Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | New btree.c module compiles and links. (CVS 1320) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
dcd6b55f932a7ade4ad058534651e198 |
User & Date: | drh 2004-05-07 13:30:42.000 |
Context
2004-05-07
| ||
17:57 | The btree.c module compiles and links and passes some tests. Many tests still fail, though. (CVS 1321) (check-in: d394b2b217 user: drh tags: trunk) | |
13:30 | New btree.c module compiles and links. (CVS 1320) (check-in: dcd6b55f93 user: drh tags: trunk) | |
02:26 | Trying to synchronize the test3.c module with the new btree.c code. (CVS 1319) (check-in: 7fd1a660b0 user: drh tags: trunk) | |
Changes
Changes to main.mk.
︙ | ︙ | |||
50 51 52 53 54 55 56 | # This is how we compile # TCCX = $(TCC) $(OPTS) $(THREADSAFE) $(USLEEP) -I. -I$(TOP)/src # Object files for the SQLite library. # | | > > | 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | # This is how we compile # TCCX = $(TCC) $(OPTS) $(THREADSAFE) $(USLEEP) -I. -I$(TOP)/src # Object files for the SQLite library. # LIBOBJ = btree.o hash.o os.o pager.o random.o \ util.o tclsqlite.o utf.o LIBOBJ_ORIG = attach.o auth.o btree.o btree_rb.o build.o copy.o date.o delete.o \ expr.o func.o hash.o insert.o \ main.o opcodes.o os.o pager.o parse.o pragma.o printf.o random.o \ select.o table.o tokenize.o trigger.o update.o util.o \ vacuum.o vdbe.o vdbeaux.o where.o tclsqlite.o # All of the source code files. # SRC = \ $(TOP)/src/btree.c \ $(TOP)/src/btree.h \ $(TOP)/src/hash.c \ $(TOP)/src/hash.h \ $(TOP)/src/os.c \ $(TOP)/src/pager.c \ $(TOP)/src/pager.h \ $(TOP)/src/random.c \ $(TOP)/src/util.c |
︙ | ︙ | |||
117 118 119 120 121 122 123 124 125 126 127 128 129 130 | # Source code to the test files. # TESTSRC = \ $(TOP)/src/os.c \ $(TOP)/src/pager.c \ $(TOP)/src/test2.c \ $(TOP)/src/test5.c \ $(TOP)/src/md5.c TESTSRC_ORIG = \ $(TOP)/src/btree.c \ $(TOP)/src/func.c \ $(TOP)/src/os.c \ | > | 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | # Source code to the test files. # TESTSRC = \ $(TOP)/src/os.c \ $(TOP)/src/pager.c \ $(TOP)/src/test2.c \ $(TOP)/src/test3.c \ $(TOP)/src/test5.c \ $(TOP)/src/md5.c TESTSRC_ORIG = \ $(TOP)/src/btree.c \ $(TOP)/src/func.c \ $(TOP)/src/os.c \ |
︙ | ︙ |
Changes to src/btree.c.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** $Id: btree.c,v 1.110 2004/05/07 13:30:42 drh Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to ** ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: ** "Sorting And Searching", pages 473-480. Addison-Wesley ** Publishing Company, Reading, Massachusetts. |
︙ | ︙ | |||
249 250 251 252 253 254 255 | int maxLocal; /* Maximum local payload */ }; typedef Btree Bt; /* ** A cursor is a pointer to a particular entry in the BTree. ** The entry is identified by its MemPage and the index in | | | 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | int maxLocal; /* Maximum local payload */ }; typedef Btree Bt; /* ** A cursor is a pointer to a particular entry in the BTree. ** The entry is identified by its MemPage and the index in ** MemPage.aCell[] of the entry. */ struct BtCursor { Btree *pBt; /* The Btree to which this cursor belongs */ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ BtCursor *pShared; /* Loop of cursors with the same root page */ int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */ void *pArg; /* First arg to xCompare() */ |
︙ | ︙ | |||
362 363 364 365 366 367 368 | ** Compute the total number of bytes that a Cell needs on the main ** database page. The number returned includes the Cell header, ** local payload storage, and the pointer to overflow pages (if ** applicable). Additional space allocated on overflow pages ** is NOT included in the value returned from this routine. */ static int cellSize(MemPage *pPage, unsigned char *pCell){ | < | 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | ** Compute the total number of bytes that a Cell needs on the main ** database page. The number returned includes the Cell header, ** local payload storage, and the pointer to overflow pages (if ** applicable). Additional space allocated on overflow pages ** is NOT included in the value returned from this routine. */ static int cellSize(MemPage *pPage, unsigned char *pCell){ int n; u64 nData, nKey; int nPayload, maxPayload; parseCellHeader(pPage, pCell, &nData, &nKey, &n); nPayload = (int)nData; if( !pPage->intKey ){ |
︙ | ︙ | |||
391 392 393 394 395 396 397 | static void defragmentPage(MemPage *pPage){ int pc, i, n, addr; int start, hdr, size; int leftover; unsigned char *oldPage; unsigned char newPage[MX_PAGE_SIZE]; | | | | 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 | static void defragmentPage(MemPage *pPage){ int pc, i, n, addr; int start, hdr, size; int leftover; unsigned char *oldPage; unsigned char newPage[MX_PAGE_SIZE]; assert( sqlite3pager_iswriteable(pPage->aData) ); assert( pPage->pBt!=0 ); assert( pPage->pBt->pageSize <= MX_PAGE_SIZE ); oldPage = pPage->aData; hdr = pPage->hdrOffset; addr = 3+hdr; n = 6+hdr; if( !pPage->leaf ){ n += 4; } |
︙ | ︙ | |||
458 459 460 461 462 463 464 | int size; unsigned char *data; #ifndef NDEBUG int cnt = 0; #endif data = pPage->aData; | | | | | | 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 | int size; unsigned char *data; #ifndef NDEBUG int cnt = 0; #endif data = pPage->aData; assert( sqlite3pager_iswriteable(data) ); assert( pPage->pBt ); if( nByte<4 ) nByte = 4; if( pPage->nFree<nByte || pPage->isOverfull ) return 0; hdr = pPage->hdrOffset; if( data[hdr+5]>=60 ){ defragmentPage(pPage); } addr = hdr+1; pc = get2byte(&data[addr]); assert( addr<pc ); assert( pc<=pPage->pBt->pageSize-4 ); while( (size = get2byte(&data[pc+2]))<nByte ){ addr = pc; pc = get2byte(&data[addr]); assert( pc<=pPage->pBt->pageSize-4 ); assert( pc>=addr+size+4 || pc==0 ); if( pc==0 ){ assert( (cnt++)==0 ); defragmentPage(pPage); assert( data[hdr+5]==0 ); addr = pPage->hdrOffset+1; pc = get2byte(&data[addr]); } } assert( pc>0 && size>=nByte ); assert( pc+size<=pPage->pBt->pageSize ); if( size>nByte+4 ){ put2byte(&data[addr], pc+nByte); put2byte(&data[pc+size], get2byte(&data[pc])); put2byte(&data[pc+size+2], size-nByte); }else{ put2byte(&data[addr], get2byte(&data[pc])); data[hdr+5] += size-nByte; |
︙ | ︙ | |||
508 509 510 511 512 513 514 | ** and the size of the block is "size" bytes. ** ** Most of the effort here is involved in coalesing adjacent ** free blocks into a single big free block. */ static void freeSpace(MemPage *pPage, int start, int size){ int end = start + size; /* End of the segment being freed */ | | | | | | | 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 | ** and the size of the block is "size" bytes. ** ** Most of the effort here is involved in coalesing adjacent ** free blocks into a single big free block. */ static void freeSpace(MemPage *pPage, int start, int size){ int end = start + size; /* End of the segment being freed */ int addr, pbegin; #ifndef NDEBUG int tsize = 0; /* Total size of all freeblocks */ #endif unsigned char *data = pPage->aData; assert( pPage->pBt!=0 ); assert( sqlite3pager_iswriteable(data) ); assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) ); assert( end<=pPage->pBt->pageSize ); if( size<4 ) size = 4; /* Add the space back into the linked list of freeblocks */ addr = pPage->hdrOffset + 1; while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){ assert( pbegin<=pPage->pBt->pageSize-4 ); assert( pbegin>addr ); addr = pbegin; } assert( pbegin<=pPage->pBt->pageSize-4 ); assert( pbegin>addr || pbegin==0 ); put2byte(&data[addr], start); put2byte(&data[start], pbegin); put2byte(&data[start+2], size); pPage->nFree += size; /* Coalesce adjacent free blocks */ addr = pPage->hdrOffset + 1; while( (pbegin = get2byte(&data[addr]))>0 ){ int pnext, psize; assert( pbegin>addr ); |
︙ | ︙ | |||
655 656 657 658 659 660 661 | /* ** Resize the aCell[] array of the given page so that it is able to ** hold at least nNewSz entries. ** ** Return SQLITE_OK or SQLITE_NOMEM. */ static int resizeCellArray(MemPage *pPage, int nNewSz){ | | | | 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 | /* ** Resize the aCell[] array of the given page so that it is able to ** hold at least nNewSz entries. ** ** Return SQLITE_OK or SQLITE_NOMEM. */ static int resizeCellArray(MemPage *pPage, int nNewSz){ if( pPage->nCellAlloc<nNewSz ){ pPage->aCell = sqliteRealloc(pPage->aCell, nNewSz*sizeof(pPage->aCell[0]) ); if( sqlite_malloc_failed ) return SQLITE_NOMEM; pPage->nCellAlloc = nNewSz; } return SQLITE_OK; } /* ** Initialize the auxiliary information for a disk block. ** |
︙ | ︙ | |||
