Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge the latest changes from sessions. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | rtree-enhancements |
Files: | files | file ages | folders |
SHA1: |
d9eef5b03c7c4bb69c11eda41152ee81 |
User & Date: | drh 2014-04-18 01:14:46.009 |
Context
2014-04-18
| ||
01:37 | Further improvements to the RTREE_DECODE_COORD() method, to take advantage of known processor byte orders when available. This makes the code 3% faster, according to valgrind. Also add test cases to make sure the on-disk representation is correct. (check-in: 6f3e94f4b1 user: drh tags: rtree-enhancements) | |
01:14 | Merge the latest changes from sessions. (check-in: d9eef5b03c user: drh tags: rtree-enhancements) | |
01:10 | Merge recent trunk changes into sessions. (check-in: 95e77efe07 user: drh tags: sessions) | |
2014-04-17
| ||
23:23 | Performance optimization on byte-swapping in R-Tree. (check-in: 444084fd62 user: drh tags: rtree-enhancements) | |
Changes
Changes to src/alter.c.
︙ | ︙ | |||
112 113 114 115 116 117 118 119 120 121 122 123 124 125 | unsigned char const *zNew = sqlite3_value_text(argv[2]); unsigned const char *z; /* Pointer to token */ int n; /* Length of token z */ int token; /* Type of token */ UNUSED_PARAMETER(NotUsed); for(z=zInput; *z; z=z+n){ n = sqlite3GetToken(z, &token); if( token==TK_REFERENCES ){ char *zParent; do { z += n; n = sqlite3GetToken(z, &token); | > | 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | unsigned char const *zNew = sqlite3_value_text(argv[2]); unsigned const char *z; /* Pointer to token */ int n; /* Length of token z */ int token; /* Type of token */ UNUSED_PARAMETER(NotUsed); if( zInput==0 || zOld==0 ) return; for(z=zInput; *z; z=z+n){ n = sqlite3GetToken(z, &token); if( token==TK_REFERENCES ){ char *zParent; do { z += n; n = sqlite3GetToken(z, &token); |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
442 443 444 445 446 447 448 | */ #ifdef SQLITE_DEBUG static int cursorHoldsMutex(BtCursor *p){ return sqlite3_mutex_held(p->pBt->mutex); } #endif | < < | > | < < < < > | 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 | */ #ifdef SQLITE_DEBUG static int cursorHoldsMutex(BtCursor *p){ return sqlite3_mutex_held(p->pBt->mutex); } #endif /* ** Invalidate the overflow cache of the cursor passed as the first argument. ** on the shared btree structure pBt. */ #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) /* ** Invalidate the overflow page-list cache for all cursors opened ** on the shared btree structure pBt. */ static void invalidateAllOverflowCache(BtShared *pBt){ BtCursor *p; assert( sqlite3_mutex_held(pBt->mutex) ); for(p=pBt->pCursor; p; p=p->pNext){ invalidateOverflowCache(p); } } #ifndef SQLITE_OMIT_INCRBLOB /* ** This function is called before modifying the contents of a table ** to invalidate any incrblob cursors that are open on the ** row or one of the rows being modified. ** ** If argument isClearTable is true, then the entire contents of the ** table is about to be deleted. In this case invalidate all incrblob |
︙ | ︙ | |||
487 488 489 490 491 492 493 | i64 iRow, /* The rowid that might be changing */ int isClearTable /* True if all rows are being deleted */ ){ BtCursor *p; BtShared *pBt = pBtree->pBt; assert( sqlite3BtreeHoldsMutex(pBtree) ); for(p=pBt->pCursor; p; p=p->pNext){ | | | < < | 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 | i64 iRow, /* The rowid that might be changing */ int isClearTable /* True if all rows are being deleted */ ){ BtCursor *p; BtShared *pBt = pBtree->pBt; assert( sqlite3BtreeHoldsMutex(pBtree) ); for(p=pBt->pCursor; p; p=p->pNext){ if( (p->curFlags & BTCF_Incrblob)!=0 && (isClearTable || p->info.nKey==iRow) ){ p->eState = CURSOR_INVALID; } } } #else /* Stub function when INCRBLOB is omitted */ #define invalidateIncrblobCursors(x,y,z) #endif /* SQLITE_OMIT_INCRBLOB */ /* ** Set bit pgno of the BtShared.pHasContent bitvec. This is called ** when a page that previously contained data becomes a free-list leaf ** page. |
︙ | ︙ | |||
2559 2560 2561 2562 2563 2564 2565 | ** is capable of reading or writing to the databse. Cursors that ** have been tripped into the CURSOR_FAULT state are not counted. */ static int countValidCursors(BtShared *pBt, int wrOnly){ BtCursor *pCur; int r = 0; for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ | > | | 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 | ** is capable of reading or writing to the databse. Cursors that ** have been tripped into the CURSOR_FAULT state are not counted. */ static int countValidCursors(BtShared *pBt, int wrOnly){ BtCursor *pCur; int r = 0; for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) && pCur->eState!=CURSOR_FAULT ) r++; } return r; } #endif /* ** If there are no outstanding cursors and we are not in the middle |
︙ | ︙ | |||
3634 3635 3636 3637 3638 3639 3640 | /* Now that no other errors can occur, finish filling in the BtCursor ** variables and link the cursor into the BtShared list. */ pCur->pgnoRoot = (Pgno)iTable; pCur->iPage = -1; pCur->pKeyInfo = pKeyInfo; pCur->pBtree = p; pCur->pBt = pBt; | > | | 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 | /* Now that no other errors can occur, finish filling in the BtCursor ** variables and link the cursor into the BtShared list. */ pCur->pgnoRoot = (Pgno)iTable; pCur->iPage = -1; pCur->pKeyInfo = pKeyInfo; pCur->pBtree = p; pCur->pBt = pBt; assert( wrFlag==0 || wrFlag==BTCF_WriteFlag ); pCur->curFlags = wrFlag; pCur->pNext = pBt->pCursor; if( pCur->pNext ){ pCur->pNext->pPrev = pCur; } pBt->pCursor = pCur; pCur->eState = CURSOR_INVALID; return SQLITE_OK; |
︙ | ︙ | |||
3704 3705 3706 3707 3708 3709 3710 | if( pCur->pNext ){ pCur->pNext->pPrev = pCur->pPrev; } for(i=0; i<=pCur->iPage; i++){ releasePage(pCur->apPage[i]); } unlockBtreeIfUnused(pBt); | | | 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 | if( pCur->pNext ){ pCur->pNext->pPrev = pCur->pPrev; } for(i=0; i<=pCur->iPage; i++){ releasePage(pCur->apPage[i]); } unlockBtreeIfUnused(pBt); sqlite3DbFree(pBtree->db, pCur->aOverflow); /* sqlite3_free(pCur); */ sqlite3BtreeLeave(pBtree); } return SQLITE_OK; } /* |
︙ | ︙ | |||
3743 3744 3745 3746 3747 3748 3749 | #endif #ifdef _MSC_VER /* Use a real function in MSVC to work around bugs in that compiler. */ static void getCellInfo(BtCursor *pCur){ if( pCur->info.nSize==0 ){ int iPage = pCur->iPage; btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); | | | | | 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 | #endif #ifdef _MSC_VER /* Use a real function in MSVC to work around bugs in that compiler. */ static void getCellInfo(BtCursor *pCur){ if( pCur->info.nSize==0 ){ int iPage = pCur->iPage; btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); pCur->curFlags |= BTCF_ValidNKey; }else{ assertCellInfo(pCur); } } #else /* if not _MSC_VER */ /* Use a macro in all other compilers so that the function is inlined */ #define getCellInfo(pCur) \ if( pCur->info.nSize==0 ){ \ int iPage = pCur->iPage; \ btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \ pCur->curFlags |= BTCF_ValidNKey; \ }else{ \ assertCellInfo(pCur); \ } #endif /* _MSC_VER */ #ifndef NDEBUG /* The next routine used only within assert() statements */ /* |
︙ | ︙ | |||
3925 3926 3927 3928 3929 3930 3931 | memcpy(pBuf, pPayload, nByte); } return SQLITE_OK; } /* ** This function is used to read or overwrite payload information | | < | | > > > < | > | | | | 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 | memcpy(pBuf, pPayload, nByte); } return SQLITE_OK; } /* ** This function is used to read or overwrite payload information ** for the entry that the pCur cursor is pointing to. The eOp ** argument is interpreted as follows: ** ** 0: The operation is a read. Populate the overflow cache. ** 1: The operation is a write. Populate the overflow cache. ** 2: The operation is a read. Do not populate the overflow cache. ** ** A total of "amt" bytes are read or written beginning at "offset". ** Data is read to or from the buffer pBuf. ** ** The content being read or written might appear on the main page ** or be scattered out on multiple overflow pages. ** ** If the current cursor entry uses one or more overflow pages and the ** eOp argument is not 2, this function may allocate space for and lazily ** popluates the overflow page-list cache array (BtCursor.aOverflow). ** Subsequent calls use this cache to make seeking to the supplied offset ** more efficient. ** ** Once an overflow page-list cache has been allocated, it may be ** invalidated if some other cursor writes to the same table, or if ** the cursor is moved to a different row. Additionally, in auto-vacuum ** mode, the following events may invalidate an overflow page-list cache. ** ** * An incremental vacuum, |
︙ | ︙ | |||
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 | ){ unsigned char *aPayload; int rc = SQLITE_OK; u32 nKey; int iIdx = 0; MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */ BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ assert( pPage ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); assert( cursorHoldsMutex(pCur) ); getCellInfo(pCur); aPayload = pCur->info.pCell + pCur->info.nHeader; nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey); if( NEVER(offset+amt > nKey+pCur->info.nData) || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){ /* Trying to read or write past the end of the data is an error */ return SQLITE_CORRUPT_BKPT; } /* Check if data must be read/written to/from the btree page itself. */ if( offset<pCur->info.nLocal ){ int a = amt; if( a+offset>pCur->info.nLocal ){ a = pCur->info.nLocal - offset; } | > > > > > > > | < < | > > | | | | | > | | < > | | > > > > > > > > | < < | < > > > < > > | | < > | 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 | ){ unsigned char *aPayload; int rc = SQLITE_OK; u32 nKey; int iIdx = 0; MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */ BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ #ifdef SQLITE_DIRECT_OVERFLOW_READ int bEnd; /* True if reading to end of data */ #endif assert( pPage ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); assert( cursorHoldsMutex(pCur) ); assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */ getCellInfo(pCur); aPayload = pCur->info.pCell + pCur->info.nHeader; nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey); #ifdef SQLITE_DIRECT_OVERFLOW_READ bEnd = (offset+amt==nKey+pCur->info.nData); #endif if( NEVER(offset+amt > nKey+pCur->info.nData) || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){ /* Trying to read or write past the end of the data is an error */ return SQLITE_CORRUPT_BKPT; } /* Check if data must be read/written to/from the btree page itself. */ if( offset<pCur->info.nLocal ){ int a = amt; if( a+offset>pCur->info.nLocal ){ a = pCur->info.nLocal - offset; } rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage); offset = 0; pBuf += a; amt -= a; }else{ offset -= pCur->info.nLocal; } if( rc==SQLITE_OK && amt>0 ){ const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ Pgno nextPage; nextPage = get4byte(&aPayload[pCur->info.nLocal]); /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. ** Except, do not allocate aOverflow[] for eOp==2. ** ** The aOverflow[] array is sized at one entry for each overflow page ** in the overflow chain. The page number of the first overflow page is ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array ** means "not yet known" (the cache is lazily populated). */ if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){ int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; if( nOvfl>pCur->nOvflAlloc ){ Pgno *aNew = (Pgno*)sqlite3DbRealloc( pCur->pBtree->db, pCur->aOverflow, nOvfl*2*sizeof(Pgno) ); if( aNew==0 ){ rc = SQLITE_NOMEM; }else{ pCur->nOvflAlloc = nOvfl*2; pCur->aOverflow = aNew; } } if( rc==SQLITE_OK ){ memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); pCur->curFlags |= BTCF_ValidOvfl; } } /* If the overflow page-list cache has been allocated and the ** entry for the first required overflow page is valid, skip ** directly to it. */ if( (pCur->curFlags & BTCF_ValidOvfl)!