/ Check-in [d380a648]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge version-3.8.7 changes with this branch.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | ota-update
Files: files | file ages | folders
SHA1: d380a6482a46478ebdf97e08b2fcf78b5d126dde
User & Date: dan 2014-10-20 16:34:03
Context
2014-10-21
18:09
Add tests for another application writing the database while an ota update is ongoing. check-in: 2402baa0 user: dan tags: ota-update
2014-10-20
16:34
Merge version-3.8.7 changes with this branch. check-in: d380a648 user: dan tags: ota-update
16:24
Have the ota extension perform an incremental checkpoint after generating the wal file. check-in: 0bf1301a user: dan tags: ota-update
2014-10-17
21:35
Fix a (probably harmless) bug in the CSV output mode of the command-line shell. check-in: 19fe4a0a user: drh tags: trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to ext/fts3/fts3.c.

3112
3113
3114
3115
3116
3117
3118

3119
3120
3121
3122
3123
3124
3125
....
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
  if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++];
  if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++];
  assert( iIdx==nVal );

  /* In case the cursor has been used before, clear it now. */
  sqlite3_finalize(pCsr->pStmt);
  sqlite3_free(pCsr->aDoclist);

  sqlite3Fts3ExprFree(pCsr->pExpr);
  memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));

  /* Set the lower and upper bounds on docids to return */
  pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64);
  pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64);

................................................................................
      for(i=0; rc==SQLITE_OK && i<p->nToken && bEof==0; i++){
        rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
        if( a[i].bIgnore==0 && (bMaxSet==0 || DOCID_CMP(iMax, a[i].iDocid)<0) ){
          iMax = a[i].iDocid;
          bMaxSet = 1;
        }
      }
      assert( rc!=SQLITE_OK || a[p->nToken-1].bIgnore==0 );
      assert( rc!=SQLITE_OK || bMaxSet );

      /* Keep advancing iterators until they all point to the same document */
      for(i=0; i<p->nToken; i++){
        while( rc==SQLITE_OK && bEof==0 
            && a[i].bIgnore==0 && DOCID_CMP(a[i].iDocid, iMax)<0 
        ){







>







 







|







3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
....
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
  if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++];
  if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++];
  assert( iIdx==nVal );

  /* In case the cursor has been used before, clear it now. */
  sqlite3_finalize(pCsr->pStmt);
  sqlite3_free(pCsr->aDoclist);
  sqlite3_free(pCsr->aMatchinfo);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));

  /* Set the lower and upper bounds on docids to return */
  pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64);
  pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64);

................................................................................
      for(i=0; rc==SQLITE_OK && i<p->nToken && bEof==0; i++){
        rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
        if( a[i].bIgnore==0 && (bMaxSet==0 || DOCID_CMP(iMax, a[i].iDocid)<0) ){
          iMax = a[i].iDocid;
          bMaxSet = 1;
        }
      }
      assert( rc!=SQLITE_OK || (p->nToken>=1 && a[p->nToken-1].bIgnore==0) );
      assert( rc!=SQLITE_OK || bMaxSet );

      /* Keep advancing iterators until they all point to the same document */
      for(i=0; i<p->nToken; i++){
        while( rc==SQLITE_OK && bEof==0 
            && a[i].bIgnore==0 && DOCID_CMP(a[i].iDocid, iMax)<0 
        ){

Changes to ext/fts3/fts3_expr.c.

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  sqlite3_tokenizer_cursor *pCursor;
  Fts3Expr *pRet = 0;
  int i = 0;

  /* Set variable i to the maximum number of bytes of input to tokenize. */
  for(i=0; i<n; i++){
    if( sqlite3_fts3_enable_parentheses && (z[i]=='(' || z[i]==')') ) break;
    if( z[i]=='*' || z[i]=='"' ) break;
  }

  *pnConsumed = i;
  rc = sqlite3Fts3OpenTokenizer(pTokenizer, pParse->iLangid, z, i, &pCursor);
  if( rc==SQLITE_OK ){
    const char *zToken;
    int nToken = 0, iStart = 0, iEnd = 0, iPosition = 0;







|







186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  sqlite3_tokenizer_cursor *pCursor;
  Fts3Expr *pRet = 0;
  int i = 0;

  /* Set variable i to the maximum number of bytes of input to tokenize. */
  for(i=0; i<n; i++){
    if( sqlite3_fts3_enable_parentheses && (z[i]=='(' || z[i]==')') ) break;
    if( z[i]=='"' ) break;
  }

  *pnConsumed = i;
  rc = sqlite3Fts3OpenTokenizer(pTokenizer, pParse->iLangid, z, i, &pCursor);
  if( rc==SQLITE_OK ){
    const char *zToken;
    int nToken = 0, iStart = 0, iEnd = 0, iPosition = 0;

Added ext/misc/showauth.c.















































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
/*
** 2014-09-21
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension adds a debug "authorizer" callback to the database
** connection.  The callback merely writes the authorization request to
** standard output and returns SQLITE_OK.
**
** This extension can be used (for example) in the command-line shell to
** trace the operation of the authorizer.
*/
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
#include <stdio.h>

/*
** Display the authorization request
*/
static int authCallback(
  void *pClientData,
  int op,
  const char *z1,
  const char *z2,
  const char *z3,
  const char *z4
){
  const char *zOp;
  char zOpSpace[50];
  switch( op ){
    case SQLITE_CREATE_INDEX:        zOp = "CREATE_INDEX";        break;
    case SQLITE_CREATE_TABLE:        zOp = "CREATE_TABLE";        break;
    case SQLITE_CREATE_TEMP_INDEX:   zOp = "CREATE_TEMP_INDEX";   break;
    case SQLITE_CREATE_TEMP_TABLE:   zOp = "CREATE_TEMP_TABLE";   break;
    case SQLITE_CREATE_TEMP_TRIGGER: zOp = "CREATE_TEMP_TRIGGER"; break;
    case SQLITE_CREATE_TEMP_VIEW:    zOp = "CREATE_TEMP_VIEW";    break;
    case SQLITE_CREATE_TRIGGER:      zOp = "CREATE_TRIGGER";      break;
    case SQLITE_CREATE_VIEW:         zOp = "CREATE_VIEW";         break;
    case SQLITE_DELETE:              zOp = "DELETE";              break;
    case SQLITE_DROP_INDEX:          zOp = "DROP_INDEX";          break;
    case SQLITE_DROP_TABLE:          zOp = "DROP_TABLE";          break;
    case SQLITE_DROP_TEMP_INDEX:     zOp = "DROP_TEMP_INDEX";     break;
    case SQLITE_DROP_TEMP_TABLE:     zOp = "DROP_TEMP_TABLE";     break;
    case SQLITE_DROP_TEMP_TRIGGER:   zOp = "DROP_TEMP_TRIGGER";   break;
    case SQLITE_DROP_TEMP_VIEW:      zOp = "DROP_TEMP_VIEW";      break;
    case SQLITE_DROP_TRIGGER:        zOp = "DROP_TRIGGER";        break;
    case SQLITE_DROP_VIEW:           zOp = "DROP_VIEW";           break;
    case SQLITE_INSERT:              zOp = "INSERT";              break;
    case SQLITE_PRAGMA:              zOp = "PRAGMA";              break;
    case SQLITE_READ:                zOp = "READ";                break;
    case SQLITE_SELECT:              zOp = "SELECT";              break;
    case SQLITE_TRANSACTION:         zOp = "TRANSACTION";         break;
    case SQLITE_UPDATE:              zOp = "UPDATE";              break;
    case SQLITE_ATTACH:              zOp = "ATTACH";              break;
    case SQLITE_DETACH:              zOp = "DETACH";              break;
    case SQLITE_ALTER_TABLE:         zOp = "ALTER_TABLE";         break;
    case SQLITE_REINDEX:             zOp = "REINDEX";             break;
    case SQLITE_ANALYZE:             zOp = "ANALYZE";             break;
    case SQLITE_CREATE_VTABLE:       zOp = "CREATE_VTABLE";       break;
    case SQLITE_DROP_VTABLE:         zOp = "DROP_VTABLE";         break;
    case SQLITE_FUNCTION:            zOp = "FUNCTION";            break;
    case SQLITE_SAVEPOINT:           zOp = "SAVEPOINT";           break;
    case SQLITE_COPY:                zOp = "COPY";                break;
    case SQLITE_RECURSIVE:           zOp = "RECURSIVE";           break;


    default: {
      sqlite3_snprintf(sizeof(zOpSpace), zOpSpace, "%d", op);
      zOp = zOpSpace;
      break;
    }
  }
  if( z1==0 ) z1 = "NULL";
  if( z2==0 ) z2 = "NULL";
  if( z3==0 ) z3 = "NULL";
  if( z4==0 ) z4 = "NULL";
  printf("AUTH: %s,%s,%s,%s,%s\n", zOp, z1, z2, z3, z4);
  return SQLITE_OK;
}



#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_showauth_init(
  sqlite3 *db, 
  char **pzErrMsg, 
  const sqlite3_api_routines *pApi
){
  int rc = SQLITE_OK;
  SQLITE_EXTENSION_INIT2(pApi);
  (void)pzErrMsg;  /* Unused parameter */
  rc = sqlite3_set_authorizer(db, authCallback, 0);
  return rc;
}

Changes to src/analyze.c.

1197
1198
1199
1200
1201
1202
1203

1204
1205
1206
1207
1208
1209
1210
1211
....
1260
1261
1262
1263
1264
1265
1266

1267
1268
1269
1270
1271
1272
1273
1274
....
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

1457
1458
1459
1460
1461
1462
1463
....
1510
1511
1512
1513
1514
1515
1516









1517
1518
1519
1520
1521
1522
1523
1524
1525
....
1570
1571
1572
1573
1574
1575
1576

1577
1578
1579
1580






1581




1582

1583
1584
1585
1586
1587

1588
1589

1590
1591
1592
1593
1594
1595



1596
1597
1598
1599
1600
1601
1602
....
1839
1840
1841
1842
1843
1844
1845





1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp);
    sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2+IsStat34);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);

    /* Add the entry to the stat1 table. */
    callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);

    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);

    /* Add the entries to the stat3 or stat4 table. */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    {
................................................................................
  ** name and the row count as the content.
  */
  if( pOnlyIdx==0 && needTableCnt ){
    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);

    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, jZeroRows);
  }
}

................................................................................
  int c;
  int i;
  tRowcnt v;

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( z==0 ) z = "";
#else
  if( NEVER(z==0) ) z = "";
#endif
  for(i=0; *z && i<nOut; i++){
    v = 0;
    while( (c=z[0])>='0' && c<='9' ){
      v = v*10 + c - '0';
      z++;
    }
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    if( aOut ){
      aOut[i] = v;
    }else
#else
    assert( aOut==0 );
    UNUSED_PARAMETER(aOut);
#endif
    {
      aLog[i] = sqlite3LogEst(v);
    }

    if( *z==' ' ) z++;
  }
#ifndef SQLITE_ENABLE_STAT3_OR_STAT4
  assert( pIndex!=0 );
#else
  if( pIndex )
#endif
................................................................................
    pIndex = sqlite3PrimaryKeyIndex(pTable);
  }else{
    pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
  }
  z = argv[2];

  if( pIndex ){









    pIndex->bUnordered = 0;
    decodeIntArray((char*)z, pIndex->nKeyCol+1, 0, pIndex->aiRowLogEst, pIndex);
    if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0];
  }else{
    Index fakeIdx;
    fakeIdx.szIdxRow = pTable->szTabRow;
#ifdef SQLITE_ENABLE_COSTMULT
    fakeIdx.pTable = pTable;
#endif
................................................................................
      ** sample columns except the last. The last is always set to 1, as
      ** once the trailing PK fields are considered all index keys are
      ** unique.  */
      nCol = pIdx->nSampleCol-1;
      pIdx->aAvgEq[nCol] = 1;
    }
    for(iCol=0; iCol<nCol; iCol++){

      int i;                    /* Used to iterate through samples */
      tRowcnt sumEq = 0;        /* Sum of the nEq values */
      tRowcnt nSum = 0;         /* Number of terms contributing to sumEq */
      tRowcnt avgEq = 0;






      tRowcnt nDLt = pFinal->anDLt[iCol];






      /* Set nSum to the number of distinct (iCol+1) field prefixes that
      ** occur in the stat4 table for this index before pFinal. Set
      ** sumEq to the sum of the nEq values for column iCol for the same
      ** set (adding the value only once where there exist duplicate 
      ** prefixes).  */

      for(i=0; i<(pIdx->nSample-1); i++){
        if( aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){

          sumEq += aSample[i].anEq[iCol];
          nSum++;
        }
      }
      if( nDLt>nSum ){
        avgEq = (pFinal->anLt[iCol] - sumEq)/(nDLt - nSum);



      }
      if( avgEq==0 ) avgEq = 1;
      pIdx->aAvgEq[iCol] = avgEq;
    }
  }
}

................................................................................
  /* Load the statistics from the sqlite_stat4 table. */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( rc==SQLITE_OK ){
    int lookasideEnabled = db->lookaside.bEnabled;
    db->lookaside.bEnabled = 0;
    rc = loadStat4(db, sInfo.zDatabase);
    db->lookaside.bEnabled = lookasideEnabled;





  }
#endif

  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */







>
|







 







>
|







 







|








|
|
<



|
<
|
<
>







 







>
>
>
>
>
>
>
>
>

|







 







>


<

>
>
>
>
>
>
|
>
>
>
>
|
>

|
|
|
<
>
|
|
>

|


<
<
>
>
>







 







>
>
>
>
>











1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
....
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
....
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450

1451
1452
1453
1454

1455

1456
1457
1458
1459
1460
1461
1462
1463
....
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
....
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588

1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606

1607
1608
1609
1610
1611
1612
1613
1614


1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
....
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp);
    sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2+IsStat34);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);

    /* Add the entry to the stat1 table. */
    callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
    assert( "BBB"[0]==SQLITE_AFF_TEXT );
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);

    /* Add the entries to the stat3 or stat4 table. */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    {
................................................................................
  ** name and the row count as the content.
  */
  if( pOnlyIdx==0 && needTableCnt ){
    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
    assert( "BBB"[0]==SQLITE_AFF_TEXT );
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, jZeroRows);
  }
}

................................................................................
  int c;
  int i;
  tRowcnt v;

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( z==0 ) z = "";
#else
  assert( z!=0 );
#endif
  for(i=0; *z && i<nOut; i++){
    v = 0;
    while( (c=z[0])>='0' && c<='9' ){
      v = v*10 + c - '0';
      z++;
    }
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    if( aOut ) aOut[i] = v;
    if( aLog ) aLog[i] = sqlite3LogEst(v);

#else
    assert( aOut==0 );
    UNUSED_PARAMETER(aOut);
    assert( aLog!=0 );

    aLog[i] = sqlite3LogEst(v);

#endif
    if( *z==' ' ) z++;
  }
#ifndef SQLITE_ENABLE_STAT3_OR_STAT4
  assert( pIndex!=0 );
#else
  if( pIndex )
#endif
................................................................................
    pIndex = sqlite3PrimaryKeyIndex(pTable);
  }else{
    pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
  }
  z = argv[2];

  if( pIndex ){
    int nCol = pIndex->nKeyCol+1;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    tRowcnt * const aiRowEst = pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(
        sizeof(tRowcnt) * nCol
    );
    if( aiRowEst==0 ) pInfo->db->mallocFailed = 1;
#else
    tRowcnt * const aiRowEst = 0;
#endif
    pIndex->bUnordered = 0;
    decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
    if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0];
  }else{
    Index fakeIdx;
    fakeIdx.szIdxRow = pTable->szTabRow;
#ifdef SQLITE_ENABLE_COSTMULT
    fakeIdx.pTable = pTable;
#endif
................................................................................
      ** sample columns except the last. The last is always set to 1, as
      ** once the trailing PK fields are considered all index keys are
      ** unique.  */
      nCol = pIdx->nSampleCol-1;
      pIdx->aAvgEq[nCol] = 1;
    }
    for(iCol=0; iCol<nCol; iCol++){
      int nSample = pIdx->nSample;
      int i;                    /* Used to iterate through samples */
      tRowcnt sumEq = 0;        /* Sum of the nEq values */

      tRowcnt avgEq = 0;
      tRowcnt nRow;             /* Number of rows in index */
      i64 nSum100 = 0;          /* Number of terms contributing to sumEq */
      i64 nDist100;             /* Number of distinct values in index */

      if( pIdx->aiRowEst==0 || pIdx->aiRowEst[iCol+1]==0 ){
        nRow = pFinal->anLt[iCol];
        nDist100 = (i64)100 * pFinal->anDLt[iCol];
        nSample--;
      }else{
        nRow = pIdx->aiRowEst[0];
        nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
      }

      /* Set nSum to the number of distinct (iCol+1) field prefixes that
      ** occur in the stat4 table for this index. Set sumEq to the sum of 
      ** the nEq values for column iCol for the same set (adding the value 
      ** only once where there exist duplicate prefixes).  */

      for(i=0; i<nSample; i++){
        if( i==(pIdx->nSample-1)
         || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] 
        ){
          sumEq += aSample[i].anEq[iCol];
          nSum100 += 100;
        }
      }



      if( nDist100>nSum100 ){
        avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
      }
      if( avgEq==0 ) avgEq = 1;
      pIdx->aAvgEq[iCol] = avgEq;
    }
  }
}

................................................................................
  /* Load the statistics from the sqlite_stat4 table. */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( rc==SQLITE_OK ){
    int lookasideEnabled = db->lookaside.bEnabled;
    db->lookaside.bEnabled = 0;
    rc = loadStat4(db, sInfo.zDatabase);
    db->lookaside.bEnabled = lookasideEnabled;
  }
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3_free(pIdx->aiRowEst);
    pIdx->aiRowEst = 0;
  }
#endif

  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */

Changes to src/btree.c.

