505
506
507
508
509
510
511
512
513
}
#endif

/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.
*/
static unsigned int yy_find_shift_action(
  yyParser *pParser,        /* The parser */
  YYCODETYPE iLookAhead     /* The look-ahead token */

){
  int i;
  int stateno = pParser->yytos->stateno;
 
  if( stateno>YY_MAX_SHIFT ) return stateno;
  assert( stateno <= YY_SHIFT_COUNT );
#if defined(YYCOVERAGE)
  yycoverage[stateno][iLookAhead] = 1;
#endif
  do{
    i = yy_shift_ofst[stateno];







|
<
|
>


<
|







501
502
503
504
505
506
507
508

509
510
511
512

513
514
515
516
517
518
519
520
}
#endif

/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.
*/
static YYACTIONTYPE yy_find_shift_action(

  YYCODETYPE iLookAhead,    /* The look-ahead token */
  YYACTIONTYPE stateno      /* Current state number */
){
  int i;


  if( stateno>YY_MAX_SHIFT ) return stateno;
  assert( stateno <= YY_SHIFT_COUNT );
#if defined(YYCOVERAGE)
  yycoverage[stateno][iLookAhead] = 1;
#endif
  do{
    i = yy_shift_ofst[stateno];
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
}

/*
** Find the appropriate action for a parser given the non-terminal
** look-ahead token iLookAhead.
*/
static int yy_find_reduce_action(
  int stateno,              /* Current state number */
  YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
#ifdef YYERRORSYMBOL
  if( stateno>YY_REDUCE_COUNT ){
    return yy_default[stateno];
  }







|







570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
}

/*
** Find the appropriate action for a parser given the non-terminal
** look-ahead token iLookAhead.
*/
static int yy_find_reduce_action(
  YYACTIONTYPE stateno,     /* Current state number */
  YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
#ifdef YYERRORSYMBOL
  if( stateno>YY_REDUCE_COUNT ){
    return yy_default[stateno];
  }
592
593
594
595
596
597
598
599

600
601
602
603
604
605
606
607
608
609
610
611

612
613
614
615
616
617
618
  return yy_action[i];
}

/*
** The following routine is called if the stack overflows.
*/
static void yyStackOverflow(yyParser *yypParser){
   ParseARG_FETCH;

#ifndef NDEBUG
   if( yyTraceFILE ){
     fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
   }
#endif
   while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser);
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */
/******** Begin %stack_overflow code ******************************************/
%%
/******** End %stack_overflow code ********************************************/
   ParseARG_STORE; /* Suppress warning about unused %extra_argument var */

}

/*
** Print tracing information for a SHIFT action
*/
#ifndef NDEBUG
static void yyTraceShift(yyParser *yypParser, int yyNewState, const char *zTag){







|
>











|
>







599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
  return yy_action[i];
}

/*
** The following routine is called if the stack overflows.
*/
static void yyStackOverflow(yyParser *yypParser){
   ParseARG_FETCH
   ParseCTX_FETCH
#ifndef NDEBUG
   if( yyTraceFILE ){
     fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
   }
#endif
   while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser);
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */
/******** Begin %stack_overflow code ******************************************/
%%
/******** End %stack_overflow code ********************************************/
   ParseARG_STORE /* Suppress warning about unused %extra_argument var */
   ParseCTX_STORE
}

/*
** Print tracing information for a SHIFT action
*/
#ifndef NDEBUG
static void yyTraceShift(yyParser *yypParser, int yyNewState, const char *zTag){
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
#endif

/*
** Perform a shift action.
*/
static void yy_shift(
  yyParser *yypParser,          /* The parser to be shifted */
  int yyNewState,               /* The new state to shift in */
  int yyMajor,                  /* The major token to shift in */
  ParseTOKENTYPE yyMinor        /* The minor token to shift in */
){
  yyStackEntry *yytos;
  yypParser->yytos++;
#ifdef YYTRACKMAXSTACKDEPTH
  if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){
    yypParser->yyhwm++;







|
|







642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
#endif

/*
** Perform a shift action.
*/
static void yy_shift(
  yyParser *yypParser,          /* The parser to be shifted */
  YYACTIONTYPE yyNewState,      /* The new state to shift in */
  YYCODETYPE yyMajor,           /* The major token to shift in */
  ParseTOKENTYPE yyMinor        /* The minor token to shift in */
){
  yyStackEntry *yytos;
  yypParser->yytos++;
#ifdef YYTRACKMAXSTACKDEPTH
  if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){
    yypParser->yyhwm++;
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
    }
  }
#endif
  if( yyNewState > YY_MAX_SHIFT ){
    yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
  }
  yytos = yypParser->yytos;
  yytos->stateno = (YYACTIONTYPE)yyNewState;
  yytos->major = (YYCODETYPE)yyMajor;
  yytos->minor.yy0 = yyMinor;
  yyTraceShift(yypParser, yyNewState, "Shift");
}