=0 && pCur->aOverflow[offset/ovflSize] ){ iIdx = (offset/ovflSize); nextPage = pCur->aOverflow[iIdx]; offset = (offset%ovflSize); } for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){ /* If required, populate the overflow page-list cache. */ if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){ assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage); pCur->aOverflow[iIdx] = nextPage; } if( offset>=ovflSize ){ /* The only reason to read this page is to obtain the page ** number for the next page in the overflow chain. The page ** data is not required. So first try to lookup the overflow ** page-list cache, if any, then fall back to the getOverflowPage() ** function. ** ** Note that the aOverflow[] array must be allocated because eOp!=2 ** here. If eOp==2, then offset==0 and this branch is never taken. */ assert( eOp!=2 ); assert( pCur->curFlags & BTCF_ValidOvfl ); if( pCur->aOverflow[iIdx+1] ){ nextPage = pCur->aOverflow[iIdx+1]; }else{ rc = getOverflowPage(pBt, nextPage, 0, &nextPage); } offset -= ovflSize; }else{ /* Need to read this page properly. It contains some of the ** range of data that is being read (eOp==0) or written (eOp!=0). */ #ifdef SQLITE_DIRECT_OVERFLOW_READ sqlite3_file *fd; |
︙ | ︙ | |||
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 | /* If all the following are true: ** ** 1) this is a read operation, and ** 2) data is required from the start of this overflow page, and ** 3) the database is file-backed, and ** 4) there is no open write-transaction, and ** 5) the database is not a WAL database, ** ** then data can be read directly from the database file into the ** output buffer, bypassing the page-cache altogether. This speeds ** up loading large records that span many overflow pages. */ | > | > | | | 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 | /* If all the following are true: ** ** 1) this is a read operation, and ** 2) data is required from the start of this overflow page, and ** 3) the database is file-backed, and ** 4) there is no open write-transaction, and ** 5) the database is not a WAL database, ** 6) all data from the page is being read. ** ** then data can be read directly from the database file into the ** output buffer, bypassing the page-cache altogether. This speeds ** up loading large records that span many overflow pages. */ if( (eOp&0x01)==0 /* (1) */ && offset==0 /* (2) */ && (bEnd || a==ovflSize) /* (6) */ && pBt->inTransaction==TRANS_READ /* (4) */ && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */ && pBt->pPage1->aData[19]==0x01 /* (5) */ ){ u8 aSave[4]; u8 *aWrite = &pBuf[-4]; memcpy(aSave, aWrite, 4); rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); nextPage = get4byte(aWrite); memcpy(aWrite, aSave, 4); }else #endif { DbPage *pDbPage; rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage, ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0) ); if( rc==SQLITE_OK ){ aPayload = sqlite3PagerGetData(pDbPage); nextPage = get4byte(aPayload); rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage); sqlite3PagerUnref(pDbPage); offset = 0; } } amt -= a; pBuf += a; } |
︙ | ︙ | |||
4253 4254 4255 4256 4257 4258 4259 | assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); assert( pCur->iPage>=0 ); if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ return SQLITE_CORRUPT_BKPT; } rc = getAndInitPage(pBt, newPgno, &pNewPage, | | | | 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 | assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); assert( pCur->iPage>=0 ); if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ return SQLITE_CORRUPT_BKPT; } rc = getAndInitPage(pBt, newPgno, &pNewPage, (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0); if( rc ) return rc; pCur->apPage[i+1] = pNewPage; pCur->aiIdx[i+1] = 0; pCur->iPage++; pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){ return SQLITE_CORRUPT_BKPT; } return SQLITE_OK; } #if 0 |
︙ | ︙ | |||
4318 4319 4320 4321 4322 4323 4324 | ); #endif testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); releasePage(pCur->apPage[pCur->iPage]); pCur->iPage--; pCur->info.nSize = 0; | | | 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 | ); #endif testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); releasePage(pCur->apPage[pCur->iPage]); pCur->iPage--; pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); } /* ** Move the cursor to point to the root page of its b-tree structure. ** ** If the table has a virtual root page, then the cursor is moved to point ** to the virtual root page instead of the actual root page. A table has a |
︙ | ︙ | |||
4365 4366 4367 4368 4369 4370 4371 | if( pCur->iPage>=0 ){ while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]); }else if( pCur->pgnoRoot==0 ){ pCur->eState = CURSOR_INVALID; return SQLITE_OK; }else{ rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0], | | | 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 | if( pCur->iPage>=0 ){ while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]); }else if( pCur->pgnoRoot==0 ){ pCur->eState = CURSOR_INVALID; return SQLITE_OK; }else{ rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0], (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0); if( rc!=SQLITE_OK ){ pCur->eState = CURSOR_INVALID; return rc; } pCur->iPage = 0; } pRoot = pCur->apPage[0]; |
︙ | ︙ | |||
4392 4393 4394 4395 4396 4397 4398 | assert( pRoot->intKey==1 || pRoot->intKey==0 ); if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ return SQLITE_CORRUPT_BKPT; } pCur->aiIdx[0] = 0; pCur->info.nSize = 0; | | < | 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 | assert( pRoot->intKey==1 || pRoot->intKey==0 ); if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ return SQLITE_CORRUPT_BKPT; } pCur->aiIdx[0] = 0; pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); if( pRoot->nCell>0 ){ pCur->eState = CURSOR_VALID; }else if( !pRoot->leaf ){ Pgno subpage; if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); |
︙ | ︙ | |||
4456 4457 4458 4459 4460 4461 4462 | pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); pCur->aiIdx[pCur->iPage] = pPage->nCell; rc = moveToChild(pCur, pgno); } if( rc==SQLITE_OK ){ pCur->aiIdx[pCur->iPage] = pPage->nCell-1; pCur->info.nSize = 0; | | | 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 | pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); pCur->aiIdx[pCur->iPage] = pPage->nCell; rc = moveToChild(pCur, pgno); } if( rc==SQLITE_OK ){ pCur->aiIdx[pCur->iPage] = pPage->nCell-1; pCur->info.nSize = 0; pCur->curFlags &= ~BTCF_ValidNKey; } return rc; } /* Move the cursor to the first entry in the table. Return SQLITE_OK ** on success. Set *pRes to 0 if the cursor actually points to something ** or set *pRes to 1 if the table is empty. |
︙ | ︙ | |||
4495 4496 4497 4498 4499 4500 4501 | int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ int rc; assert( cursorHoldsMutex(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); /* If the cursor already points to the last entry, this is a no-op. */ | | | 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 | int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ int rc; assert( cursorHoldsMutex(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); /* If the cursor already points to the last entry, this is a no-op. */ if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ #ifdef SQLITE_DEBUG /* This block serves to assert() that the cursor really does point ** to the last entry in the b-tree. */ int ii; for(ii=0; ii<pCur->iPage; ii++){ assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); } |
︙ | ︙ | |||
4518 4519 4520 4521 4522 4523 4524 | if( CURSOR_INVALID==pCur->eState ){ assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); *pRes = 1; }else{ assert( pCur->eState==CURSOR_VALID ); *pRes = 0; rc = moveToRightmost(pCur); | | > > > > > | 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 | if( CURSOR_INVALID==pCur->eState ){ assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); *pRes = 1; }else{ assert( pCur->eState==CURSOR_VALID ); *pRes = 0; rc = moveToRightmost(pCur); if( rc==SQLITE_OK ){ pCur->curFlags |= BTCF_AtLast; }else{ pCur->curFlags &= ~BTCF_AtLast; } } } return rc; } /* Move the cursor so that it points to an entry near the key ** specified by pIdxKey or intKey. Return a success code. |
︙ | ︙ | |||
4569 4570 4571 4572 4573 4574 4575 | assert( cursorHoldsMutex(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( pRes ); assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); /* If the cursor is already positioned at the point we are trying ** to move to, then just return without doing any work */ | | | | 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 | assert( cursorHoldsMutex(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( pRes ); assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); /* If the cursor is already positioned at the point we are trying ** to move to, then just return without doing any work */ if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 && pCur->apPage[0]->intKey ){ if( pCur->info.nKey==intKey ){ *pRes = 0; return SQLITE_OK; } if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){ *pRes = -1; return SQLITE_OK; } } if( pIdxKey ){ xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); |
︙ | ︙ | |||
4643 4644 4645 4646 4647 4648 4649 | lwr = idx+1; if( lwr>upr ){ c = -1; break; } }else if( nCellKey>intKey ){ upr = idx-1; if( lwr>upr ){ c = +1; break; } }else{ assert( nCellKey==intKey ); | | | 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 | lwr = idx+1; if( lwr>upr ){ c = -1; break; } }else if( nCellKey>intKey ){ upr = idx-1; if( lwr>upr ){ c = +1; break; } }else{ assert( nCellKey==intKey ); pCur->curFlags |= BTCF_ValidNKey; pCur->info.nKey = nCellKey; pCur->aiIdx[pCur->iPage] = (u16)idx; if( !pPage->leaf ){ lwr = idx; goto moveto_next_layer; }else{ *pRes = 0; |
