/ Check-in [d6b0c392]
Login
SQLite training in Houston TX on 2019-11-05 (details)
Part of the 2019 Tcl Conference

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Enhanced display of register ranges in the auxiliary comments added to EXPLAIN.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: d6b0c39281d0751ecec04d7c19d9d2931d133e8e
User & Date: drh 2013-10-30 00:25:03
Context
2013-10-30
02:28
Add the SQLITE_ENABLE_EXPLAIN_COMMENTS compile-time option to enable extra commentary in the EXPLAIN output. Formerly, this was only available with SQLITE_DEBUG. check-in: e1a89b56 user: drh tags: trunk
00:25
Enhanced display of register ranges in the auxiliary comments added to EXPLAIN. check-in: d6b0c392 user: drh tags: trunk
2013-10-29
20:40
Automatically generated comments on many VDBE opcodes when in SQLITE_DEBUG mode. Comments derive from the "Synopsis:" field added to each opcode definition in vdbe.c. check-in: 5f310c6a user: drh tags: trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to src/vdbe.c.

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
....
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
....
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
....
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
....
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
....
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
....
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
....
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
....
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
....
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
....
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
....
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
....
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
  }
  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Move P1 P2 P3 * *
** Synopsis:  r[P2]=r[P1] N=P3
**
** Move the values in register P1..P1+P3 over into
** registers P2..P2+P3.  Registers P1..P1+P3 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3 and P2..P2+P3 to overlap.
*/
case OP_Move: {
................................................................................
    pIn1++;
    pOut++;
  }
  break;
}

/* Opcode: Copy P1 P2 P3 * *
** Synopsis: r[P2]=r[P1] N=P3
**
** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
**
** This instruction makes a deep copy of the value.  A duplicate
** is made of any string or blob constant.  See also OP_SCopy.
*/
case OP_Copy: {
................................................................................
  if( pOp->p1 ){
    sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
  }
  break;
}

/* Opcode: Function P1 P2 P3 P4 P5
** Synopsis: r[P3]=func(r[P2]..) N=P5
**
** Invoke a user function (P4 is a pointer to a Function structure that
** defines the function) with P5 arguments taken from register P2 and
** successors.  The result of the function is stored in register P3.
** Register P3 must not be one of the function inputs.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the 
................................................................................
op_column_out:
  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;
}

/* Opcode: Affinity P1 P2 * P4 *
** Synopsis: affinity(r[P1]) N=P2
**
** Apply affinities to a range of P2 registers starting with P1.
**
** P4 is a string that is P2 characters long. The nth character of the
** string indicates the column affinity that should be used for the nth
** memory cell in the range.
*/
................................................................................
    applyAffinity(pIn1, cAff, encoding);
    pIn1++;
  }
  break;
}

/* Opcode: MakeRecord P1 P2 P3 P4 *
** Synopsis: r[P3]=rec(r[P1]..) N=P2
**
** Convert P2 registers beginning with P1 into the [record format]
** use as a data record in a database table or as a key
** in an index.  The OP_Column opcode can decode the record later.
**
** P4 may be a string that is P2 characters long.  The nth character of the
** string indicates the column affinity that should be used for the nth
................................................................................
  pCx->pKeyInfo->enc = ENC(p->db);
  pCx->isSorter = 1;
  rc = sqlite3VdbeSorterInit(db, pCx);
  break;
}

/* Opcode: OpenPseudo P1 P2 P3 * P5
** Synopsis: content in r[P2].. N=P3
**
** Open a new cursor that points to a fake table that contains a single
** row of data.  The content of that one row in the content of memory
** register P2 when P5==0.  In other words, cursor P1 becomes an alias for the 
** MEM_Blob content contained in register P2.  When P5==1, then the
** row is represented by P3 consecutive registers beginning with P2.
**
................................................................................
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
  p->apCsr[pOp->p1] = 0;
  break;
}