/* The following table contains information about every rule that
** is used during the reduce.
*/







|
|







673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
    }
  }
#endif
  if( yyNewState > YY_MAX_SHIFT ){
    yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
  }
  yytos = yypParser->yytos;
  yytos->stateno = yyNewState;
  yytos->major = yyMajor;
  yytos->minor.yy0 = yyMinor;
  yyTraceShift(yypParser, yyNewState, "Shift");
}

/* The following table contains information about every rule that
** is used during the reduce.
*/
692
693
694
695
696
697
698
699
700
701
702
703

704
705
706
707
708
709
710
711
712
713
714
715
716
**
** The yyLookahead and yyLookaheadToken parameters provide reduce actions
** access to the lookahead token (if any).  The yyLookahead will be YYNOCODE
** if the lookahead token has already been consumed.  As this procedure is
** only called from one place, optimizing compilers will in-line it, which
** means that the extra parameters have no performance impact.
*/
static void yy_reduce(
  yyParser *yypParser,         /* The parser */
  unsigned int yyruleno,       /* Number of the rule by which to reduce */
  int yyLookahead,             /* Lookahead token, or YYNOCODE if none */
  ParseTOKENTYPE yyLookaheadToken  /* Value of the lookahead token */

){
  int yygoto;                     /* The next state */
  int yyact;                      /* The next action */
  yyStackEntry *yymsp;            /* The top of the parser's stack */
  int yysize;                     /* Amount to pop the stack */
  ParseARG_FETCH;
  (void)yyLookahead;
  (void)yyLookaheadToken;
  yymsp = yypParser->yytos;
#ifndef NDEBUG
  if( yyTraceFILE && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
    yysize = yyRuleInfo[yyruleno].nrhs;
    if( yysize ){







|




>





|







701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
**
** The yyLookahead and yyLookaheadToken parameters provide reduce actions
** access to the lookahead token (if any).  The yyLookahead will be YYNOCODE
** if the lookahead token has already been consumed.  As this procedure is
** only called from one place, optimizing compilers will in-line it, which
** means that the extra parameters have no performance impact.
*/
static YYACTIONTYPE yy_reduce(
  yyParser *yypParser,         /* The parser */
  unsigned int yyruleno,       /* Number of the rule by which to reduce */
  int yyLookahead,             /* Lookahead token, or YYNOCODE if none */
  ParseTOKENTYPE yyLookaheadToken  /* Value of the lookahead token */
  ParseCTX_PDECL                   /* %extra_context */
){
  int yygoto;                     /* The next state */
  int yyact;                      /* The next action */
  yyStackEntry *yymsp;            /* The top of the parser's stack */
  int yysize;                     /* Amount to pop the stack */
  ParseARG_FETCH
  (void)yyLookahead;
  (void)yyLookaheadToken;
  yymsp = yypParser->yytos;
#ifndef NDEBUG
  if( yyTraceFILE && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
    yysize = yyRuleInfo[yyruleno].nrhs;
    if( yysize ){
733
734
735
736
737
738
739



740
741
742
743
744
745



746
747
748
749
750
751
752
753
      yypParser->yyhwm++;
      assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack));
    }
#endif
#if YYSTACKDEPTH>0 
    if( yypParser->yytos>=yypParser->yystackEnd ){
      yyStackOverflow(yypParser);



      return;
    }
#else
    if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz-1] ){
      if( yyGrowStack(yypParser) ){
        yyStackOverflow(yypParser);



        return;
      }
      yymsp = yypParser->yytos;
    }
#endif
  }

  switch( yyruleno ){







>
>
>
|





>
>
>
|







743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
      yypParser->yyhwm++;
      assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack));
    }
#endif
#if YYSTACKDEPTH>0 
    if( yypParser->yytos>=yypParser->yystackEnd ){
      yyStackOverflow(yypParser);
      /* The call to yyStackOverflow() above pops the stack until it is
      ** empty, causing the main parser loop to exit.  So the return value
      ** is never used and does not matter. */
      return 0;
    }
#else
    if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz-1] ){
      if( yyGrowStack(yypParser) ){
        yyStackOverflow(yypParser);
        /* The call to yyStackOverflow() above pops the stack until it is
        ** empty, causing the main parser loop to exit.  So the return value
        ** is never used and does not matter. */
        return 0;
      }
      yymsp = yypParser->yytos;
    }
#endif
  }