681 682 683 684 685 686 687 688 689 690 691 | ** we failed to detect any corruption. */ static int initPage( MemPage *pPage, /* The page to be initialized */ MemPage *pParent /* The parent. Might be NULL */ ){ int c, pc, i, hdr; int sumCell = 0; /* Total size of all cells */ assert( pPage->pBt!=0 ); assert( pParent==0 || pParent->pBt==pPage->pBt ); | > > | | | > > | | | | | | | | 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 | ** we failed to detect any corruption. */ static int initPage( MemPage *pPage, /* The page to be initialized */ MemPage *pParent /* The parent. Might be NULL */ ){ int c, pc, i, hdr; unsigned char *data; int pageSize; int sumCell = 0; /* Total size of all cells */ assert( pPage->pBt!=0 ); assert( pParent==0 || pParent->pBt==pPage->pBt ); assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) ); assert( pPage->aData == &((unsigned char*)pPage)[pPage->pBt->pageSize] ); assert( pPage->isInit==0 || pPage->pParent==pParent ); if( pPage->isInit ) return SQLITE_OK; assert( pPage->pParent==0 ); pPage->pParent = pParent; if( pParent ){ sqlite3pager_ref(pParent->aData); } pPage->nCell = pPage->nCellAlloc = 0; pPage->hdrOffset = hdr = pPage->pgno==1 ? 100 : 0; data = pPage->aData; c = data[hdr]; pPage->intKey = (c & PTF_INTKEY)!=0; pPage->zeroData = (c & PTF_ZERODATA)!=0; pPage->leaf = (c & PTF_LEAF)!=0; pageSize = pPage->pBt->pageSize; /* Initialize the cell count and cell pointers */ pc = get2byte(&data[hdr+3]); while( pc>0 ){ if( pc>=pageSize ) return SQLITE_CORRUPT; if( pPage->nCell>pageSize ) return SQLITE_CORRUPT; pPage->nCell++; pc = get2byte(&data[pc]); } if( resizeCellArray(pPage, pPage->nCell) ){ return SQLITE_NOMEM; } pc = get2byte(&data[hdr+3]); for(i=0; pc>0; i++){ pPage->aCell[i] = &data[pc]; pc = get2byte(&data[pc]); sumCell += cellSize(pPage, &data[pc]); } /* Compute the total free space on the page */ pPage->nFree = data[hdr+5]; pc = get2byte(&data[hdr+1]); while( pc>0 ){ int next, size; if( pc>=pageSize ) return SQLITE_CORRUPT; next = get2byte(&data[pc]); size = get2byte(&data[pc+2]); if( next>0 && next<=pc+size+3 ) return SQLITE_CORRUPT; pPage->nFree += size; pc = next; } if( pPage->nFree>=pageSize ) return SQLITE_CORRUPT; /* Sanity check: Cells and freespace and header must sum to the size ** a page. */ if( sumCell+pPage->nFree+hdr+10-pPage->leaf*4 != pageSize ){ return SQLITE_CORRUPT; } return SQLITE_OK; } /* ** Set up a raw page so that it looks like a database page holding ** no entries. */ static void zeroPage(MemPage *pPage, int flags){ unsigned char *data = pPage->aData; Btree *pBt = pPage->pBt; int hdr = pPage->hdrOffset; int first; assert( sqlite3pager_iswriteable(data) ); memset(&data[hdr], 0, pBt->pageSize - hdr); data[hdr] = flags; first = hdr + 6 + 4*((flags&0x01)!=0); put2byte(&data[hdr+1], first); put2byte(&data[first+2], pBt->pageSize - first); sqliteFree(pPage->aCell); pPage->aCell = 0; |
︙ | ︙ | |||
776 777 778 779 780 781 782 | ** Get a page from the pager. Initialize the MemPage.pBt and ** MemPage.aData elements if needed. */ static int getPage(Btree *pBt, Pgno pgno, MemPage **ppPage){ int rc; unsigned char *aData; MemPage *pPage; | | | | | | 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 | ** Get a page from the pager. Initialize the MemPage.pBt and ** MemPage.aData elements if needed. */ static int getPage(Btree *pBt, Pgno pgno, MemPage **ppPage){ int rc; unsigned char *aData; MemPage *pPage; rc = sqlite3pager_get(pBt->pPager, pgno, (void**)&aData); if( rc ) return rc; pPage = (MemPage*)&aData[pBt->pageSize]; pPage->aData = aData; pPage->pBt = pBt; pPage->pgno = pgno; *ppPage = pPage; return SQLITE_OK; } /* ** Release a MemPage. This should be called once for each prior ** call to getPage. */ static void releasePage(MemPage *pPage){ if( pPage ){ assert( pPage->aData ); assert( pPage->pBt ); assert( &pPage->aData[pPage->pBt->pageSize]==(unsigned char*)pPage ); sqlite3pager_unref(pPage->aData); } } /* ** This routine is called when the reference count for a page ** reaches zero. We need to unref the pParent pointer when that ** happens. */ static void pageDestructor(void *pData){ MemPage *pPage = (MemPage*)&((char*)pData)[SQLITE_PAGE_SIZE]; if( pPage->pParent ){ MemPage *pParent = pPage->pParent; pPage->pParent = 0; releasePage(pParent); } sqliteFree(pPage->aCell); pPage->aCell = 0; pPage->isInit = 0; } /* |
︙ | ︙ | |||
834 835 836 837 838 839 840 | int sqlite3BtreeOpen( const char *zFilename, /* Name of the file containing the BTree database */ Btree **ppBtree, /* Pointer to new Btree object written here */ int nCache, /* Number of cache pages */ int flags /* Options */ ){ Btree *pBt; | | < < | | | | | | | | | | | | 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 | int sqlite3BtreeOpen( const char *zFilename, /* Name of the file containing the BTree database */ Btree **ppBtree, /* Pointer to new Btree object written here */ int nCache, /* Number of cache pages */ int flags /* Options */ ){ Btree *pBt; int rc; /* ** The following asserts make sure that structures used by the btree are ** the right size. This is to guard against size changes that result ** when compiling on a different architecture. */ assert( sizeof(u64)==8 ); assert( sizeof(u32)==4 ); assert( sizeof(u16)==2 ); assert( sizeof(Pgno)==4 ); assert( sizeof(ptr)==sizeof(char*) ); assert( sizeof(uptr)==sizeof(ptr) ); pBt = sqliteMalloc( sizeof(*pBt) ); if( pBt==0 ){ *ppBtree = 0; return SQLITE_NOMEM; } if( nCache<10 ) nCache = 10; rc = sqlite3pager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE, (flags & BTREE_OMIT_JOURNAL)==0); if( rc!=SQLITE_OK ){ if( pBt->pPager ) sqlite3pager_close(pBt->pPager); sqliteFree(pBt); *ppBtree = 0; return rc; } sqlite3pager_set_destructor(pBt->pPager, pageDestructor); pBt->pCursor = 0; pBt->pPage1 = 0; pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager); pBt->pageSize = SQLITE_PAGE_SIZE; /* FIX ME - read from header */ pBt->maxLocal = (pBt->pageSize-10)/4-12; *ppBtree = pBt; return SQLITE_OK; } /* ** Close an open database and invalidate all cursors. */ int sqlite3BtreeClose(Btree *pBt){ while( pBt->pCursor ){ sqlite3BtreeCloseCursor(pBt->pCursor); } sqlite3pager_close(pBt->pPager); sqliteFree(pBt); return SQLITE_OK; } /* ** Change the limit on the number of pages allowed in the cache. ** ** The maximum number of cache pages is set to the absolute ** value of mxPage. If mxPage is negative, the pager will ** operate asynchronously - it will not stop to do fsync()s ** to insure data is written to the disk surface before ** continuing. Transactions still work if synchronous is off, ** and the database cannot be corrupted if this program ** crashes. But if the operating system crashes or there is ** an abrupt power failure when synchronous is off, the database ** could be left in an inconsistent and unrecoverable state. ** Synchronous is on by default so database corruption is not ** normally a worry. */ int sqlite3BtreeSetCacheSize(Btree *pBt, int mxPage){ sqlite3pager_set_cachesize(pBt->pPager, mxPage); return SQLITE_OK; } /* ** Change the way data is synced to disk in order to increase or decrease ** how well the database resists damage due to OS crashes and power ** failures. Level 1 is the same as asynchronous (no syncs() occur and ** there is a high probability of damage) Level 2 is the default. There ** is a very low but non-zero probability of damage. Level 3 reduces the ** probability of damage to near zero but with a write performance reduction. */ int sqlite3BtreeSetSafetyLevel(Btree *pBt, int level){ sqlite3pager_set_safety_level(pBt->pPager, level); return SQLITE_OK; } /* ** Get a reference to pPage1 of the database file. This will ** also acquire a readlock on that file. ** ** SQLITE_OK is returned on success. If the file is not a ** well-formed database file, then SQLITE_CORRUPT is returned. ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM ** is returned if we run out of memory. SQLITE_PROTOCOL is returned ** if there is a locking protocol violation. */ static int lockBtree(Btree *pBt){ int rc; MemPage *pPage1; if( pBt->pPage1 ) return SQLITE_OK; rc = getPage(pBt, 1, &pPage1); if( rc!=SQLITE_OK ) return rc; /* Do some checking to help insure the file we opened really is ** a valid database file. */ if( sqlite3pager_pagecount(pBt->pPager)>0 ){ if( memcmp(pPage1->aData, zMagicHeader, 16)!=0 ){ rc = SQLITE_NOTADB; goto page1_init_failed; } /*** TBD: Other header checks such as page size ****/ } pBt->pPage1 = pPage1; |
︙ | ︙ | |||
983 984 985 986 987 988 989 | ** Create a new database by initializing the first page of the ** file. */ static int newDatabase(Btree *pBt){ MemPage *pP1; unsigned char *data; int rc; | | | | 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 | ** Create a new database by initializing the first page of the ** file. */ static int newDatabase(Btree *pBt){ MemPage *pP1; unsigned char *data; int rc; if( sqlite3pager_pagecount(pBt->pPager)>1 ) return SQLITE_OK; pP1 = pBt->pPage1; assert( pP1!=0 ); data = pP1->aData; rc = sqlite3pager_write(data); if( rc ) return rc; memcpy(data, zMagicHeader, sizeof(zMagicHeader)); assert( sizeof(zMagicHeader)==16 ); put2byte(&data[16], SQLITE_PAGE_SIZE); data[18] = 1; data[19] = 1; put2byte(&data[22], (SQLITE_PAGE_SIZE-10)/4-12); |
︙ | ︙ | |||
1024 1025 1026 1027 1028 1029 1030 | if( pBt->readOnly ) return SQLITE_READONLY; if( pBt->pPage1==0 ){ rc = lockBtree(pBt); if( rc!=SQLITE_OK ){ return rc; } } | | | | 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 | if( pBt->readOnly ) return SQLITE_READONLY; if( pBt->pPage1==0 ){ rc = lockBtree(pBt); if( rc!=SQLITE_OK ){ return rc; } } rc = sqlite3pager_begin(pBt->pPage1->aData); if( rc==SQLITE_OK ){ rc = newDatabase(pBt); } if( rc==SQLITE_OK ){ pBt->inTrans = 1; pBt->inStmt = 0; }else{ unlockBtreeIfUnused(pBt); } return rc; } /* ** Commit the transaction currently in progress. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ int sqlite3BtreeCommit(Btree *pBt){ int rc; rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_commit(pBt->pPager); pBt->inTrans = 0; pBt->inStmt = 0; unlockBtreeIfUnused(pBt); return rc; } /* |
︙ | ︙ | |||