︙ | ︙ | |||
4700 4701 4702 4703 4704 4705 4706 | nCell = (int)pCur->info.nKey; pCellKey = sqlite3Malloc( nCell ); if( pCellKey==0 ){ rc = SQLITE_NOMEM; goto moveto_finish; } pCur->aiIdx[pCur->iPage] = (u16)idx; | | | 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 | nCell = (int)pCur->info.nKey; pCellKey = sqlite3Malloc( nCell ); if( pCellKey==0 ){ rc = SQLITE_NOMEM; goto moveto_finish; } pCur->aiIdx[pCur->iPage] = (u16)idx; rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2); if( rc ){ sqlite3_free(pCellKey); goto moveto_finish; } c = xRecordCompare(nCell, pCellKey, pIdxKey, 0); sqlite3_free(pCellKey); } |
︙ | ︙ | |||
4747 4748 4749 4750 4751 4752 4753 | } pCur->aiIdx[pCur->iPage] = (u16)lwr; rc = moveToChild(pCur, chldPg); if( rc ) break; } moveto_finish: pCur->info.nSize = 0; | | | 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 | } pCur->aiIdx[pCur->iPage] = (u16)lwr; rc = moveToChild(pCur, chldPg); if( rc ) break; } moveto_finish: pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); return rc; } /* ** Return TRUE if the cursor is not pointing at an entry of the table. ** |
︙ | ︙ | |||
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 | MemPage *pPage; assert( cursorHoldsMutex(pCur) ); assert( pRes!=0 ); assert( *pRes==0 || *pRes==1 ); assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); if( pCur->eState!=CURSOR_VALID ){ rc = restoreCursorPosition(pCur); if( rc!=SQLITE_OK ){ *pRes = 0; return rc; } if( CURSOR_INVALID==pCur->eState ){ *pRes = 1; | > | 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 | MemPage *pPage; assert( cursorHoldsMutex(pCur) ); assert( pRes!=0 ); assert( *pRes==0 || *pRes==1 ); assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); if( pCur->eState!=CURSOR_VALID ){ invalidateOverflowCache(pCur); rc = restoreCursorPosition(pCur); if( rc!=SQLITE_OK ){ *pRes = 0; return rc; } if( CURSOR_INVALID==pCur->eState ){ *pRes = 1; |
︙ | ︙ | |||
4825 4826 4827 4828 4829 4830 4831 | ** to be invalid here. This can only occur if a second cursor modifies ** the page while cursor pCur is holding a reference to it. Which can ** only happen if the database is corrupt in such a way as to link the ** page into more than one b-tree structure. */ testcase( idx>pPage->nCell ); pCur->info.nSize = 0; | | | 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 | ** to be invalid here. This can only occur if a second cursor modifies ** the page while cursor pCur is holding a reference to it. Which can ** only happen if the database is corrupt in such a way as to link the ** page into more than one b-tree structure. */ testcase( idx>pPage->nCell ); pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); if( idx>=pPage->nCell ){ if( !pPage->leaf ){ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); if( rc ){ *pRes = 0; return rc; } |
︙ | ︙ | |||
4886 4887 4888 4889 4890 4891 4892 | int rc; MemPage *pPage; assert( cursorHoldsMutex(pCur) ); assert( pRes!=0 ); assert( *pRes==0 || *pRes==1 ); assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); | | | 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 | int rc; MemPage *pPage; assert( cursorHoldsMutex(pCur) ); assert( pRes!=0 ); assert( *pRes==0 || *pRes==1 ); assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl); if( pCur->eState!=CURSOR_VALID ){ if( ALWAYS(pCur->eState>=CURSOR_REQUIRESEEK) ){ rc = btreeRestoreCursorPosition(pCur); if( rc!=SQLITE_OK ){ *pRes = 0; return rc; } |
︙ | ︙ | |||
4931 4932 4933 4934 4935 4936 4937 | pCur->eState = CURSOR_INVALID; *pRes = 1; return SQLITE_OK; } moveToParent(pCur); } pCur->info.nSize = 0; | | | 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 | pCur->eState = CURSOR_INVALID; *pRes = 1; return SQLITE_OK; } moveToParent(pCur); } pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); pCur->aiIdx[pCur->iPage]--; pPage = pCur->apPage[pCur->iPage]; if( pPage->intKey && !pPage->leaf ){ rc = sqlite3BtreePrevious(pCur, pRes); }else{ rc = SQLITE_OK; |
︙ | ︙ | |||
6956 6957 6958 6959 6960 6961 6962 | if( pCur->eState==CURSOR_FAULT ){ assert( pCur->skipNext!=SQLITE_OK ); return pCur->skipNext; } assert( cursorHoldsMutex(pCur) ); | | | 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 | if( pCur->eState==CURSOR_FAULT ){ assert( pCur->skipNext!=SQLITE_OK ); return pCur->skipNext; } assert( cursorHoldsMutex(pCur) ); assert( (pCur->curFlags & BTCF_WriteFlag)!=0 && pBt->inTransaction==TRANS_WRITE && (pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); /* Assert that the caller has been consistent. If this cursor was opened ** expecting an index b-tree, then the caller should be inserting blob ** keys with no associated data. If the cursor was opened expecting an ** intkey table, the caller should be inserting integer keys with a |
︙ | ︙ | |||
6989 6990 6991 6992 6993 6994 6995 | /* If this is an insert into a table b-tree, invalidate any incrblob ** cursors open on the row being replaced */ invalidateIncrblobCursors(p, nKey, 0); /* If the cursor is currently on the last row and we are appending a ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto() ** call */ | | | 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 | /* If this is an insert into a table b-tree, invalidate any incrblob ** cursors open on the row being replaced */ invalidateIncrblobCursors(p, nKey, 0); /* If the cursor is currently on the last row and we are appending a ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto() ** call */ if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0 && pCur->info.nKey==nKey-1 ){ loc = -1; } } if( !loc ){ rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc); if( rc ) return rc; |
︙ | ︙ | |||
7042 7043 7044 7045 7046 7047 7048 | assert( pPage->leaf ); } insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); /* If no error has occurred and pPage has an overflow cell, call balance() ** to redistribute the cells within the tree. Since balance() may move | | | | 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 | assert( pPage->leaf ); } insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); /* If no error has occurred and pPage has an overflow cell, call balance() ** to redistribute the cells within the tree. Since balance() may move ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey ** variables. ** ** Previous versions of SQLite called moveToRoot() to move the cursor ** back to the root page as balance() used to invalidate the contents ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, ** set the cursor state to "invalid". This makes common insert operations ** slightly faster. ** ** There is a subtle but important optimization here too. When inserting ** multiple records into an intkey b-tree using a single cursor (as can ** happen while processing an "INSERT INTO ... SELECT" statement), it ** is advantageous to leave the cursor pointing to the last entry in ** the b-tree if possible. If the cursor is left pointing to the last ** entry in the table, and the next row inserted has an integer key ** larger than the largest existing key, it is possible to insert the ** row without seeking the cursor. This can be a big performance boost. */ pCur->info.nSize = 0; if( rc==SQLITE_OK && pPage->nOverflow ){ pCur->curFlags &= ~(BTCF_ValidNKey); rc = balance(pCur); /* Must make sure nOverflow is reset to zero even if the balance() ** fails. Internal data structure corruption will result otherwise. ** Also, set the cursor state to invalid. This stops saveCursorPosition() ** from trying to save the current position of the cursor. */ pCur->apPage[pCur->iPage]->nOverflow = 0; |
︙ | ︙ | |||
7094 7095 7096 7097 7098 7099 7100 | unsigned char *pCell; /* Pointer to cell to delete */ int iCellIdx; /* Index of cell to delete */ int iCellDepth; /* Depth of node containing pCell */ assert( cursorHoldsMutex(pCur) ); assert( pBt->inTransaction==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); | | | 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 | unsigned char *pCell; /* Pointer to cell to delete */ int iCellIdx; /* Index of cell to delete */ int iCellDepth; /* Depth of node containing pCell */ assert( cursorHoldsMutex(pCur) ); assert( pBt->inTransaction==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( pCur->curFlags & BTCF_WriteFlag ); assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); assert( !hasReadConflicts(p, pCur->pgnoRoot) ); if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell) || NEVER(pCur->eState!=CURSOR_VALID) ){ return SQLITE_ERROR; /* Something has gone awry. */ |
︙ | ︙ | |||
8407 8408 8409 8410 8411 8412 8413 | ** parameters that attempt to write past the end of the existing data, ** no modifications are made and SQLITE_CORRUPT is returned. */ int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ int rc; assert( cursorHoldsMutex(pCsr) ); assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); | | | 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 | ** parameters that attempt to write past the end of the existing data, ** no modifications are made and SQLITE_CORRUPT is returned. */ int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ int rc; assert( cursorHoldsMutex(pCsr) ); assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); assert( pCsr->curFlags & BTCF_Incrblob ); rc = restoreCursorPosition(pCsr); if( rc!=SQLITE_OK ){ return rc; } assert( pCsr->eState!=CURSOR_REQUIRESEEK ); if( pCsr->eState!=CURSOR_VALID ){ |
︙ | ︙ | |||
8436 8437 8438 8439 8440 8441 8442 | /* Check some assumptions: ** (a) the cursor is open for writing, ** (b) there is a read/write transaction open, ** (c) the connection holds a write-lock on the table (if required), ** (d) there are no conflicting read-locks, and ** (e) the cursor points at a valid row of an intKey table. */ | | < < | < < < < < | < < < | | 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 | /* Check some assumptions: ** (a) the cursor is open for writing, ** (b) there is a read/write transaction open, ** (c) the connection holds a write-lock on the table (if required), ** (d) there are no conflicting read-locks, and ** (e) the cursor points at a valid row of an intKey table. */ if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ return SQLITE_READONLY; } assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 && pCsr->pBt->inTransaction==TRANS_WRITE ); assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); assert( pCsr->apPage[pCsr->iPage]->intKey ); return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); } /* ** Mark this cursor as an incremental blob cursor. */ void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ pCur->curFlags |= BTCF_Incrblob; } #endif /* ** Set both the "read version" (single byte at byte offset 18) and ** "write version" (single byte at byte offset 19) fields in the database ** header to iVersion. |
︙ | ︙ |
Changes to src/btree.h.