  switch( yyruleno ){
776
777
778
779
780
781
782

783
784
785
786
787
788
789
790
791
792

793
794
795
796
797
798
799
800
801
802
803
804

805
806
807
808
809
810
811
812
813
814
815
816

817
818
819
820
821

822
823
824
825
826
827
828
829
830

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

846
847
848
849
850
851
852
  assert( yyact!=YY_ERROR_ACTION );

  yymsp += yysize+1;
  yypParser->yytos = yymsp;
  yymsp->stateno = (YYACTIONTYPE)yyact;
  yymsp->major = (YYCODETYPE)yygoto;
  yyTraceShift(yypParser, yyact, "... then shift");

}

/*
** The following code executes when the parse fails
*/
#ifndef YYNOERRORRECOVERY
static void yy_parse_failed(
  yyParser *yypParser           /* The parser */
){
  ParseARG_FETCH;

#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
  }
#endif
  while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser);
  /* Here code is inserted which will be executed whenever the
  ** parser fails */
/************ Begin %parse_failure code ***************************************/
%%
/************ End %parse_failure code *****************************************/
  ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */

}
#endif /* YYNOERRORRECOVERY */

/*
** The following code executes when a syntax error first occurs.
*/
static void yy_syntax_error(
  yyParser *yypParser,           /* The parser */
  int yymajor,                   /* The major type of the error token */
  ParseTOKENTYPE yyminor         /* The minor type of the error token */
){
  ParseARG_FETCH;

#define TOKEN yyminor
/************ Begin %syntax_error code ****************************************/
%%
/************ End %syntax_error code ******************************************/
  ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */

}

/*
** The following is executed when the parser accepts
*/
static void yy_accept(
  yyParser *yypParser           /* The parser */
){
  ParseARG_FETCH;

#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
  }
#endif
#ifndef YYNOERRORRECOVERY
  yypParser->yyerrcnt = -1;
#endif
  assert( yypParser->yytos==yypParser->yystack );
  /* Here code is inserted which will be executed whenever the
  ** parser accepts */
/*********** Begin %parse_accept code *****************************************/
%%
/*********** End %parse_accept code *******************************************/
  ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */

}

/* The main parser program.
** The first argument is a pointer to a structure obtained from
** "ParseAlloc" which describes the current state of the parser.
** The second argument is the major token number.  The third is
** the minor token.  The fourth optional argument is whatever the







>









|
>











|
>











|
>




|
>








|
>














|
>







792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
  assert( yyact!=YY_ERROR_ACTION );

  yymsp += yysize+1;
  yypParser->yytos = yymsp;
  yymsp->stateno = (YYACTIONTYPE)yyact;
  yymsp->major = (YYCODETYPE)yygoto;
  yyTraceShift(yypParser, yyact, "... then shift");
  return yyact;
}

/*
** The following code executes when the parse fails
*/
#ifndef YYNOERRORRECOVERY
static void yy_parse_failed(
  yyParser *yypParser           /* The parser */
){
  ParseARG_FETCH
  ParseCTX_FETCH
#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
  }
#endif
  while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser);
  /* Here code is inserted which will be executed whenever the
  ** parser fails */
/************ Begin %parse_failure code ***************************************/
%%
/************ End %parse_failure code *****************************************/
  ParseARG_STORE /* Suppress warning about unused %extra_argument variable */
  ParseCTX_STORE
}
#endif /* YYNOERRORRECOVERY */

/*
** The following code executes when a syntax error first occurs.
*/
static void yy_syntax_error(
  yyParser *yypParser,           /* The parser */
  int yymajor,                   /* The major type of the error token */
  ParseTOKENTYPE yyminor         /* The minor type of the error token */
){
  ParseARG_FETCH
  ParseCTX_FETCH
#define TOKEN yyminor
/************ Begin %syntax_error code ****************************************/
%%
/************ End %syntax_error code ******************************************/
  ParseARG_STORE /* Suppress warning about unused %extra_argument variable */
  ParseCTX_STORE
}

/*
** The following is executed when the parser accepts
*/
static void yy_accept(
  yyParser *yypParser           /* The parser */
){
  ParseARG_FETCH
  ParseCTX_FETCH
#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
  }
#endif
#ifndef YYNOERRORRECOVERY
  yypParser->yyerrcnt = -1;
#endif
  assert( yypParser->yytos==yypParser->yystack );
  /* Here code is inserted which will be executed whenever the
  ** parser accepts */
/*********** Begin %parse_accept code *****************************************/
%%
/*********** End %parse_accept code *******************************************/
  ParseARG_STORE /* Suppress warning about unused %extra_argument variable */
  ParseCTX_STORE
}