484
485
486
487
488
489
490

491

492
493
494
495
496
497
498
...
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
...
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
...
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

1012
1013
1014
1015
1016
1017
1018
1019
....
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078







1079


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091



1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
....
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
....
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
....
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
....
1445
1446
1447
1448
1449
1450
1451
1452

1453
1454
1455
1456
1457

1458
1459
1460
1461
1462
1463
1464
....
2105
2106
2107
2108
2109
2110
2111
2112

2113
2114
2115
2116
2117
2118
2119
....
2120
2121
2122
2123
2124
2125
2126
2127






2128


2129
2130
2131
2132
2133
2134
2135
2136


2137

2138
2139
2140
2141
2142
2143
2144
....
2624
2625
2626
2627
2628
2629
2630

2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
....
3669
3670
3671
3672
3673
3674
3675




3676
3677
3678
3679
3680
3681
3682
....
3858
3859
3860
3861
3862
3863
3864

3865
3866
3867
3868
3869
3870
3871
3872
3873
....
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021

4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035

4036

4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
....
4089
4090
4091
4092
4093
4094
4095
4096


4097
4098
4099
4100
4101
4102
4103
....
4142
4143
4144
4145
4146
4147
4148

4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159

4160
4161
4162

4163
4164
4165
4166
4167
4168
4169
....
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
....
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
....
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
....
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
....
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
....
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
....
5516
5517
5518
5519
5520
5521
5522
5523


5524
5525




5526
5527
5528
5529
5530
5531
5532
5533
5534

5535
5536
5537
5538
5539
5540
5541
....
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635


5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656





5657








5658



5659





















5660
5661



5662
5663
5664
5665
5666
5667
5668
....
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
....
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
....
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
....
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
....
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
....
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
....
7057
7058
7059
7060
7061
7062
7063
7064

7065
7066
7067
7068
7069
7070
7071
....
7090
7091
7092
7093
7094
7095
7096
7097

7098
7099
7100
7101
7102
7103
7104
....
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118

7119
7120
7121
7122
7123
7124
7125
....
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
....
7191
7192
7193
7194
7195
7196
7197

7198
7199
7200
7201
7202
7203
7204
....
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
....
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267

7268
7269
7270
7271
7272
7273
7274
....
7472
7473
7474
7475
7476
7477
7478

7479
7480
7481
7482
7483
7484
7485
....
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
....
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844

7845
7846
7847
7848
7849
7850
7851
7852

7853
7854
7855
7856
7857
7858
7859
7860
....
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
....
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
....
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
....
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046

8047
8048
8049
8050
8051
8052
8053


8054
8055
8056
8057


8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068

8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082


8083
8084
8085
8086
8087
8088


8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131

8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142


8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180

8181
8182
8183
8184
8185
8186
8187
....
8191
8192
8193
8194
8195
8196
8197

8198
8199
8200
8201
8202
8203
8204
8205
....
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232





8233
8234
8235
8236
8237
8238
8239
....
8266
8267
8268
8269
8270
8271
8272



8273
8274
8275
8276
8277
8278
8279
....
8285
8286
8287
8288
8289
8290
8291

8292
8293

8294
8295
8296
8297
8298
8299
8300
8301
8302
8303

8304

8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
....
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
  i64 iRow,               /* The rowid that might be changing */
  int isClearTable        /* True if all rows are being deleted */
){
  BtCursor *p;
  BtShared *pBt = pBtree->pBt;
  assert( sqlite3BtreeHoldsMutex(pBtree) );
  for(p=pBt->pCursor; p; p=p->pNext){

    if( (p->curFlags & BTCF_Incrblob)!=0 && (isClearTable || p->info.nKey==iRow) ){

      p->eState = CURSOR_INVALID;
    }
  }
}

#else
  /* Stub function when INCRBLOB is omitted */
................................................................................

/* This helper routine to saveAllCursors does the actual work of saving
** the cursors if and when a cursor is found that actually requires saving.
** The common case is that no cursors need to be saved, so this routine is
** broken out from its caller to avoid unnecessary stack pointer movement.
*/
static int SQLITE_NOINLINE saveCursorsOnList(
  BtCursor *p,           /* The first cursor that needs saving */
  Pgno iRoot,            /* Only save cursor with this iRoot.  Save all if zero */
  BtCursor *pExcept      /* Do not save this cursor */
){
  do{
    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
      if( p->eState==CURSOR_VALID ){
        int rc = saveCursorPosition(p);
        if( SQLITE_OK!=rc ){
          return rc;
................................................................................
**
** Calling this routine with a NULL cursor pointer returns false.
**
** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
** back to where it ought to be if this routine returns true.
*/
int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
  return pCur && pCur->eState!=CURSOR_VALID;
}

/*
** This routine restores a cursor back to its original position after it
** has been moved by some outside activity (such as a btree rebalance or
** a row having been deleted out from under the cursor).  
**
................................................................................
}

/*
** Parse a cell content block and fill in the CellInfo structure.  There
** are two versions of this function.  btreeParseCell() takes a 
** cell index as the second argument and btreeParseCellPtr() 
** takes a pointer to the body of the cell as its second argument.
**
** Within this file, the parseCell() macro can be called instead of
** btreeParseCellPtr(). Using some compilers, this will be faster.
*/
static void btreeParseCellPtr(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
){
  u16 n;                  /* Number bytes in cell content header */
  u32 nPayload;           /* Number of bytes of cell payload */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );

  pInfo->pCell = pCell;
  assert( pPage->leaf==0 || pPage->leaf==1 );
  n = pPage->childPtrSize;
  assert( n==4-4*pPage->leaf );
  if( pPage->intKey ){
    if( pPage->hasData ){
      assert( n==0 );
      n = getVarint32(pCell, nPayload);
    }else{
      nPayload = 0;
    }
    n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
    pInfo->nData = nPayload;
  }else{
    pInfo->nData = 0;
    n += getVarint32(&pCell[n], nPayload);
    pInfo->nKey = nPayload;
  }
  pInfo->nPayload = nPayload;
  pInfo->nHeader = n;
  testcase( nPayload==pPage->maxLocal );
  testcase( nPayload==pPage->maxLocal+1 );
  if( likely(nPayload<=pPage->maxLocal) ){
    /* This is the (easy) common case where the entire payload fits
    ** on the local page.  No overflow is required.
    */

    if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
    pInfo->nLocal = (u16)nPayload;
    pInfo->iOverflow = 0;
  }else{
    /* If the payload will not fit completely on the local page, we have
    ** to decide how much to store locally and how much to spill onto
    ** overflow pages.  The strategy is to minimize the amount of unused
    ** space on overflow pages while keeping the amount of local storage
................................................................................
    testcase( surplus==maxLocal );
    testcase( surplus==maxLocal+1 );
    if( surplus <= maxLocal ){
      pInfo->nLocal = (u16)surplus;
    }else{
      pInfo->nLocal = (u16)minLocal;
    }
    pInfo->iOverflow = (u16)(pInfo->nLocal + n);
    pInfo->nSize = pInfo->iOverflow + 4;
  }
}
#define parseCell(pPage, iCell, pInfo) \
  btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
static void btreeParseCell(
  MemPage *pPage,         /* Page containing the cell */
  int iCell,              /* The cell index.  First cell is 0 */
  CellInfo *pInfo         /* Fill in this structure */
){
  parseCell(pPage, iCell, pInfo);
}

/*
** Compute the total number of bytes that a Cell needs in the cell
** data area of the btree-page.  The return number includes the cell
** data header and the local payload, but not any overflow page or
** the space used by the cell pointer.
*/
static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
  u8 *pIter = &pCell[pPage->childPtrSize];
  u32 nSize;


#ifdef SQLITE_DEBUG
  /* The value returned by this function should always be the same as
  ** the (CellInfo.nSize) value found by doing a full parse of the
  ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
  ** this function verifies that this invariant is not violated. */
  CellInfo debuginfo;
  btreeParseCellPtr(pPage, pCell, &debuginfo);
#endif

  if( pPage->intKey ){
    u8 *pEnd;
    if( pPage->hasData ){
      pIter += getVarint32(pIter, nSize);
    }else{
      nSize = 0;
    }










    /* pIter now points at the 64-bit integer key value, a variable length 
    ** integer. The following block moves pIter to point at the first byte
    ** past the end of the key value. */
    pEnd = &pIter[9];
    while( (*pIter++)&0x80 && pIter<pEnd );
  }else{
    pIter += getVarint32(pIter, nSize);
  }

  testcase( nSize==pPage->maxLocal );
  testcase( nSize==pPage->maxLocal+1 );
  if( nSize>pPage->maxLocal ){



    int minLocal = pPage->minLocal;
    nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
    testcase( nSize==pPage->maxLocal );
    testcase( nSize==pPage->maxLocal+1 );
    if( nSize>pPage->maxLocal ){
      nSize = minLocal;
    }
    nSize += 4;
  }
  nSize += (u32)(pIter - pCell);

  /* The minimum size of any cell is 4 bytes. */
  if( nSize<4 ){
    nSize = 4;
  }

  assert( nSize==debuginfo.nSize );
  return (u16)nSize;
}

#ifdef SQLITE_DEBUG
/* This variation on cellSizePtr() is used inside of assert() statements
** only. */
static u16 cellSize(MemPage *pPage, int iCell){
................................................................................
** for the overflow page.
*/
static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
  CellInfo info;
  if( *pRC ) return;
  assert( pCell!=0 );
  btreeParseCellPtr(pPage, pCell, &info);
  assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
  if( info.iOverflow ){
    Pgno ovfl = get4byte(&pCell[info.iOverflow]);
    ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
  }
}
#endif

................................................................................
** Note that even though the freeblock list was checked by btreeInitPage(),
** that routine will not detect overlap between cells or freeblocks.  Nor
** does it detect cells or freeblocks that encrouch into the reserved bytes
** at the end of the page.  So do additional corruption checks inside this
** routine and return SQLITE_CORRUPT if any problems are found.
*/
static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
  u16 iPtr;                             /* Address of pointer to next freeblock */
  u16 iFreeBlk;                         /* Address of the next freeblock */
  u8 hdr;                               /* Page header size.  0 or 100 */
  u8 nFrag = 0;                         /* Reduction in fragmentation */
  u16 iOrigSize = iSize;                /* Original value of iSize */
  u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
  u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
  unsigned char *data = pPage->aData;   /* Page content */
................................................................................
      nFrag = iFreeBlk - iEnd;
      if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
      iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
      iSize = iEnd - iStart;
      iFreeBlk = get2byte(&data[iFreeBlk]);
    }
  
    /* If iPtr is another freeblock (that is, if iPtr is not the freelist pointer
    ** in the page header) then check to see if iStart should be coalesced 
    ** onto the end of iPtr.
    */
    if( iPtr>hdr+1 ){
      int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
      if( iPtrEnd+3>=iStart ){
        if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
        nFrag += iStart - iPtrEnd;
        iSize = iEnd - iPtr;
................................................................................
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
  flagByte &= ~PTF_LEAF;
  pPage->childPtrSize = 4-4*pPage->leaf;
  pBt = pPage->pBt;
  if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
    pPage->intKey = 1;
    pPage->hasData = pPage->leaf;

    pPage->maxLocal = pBt->maxLeaf;
    pPage->minLocal = pBt->minLeaf;
  }else if( flagByte==PTF_ZERODATA ){
    pPage->intKey = 0;
    pPage->hasData = 0;

    pPage->maxLocal = pBt->maxLocal;
    pPage->minLocal = pBt->minLocal;
  }else{
    return SQLITE_CORRUPT_BKPT;
  }
  pPage->max1bytePayload = pBt->max1bytePayload;
  return SQLITE_OK;
................................................................................
#else
  return 1;
#endif
}

/*
** Make sure pBt->pTmpSpace points to an allocation of 
** MX_CELL_SIZE(pBt) bytes.

*/
static void allocateTempSpace(BtShared *pBt){
  if( !pBt->pTmpSpace ){
    pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );

    /* One of the uses of pBt->pTmpSpace is to format cells before
    ** inserting them into a leaf page (function fillInCell()). If
................................................................................
    ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
    ** by the various routines that manipulate binary cells. Which
    ** can mean that fillInCell() only initializes the first 2 or 3
    ** bytes of pTmpSpace, but that the first 4 bytes are copied from
    ** it into a database page. This is not actually a problem, but it
    ** does cause a valgrind error when the 1 or 2 bytes of unitialized 
    ** data is passed to system call write(). So to avoid this error,
    ** zero the first 4 bytes of temp space here.  */






    if( pBt->pTmpSpace ) memset(pBt->pTmpSpace, 0, 4);


  }
}

/*
** Free the pBt->pTmpSpace allocation
*/
static void freeTempSpace(BtShared *pBt){
  sqlite3PageFree( pBt->pTmpSpace);


  pBt->pTmpSpace = 0;

}

/*
** Close an open database and invalidate all cursors.
*/
int sqlite3BtreeClose(Btree *p){
  BtShared *pBt = p->pBt;
................................................................................
**
** If there is a transaction in progress, this routine is a no-op.
*/
static void unlockBtreeIfUnused(BtShared *pBt){
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
  if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){

    assert( pBt->pPage1->aData );
    assert( sqlite3PagerRefcount(pBt->pPager)==1 );
    assert( pBt->pPage1->aData );
    releasePage(pBt->pPage1);
    pBt->pPage1 = 0;
  }
}

/*
** If pBt points to an empty file then convert that empty file
** into a new empty database by initializing the first page of
** the database.
................................................................................
  assert( p->inTrans>TRANS_NONE );
  assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1 && pBt->pPage1->aData );

  if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
    return SQLITE_READONLY;
  }




  if( iTable==1 && btreePagecount(pBt)==0 ){
    assert( wrFlag==0 );
    iTable = 0;
  }

  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
................................................................................
** Failure is not possible.  This function always returns SQLITE_OK.
** It might just as well be a procedure (returning void) but we continue
** to return an integer result code for historical reasons.
*/
int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );

  getCellInfo(pCur);
  *pSize = pCur->info.nData;
  return SQLITE_OK;
}

/*
** Given the page number of an overflow page in the database (parameter
** ovfl), this function finds the page number of the next page in the 
** linked list of overflow pages. If possible, it uses the auto-vacuum
................................................................................
  u32 offset,          /* Begin reading this far into payload */
  u32 amt,             /* Read this many bytes */
  unsigned char *pBuf, /* Write the bytes into this buffer */ 
  int eOp              /* zero to read. non-zero to write. */
){
  unsigned char *aPayload;
  int rc = SQLITE_OK;
  u32 nKey;
  int iIdx = 0;
  MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
  BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
#ifdef SQLITE_DIRECT_OVERFLOW_READ

  int bEnd;                                   /* True if reading to end of data */
#endif

  assert( pPage );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
  assert( cursorHoldsMutex(pCur) );
  assert( eOp!=2 || offset==0 );      /* Always start from beginning for eOp==2 */

  getCellInfo(pCur);
  aPayload = pCur->info.pCell + pCur->info.nHeader;
  nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
#ifdef SQLITE_DIRECT_OVERFLOW_READ
  bEnd = (offset+amt==nKey+pCur->info.nData);

#endif


  if( NEVER(offset+amt > nKey+pCur->info.nData) 
   || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
  ){
    /* Trying to read or write past the end of the data is an error */
    return SQLITE_CORRUPT_BKPT;
  }

  /* Check if data must be read/written to/from the btree page itself. */
  if( offset<pCur->info.nLocal ){
    int a = amt;
................................................................................
      }
    }

    /* If the overflow page-list cache has been allocated and the
    ** entry for the first required overflow page is valid, skip
    ** directly to it.
    */
    if( (pCur->curFlags & BTCF_ValidOvfl)!=0 && pCur->aOverflow[offset/ovflSize] ){


      iIdx = (offset/ovflSize);
      nextPage = pCur->aOverflow[iIdx];
      offset = (offset%ovflSize);
    }

    for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){

................................................................................
        **
        **   1) this is a read operation, and 
        **   2) data is required from the start of this overflow page, and
        **   3) the database is file-backed, and
        **   4) there is no open write-transaction, and
        **   5) the database is not a WAL database,
        **   6) all data from the page is being read.