︙ | ︙ | |||
186 187 188 189 190 191 192 | int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); struct Pager *sqlite3BtreePager(Btree*); int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); | | | 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); struct Pager *sqlite3BtreePager(Btree*); int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); void sqlite3BtreeIncrblobCursor(BtCursor *); void sqlite3BtreeClearCursor(BtCursor *); int sqlite3BtreeSetVersion(Btree *pBt, int iVersion); void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask); #ifndef NDEBUG int sqlite3BtreeCursorIsValid(BtCursor*); #endif |
︙ | ︙ |
Changes to src/btreeInt.h.
︙ | ︙ | |||
492 493 494 495 496 497 498 | ** found at self->pBt->mutex. */ struct BtCursor { Btree *pBtree; /* The Btree to which this cursor belongs */ BtShared *pBt; /* The BtShared this cursor points to */ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ | < < < | | > > | < < < < < > > > > > > > > > | 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 | ** found at self->pBt->mutex. */ struct BtCursor { Btree *pBtree; /* The Btree to which this cursor belongs */ BtShared *pBt; /* The BtShared this cursor points to */ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ Pgno *aOverflow; /* Cache of overflow page locations */ CellInfo info; /* A parse of the cell we are pointing at */ i64 nKey; /* Size of pKey, or last integer key */ void *pKey; /* Saved key that was cursor last known position */ Pgno pgnoRoot; /* The root page of this tree */ int nOvflAlloc; /* Allocated size of aOverflow[] array */ int skipNext; /* Prev() is noop if negative. Next() is noop if positive */ u8 curFlags; /* zero or more BTCF_* flags defined below */ u8 eState; /* One of the CURSOR_XXX constants (see below) */ u8 hints; /* As configured by CursorSetHints() */ i16 iPage; /* Index of current page in apPage */ u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */ MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */ }; /* ** Legal values for BtCursor.curFlags */ #define BTCF_WriteFlag 0x01 /* True if a write cursor */ #define BTCF_ValidNKey 0x02 /* True if info.nKey is valid */ #define BTCF_ValidOvfl 0x04 /* True if aOverflow is valid */ #define BTCF_AtLast 0x08 /* Cursor is pointing ot the last entry */ #define BTCF_Incrblob 0x10 /* True if an incremental I/O handle */ /* ** Potential values for BtCursor.eState. ** ** CURSOR_INVALID: ** Cursor does not point to a valid entry. This can happen (for example) ** because the table is empty or because BtreeCursorFirst() has not been ** called. |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
2676 2677 2678 2679 2680 2681 2682 | ** records into the sorter. */ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); regRecord = sqlite3GetTempReg(pParse); sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); | | | 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 | ** records into the sorter. */ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); regRecord = sqlite3GetTempReg(pParse); sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, (char *)pKey, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
747 748 749 750 751 752 753 | if( aRegIdx!=0 && aRegIdx[i]==0 ) continue; if( pIdx==pPk ) continue; VdbeModuleComment((v, "GenRowIdxDel for %s", pIdx->zName)); r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 1, &iPartIdxLabel, pPrior, r1); sqlite3VdbeAddOp3(v, OP_IdxDelete, iIdxCur+i, r1, pIdx->uniqNotNull ? pIdx->nKeyCol : pIdx->nColumn); | | > | | 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 | if( aRegIdx!=0 && aRegIdx[i]==0 ) continue; if( pIdx==pPk ) continue; VdbeModuleComment((v, "GenRowIdxDel for %s", pIdx->zName)); r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 1, &iPartIdxLabel, pPrior, r1); sqlite3VdbeAddOp3(v, OP_IdxDelete, iIdxCur+i, r1, pIdx->uniqNotNull ? pIdx->nKeyCol : pIdx->nColumn); sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); pPrior = pIdx; } } /* ** Generate code that will assemble an index key and stores it in register ** regOut. The key with be for index pIdx which is an index on pTab. ** iCur is the index of a cursor open on the pTab table and pointing to ** the entry that needs indexing. If pTab is a WITHOUT ROWID table, then ** iCur must be the cursor of the PRIMARY KEY index. ** ** Return a register number which is the first in a block of ** registers that holds the elements of the index key. The ** block of registers has already been deallocated by the time ** this routine returns. ** ** If *piPartIdxLabel is not NULL, fill it in with a label and jump ** to that label if pIdx is a partial index that should be skipped. ** The label should be resolved using sqlite3ResolvePartIdxLabel(). ** A partial index should be skipped if its WHERE clause evaluates ** to false or null. If pIdx is not a partial index, *piPartIdxLabel ** will be set to zero which is an empty label that is ignored by ** sqlite3ResolvePartIdxLabel(). ** ** The pPrior and regPrior parameters are used to implement a cache to ** avoid unnecessary register loads. If pPrior is not NULL, then it is ** a pointer to a different index for which an index key has just been ** computed into register regPrior. If the current pIdx index is generating ** its key into the same sequence of registers and if pPrior and pIdx share ** a column in common, then the register corresponding to that column already |
︙ | ︙ | |||
802 803 804 805 806 807 808 809 810 811 812 813 814 815 | int regBase; int nCol; if( piPartIdxLabel ){ if( pIdx->pPartIdxWhere ){ *piPartIdxLabel = sqlite3VdbeMakeLabel(v); pParse->iPartIdxTab = iDataCur; sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, *piPartIdxLabel, SQLITE_JUMPIFNULL); }else{ *piPartIdxLabel = 0; } } nCol = (prefixOnly && pIdx->uniqNotNull) ? pIdx->nKeyCol : pIdx->nColumn; | > | 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 | int regBase; int nCol; if( piPartIdxLabel ){ if( pIdx->pPartIdxWhere ){ *piPartIdxLabel = sqlite3VdbeMakeLabel(v); pParse->iPartIdxTab = iDataCur; sqlite3ExprCachePush(pParse); sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, *piPartIdxLabel, SQLITE_JUMPIFNULL); }else{ *piPartIdxLabel = 0; } } nCol = (prefixOnly && pIdx->uniqNotNull) ? pIdx->nKeyCol : pIdx->nColumn; |
︙ | ︙ | |||
829 830 831 832 833 834 835 | } if( regOut ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regOut); } sqlite3ReleaseTempRange(pParse, regBase, nCol); return regBase; } | > > > > > > > > > > > > | 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 | } if( regOut ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regOut); } sqlite3ReleaseTempRange(pParse, regBase, nCol); return regBase; } /* ** If a prior call to sqlite3GenerateIndexKey() generated a jump-over label ** because it was a partial index, then this routine should be called to ** resolve that label. */ void sqlite3ResolvePartIdxLabel(Parse *pParse, int iLabel){ if( iLabel ){ sqlite3VdbeResolveLabel(pParse->pVdbe, iLabel); sqlite3ExprCachePop(pParse); } } |
Changes to src/expr.c.