/* The main parser program.
** The first argument is a pointer to a structure obtained from
** "ParseAlloc" which describes the current state of the parser.
** The second argument is the major token number.  The third is
** the minor token.  The fourth optional argument is whatever the
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881


882
883
884
885
886
887
888
889

890
891
892
893
894
895
896
897
898
899
900
901
902
903

904
905
906

907
908
909
910
911
912
913
914
915
916
917
918
919
void Parse(
  void *yyp,                   /* The parser */
  int yymajor,                 /* The major token code number */
  ParseTOKENTYPE yyminor       /* The value for the token */
  ParseARG_PDECL               /* Optional %extra_argument parameter */
){
  YYMINORTYPE yyminorunion;
  unsigned int yyact;   /* The parser action. */
#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
  int yyendofinput;     /* True if we are at the end of input */
#endif
#ifdef YYERRORSYMBOL
  int yyerrorhit = 0;   /* True if yymajor has invoked an error */
#endif
  yyParser *yypParser;  /* The parser */



  yypParser = (yyParser*)yyp;
  assert( yypParser->yytos!=0 );
#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
  yyendofinput = (yymajor==0);
#endif
  ParseARG_STORE;


#ifndef NDEBUG
  if( yyTraceFILE ){
    int stateno = yypParser->yytos->stateno;
    if( stateno < YY_MIN_REDUCE ){
      fprintf(yyTraceFILE,"%sInput '%s' in state %d\n",
              yyTracePrompt,yyTokenName[yymajor],stateno);
    }else{
      fprintf(yyTraceFILE,"%sInput '%s' with pending reduce %d\n",
              yyTracePrompt,yyTokenName[yymajor],stateno-YY_MIN_REDUCE);
    }
  }
#endif

  do{

    yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
    if( yyact >= YY_MIN_REDUCE ){
      yy_reduce(yypParser,yyact-YY_MIN_REDUCE,yymajor,yyminor);

    }else if( yyact <= YY_MAX_SHIFTREDUCE ){
      yy_shift(yypParser,yyact,yymajor,yyminor);
#ifndef YYNOERRORRECOVERY
      yypParser->yyerrcnt--;
#endif
      yymajor = YYNOCODE;
    }else if( yyact==YY_ACCEPT_ACTION ){
      yypParser->yytos--;
      yy_accept(yypParser);
      return;
    }else{
      assert( yyact == YY_ERROR_ACTION );
      yyminorunion.yy0 = yyminor;







|






|
>
>

<




<

>


<
|

|


|





>
|

|
>





|







890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907

908
909
910
911

912
913
914
915

916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
void Parse(
  void *yyp,                   /* The parser */
  int yymajor,                 /* The major token code number */
  ParseTOKENTYPE yyminor       /* The value for the token */
  ParseARG_PDECL               /* Optional %extra_argument parameter */
){
  YYMINORTYPE yyminorunion;
  YYACTIONTYPE yyact;   /* The parser action. */
#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
  int yyendofinput;     /* True if we are at the end of input */
#endif
#ifdef YYERRORSYMBOL
  int yyerrorhit = 0;   /* True if yymajor has invoked an error */
#endif
  yyParser *yypParser = (yyParser*)yyp;  /* The parser */
  ParseCTX_FETCH
  ParseARG_STORE


  assert( yypParser->yytos!=0 );
#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
  yyendofinput = (yymajor==0);
#endif


  yyact = yypParser->yytos->stateno;
#ifndef NDEBUG
  if( yyTraceFILE ){

    if( yyact < YY_MIN_REDUCE ){
      fprintf(yyTraceFILE,"%sInput '%s' in state %d\n",
              yyTracePrompt,yyTokenName[yymajor],yyact);
    }else{
      fprintf(yyTraceFILE,"%sInput '%s' with pending reduce %d\n",
              yyTracePrompt,yyTokenName[yymajor],yyact-YY_MIN_REDUCE);
    }
  }
#endif

  do{
    assert( yyact==yypParser->yytos->stateno );
    yyact = yy_find_shift_action(yymajor,yyact);
    if( yyact >= YY_MIN_REDUCE ){
      yyact = yy_reduce(yypParser,yyact-YY_MIN_REDUCE,yymajor,
                        yyminor ParseCTX_PARAM);
    }else if( yyact <= YY_MAX_SHIFTREDUCE ){
      yy_shift(yypParser,yyact,yymajor,yyminor);
#ifndef YYNOERRORRECOVERY
      yypParser->yyerrcnt--;
#endif
      break;
    }else if( yyact==YY_ACCEPT_ACTION ){
      yypParser->yytos--;
      yy_accept(yypParser);
      return;
    }else{
      assert( yyact == YY_ERROR_ACTION );
      yyminorunion.yy0 = yyminor;
976
977
978
979
980
981
982