        **
        ** then data can be read directly from the database file into the
        ** output buffer, bypassing the page-cache altogether. This speeds
        ** up loading large records that span many overflow pages.
        */
        if( (eOp&0x01)==0                                      /* (1) */
         && offset==0                                          /* (2) */
         && (bEnd || a==ovflSize)                              /* (6) */
         && pBt->inTransaction==TRANS_READ                     /* (4) */
         && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (3) */
         && pBt->pPage1->aData[19]==0x01                       /* (5) */

        ){
          u8 aSave[4];
          u8 *aWrite = &pBuf[-4];

          memcpy(aSave, aWrite, 4);
          rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
          nextPage = get4byte(aWrite);
          memcpy(aWrite, aSave, 4);
        }else
#endif

................................................................................
  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->info.nSize>0 );
  *pAmt = pCur->info.nLocal;
  return (void*)(pCur->info.pCell + pCur->info.nHeader);
}


/*
** For the entry that cursor pCur is point to, return as
** many bytes of the key or data as are available on the local
** b-tree page.  Write the number of available bytes into *pAmt.
................................................................................
    assert( biasRight==0 || biasRight==1 );
    idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
    pCur->aiIdx[pCur->iPage] = (u16)idx;
    if( xRecordCompare==0 ){
      for(;;){
        i64 nCellKey;
        pCell = findCell(pPage, idx) + pPage->childPtrSize;
        if( pPage->hasData ){
          while( 0x80 <= *(pCell++) ){
            if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
          }
        }
        getVarint(pCell, (u64*)&nCellKey);
        if( nCellKey<intKey ){
          lwr = idx+1;
................................................................................
** Step the cursor to the back to the previous entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
**
** The main entry point is sqlite3BtreePrevious().  That routine is optimized
** for the common case of merely decrementing the cell counter BtCursor.aiIdx
** to the previous cell on the current page.  The (slower) btreePrevious() helper
** routine is called when it is necessary to move to a different page or
** to restore the cursor.
**
** The calling function will set *pRes to 0 or 1.  The initial *pRes value
** will be 1 if the cursor being stepped corresponds to an SQL index and
** if this routine could have been skipped if that SQL index had been
** a unique index.  Otherwise the caller will have set *pRes to zero.
** Zero is the common case. The btree implementation is free to use the
** initial *pRes value as a hint to improve performance, but the current
................................................................................
  assert( cursorHoldsMutex(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
  assert( pCur->info.nSize==0 );
  if( pCur->eState!=CURSOR_VALID ){
    assert( pCur->eState>=CURSOR_REQUIRESEEK );
    rc = btreeRestoreCursorPosition(pCur);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    if( CURSOR_INVALID==pCur->eState ){
      *pRes = 1;
      return SQLITE_OK;
    }
................................................................................
                 *pPgno, closest+1, k, pTrunk->pgno, n-1));
          rc = sqlite3PagerWrite(pTrunk->pDbPage);
          if( rc ) goto end_allocate_page;
          if( closest<k-1 ){
            memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
          }
          put4byte(&aData[4], k-1);
          noContent = !btreeGetHasContent(pBt, *pPgno) ? PAGER_GET_NOCONTENT : 0;
          rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
          if( rc==SQLITE_OK ){
            rc = sqlite3PagerWrite((*ppPage)->pDbPage);
            if( rc!=SQLITE_OK ){
              releasePage(*ppPage);
            }
          }
................................................................................
    **
    ** Note that the pager will not actually attempt to load or journal 
    ** content for any page that really does lie past the end of the database
    ** file on disk. So the effects of disabling the no-content optimization
    ** here are confined to those pages that lie between the end of the
    ** database image and the end of the database file.
    */
    int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate)) ? PAGER_GET_NOCONTENT : 0;

    rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
    if( rc ) return rc;
    pBt->nPage++;
    if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;

#ifndef SQLITE_OMIT_AUTOVACUUM
................................................................................
static void freePage(MemPage *pPage, int *pRC){
  if( (*pRC)==SQLITE_OK ){
    *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
  }
}

/*
** Free any overflow pages associated with the given Cell.


*/
static int clearCell(MemPage *pPage, unsigned char *pCell){




  BtShared *pBt = pPage->pBt;
  CellInfo info;
  Pgno ovflPgno;
  int rc;
  int nOvfl;
  u32 ovflPageSize;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  btreeParseCellPtr(pPage, pCell, &info);

  if( info.iOverflow==0 ){
    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  }
  if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
    return SQLITE_CORRUPT_BKPT;  /* Cell extends past end of page */
  }
  ovflPgno = get4byte(&pCell[info.iOverflow]);
................................................................................
  MemPage *pOvfl = 0;
  MemPage *pToRelease = 0;
  unsigned char *pPrior;
  unsigned char *pPayload;
  BtShared *pBt = pPage->pBt;
  Pgno pgnoOvfl = 0;
  int nHeader;
  CellInfo info;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );

  /* pPage is not necessarily writeable since pCell might be auxiliary
  ** buffer space that is separate from the pPage buffer area */
  assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
            || sqlite3PagerIswriteable(pPage->pDbPage) );

  /* Fill in the header. */
  nHeader = 0;
  if( !pPage->leaf ){
    nHeader += 4;
  }
  if( pPage->hasData ){
    nHeader += putVarint32(&pCell[nHeader], nData+nZero);
  }else{
    nData = nZero = 0;


  }
  nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
  btreeParseCellPtr(pPage, pCell, &info);
  assert( info.nHeader==nHeader );
  assert( info.nKey==nKey );
  assert( info.nData==(u32)(nData+nZero) );
  
  /* Fill in the payload */
  nPayload = nData + nZero;
  if( pPage->intKey ){
    pSrc = pData;
    nSrc = nData;
    nData = 0;
  }else{ 
    if( NEVER(nKey>0x7fffffff || pKey==0) ){
      return SQLITE_CORRUPT_BKPT;
    }
    nPayload += (int)nKey;
    pSrc = pKey;
    nSrc = (int)nKey;
  }





  *pnSize = info.nSize;








  spaceLeft = info.nLocal;



  pPayload = &pCell[nHeader];





















  pPrior = &pCell[info.iOverflow];




  while( nPayload>0 ){
    if( spaceLeft==0 ){
#ifndef SQLITE_OMIT_AUTOVACUUM
      Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
      if( pBt->autoVacuum ){
        do{
          pgnoOvfl++;
................................................................................
** If the cell content will fit on the page, then put it there.  If it
** will not fit, then make a copy of the cell content into pTemp if
** pTemp is not null.  Regardless of pTemp, allocate a new entry
** in pPage->apOvfl[] and make it point to the cell content (either
** in pTemp or the original pCell) and also record its index. 
** Allocating a new entry in pPage->aCell[] implies that 
** pPage->nOverflow is incremented.
**
** If nSkip is non-zero, then do not copy the first nSkip bytes of the
** cell. The caller will overwrite them after this function returns. If
** nSkip is non-zero, then pCell may not point to an invalid memory location 
** (but pCell+nSkip is always valid).
*/
static void insertCell(
  MemPage *pPage,   /* Page into which we are copying */
  int i,            /* New cell becomes the i-th cell of the page */
  u8 *pCell,        /* Content of the new cell */
  int sz,           /* Bytes of content in pCell */
  u8 *pTemp,        /* Temp storage space for pCell, if needed */
................................................................................
){
  int idx = 0;      /* Where to write new cell content in data[] */
  int j;            /* Loop counter */
  int end;          /* First byte past the last cell pointer in data[] */
  int ins;          /* Index in data[] where new cell pointer is inserted */
  int cellOffset;   /* Address of first cell pointer in data[] */
  u8 *data;         /* The content of the whole page */
  int nSkip = (iChild ? 4 : 0);

  if( *pRC ) return;

  assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  assert( MX_CELL(pPage->pBt)<=10921 );
  assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
  assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
................................................................................
  ** malformed cell from a leaf page to an interior page, if the cell size
  ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
  ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
  ** the term after the || in the following assert(). */
  assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
  if( pPage->nOverflow || sz+2>pPage->nFree ){
    if( pTemp ){
      memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
      pCell = pTemp;
    }
    if( iChild ){
      put4byte(pCell, iChild);
    }
    j = pPage->nOverflow++;
    assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
................................................................................
    if( rc ){ *pRC = rc; return; }
    /* The allocateSpace() routine guarantees the following two properties
    ** if it returns success */
    assert( idx >= end+2 );
    assert( idx+sz <= (int)pPage->pBt->usableSize );
    pPage->nCell++;
    pPage->nFree -= (u16)(2 + sz);
    memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
    if( iChild ){
      put4byte(&data[idx], iChild);
    }
    memmove(&data[ins+2], &data[ins], end-ins);
    put2byte(&data[ins], idx);
    put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
................................................................................
  ** apCell[] include child pointers.  Either way, all cells in apCell[]
  ** are alike.
  **
  ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
  **       leafData:  1 if pPage holds key+data and pParent holds only keys.
  */
  leafCorrection = apOld[0]->leaf*4;
  leafData = apOld[0]->hasData;
  for(i=0; i<nOld; i++){
    int limit;
    
    /* Before doing anything else, take a copy of the i'th original sibling
    ** The rest of this function will use data from the copies rather
    ** that the original pages since the original pages will be in the
    ** process of being overwritten.  */
................................................................................
    }else{
      MemPage * const pParent = pCur->apPage[iPage-1];
      int const iIdx = pCur->aiIdx[iPage-1];

      rc = sqlite3PagerWrite(pParent->pDbPage);
      if( rc==SQLITE_OK ){
#ifndef SQLITE_OMIT_QUICKBALANCE
        if( pPage->hasData
         && pPage->nOverflow==1
         && pPage->aiOvfl[0]==pPage->nCell
         && pParent->pgno!=1
         && pParent->nCell==iIdx
        ){
          /* Call balance_quick() to create a new sibling of pPage on which
          ** to store the overflow cell. balance_quick() inserts a new cell
................................................................................

  if( pCur->eState==CURSOR_FAULT ){
    assert( pCur->skipNext!=SQLITE_OK );
    return pCur->skipNext;
  }

  assert( cursorHoldsMutex(pCur) );
  assert( (pCur->curFlags & BTCF_WriteFlag)!=0 && pBt->inTransaction==TRANS_WRITE

              && (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );

  /* Assert that the caller has been consistent. If this cursor was opened
  ** expecting an index b-tree, then the caller should be inserting blob
  ** keys with no associated data. If the cursor was opened expecting an
  ** intkey table, the caller should be inserting integer keys with a
................................................................................
    /* If this is an insert into a table b-tree, invalidate any incrblob 
    ** cursors open on the row being replaced */
    invalidateIncrblobCursors(p, nKey, 0);

    /* If the cursor is currently on the last row and we are appending a
    ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
    ** call */
    if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0 && pCur->info.nKey==nKey-1 ){

      loc = -1;
    }
  }

  if( !loc ){
    rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
    if( rc ) return rc;
................................................................................
  assert( pPage->intKey || nKey>=0 );
  assert( pPage->leaf || !pPage->intKey );

  TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
          pCur->pgnoRoot, nKey, nData, pPage->pgno,
          loc==0 ? "overwrite" : "new entry"));
  assert( pPage->isInit );
  allocateTempSpace(pBt);
  newCell = pBt->pTmpSpace;
  if( newCell==0 ) return SQLITE_NOMEM;

  rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
  if( rc ) goto end_insert;
  assert( szNew==cellSizePtr(pPage, newCell) );
  assert( szNew <= MX_CELL_SIZE(pBt) );
  idx = pCur->aiIdx[pCur->iPage];
  if( loc==0 ){
    u16 szOld;
................................................................................
    if( rc ){
      goto end_insert;
    }
    oldCell = findCell(pPage, idx);
    if( !pPage->leaf ){
      memcpy(newCell, oldCell, 4);
    }
    szOld = cellSizePtr(pPage, oldCell);
    rc = clearCell(pPage, oldCell);
    dropCell(pPage, idx, szOld, &rc);
    if( rc ) goto end_insert;
  }else if( loc<0 && pPage->nCell>0 ){
    assert( pPage->leaf );
    idx = ++pCur->aiIdx[pCur->iPage];
  }else{
    assert( pPage->leaf );
................................................................................
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;              
  int rc;                              /* Return code */
  MemPage *pPage;                      /* Page to delete cell from */
  unsigned char *pCell;                /* Pointer to cell to delete */
  int iCellIdx;                        /* Index of cell to delete */
  int iCellDepth;                      /* Depth of node containing pCell */ 


  assert( cursorHoldsMutex(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );
................................................................................
  ** invalidate any incrblob cursors open on the row being deleted.  */
  if( pCur->pKeyInfo==0 ){
    invalidateIncrblobCursors(p, pCur->info.nKey, 0);
  }

  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc ) return rc;
  rc = clearCell(pPage, pCell);
  dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
  if( rc ) return rc;

  /* If the cell deleted was not located on a leaf page, then the cursor
  ** is currently pointing to the largest entry in the sub-tree headed
  ** by the child-page of the cell that was just deleted from an internal
  ** node. The cell from the leaf node needs to be moved to the internal
  ** node to replace the deleted cell.  */
................................................................................
    int nCell;
    Pgno n = pCur->apPage[iCellDepth+1]->pgno;
    unsigned char *pTmp;

    pCell = findCell(pLeaf, pLeaf->nCell-1);
    nCell = cellSizePtr(pLeaf, pCell);
    assert( MX_CELL_SIZE(pBt) >= nCell );

    allocateTempSpace(pBt);
    pTmp = pBt->pTmpSpace;


    rc = sqlite3PagerWrite(pLeaf->pDbPage);
    insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
    dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
    if( rc ) return rc;
  }

  /* Balance the tree. If the entry deleted was located on a leaf page,
................................................................................
  int *pnChange            /* Add number of Cells freed to this counter */
){
  MemPage *pPage;
  int rc;
  unsigned char *pCell;
  int i;
  int hdr;


  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pgno>btreePagecount(pBt) ){
    return SQLITE_CORRUPT_BKPT;
  }

  rc = getAndInitPage(pBt, pgno, &pPage, 0);
................................................................................
  hdr = pPage->hdrOffset;
  for(i=0; i<pPage->nCell; i++){
    pCell = findCell(pPage, i);
    if( !pPage->leaf ){
      rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
      if( rc ) goto cleardatabasepage_out;
    }
    rc = clearCell(pPage, pCell);
    if( rc ) goto cleardatabasepage_out;
  }
  if( !pPage->leaf ){
    rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
    if( rc ) goto cleardatabasepage_out;
  }else if( pnChange ){
    assert( pPage->intKey );
................................................................................

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Append a message to the error message string.
*/
static void checkAppendMsg(
  IntegrityCk *pCheck,
  char *zMsg1,
  const char *zFormat,
  ...
){
  va_list ap;

  if( !pCheck->mxErr ) return;
  pCheck->mxErr--;
  pCheck->nErr++;
  va_start(ap, zFormat);
  if( pCheck->errMsg.nChar ){
    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  }
  if( zMsg1 ){

    sqlite3StrAccumAppendAll(&pCheck->errMsg, zMsg1);
  }
  sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
    pCheck->mallocFailed = 1;
  }
}
................................................................................
** Add 1 to the reference count for page iPage.  If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 or more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
  if( iPage==0 ) return 1;
  if( iPage>pCheck->nPage ){
    checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
    return 1;
  }
  if( getPageReferenced(pCheck, iPage) ){
    checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
    return 1;
  }
  setPageReferenced(pCheck, iPage);
  return 0;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
................................................................................
** page iParent, pointer type ptrType. If not, append an error message
** to pCheck.
*/
static void checkPtrmap(
  IntegrityCk *pCheck,   /* Integrity check context */
  Pgno iChild,           /* Child page number */
  u8 eType,              /* Expected pointer map type */
  Pgno iParent,          /* Expected pointer map parent page number */
  char *zContext         /* Context description (used for error msg) */
){
  int rc;
  u8 ePtrmapType;
  Pgno iPtrmapParent;

  rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
    checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
    return;
  }

  if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
    checkAppendMsg(pCheck, zContext, 
      "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 
      iChild, eType, iParent, ePtrmapType, iPtrmapParent);
  }
}
#endif

/*
................................................................................
** Check the integrity of the freelist or of an overflow page list.
** Verify that the number of pages on the list is N.
*/
static void checkList(
  IntegrityCk *pCheck,  /* Integrity checking context */
  int isFreeList,       /* True for a freelist.  False for overflow page list */
  int iPage,            /* Page number for first page in the list */
  int N,                /* Expected number of pages in the list */
  char *zContext        /* Context for error messages */
){
  int i;
  int expected = N;
  int iFirst = iPage;
  while( N-- > 0 && pCheck->mxErr ){
    DbPage *pOvflPage;
    unsigned char *pOvflData;
    if( iPage<1 ){
      checkAppendMsg(pCheck, zContext,
         "%d of %d pages missing from overflow list starting at %d",
          N+1, expected, iFirst);
      break;
    }
    if( checkRef(pCheck, iPage, zContext) ) break;
    if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
      checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
      break;
    }
    pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
    if( isFreeList ){
      int n = get4byte(&pOvflData[4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pCheck->pBt->autoVacuum ){
        checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
      }
#endif
      if( n>(int)pCheck->pBt->usableSize/4-2 ){
        checkAppendMsg(pCheck, zContext,
           "freelist leaf count too big on page %d", iPage);
        N--;
      }else{
        for(i=0; i<n; i++){
          Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
          if( pCheck->pBt->autoVacuum ){
            checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
          }
#endif
          checkRef(pCheck, iFreePage, zContext);
        }
        N -= n;
      }
    }
#ifndef SQLITE_OMIT_AUTOVACUUM
    else{
      /* If this database supports auto-vacuum and iPage is not the last
      ** page in this overflow list, check that the pointer-map entry for
      ** the following page matches iPage.
      */
      if( pCheck->pBt->autoVacuum && N>0 ){
        i = get4byte(pOvflData);
        checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
      }
    }
#endif
    iPage = get4byte(pOvflData);
    sqlite3PagerUnref(pOvflPage);
  }
}
................................................................................
**      7.  Verify that the depth of all children is the same.
**      8.  Make sure this page is at least 33% full or else it is
**          the root of the tree.
*/
static int checkTreePage(
  IntegrityCk *pCheck,  /* Context for the sanity check */
  int iPage,            /* Page number of the page to check */
  char *zParentContext, /* Parent context */
  i64 *pnParentMinKey, 
  i64 *pnParentMaxKey
){
  MemPage *pPage;
  int i, rc, depth, d2, pgno, cnt;
  int hdr, cellStart;
  int nCell;
  u8 *data;
  BtShared *pBt;
  int usableSize;
  char zContext[100];
  char *hit = 0;
  i64 nMinKey = 0;
  i64 nMaxKey = 0;

  sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);


  /* Check that the page exists
  */
  pBt = pCheck->pBt;
  usableSize = pBt->usableSize;
  if( iPage==0 ) return 0;
  if( checkRef(pCheck, iPage, zParentContext) ) return 0;


  if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
    checkAppendMsg(pCheck, zContext,
       "unable to get the page. error code=%d", rc);
    return 0;