1067 1068 1069 1070 1071 1072 1073 | */ int sqlite3BtreeRollback(Btree *pBt){ int rc; BtCursor *pCur; if( pBt->inTrans==0 ) return SQLITE_OK; pBt->inTrans = 0; pBt->inStmt = 0; | | | 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 | */ int sqlite3BtreeRollback(Btree *pBt){ int rc; BtCursor *pCur; if( pBt->inTrans==0 ) return SQLITE_OK; pBt->inTrans = 0; pBt->inStmt = 0; rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_rollback(pBt->pPager); for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ MemPage *pPage = pCur->pPage; if( pPage && !pPage->isInit ){ releasePage(pPage); pCur->pPage = 0; } } |
︙ | ︙ | |||
1094 1095 1096 1097 1098 1099 1100 | ** to start a new checkpoint if another checkpoint is already active. */ int sqlite3BtreeBeginStmt(Btree *pBt){ int rc; if( !pBt->inTrans || pBt->inStmt ){ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } | | | | | 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 | ** to start a new checkpoint if another checkpoint is already active. */ int sqlite3BtreeBeginStmt(Btree *pBt){ int rc; if( !pBt->inTrans || pBt->inStmt ){ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_stmt_begin(pBt->pPager); pBt->inStmt = 1; return rc; } /* ** Commit a checkpoint to transaction currently in progress. If no ** checkpoint is active, this is a no-op. */ int sqlite3BtreeCommitStmt(Btree *pBt){ int rc; if( pBt->inStmt && !pBt->readOnly ){ rc = sqlite3pager_stmt_commit(pBt->pPager); }else{ rc = SQLITE_OK; } pBt->inStmt = 0; return rc; } /* ** Rollback the checkpoint to the current transaction. If there ** is no active checkpoint or transaction, this routine is a no-op. ** ** All cursors will be invalided by this operation. Any attempt ** to use a cursor that was open at the beginning of this operation ** will result in an error. */ int sqlite3BtreeRollbackStmt(Btree *pBt){ int rc; BtCursor *pCur; if( pBt->inStmt==0 || pBt->readOnly ) return SQLITE_OK; rc = sqlite3pager_stmt_rollback(pBt->pPager); for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ MemPage *pPage = pCur->pPage; if( pPage && !pPage->isInit ){ releasePage(pPage); pCur->pPage = 0; } } |
︙ | ︙ | |||
1301 1302 1303 1304 1305 1306 1307 | ** The temporary cursor is not on the cursor list for the Btree. */ static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){ memcpy(pTempCur, pCur, sizeof(*pCur)); pTempCur->pNext = 0; pTempCur->pPrev = 0; if( pTempCur->pPage ){ | | | | 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 | ** The temporary cursor is not on the cursor list for the Btree. */ static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){ memcpy(pTempCur, pCur, sizeof(*pCur)); pTempCur->pNext = 0; pTempCur->pPrev = 0; if( pTempCur->pPage ){ sqlite3pager_ref(pTempCur->pPage->aData); } } /* ** Delete a temporary cursor such as was made by the CreateTemporaryCursor() ** function above. */ static void releaseTempCursor(BtCursor *pCur){ if( pCur->pPage ){ sqlite3pager_unref(pCur->pPage->aData); } } /* ** Set *pSize to the size of the buffer needed to hold the value of ** the key for the current entry. If the cursor is not pointing ** to a valid entry, *pSize is set to 0. |
︙ | ︙ | |||
1337 1338 1339 1340 1341 1342 1343 | }else{ unsigned char *cell = pPage->aCell[pCur->idx]; cell += 2; /* Skip the offset to the next cell */ if( pPage->leaf ){ cell += 4; /* Skip the child pointer */ } if( !pPage->zeroData ){ | | | | 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 | }else{ unsigned char *cell = pPage->aCell[pCur->idx]; cell += 2; /* Skip the offset to the next cell */ if( pPage->leaf ){ cell += 4; /* Skip the child pointer */ } if( !pPage->zeroData ){ while( (0x80&*(cell++))!=0 ){} /* Skip the data size number */ } getVarint(cell, pSize); } return SQLITE_OK; } /* ** Read payload information from the entry that the pCur cursor is ** pointing to. Begin reading the payload at "offset" and read |
︙ | ︙ | |||
1381 1382 1383 1384 1385 1386 1387 | aPayload += 4; /* Skip the child pointer */ } if( pPage->zeroData ){ nData = 0; }else{ aPayload += getVarint(aPayload, &nData); } | | | | | | | | | | | | | | | 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 | aPayload += 4; /* Skip the child pointer */ } if( pPage->zeroData ){ nData = 0; }else{ aPayload += getVarint(aPayload, &nData); } aPayload += getVarint(aPayload, &nKey); if( pPage->intKey ){ nKey = 0; } assert( offset>=0 ); if( skipKey ){ offset += nKey; } if( offset+amt > nKey+nData ){ return SQLITE_ERROR; } maxLocal = pBt->maxLocal; if( offset<maxLocal ){ int a = amt; if( a+offset>maxLocal ){ a = maxLocal - offset; } memcpy(pBuf, &aPayload[offset], a); if( a==amt ){ return SQLITE_OK; } offset = 0; pBuf += a; amt -= a; }else{ offset -= maxLocal; } if( amt>0 ){ nextPage = get4byte(&aPayload[maxLocal]); } ovflSize = pBt->pageSize - 4; while( amt>0 && nextPage ){ rc = sqlite3pager_get(pBt->pPager, nextPage, (void**)&aPayload); if( rc!=0 ){ return rc; } nextPage = get4byte(aPayload); if( offset<ovflSize ){ int a = amt; if( a + offset > ovflSize ){ a = ovflSize - offset; } memcpy(pBuf, &aPayload[offset], a); offset = 0; amt -= a; pBuf += a; }else{ offset -= ovflSize; } sqlite3pager_unref(aPayload); } if( amt>0 ){ return SQLITE_CORRUPT; } return SQLITE_OK; } /* ** Read part of the key associated with cursor pCur. Exactly ** "amt" bytes will be transfered into pBuf[]. The transfer ** begins at "offset". ** ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than ** the available payload. */ int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ MemPage *pPage; assert( amt>=0 ); assert( offset>=0 ); assert( pCur->pPage!=0 ); pPage = pCur->pPage; if( pCur->idx >= pPage->nCell || pPage->intKey ){ |
︙ | ︙ | |||
1498 1499 1500 1501 1502 1503 1504 | aPayload += 2; /* Skip the next cell index */ if( pPage->leaf ){ aPayload += 4; /* Skip the child pointer */ } if( !pPage->zeroData ){ aPayload += getVarint(aPayload, &nData); } | | | 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 | aPayload += 2; /* Skip the next cell index */ if( pPage->leaf ){ aPayload += 4; /* Skip the child pointer */ } if( !pPage->zeroData ){ aPayload += getVarint(aPayload, &nData); } aPayload += getVarint(aPayload, &nKey); if( pPage->intKey || nKey>pBt->maxLocal ){ return 0; } return aPayload; } |
︙ | ︙ | |||
1528 1529 1530 1531 1532 1533 1534 | unsigned char *cell; u64 size; cell = pPage->aCell[pCur->idx]; cell += 2; /* Skip the offset to the next cell */ if( pPage->leaf ){ cell += 4; /* Skip the child pointer */ } | | | | < < | 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 | unsigned char *cell; u64 size; cell = pPage->aCell[pCur->idx]; cell += 2; /* Skip the offset to the next cell */ if( pPage->leaf ){ cell += 4; /* Skip the child pointer */ } getVarint(cell, &size); assert( (size & 0x00000000ffffffff)==size ); *pSize = (u32)size; } return SQLITE_OK; } /* ** Read part of the data associated with cursor pCur. Exactly ** "amt" bytes will be transfered into pBuf[]. The transfer ** begins at "offset". ** ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than ** the available payload. */ int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ MemPage *pPage; assert( amt>=0 ); assert( offset>=0 ); assert( pCur->pPage!=0 ); pPage = pCur->pPage; if( pCur->idx >= pPage->nCell ){ return 0; } return getPayload(pCur, offset, amt, pBuf, 1); } /* ** Move the cursor down to a new child page. The newPgno argument is the ** page number of the child page in the byte order of the disk image. */ static int moveToChild(BtCursor *pCur, u32 newPgno){ int rc; MemPage *pNewPage; MemPage *pOldPage; Btree *pBt = pCur->pBt; rc = getPage(pBt, newPgno, &pNewPage); if( rc ) return rc; rc = initPage(pNewPage, pCur->pPage); if( rc ) return rc; pNewPage->idxParent = pCur->idx; |
︙ | ︙ | |||
1621 1622 1623 1624 1625 1626 1627 | pPage = pCur->pPage; assert( pPage!=0 ); assert( !isRootPage(pPage) ); pParent = pPage->pParent; assert( pParent!=0 ); idxParent = pPage->idxParent; | | | | | 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 | pPage = pCur->pPage; assert( pPage!=0 ); assert( !isRootPage(pPage) ); pParent = pPage->pParent; assert( pParent!=0 ); idxParent = pPage->idxParent; sqlite3pager_ref(pParent->aData); oldPgno = pPage->pgno; releasePage(pPage); pCur->pPage = pParent; assert( pParent->idxShift==0 ); if( pParent->idxShift==0 ){ pCur->idx = idxParent; #ifndef NDEBUG /* Verify that pCur->idx is the correct index to point back to the child ** page we just came from */ if( pCur->idx<pParent->nCell ){ assert( get4byte(&pParent->aCell[idxParent][2])==oldPgno ); }else{ assert( get4byte(&pParent->aData[pParent->hdrOffset+6])==oldPgno ); } #endif }else{ /* The MemPage.idxShift flag indicates that cell indices might have ** changed since idxParent was set and hence idxParent might be out ** of date. So recompute the parent cell index by scanning all cells ** and locating the one that points to the child we just came from. |
︙ | ︙ | |||
1690 1691 1692 1693 1694 1695 1696 | */ static int moveToLeftmost(BtCursor *pCur){ Pgno pgno; int rc; MemPage *pPage; while( !(pPage = pCur->pPage)->leaf ){ | | | | 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 | */ static int moveToLeftmost(BtCursor *pCur){ Pgno pgno; int rc; MemPage *pPage; while( !(pPage = pCur->pPage)->leaf ){ assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); pgno = get4byte(&pPage->aCell[pCur->idx][2]); rc = moveToChild(pCur, pgno); if( rc ) return rc; } return SQLITE_OK; } /* |
︙ | ︙ | |||
1837 1838 1839 1840 1841 1842 1843 | }else{ upr = pCur->idx-1; } } assert( lwr==upr+1 ); assert( pPage->isInit ); if( pPage->leaf ){ | | | 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 | }else{ upr = pCur->idx-1; } } assert( lwr==upr+1 ); assert( pPage->isInit ); if( pPage->leaf ){ chldPg = 0; }else if( lwr>=pPage->nCell ){ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+6]); }else{ chldPg = get4byte(&pPage->aCell[lwr][2]); } if( chldPg==0 ){ pCur->iMatch = c; |