︙ | ︙ | |||
1879 1880 1881 1882 1883 1884 1885 | break; } } if( testAddr>=0 ){ sqlite3VdbeJumpHere(v, testAddr); } | | | 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 | break; } } if( testAddr>=0 ){ sqlite3VdbeJumpHere(v, testAddr); } sqlite3ExprCachePop(pParse); return rReg; } #endif /* SQLITE_OMIT_SUBQUERY */ #ifndef SQLITE_OMIT_SUBQUERY /* |
︙ | ︙ | |||
2014 2015 2016 2017 2018 2019 2020 | /* The OP_Found at the top of this branch jumps here when true, ** causing the overall IN expression evaluation to fall through. */ sqlite3VdbeJumpHere(v, j1); } } sqlite3ReleaseTempReg(pParse, r1); | | | 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 | /* The OP_Found at the top of this branch jumps here when true, ** causing the overall IN expression evaluation to fall through. */ sqlite3VdbeJumpHere(v, j1); } } sqlite3ReleaseTempReg(pParse, r1); sqlite3ExprCachePop(pParse); VdbeComment((v, "end IN expr")); } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** Duplicate an 8-byte value */ |
︙ | ︙ | |||
2197 2198 2199 2200 2201 2202 2203 | printf("PUSH to %d\n", pParse->iCacheLevel); } #endif } /* ** Remove from the column cache any entries that were added since the | | | | < | | | 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 | printf("PUSH to %d\n", pParse->iCacheLevel); } #endif } /* ** Remove from the column cache any entries that were added since the ** the previous sqlite3ExprCachePush operation. In other words, restore ** the cache to the state it was in prior the most recent Push. */ void sqlite3ExprCachePop(Parse *pParse){ int i; struct yColCache *p; assert( pParse->iCacheLevel>=1 ); pParse->iCacheLevel--; #ifdef SQLITE_DEBUG if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ printf("POP to %d\n", pParse->iCacheLevel); } #endif for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ if( p->iReg && p->iLevel>pParse->iCacheLevel ){ |
︙ | ︙ | |||
2683 2684 2685 2686 2687 2688 2689 | sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); for(i=1; i<nFarg; i++){ sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); VdbeCoverage(v); sqlite3ExprCacheRemove(pParse, target, 1); sqlite3ExprCachePush(pParse); sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); | | | 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 | sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); for(i=1; i<nFarg; i++){ sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); VdbeCoverage(v); sqlite3ExprCacheRemove(pParse, target, 1); sqlite3ExprCachePush(pParse); sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); sqlite3ExprCachePop(pParse); } sqlite3VdbeResolveLabel(v, endCoalesce); break; } /* The UNLIKELY() function is a no-op. The result is the value ** of the first argument. |
︙ | ︙ | |||
2737 2738 2739 2740 2741 2742 2743 | pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); } } sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ sqlite3ExprCodeExprList(pParse, pFarg, r1, SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); | | | 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 | pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); } } sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ sqlite3ExprCodeExprList(pParse, pFarg, r1, SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ }else{ r1 = 0; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Possibly overload the function if the first argument is ** a virtual table column. ** |
︙ | ︙ | |||
2957 2958 2959 2960 2961 2962 2963 | } nextCase = sqlite3VdbeMakeLabel(v); testcase( pTest->op==TK_COLUMN ); sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); | | | | 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 | } nextCase = sqlite3VdbeMakeLabel(v); testcase( pTest->op==TK_COLUMN ); sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); sqlite3ExprCachePop(pParse); sqlite3VdbeResolveLabel(v, nextCase); } if( (nExpr&1)!=0 ){ sqlite3ExprCachePush(pParse); sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); sqlite3ExprCachePop(pParse); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, target); } assert( db->mallocFailed || pParse->nErr>0 || pParse->iCacheLevel==iCacheLevel ); sqlite3VdbeResolveLabel(v, endLabel); break; |
︙ | ︙ | |||
3542 3543 3544 3545 3546 3547 3548 | case TK_AND: { int d2 = sqlite3VdbeMakeLabel(v); testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); sqlite3ExprCachePush(pParse); sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); sqlite3VdbeResolveLabel(v, d2); | | | | 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 | case TK_AND: { int d2 = sqlite3VdbeMakeLabel(v); testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); sqlite3ExprCachePush(pParse); sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); sqlite3VdbeResolveLabel(v, d2); sqlite3ExprCachePop(pParse); break; } case TK_OR: { testcase( jumpIfNull==0 ); sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); sqlite3ExprCachePush(pParse); sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); sqlite3ExprCachePop(pParse); break; } case TK_NOT: { testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); break; } |
︙ | ︙ | |||
3696 3697 3698 3699 3700 3701 3702 | switch( pExpr->op ){ case TK_AND: { testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); sqlite3ExprCachePush(pParse); sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); | | | | 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 | switch( pExpr->op ){ case TK_AND: { testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); sqlite3ExprCachePush(pParse); sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); sqlite3ExprCachePop(pParse); break; } case TK_OR: { int d2 = sqlite3VdbeMakeLabel(v); testcase( jumpIfNull==0 ); sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); sqlite3ExprCachePush(pParse); sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); sqlite3VdbeResolveLabel(v, d2); sqlite3ExprCachePop(pParse); break; } case TK_NOT: { testcase( jumpIfNull==0 ); sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); break; } |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 | ** } */ case SQLITE_TESTCTRL_ALWAYS: { int x = va_arg(ap,int); rc = ALWAYS(x); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) ** ** Set the nReserve size to N for the main database on the database ** connection db. */ case SQLITE_TESTCTRL_RESERVE: { | > > > > > > > > > > > > > > > > | 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 | ** } */ case SQLITE_TESTCTRL_ALWAYS: { int x = va_arg(ap,int); rc = ALWAYS(x); break; } /* ** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER); ** ** The integer returned reveals the byte-order of the computer on which ** SQLite is running: ** ** 1 big-endian, determined at run-time ** 10 little-endian, determined at run-time ** 432101 big-endian, determined at compile-time ** 123410 little-endian, determined at compile-time */ case SQLITE_TESTCTRL_BYTEORDER: { rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN; break; } /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) ** ** Set the nReserve size to N for the main database on the database ** connection db. */ case SQLITE_TESTCTRL_RESERVE: { |
︙ | ︙ |
Changes to src/pager.c.
︙ | ︙ | |||
1620 1621 1622 1623 1624 1625 1626 | u32 cksum = 0; /* Checksum of string zMaster */ assert( pPager->setMaster==0 ); assert( !pagerUseWal(pPager) ); if( !zMaster || pPager->journalMode==PAGER_JOURNALMODE_MEMORY | | < | 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 | u32 cksum = 0; /* Checksum of string zMaster */ assert( pPager->setMaster==0 ); assert( !pagerUseWal(pPager) ); if( !zMaster || pPager->journalMode==PAGER_JOURNALMODE_MEMORY || !isOpen(pPager->jfd) ){ return SQLITE_OK; } pPager->setMaster = 1; assert( pPager->journalHdr <= pPager->journalOff ); /* Calculate the length in bytes and the checksum of zMaster */ for(nMaster=0; zMaster[nMaster]; nMaster++){ cksum += zMaster[nMaster]; } |
︙ | ︙ |
Changes to src/pragma.c.
︙ | ︙ | |||
1924 1925 1926 1927 1928 1929 1930 | sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, pIdx->zName, P4_TRANSIENT); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); jmp4 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v); sqlite3VdbeAddOp0(v, OP_Halt); sqlite3VdbeJumpHere(v, jmp4); sqlite3VdbeJumpHere(v, jmp2); | | | 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 | sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, pIdx->zName, P4_TRANSIENT); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); jmp4 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v); sqlite3VdbeAddOp0(v, OP_Halt); sqlite3VdbeJumpHere(v, jmp4); sqlite3VdbeJumpHere(v, jmp2); sqlite3ResolvePartIdxLabel(pParse, jmp3); } sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v); sqlite3VdbeJumpHere(v, loopTop-1); #ifndef SQLITE_OMIT_BTREECOUNT sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, "wrong # of entries in index ", P4_STATIC); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ |
︙ | ︙ |
Changes to src/rowset.c.
︙ | ︙ | |||
108 109 110 111 112 113 114 | struct RowSetChunk *pChunk; /* List of all chunk allocations */ sqlite3 *db; /* The database connection */ struct RowSetEntry *pEntry; /* List of entries using pRight */ struct RowSetEntry *pLast; /* Last entry on the pEntry list */ struct RowSetEntry *pFresh; /* Source of new entry objects */ struct RowSetEntry *pForest; /* List of binary trees of entries */ u16 nFresh; /* Number of objects on pFresh */ | | | | 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | struct RowSetChunk *pChunk; /* List of all chunk allocations */ sqlite3 *db; /* The database connection */ struct RowSetEntry *pEntry; /* List of entries using pRight */ struct RowSetEntry *pLast; /* Last entry on the pEntry list */ struct RowSetEntry *pFresh; /* Source of new entry objects */ struct RowSetEntry *pForest; /* List of binary trees of entries */ u16 nFresh; /* Number of objects on pFresh */ u16 rsFlags; /* Various flags */ int iBatch; /* Current insert batch */ }; /* ** Allowed values for RowSet.rsFlags */ #define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */ #define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */ |
︙ | ︙ | |||