  }

  /* Clear MemPage.isInit to make sure the corruption detection code in
  ** btreeInitPage() is executed.  */
  pPage->isInit = 0;
  if( (rc = btreeInitPage(pPage))!=0 ){
    assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
    checkAppendMsg(pCheck, zContext, 
                   "btreeInitPage() returns error code %d", rc);
    releasePage(pPage);
    return 0;

  }

  /* Check out all the cells.
  */
  depth = 0;
  for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
    u8 *pCell;
    u32 sz;
    CellInfo info;

    /* Check payload overflow pages
    */
    sqlite3_snprintf(sizeof(zContext), zContext,
             "On tree page %d cell %d: ", iPage, i);


    pCell = findCell(pPage,i);
    btreeParseCellPtr(pPage, pCell, &info);
    sz = info.nData;
    if( !pPage->intKey ) sz += (int)info.nKey;
    /* For intKey pages, check that the keys are in order.
    */


    else if( i==0 ) nMinKey = nMaxKey = info.nKey;
    else{
      if( info.nKey <= nMaxKey ){
        checkAppendMsg(pCheck, zContext, 
            "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
      }
      nMaxKey = info.nKey;
    }
    assert( sz==info.nPayload );
    if( (sz>info.nLocal) 
     && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
    ){
      int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
      Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
      }
#endif
      checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
    }

    /* Check sanity of left child page.
    */
    if( !pPage->leaf ){
      pgno = get4byte(pCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
      }
#endif
      d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
      if( i>0 && d2!=depth ){
        checkAppendMsg(pCheck, zContext, "Child page depth differs");
      }
      depth = d2;
    }
  }

  if( !pPage->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    sqlite3_snprintf(sizeof(zContext), zContext, 
                     "On page %d at right child: ", iPage);

#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
    }
#endif
    checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
  }
 
  /* For intKey leaf pages, check that the min/max keys are in order
  ** with any left/parent/right pages.
  */


  if( pPage->leaf && pPage->intKey ){
    /* if we are a left child page */
    if( pnParentMinKey ){
      /* if we are the left most child page */
      if( !pnParentMaxKey ){
        if( nMaxKey > *pnParentMinKey ){
          checkAppendMsg(pCheck, zContext, 
              "Rowid %lld out of order (max larger than parent min of %lld)",
              nMaxKey, *pnParentMinKey);
        }
      }else{
        if( nMinKey <= *pnParentMinKey ){
          checkAppendMsg(pCheck, zContext, 
              "Rowid %lld out of order (min less than parent min of %lld)",
              nMinKey, *pnParentMinKey);
        }
        if( nMaxKey > *pnParentMaxKey ){
          checkAppendMsg(pCheck, zContext, 
              "Rowid %lld out of order (max larger than parent max of %lld)",
              nMaxKey, *pnParentMaxKey);
        }
        *pnParentMinKey = nMaxKey;
      }
    /* else if we're a right child page */
    } else if( pnParentMaxKey ){
      if( nMinKey <= *pnParentMaxKey ){
        checkAppendMsg(pCheck, zContext, 
            "Rowid %lld out of order (min less than parent max of %lld)",
            nMinKey, *pnParentMaxKey);
      }
    }
  }

  /* Check for complete coverage of the page
  */
  data = pPage->aData;
  hdr = pPage->hdrOffset;
  hit = sqlite3PageMalloc( pBt->pageSize );

  if( hit==0 ){
    pCheck->mallocFailed = 1;
  }else{
    int contentOffset = get2byteNotZero(&data[hdr+5]);
    assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
    memset(hit+contentOffset, 0, usableSize-contentOffset);
    memset(hit, 1, contentOffset);
................................................................................
      int pc = get2byte(&data[cellStart+i*2]);
      u32 size = 65536;
      int j;
      if( pc<=usableSize-4 ){
        size = cellSizePtr(pPage, &data[pc]);
      }
      if( (int)(pc+size-1)>=usableSize ){

        checkAppendMsg(pCheck, 0, 
            "Corruption detected in cell %d on page %d",i,iPage);
      }else{
        for(j=pc+size-1; j>=pc; j--) hit[j]++;
      }
    }
    i = get2byte(&data[hdr+1]);
    while( i>0 ){
................................................................................
      assert( j<=usableSize-4 );   /* Enforced by btreeInitPage() */
      i = j;
    }
    for(i=cnt=0; i<usableSize; i++){
      if( hit[i]==0 ){
        cnt++;
      }else if( hit[i]>1 ){
        checkAppendMsg(pCheck, 0,
          "Multiple uses for byte %d of page %d", i, iPage);
        break;
      }
    }
    if( cnt!=data[hdr+7] ){
      checkAppendMsg(pCheck, 0, 
          "Fragmentation of %d bytes reported as %d on page %d",
          cnt, data[hdr+7], iPage);
    }
  }
  sqlite3PageFree(hit);
  releasePage(pPage);





  return depth+1;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** This routine does a complete check of the given BTree file.  aRoot[] is
................................................................................
  nRef = sqlite3PagerRefcount(pBt->pPager);
  sCheck.pBt = pBt;
  sCheck.pPager = pBt->pPager;
  sCheck.nPage = btreePagecount(sCheck.pBt);
  sCheck.mxErr = mxErr;
  sCheck.nErr = 0;
  sCheck.mallocFailed = 0;



  *pnErr = 0;
  if( sCheck.nPage==0 ){
    sqlite3BtreeLeave(p);
    return 0;
  }

  sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
................................................................................
  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
  sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
  sCheck.errMsg.useMalloc = 2;

  /* Check the integrity of the freelist
  */

  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");


  /* Check all the tables.
  */
  for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
    if( aRoot[i]==0 ) continue;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && aRoot[i]>1 ){
      checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
    }
#endif

    checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);

  }

  /* Make sure every page in the file is referenced
  */
  for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
#ifdef SQLITE_OMIT_AUTOVACUUM
    if( getPageReferenced(&sCheck, i)==0 ){
      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
    }
#else
    /* If the database supports auto-vacuum, make sure no tables contain
    ** references to pointer-map pages.
    */
    if( getPageReferenced(&sCheck, i)==0 && 
       (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
    }
    if( getPageReferenced(&sCheck, i)!=0 && 
       (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
    }
#endif
  }

  /* Make sure this analysis did not leave any unref() pages.
  ** This is an internal consistency check; an integrity check
  ** of the integrity check.
  */
  if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
    checkAppendMsg(&sCheck, 0, 
      "Outstanding page count goes from %d to %d during this analysis",
      nRef, sqlite3PagerRefcount(pBt->pPager)
    );
  }

  /* Clean  up and report errors.
  */
................................................................................
    return SQLITE_ABORT;
  }

  /* Save the positions of all other cursors open on this table. This is
  ** required in case any of them are holding references to an xFetch
  ** version of the b-tree page modified by the accessPayload call below.
  **
  ** Note that pCsr must be open on a BTREE_INTKEY table and saveCursorPosition()
  ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
  ** saveAllCursors can only return SQLITE_OK.
  */
  VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
  assert( rc==SQLITE_OK );

  /* Check some assumptions: 







>
|
>







 







|
|
|







 







|







 







<
<
<






|



|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<



|


|



>
|







 







|



<
<





|









|
|
>










|
|
|
|
|
<
|
>
>
>
>
>
>
>
|
>
>





<
<

<


|
>
>
>







<
<
|
|
<
<
<
<
<
|







 







<







 







|







 







|
|
|







 







|
>




|
>







 







|
>







 







|
>
>
>
>
>
>
|
>
>







|
>
>
|
>







 







>
|

|
|
<







 







>
>
>
>







 







>

|







 







<




>
|






|


|
<

<
>

>

<
|
<







 







|
>
>







 







>











>



>







 







|







 







|







 







|
|
|







 







<
|







 







|







 







|







 







|
>
>

|
>
>
>
>









>







 







<









|
|
<
<
|
|

<
>
>


<
<
<
<

|
<








|



>
>
>
>
>
|
>
>
>
>
>
>
>
>
|
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
>
>







 







<
<
<
<
<







 







<







 







|







 







|







 







|







 







|







 







|
>







 







|
>







 







<

<
>







 







<
|







 







>







 







|
|







 







<
<

<
>







 







>







 







|







 







<




>







|
>
|







 







|


|



|







 







|
<








|




|







 







|
<








|




|

|







|



|







|


|












|







 







<










<



|
|
>






|
>
>

|

<
>
>







|


|
>












<
|
>
>


|
<


>
>
|
<
|
|
|



<







|


|








|


|

|







<
|
>


|


|





>
>






|





|




|








|











>







 







>
|







 







|





|






>
>
>
>
>







 







>
>
>







 







>

|
>







|


>
|
>







|







|



|









|







 







|







484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
...
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
...
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
...
967
968
969
970
971
972
973



974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
....
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041


1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090


1091

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104


1105
1106





1107
1108
1109
1110
1111
1112
1113
1114
....
1123
1124
1125
1126
1127
1128
1129

1130
1131
1132
1133
1134
1135
1136
....
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
....
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
....
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
....
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
....
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
....
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647

2648
2649
2650
2651
2652
2653
2654
....
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
....
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
....
4027
4028
4029
4030
4031
4032
4033

4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

4050

4051
4052
4053
4054

4055

4056
4057
4058
4059
4060
4061
4062
....
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
....
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
....
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
....
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
....
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
....
4998
4999
5000
5001
5002
5003
5004

5005
5006
5007
5008
5009
5010
5011
5012
....
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
....
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
....
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
....
5637
5638
5639
5640
5641
5642
5643

5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654


5655
5656
5657

5658
5659
5660
5661




5662
5663

5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
....
5854
5855
5856
5857
5858
5859
5860





5861
5862
5863
5864
5865
5866
5867
....
5870
5871
5872
5873
5874
5875
5876

5877
5878
5879
5880
5881
5882
5883
....
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
....
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
....
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
....
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
....
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
....
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
....
7164
7165
7166
7167
7168
7169
7170

7171

7172
7173
7174
7175
7176
7177
7178
7179
....
7182
7183
7184
7185
7186
7187
7188

7189
7190
7191
7192
7193
7194
7195
7196
....
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
....
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
....
7311
7312
7313
7314
7315
7316
7317


7318

7319
7320
7321
7322
7323
7324
7325
7326
....
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
....
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
....
7886
7887
7888
7889
7890
7891
7892

7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
....
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
....
7962
7963
7964
7965
7966
7967
7968
7969

7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
....
7991
7992
7993
7994
7995
7996
7997
7998

7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
....
8075
8076
8077
8078
8079
8080
8081

8082
8083
8084
8085
8086
8087
8088
8089
8090
8091

8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109

8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135

8136
8137
8138
8139
8140
8141

8142
8143
8144
8145
8146

8147
8148
8149
8150
8151
8152

8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184

8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
....
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
....
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
....
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
....
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
....
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
  i64 iRow,               /* The rowid that might be changing */
  int isClearTable        /* True if all rows are being deleted */
){
  BtCursor *p;
  BtShared *pBt = pBtree->pBt;
  assert( sqlite3BtreeHoldsMutex(pBtree) );
  for(p=pBt->pCursor; p; p=p->pNext){
    if( (p->curFlags & BTCF_Incrblob)!=0
     && (isClearTable || p->info.nKey==iRow)
    ){
      p->eState = CURSOR_INVALID;
    }
  }
}

#else
  /* Stub function when INCRBLOB is omitted */
................................................................................

/* This helper routine to saveAllCursors does the actual work of saving
** the cursors if and when a cursor is found that actually requires saving.
** The common case is that no cursors need to be saved, so this routine is
** broken out from its caller to avoid unnecessary stack pointer movement.
*/
static int SQLITE_NOINLINE saveCursorsOnList(
  BtCursor *p,         /* The first cursor that needs saving */
  Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
  BtCursor *pExcept    /* Do not save this cursor */
){
  do{
    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
      if( p->eState==CURSOR_VALID ){
        int rc = saveCursorPosition(p);
        if( SQLITE_OK!=rc ){
          return rc;
................................................................................
**
** Calling this routine with a NULL cursor pointer returns false.
**
** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
** back to where it ought to be if this routine returns true.
*/
int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
  return pCur->eState!=CURSOR_VALID;
}

/*
** This routine restores a cursor back to its original position after it
** has been moved by some outside activity (such as a btree rebalance or
** a row having been deleted out from under the cursor).  
**
................................................................................
}

/*
** Parse a cell content block and fill in the CellInfo structure.  There
** are two versions of this function.  btreeParseCell() takes a 
** cell index as the second argument and btreeParseCellPtr() 
** takes a pointer to the body of the cell as its second argument.



*/
static void btreeParseCellPtr(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
){
  u8 *pIter;              /* For scanning through pCell */
  u32 nPayload;           /* Number of bytes of cell payload */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->leaf==0 || pPage->leaf==1 );
  if( pPage->intKeyLeaf ){
    assert( pPage->childPtrSize==0 );
    pIter = pCell + getVarint32(pCell, nPayload);
    pIter += getVarint(pIter, (u64*)&pInfo->nKey);
  }else if( pPage->noPayload ){
    assert( pPage->childPtrSize==4 );
    pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
    pInfo->nPayload = 0;
    pInfo->nLocal = 0;
    pInfo->iOverflow = 0;
    pInfo->pPayload = 0;
    return;
  }else{
    pIter = pCell + pPage->childPtrSize;
    pIter += getVarint32(pIter, nPayload);

    pInfo->nKey = nPayload;
  }
  pInfo->nPayload = nPayload;
  pInfo->pPayload = pIter;
  testcase( nPayload==pPage->maxLocal );
  testcase( nPayload==pPage->maxLocal+1 );
  if( nPayload<=pPage->maxLocal ){
    /* This is the (easy) common case where the entire payload fits
    ** on the local page.  No overflow is required.
    */
    pInfo->nSize = nPayload + (u16)(pIter - pCell);
    if( pInfo->nSize<4 ) pInfo->nSize = 4;
    pInfo->nLocal = (u16)nPayload;
    pInfo->iOverflow = 0;
  }else{
    /* If the payload will not fit completely on the local page, we have
    ** to decide how much to store locally and how much to spill onto
    ** overflow pages.  The strategy is to minimize the amount of unused
    ** space on overflow pages while keeping the amount of local storage
................................................................................
    testcase( surplus==maxLocal );
    testcase( surplus==maxLocal+1 );
    if( surplus <= maxLocal ){
      pInfo->nLocal = (u16)surplus;
    }else{
      pInfo->nLocal = (u16)minLocal;
    }
    pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
    pInfo->nSize = pInfo->iOverflow + 4;
  }
}


static void btreeParseCell(
  MemPage *pPage,         /* Page containing the cell */
  int iCell,              /* The cell index.  First cell is 0 */
  CellInfo *pInfo         /* Fill in this structure */
){
  btreeParseCellPtr(pPage, findCell(pPage, iCell), pInfo);
}

/*
** Compute the total number of bytes that a Cell needs in the cell
** data area of the btree-page.  The return number includes the cell
** data header and the local payload, but not any overflow page or
** the space used by the cell pointer.
*/
static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
  u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
  u8 *pEnd;                                /* End mark for a varint */
  u32 nSize;                               /* Size value to return */

#ifdef SQLITE_DEBUG
  /* The value returned by this function should always be the same as
  ** the (CellInfo.nSize) value found by doing a full parse of the
  ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
  ** this function verifies that this invariant is not violated. */
  CellInfo debuginfo;
  btreeParseCellPtr(pPage, pCell, &debuginfo);
#endif

  if( pPage->noPayload ){
    pEnd = &pIter[9];
    while( (*pIter++)&0x80 && pIter<pEnd );
    assert( pPage->childPtrSize==4 );
    return (u16)(pIter - pCell);

  }
  nSize = *pIter;
  if( nSize>=0x80 ){
    pEnd = &pIter[9];
    nSize &= 0x7f;
    do{
      nSize = (nSize<<7) | (*++pIter & 0x7f);
    }while( *(pIter)>=0x80 && pIter<pEnd );
  }
  pIter++;
  if( pPage->intKey ){
    /* pIter now points at the 64-bit integer key value, a variable length 
    ** integer. The following block moves pIter to point at the first byte
    ** past the end of the key value. */
    pEnd = &pIter[9];
    while( (*pIter++)&0x80 && pIter<pEnd );


  }

  testcase( nSize==pPage->maxLocal );
  testcase( nSize==pPage->maxLocal+1 );
  if( nSize<=pPage->maxLocal ){
    nSize += (u32)(pIter - pCell);
    if( nSize<4 ) nSize = 4;
  }else{
    int minLocal = pPage->minLocal;
    nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
    testcase( nSize==pPage->maxLocal );
    testcase( nSize==pPage->maxLocal+1 );
    if( nSize>pPage->maxLocal ){
      nSize = minLocal;
    }


    nSize += 4 + (u16)(pIter - pCell);
  }





  assert( nSize==debuginfo.nSize || CORRUPT_DB );
  return (u16)nSize;
}

#ifdef SQLITE_DEBUG
/* This variation on cellSizePtr() is used inside of assert() statements
** only. */
static u16 cellSize(MemPage *pPage, int iCell){
................................................................................
** for the overflow page.
*/
static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
  CellInfo info;
  if( *pRC ) return;
  assert( pCell!=0 );
  btreeParseCellPtr(pPage, pCell, &info);

  if( info.iOverflow ){
    Pgno ovfl = get4byte(&pCell[info.iOverflow]);
    ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
  }
}
#endif