983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
          yymajor = YYNOCODE;
        }else if( yymx!=YYERRORSYMBOL ){
          yy_shift(yypParser,yyact,YYERRORSYMBOL,yyminor);
        }
      }
      yypParser->yyerrcnt = 3;
      yyerrorhit = 1;


#elif defined(YYNOERRORRECOVERY)
      /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
      ** do any kind of error recovery.  Instead, simply invoke the syntax
      ** error routine and continue going as if nothing had happened.
      **
      ** Applications can set this macro (for example inside %include) if
      ** they intend to abandon the parse upon the first syntax error seen.
      */
      yy_syntax_error(yypParser,yymajor, yyminor);
      yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
      yymajor = YYNOCODE;
      
#else  /* YYERRORSYMBOL is not defined */
      /* This is what we do if the grammar does not define ERROR:
      **
      **  * Report an error message, and throw away the input token.
      **
      **  * If the input token is $, then fail the parse.
      **







>
>










<
|







1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

1020
1021
1022
1023
1024
1025
1026
1027
          yymajor = YYNOCODE;
        }else if( yymx!=YYERRORSYMBOL ){
          yy_shift(yypParser,yyact,YYERRORSYMBOL,yyminor);
        }
      }
      yypParser->yyerrcnt = 3;
      yyerrorhit = 1;
      if( yymajor==YYNOCODE ) break;
      yyact = yypParser->yytos->stateno;
#elif defined(YYNOERRORRECOVERY)
      /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
      ** do any kind of error recovery.  Instead, simply invoke the syntax
      ** error routine and continue going as if nothing had happened.
      **
      ** Applications can set this macro (for example inside %include) if
      ** they intend to abandon the parse upon the first syntax error seen.
      */
      yy_syntax_error(yypParser,yymajor, yyminor);
      yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);

      break;
#else  /* YYERRORSYMBOL is not defined */
      /* This is what we do if the grammar does not define ERROR:
      **
      **  * Report an error message, and throw away the input token.
      **
      **  * If the input token is $, then fail the parse.
      **
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
      yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
      if( yyendofinput ){
        yy_parse_failed(yypParser);
#ifndef YYNOERRORRECOVERY
        yypParser->yyerrcnt = -1;
#endif
      }
      yymajor = YYNOCODE;
#endif
    }
  }while( yymajor!=YYNOCODE && yypParser->yytos>yypParser->yystack );
#ifndef NDEBUG
  if( yyTraceFILE ){
    yyStackEntry *i;
    char cDiv = '[';
    fprintf(yyTraceFILE,"%sReturn. Stack=",yyTracePrompt);
    for(i=&yypParser->yystack[1]; i<=yypParser->yytos; i++){
      fprintf(yyTraceFILE,"%c%s", cDiv, yyTokenName[i->major]);







|


|







1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
      yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
      if( yyendofinput ){
        yy_parse_failed(yypParser);
#ifndef YYNOERRORRECOVERY
        yypParser->yyerrcnt = -1;
#endif
      }
      break;
#endif
    }
  }while( yypParser->yytos>yypParser->yystack );
#ifndef NDEBUG
  if( yyTraceFILE ){
    yyStackEntry *i;
    char cDiv = '[';
    fprintf(yyTraceFILE,"%sReturn. Stack=",yyTracePrompt);
    for(i=&yypParser->yystack[1]; i<=yypParser->yytos; i++){
      fprintf(yyTraceFILE,"%c%s", cDiv, yyTokenName[i->major]);
Changes to tool/mkkeywordhash.c.
139
140
141
142
143
144
145





146
147
148
149
150
151
152
#  define AUTOVACUUM 0x00020000
#endif
#ifdef SQLITE_OMIT_CTE
#  define CTE        0
#else
#  define CTE        0x00040000
#endif






/*
** These are the keywords
*/
static Keyword aKeywordTable[] = {
  { "ABORT",            "TK_ABORT",        CONFLICT|TRIGGER       },
  { "ACTION",           "TK_ACTION",       FKEY                   },