443 444 445 446 447 448 449 | ** Check to see if element iRowid was inserted into the rowset as ** part of any insert batch prior to iBatch. Return 1 or 0. ** ** If this is the first test of a new batch and if there exist entires ** on pRowSet->pEntry, then sort those entires into the forest at ** pRowSet->pForest so that they can be tested. */ | | | 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 | ** Check to see if element iRowid was inserted into the rowset as ** part of any insert batch prior to iBatch. Return 1 or 0. ** ** If this is the first test of a new batch and if there exist entires ** on pRowSet->pEntry, then sort those entires into the forest at ** pRowSet->pForest so that they can be tested. */ int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){ struct RowSetEntry *p, *pTree; /* This routine is never called after sqlite3RowSetNext() */ assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 ); /* Sort entries into the forest on the first test of a new batch */ |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 | { "pending_byte", SQLITE_TESTCTRL_PENDING_BYTE }, { "assert", SQLITE_TESTCTRL_ASSERT }, { "always", SQLITE_TESTCTRL_ALWAYS }, { "reserve", SQLITE_TESTCTRL_RESERVE }, { "optimizations", SQLITE_TESTCTRL_OPTIMIZATIONS }, { "iskeyword", SQLITE_TESTCTRL_ISKEYWORD }, { "scratchmalloc", SQLITE_TESTCTRL_SCRATCHMALLOC }, }; int testctrl = -1; int rc = 0; int i, n; open_db(p, 0); /* convert testctrl text option to value. allow any unique prefix | > | 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 | { "pending_byte", SQLITE_TESTCTRL_PENDING_BYTE }, { "assert", SQLITE_TESTCTRL_ASSERT }, { "always", SQLITE_TESTCTRL_ALWAYS }, { "reserve", SQLITE_TESTCTRL_RESERVE }, { "optimizations", SQLITE_TESTCTRL_OPTIMIZATIONS }, { "iskeyword", SQLITE_TESTCTRL_ISKEYWORD }, { "scratchmalloc", SQLITE_TESTCTRL_SCRATCHMALLOC }, { "byteorder", SQLITE_TESTCTRL_BYTEORDER }, }; int testctrl = -1; int rc = 0; int i, n; open_db(p, 0); /* convert testctrl text option to value. allow any unique prefix |
︙ | ︙ | |||
3063 3064 3065 3066 3067 3068 3069 | } else { fprintf(stderr,"Error: testctrl %s takes a single int option\n", azArg[1]); } break; /* sqlite3_test_control(int) */ | | | > | 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 | } else { fprintf(stderr,"Error: testctrl %s takes a single int option\n", azArg[1]); } break; /* sqlite3_test_control(int) */ case SQLITE_TESTCTRL_PRNG_SAVE: case SQLITE_TESTCTRL_PRNG_RESTORE: case SQLITE_TESTCTRL_PRNG_RESET: case SQLITE_TESTCTRL_BYTEORDER: if( nArg==2 ){ rc = sqlite3_test_control(testctrl); fprintf(p->out, "%d (0x%08x)\n", rc, rc); } else { fprintf(stderr,"Error: testctrl %s takes no options\n", azArg[1]); } break; |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
6114 6115 6116 6117 6118 6119 6120 | #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 #define SQLITE_TESTCTRL_VDBE_COVERAGE 21 | > | | 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 | #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 #define SQLITE_TESTCTRL_VDBE_COVERAGE 21 #define SQLITE_TESTCTRL_BYTEORDER 22 #define SQLITE_TESTCTRL_LAST 22 /* ** CAPI3REF: SQLite Runtime Status ** ** ^This interface is used to retrieve runtime status information ** about the performance of SQLite, and optionally to reset various ** highwater marks. ^The first argument is an integer code for |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
542 543 544 545 546 547 548 | ** ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 */ typedef INT16_TYPE LogEst; /* ** Macros to determine whether the machine is big or little endian, | > > > > > | | | > > > | > > > > > > > > > | | 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 | ** ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 */ typedef INT16_TYPE LogEst; /* ** Macros to determine whether the machine is big or little endian, ** and whether or not that determination is run-time or compile-time. ** ** For best performance, an attempt is made to guess at the byte-order ** using C-preprocessor macros. If that is unsuccessful, or if ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined ** at run-time. */ #ifdef SQLITE_AMALGAMATION const int sqlite3one = 1; #else extern const int sqlite3one; #endif #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) # define SQLITE_BYTEORDER 1234 # define SQLITE_BIGENDIAN 0 # define SQLITE_LITTLEENDIAN 1 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE #endif #if (defined(sparc) || defined(__ppc__)) \ && !defined(SQLITE_RUNTIME_BYTEORDER) # define SQLITE_BYTEORDER 4321 # define SQLITE_BIGENDIAN 1 # define SQLITE_LITTLEENDIAN 0 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE #endif #if !defined(SQLITE_BYTEORDER) # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) #endif /* ** Constants for the largest and smallest possible 64-bit signed integers. ** These macros are designed to work correctly on both 32-bit and 64-bit ** compilers. */ |
︙ | ︙ | |||
3027 3028 3029 3030 3031 3032 3033 | void sqlite3BitvecDestroy(Bitvec*); u32 sqlite3BitvecSize(Bitvec*); int sqlite3BitvecBuiltinTest(int,int*); RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); void sqlite3RowSetClear(RowSet*); void sqlite3RowSetInsert(RowSet*, i64); | | | 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 | void sqlite3BitvecDestroy(Bitvec*); u32 sqlite3BitvecSize(Bitvec*); int sqlite3BitvecBuiltinTest(int,int*); RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); void sqlite3RowSetClear(RowSet*); void sqlite3RowSetInsert(RowSet*, i64); int sqlite3RowSetTest(RowSet*, int iBatch, i64); int sqlite3RowSetNext(RowSet*, i64*); void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) int sqlite3ViewGetColumnNames(Parse*,Table*); #else |
︙ | ︙ | |||
3091 3092 3093 3094 3095 3096 3097 | int sqlite3WhereBreakLabel(WhereInfo*); int sqlite3WhereOkOnePass(WhereInfo*, int*); int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); void sqlite3ExprCodeMove(Parse*, int, int, int); void sqlite3ExprCacheStore(Parse*, int, int, int); void sqlite3ExprCachePush(Parse*); | | | 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 | int sqlite3WhereBreakLabel(WhereInfo*); int sqlite3WhereOkOnePass(WhereInfo*, int*); int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); void sqlite3ExprCodeMove(Parse*, int, int, int); void sqlite3ExprCacheStore(Parse*, int, int, int); void sqlite3ExprCachePush(Parse*); void sqlite3ExprCachePop(Parse*); void sqlite3ExprCacheRemove(Parse*, int, int); void sqlite3ExprCacheClear(Parse*); void sqlite3ExprCacheAffinityChange(Parse*, int, int); void sqlite3ExprCode(Parse*, Expr*, int); void sqlite3ExprCodeFactorable(Parse*, Expr*, int); void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); int sqlite3ExprCodeTemp(Parse*, Expr*, int*); |
︙ | ︙ | |||
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 | int sqlite3ExprIsInteger(Expr*, int*); int sqlite3ExprCanBeNull(const Expr*); int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); int sqlite3IsRowid(const char*); void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, u8,u8,int,int*); void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); void sqlite3BeginWriteOperation(Parse*, int, int); void sqlite3MultiWrite(Parse*); void sqlite3MayAbort(Parse*); | > | 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 | int sqlite3ExprIsInteger(Expr*, int*); int sqlite3ExprCanBeNull(const Expr*); int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); int sqlite3IsRowid(const char*); void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); void sqlite3ResolvePartIdxLabel(Parse*,int); void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, u8,u8,int,int*); void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); void sqlite3BeginWriteOperation(Parse*, int, int); void sqlite3MultiWrite(Parse*); void sqlite3MayAbort(Parse*); |
︙ | ︙ |
Changes to src/test_btree.c.
︙ | ︙ | |||
47 48 49 50 51 52 53 | */ void sqlite3BtreeCursorList(Btree *p){ #ifdef SQLITE_DEBUG BtCursor *pCur; BtShared *pBt = p->pBt; for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ MemPage *pPage = pCur->apPage[pCur->iPage]; | | | 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | */ void sqlite3BtreeCursorList(Btree *p){ #ifdef SQLITE_DEBUG BtCursor *pCur; BtShared *pBt = p->pBt; for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ MemPage *pPage = pCur->apPage[pCur->iPage]; char *zMode = (pCur->curFlags & BTCF_WriteFlag) ? "rw" : "ro"; sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n", pCur, pCur->pgnoRoot, zMode, pPage ? pPage->pgno : 0, pCur->aiIdx[pCur->iPage], (pCur->eState==CURSOR_VALID) ? "" : " eof" ); } #endif |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
5284 5285 5286 5287 5288 5289 5290 | sqlite3VdbeMemSetRowSet(pIn1); if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; } assert( pOp->p4type==P4_INT32 ); assert( iSet==-1 || iSet>=0 ); if( iSet ){ | | < < | 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 | sqlite3VdbeMemSetRowSet(pIn1); if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; } assert( pOp->p4type==P4_INT32 ); assert( iSet==-1 || iSet>=0 ); if( iSet ){ exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); VdbeBranchTaken(exists!=0,2); if( exists ){ pc = pOp->p2 - 1; break; } } if( iSet>=0 ){ |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
273 274 275 276 277 278 279 | ** a prior call to sqlite3VdbeMakeLabel(). */ void sqlite3VdbeResolveLabel(Vdbe *v, int x){ Parse *p = v->pParse; int j = -1-x; assert( v->magic==VDBE_MAGIC_INIT ); assert( j<p->nLabel ); | | | 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 | ** a prior call to sqlite3VdbeMakeLabel(). */ void sqlite3VdbeResolveLabel(Vdbe *v, int x){ Parse *p = v->pParse; int j = -1-x; assert( v->magic==VDBE_MAGIC_INIT ); assert( j<p->nLabel ); if( ALWAYS(j>=0) && p->aLabel ){ p->aLabel[j] = v->nOp; } p->iFixedOp = v->nOp - 1; } /* ** Mark the VDBE as one that can only be run one time. |
︙ | ︙ |
Changes to src/vdbeblob.c.
︙ | ︙ | |||
75 76 77 78 79 80 81 | rc = SQLITE_ERROR; sqlite3_finalize(p->pStmt); p->pStmt = 0; }else{ p->iOffset = pC->aType[p->iCol + pC->nField]; p->nByte = sqlite3VdbeSerialTypeLen(type); p->pCsr = pC->pCursor; | | < < | 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | rc = SQLITE_ERROR; sqlite3_finalize(p->pStmt); p->pStmt = 0; }else{ p->iOffset = pC->aType[p->iCol + pC->nField]; p->nByte = sqlite3VdbeSerialTypeLen(type); p->pCsr = pC->pCursor; sqlite3BtreeIncrblobCursor(p->pCsr); } } if( rc==SQLITE_ROW ){ rc = SQLITE_OK; }else if( p->pStmt ){ rc = sqlite3_finalize(p->pStmt); |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
2837 2838 2839 2840 2841 2842 2843 | disableTerm(pLevel, pLoop->aLTerm[j]); } } pLevel->op = OP_VNext; pLevel->p1 = iCur; pLevel->p2 = sqlite3VdbeCurrentAddr(v); sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); | | | 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 | disableTerm(pLevel, pLoop->aLTerm[j]); } } pLevel->op = OP_VNext; pLevel->p1 = iCur; pLevel->p2 = sqlite3VdbeCurrentAddr(v); sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); sqlite3ExprCachePop(pParse); }else #endif /* SQLITE_OMIT_VIRTUALTABLE */ if( (pLoop->wsFlags & WHERE_IPK)!=0 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 ){ /* Case 2: We can directly reference a single row using an |