................................................................................
** Note that even though the freeblock list was checked by btreeInitPage(),
** that routine will not detect overlap between cells or freeblocks.  Nor
** does it detect cells or freeblocks that encrouch into the reserved bytes
** at the end of the page.  So do additional corruption checks inside this
** routine and return SQLITE_CORRUPT if any problems are found.
*/
static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
  u16 iPtr;                             /* Address of ptr to next freeblock */
  u16 iFreeBlk;                         /* Address of the next freeblock */
  u8 hdr;                               /* Page header size.  0 or 100 */
  u8 nFrag = 0;                         /* Reduction in fragmentation */
  u16 iOrigSize = iSize;                /* Original value of iSize */
  u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
  u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
  unsigned char *data = pPage->aData;   /* Page content */
................................................................................
      nFrag = iFreeBlk - iEnd;
      if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
      iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
      iSize = iEnd - iStart;
      iFreeBlk = get2byte(&data[iFreeBlk]);
    }
  
    /* If iPtr is another freeblock (that is, if iPtr is not the freelist
    ** pointer in the page header) then check to see if iStart should be
    ** coalesced onto the end of iPtr.
    */
    if( iPtr>hdr+1 ){
      int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
      if( iPtrEnd+3>=iStart ){
        if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
        nFrag += iStart - iPtrEnd;
        iSize = iEnd - iPtr;
................................................................................
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
  flagByte &= ~PTF_LEAF;
  pPage->childPtrSize = 4-4*pPage->leaf;
  pBt = pPage->pBt;
  if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
    pPage->intKey = 1;
    pPage->intKeyLeaf = pPage->leaf;
    pPage->noPayload = !pPage->leaf;
    pPage->maxLocal = pBt->maxLeaf;
    pPage->minLocal = pBt->minLeaf;
  }else if( flagByte==PTF_ZERODATA ){
    pPage->intKey = 0;
    pPage->intKeyLeaf = 0;
    pPage->noPayload = 0;
    pPage->maxLocal = pBt->maxLocal;
    pPage->minLocal = pBt->minLocal;
  }else{
    return SQLITE_CORRUPT_BKPT;
  }
  pPage->max1bytePayload = pBt->max1bytePayload;
  return SQLITE_OK;
................................................................................
#else
  return 1;
#endif
}

/*
** Make sure pBt->pTmpSpace points to an allocation of 
** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
** pointer.
*/
static void allocateTempSpace(BtShared *pBt){
  if( !pBt->pTmpSpace ){
    pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );

    /* One of the uses of pBt->pTmpSpace is to format cells before
    ** inserting them into a leaf page (function fillInCell()). If
................................................................................
    ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
    ** by the various routines that manipulate binary cells. Which
    ** can mean that fillInCell() only initializes the first 2 or 3
    ** bytes of pTmpSpace, but that the first 4 bytes are copied from
    ** it into a database page. This is not actually a problem, but it
    ** does cause a valgrind error when the 1 or 2 bytes of unitialized 
    ** data is passed to system call write(). So to avoid this error,
    ** zero the first 4 bytes of temp space here.
    **
    ** Also:  Provide four bytes of initialized space before the
    ** beginning of pTmpSpace as an area available to prepend the
    ** left-child pointer to the beginning of a cell.
    */
    if( pBt->pTmpSpace ){
      memset(pBt->pTmpSpace, 0, 8);
      pBt->pTmpSpace += 4;
    }
  }
}

/*
** Free the pBt->pTmpSpace allocation
*/
static void freeTempSpace(BtShared *pBt){
  if( pBt->pTmpSpace ){
    pBt->pTmpSpace -= 4;
    sqlite3PageFree(pBt->pTmpSpace);
    pBt->pTmpSpace = 0;
  }
}

/*
** Close an open database and invalidate all cursors.
*/
int sqlite3BtreeClose(Btree *p){
  BtShared *pBt = p->pBt;
................................................................................
**
** If there is a transaction in progress, this routine is a no-op.
*/
static void unlockBtreeIfUnused(BtShared *pBt){
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
  if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
    MemPage *pPage1 = pBt->pPage1;
    assert( pPage1->aData );
    assert( sqlite3PagerRefcount(pBt->pPager)==1 );
    pBt->pPage1 = 0;
    releasePage(pPage1);

  }
}

/*
** If pBt points to an empty file then convert that empty file
** into a new empty database by initializing the first page of
** the database.
................................................................................
  assert( p->inTrans>TRANS_NONE );
  assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1 && pBt->pPage1->aData );

  if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
    return SQLITE_READONLY;
  }
  if( wrFlag ){
    allocateTempSpace(pBt);
    if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
  }
  if( iTable==1 && btreePagecount(pBt)==0 ){
    assert( wrFlag==0 );
    iTable = 0;
  }

  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
................................................................................
** Failure is not possible.  This function always returns SQLITE_OK.
** It might just as well be a procedure (returning void) but we continue
** to return an integer result code for historical reasons.
*/
int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
  getCellInfo(pCur);
  *pSize = pCur->info.nPayload;
  return SQLITE_OK;
}

/*
** Given the page number of an overflow page in the database (parameter
** ovfl), this function finds the page number of the next page in the 
** linked list of overflow pages. If possible, it uses the auto-vacuum
................................................................................
  u32 offset,          /* Begin reading this far into payload */
  u32 amt,             /* Read this many bytes */
  unsigned char *pBuf, /* Write the bytes into this buffer */ 
  int eOp              /* zero to read. non-zero to write. */
){
  unsigned char *aPayload;
  int rc = SQLITE_OK;

  int iIdx = 0;
  MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
  BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
#ifdef SQLITE_DIRECT_OVERFLOW_READ
  unsigned char * const pBufStart = pBuf;
  int bEnd;                                 /* True if reading to end of data */
#endif

  assert( pPage );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
  assert( cursorHoldsMutex(pCur) );
  assert( eOp!=2 || offset==0 );    /* Always start from beginning for eOp==2 */

  getCellInfo(pCur);
  aPayload = pCur->info.pPayload;

#ifdef SQLITE_DIRECT_OVERFLOW_READ

  bEnd = offset+amt==pCur->info.nPayload;
#endif
  assert( offset+amt <= pCur->info.nPayload );


  if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){

    /* Trying to read or write past the end of the data is an error */
    return SQLITE_CORRUPT_BKPT;
  }

  /* Check if data must be read/written to/from the btree page itself. */
  if( offset<pCur->info.nLocal ){
    int a = amt;
................................................................................
      }
    }

    /* If the overflow page-list cache has been allocated and the
    ** entry for the first required overflow page is valid, skip
    ** directly to it.
    */
    if( (pCur->curFlags & BTCF_ValidOvfl)!=0
     && pCur->aOverflow[offset/ovflSize]
    ){
      iIdx = (offset/ovflSize);
      nextPage = pCur->aOverflow[iIdx];
      offset = (offset%ovflSize);
    }

    for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){

................................................................................
        **
        **   1) this is a read operation, and 
        **   2) data is required from the start of this overflow page, and
        **   3) the database is file-backed, and
        **   4) there is no open write-transaction, and
        **   5) the database is not a WAL database,
        **   6) all data from the page is being read.
        **   7) at least 4 bytes have already been read into the output buffer 
        **
        ** then data can be read directly from the database file into the
        ** output buffer, bypassing the page-cache altogether. This speeds
        ** up loading large records that span many overflow pages.
        */
        if( (eOp&0x01)==0                                      /* (1) */
         && offset==0                                          /* (2) */
         && (bEnd || a==ovflSize)                              /* (6) */
         && pBt->inTransaction==TRANS_READ                     /* (4) */
         && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (3) */
         && pBt->pPage1->aData[19]==0x01                       /* (5) */
         && &pBuf[-4]>=pBufStart                               /* (7) */
        ){
          u8 aSave[4];
          u8 *aWrite = &pBuf[-4];
          assert( aWrite>=pBufStart );                         /* hence (7) */
          memcpy(aSave, aWrite, 4);
          rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
          nextPage = get4byte(aWrite);
          memcpy(aWrite, aSave, 4);
        }else
#endif

................................................................................
  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->info.nSize>0 );
  *pAmt = pCur->info.nLocal;
  return (void*)pCur->info.pPayload;
}


/*
** For the entry that cursor pCur is point to, return as
** many bytes of the key or data as are available on the local
** b-tree page.  Write the number of available bytes into *pAmt.
................................................................................
    assert( biasRight==0 || biasRight==1 );
    idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
    pCur->aiIdx[pCur->iPage] = (u16)idx;
    if( xRecordCompare==0 ){
      for(;;){
        i64 nCellKey;
        pCell = findCell(pPage, idx) + pPage->childPtrSize;
        if( pPage->intKeyLeaf ){
          while( 0x80 <= *(pCell++) ){
            if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
          }
        }
        getVarint(pCell, (u64*)&nCellKey);
        if( nCellKey<intKey ){
          lwr = idx+1;
................................................................................
** Step the cursor to the back to the previous entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
**
** The main entry point is sqlite3BtreePrevious().  That routine is optimized
** for the common case of merely decrementing the cell counter BtCursor.aiIdx
** to the previous cell on the current page.  The (slower) btreePrevious()
** helper routine is called when it is necessary to move to a different page
** or to restore the cursor.
**
** The calling function will set *pRes to 0 or 1.  The initial *pRes value
** will be 1 if the cursor being stepped corresponds to an SQL index and
** if this routine could have been skipped if that SQL index had been
** a unique index.  Otherwise the caller will have set *pRes to zero.
** Zero is the common case. The btree implementation is free to use the
** initial *pRes value as a hint to improve performance, but the current
................................................................................
  assert( cursorHoldsMutex(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
  assert( pCur->info.nSize==0 );
  if( pCur->eState!=CURSOR_VALID ){

    rc = restoreCursorPosition(pCur);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    if( CURSOR_INVALID==pCur->eState ){
      *pRes = 1;
      return SQLITE_OK;
    }
................................................................................
                 *pPgno, closest+1, k, pTrunk->pgno, n-1));
          rc = sqlite3PagerWrite(pTrunk->pDbPage);
          if( rc ) goto end_allocate_page;
          if( closest<k-1 ){
            memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
          }
          put4byte(&aData[4], k-1);
          noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
          rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
          if( rc==SQLITE_OK ){
            rc = sqlite3PagerWrite((*ppPage)->pDbPage);
            if( rc!=SQLITE_OK ){
              releasePage(*ppPage);
            }
          }
................................................................................
    **
    ** Note that the pager will not actually attempt to load or journal 
    ** content for any page that really does lie past the end of the database
    ** file on disk. So the effects of disabling the no-content optimization
    ** here are confined to those pages that lie between the end of the
    ** database image and the end of the database file.
    */
    int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;

    rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
    if( rc ) return rc;
    pBt->nPage++;
    if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;

#ifndef SQLITE_OMIT_AUTOVACUUM
................................................................................
static void freePage(MemPage *pPage, int *pRC){
  if( (*pRC)==SQLITE_OK ){
    *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
  }
}

/*
** Free any overflow pages associated with the given Cell.  Write the
** local Cell size (the number of bytes on the original page, omitting
** overflow) into *pnSize.
*/
static int clearCell(
  MemPage *pPage,          /* The page that contains the Cell */
  unsigned char *pCell,    /* First byte of the Cell */
  u16 *pnSize              /* Write the size of the Cell here */
){
  BtShared *pBt = pPage->pBt;
  CellInfo info;
  Pgno ovflPgno;
  int rc;
  int nOvfl;
  u32 ovflPageSize;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  btreeParseCellPtr(pPage, pCell, &info);
  *pnSize = info.nSize;
  if( info.iOverflow==0 ){
    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  }
  if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
    return SQLITE_CORRUPT_BKPT;  /* Cell extends past end of page */
  }
  ovflPgno = get4byte(&pCell[info.iOverflow]);
................................................................................
  MemPage *pOvfl = 0;
  MemPage *pToRelease = 0;
  unsigned char *pPrior;
  unsigned char *pPayload;
  BtShared *pBt = pPage->pBt;
  Pgno pgnoOvfl = 0;
  int nHeader;


  assert( sqlite3_mutex_held(pPage->pBt->mutex) );

  /* pPage is not necessarily writeable since pCell might be auxiliary
  ** buffer space that is separate from the pPage buffer area */
  assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
            || sqlite3PagerIswriteable(pPage->pDbPage) );

  /* Fill in the header. */
  nHeader = pPage->childPtrSize;
  nPayload = nData + nZero;


  if( pPage->intKeyLeaf ){
    nHeader += putVarint32(&pCell[nHeader], nPayload);
  }else{

    assert( nData==0 );
    assert( nZero==0 );
  }
  nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);




  
  /* Fill in the payload size */

  if( pPage->intKey ){
    pSrc = pData;
    nSrc = nData;
    nData = 0;
  }else{ 
    if( NEVER(nKey>0x7fffffff || pKey==0) ){
      return SQLITE_CORRUPT_BKPT;
    }
    nPayload = (int)nKey;
    pSrc = pKey;
    nSrc = (int)nKey;
  }
  if( nPayload<=pPage->maxLocal ){
    n = nHeader + nPayload;
    testcase( n==3 );
    testcase( n==4 );
    if( n<4 ) n = 4;
    *pnSize = n;
    spaceLeft = nPayload;
    pPrior = pCell;
  }else{
    int mn = pPage->minLocal;
    n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
    testcase( n==pPage->maxLocal );
    testcase( n==pPage->maxLocal+1 );
    if( n > pPage->maxLocal ) n = mn;
    spaceLeft = n;
    *pnSize = n + nHeader + 4;
    pPrior = &pCell[nHeader+n];
  }
  pPayload = &pCell[nHeader];

  /* At this point variables should be set as follows:
  **
  **   nPayload           Total payload size in bytes
  **   pPayload           Begin writing payload here
  **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
  **                      that means content must spill into overflow pages.
  **   *pnSize            Size of the local cell (not counting overflow pages)
  **   pPrior             Where to write the pgno of the first overflow page
  **
  ** Use a call to btreeParseCellPtr() to verify that the values above
  ** were computed correctly.
  */
#if SQLITE_DEBUG
  {
    CellInfo info;
    btreeParseCellPtr(pPage, pCell, &info);
    assert( nHeader=(int)(info.pPayload - pCell) );
    assert( info.nKey==nKey );
    assert( *pnSize == info.nSize );
    assert( spaceLeft == info.nLocal );
    assert( pPrior == &pCell[info.iOverflow] );
  }
#endif

  /* Write the payload into the local Cell and any extra into overflow pages */
  while( nPayload>0 ){
    if( spaceLeft==0 ){
#ifndef SQLITE_OMIT_AUTOVACUUM
      Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
      if( pBt->autoVacuum ){
        do{
          pgnoOvfl++;
................................................................................
** If the cell content will fit on the page, then put it there.  If it
** will not fit, then make a copy of the cell content into pTemp if
** pTemp is not null.  Regardless of pTemp, allocate a new entry
** in pPage->apOvfl[] and make it point to the cell content (either
** in pTemp or the original pCell) and also record its index. 
** Allocating a new entry in pPage->aCell[] implies that 
** pPage->nOverflow is incremented.





*/
static void insertCell(
  MemPage *pPage,   /* Page into which we are copying */
  int i,            /* New cell becomes the i-th cell of the page */
  u8 *pCell,        /* Content of the new cell */
  int sz,           /* Bytes of content in pCell */
  u8 *pTemp,        /* Temp storage space for pCell, if needed */
................................................................................
){
  int idx = 0;      /* Where to write new cell content in data[] */
  int j;            /* Loop counter */
  int end;          /* First byte past the last cell pointer in data[] */
  int ins;          /* Index in data[] where new cell pointer is inserted */
  int cellOffset;   /* Address of first cell pointer in data[] */
  u8 *data;         /* The content of the whole page */


  if( *pRC ) return;

  assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  assert( MX_CELL(pPage->pBt)<=10921 );
  assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
  assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
................................................................................
  ** malformed cell from a leaf page to an interior page, if the cell size
  ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
  ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
  ** the term after the || in the following assert(). */
  assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
  if( pPage->nOverflow || sz+2>pPage->nFree ){
    if( pTemp ){
      memcpy(pTemp, pCell, sz);
      pCell = pTemp;
    }
    if( iChild ){
      put4byte(pCell, iChild);
    }
    j = pPage->nOverflow++;
    assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
................................................................................
    if( rc ){ *pRC = rc; return; }
    /* The allocateSpace() routine guarantees the following two properties
    ** if it returns success */
    assert( idx >= end+2 );
    assert( idx+sz <= (int)pPage->pBt->usableSize );
    pPage->nCell++;
    pPage->nFree -= (u16)(2 + sz);
    memcpy(&data[idx], pCell, sz);
    if( iChild ){
      put4byte(&data[idx], iChild);
    }
    memmove(&data[ins+2], &data[ins], end-ins);
    put2byte(&data[ins], idx);
    put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
................................................................................
  ** apCell[] include child pointers.  Either way, all cells in apCell[]
  ** are alike.
  **
  ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
  **       leafData:  1 if pPage holds key+data and pParent holds only keys.
  */
  leafCorrection = apOld[0]->leaf*4;
  leafData = apOld[0]->intKeyLeaf;
  for(i=0; i<nOld; i++){
    int limit;
    
    /* Before doing anything else, take a copy of the i'th original sibling
    ** The rest of this function will use data from the copies rather
    ** that the original pages since the original pages will be in the
    ** process of being overwritten.  */
................................................................................
    }else{
      MemPage * const pParent = pCur->apPage[iPage-1];
      int const iIdx = pCur->aiIdx[iPage-1];

      rc = sqlite3PagerWrite(pParent->pDbPage);
      if( rc==SQLITE_OK ){
#ifndef SQLITE_OMIT_QUICKBALANCE
        if( pPage->intKeyLeaf
         && pPage->nOverflow==1
         && pPage->aiOvfl[0]==pPage->nCell
         && pParent->pgno!=1
         && pParent->nCell==iIdx
        ){
          /* Call balance_quick() to create a new sibling of pPage on which
          ** to store the overflow cell. balance_quick() inserts a new cell
................................................................................