︙ | ︙ | |||
1884 1885 1886 1887 1888 1889 1890 | pCur->eSkip = SKIP_NONE; *pRes = 0; return SQLITE_OK; } pCur->eSkip = SKIP_NONE; pCur->idx++; if( pCur->idx>=pPage->nCell ){ | | | | 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 | pCur->eSkip = SKIP_NONE; *pRes = 0; return SQLITE_OK; } pCur->eSkip = SKIP_NONE; pCur->idx++; if( pCur->idx>=pPage->nCell ){ if( !pPage->leaf ){ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+6])); if( rc ) return rc; rc = moveToLeftmost(pCur); *pRes = 0; return rc; } do{ if( isRootPage(pPage) ){ |
︙ | ︙ | |||
1938 1939 1940 1941 1942 1943 1944 | if( pCur->eSkip==SKIP_PREV ){ pCur->eSkip = SKIP_NONE; *pRes = 0; return SQLITE_OK; } pCur->eSkip = SKIP_NONE; assert( pCur->idx>=0 ); | | | 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 | if( pCur->eSkip==SKIP_PREV ){ pCur->eSkip = SKIP_NONE; *pRes = 0; return SQLITE_OK; } pCur->eSkip = SKIP_NONE; assert( pCur->idx>=0 ); if( !pPage->leaf ){ pgno = get4byte(&pPage->aCell[pCur->idx][2]); rc = moveToChild(pCur, pgno); if( rc ) return rc; rc = moveToRightmost(pCur); }else{ while( pCur->idx==0 ){ if( isRootPage(pPage) ){ |
︙ | ︙ | |||
1962 1963 1964 1965 1966 1967 1968 | *pRes = 0; return rc; } /* ** Allocate a new page from the database file. ** | | | | < < | | | | | | | | | | | | | | | | | | > | | | | | 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 | *pRes = 0; return rc; } /* ** Allocate a new page from the database file. ** ** The new page is marked as dirty. (In other words, sqlite3pager_write() ** has already been called on the new page.) The new page has also ** been referenced and the calling routine is responsible for calling ** sqlite3pager_unref() on the new page when it is done. ** ** SQLITE_OK is returned on success. Any other return value indicates ** an error. *ppPage and *pPgno are undefined in the event of an error. ** Do not invoke sqlite3pager_unref() on *ppPage if an error is returned. ** ** If the "nearby" parameter is not 0, then a (feeble) effort is made to ** locate a page close to the page number "nearby". This can be used in an ** attempt to keep related pages close to each other in the database file, ** which in turn can make database access faster. */ static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){ MemPage *pPage1; int rc; int n; /* Number of pages on the freelist */ int k; /* Number of leaves on the trunk of the freelist */ pPage1 = pBt->pPage1; n = get4byte(&pPage1->aData[36]); if( n>0 ){ /* There are pages on the freelist. Reuse one of those pages. */ MemPage *pTrunk; rc = sqlite3pager_write(pPage1->aData); if( rc ) return rc; put4byte(&pPage1->aData[36], n-1); rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk); if( rc ) return rc; rc = sqlite3pager_write(pTrunk->aData); if( rc ){ releasePage(pTrunk); return rc; } k = get4byte(&pTrunk->aData[4]); if( k==0 ){ /* The trunk has no leaves. So extract the trunk page itself and ** use it as the newly allocated page */ *pPgno = get4byte(&pPage1->aData[32]); memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); *ppPage = pTrunk; }else{ /* Extract a leaf from the trunk */ int closest; unsigned char *aData = pTrunk->aData; if( nearby>0 ){ int i, dist; closest = 0; dist = get4byte(&aData[8]) - nearby; if( dist<0 ) dist = -dist; for(i=1; i<n; i++){ int d2 = get4byte(&aData[8+i*4]) - nearby; if( d2<0 ) d2 = -d2; if( d2<dist ) closest = i; } }else{ closest = 0; } put4byte(&aData[4], n-1); *pPgno = get4byte(&aData[8+closest*4]); memcpy(&aData[8+closest*4], &aData[4+closest*n], 4); rc = getPage(pBt, *pPgno, ppPage); releasePage(pTrunk); if( rc==SQLITE_OK ){ sqlite3pager_dont_rollback(*ppPage); rc = sqlite3pager_write((*ppPage)->aData); } } }else{ /* There are no pages on the freelist, so create a new page at the ** end of the file */ *pPgno = sqlite3pager_pagecount(pBt->pPager) + 1; rc = getPage(pBt, *pPgno, ppPage); if( rc ) return rc; rc = sqlite3pager_write((*ppPage)->aData); } return rc; } /* ** Add a page of the database file to the freelist. ** ** sqlite3pager_unref() is NOT called for pPage. */ static int freePage(MemPage *pPage){ Btree *pBt = pPage->pBt; MemPage *pPage1 = pBt->pPage1; int rc, n, k; /* Prepare the page for freeing */ assert( pPage->pgno>1 ); pPage->isInit = 0; releasePage(pPage->pParent); pPage->pParent = 0; /* Increment the free page count on pPage1 */ rc = sqlite3pager_write(pPage1->aData); if( rc ) return rc; n = get4byte(&pPage1->aData[36]); put4byte(&pPage1->aData[36], n+1); if( n==0 ){ /* This is the first free page */ memset(pPage->aData, 0, 8); put4byte(&pPage1->aData[32], pPage->pgno); }else{ /* Other free pages already exist. Retrive the first trunk page ** of the freelist and find out how many leaves it has. */ MemPage *pTrunk; rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk); if( rc ) return rc; k = get4byte(&pTrunk->aData[4]); if( k==pBt->pageSize/4 - 8 ){ /* The trunk is full. Turn the page being freed into a new ** trunk page with no leaves. */ rc = sqlite3pager_write(pPage->aData); if( rc ) return rc; put4byte(pPage->aData, pTrunk->pgno); put4byte(&pPage->aData[4], 0); put4byte(&pPage1->aData[32], pPage->pgno); }else{ /* Add the newly freed page as a leaf on the current trunk */ rc = sqlite3pager_write(pTrunk->aData); if( rc ) return rc; put4byte(&pTrunk->aData[4], k+1); put4byte(&pTrunk->aData[8+k*4], pPage->pgno); sqlite3pager_dont_write(pBt->pPager, pPage->pgno); } releasePage(pTrunk); } return rc; } /* ** Free any overflow pages associated with the given Cell. */ static int clearCell(MemPage *pPage, unsigned char *pCell){ Btree *pBt = pPage->pBt; int rc, n, nPayload; u64 nData, nKey; Pgno ovflPgno; parseCellHeader(pPage, pCell, &nData, &nKey, &n); assert( (nData&0x000000007fffffff)==nData ); nPayload = (int)nData; if( !pPage->intKey ){ nPayload += nKey; } if( nPayload<=pBt->maxLocal ){ return SQLITE_OK; /* No overflow pages. Return without doing anything */ } ovflPgno = get4byte(&pCell[n+pBt->maxLocal]); while( ovflPgno!=0 ){ MemPage *pOvfl; rc = getPage(pBt, ovflPgno, &pOvfl); if( rc ) return rc; ovflPgno = get4byte(pOvfl->aData); rc = freePage(pOvfl); if( rc ) return rc; sqlite3pager_unref(pOvfl->aData); } return SQLITE_OK; } /* ** Create the byte sequence used to represent a cell on page pPage ** and write that byte sequence into pCell[]. Overflow pages are |
︙ | ︙ | |||
2149 2150 2151 2152 2153 2154 2155 | unsigned char *pCell, /* Complete text of the cell */ const void *pKey, u64 nKey, /* The key */ const void *pData,int nData, /* The data */ int *pnSize /* Write cell size here */ ){ int nPayload; const void *pSrc; | | | 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 | unsigned char *pCell, /* Complete text of the cell */ const void *pKey, u64 nKey, /* The key */ const void *pData,int nData, /* The data */ int *pnSize /* Write cell size here */ ){ int nPayload; const void *pSrc; int nSrc, n, rc; int spaceLeft; MemPage *pOvfl = 0; unsigned char *pPrior; unsigned char *pPayload; Btree *pBt = pPage->pBt; Pgno pgnoOvfl = 0; int nHeader; |
︙ | ︙ | |||
2233 2234 2235 2236 2237 2238 2239 | */ static void reparentPage(Btree *pBt, Pgno pgno, MemPage *pNewParent, int idx){ MemPage *pThis; unsigned char *aData; if( pgno==0 ) return; assert( pBt->pPager!=0 ); | | | | | | | | | | | | | | | 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 | */ static void reparentPage(Btree *pBt, Pgno pgno, MemPage *pNewParent, int idx){ MemPage *pThis; unsigned char *aData; if( pgno==0 ) return; assert( pBt->pPager!=0 ); aData = sqlite3pager_lookup(pBt->pPager, pgno); pThis = (MemPage*)&aData[pBt->pageSize]; if( pThis && pThis->isInit ){ if( pThis->pParent!=pNewParent ){ if( pThis->pParent ) sqlite3pager_unref(pThis->pParent->aData); pThis->pParent = pNewParent; if( pNewParent ) sqlite3pager_ref(pNewParent->aData); } pThis->idxParent = idx; sqlite3pager_unref(aData); } } /* ** Change the pParent pointer of all children of pPage to point back ** to pPage. ** ** In other words, for every child of pPage, invoke reparentPage() ** to make sure that each child knows that pPage is its parent. ** ** This routine gets called after you memcpy() one page into ** another. */ static void reparentChildPages(MemPage *pPage){ int i; Btree *pBt; if( pPage->leaf ) return; pBt = pPage->pBt; for(i=0; i<pPage->nCell; i++){ reparentPage(pBt, get4byte(&pPage->aCell[i][2]), pPage, i); } reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+6]), pPage, i); pPage->idxShift = 0; } /* ** Remove the i-th cell from pPage. This routine effects pPage only. ** The cell content is not freed or deallocated. It is assumed that ** the cell content has been copied someplace else. This routine just ** removes the reference to the cell from pPage. ** ** "sz" must be the number of bytes in the cell. ** ** Do not bother maintaining the integrity of the linked list of Cells. ** Only the pPage->aCell[] array is important. The relinkCellList() ** routine will be called soon after this routine in order to rebuild ** the linked list. */ static void dropCell(MemPage *pPage, int idx, int sz){ int j; assert( idx>=0 && idx<pPage->nCell ); assert( sz==cellSize(pPage, pPage->aCell[idx]) ); assert( sqlite3pager_iswriteable(pPage->aData) ); assert( pPage->aCell[idx]>=pPage->aData ); assert( pPage->aCell[idx]<&pPage->aData[pPage->pBt->pageSize-sz] ); freeSpace(pPage, idx, sz); for(j=idx; j<pPage->nCell-1; j++){ pPage->aCell[j] = pPage->aCell[j+1]; } pPage->nCell--; pPage->idxShift = 1; } /* ** Insert a new cell on pPage at cell index "i". pCell points to the ** content of the cell. ** ** If the cell content will fit on the page, then put it there. If it ** will not fit, then just make pPage->aCell[i] point to the content ** and set pPage->isOverfull. ** ** Do not bother maintaining the integrity of the linked list of Cells. ** Only the pPage->aCell[] array is important. The relinkCellList() ** routine will be called soon after this routine in order to rebuild ** the linked list. */ static void insertCell(MemPage *pPage, int i, unsigned char *pCell, int sz){ int idx, j; assert( i>=0 && i<=pPage->nCell ); assert( sz==cellSize(pPage, pCell) ); assert( sqlite3pager_iswriteable(pPage->aData) ); idx = allocateSpace(pPage, sz); resizeCellArray(pPage, pPage->nCell+1); for(j=pPage->nCell; j>i; j--){ pPage->aCell[j] = pPage->aCell[j-1]; } pPage->nCell++; if( idx<=0 ){ pPage->isOverfull = 1; |