︙ | ︙ | |||
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 | WhereLoop *p = pWInfo->pLoops; pWInfo->pLoops = p->pNextLoop; whereLoopDelete(db, p); } sqlite3DbFree(db, pWInfo); } } /* ** Insert or replace a WhereLoop entry using the template supplied. ** ** An existing WhereLoop entry might be overwritten if the new template ** is better and has fewer dependencies. Or the template will be ignored ** and no insert will occur if an existing WhereLoop is faster and has ** fewer dependencies than the template. Otherwise a new WhereLoop is ** added based on the template. ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | < < | | 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 | WhereLoop *p = pWInfo->pLoops; pWInfo->pLoops = p->pNextLoop; whereLoopDelete(db, p); } sqlite3DbFree(db, pWInfo); } } /* ** Return TRUE if the set of WHERE clause terms used by pA is a proper ** subset of the WHERE clause terms used by pB. */ static int whereLoopProperSubset(const WhereLoop *pA, const WhereLoop *pB){ int i, j; assert( pA->nLTerm<pB->nLTerm ); /* Checked by calling function */ for(j=0, i=pA->nLTerm-1; i>=0 && j>=0; i--){ for(j=pB->nLTerm-1; j>=0; j--){ if( pB->aLTerm[j]==pA->aLTerm[i] ) break; } } return j>=0; } /* ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so ** that: ** ** (1) pTemplate costs less than any other WhereLoops that are a proper ** subset of pTemplate ** ** (2) pTemplate costs more than any other WhereLoops for which pTemplate ** is a proper subset. ** ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer ** WHERE clause terms than Y and that every WHERE clause term used by X is ** also used by Y. */ static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; for(; p; p=p->pNextLoop){ if( p->iTab!=pTemplate->iTab ) continue; if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; if( p->nLTerm<pTemplate->nLTerm && (p->rRun<pTemplate->rRun || (p->rRun==pTemplate->rRun && p->nOut<=pTemplate->nOut)) && whereLoopProperSubset(p, pTemplate) ){ pTemplate->rRun = p->rRun; pTemplate->nOut = p->nOut - 1; }else if( p->nLTerm>pTemplate->nLTerm && (p->rRun>pTemplate->rRun || (p->rRun==pTemplate->rRun && p->nOut>=pTemplate->nOut)) && whereLoopProperSubset(pTemplate, p) ){ pTemplate->rRun = p->rRun; pTemplate->nOut = p->nOut + 1; } } } /* ** Search the list of WhereLoops in *ppPrev looking for one that can be ** supplanted by pTemplate. ** ** Return NULL if the WhereLoop list contains an entry that can supplant ** pTemplate, in other words if pTemplate does not belong on the list. ** ** If pX is a WhereLoop that pTemplate can supplant, then return the ** link that points to pX. ** ** If pTemplate cannot supplant any existing element of the list but needs ** to be added to the list, then return a pointer to the tail of the list. */ static WhereLoop **whereLoopFindLesser( WhereLoop **ppPrev, const WhereLoop *pTemplate ){ WhereLoop *p; for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ /* If either the iTab or iSortIdx values for two WhereLoop are different ** then those WhereLoops need to be considered separately. Neither is ** a candidate to replace the other. */ continue; } /* In the current implementation, the rSetup value is either zero ** or the cost of building an automatic index (NlogN) and the NlogN ** is the same for compatible WhereLoops. */ assert( p->rSetup==0 || pTemplate->rSetup==0 || p->rSetup==pTemplate->rSetup ); /* whereLoopAddBtree() always generates and inserts the automatic index ** case first. Hence compatible candidate WhereLoops never have a larger ** rSetup. Call this SETUP-INVARIANT */ assert( p->rSetup>=pTemplate->rSetup ); /* If existing WhereLoop p is better than pTemplate, pTemplate can be ** discarded. WhereLoop p is better if: ** (1) p has no more dependencies than pTemplate, and ** (2) p has an equal or lower cost than pTemplate */ if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ && p->rSetup<=pTemplate->rSetup /* (2a) */ && p->rRun<=pTemplate->rRun /* (2b) */ && p->nOut<=pTemplate->nOut /* (2c) */ ){ return 0; /* Discard pTemplate */ } /* If pTemplate is always better than p, then cause p to be overwritten ** with pTemplate. pTemplate is better than p if: ** (1) pTemplate has no more dependences than p, and ** (2) pTemplate has an equal or lower cost than p. */ if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ && p->rRun>=pTemplate->rRun /* (2a) */ && p->nOut>=pTemplate->nOut /* (2b) */ ){ assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ break; /* Cause p to be overwritten by pTemplate */ } } return ppPrev; } /* ** Insert or replace a WhereLoop entry using the template supplied. ** ** An existing WhereLoop entry might be overwritten if the new template ** is better and has fewer dependencies. Or the template will be ignored ** and no insert will occur if an existing WhereLoop is faster and has ** fewer dependencies than the template. Otherwise a new WhereLoop is ** added based on the template. ** ** If pBuilder->pOrSet is not NULL then we care about only the ** prerequisites and rRun and nOut costs of the N best loops. That ** information is gathered in the pBuilder->pOrSet object. This special ** processing mode is used only for OR clause processing. ** ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we ** still might overwrite similar loops with the new template if the ** new template is better. Loops may be overwritten if the following ** conditions are met: ** ** (1) They have the same iTab. ** (2) They have the same iSortIdx. ** (3) The template has same or fewer dependencies than the current loop ** (4) The template has the same or lower cost than the current loop */ static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ WhereLoop **ppPrev, *p; WhereInfo *pWInfo = pBuilder->pWInfo; sqlite3 *db = pWInfo->pParse->db; /* If pBuilder->pOrSet is defined, then only keep track of the costs ** and prereqs. */ if( pBuilder->pOrSet!=0 ){ |
︙ | ︙ | |||
3757 3758 3759 3760 3761 3762 3763 | sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); whereLoopPrint(pTemplate, pBuilder->pWC); } #endif return SQLITE_OK; } | | < | | < < < < | < < > | < | | < | < > | | < < < < < < < < < < < < < < < < | < | | < < < < < < < < < < < < < < < | < > | > > > > > > > > > > > > > > > > > | > > > > < < < < < < < < < < < < | 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 | sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); whereLoopPrint(pTemplate, pBuilder->pWC); } #endif return SQLITE_OK; } /* Look for an existing WhereLoop to replace with pTemplate */ whereLoopAdjustCost(pWInfo->pLoops, pTemplate); ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); if( ppPrev==0 ){ /* There already exists a WhereLoop on the list that is better ** than pTemplate, so just ignore pTemplate */ #if WHERETRACE_ENABLED /* 0x8 */ if( sqlite3WhereTrace & 0x8 ){ sqlite3DebugPrintf("ins-noop: "); whereLoopPrint(pTemplate, pBuilder->pWC); } #endif return SQLITE_OK; }else{ p = *ppPrev; } /* If we reach this point it means that either p[] should be overwritten ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new ** WhereLoop and insert it. */ #if WHERETRACE_ENABLED /* 0x8 */ if( sqlite3WhereTrace & 0x8 ){ if( p!=0 ){ sqlite3DebugPrintf("ins-del: "); whereLoopPrint(p, pBuilder->pWC); } sqlite3DebugPrintf("ins-new: "); whereLoopPrint(pTemplate, pBuilder->pWC); } #endif if( p==0 ){ /* Allocate a new WhereLoop to add to the end of the list */ *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop)); if( p==0 ) return SQLITE_NOMEM; whereLoopInit(p); p->pNextLoop = 0; }else{ /* We will be overwriting WhereLoop p[]. But before we do, first ** go through the rest of the list and delete any other entries besides ** p[] that are also supplated by pTemplate */ WhereLoop **ppTail = &p->pNextLoop; WhereLoop *pToDel; while( *ppTail ){ ppTail = whereLoopFindLesser(ppTail, pTemplate); if( NEVER(ppTail==0) ) break; pToDel = *ppTail; if( pToDel==0 ) break; *ppTail = pToDel->pNextLoop; #if WHERETRACE_ENABLED /* 0x8 */ if( sqlite3WhereTrace & 0x8 ){ sqlite3DebugPrintf("ins-del: "); whereLoopPrint(pToDel, pBuilder->pWC); } #endif whereLoopDelete(db, pToDel); } } whereLoopXfer(db, p, pTemplate); if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ Index *pIndex = p->u.btree.pIndex; if( pIndex && pIndex->tnum==0 ){ p->u.btree.pIndex = 0; } } return SQLITE_OK; } /* ** Adjust the WhereLoop.nOut value downward to account for terms of the ** WHERE clause that reference the loop but which are not used by an ** index. ** |
︙ | ︙ |
Changes to test/alter.test.
︙ | ︙ | |||
870 871 872 873 874 875 876 877 878 | INSERT INTO t16a VALUES('cba',5.5,98,'fizzle'); SELECT * FROM t16a ORDER BY a; } {abc 1.25 99 xyzzy cba 5.5 98 fizzle} do_execsql_test alter-16.2 { ALTER TABLE t16a RENAME TO t16a_rn; SELECT * FROM t16a_rn ORDER BY a; } {abc 1.25 99 xyzzy cba 5.5 98 fizzle} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 | INSERT INTO t16a VALUES('cba',5.5,98,'fizzle'); SELECT * FROM t16a ORDER BY a; } {abc 1.25 99 xyzzy cba 5.5 98 fizzle} do_execsql_test alter-16.2 { ALTER TABLE t16a RENAME TO t16a_rn; SELECT * FROM t16a_rn ORDER BY a; } {abc 1.25 99 xyzzy cba 5.5 98 fizzle} #------------------------------------------------------------------------- # Verify that NULL values into the internal-use-only sqlite_rename_*() # functions do not cause problems. # do_execsql_test alter-17.1 { SELECT sqlite_rename_table('CREATE TABLE xyz(a,b,c)','abc'); } {{CREATE TABLE "abc"(a,b,c)}} do_execsql_test alter-17.2 { SELECT sqlite_rename_table('CREATE TABLE xyz(a,b,c)',NULL); } {{CREATE TABLE "(NULL)"(a,b,c)}} do_execsql_test alter-17.3 { SELECT sqlite_rename_table(NULL,'abc'); } {{}} do_execsql_test alter-17.4 { SELECT sqlite_rename_trigger('CREATE TRIGGER r1 ON xyz WHEN','abc'); } {{CREATE TRIGGER r1 ON "abc" WHEN}} do_execsql_test alter-17.5 { SELECT sqlite_rename_trigger('CREATE TRIGGER r1 ON xyz WHEN',NULL); } {{CREATE TRIGGER r1 ON "(NULL)" WHEN}} do_execsql_test alter-17.6 { SELECT sqlite_rename_trigger(NULL,'abc'); } {{}} do_execsql_test alter-17.7 { SELECT sqlite_rename_parent('CREATE TABLE t1(a REFERENCES "xyzzy")', 'xyzzy','lmnop'); } {{CREATE TABLE t1(a REFERENCES "lmnop")}} do_execsql_test alter-17.8 { SELECT sqlite_rename_parent('CREATE TABLE t1(a REFERENCES "xyzzy")', 'xyzzy',NULL); } {{CREATE TABLE t1(a REFERENCES "(NULL)")}} do_execsql_test alter-17.9 { SELECT sqlite_rename_parent('CREATE TABLE t1(a REFERENCES "xyzzy")', NULL, 'lmnop'); } {{}} do_execsql_test alter-17.10 { SELECT sqlite_rename_parent(NULL,'abc','xyz'); } {{}} finish_test |
Changes to test/func.test.