  if( pCur->eState==CURSOR_FAULT ){
    assert( pCur->skipNext!=SQLITE_OK );
    return pCur->skipNext;
  }

  assert( cursorHoldsMutex(pCur) );
  assert( (pCur->curFlags & BTCF_WriteFlag)!=0
              && pBt->inTransaction==TRANS_WRITE
              && (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );

  /* Assert that the caller has been consistent. If this cursor was opened
  ** expecting an index b-tree, then the caller should be inserting blob
  ** keys with no associated data. If the cursor was opened expecting an
  ** intkey table, the caller should be inserting integer keys with a
................................................................................
    /* If this is an insert into a table b-tree, invalidate any incrblob 
    ** cursors open on the row being replaced */
    invalidateIncrblobCursors(p, nKey, 0);

    /* If the cursor is currently on the last row and we are appending a
    ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
    ** call */
    if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
      && pCur->info.nKey==nKey-1 ){
      loc = -1;
    }
  }

  if( !loc ){
    rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
    if( rc ) return rc;
................................................................................
  assert( pPage->intKey || nKey>=0 );
  assert( pPage->leaf || !pPage->intKey );

  TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
          pCur->pgnoRoot, nKey, nData, pPage->pgno,
          loc==0 ? "overwrite" : "new entry"));
  assert( pPage->isInit );

  newCell = pBt->pTmpSpace;

  assert( newCell!=0 );
  rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
  if( rc ) goto end_insert;
  assert( szNew==cellSizePtr(pPage, newCell) );
  assert( szNew <= MX_CELL_SIZE(pBt) );
  idx = pCur->aiIdx[pCur->iPage];
  if( loc==0 ){
    u16 szOld;
................................................................................
    if( rc ){
      goto end_insert;
    }
    oldCell = findCell(pPage, idx);
    if( !pPage->leaf ){
      memcpy(newCell, oldCell, 4);
    }

    rc = clearCell(pPage, oldCell, &szOld);
    dropCell(pPage, idx, szOld, &rc);
    if( rc ) goto end_insert;
  }else if( loc<0 && pPage->nCell>0 ){
    assert( pPage->leaf );
    idx = ++pCur->aiIdx[pCur->iPage];
  }else{
    assert( pPage->leaf );
................................................................................
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;              
  int rc;                              /* Return code */
  MemPage *pPage;                      /* Page to delete cell from */
  unsigned char *pCell;                /* Pointer to cell to delete */
  int iCellIdx;                        /* Index of cell to delete */
  int iCellDepth;                      /* Depth of node containing pCell */ 
  u16 szCell;                          /* Size of the cell being deleted */

  assert( cursorHoldsMutex(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );
................................................................................
  ** invalidate any incrblob cursors open on the row being deleted.  */
  if( pCur->pKeyInfo==0 ){
    invalidateIncrblobCursors(p, pCur->info.nKey, 0);
  }

  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc ) return rc;
  rc = clearCell(pPage, pCell, &szCell);
  dropCell(pPage, iCellIdx, szCell, &rc);
  if( rc ) return rc;

  /* If the cell deleted was not located on a leaf page, then the cursor
  ** is currently pointing to the largest entry in the sub-tree headed
  ** by the child-page of the cell that was just deleted from an internal
  ** node. The cell from the leaf node needs to be moved to the internal
  ** node to replace the deleted cell.  */
................................................................................
    int nCell;
    Pgno n = pCur->apPage[iCellDepth+1]->pgno;
    unsigned char *pTmp;

    pCell = findCell(pLeaf, pLeaf->nCell-1);
    nCell = cellSizePtr(pLeaf, pCell);
    assert( MX_CELL_SIZE(pBt) >= nCell );


    pTmp = pBt->pTmpSpace;

    assert( pTmp!=0 );
    rc = sqlite3PagerWrite(pLeaf->pDbPage);
    insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
    dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
    if( rc ) return rc;
  }

  /* Balance the tree. If the entry deleted was located on a leaf page,
................................................................................
  int *pnChange            /* Add number of Cells freed to this counter */
){
  MemPage *pPage;
  int rc;
  unsigned char *pCell;
  int i;
  int hdr;
  u16 szCell;

  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pgno>btreePagecount(pBt) ){
    return SQLITE_CORRUPT_BKPT;
  }

  rc = getAndInitPage(pBt, pgno, &pPage, 0);
................................................................................
  hdr = pPage->hdrOffset;
  for(i=0; i<pPage->nCell; i++){
    pCell = findCell(pPage, i);
    if( !pPage->leaf ){
      rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
      if( rc ) goto cleardatabasepage_out;
    }
    rc = clearCell(pPage, pCell, &szCell);
    if( rc ) goto cleardatabasepage_out;
  }
  if( !pPage->leaf ){
    rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
    if( rc ) goto cleardatabasepage_out;
  }else if( pnChange ){
    assert( pPage->intKey );
................................................................................

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Append a message to the error message string.
*/
static void checkAppendMsg(
  IntegrityCk *pCheck,

  const char *zFormat,
  ...
){
  va_list ap;
  char zBuf[200];
  if( !pCheck->mxErr ) return;
  pCheck->mxErr--;
  pCheck->nErr++;
  va_start(ap, zFormat);
  if( pCheck->errMsg.nChar ){
    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  }
  if( pCheck->zPfx ){
    sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2);
    sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf);
  }
  sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
    pCheck->mallocFailed = 1;
  }
}
................................................................................
** Add 1 to the reference count for page iPage.  If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 or more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, Pgno iPage){
  if( iPage==0 ) return 1;
  if( iPage>pCheck->nPage ){
    checkAppendMsg(pCheck, "invalid page number %d", iPage);
    return 1;
  }
  if( getPageReferenced(pCheck, iPage) ){
    checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
    return 1;
  }
  setPageReferenced(pCheck, iPage);
  return 0;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
................................................................................
** page iParent, pointer type ptrType. If not, append an error message
** to pCheck.
*/
static void checkPtrmap(
  IntegrityCk *pCheck,   /* Integrity check context */
  Pgno iChild,           /* Child page number */
  u8 eType,              /* Expected pointer map type */
  Pgno iParent           /* Expected pointer map parent page number */

){
  int rc;
  u8 ePtrmapType;
  Pgno iPtrmapParent;

  rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
    checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
    return;
  }

  if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
    checkAppendMsg(pCheck,
      "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 
      iChild, eType, iParent, ePtrmapType, iPtrmapParent);
  }
}
#endif

/*
................................................................................
** Check the integrity of the freelist or of an overflow page list.
** Verify that the number of pages on the list is N.
*/
static void checkList(
  IntegrityCk *pCheck,  /* Integrity checking context */
  int isFreeList,       /* True for a freelist.  False for overflow page list */
  int iPage,            /* Page number for first page in the list */
  int N                 /* Expected number of pages in the list */

){
  int i;
  int expected = N;
  int iFirst = iPage;
  while( N-- > 0 && pCheck->mxErr ){
    DbPage *pOvflPage;
    unsigned char *pOvflData;
    if( iPage<1 ){
      checkAppendMsg(pCheck,
         "%d of %d pages missing from overflow list starting at %d",
          N+1, expected, iFirst);
      break;
    }
    if( checkRef(pCheck, iPage) ) break;
    if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
      checkAppendMsg(pCheck, "failed to get page %d", iPage);
      break;
    }
    pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
    if( isFreeList ){
      int n = get4byte(&pOvflData[4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pCheck->pBt->autoVacuum ){
        checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
      }
#endif
      if( n>(int)pCheck->pBt->usableSize/4-2 ){
        checkAppendMsg(pCheck,
           "freelist leaf count too big on page %d", iPage);
        N--;
      }else{
        for(i=0; i<n; i++){
          Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
          if( pCheck->pBt->autoVacuum ){
            checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
          }
#endif
          checkRef(pCheck, iFreePage);
        }
        N -= n;
      }
    }
#ifndef SQLITE_OMIT_AUTOVACUUM
    else{
      /* If this database supports auto-vacuum and iPage is not the last
      ** page in this overflow list, check that the pointer-map entry for
      ** the following page matches iPage.
      */
      if( pCheck->pBt->autoVacuum && N>0 ){
        i = get4byte(pOvflData);
        checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
      }
    }
#endif
    iPage = get4byte(pOvflData);
    sqlite3PagerUnref(pOvflPage);
  }
}
................................................................................
**      7.  Verify that the depth of all children is the same.
**      8.  Make sure this page is at least 33% full or else it is
**          the root of the tree.
*/
static int checkTreePage(
  IntegrityCk *pCheck,  /* Context for the sanity check */
  int iPage,            /* Page number of the page to check */

  i64 *pnParentMinKey, 
  i64 *pnParentMaxKey
){
  MemPage *pPage;
  int i, rc, depth, d2, pgno, cnt;
  int hdr, cellStart;
  int nCell;
  u8 *data;
  BtShared *pBt;
  int usableSize;

  char *hit = 0;
  i64 nMinKey = 0;
  i64 nMaxKey = 0;
  const char *saved_zPfx = pCheck->zPfx;
  int saved_v1 = pCheck->v1;
  int saved_v2 = pCheck->v2;

  /* Check that the page exists
  */
  pBt = pCheck->pBt;
  usableSize = pBt->usableSize;
  if( iPage==0 ) return 0;
  if( checkRef(pCheck, iPage) ) return 0;
  pCheck->zPfx = "Page %d: ";
  pCheck->v1 = iPage;
  if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
    checkAppendMsg(pCheck,
       "unable to get the page. error code=%d", rc);

    depth = -1;
    goto end_of_check;
  }

  /* Clear MemPage.isInit to make sure the corruption detection code in
  ** btreeInitPage() is executed.  */
  pPage->isInit = 0;
  if( (rc = btreeInitPage(pPage))!=0 ){
    assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
    checkAppendMsg(pCheck,
                   "btreeInitPage() returns error code %d", rc);
    releasePage(pPage);
    depth = -1;
    goto end_of_check;
  }

  /* Check out all the cells.
  */
  depth = 0;
  for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
    u8 *pCell;
    u32 sz;
    CellInfo info;

    /* Check payload overflow pages
    */

    pCheck->zPfx = "On tree page %d cell %d: ";
    pCheck->v1 = iPage;
    pCheck->v2 = i;
    pCell = findCell(pPage,i);
    btreeParseCellPtr(pPage, pCell, &info);
    sz = info.nPayload;

    /* For intKey pages, check that the keys are in order.
    */
    if( pPage->intKey ){
      if( i==0 ){
        nMinKey = nMaxKey = info.nKey;

      }else if( info.nKey <= nMaxKey ){
        checkAppendMsg(pCheck,
           "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
      }
      nMaxKey = info.nKey;
    }

    if( (sz>info.nLocal) 
     && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
    ){
      int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
      Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
      }
#endif
      checkList(pCheck, 0, pgnoOvfl, nPage);
    }

    /* Check sanity of left child page.
    */
    if( !pPage->leaf ){
      pgno = get4byte(pCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
      }
#endif
      d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey);
      if( i>0 && d2!=depth ){
        checkAppendMsg(pCheck, "Child page depth differs");
      }
      depth = d2;
    }
  }

  if( !pPage->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);

    pCheck->zPfx = "On page %d at right child: ";
    pCheck->v1 = iPage;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
    }
#endif
    checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey);
  }
 
  /* For intKey leaf pages, check that the min/max keys are in order
  ** with any left/parent/right pages.
  */
  pCheck->zPfx = "Page %d: ";
  pCheck->v1 = iPage;
  if( pPage->leaf && pPage->intKey ){
    /* if we are a left child page */
    if( pnParentMinKey ){
      /* if we are the left most child page */
      if( !pnParentMaxKey ){
        if( nMaxKey > *pnParentMinKey ){
          checkAppendMsg(pCheck,
              "Rowid %lld out of order (max larger than parent min of %lld)",
              nMaxKey, *pnParentMinKey);
        }
      }else{
        if( nMinKey <= *pnParentMinKey ){
          checkAppendMsg(pCheck,
              "Rowid %lld out of order (min less than parent min of %lld)",
              nMinKey, *pnParentMinKey);
        }
        if( nMaxKey > *pnParentMaxKey ){
          checkAppendMsg(pCheck,
              "Rowid %lld out of order (max larger than parent max of %lld)",
              nMaxKey, *pnParentMaxKey);
        }
        *pnParentMinKey = nMaxKey;
      }
    /* else if we're a right child page */
    } else if( pnParentMaxKey ){
      if( nMinKey <= *pnParentMaxKey ){
        checkAppendMsg(pCheck,
            "Rowid %lld out of order (min less than parent max of %lld)",
            nMinKey, *pnParentMaxKey);
      }
    }
  }

  /* Check for complete coverage of the page
  */
  data = pPage->aData;
  hdr = pPage->hdrOffset;
  hit = sqlite3PageMalloc( pBt->pageSize );
  pCheck->zPfx = 0;
  if( hit==0 ){
    pCheck->mallocFailed = 1;
  }else{
    int contentOffset = get2byteNotZero(&data[hdr+5]);
    assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
    memset(hit+contentOffset, 0, usableSize-contentOffset);
    memset(hit, 1, contentOffset);
................................................................................
      int pc = get2byte(&data[cellStart+i*2]);
      u32 size = 65536;
      int j;
      if( pc<=usableSize-4 ){
        size = cellSizePtr(pPage, &data[pc]);
      }
      if( (int)(pc+size-1)>=usableSize ){
        pCheck->zPfx = 0;
        checkAppendMsg(pCheck,
            "Corruption detected in cell %d on page %d",i,iPage);
      }else{
        for(j=pc+size-1; j>=pc; j--) hit[j]++;
      }
    }
    i = get2byte(&data[hdr+1]);
    while( i>0 ){
................................................................................
      assert( j<=usableSize-4 );   /* Enforced by btreeInitPage() */
      i = j;
    }
    for(i=cnt=0; i<usableSize; i++){
      if( hit[i]==0 ){
        cnt++;
      }else if( hit[i]>1 ){
        checkAppendMsg(pCheck,
          "Multiple uses for byte %d of page %d", i, iPage);
        break;
      }
    }
    if( cnt!=data[hdr+7] ){
      checkAppendMsg(pCheck,
          "Fragmentation of %d bytes reported as %d on page %d",
          cnt, data[hdr+7], iPage);
    }
  }
  sqlite3PageFree(hit);
  releasePage(pPage);

end_of_check:
  pCheck->zPfx = saved_zPfx;
  pCheck->v1 = saved_v1;
  pCheck->v2 = saved_v2;
  return depth+1;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** This routine does a complete check of the given BTree file.  aRoot[] is
................................................................................
  nRef = sqlite3PagerRefcount(pBt->pPager);
  sCheck.pBt = pBt;
  sCheck.pPager = pBt->pPager;
  sCheck.nPage = btreePagecount(sCheck.pBt);
  sCheck.mxErr = mxErr;
  sCheck.nErr = 0;
  sCheck.mallocFailed = 0;
  sCheck.zPfx = 0;
  sCheck.v1 = 0;
  sCheck.v2 = 0;
  *pnErr = 0;
  if( sCheck.nPage==0 ){
    sqlite3BtreeLeave(p);
    return 0;
  }

  sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
................................................................................
  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
  sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
  sCheck.errMsg.useMalloc = 2;

  /* Check the integrity of the freelist
  */
  sCheck.zPfx = "Main freelist: ";
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]));
  sCheck.zPfx = 0;

  /* Check all the tables.
  */
  for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
    if( aRoot[i]==0 ) continue;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && aRoot[i]>1 ){
      checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
    }
#endif
    sCheck.zPfx = "List of tree roots: ";
    checkTreePage(&sCheck, aRoot[i], NULL, NULL);
    sCheck.zPfx = 0;
  }

  /* Make sure every page in the file is referenced
  */
  for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
#ifdef SQLITE_OMIT_AUTOVACUUM
    if( getPageReferenced(&sCheck, i)==0 ){
      checkAppendMsg(&sCheck, "Page %d is never used", i);
    }
#else
    /* If the database supports auto-vacuum, make sure no tables contain
    ** references to pointer-map pages.
    */
    if( getPageReferenced(&sCheck, i)==0 && 
       (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, "Page %d is never used", i);
    }
    if( getPageReferenced(&sCheck, i)!=0 && 
       (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
    }
#endif
  }

  /* Make sure this analysis did not leave any unref() pages.
  ** This is an internal consistency check; an integrity check
  ** of the integrity check.
  */
  if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
    checkAppendMsg(&sCheck,
      "Outstanding page count goes from %d to %d during this analysis",
      nRef, sqlite3PagerRefcount(pBt->pPager)
    );
  }

  /* Clean  up and report errors.
  */
................................................................................
    return SQLITE_ABORT;
  }

  /* Save the positions of all other cursors open on this table. This is
  ** required in case any of them are holding references to an xFetch
  ** version of the b-tree page modified by the accessPayload call below.
  **
  ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
  ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
  ** saveAllCursors can only return SQLITE_OK.
  */
  VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
  assert( rc==SQLITE_OK );

  /* Check some assumptions: 

Changes to src/btreeInt.h.