︙ | ︙ | |||
2339 2340 2341 2342 2343 2344 2345 | ** Rebuild the linked list of cells on a page so that the cells ** occur in the order specified by the pPage->aCell[] array. ** Invoke this routine once to repair damage after one or more ** invocations of either insertCell() or dropCell(). */ static void relinkCellList(MemPage *pPage){ int i, idxFrom; | | | 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 | ** Rebuild the linked list of cells on a page so that the cells ** occur in the order specified by the pPage->aCell[] array. ** Invoke this routine once to repair damage after one or more ** invocations of either insertCell() or dropCell(). */ static void relinkCellList(MemPage *pPage){ int i, idxFrom; assert( sqlite3pager_iswriteable(pPage->aData) ); idxFrom = pPage->hdrOffset+3; for(i=0; i<pPage->nCell; i++){ int idx = Addr(pPage->aCell[i]) - Addr(pPage); assert( idx>pPage->hdrOffset && idx<pPage->pBt->pageSize ); put2byte(&pPage->aData[idxFrom], idx); idxFrom = idx; } |
︙ | ︙ | |||
2436 2437 2438 2439 2440 2441 2442 | ** If this routine fails for any reason, it might leave the database ** in a corrupted state. So if this routine fails, the database should ** be rolled back. */ static int balance(MemPage *pPage){ MemPage *pParent; /* The parent of pPage */ Btree *pBt; /* The whole database */ | | | | < < | | | 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 | ** If this routine fails for any reason, it might leave the database ** in a corrupted state. So if this routine fails, the database should ** be rolled back. */ static int balance(MemPage *pPage){ MemPage *pParent; /* The parent of pPage */ Btree *pBt; /* The whole database */ int nCell; /* Number of cells in aCell[] */ int nOld; /* Number of pages in apOld[] */ int nNew; /* Number of pages in apNew[] */ int nDiv; /* Number of cells in apDiv[] */ int i, j, k; /* Loop counters */ int idx; /* Index of pPage in pParent->aCell[] */ int nxDiv; /* Next divider slot in pParent->aCell[] */ int rc; /* The return code */ int leafCorrection; /* 4 if pPage is a leaf. 0 if not */ int usableSpace; /* Bytes in pPage beyond the header */ int pageFlags; /* Value of pPage->aData[0] */ int subtotal; /* Subtotal of bytes in cells on one page */ MemPage *apOld[NB]; /* pPage and up to two siblings */ Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */ MemPage *apCopy[NB]; /* Private copies of apOld[] pages */ MemPage *apNew[NB+1]; /* pPage and up to NB siblings after balancing */ Pgno pgnoNew[NB+1]; /* Page numbers for each page in apNew[] */ int idxDiv[NB]; /* Indices of divider cells in pParent */ u8 *apDiv[NB]; /* Divider cells in pParent */ u8 aTemp[NB][MX_CELL_SIZE]; /* Temporary holding area for apDiv[] */ int cntNew[NB+1]; /* Index in aCell[] of cell after i-th page */ int szNew[NB+1]; /* Combined size of cells place on i-th page */ u8 *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */ int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */ u8 aCopy[NB][MX_PAGE_SIZE+sizeof(MemPage)]; /* Space for apCopy[] */ /* ** Return without doing any work if pPage is neither overfull nor ** underfull. */ assert( sqlite3pager_iswriteable(pPage->aData) ); pBt = pPage->pBt; if( !pPage->isOverfull && pPage->nFree<pBt->pageSize/2 && pPage->nCell>=2){ relinkCellList(pPage); return SQLITE_OK; } /* |
︙ | ︙ | |||
2501 2502 2503 2504 2505 2506 2507 | ** its child (due to the 100 byte header that occurs at the beginning ** of the database fle), so it might not be able to hold all of the ** information currently contained in the child. If this is the ** case, then do not do the transfer. Leave page 1 empty except ** for the right-pointer to the child page. The child page becomes ** the virtual root of the tree. */ | | | | 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 | ** its child (due to the 100 byte header that occurs at the beginning ** of the database fle), so it might not be able to hold all of the ** information currently contained in the child. If this is the ** case, then do not do the transfer. Leave page 1 empty except ** for the right-pointer to the child page. The child page becomes ** the virtual root of the tree. */ pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+6]); assert( pgnoChild>0 && pgnoChild<=sqlite3pager_pagecount(pBt->pPager) ); rc = getPage(pBt, pgnoChild, &pChild); if( rc ) return rc; if( pPage->pgno==1 ){ rc = initPage(pChild, pPage); if( rc ) return rc; if( pChild->nFree>=100 ){ /* The child information will fit on the root page, so do the |
︙ | ︙ | |||
2532 2533 2534 2535 2536 2537 2538 | pPage->pParent = 0; rc = initPage(pPage, 0); assert( rc==SQLITE_OK ); freePage(pChild); } reparentChildPages(pPage); releasePage(pChild); | < < | | | | | | | | | 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 | pPage->pParent = 0; rc = initPage(pPage, 0); assert( rc==SQLITE_OK ); freePage(pChild); } reparentChildPages(pPage); releasePage(pChild); } return SQLITE_OK; } if( !pPage->isOverfull ){ /* It is OK for the root page to be less than half full. */ relinkCellList(pPage); return SQLITE_OK; } /* ** If we get to here, it means the root page is overfull. ** When this happens, Create a new child page and copy the ** contents of the root into the child. Then make the root ** page an empty page with rightChild pointing to the new ** child. Then fall thru to the code below which will cause ** the overfull child page to be split. */ rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno); if( rc ) return rc; assert( sqlite3pager_iswriteable(pChild->aData) ); copyPage(pChild, pPage); pChild->pParent = pPage; pChild->idxParent = 0; sqlite3pager_ref(pPage->aData); pChild->isOverfull = 1; zeroPage(pPage, pPage->aData[pPage->hdrOffset] & ~PTF_LEAF); put4byte(&pPage->aData[pPage->hdrOffset+6], pChild->pgno); pParent = pPage; pPage = pChild; } rc = sqlite3pager_write(pParent->aData); if( rc ) return rc; assert( pParent->isInit ); /* ** Find the cell in the parent page whose left child points back ** to pPage. The "idx" variable is the index of that cell. If pPage ** is the rightmost child of pParent then set idx to pParent->nCell */ if( pParent->idxShift ){ Pgno pgno; pgno = pPage->pgno; assert( pgno==sqlite3pager_pagenumber(pPage->aData) ); for(idx=0; idx<pParent->nCell; idx++){ if( get4byte(&pParent->aCell[idx][2])==pgno ){ break; } } assert( idx<pParent->nCell || get4byte(&pParent->aData[pParent->hdrOffset+6])==pgno ); }else{ idx = pPage->idxParent; } /* ** Initialize variables so that it will be safe to jump ** directly to balance_cleanup at any moment. */ nOld = nNew = 0; sqlite3pager_ref(pParent->aData); /* ** Find sibling pages to pPage and the cells in pParent that divide ** the siblings. An attempt is made to find NN siblings on either ** side of pPage. More siblings are taken from one side, however, if ** pPage there are fewer than NN siblings on the other side. If pParent ** has NB or fewer children then all children of pParent are taken. |
︙ | ︙ | |||
2615 2616 2617 2618 2619 2620 2621 | } nDiv = 0; for(i=0, k=nxDiv; i<NB; i++, k++){ if( k<pParent->nCell ){ idxDiv[i] = k; apDiv[i] = pParent->aCell[k]; nDiv++; | | | | 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 | } nDiv = 0; for(i=0, k=nxDiv; i<NB; i++, k++){ if( k<pParent->nCell ){ idxDiv[i] = k; apDiv[i] = pParent->aCell[k]; nDiv++; assert( !pParent->leaf ); pgnoOld[i] = get4byte(&apDiv[i][2]); }else if( k==pParent->nCell ){ pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+6]); }else{ break; } rc = getPage(pBt, pgnoOld[i], &apOld[i]); if( rc ) goto balance_cleanup; |
︙ | ︙ | |||
2727 2728 2729 2730 2731 2732 2733 | assert( pPage->pgno>1 ); pageFlags = pPage->aData[0]; for(i=0; i<k; i++){ if( i<nOld ){ apNew[i] = apOld[i]; pgnoNew[i] = pgnoOld[i]; apOld[i] = 0; | | | | 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 | assert( pPage->pgno>1 ); pageFlags = pPage->aData[0]; for(i=0; i<k; i++){ if( i<nOld ){ apNew[i] = apOld[i]; pgnoNew[i] = pgnoOld[i]; apOld[i] = 0; sqlite3pager_write(apNew[i]); }else{ rc = allocatePage(pBt, &apNew[i], &pgnoNew[i], pgnoNew[i-1]); if( rc ) goto balance_cleanup; } nNew++; zeroPage(apNew[i], pageFlags); apNew[i]->isInit = 1; } /* Free any old pages that were not reused as new pages. */ while( i<nOld ){ rc = freePage(apOld[i]); if( rc ) goto balance_cleanup; sqlite3pager_unref(apOld[i]->aData); apOld[i] = 0; i++; } /* ** Put the new pages in accending order. This helps to ** keep entries in the disk file in order so that a scan |
︙ | ︙ | |||