︙ | ︙ | |||
1297 1298 1299 1300 1301 1302 1303 | do_test func-29.3 { db close sqlite3 db test.db sqlite3_db_status db CACHE_MISS 1 db eval {SELECT typeof(+x) FROM t29 ORDER BY id} } {integer null real blob text} if {[permutation] != "mmap"} { | > | | | | | > | 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 | do_test func-29.3 { db close sqlite3 db test.db sqlite3_db_status db CACHE_MISS 1 db eval {SELECT typeof(+x) FROM t29 ORDER BY id} } {integer null real blob text} if {[permutation] != "mmap"} { ifcapable !direct_read { do_test func-29.4 { set x [lindex [sqlite3_db_status db CACHE_MISS 1] 1] if {$x>100} {set x many} set x } {many} } } do_test func-29.5 { db close sqlite3 db test.db sqlite3_db_status db CACHE_MISS 1 db eval {SELECT sum(length(x)) FROM t29} } {1000009} |
︙ | ︙ |
Changes to test/index6.test.
︙ | ︙ | |||
243 244 245 246 247 248 249 250 251 | do_execsql_test index6-5.0 { CREATE INDEX t3b ON t3(b) WHERE xyzzy.t3.b BETWEEN 5 AND 10; /* ^^^^^-- ignored */ ANALYZE; SELECT count(*) FROM t3 WHERE t3.b BETWEEN 5 AND 10; SELECT stat+0 FROM sqlite_stat1 WHERE idx='t3b'; } {6 6} finish_test | > > > > > > > > > > > > > > > > > > > | 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | do_execsql_test index6-5.0 { CREATE INDEX t3b ON t3(b) WHERE xyzzy.t3.b BETWEEN 5 AND 10; /* ^^^^^-- ignored */ ANALYZE; SELECT count(*) FROM t3 WHERE t3.b BETWEEN 5 AND 10; SELECT stat+0 FROM sqlite_stat1 WHERE idx='t3b'; } {6 6} # Test case for ticket [2ea3e9fe6379fc3f6ce7e090ce483c1a3a80d6c9] from # 2014-04-13: Partial index causes assertion fault on UPDATE OR REPLACE. # do_execsql_test index6-6.0 { CREATE TABLE t6(a,b); CREATE UNIQUE INDEX t6ab ON t1(a,b); CREATE INDEX t6b ON t6(b) WHERE b=1; INSERT INTO t6(a,b) VALUES(123,456); SELECT * FROM t6; } {123 456} do_execsql_test index6-6.1 { UPDATE OR REPLACE t6 SET b=789; SELECT * FROM t6; } {123 789} do_execsql_test index6-6.2 { PRAGMA integrity_check; } {ok} finish_test |
Changes to test/wal.test.
︙ | ︙ | |||
1569 1570 1571 1572 1573 1574 1575 1576 1577 | } [wal_file_size 1 1024] } db close sqlite3_shutdown test_sqlite3_log sqlite3_initialize finish_test | > > > > > > > > > > > > > | 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 | } [wal_file_size 1 1024] } db close sqlite3_shutdown test_sqlite3_log sqlite3_initialize # Make sure PRAGMA journal_mode=WAL works with ATTACHED databases in # all journal modes. # foreach mode {OFF MEMORY PERSIST DELETE TRUNCATE WAL} { delete_file test.db test2.db sqlite3 db test.db do_test wal-25.$mode { db eval "PRAGMA journal_mode=$mode" db eval {ATTACH 'test2.db' AS t2; PRAGMA journal_mode=WAL;} } {wal} db close } finish_test |
Changes to test/whereD.test.
︙ | ︙ | |||
213 214 215 216 217 218 219 220 221 222 | } {3 4 3 4} do_execsql_test 4.7 { SELECT * FROM t44 LEFT JOIN t46 ON a=c WHERE d=4 OR d IS NULL ORDER BY a; } {3 4 3 4} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | } {3 4 3 4} do_execsql_test 4.7 { SELECT * FROM t44 LEFT JOIN t46 ON a=c WHERE d=4 OR d IS NULL ORDER BY a; } {3 4 3 4} # Verify fix of a bug reported on the mailing list by Peter Reid # do_execsql_test 5.1 { DROP TABLE IF EXISTS t; CREATE TABLE t(c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17); CREATE INDEX tc0 ON t(c0); CREATE INDEX tc1 ON t(c1); CREATE INDEX tc2 ON t(c2); CREATE INDEX tc3 ON t(c3); CREATE INDEX tc4 ON t(c4); CREATE INDEX tc5 ON t(c5); CREATE INDEX tc6 ON t(c6); CREATE INDEX tc7 ON t(c7); CREATE INDEX tc8 ON t(c8); CREATE INDEX tc9 ON t(c9); CREATE INDEX tc10 ON t(c10); CREATE INDEX tc11 ON t(c11); CREATE INDEX tc12 ON t(c12); CREATE INDEX tc13 ON t(c13); CREATE INDEX tc14 ON t(c14); CREATE INDEX tc15 ON t(c15); CREATE INDEX tc16 ON t(c16); CREATE INDEX tc17 ON t(c17); INSERT INTO t(c0, c16) VALUES (1,1); SELECT * FROM t WHERE c0=1 or c1=1 or c2=1 or c3=1 or c4=1 or c5=1 or c6=1 or c7=1 or c8=1 or c9=1 or c10=1 or c11=1 or c12=1 or c13=1 or c14=1 or c15=1 or c16=1 or c17=1; } {1 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} 1 {}} do_execsql_test 5.2 { DELETE FROM t; INSERT INTO t(c0,c17) VALUES(1,1); SELECT * FROM t WHERE c0=1 or c1=1 or c2=1 or c3=1 or c4=1 or c5=1 or c6=1 or c7=1 or c8=1 or c9=1 or c10=1 or c11=1 or c12=1 or c13=1 or c14=1 or c15=1 or c16=1 or c17=1; } {1 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} 1} do_execsql_test 5.3 { DELETE FROM t; INSERT INTO t(c0,c15) VALUES(1,1); SELECT * FROM t WHERE c0=1 or c1=1 or c2=1 or c3=1 or c4=1 or c5=1 or c6=1 or c7=1 or c8=1 or c9=1 or c10=1 or c11=1 or c12=1 or c13=1 or c14=1 or c15=1 or c16=1 or c17=1; } {1 {} {} {} {} {} {} {} {} {} {} {} {} {} {} 1 {} {}} finish_test |
Added test/whereH.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | # 2014-03-31 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # Test cases for query planning decisions where one candidate index # covers a proper superset of the WHERE clause terms of another # candidate index. # set testdir [file dirname $argv0] source $testdir/tester.tcl do_execsql_test whereH-1.1 { CREATE TABLE t1(a,b,c,d); CREATE INDEX t1abc ON t1(a,b,c); CREATE INDEX t1bc ON t1(b,c); EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c>=? ORDER BY c; } {/INDEX t1abc /} do_execsql_test whereH-1.2 { EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c>=? ORDER BY c; } {~/TEMP B-TREE FOR ORDER BY/} do_execsql_test whereH-2.1 { DROP TABLE t1; CREATE TABLE t1(a,b,c,d); CREATE INDEX t1bc ON t1(b,c); CREATE INDEX t1abc ON t1(a,b,c); EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c>=? ORDER BY c; } {/INDEX t1abc /} do_execsql_test whereH-2.2 { EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c>=? ORDER BY c; } {~/TEMP B-TREE FOR ORDER BY/} do_execsql_test whereH-3.1 { DROP TABLE t1; CREATE TABLE t1(a,b,c,d,e); CREATE INDEX t1cd ON t1(c,d); CREATE INDEX t1bcd ON t1(b,c,d); CREATE INDEX t1abcd ON t1(a,b,c,d); EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c=? AND d>=? ORDER BY d; } {/INDEX t1abcd /} do_execsql_test whereH-3.2 { EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c=? AND d>=? ORDER BY d; } {~/TEMP B-TREE FOR ORDER BY/} do_execsql_test whereH-4.1 { DROP TABLE t1; CREATE TABLE t1(a,b,c,d,e); CREATE INDEX t1cd ON t1(c,d); CREATE INDEX t1abcd ON t1(a,b,c,d); CREATE INDEX t1bcd ON t1(b,c,d); EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c=? AND d>=? ORDER BY d; } {/INDEX t1abcd /} do_execsql_test whereH-4.2 { EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c=? AND d>=? ORDER BY d; } {~/TEMP B-TREE FOR ORDER BY/} do_execsql_test whereH-5.1 { DROP TABLE t1; CREATE TABLE t1(a,b,c,d,e); CREATE INDEX t1bcd ON t1(b,c,d); CREATE INDEX t1cd ON t1(c,d); CREATE INDEX t1abcd ON t1(a,b,c,d); EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c=? AND d>=? ORDER BY d; } {/INDEX t1abcd /} do_execsql_test whereH-5.2 { EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c=? AND d>=? ORDER BY d; } {~/TEMP B-TREE FOR ORDER BY/} do_execsql_test whereH-6.1 { DROP TABLE t1; CREATE TABLE t1(a,b,c,d,e); CREATE INDEX t1bcd ON t1(b,c,d); CREATE INDEX t1abcd ON t1(a,b,c,d); CREATE INDEX t1cd ON t1(c,d); EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c=? AND d>=? ORDER BY d; } {/INDEX t1abcd /} do_execsql_test whereH-6.2 { EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c=? AND d>=? ORDER BY d; } {~/TEMP B-TREE FOR ORDER BY/} do_execsql_test whereH-7.1 { DROP TABLE t1; CREATE TABLE t1(a,b,c,d,e); CREATE INDEX t1abcd ON t1(a,b,c,d); CREATE INDEX t1bcd ON t1(b,c,d); CREATE INDEX t1cd ON t1(c,d); EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c=? AND d>=? ORDER BY d; } {/INDEX t1abcd /} do_execsql_test whereH-7.2 { EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c=? AND d>=? ORDER BY d; } {~/TEMP B-TREE FOR ORDER BY/} do_execsql_test whereH-8.1 { DROP TABLE t1; CREATE TABLE t1(a,b,c,d,e); CREATE INDEX t1abcd ON t1(a,b,c,d); CREATE INDEX t1cd ON t1(c,d); CREATE INDEX t1bcd ON t1(b,c,d); EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c=? AND d>=? ORDER BY d; } {/INDEX t1abcd /} do_execsql_test whereH-8.2 { EXPLAIN QUERY PLAN SELECT d FROM t1 WHERE a=? AND b=? AND c=? AND d>=? ORDER BY d; } {~/TEMP B-TREE FOR ORDER BY/} finish_test |