>
>
>
>
>







139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#  define AUTOVACUUM 0x00020000
#endif
#ifdef SQLITE_OMIT_CTE
#  define CTE        0
#else
#  define CTE        0x00040000
#endif
#ifdef SQLITE_OMIT_UPSERT
#  define UPSERT     0
#else
#  define UPSERT     0x00080000
#endif

/*
** These are the keywords
*/
static Keyword aKeywordTable[] = {
  { "ABORT",            "TK_ABORT",        CONFLICT|TRIGGER       },
  { "ACTION",           "TK_ACTION",       FKEY                   },
182
183
184
185
186
187
188

189
190
191
192
193
194
195
  { "DEFAULT",          "TK_DEFAULT",      ALWAYS                 },
  { "DEFERRED",         "TK_DEFERRED",     ALWAYS                 },
  { "DEFERRABLE",       "TK_DEFERRABLE",   FKEY                   },
  { "DELETE",           "TK_DELETE",       ALWAYS                 },
  { "DESC",             "TK_DESC",         ALWAYS                 },
  { "DETACH",           "TK_DETACH",       ATTACH                 },
  { "DISTINCT",         "TK_DISTINCT",     ALWAYS                 },

  { "DROP",             "TK_DROP",         ALWAYS                 },
  { "END",              "TK_END",          ALWAYS                 },
  { "EACH",             "TK_EACH",         TRIGGER                },
  { "ELSE",             "TK_ELSE",         ALWAYS                 },
  { "ESCAPE",           "TK_ESCAPE",       ALWAYS                 },
  { "EXCEPT",           "TK_EXCEPT",       COMPOUND               },
  { "EXCLUSIVE",        "TK_EXCLUSIVE",    ALWAYS                 },







>







187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  { "DEFAULT",          "TK_DEFAULT",      ALWAYS                 },
  { "DEFERRED",         "TK_DEFERRED",     ALWAYS                 },
  { "DEFERRABLE",       "TK_DEFERRABLE",   FKEY                   },
  { "DELETE",           "TK_DELETE",       ALWAYS                 },
  { "DESC",             "TK_DESC",         ALWAYS                 },
  { "DETACH",           "TK_DETACH",       ATTACH                 },
  { "DISTINCT",         "TK_DISTINCT",     ALWAYS                 },
  { "DO",               "TK_DO",           UPSERT                 },
  { "DROP",             "TK_DROP",         ALWAYS                 },
  { "END",              "TK_END",          ALWAYS                 },
  { "EACH",             "TK_EACH",         TRIGGER                },
  { "ELSE",             "TK_ELSE",         ALWAYS                 },
  { "ESCAPE",           "TK_ESCAPE",       ALWAYS                 },
  { "EXCEPT",           "TK_EXCEPT",       COMPOUND               },
  { "EXCLUSIVE",        "TK_EXCLUSIVE",    ALWAYS                 },
222
223
224
225
226
227
228

229
230
231
232
233
234
235
  { "LEFT",             "TK_JOIN_KW",      ALWAYS                 },
  { "LIKE",             "TK_LIKE_KW",      ALWAYS                 },
  { "LIMIT",            "TK_LIMIT",        ALWAYS                 },
  { "MATCH",            "TK_MATCH",        ALWAYS                 },
  { "NATURAL",          "TK_JOIN_KW",      ALWAYS                 },
  { "NO",               "TK_NO",           FKEY                   },
  { "NOT",              "TK_NOT",          ALWAYS                 },

  { "NOTNULL",          "TK_NOTNULL",      ALWAYS                 },
  { "NULL",             "TK_NULL",         ALWAYS                 },
  { "OF",               "TK_OF",           ALWAYS                 },
  { "OFFSET",           "TK_OFFSET",       ALWAYS                 },
  { "ON",               "TK_ON",           ALWAYS                 },
  { "OR",               "TK_OR",           ALWAYS                 },
  { "ORDER",            "TK_ORDER",        ALWAYS                 },







>







228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
  { "LEFT",             "TK_JOIN_KW",      ALWAYS                 },
  { "LIKE",             "TK_LIKE_KW",      ALWAYS                 },
  { "LIMIT",            "TK_LIMIT",        ALWAYS                 },
  { "MATCH",            "TK_MATCH",        ALWAYS                 },
  { "NATURAL",          "TK_JOIN_KW",      ALWAYS                 },
  { "NO",               "TK_NO",           FKEY                   },
  { "NOT",              "TK_NOT",          ALWAYS                 },
  { "NOTHING",          "TK_NOTHING",      UPSERT                 },
  { "NOTNULL",          "TK_NOTNULL",      ALWAYS                 },
  { "NULL",             "TK_NULL",         ALWAYS                 },
  { "OF",               "TK_OF",           ALWAYS                 },
  { "OFFSET",           "TK_OFFSET",       ALWAYS                 },
  { "ON",               "TK_ON",           ALWAYS                 },
  { "OR",               "TK_OR",           ALWAYS                 },
  { "ORDER",            "TK_ORDER",        ALWAYS                 },
606
607
608
609
610
611
612