/* Opcode: SeekGe P1 P2 P3 P4 *
** Synopsis: key=r[P3].. N=P4
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
** use the value in register P3 as the key.  If cursor P1 refers 
** to an SQL index, then P3 is the first in an array of P4 registers 
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that  it points to the smallest entry that 
** is greater than or equal to the key value. If there are no records 
** greater than or equal to the key and P2 is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
*/
/* Opcode: SeekGt P1 P2 P3 P4 *
** Synopsis: key=r[P3].. N=P4
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
** use the value in register P3 as a key. If cursor P1 refers 
** to an SQL index, then P3 is the first in an array of P4 registers 
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that  it points to the smallest entry that 
** is greater than the key value. If there are no records greater than 
** the key and P2 is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
*/
/* Opcode: SeekLt P1 P2 P3 P4 * 
** Synopsis: key=r[P3].. N=P4
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
** use the value in register P3 as a key. If cursor P1 refers 
** to an SQL index, then P3 is the first in an array of P4 registers 
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that  it points to the largest entry that 
** is less than the key value. If there are no records less than 
** the key and P2 is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
*/
/* Opcode: SeekLe P1 P2 P3 P4 *
** Synopsis: key=r[P3].. N=P4
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
** use the value in register P3 as a key. If cursor P1 refers 
** to an SQL index, then P3 is the first in an array of P4 registers 
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that it points to the largest entry that 
................................................................................
    pC->deferredMoveto = 1;
  }
  break;
}
  

/* Opcode: Found P1 P2 P3 P4 *
** Synopsis: key=r[P3].. N=P4
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
**
** Cursor P1 is on an index btree.  If the record identified by P3 and P4
** is a prefix of any entry in P1 then a jump is made to P2 and
** P1 is left pointing at the matching entry.
*/
/* Opcode: NotFound P1 P2 P3 P4 *
** Synopsis: key=r[P3] N=P4
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
** 
** Cursor P1 is on an index btree.  If the record identified by P3 and P4
** is not the prefix of any entry in P1 then a jump is made to P2.  If P1 
................................................................................
      }
    }
  }
  break;
}

/* Opcode: IdxDelete P1 P2 P3 * *
** Synopsis: key=r[P2]..
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the 
** index opened by cursor P1.
*/
case OP_IdxDelete: {
  VdbeCursor *pC;
................................................................................
      pOut->flags = MEM_Int;
    }
  }
  break;
}

/* Opcode: IdxGE P1 P2 P3 P4 P5
** Synopsis: key=r[P3] N=P4
**
** The P4 register values beginning with P3 form an unpacked index 
** key that omits the ROWID.  Compare this key value against the index 
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
**
** If the P1 index entry is greater than or equal to the key value
** then jump to P2.  Otherwise fall through to the next instruction.
................................................................................
**
** If P5 is non-zero then the key value is increased by an epsilon 
** prior to the comparison.  This make the opcode work like IdxGT except
** that if the key from register P3 is a prefix of the key in the cursor,
** the result is false whereas it would be true with IdxGT.
*/
/* Opcode: IdxLT P1 P2 P3 P4 P5
** Synopsis: key=r[P3] N=P4
**
** The P4 register values beginning with P3 form an unpacked index 
** key that omits the ROWID.  Compare this key value against the index 
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
**
** If the P1 index entry is less than the key value then jump to P2.
** Otherwise fall through to the next instruction.
................................................................................
  if( pIn1->u.i==0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: AggStep * P2 P3 P4 P5
** Synopsis: accum=r[P3] step(r[P2]..) N=P5
**
** Execute the step function for an aggregate.  The
** function has P5 arguments.   P4 is a pointer to the FuncDef
** structure that specifies the function.  Use register
** P3 as the accumulator.
**
** The P5 arguments are taken from register P2 and its
................................................................................
  }
  break;
}
#endif

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VUpdate P1 P2 P3 P4 *
** Synopsis: data=r[P3] N=P2
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xUpdate method. P2 values
** are contiguous memory cells starting at P3 to pass to the xUpdate 
** invocation. The value in register (P3+P2-1) corresponds to the 
** p2th element of the argv array passed to xUpdate.
**







|







 







|







 







|







 







|







 







|







 







|







 







|













|













|













|







 







|










|







 







|







 







|







 







|







 







|







 







|







1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
....
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
....
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
....
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
....
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
....
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
....
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
....
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
....
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
....
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
....
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
....
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
....
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
  }
  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Move P1 P2 P3 * *
** Synopsis:  r[P2@P3]=r[P1@P3]
**
** Move the values in register P1..P1+P3 over into
** registers P2..P2+P3.  Registers P1..P1+P3 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3 and P2..P2+P3 to overlap.
*/
case OP_Move: {
................................................................................
    pIn1++;
    pOut++;
  }
  break;
}

/* Opcode: Copy P1 P2 P3 * *
** Synopsis: r[P2@P3]=r[P1@P3]
**
** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
**
** This instruction makes a deep copy of the value.  A duplicate
** is made of any string or blob constant.  See also OP_SCopy.
*/
case OP_Copy: {
................................................................................
  if( pOp->p1 ){
    sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
  }
  break;
}