2793 2794 2795 2796 2797 2798 2799 | j = 0; for(i=0; i<nNew; i++){ MemPage *pNew = apNew[i]; assert( pNew->pgno==pgnoNew[i] ); resizeCellArray(pNew, cntNew[i] - j); while( j<cntNew[i] ){ assert( pNew->nFree>=szCell[j] ); | | | 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 | j = 0; for(i=0; i<nNew; i++){ MemPage *pNew = apNew[i]; assert( pNew->pgno==pgnoNew[i] ); resizeCellArray(pNew, cntNew[i] - j); while( j<cntNew[i] ){ assert( pNew->nFree>=szCell[j] ); insertCell(pNew, pNew->nCell, apCell[j], szCell[j]); j++; } assert( pNew->nCell>0 ); assert( !pNew->isOverfull ); relinkCellList(pNew); if( i<nNew-1 && j<nCell ){ u8 *pCell = apCell[j]; |
︙ | ︙ | |||
2822 2823 2824 2825 2826 2827 2828 | } if( nxDiv==pParent->nCell ){ /* Right-most sibling is the right-most child of pParent */ put4byte(&pParent->aData[pParent->hdrOffset+6], pgnoNew[nNew-1]); }else{ /* Right-most sibling is the left child of the first entry in pParent ** past the right-most divider entry */ | | | 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 | } if( nxDiv==pParent->nCell ){ /* Right-most sibling is the right-most child of pParent */ put4byte(&pParent->aData[pParent->hdrOffset+6], pgnoNew[nNew-1]); }else{ /* Right-most sibling is the left child of the first entry in pParent ** past the right-most divider entry */ put4byte(&pParent->aCell[nxDiv][2], pgnoNew[nNew-1]); } /* ** Reparent children of all cells. */ for(i=0; i<nNew; i++){ reparentChildPages(apNew[i]); |
︙ | ︙ | |||
2877 2878 2879 2880 2881 2882 2883 | */ static int checkReadLocks(BtCursor *pCur){ BtCursor *p; assert( pCur->wrFlag ); for(p=pCur->pShared; p!=pCur; p=p->pShared){ assert( p ); assert( p->pgnoRoot==pCur->pgnoRoot ); | | | 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 | */ static int checkReadLocks(BtCursor *pCur){ BtCursor *p; assert( pCur->wrFlag ); for(p=pCur->pShared; p!=pCur; p=p->pShared){ assert( p ); assert( p->pgnoRoot==pCur->pgnoRoot ); assert( p->pPage->pgno==sqlite3pager_pagenumber(p->pPage->aData) ); if( p->wrFlag==0 ) return SQLITE_LOCKED; if( p->pPage->pgno!=p->pgnoRoot ){ moveToRoot(p); } } return SQLITE_OK; } |
︙ | ︙ | |||
2905 2906 2907 2908 2909 2910 2911 | const void *pData, int nData /* The data of the new record */ ){ int rc; int loc; int szNew; MemPage *pPage; Btree *pBt = pCur->pBt; | > | | | | | | | 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 | const void *pData, int nData /* The data of the new record */ ){ int rc; int loc; int szNew; MemPage *pPage; Btree *pBt = pCur->pBt; unsigned char *oldCell; unsigned char newCell[MX_CELL_SIZE]; if( pCur->pPage==0 ){ return SQLITE_ABORT; /* A rollback destroyed this cursor */ } if( !pBt->inTrans || nKey+nData==0 ){ /* Must start a transaction before doing an insert */ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } assert( !pBt->readOnly ); if( !pCur->wrFlag ){ return SQLITE_PERM; /* Cursor not open for writing */ } if( checkReadLocks(pCur) ){ return SQLITE_LOCKED; /* The table pCur points to has a read lock */ } rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc); if( rc ) return rc; pPage = pCur->pPage; assert( pPage->isInit ); rc = sqlite3pager_write(pPage->aData); if( rc ) return rc; rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew); if( rc ) return rc; assert( szNew==cellSize(pPage, newCell) ); if( loc==0 ){ int szOld; assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); oldCell = pPage->aCell[pCur->idx]; if( !pPage->leaf ){ memcpy(&newCell[2], &oldCell[2], 4); } szOld = cellSize(pPage, oldCell); rc = clearCell(pPage, oldCell); if( rc ) return rc; dropCell(pPage, pCur->idx, szOld); }else if( loc<0 && pPage->nCell>0 ){ assert( pPage->leaf ); pCur->idx++; }else{ assert( pPage->leaf ); } insertCell(pPage, pCur->idx, newCell, szNew); rc = balance(pPage); /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */ /* fflush(stdout); */ moveToRoot(pCur); pCur->eSkip = SKIP_INVALID; return rc; } |
︙ | ︙ | |||
2985 2986 2987 2988 2989 2990 2991 | } if( !pCur->wrFlag ){ return SQLITE_PERM; /* Did not open this cursor for writing */ } if( checkReadLocks(pCur) ){ return SQLITE_LOCKED; /* The table pCur points to has a read lock */ } | | | 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 | } if( !pCur->wrFlag ){ return SQLITE_PERM; /* Did not open this cursor for writing */ } if( checkReadLocks(pCur) ){ return SQLITE_LOCKED; /* The table pCur points to has a read lock */ } rc = sqlite3pager_write(pPage->aData); if( rc ) return rc; pCell = pPage->aCell[pCur->idx]; if( !pPage->leaf ){ pgnoChild = get4byte(&pCell[2]); } clearCell(pPage, pCell); if( !pPage->leaf ){ |
︙ | ︙ | |||
3010 3011 3012 3013 3014 3015 3016 | int notUsed; getTempCursor(pCur, &leafCur); rc = sqlite3BtreeNext(&leafCur, ¬Used); if( rc!=SQLITE_OK ){ if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT; return rc; } | | | 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 | int notUsed; getTempCursor(pCur, &leafCur); rc = sqlite3BtreeNext(&leafCur, ¬Used); if( rc!=SQLITE_OK ){ if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT; return rc; } rc = sqlite3pager_write(leafCur.pPage->aData); if( rc ) return rc; dropCell(pPage, pCur->idx, cellSize(pPage, pCell)); pNext = leafCur.pPage->aCell[leafCur.idx]; szNext = cellSize(leafCur.pPage, pNext); insertCell(pPage, pCur->idx, &pNext[-4], szNext+4); put4byte(&pNext[-2], pgnoChild); rc = balance(pPage); |
︙ | ︙ | |||
3053 3054 3055 3056 3057 3058 3059 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } if( pBt->readOnly ){ return SQLITE_READONLY; } rc = allocatePage(pBt, &pRoot, &pgnoRoot, 0); if( rc ) return rc; | | | | | 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } if( pBt->readOnly ){ return SQLITE_READONLY; } rc = allocatePage(pBt, &pRoot, &pgnoRoot, 0); if( rc ) return rc; assert( sqlite3pager_iswriteable(pRoot->aData) ); zeroPage(pRoot, flags); sqlite3pager_unref(pRoot->aData); *piTable = (int)pgnoRoot; return SQLITE_OK; } /* ** Erase the given database page and all its children. Return ** the page to the freelist. |
︙ | ︙ | |||
3077 3078 3079 3080 3081 3082 3083 | MemPage *pPage; int rc; unsigned char *pCell; int i; rc = getPage(pBt, pgno, &pPage); if( rc ) return rc; | | | | | | 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 | MemPage *pPage; int rc; unsigned char *pCell; int i; rc = getPage(pBt, pgno, &pPage); if( rc ) return rc; rc = sqlite3pager_write(pPage->aData); if( rc ) return rc; rc = initPage(pPage, pParent); if( rc ) return rc; for(i=0; i<pPage->nCell; i++){ pCell = pPage->aCell[i]; if( !pPage->leaf ){ rc = clearDatabasePage(pBt, get4byte(&pCell[2]), pPage->pParent, 1); if( rc ) return rc; } rc = clearCell(pPage, pCell); if( rc ) return rc; } if( !pPage->leaf ){ rc = clearDatabasePage(pBt, get4byte(&pPage->aData[6]), pPage->pParent, 1); if( rc ) return rc; } if( freePageFlag ){ rc = freePage(pPage); }else{ zeroPage(pPage, pPage->aData[0]); } |
︙ | ︙ | |||
3118 3119 3120 3121 3122 3123 3124 | } for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ if( pCur->pgnoRoot==(Pgno)iTable ){ if( pCur->wrFlag==0 ) return SQLITE_LOCKED; moveToRoot(pCur); } } | | | 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 | } for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ if( pCur->pgnoRoot==(Pgno)iTable ){ if( pCur->wrFlag==0 ) return SQLITE_LOCKED; moveToRoot(pCur); } } rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0); if( rc ){ sqlite3BtreeRollback(pBt); } return rc; } /* |
︙ | ︙ | |||
3142 3143 3144 3145 3146 3147 3148 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ if( pCur->pgnoRoot==(Pgno)iTable ){ return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */ } } | | | | < | | | | | | 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ if( pCur->pgnoRoot==(Pgno)iTable ){ return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */ } } rc = getPage(pBt, (Pgno)iTable, &pPage); if( rc ) return rc; rc = sqlite3BtreeClearTable(pBt, iTable); if( rc ) return rc; if( iTable>1 ){ rc = freePage(pPage); }else{ zeroPage(pPage, PTF_INTKEY|PTF_LEAF ); } releasePage(pPage); return rc; } /* ** Read the meta-information out of a database file. Meta[0] ** is the number of free pages currently in the database. Meta[1] ** through meta[15] are available for use by higher layers. */ int sqlite3BtreeGetMeta(Btree *pBt, int idx, u32 *pMeta){ int rc; unsigned char *pP1; assert( idx>=0 && idx<=15 ); rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1); if( rc ) return rc; *pMeta = get4byte(&pP1[36 + idx*4]); sqlite3pager_unref(pP1); return SQLITE_OK; } /* ** Write meta-information back into the database. Meta[0] is ** read-only and may not be written. */ int sqlite3BtreeUpdateMeta(Btree *pBt, int idx, u32 iMeta){ unsigned char *pP1; int rc; assert( idx>=1 && idx<=15 ); if( !pBt->inTrans ){ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1); if( rc ) return rc; rc = sqlite3pager_write(pP1); if( rc ) return rc; put4byte(&pP1[36 + idx*4], iMeta); return SQLITE_OK; } /****************************************************************************** ** The complete implementation of the BTree subsystem is above this line. |
︙ | ︙ | |||