269
270
271
272
273
274
275
276


277
278
279
280
281
282
283
284
285
...
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
...
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
...
654
655
656
657
658
659
660


661
662
663
664
665
666
667
668
669
670
**
** Access to all fields of this structure is controlled by the mutex
** stored in MemPage.pBt->mutex.
*/
struct MemPage {
  u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
  u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
  u8 intKey;           /* True if intkey flag is set */


  u8 leaf;             /* True if leaf flag is set */
  u8 hasData;          /* True if this page stores data */
  u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
  u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
  u8 max1bytePayload;  /* min(maxLocal,127) */
  u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
  u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
  u16 cellOffset;      /* Index in aData of first cell pointer */
  u16 nFree;           /* Number of free bytes on the page */
................................................................................
  Bitvec *pHasContent;  /* Set of pages moved to free-list this transaction */
#ifndef SQLITE_OMIT_SHARED_CACHE
  int nRef;             /* Number of references to this structure */
  BtShared *pNext;      /* Next on a list of sharable BtShared structs */
  BtLock *pLock;        /* List of locks held on this shared-btree struct */
  Btree *pWriter;       /* Btree with currently open write transaction */
#endif
  u8 *pTmpSpace;        /* BtShared.pageSize bytes of space for tmp use */
};

/*
** Allowed values for BtShared.btsFlags
*/
#define BTS_READ_ONLY        0x0001   /* Underlying file is readonly */
#define BTS_PAGESIZE_FIXED   0x0002   /* Page size can no longer be changed */
................................................................................
/*
** An instance of the following structure is used to hold information
** about a cell.  The parseCellPtr() function fills in this structure
** based on information extract from the raw disk page.
*/
typedef struct CellInfo CellInfo;
struct CellInfo {
  i64 nKey;      /* The key for INTKEY tables, or number of bytes in key */
  u8 *pCell;     /* Pointer to the start of cell content */
  u32 nData;     /* Number of bytes of data */
  u32 nPayload;  /* Total amount of payload */
  u16 nHeader;   /* Size of the cell content header in bytes */
  u16 nLocal;    /* Amount of payload held locally */
  u16 iOverflow; /* Offset to overflow page number.  Zero if no overflow */
  u16 nSize;     /* Size of the cell content on the main b-tree page */
};

/*
** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
** this will be declared corrupt. This value is calculated based on a
................................................................................
  BtShared *pBt;    /* The tree being checked out */
  Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
  u8 *aPgRef;       /* 1 bit per page in the db (see above) */
  Pgno nPage;       /* Number of pages in the database */
  int mxErr;        /* Stop accumulating errors when this reaches zero */
  int nErr;         /* Number of messages written to zErrMsg so far */
  int mallocFailed; /* A memory allocation error has occurred */


  StrAccum errMsg;  /* Accumulate the error message text here */
};

/*
** Routines to read or write a two- and four-byte big-endian integer values.
*/
#define get2byte(x)   ((x)[0]<<8 | (x)[1])
#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
#define get4byte sqlite3Get4byte
#define put4byte sqlite3Put4byte







|
>
>
|
<







 







|







 







|
|
<
|
<
|







 







>
>










269
270
271
272
273
274
275
276
277
278
279

280
281
282
283
284
285
286
...
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
...
453
454
455
456
457
458
459
460
461

462

463
464
465
466
467
468
469
470
...
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
**
** Access to all fields of this structure is controlled by the mutex
** stored in MemPage.pBt->mutex.
*/
struct MemPage {
  u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
  u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
  u8 intKey;           /* True if table b-trees.  False for index b-trees */
  u8 intKeyLeaf;       /* True if the leaf of an intKey table */
  u8 noPayload;        /* True if internal intKey page (thus w/o data) */
  u8 leaf;             /* True if a leaf page */

  u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
  u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
  u8 max1bytePayload;  /* min(maxLocal,127) */
  u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
  u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
  u16 cellOffset;      /* Index in aData of first cell pointer */
  u16 nFree;           /* Number of free bytes on the page */
................................................................................
  Bitvec *pHasContent;  /* Set of pages moved to free-list this transaction */
#ifndef SQLITE_OMIT_SHARED_CACHE
  int nRef;             /* Number of references to this structure */
  BtShared *pNext;      /* Next on a list of sharable BtShared structs */
  BtLock *pLock;        /* List of locks held on this shared-btree struct */
  Btree *pWriter;       /* Btree with currently open write transaction */
#endif
  u8 *pTmpSpace;        /* Temp space sufficient to hold a single cell */
};

/*
** Allowed values for BtShared.btsFlags
*/
#define BTS_READ_ONLY        0x0001   /* Underlying file is readonly */
#define BTS_PAGESIZE_FIXED   0x0002   /* Page size can no longer be changed */
................................................................................
/*
** An instance of the following structure is used to hold information
** about a cell.  The parseCellPtr() function fills in this structure
** based on information extract from the raw disk page.
*/
typedef struct CellInfo CellInfo;
struct CellInfo {
  i64 nKey;      /* The key for INTKEY tables, or nPayload otherwise */
  u8 *pPayload;  /* Pointer to the start of payload */

  u32 nPayload;  /* Bytes of payload */

  u16 nLocal;    /* Amount of payload held locally, not on overflow */
  u16 iOverflow; /* Offset to overflow page number.  Zero if no overflow */
  u16 nSize;     /* Size of the cell content on the main b-tree page */
};

/*
** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
** this will be declared corrupt. This value is calculated based on a
................................................................................
  BtShared *pBt;    /* The tree being checked out */
  Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
  u8 *aPgRef;       /* 1 bit per page in the db (see above) */
  Pgno nPage;       /* Number of pages in the database */
  int mxErr;        /* Stop accumulating errors when this reaches zero */
  int nErr;         /* Number of messages written to zErrMsg so far */
  int mallocFailed; /* A memory allocation error has occurred */
  const char *zPfx; /* Error message prefix */
  int v1, v2;       /* Values for up to two %d fields in zPfx */
  StrAccum errMsg;  /* Accumulate the error message text here */
};

/*
** Routines to read or write a two- and four-byte big-endian integer values.
*/
#define get2byte(x)   ((x)[0]<<8 | (x)[1])
#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
#define get4byte sqlite3Get4byte
#define put4byte sqlite3Put4byte

Changes to src/build.c.

431
432
433
434
435
436
437



438
439
440
441
442
443
444
....
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
....
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
....
1544
1545
1546
1547
1548
1549
1550
1551
1552

1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
....
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
#ifndef SQLITE_OMIT_ANALYZE
  sqlite3DeleteIndexSamples(db, p);
#endif
  if( db==0 || db->pnBytesFreed==0 ) sqlite3KeyInfoUnref(p->pKeyInfo);
  sqlite3ExprDelete(db, p->pPartIdxWhere);
  sqlite3DbFree(db, p->zColAff);
  if( p->isResized ) sqlite3DbFree(db, p->azColl);



  sqlite3DbFree(db, p);
}

/*
** For the index called zIdxName which is found in the database iDb,
** unlike that index from its Table then remove the index from
** the index hash table and free all memory structures associated
................................................................................
    }
  }

  /* If pszEst is not NULL, store an estimate of the field size.  The
  ** estimate is scaled so that the size of an integer is 1.  */
  if( pszEst ){
    *pszEst = 1;   /* default size is approx 4 bytes */
    if( aff<=SQLITE_AFF_NONE ){
      if( zChar ){
        while( zChar[0] ){
          if( sqlite3Isdigit(zChar[0]) ){
            int v = 0;
            sqlite3GetInt32(zChar, &v);
            v = v/4 + 1;
            if( v>255 ) v = 255;
................................................................................
void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
  Table *p;
  Column *pCol;
  sqlite3 *db = pParse->db;
  p = pParse->pNewTable;
  if( p!=0 ){
    pCol = &(p->aCol[p->nCol-1]);
    if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
      sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
          pCol->zName);
    }else{
      /* A copy of pExpr is used instead of the original, as pExpr contains
      ** tokens that point to volatile memory. The 'span' of the expression
      ** is required by pragma table_info.
      */
................................................................................
  }
  sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
  k = sqlite3Strlen30(zStmt);
  identPut(zStmt, &k, p->zName);
  zStmt[k++] = '(';
  for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
    static const char * const azType[] = {
        /* SQLITE_AFF_TEXT    */ " TEXT",
        /* SQLITE_AFF_NONE    */ "",

        /* SQLITE_AFF_NUMERIC */ " NUM",
        /* SQLITE_AFF_INTEGER */ " INT",
        /* SQLITE_AFF_REAL    */ " REAL"
    };
    int len;
    const char *zType;

    sqlite3_snprintf(n-k, &zStmt[k], zSep);
    k += sqlite3Strlen30(&zStmt[k]);
    zSep = zSep2;
    identPut(zStmt, &k, pCol->zName);
    assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
    assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) );
    testcase( pCol->affinity==SQLITE_AFF_TEXT );
    testcase( pCol->affinity==SQLITE_AFF_NONE );
    testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
    testcase( pCol->affinity==SQLITE_AFF_INTEGER );
    testcase( pCol->affinity==SQLITE_AFF_REAL );
    
    zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
    len = sqlite3Strlen30(zType);
    assert( pCol->affinity==SQLITE_AFF_NONE 
            || pCol->affinity==sqlite3AffinityType(zType, 0) );
    memcpy(&zStmt[k], zType, len);
    k += len;
    assert( k<=n );
  }
................................................................................
    addr2 = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
                         pIndex->nKeyCol); VdbeCoverage(v);
    sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
  }else{
    addr2 = sqlite3VdbeCurrentAddr(v);
  }
  sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord);
  sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
  sqlite3VdbeJumpHere(v, addr1);

  sqlite3VdbeAddOp1(v, OP_Close, iTab);







>
>
>







 







|







 







|







 







<

>











|
|
|
|




|







 







|







431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
....
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
....
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
....
1547
1548
1549
1550
1551
1552
1553

1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
....
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
#ifndef SQLITE_OMIT_ANALYZE
  sqlite3DeleteIndexSamples(db, p);
#endif
  if( db==0 || db->pnBytesFreed==0 ) sqlite3KeyInfoUnref(p->pKeyInfo);
  sqlite3ExprDelete(db, p->pPartIdxWhere);
  sqlite3DbFree(db, p->zColAff);
  if( p->isResized ) sqlite3DbFree(db, p->azColl);
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  sqlite3_free(p->aiRowEst);
#endif
  sqlite3DbFree(db, p);
}

/*
** For the index called zIdxName which is found in the database iDb,
** unlike that index from its Table then remove the index from
** the index hash table and free all memory structures associated
................................................................................
    }
  }

  /* If pszEst is not NULL, store an estimate of the field size.  The
  ** estimate is scaled so that the size of an integer is 1.  */
  if( pszEst ){
    *pszEst = 1;   /* default size is approx 4 bytes */
    if( aff<SQLITE_AFF_NUMERIC ){
      if( zChar ){
        while( zChar[0] ){
          if( sqlite3Isdigit(zChar[0]) ){
            int v = 0;
            sqlite3GetInt32(zChar, &v);
            v = v/4 + 1;
            if( v>255 ) v = 255;
................................................................................
void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
  Table *p;
  Column *pCol;
  sqlite3 *db = pParse->db;
  p = pParse->pNewTable;
  if( p!=0 ){
    pCol = &(p->aCol[p->nCol-1]);
    if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
      sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
          pCol->zName);
    }else{
      /* A copy of pExpr is used instead of the original, as pExpr contains
      ** tokens that point to volatile memory. The 'span' of the expression
      ** is required by pragma table_info.
      */
................................................................................
  }
  sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
  k = sqlite3Strlen30(zStmt);
  identPut(zStmt, &k, p->zName);
  zStmt[k++] = '(';
  for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
    static const char * const azType[] = {

        /* SQLITE_AFF_NONE    */ "",
        /* SQLITE_AFF_TEXT    */ " TEXT",
        /* SQLITE_AFF_NUMERIC */ " NUM",
        /* SQLITE_AFF_INTEGER */ " INT",
        /* SQLITE_AFF_REAL    */ " REAL"
    };
    int len;
    const char *zType;

    sqlite3_snprintf(n-k, &zStmt[k], zSep);
    k += sqlite3Strlen30(&zStmt[k]);
    zSep = zSep2;
    identPut(zStmt, &k, pCol->zName);
    assert( pCol->affinity-SQLITE_AFF_NONE >= 0 );
    assert( pCol->affinity-SQLITE_AFF_NONE < ArraySize(azType) );
    testcase( pCol->affinity==SQLITE_AFF_NONE );
    testcase( pCol->affinity==SQLITE_AFF_TEXT );
    testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
    testcase( pCol->affinity==SQLITE_AFF_INTEGER );
    testcase( pCol->affinity==SQLITE_AFF_REAL );
    
    zType = azType[pCol->affinity - SQLITE_AFF_NONE];
    len = sqlite3Strlen30(zType);
    assert( pCol->affinity==SQLITE_AFF_NONE 
            || pCol->affinity==sqlite3AffinityType(zType, 0) );
    memcpy(&zStmt[k], zType, len);
    k += len;
    assert( k<=n );
  }
................................................................................
    addr2 = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
                         pIndex->nKeyCol); VdbeCoverage(v);
    sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
  }else{
    addr2 = sqlite3VdbeCurrentAddr(v);
  }
  sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
  sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
  sqlite3VdbeJumpHere(v, addr1);

  sqlite3VdbeAddOp1(v, OP_Close, iTab);

Changes to src/ctime.c.

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
  if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7;
  n = sqlite3Strlen30(zOptName);

  /* Since ArraySize(azCompileOpt) is normally in single digits, a
  ** linear search is adequate.  No need for a binary search. */
  for(i=0; i<ArraySize(azCompileOpt); i++){
    if( sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0
     && sqlite3CtypeMap[(unsigned char)azCompileOpt[i][n]]==0
    ){
      return 1;
    }
  }
  return 0;
}








|







391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
  if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7;
  n = sqlite3Strlen30(zOptName);

  /* Since ArraySize(azCompileOpt) is normally in single digits, a
  ** linear search is adequate.  No need for a binary search. */
  for(i=0; i<ArraySize(azCompileOpt); i++){
    if( sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0
     && sqlite3IsIdChar((unsigned char)azCompileOpt[i][n])==0
    ){
      return 1;
    }
  }
  return 0;
}

Changes to src/expr.c.

1065
1066
1067
1068
1069
1070
1071

1072
1073
1074
1075
1076
1077
1078
....
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222








1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252













1253
1254
1255
1256
1257
1258
1259
....
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305

1306
1307
1308
1309
1310
1311
1312
1313
....
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223

3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283





3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
....
3316
3317
3318
3319
3320
3321
3322

3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377

3378
3379
3380
3381
3382
3383
3384
3385
3386
....
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439



3440

3441
3442
3443
3444
3445
3446


3447
3448
3449
3450

3451

3452
3453

3454
3455

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473


3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484

3485
3486
3487
3488
3489
3490
3491
  pNew->iLimit = 0;
  pNew->iOffset = 0;
  pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->nSelectRow = p->nSelectRow;
  pNew->pWith = withDup(db, p->pWith);

  return pNew;
}
#else
Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
  assert( p==0 );
  return 0;
}
................................................................................
  sqlite3DbFree(db, pList->a);
  sqlite3DbFree(db, pList);
}

/*
** These routines are Walker callbacks.  Walker.u.pi is a pointer
** to an integer.  These routines are checking an expression to see
** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
** not constant.
**
** These callback routines are used to implement the following:
**
**     sqlite3ExprIsConstant()
**     sqlite3ExprIsConstantNotJoin()
**     sqlite3ExprIsConstantOrFunction()
**








*/
static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){

  /* If pWalker->u.i is 3 then any term of the expression that comes from
  ** the ON or USING clauses of a join disqualifies the expression
  ** from being considered constant. */
  if( pWalker->u.i==3 && ExprHasProperty(pExpr, EP_FromJoin) ){
    pWalker->u.i = 0;
    return WRC_Abort;
  }

  switch( pExpr->op ){
    /* Consider functions to be constant if all their arguments are constant
    ** and either pWalker->u.i==2 or the function as the SQLITE_FUNC_CONST
    ** flag. */
    case TK_FUNCTION:
      if( pWalker->u.i==2 || ExprHasProperty(pExpr,EP_Constant) ){
        return WRC_Continue;
      }
      /* Fall through */
    case TK_ID:
    case TK_COLUMN:
    case TK_AGG_FUNCTION:
    case TK_AGG_COLUMN:
      testcase( pExpr->op==TK_ID );
      testcase( pExpr->op==TK_COLUMN );
      testcase( pExpr->op==TK_AGG_FUNCTION );
      testcase( pExpr->op==TK_AGG_COLUMN );
      pWalker->u.i = 0;
      return WRC_Abort;













    default:
      testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
      testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
      return WRC_Continue;
  }
}
static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
................................................................................
/*
** Walk an expression tree.  Return 1 if the expression is constant
** that does no originate from the ON or USING clauses of a join.
** Return 0 if it involves variables or function calls or terms from
** an ON or USING clause.
*/
int sqlite3ExprIsConstantNotJoin(Expr *p){
  return exprIsConst(p, 3);
}

/*
** Walk an expression tree.  Return 1 if the expression is constant
** or a function call with constant arguments.  Return and 0 if there
** are any variables.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
int sqlite3ExprIsConstantOrFunction(Expr *p){

  return exprIsConst(p, 2);
}

/*
** If the expression p codes a constant integer that is small enough
** to fit in a 32-bit integer, return 1 and put the value of the integer
** in *pValue.  If the expression is not an integer or if it is too big
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
................................................................................
  assert( pExpr->op!=TK_REGISTER );
  sqlite3ExprCode(pParse, pExpr, target);
  iMem = ++pParse->nMem;
  sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
  exprToRegister(pExpr, iMem);
}