/* Opcode: Function P1 P2 P3 P4 P5
** Synopsis: r[P3]=func(r[P2@P5])
**
** Invoke a user function (P4 is a pointer to a Function structure that
** defines the function) with P5 arguments taken from register P2 and
** successors.  The result of the function is stored in register P3.
** Register P3 must not be one of the function inputs.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the 
................................................................................
op_column_out:
  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;
}

/* Opcode: Affinity P1 P2 * P4 *
** Synopsis: affinity(r[P1@P2])
**
** Apply affinities to a range of P2 registers starting with P1.
**
** P4 is a string that is P2 characters long. The nth character of the
** string indicates the column affinity that should be used for the nth
** memory cell in the range.
*/
................................................................................
    applyAffinity(pIn1, cAff, encoding);
    pIn1++;
  }
  break;
}

/* Opcode: MakeRecord P1 P2 P3 P4 *
** Synopsis: r[P3]=mkrec(r[P1@P2])
**
** Convert P2 registers beginning with P1 into the [record format]
** use as a data record in a database table or as a key
** in an index.  The OP_Column opcode can decode the record later.
**
** P4 may be a string that is P2 characters long.  The nth character of the
** string indicates the column affinity that should be used for the nth
................................................................................
  pCx->pKeyInfo->enc = ENC(p->db);
  pCx->isSorter = 1;
  rc = sqlite3VdbeSorterInit(db, pCx);
  break;
}

/* Opcode: OpenPseudo P1 P2 P3 * P5
** Synopsis: content in r[P2@P3]
**
** Open a new cursor that points to a fake table that contains a single
** row of data.  The content of that one row in the content of memory
** register P2 when P5==0.  In other words, cursor P1 becomes an alias for the 
** MEM_Blob content contained in register P2.  When P5==1, then the
** row is represented by P3 consecutive registers beginning with P2.
**
................................................................................
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
  p->apCsr[pOp->p1] = 0;
  break;
}

/* Opcode: SeekGe P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
** use the value in register P3 as the key.  If cursor P1 refers 
** to an SQL index, then P3 is the first in an array of P4 registers 
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that  it points to the smallest entry that 
** is greater than or equal to the key value. If there are no records 
** greater than or equal to the key and P2 is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
*/
/* Opcode: SeekGt P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
** use the value in register P3 as a key. If cursor P1 refers 
** to an SQL index, then P3 is the first in an array of P4 registers 
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that  it points to the smallest entry that 
** is greater than the key value. If there are no records greater than 
** the key and P2 is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
*/
/* Opcode: SeekLt P1 P2 P3 P4 * 
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
** use the value in register P3 as a key. If cursor P1 refers 
** to an SQL index, then P3 is the first in an array of P4 registers 
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that  it points to the largest entry that 
** is less than the key value. If there are no records less than 
** the key and P2 is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
*/
/* Opcode: SeekLe P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
** use the value in register P3 as a key. If cursor P1 refers 
** to an SQL index, then P3 is the first in an array of P4 registers 
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that it points to the largest entry that 
................................................................................
    pC->deferredMoveto = 1;
  }
  break;
}
  

/* Opcode: Found P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
**
** Cursor P1 is on an index btree.  If the record identified by P3 and P4
** is a prefix of any entry in P1 then a jump is made to P2 and
** P1 is left pointing at the matching entry.
*/
/* Opcode: NotFound P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
** 
** Cursor P1 is on an index btree.  If the record identified by P3 and P4
** is not the prefix of any entry in P1 then a jump is made to P2.  If P1 
................................................................................
      }
    }
  }
  break;
}

/* Opcode: IdxDelete P1 P2 P3 * *
** Synopsis: key=r[P2@P3]
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the 
** index opened by cursor P1.
*/
case OP_IdxDelete: {
  VdbeCursor *pC;
................................................................................
      pOut->flags = MEM_Int;
    }
  }
  break;
}

/* Opcode: IdxGE P1 P2 P3 P4 P5
** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index 
** key that omits the ROWID.  Compare this key value against the index 
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
**
** If the P1 index entry is greater than or equal to the key value
** then jump to P2.  Otherwise fall through to the next instruction.
................................................................................
**
** If P5 is non-zero then the key value is increased by an epsilon 
** prior to the comparison.  This make the opcode work like IdxGT except
** that if the key from register P3 is a prefix of the key in the cursor,
** the result is false whereas it would be true with IdxGT.
*/
/* Opcode: IdxLT P1 P2 P3 P4 P5
** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index 
** key that omits the ROWID.  Compare this key value against the index 
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
**
** If the P1 index entry is less than the key value then jump to P2.
** Otherwise fall through to the next instruction.
................................................................................
  if( pIn1->u.i==0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: AggStep * P2 P3 P4 P5
** Synopsis: accum=r[P3] step(r[P2@P5])
**
** Execute the step function for an aggregate.  The
** function has P5 arguments.   P4 is a pointer to the FuncDef
** structure that specifies the function.  Use register
** P3 as the accumulator.
**
** The P5 arguments are taken from register P2 and its
................................................................................
  }
  break;
}
#endif