3217 3218 3219 3220 3221 3222 3223 | int hdrOffset; char range[20]; unsigned char payload[20]; rc = getPage(pBt, (Pgno)pgno, &pPage); if( rc ){ return rc; } | | | | > | | | | 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 | int hdrOffset; char range[20]; unsigned char payload[20]; rc = getPage(pBt, (Pgno)pgno, &pPage); if( rc ){ return rc; } printf("PAGE %d: flags=0x%02x frag=%d\n", pgno, pPage->aData[pPage->hdrOffset], pPage->aData[pPage->hdrOffset+5]); i = 0; hdrOffset = pgno==1 ? 100 : 0; idx = get2byte(&pPage->aData[hdrOffset+3]); while( idx>0 && idx<=pBt->pageSize ){ u64 nData, nKey; int nHeader; Pgno child; unsigned char *pCell = &pPage->aData[idx]; int sz = cellSize(pPage, pCell); sprintf(range,"%d..%d", idx, idx+sz-1); parseCellHeader(pPage, pCell, &nData, &nKey, &nHeader); if( pPage->leaf ){ child = 0; }else{ child = get4byte(&pCell[2]); } sz = nData; if( !pPage->intKey ) sz += nKey; if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1; memcpy(payload, &pCell[nHeader], sz); for(j=0; j<sz; j++){ if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.'; } payload[sz] = 0; printf( "cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4lld payload=%s\n", i, range, child, nKey, nData, payload ); if( pPage->isInit && pPage->aCell[i]!=pCell ){ printf("**** aCell[%d] does not match on prior entry ****\n", i); } i++; idx = get2byte(pCell); } |
︙ | ︙ | |||
3273 3274 3275 3276 3277 3278 3279 | i, range, sz, nFree); idx = get2byte(&pPage->aData[idx]); i++; } if( idx!=0 ){ printf("ERROR: next freeblock index out of range: %d\n", idx); } | | | | | | | > > > > > > > > > > | < | | 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 | i, range, sz, nFree); idx = get2byte(&pPage->aData[idx]); i++; } if( idx!=0 ){ printf("ERROR: next freeblock index out of range: %d\n", idx); } if( recursive && !pPage->leaf ){ idx = get2byte(&pPage->aData[hdrOffset+3]); while( idx>0 && idx<pBt->pageSize ){ unsigned char *pCell = &pPage->aData[idx]; sqlite3BtreePageDump(pBt, get4byte(&pCell[2]), 1); idx = get2byte(pCell); } sqlite3BtreePageDump(pBt, get4byte(&pPage->aData[hdrOffset+6]), 1); } sqlite3pager_unref(pPage->aData); return SQLITE_OK; } #endif #ifdef SQLITE_TEST /* ** Return the flag byte at the beginning of the page that the cursor ** is currently pointing to. */ int sqlite3BtreeFlags(BtCursor *pCur){ return pCur->pPage->aData[pCur->pPage->hdrOffset]; } #endif #ifdef SQLITE_TEST /* ** Fill aResult[] with information about the entry and page that the ** cursor is pointing to. ** ** aResult[0] = The page number ** aResult[1] = The entry number ** aResult[2] = Total number of entries on this page ** aResult[3] = Size of this entry ** aResult[4] = Number of free bytes on this page ** aResult[5] = Number of free blocks on the page ** aResult[6] = Page number of the left child of this entry ** aResult[7] = Page number of the right child for the whole page ** ** This routine is used for testing and debugging only. */ int sqlite3BtreeCursorDump(BtCursor *pCur, int *aResult){ int cnt, idx; MemPage *pPage = pCur->pPage; assert( pPage->isInit ); aResult[0] = sqlite3pager_pagenumber(pPage->aData); assert( aResult[0]==pPage->pgno ); aResult[1] = pCur->idx; aResult[2] = pPage->nCell; if( pCur->idx>=0 && pCur->idx<pPage->nCell ){ aResult[3] = cellSize(pPage, pPage->aCell[pCur->idx]); aResult[6] = pPage->leaf ? 0 : get4byte(&pPage->aCell[pCur->idx][2]); }else{ |
︙ | ︙ | |||
3413 3414 3415 3416 3417 3418 3419 | unsigned char *pOvfl; if( iPage<1 ){ sprintf(zMsg, "%d pages missing from overflow list", N+1); checkAppendMsg(pCheck, zContext, zMsg); break; } if( checkRef(pCheck, iPage, zContext) ) break; | | | | 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 | unsigned char *pOvfl; if( iPage<1 ){ sprintf(zMsg, "%d pages missing from overflow list", N+1); checkAppendMsg(pCheck, zContext, zMsg); break; } if( checkRef(pCheck, iPage, zContext) ) break; if( sqlite3pager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){ sprintf(zMsg, "failed to get page %d", iPage); checkAppendMsg(pCheck, zContext, zMsg); break; } if( isFreeList ){ int n = get4byte(&pOvfl[4]); for(i=0; i<n; i++){ checkRef(pCheck, get4byte(&pOvfl[8+i*4]), zContext); } N -= n; } iPage = get4byte(pOvfl); sqlite3pager_unref(pOvfl); } } /* ** Return negative if zKey1<zKey2. ** Return zero if zKey1==zKey2. ** Return positive if zKey1>zKey2. |
︙ | ︙ | |||
3518 3519 3520 3521 3522 3523 3524 | zKey1[nLower] = 0; }else{ zKey1 = 0; } nKey1 = nLower; cur.pPage = pPage; for(i=0; i<pPage->nCell; i++){ | | | 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 | zKey1[nLower] = 0; }else{ zKey1 = 0; } nKey1 = nLower; cur.pPage = pPage; for(i=0; i<pPage->nCell; i++){ Cell *pCell = pPage->aCell[i]; int sz; /* Check payload overflow pages */ nKey2 = NKEY(pBt, pCell->h); sz = nKey2 + NDATA(pBt, pCell->h); sprintf(zContext, "On page %d cell %d: ", iPage, i); |
︙ | ︙ | |||
3606 3607 3608 3609 3610 3611 3612 | ** is responsible for freeing the error message when it is done. */ char *sqlite3BtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){ int i; int nRef; IntegrityCk sCheck; | | | | | | 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 | ** is responsible for freeing the error message when it is done. */ char *sqlite3BtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){ int i; int nRef; IntegrityCk sCheck; nRef = *sqlite3pager_stats(pBt->pPager); if( lockBtree(pBt)!=SQLITE_OK ){ return sqliteStrDup("Unable to acquire a read lock on the database"); } sCheck.pBt = pBt; sCheck.pPager = pBt->pPager; sCheck.nPage = sqlite3pager_pagecount(sCheck.pPager); if( sCheck.nPage==0 ){ unlockBtreeIfUnused(pBt); return 0; } sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) ); sCheck.anRef[1] = 1; for(i=2; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; } sCheck.zErrMsg = 0; /* Check the integrity of the freelist */ checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); /* Check all the tables. */ for(i=0; i<nRoot; i++){ if( aRoot[i]==0 ) continue; checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0); } |
︙ | ︙ | |||
3647 3648 3649 3650 3651 3652 3653 | checkAppendMsg(&sCheck, zBuf, 0); } } /* Make sure this analysis did not leave any unref() pages */ unlockBtreeIfUnused(pBt); | | | | < | | | | | | | | | | | | | 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 | checkAppendMsg(&sCheck, zBuf, 0); } } /* Make sure this analysis did not leave any unref() pages */ unlockBtreeIfUnused(pBt); if( nRef != *sqlite3pager_stats(pBt->pPager) ){ char zBuf[100]; sprintf(zBuf, "Outstanding page count goes from %d to %d during this analysis", nRef, *sqlite3pager_stats(pBt->pPager) ); checkAppendMsg(&sCheck, zBuf, 0); } /* Clean up and report errors. */ sqliteFree(sCheck.anRef); return sCheck.zErrMsg; } /* ** Return the full pathname of the underlying database file. */ const char *sqlite3BtreeGetFilename(Btree *pBt){ assert( pBt->pPager!=0 ); return sqlite3pager_filename(pBt->pPager); } /* ** Copy the complete content of pBtFrom into pBtTo. A transaction ** must be active for both files. ** ** The size of file pBtFrom may be reduced by this operation. ** If anything goes wrong, the transaction on pBtFrom is rolled back. */ int sqlite3BtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){ int rc = SQLITE_OK; Pgno i, nPage, nToPage; if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR; if( pBtTo->pCursor ) return SQLITE_BUSY; memcpy(pBtTo->pPage1, pBtFrom->pPage1, SQLITE_USABLE_SIZE); rc = sqlite3pager_overwrite(pBtTo->pPager, 1, pBtFrom->pPage1); nToPage = sqlite3pager_pagecount(pBtTo->pPager); nPage = sqlite3pager_pagecount(pBtFrom->pPager); for(i=2; rc==SQLITE_OK && i<=nPage; i++){ void *pPage; rc = sqlite3pager_get(pBtFrom->pPager, i, &pPage); if( rc ) break; rc = sqlite3pager_overwrite(pBtTo->pPager, i, pPage); if( rc ) break; sqlite3pager_unref(pPage); } for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){ void *pPage; rc = sqlite3pager_get(pBtTo->pPager, i, &pPage); if( rc ) break; rc = sqlite3pager_write(pPage); sqlite3pager_unref(pPage); sqlite3pager_dont_write(pBtTo->pPager, i); } if( !rc && nPage<nToPage ){ rc = sqlite3pager_truncate(pBtTo->pPager, nPage); } if( rc ){ sqlite3BtreeRollback(pBtTo); } return rc; } |
Changes to src/btree.h.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. ** ** @(#) $Id: btree.h,v 1.38 2004/05/07 13:30:42 drh Exp $ */ #ifndef _BTREE_H_ #define _BTREE_H_ /* ** Forward declarations of structure */ |
︙ | ︙ | |||
60 61 62 63 64 65 66 | int iTable, /* Index of root page */ int wrFlag, /* 1 for writing. 0 for read-only */ int(*)(void*,int,const void*,int,const void*), /* Key comparison function */ void*, /* First argument to compare function */ BtCursor **ppCursor /* Returned cursor */ ); | | > > > > > > > > > | 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | int iTable, /* Index of root page */ int wrFlag, /* 1 for writing. 0 for read-only */ int(*)(void*,int,const void*,int,const void*), /* Key comparison function */ void*, /* First argument to compare function */ BtCursor **ppCursor /* Returned cursor */ ); int sqlite3BtreeCloseCursor(BtCursor*); int sqlite3BtreeMoveto(BtCursor*, const void *pKey, u64 nKey, int *pRes); int sqlite3BtreeDelete(BtCursor*); int sqlite3BtreeInsert(BtCursor*, const void *pKey, u64 nKey, const void *pData, int nData); int sqlite3BtreeFirst(BtCursor*, int *pRes); int sqlite3BtreeLast(BtCursor*, int *pRes); int sqlite3BtreeNext(BtCursor*, int *pRes); int sqlite3BtreePrevious(BtCursor*, int *pRes); int sqlite3BtreeKeySize(BtCursor*, u64 *pSize); int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); void *sqlite3BtreeKeyFetch(BtCursor*); int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot); struct Pager *sqlite3BtreePager(Btree*); #ifdef SQLITE_TEST int sqlite3BtreeCursorDump(BtCursor*, int*); int sqlite3BtreeFlags(BtCursor*); int sqlite3BtreePageDump(Btree*, int, int recursive); #endif #endif /* _BTREE_H_ */ |
Changes to src/printf.c.