613
614
615
  printf("}\n");
  printf("int sqlite3KeywordCode(const unsigned char *z, int n){\n");
  printf("  int id = TK_ID;\n");
  printf("  keywordCode((char*)z, n, &id);\n");
  printf("  return id;\n");
  printf("}\n");
  printf("#define SQLITE_N_KEYWORD %d\n", nKeyword);











  return 0;
}







>
>
>
>
>
>
>
>
>
>



613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
  printf("}\n");
  printf("int sqlite3KeywordCode(const unsigned char *z, int n){\n");
  printf("  int id = TK_ID;\n");
  printf("  keywordCode((char*)z, n, &id);\n");
  printf("  return id;\n");
  printf("}\n");
  printf("#define SQLITE_N_KEYWORD %d\n", nKeyword);
  printf("int sqlite3_keyword_name(int i,const char **pzName,int *pnName){\n");
  printf("  if( i<0 || i>=SQLITE_N_KEYWORD ) return SQLITE_ERROR;\n");
  printf("  *pzName = zKWText + aKWOffset[i];\n");
  printf("  *pnName = aKWLen[i];\n");
  printf("  return SQLITE_OK;\n");
  printf("}\n");
  printf("int sqlite3_keyword_count(void){ return SQLITE_N_KEYWORD; }\n");
  printf("int sqlite3_keyword_check(const char *zName, int nName){\n");
  printf("  return TK_ID!=sqlite3KeywordCode((const u8*)zName, nName);\n");
  printf("}\n");

  return 0;
}
Changes to tool/mkmsvcmin.tcl.
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
set blocks(2) [string trimleft [string map [list \\\\ \\] {
Replace.exe:
	$(CSC) /target:exe $(TOP)\Replace.cs

sqlite3.def:	Replace.exe $(LIBOBJ)
	echo EXPORTS > sqlite3.def
	dumpbin /all $(LIBOBJ) \\
		| .\Replace.exe "^\s+/EXPORT:_?(sqlite3(?:session|changeset|changegroup)?_[^@,]*)(?:@\d+|,DATA)?$$" $$1 true \\
		| sort >> sqlite3.def
}]]

set data "#### DO NOT EDIT ####\n"
append data "# This makefile is automatically "
append data "generated from the [file tail $fromFileName] at\n"
append data "# the root of the canonical SQLite source tree (not the\n"







|







79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
set blocks(2) [string trimleft [string map [list \\\\ \\] {
Replace.exe:
	$(CSC) /target:exe $(TOP)\Replace.cs

sqlite3.def:	Replace.exe $(LIBOBJ)
	echo EXPORTS > sqlite3.def
	dumpbin /all $(LIBOBJ) \\
		| .\Replace.exe "^\s+/EXPORT:_?(sqlite3(?:session|changeset|changegroup|rebaser)?_[^@,]*)(?:@\d+|,DATA)?$$" $$1 true \\
		| sort >> sqlite3.def
}]]

set data "#### DO NOT EDIT ####\n"
append data "# This makefile is automatically "
append data "generated from the [file tail $fromFileName] at\n"
append data "# the root of the canonical SQLite source tree (not the\n"
Changes to tool/mksqlite3c.tcl.
360
361
362
363
364
365
366

367
368
369
370
371
372
373
   loadext.c
   pragma.c
   prepare.c
   select.c
   table.c
   trigger.c
   update.c

   vacuum.c
   vtab.c
   wherecode.c
   whereexpr.c
   where.c

   parse.c







>







360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
   loadext.c
   pragma.c
   prepare.c
   select.c
   table.c
   trigger.c
   update.c
   upsert.c
   vacuum.c
   vtab.c
   wherecode.c
   whereexpr.c
   where.c

   parse.c
Changes to tool/sqldiff.c.
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