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VUpdate P1 P2 P3 P4 *
** Synopsis: data=r[P3@P2]
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xUpdate method. P2 values
** are contiguous memory cells starting at P3 to pass to the xUpdate 
** invocation. The value in register (P3+P2-1) corresponds to the 
** p2th element of the argv array passed to xUpdate.
**

Changes to src/vdbeaux.c.

851
852
853
854
855
856
857












858
859
860
861





862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887




888
889
890
891
892
893
894
895
896
897
898
    return (VdbeOp*)&dummy;
  }else{
    return &p->aOp[addr];
  }
}

#if defined(SQLITE_DEBUG)












/*
** Compute a string for the "comment" field of a VDBE opcode listing
*/
static int displayComment(Op *pOp, const char *zP4, char *zTemp, int nTemp){





  const char *zOpName;
  const char *zSynopsis;
  int nOpName;
  int ii, jj;
  zOpName = sqlite3OpcodeName(pOp->opcode);
  nOpName = sqlite3Strlen30(zOpName);
  if( zOpName[nOpName+1] ){
    int seenCom = 0;
    zSynopsis = zOpName += nOpName + 1;
    for(ii=jj=0; jj<nTemp-1 && zSynopsis[ii]; ii++){
      if( zSynopsis[ii]=='P' ){
        int v;
        const char *zShow = 0;
        ii++;
        switch( zSynopsis[ii] ){
          case '1': v = pOp->p1;  break;
          case '2': v = pOp->p2;  break;
          case '3': v = pOp->p3;  break;
          case '5': v = pOp->p5;  break;
          case '4': zShow = zP4;  break;
          case 'X': zShow = pOp->zComment; seenCom = 1; break;
        }
        if( zShow ){
          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zShow);
        }else{
          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v);




        }
        jj += sqlite3Strlen30(zTemp+jj);
      }else{
        zTemp[jj++] = zSynopsis[ii];
      }
    }
    if( !seenCom && jj<nTemp-5 && pOp->zComment ){
      sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
      jj += sqlite3Strlen30(zTemp+jj);
    }
    if( jj<nTemp ) zTemp[jj] = 0;







>
>
>
>
>
>
>
>
>
>
>
>



|
>
>
>
>
>








|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>



|







851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
    return (VdbeOp*)&dummy;
  }else{
    return &p->aOp[addr];
  }
}

#if defined(SQLITE_DEBUG)
/*
** Return an integer value for one of the parameters to the opcode pOp
** determined by character c.
*/
static int translateP(char c, const Op *pOp){
  if( c=='1' ) return pOp->p1;
  if( c=='2' ) return pOp->p2;
  if( c=='3' ) return pOp->p3;
  if( c=='4' ) return pOp->p4.i;
  return pOp->p5;
}

/*
** Compute a string for the "comment" field of a VDBE opcode listing
*/
static int displayComment(
  const Op *pOp,     /* The opcode to be commented */
  const char *zP4,   /* Previously obtained value for P4 */
  char *zTemp,       /* Write result here */
  int nTemp          /* Space available in zTemp[] */
){
  const char *zOpName;
  const char *zSynopsis;
  int nOpName;
  int ii, jj;
  zOpName = sqlite3OpcodeName(pOp->opcode);
  nOpName = sqlite3Strlen30(zOpName);
  if( zOpName[nOpName+1] ){
    int seenCom = 0;
    char c;
    zSynopsis = zOpName += nOpName + 1;
    for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
      if( c=='P' ){
        c = zSynopsis[++ii];
        if( c=='4' ){
          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
        }else if( c=='X' ){
          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
          seenCom = 1;
        }else{
          int v1 = translateP(c, pOp);
          int v2;
          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
          if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
            ii += 3;
            jj += sqlite3Strlen30(zTemp+jj);
            v2 = translateP(zSynopsis[ii], pOp);
            if( v2>1 ) sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
          }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
            ii += 4;
          }
        }
        jj += sqlite3Strlen30(zTemp+jj);
      }else{
        zTemp[jj++] = c;
      }
    }
    if( !seenCom && jj<nTemp-5 && pOp->zComment ){
      sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
      jj += sqlite3Strlen30(zTemp+jj);
    }
    if( jj<nTemp ) zTemp[jj] = 0;