︙ | ︙ | |||
204 205 206 207 208 209 210 | int width; /* Width of the current field */ etByte flag_leftjustify; /* True if "-" flag is present */ etByte flag_plussign; /* True if "+" flag is present */ etByte flag_blanksign; /* True if " " flag is present */ etByte flag_alternateform; /* True if "#" flag is present */ etByte flag_zeropad; /* True if field width constant starts with zero */ etByte flag_long; /* True if "l" flag is present */ | > | | 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 | int width; /* Width of the current field */ etByte flag_leftjustify; /* True if "-" flag is present */ etByte flag_plussign; /* True if "+" flag is present */ etByte flag_blanksign; /* True if " " flag is present */ etByte flag_alternateform; /* True if "#" flag is present */ etByte flag_zeropad; /* True if field width constant starts with zero */ etByte flag_long; /* True if "l" flag is present */ etByte flag_longlong; /* True if the "ll" flag is present */ UINT64_TYPE longvalue; /* Value for integer types */ LONGDOUBLE_TYPE realvalue; /* Value for real types */ et_info *infop; /* Pointer to the appropriate info structure */ char buf[etBUFSIZE]; /* Conversion buffer */ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ etByte errorflag = 0; /* True if an error is encountered */ etByte xtype; /* Conversion paradigm */ char *zExtra; /* Extra memory used for etTCLESCAPE conversions */ |
︙ | ︙ | |||
295 296 297 298 299 300 301 | }else{ precision = -1; } /* Get the conversion type modifier */ if( c=='l' ){ flag_long = 1; c = *++fmt; | > > > | | > > > | 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | }else{ precision = -1; } /* Get the conversion type modifier */ if( c=='l' ){ flag_long = 1; c = *++fmt; if( c=='l' ){ flag_longlong = 1; c = *++fmt; }else{ flag_longlong = 0; } }else{ flag_long = flag_longlong = 0; } /* Fetch the info entry for the field */ infop = 0; xtype = etERROR; for(idx=0; idx<etNINFO; idx++){ if( c==fmtinfo[idx].fmttype ){ infop = &fmtinfo[idx]; |
︙ | ︙ | |||
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | ** flag_alternateform TRUE if a '#' is present. ** flag_plussign TRUE if a '+' is present. ** flag_leftjustify TRUE if a '-' is present or if the ** field width was negative. ** flag_zeropad TRUE if the width began with 0. ** flag_long TRUE if the letter 'l' (ell) prefixed ** the conversion character. ** flag_blanksign TRUE if a ' ' is present. ** width The specified field width. This is ** always non-negative. Zero is the default. ** precision The specified precision. The default ** is -1. ** xtype The class of the conversion. ** infop Pointer to the appropriate info struct. */ switch( xtype ){ case etRADIX: | > > > | | | 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | ** flag_alternateform TRUE if a '#' is present. ** flag_plussign TRUE if a '+' is present. ** flag_leftjustify TRUE if a '-' is present or if the ** field width was negative. ** flag_zeropad TRUE if the width began with 0. ** flag_long TRUE if the letter 'l' (ell) prefixed ** the conversion character. ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed ** the conversion character. ** flag_blanksign TRUE if a ' ' is present. ** width The specified field width. This is ** always non-negative. Zero is the default. ** precision The specified precision. The default ** is -1. ** xtype The class of the conversion. ** infop Pointer to the appropriate info struct. */ switch( xtype ){ case etRADIX: if( flag_longlong ) longvalue = va_arg(ap,INT64_TYPE); else if( flag_long ) longvalue = va_arg(ap,long ing); else longvalue = va_arg(ap,int); #if 1 /* For the format %#x, the value zero is printed "0" not "0x0". ** I think this is stupid. */ if( longvalue==0 ) flag_alternateform = 0; #else /* More sensible: turn off the prefix for octal (to prevent "00"), ** but leave the prefix for hex. */ |
︙ | ︙ |
Changes to src/sqliteInt.h.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** ** @(#) $Id: sqliteInt.h,v 1.223 2004/05/07 13:30:42 drh Exp $ */ #include "config.h" #include "sqlite.h" #include "hash.h" #include "parse.h" #include <stdio.h> #include <stdlib.h> |
︙ | ︙ | |||
91 92 93 94 95 96 97 98 99 100 101 102 103 104 | /* ** Integers of known sizes. These typedefs might change for architectures ** where the sizes very. Preprocessor macros are available so that the ** types can be conveniently redefined at compile-type. Like this: ** ** cc '-DUINTPTR_TYPE=long long int' ... */ #ifndef UINT64_TYPE # define UINT64_TYPE unsigned long long int #endif #ifndef UINT32_TYPE # define UINT32_TYPE unsigned int #endif #ifndef UINT16_TYPE | > > > | 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | /* ** Integers of known sizes. These typedefs might change for architectures ** where the sizes very. Preprocessor macros are available so that the ** types can be conveniently redefined at compile-type. Like this: ** ** cc '-DUINTPTR_TYPE=long long int' ... */ #ifndef INT64_TYPE # define INT64_TYPE long long int #endif #ifndef UINT64_TYPE # define UINT64_TYPE unsigned long long int #endif #ifndef UINT32_TYPE # define UINT32_TYPE unsigned int #endif #ifndef UINT16_TYPE |
︙ | ︙ | |||
1270 1271 1272 1273 1274 1275 1276 | int sqliteFitsIn32Bits(const char *); unsigned char *sqlite3utf16to8(const void *pData, int N); void *sqlite3utf8to16be(const unsigned char *pIn, int N); void *sqlite3utf8to16le(const unsigned char *pIn, int N); void sqlite3utf16to16le(void *pData, int N); void sqlite3utf16to16be(void *pData, int N); | < | 1273 1274 1275 1276 1277 1278 1279 | int sqliteFitsIn32Bits(const char *); unsigned char *sqlite3utf16to8(const void *pData, int N); void *sqlite3utf8to16be(const unsigned char *pIn, int N); void *sqlite3utf8to16le(const unsigned char *pIn, int N); void sqlite3utf16to16le(void *pData, int N); void sqlite3utf16to16be(void *pData, int N); |
Changes to src/test3.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the btree.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the btree.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** $Id: test3.c,v 1.26 2004/05/07 13:30:42 drh Exp $ */ #include "sqliteInt.h" #include "pager.h" #include "btree.h" #include "tcl.h" #include <stdlib.h> #include <string.h> |
︙ | ︙ | |||
429 430 431 432 433 434 435 | if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; | | | 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 | if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; a = sqlite3pager_stats(sqlite3BtreePager(pBt)); for(i=0; i<9; i++){ static char *zName[] = { "ref", "page", "max", "size", "state", "err", "hit", "miss", "ovfl", }; char zBuf[100]; Tcl_AppendElement(interp, zName[i]); |
︙ | ︙ | |||
462 463 464 465 466 467 468 | if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; | | | 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 | if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; sqlite3pager_refdump(sqlite3BtreePager(pBt)); return TCL_OK; } /* ** Usage: btree_integrity_check ID ROOT ... ** ** Look through every page of the given BTree file to verify correct |
︙ | ︙ | |||
530 531 532 533 534 535 536 | Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID TABLENUM WRITEABLE\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; if( Tcl_GetInt(interp, argv[2], &iTable) ) return TCL_ERROR; if( Tcl_GetBoolean(interp, argv[3], &wrFlag) ) return TCL_ERROR; | | | 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 | Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID TABLENUM WRITEABLE\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; if( Tcl_GetInt(interp, argv[2], &iTable) ) return TCL_ERROR; if( Tcl_GetBoolean(interp, argv[3], &wrFlag) ) return TCL_ERROR; rc = sqlite3BtreeCursor(pBt, iTable, wrFlag, 0, 0, &pCur); if( rc ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } sprintf(zBuf,"0x%x", (int)pCur); Tcl_AppendResult(interp, zBuf, 0); return SQLITE_OK; |
︙ | ︙ | |||
806 807 808 809 810 811 812 | static int btree_keysize( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ const char **argv /* Text of each argument */ ){ BtCursor *pCur; | < | < | < | | 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 | static int btree_keysize( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ const char **argv /* Text of each argument */ ){ BtCursor *pCur; u64 n; char zBuf[50]; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pCur) ) return TCL_ERROR; sqlite3BtreeKeySize(pCur, &n); sprintf(zBuf, "%llu", n); Tcl_AppendResult(interp, zBuf, 0); return SQLITE_OK; } /* ** Usage: btree_key ID ** |
︙ | ︙ | |||
847 848 849 850 851 852 853 | if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pCur) ) return TCL_ERROR; sqlite3BtreeKeySize(pCur, &n); | > > > > > | | | | | | | | | | | | > | | | | 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 | if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pCur) ) return TCL_ERROR; sqlite3BtreeKeySize(pCur, &n); if( sqlite3BtreeFlags(pCur) & BTREE_INTKEY ){ char zBuf2[60]; sprintf(zBuf2, "%llu", n); Tcl_AppendResult(interp, zBuf2, 0); }else{ zBuf = malloc( n+1 ); rc = sqlite3BtreeKey(pCur, 0, n, zBuf); if( rc!=n ){ char zMsg[100]; free(zBuf); sprintf(zMsg, "truncated key: got %d of %llu bytes", rc, n); Tcl_AppendResult(interp, zMsg, 0); return TCL_ERROR; } zBuf[n] = 0; Tcl_AppendResult(interp, zBuf, 0); free(zBuf); } return SQLITE_OK; } /* ** Usage: btree_data ID ** ** Return the data for the entry at which the cursor is pointing. */ static int btree_data( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ const char **argv /* Text of each argument */ ){ BtCursor *pCur; int rc; u32 n; char *zBuf; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pCur) ) return TCL_ERROR; sqlite3BtreeDataSize(pCur, &n); zBuf = malloc( n+1 ); rc = sqlite3BtreeData(pCur, 0, n, zBuf); if( rc!=n ){ char zMsg[100]; free(zBuf); sprintf(zMsg, "truncated data: got %d of %u bytes", rc, n); Tcl_AppendResult(interp, zMsg, 0); return TCL_ERROR; } zBuf[n] = 0; Tcl_AppendResult(interp, zBuf, 0); free(zBuf); return SQLITE_OK; |
︙ | ︙ | |||
913 914 915 916 917 918 919 | void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ const char **argv /* Text of each argument */ ){ BtCursor *pCur; int n2; | | > > > | > | | 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 | void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ const char **argv /* Text of each argument */ ){ BtCursor *pCur; int n2; u64 n1; char zBuf[50]; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pCur) ) return TCL_ERROR; if( sqlite3BtreeFlags(pCur) & BTREE_INTKEY ){ n1 = 0; }else{ sqlite3BtreeKeySize(pCur, &n1); } sqlite3BtreeDataSize(pCur, &n2); sprintf(zBuf, "%d", (int)(n1+n2)); Tcl_AppendResult(interp, zBuf, 0); return SQLITE_OK; } /* ** Usage: btree_cursor_dump ID ** |
︙ | ︙ | |||
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 | { "btree_cursor", (Tcl_CmdProc*)btree_cursor }, { "btree_close_cursor", (Tcl_CmdProc*)btree_close_cursor }, { "btree_move_to", (Tcl_CmdProc*)btree_move_to }, { "btree_delete", (Tcl_CmdProc*)btree_delete }, { "btree_insert", (Tcl_CmdProc*)btree_insert }, { "btree_next", (Tcl_CmdProc*)btree_next }, { "btree_prev", (Tcl_CmdProc*)btree_prev }, { "btree_key", (Tcl_CmdProc*)btree_key }, { "btree_data", (Tcl_CmdProc*)btree_data }, { "btree_payload_size", (Tcl_CmdProc*)btree_payload_size }, { "btree_first", (Tcl_CmdProc*)btree_first }, { "btree_last", (Tcl_CmdProc*)btree_last }, { "btree_cursor_dump", (Tcl_CmdProc*)btree_cursor_dump }, { "btree_integrity_check", (Tcl_CmdProc*)btree_integrity_check }, }; int i; for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){ Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0); } | > | | 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 | { "btree_cursor", (Tcl_CmdProc*)btree_cursor }, { "btree_close_cursor", (Tcl_CmdProc*)btree_close_cursor }, { "btree_move_to", (Tcl_CmdProc*)btree_move_to }, { "btree_delete", (Tcl_CmdProc*)btree_delete }, { "btree_insert", (Tcl_CmdProc*)btree_insert }, { "btree_next", (Tcl_CmdProc*)btree_next }, { "btree_prev", (Tcl_CmdProc*)btree_prev }, { "btree_keysize", (Tcl_CmdProc*)btree_keysize }, { "btree_key", (Tcl_CmdProc*)btree_key }, { "btree_data", (Tcl_CmdProc*)btree_data }, { "btree_payload_size", (Tcl_CmdProc*)btree_payload_size }, { "btree_first", (Tcl_CmdProc*)btree_first }, { "btree_last", (Tcl_CmdProc*)btree_last }, { "btree_cursor_dump", (Tcl_CmdProc*)btree_cursor_dump }, { "btree_integrity_check", (Tcl_CmdProc*)btree_integrity_check }, }; int i; for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){ Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0); } Tcl_LinkVar(interp, "pager_refinfo_enable", (char*)&pager3_refinfo_enable, TCL_LINK_INT); return TCL_OK; } |