159
160
161
162
163
164
165
166
167
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
** necessary to allow the string to be used with %s.
**
** Space to hold the returned string is obtained from sqlite3_malloc().  The
** caller is responsible for ensuring this space is freed when no longer
** needed.
*/
static char *safeId(const char *zId){
  /* All SQLite keywords, in alphabetical order */
  static const char *azKeywords[] = {
    "ABORT", "ACTION", "ADD", "AFTER", "ALL", "ALTER", "ANALYZE", "AND", "AS",
    "ASC", "ATTACH", "AUTOINCREMENT", "BEFORE", "BEGIN", "BETWEEN", "BY",
    "CASCADE", "CASE", "CAST", "CHECK", "COLLATE", "COLUMN", "COMMIT",
    "CONFLICT", "CONSTRAINT", "CREATE", "CROSS", "CURRENT_DATE",
    "CURRENT_TIME", "CURRENT_TIMESTAMP", "DATABASE", "DEFAULT", "DEFERRABLE",
    "DEFERRED", "DELETE", "DESC", "DETACH", "DISTINCT", "DROP", "EACH",
    "ELSE", "END", "ESCAPE", "EXCEPT", "EXCLUSIVE", "EXISTS", "EXPLAIN",
    "FAIL", "FOR", "FOREIGN", "FROM", "FULL", "GLOB", "GROUP", "HAVING", "IF",
    "IGNORE", "IMMEDIATE", "IN", "INDEX", "INDEXED", "INITIALLY", "INNER",
    "INSERT", "INSTEAD", "INTERSECT", "INTO", "IS", "ISNULL", "JOIN", "KEY",
    "LEFT", "LIKE", "LIMIT", "MATCH", "NATURAL", "NO", "NOT", "NOTNULL",
    "NULL", "OF", "OFFSET", "ON", "OR", "ORDER", "OUTER", "PLAN", "PRAGMA",
    "PRIMARY", "QUERY", "RAISE", "RECURSIVE", "REFERENCES", "REGEXP",
    "REINDEX", "RELEASE", "RENAME", "REPLACE", "RESTRICT", "RIGHT",
    "ROLLBACK", "ROW", "SAVEPOINT", "SELECT", "SET", "TABLE", "TEMP",
    "TEMPORARY", "THEN", "TO", "TRANSACTION", "TRIGGER", "UNION", "UNIQUE",
    "UPDATE", "USING", "VACUUM", "VALUES", "VIEW", "VIRTUAL", "WHEN", "WHERE",
    "WITH", "WITHOUT",
  };
  int lwr, upr, mid, c, i, x;

  if( zId[0]==0 ) return sqlite3_mprintf("\"\"");
  for(i=x=0; (c = zId[i])!=0; i++){
    if( !isalpha(c) && c!='_' ){
      if( i>0 && isdigit(c) ){
        x++;
      }else{
        return sqlite3_mprintf("\"%w\"", zId);
      }
    }
  }

  if( x ) return sqlite3_mprintf("%s", zId);
  lwr = 0;
  upr = sizeof(azKeywords)/sizeof(azKeywords[0]) - 1;
  while( lwr<=upr ){
    mid = (lwr+upr)/2;
    c = sqlite3_stricmp(azKeywords[mid], zId);
    if( c==0 ) return sqlite3_mprintf("\"%w\"", zId);
    if( c<0 ){
      lwr = mid+1;
    }else{
      upr = mid-1;
    }
  }
  return sqlite3_mprintf("%s", zId);
}

/*
** Prepare a new SQL statement.  Print an error and abort if anything
** goes wrong.
*/
static sqlite3_stmt *db_vprepare(const char *zFormat, va_list ap){







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
>










>
|
<
<
<
<
<
<
<
<
<
<
|
<
|







130
131
132
133
134
135
136





















137
138
139
140
141
142
143
144
145
146
147
148
149
150










151

152
153
154
155
156
157
158
159
** necessary to allow the string to be used with %s.
**
** Space to hold the returned string is obtained from sqlite3_malloc().  The
** caller is responsible for ensuring this space is freed when no longer
** needed.
*/
static char *safeId(const char *zId){





















  int i, x;
  char c;
  if( zId[0]==0 ) return sqlite3_mprintf("\"\"");
  for(i=x=0; (c = zId[i])!=0; i++){
    if( !isalpha(c) && c!='_' ){
      if( i>0 && isdigit(c) ){
        x++;
      }else{
        return sqlite3_mprintf("\"%w\"", zId);
      }
    }
  }
  if( x || !sqlite3_keyword_check(zId,i) ){
    return sqlite3_mprintf("%s", zId);










  }

  return sqlite3_mprintf("\"%w\"", zId);
}

/*
** Prepare a new SQL statement.  Print an error and abort if anything
** goes wrong.
*/
static sqlite3_stmt *db_vprepare(const char *zFormat, va_list ap){