#if defined(SQLITE_ENABLE_TREE_EXPLAIN)
/*
** Generate a human-readable explanation of an expression tree.
*/
void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
  int op;                   /* The opcode being coded */
  const char *zBinOp = 0;   /* Binary operator */
  const char *zUniOp = 0;   /* Unary operator */

  if( pExpr==0 ){
    op = TK_NULL;
  }else{
    op = pExpr->op;
  }
  switch( op ){
    case TK_AGG_COLUMN: {
      sqlite3ExplainPrintf(pOut, "AGG{%d:%d}",
            pExpr->iTable, pExpr->iColumn);
      break;
    }
    case TK_COLUMN: {
      if( pExpr->iTable<0 ){
        /* This only happens when coding check constraints */
        sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn);
      }else{
        sqlite3ExplainPrintf(pOut, "{%d:%d}",
                             pExpr->iTable, pExpr->iColumn);
      }
      break;
    }
    case TK_INTEGER: {
      if( pExpr->flags & EP_IntValue ){
        sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue);
      }else{
        sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken);
      }
      break;
    }
#ifndef SQLITE_OMIT_FLOATING_POINT
    case TK_FLOAT: {
      sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
      break;
    }
#endif
    case TK_STRING: {
      sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken);
      break;
    }
    case TK_NULL: {
      sqlite3ExplainPrintf(pOut,"NULL");
      break;
    }
#ifndef SQLITE_OMIT_BLOB_LITERAL
    case TK_BLOB: {
      sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
      break;
    }
#endif
    case TK_VARIABLE: {
      sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)",
                           pExpr->u.zToken, pExpr->iColumn);
      break;
    }
    case TK_REGISTER: {
      sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable);
      break;
    }
    case TK_AS: {
      sqlite3ExplainExpr(pOut, pExpr->pLeft);





      break;
    }
#ifndef SQLITE_OMIT_CAST
    case TK_CAST: {
      /* Expressions of the form:   CAST(pLeft AS token) */
      const char *zAff = "unk";
      switch( sqlite3AffinityType(pExpr->u.zToken, 0) ){
        case SQLITE_AFF_TEXT:    zAff = "TEXT";     break;
        case SQLITE_AFF_NONE:    zAff = "NONE";     break;
        case SQLITE_AFF_NUMERIC: zAff = "NUMERIC";  break;
        case SQLITE_AFF_INTEGER: zAff = "INTEGER";  break;
        case SQLITE_AFF_REAL:    zAff = "REAL";     break;
      }
      sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff);
      sqlite3ExplainExpr(pOut, pExpr->pLeft);
      sqlite3ExplainPrintf(pOut, ")");
      break;
    }
#endif /* SQLITE_OMIT_CAST */
    case TK_LT:      zBinOp = "LT";     break;
    case TK_LE:      zBinOp = "LE";     break;
    case TK_GT:      zBinOp = "GT";     break;
    case TK_GE:      zBinOp = "GE";     break;
................................................................................
    case TK_REM:     zBinOp = "REM";    break;
    case TK_BITAND:  zBinOp = "BITAND"; break;
    case TK_BITOR:   zBinOp = "BITOR";  break;
    case TK_SLASH:   zBinOp = "DIV";    break;
    case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
    case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
    case TK_CONCAT:  zBinOp = "CONCAT"; break;


    case TK_UMINUS:  zUniOp = "UMINUS"; break;
    case TK_UPLUS:   zUniOp = "UPLUS";  break;
    case TK_BITNOT:  zUniOp = "BITNOT"; break;
    case TK_NOT:     zUniOp = "NOT";    break;
    case TK_ISNULL:  zUniOp = "ISNULL"; break;
    case TK_NOTNULL: zUniOp = "NOTNULL"; break;

    case TK_COLLATE: {
      sqlite3ExplainExpr(pOut, pExpr->pLeft);
      sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken);
      break;
    }

    case TK_AGG_FUNCTION:
    case TK_FUNCTION: {
      ExprList *pFarg;       /* List of function arguments */
      if( ExprHasProperty(pExpr, EP_TokenOnly) ){
        pFarg = 0;
      }else{
        pFarg = pExpr->x.pList;
      }
      if( op==TK_AGG_FUNCTION ){
        sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(",
                             pExpr->op2, pExpr->u.zToken);
      }else{
        sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken);
      }
      if( pFarg ){
        sqlite3ExplainExprList(pOut, pFarg);
      }
      sqlite3ExplainPrintf(pOut, ")");
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_EXISTS: {
      sqlite3ExplainPrintf(pOut, "EXISTS(");
      sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
      sqlite3ExplainPrintf(pOut,")");
      break;
    }
    case TK_SELECT: {
      sqlite3ExplainPrintf(pOut, "(");
      sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
      sqlite3ExplainPrintf(pOut, ")");
      break;
    }
    case TK_IN: {
      sqlite3ExplainPrintf(pOut, "IN(");
      sqlite3ExplainExpr(pOut, pExpr->pLeft);
      sqlite3ExplainPrintf(pOut, ",");
      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
      }else{
        sqlite3ExplainExprList(pOut, pExpr->x.pList);

      }
      sqlite3ExplainPrintf(pOut, ")");
      break;
    }
#endif /* SQLITE_OMIT_SUBQUERY */

    /*
    **    x BETWEEN y AND z
    **
................................................................................
    ** Y is stored in pExpr->pList->a[0].pExpr.
    ** Z is stored in pExpr->pList->a[1].pExpr.
    */
    case TK_BETWEEN: {
      Expr *pX = pExpr->pLeft;
      Expr *pY = pExpr->x.pList->a[0].pExpr;
      Expr *pZ = pExpr->x.pList->a[1].pExpr;
      sqlite3ExplainPrintf(pOut, "BETWEEN(");
      sqlite3ExplainExpr(pOut, pX);
      sqlite3ExplainPrintf(pOut, ",");
      sqlite3ExplainExpr(pOut, pY);
      sqlite3ExplainPrintf(pOut, ",");
      sqlite3ExplainExpr(pOut, pZ);
      sqlite3ExplainPrintf(pOut, ")");
      break;
    }
    case TK_TRIGGER: {
      /* If the opcode is TK_TRIGGER, then the expression is a reference
      ** to a column in the new.* or old.* pseudo-tables available to
      ** trigger programs. In this case Expr.iTable is set to 1 for the
      ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
      ** is set to the column of the pseudo-table to read, or to -1 to
      ** read the rowid field.
      */
      sqlite3ExplainPrintf(pOut, "%s(%d)", 
          pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
      break;
    }
    case TK_CASE: {
      sqlite3ExplainPrintf(pOut, "CASE(");
      sqlite3ExplainExpr(pOut, pExpr->pLeft);
      sqlite3ExplainPrintf(pOut, ",");
      sqlite3ExplainExprList(pOut, pExpr->x.pList);
      break;
    }
#ifndef SQLITE_OMIT_TRIGGER
    case TK_RAISE: {
      const char *zType = "unk";
      switch( pExpr->affinity ){
        case OE_Rollback:   zType = "rollback";  break;
        case OE_Abort:      zType = "abort";     break;
        case OE_Fail:       zType = "fail";      break;
        case OE_Ignore:     zType = "ignore";    break;
      }
      sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken);
      break;
    }
#endif



  }

  if( zBinOp ){
    sqlite3ExplainPrintf(pOut,"%s(", zBinOp);
    sqlite3ExplainExpr(pOut, pExpr->pLeft);
    sqlite3ExplainPrintf(pOut,",");
    sqlite3ExplainExpr(pOut, pExpr->pRight);
    sqlite3ExplainPrintf(pOut,")");


  }else if( zUniOp ){
    sqlite3ExplainPrintf(pOut,"%s(", zUniOp);
    sqlite3ExplainExpr(pOut, pExpr->pLeft);
    sqlite3ExplainPrintf(pOut,")");

  }

}
#endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */


#if defined(SQLITE_ENABLE_TREE_EXPLAIN)

/*
** Generate a human-readable explanation of an expression list.
*/
void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){
  int i;
  if( pList==0 || pList->nExpr==0 ){
    sqlite3ExplainPrintf(pOut, "(empty-list)");
    return;
  }else if( pList->nExpr==1 ){
    sqlite3ExplainExpr(pOut, pList->a[0].pExpr);
  }else{
    sqlite3ExplainPush(pOut);
    for(i=0; i<pList->nExpr; i++){
      sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
      sqlite3ExplainPush(pOut);
      sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
      sqlite3ExplainPop(pOut);
      if( pList->a[i].zName ){


        sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
      }
      if( pList->a[i].bSpanIsTab ){
        sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
      }
      if( i<pList->nExpr-1 ){
        sqlite3ExplainNL(pOut);
      }
    }
    sqlite3ExplainPop(pOut);
  }

}
#endif /* SQLITE_DEBUG */

/*
** Generate code that pushes the value of every element of the given
** expression list into a sequence of registers beginning at target.
**







>







 







|




|
|
|

>
>
>
>
>
>
>
>



|


|






|


|













>
>
>
>
>
>
>
>
>
>
>
>
>







 







|











|
>
|







 







|



|
<


>

|
|
|

|

|






|

|






|

|





|




|



|




|




|
|



|



|
>
>
>
>
>





|
|
<
<
<
<
<
<
<
<
<







 







>









|
|











|
|


|


|

<




|
|
<



|
|
<



|
|
<

|

<
>

<







 







|
|
|
|
<
<
<










|




|
|
|
<











|



>
>
>
|
>

<
<
<
<
|
>
>

<
<
|
>

>

<
>

<
>



|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>





|
<
|
|
<
<
>







1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
....
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
....
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
....
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243

3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318









3319
3320
3321
3322
3323
3324
3325
....
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373

3374
3375
3376
3377
3378
3379

3380
3381
3382
3383
3384

3385
3386
3387
3388
3389

3390
3391
3392

3393
3394

3395
3396
3397
3398
3399
3400
3401
....
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417



3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435

3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456




3457
3458
3459
3460


3461
3462
3463
3464
3465

3466
3467

3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494

3495
3496


3497
3498
3499
3500
3501
3502
3503
3504
  pNew->iLimit = 0;
  pNew->iOffset = 0;
  pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->nSelectRow = p->nSelectRow;
  pNew->pWith = withDup(db, p->pWith);
  sqlite3SelectSetName(pNew, p->zSelName);
  return pNew;
}
#else
Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
  assert( p==0 );
  return 0;
}
................................................................................
  sqlite3DbFree(db, pList->a);
  sqlite3DbFree(db, pList);
}

/*
** These routines are Walker callbacks.  Walker.u.pi is a pointer
** to an integer.  These routines are checking an expression to see
** if it is a constant.  Set *Walker.u.i to 0 if the expression is
** not constant.
**
** These callback routines are used to implement the following:
**
**     sqlite3ExprIsConstant()                  pWalker->u.i==1
**     sqlite3ExprIsConstantNotJoin()           pWalker->u.i==2
**     sqlite3ExprIsConstantOrFunction()        pWalker->u.i==3 or 4
**
** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
** in a CREATE TABLE statement.  The Walker.u.i value is 4 when parsing
** an existing schema and 3 when processing a new statement.  A bound
** parameter raises an error for new statements, but is silently converted
** to NULL for existing schemas.  This allows sqlite_master tables that 
** contain a bound parameter because they were generated by older versions
** of SQLite to be parsed by newer versions of SQLite without raising a
** malformed schema error.
*/
static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){

  /* If pWalker->u.i is 2 then any term of the expression that comes from
  ** the ON or USING clauses of a join disqualifies the expression
  ** from being considered constant. */
  if( pWalker->u.i==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
    pWalker->u.i = 0;
    return WRC_Abort;
  }

  switch( pExpr->op ){
    /* Consider functions to be constant if all their arguments are constant
    ** and either pWalker->u.i==3 or 4 or the function as the SQLITE_FUNC_CONST
    ** flag. */
    case TK_FUNCTION:
      if( pWalker->u.i>=3 || ExprHasProperty(pExpr,EP_Constant) ){
        return WRC_Continue;
      }
      /* Fall through */
    case TK_ID:
    case TK_COLUMN:
    case TK_AGG_FUNCTION:
    case TK_AGG_COLUMN:
      testcase( pExpr->op==TK_ID );
      testcase( pExpr->op==TK_COLUMN );
      testcase( pExpr->op==TK_AGG_FUNCTION );
      testcase( pExpr->op==TK_AGG_COLUMN );
      pWalker->u.i = 0;
      return WRC_Abort;
    case TK_VARIABLE:
      if( pWalker->u.i==4 ){
        /* Silently convert bound parameters that appear inside of CREATE
        ** statements into a NULL when parsing the CREATE statement text out
        ** of the sqlite_master table */
        pExpr->op = TK_NULL;
      }else if( pWalker->u.i==3 ){
        /* A bound parameter in a CREATE statement that originates from
        ** sqlite3_prepare() causes an error */
        pWalker->u.i = 0;
        return WRC_Abort;
      }
      /* Fall through */
    default:
      testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
      testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
      return WRC_Continue;
  }
}
static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
................................................................................
/*
** Walk an expression tree.  Return 1 if the expression is constant
** that does no originate from the ON or USING clauses of a join.
** Return 0 if it involves variables or function calls or terms from
** an ON or USING clause.
*/
int sqlite3ExprIsConstantNotJoin(Expr *p){
  return exprIsConst(p, 2);
}

/*
** Walk an expression tree.  Return 1 if the expression is constant
** or a function call with constant arguments.  Return and 0 if there
** are any variables.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
  assert( isInit==0 || isInit==1 );
  return exprIsConst(p, 3+isInit);
}

/*
** If the expression p codes a constant integer that is small enough
** to fit in a 32-bit integer, return 1 and put the value of the integer
** in *pValue.  If the expression is not an integer or if it is too big
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
................................................................................
  assert( pExpr->op!=TK_REGISTER );
  sqlite3ExprCode(pParse, pExpr, target);
  iMem = ++pParse->nMem;
  sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
  exprToRegister(pExpr, iMem);
}

#ifdef SQLITE_DEBUG
/*
** Generate a human-readable explanation of an expression tree.
*/
void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){

  const char *zBinOp = 0;   /* Binary operator */
  const char *zUniOp = 0;   /* Unary operator */
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  if( pExpr==0 ){
    sqlite3TreeViewLine(pView, "nil");
    sqlite3TreeViewPop(pView);
    return;
  }
  switch( pExpr->op ){
    case TK_AGG_COLUMN: {
      sqlite3TreeViewLine(pView, "AGG{%d:%d}",
            pExpr->iTable, pExpr->iColumn);
      break;
    }
    case TK_COLUMN: {
      if( pExpr->iTable<0 ){
        /* This only happens when coding check constraints */
        sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn);
      }else{
        sqlite3TreeViewLine(pView, "{%d:%d}",
                             pExpr->iTable, pExpr->iColumn);
      }
      break;
    }
    case TK_INTEGER: {
      if( pExpr->flags & EP_IntValue ){
        sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue);
      }else{
        sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken);
      }
      break;
    }
#ifndef SQLITE_OMIT_FLOATING_POINT
    case TK_FLOAT: {
      sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
      break;
    }
#endif
    case TK_STRING: {
      sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken);
      break;
    }
    case TK_NULL: {
      sqlite3TreeViewLine(pView,"NULL");
      break;
    }
#ifndef SQLITE_OMIT_BLOB_LITERAL
    case TK_BLOB: {
      sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
      break;
    }
#endif
    case TK_VARIABLE: {
      sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)",
                          pExpr->u.zToken, pExpr->iColumn);
      break;
    }
    case TK_REGISTER: {
      sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
      break;
    }
    case TK_AS: {
      sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken);
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
      break;
    }
    case TK_ID: {
      sqlite3TreeViewLine(pView,"ID %Q", pExpr->u.zToken);
      break;
    }
#ifndef SQLITE_OMIT_CAST
    case TK_CAST: {
      /* Expressions of the form:   CAST(pLeft AS token) */
      sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken);
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);









      break;
    }
#endif /* SQLITE_OMIT_CAST */
    case TK_LT:      zBinOp = "LT";     break;
    case TK_LE:      zBinOp = "LE";     break;
    case TK_GT:      zBinOp = "GT";     break;
    case TK_GE:      zBinOp = "GE";     break;
................................................................................
    case TK_REM:     zBinOp = "REM";    break;
    case TK_BITAND:  zBinOp = "BITAND"; break;
    case TK_BITOR:   zBinOp = "BITOR";  break;
    case TK_SLASH:   zBinOp = "DIV";    break;
    case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
    case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
    case TK_CONCAT:  zBinOp = "CONCAT"; break;
    case TK_DOT:     zBinOp = "DOT";    break;

    case TK_UMINUS:  zUniOp = "UMINUS"; break;
    case TK_UPLUS:   zUniOp = "UPLUS";  break;
    case TK_BITNOT:  zUniOp = "BITNOT"; break;
    case TK_NOT:     zUniOp = "NOT";    break;
    case TK_ISNULL:  zUniOp = "ISNULL"; break;
    case TK_NOTNULL: zUniOp = "NOTNULL"; break;

    case TK_COLLATE: {
      sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken);
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
      break;
    }

    case TK_AGG_FUNCTION:
    case TK_FUNCTION: {
      ExprList *pFarg;       /* List of function arguments */
      if( ExprHasProperty(pExpr, EP_TokenOnly) ){
        pFarg = 0;
      }else{
        pFarg = pExpr->x.pList;
      }
      if( pExpr->op==TK_AGG_FUNCTION ){
        sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q",
                             pExpr->op2, pExpr->u.zToken);
      }else{
        sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken);
      }
      if( pFarg ){
        sqlite3TreeViewExprList(pView, pFarg, 0, 0);
      }

      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_EXISTS: {
      sqlite3TreeViewLine(pView, "EXISTS-expr");
      sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);

      break;
    }
    case TK_SELECT: {
      sqlite3TreeViewLine(pView, "SELECT-expr");
      sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);

      break;
    }
    case TK_IN: {
      sqlite3TreeViewLine(pView, "IN");
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);

      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
      }else{

        sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
      }

      break;
    }
#endif /* SQLITE_OMIT_SUBQUERY */

    /*
    **    x BETWEEN y AND z
    **
................................................................................
    ** Y is stored in pExpr->pList->a[0].pExpr.
    ** Z is stored in pExpr->pList->a[1].pExpr.
    */
    case TK_BETWEEN: {
      Expr *pX = pExpr->pLeft;
      Expr *pY = pExpr->x.pList->a[0].pExpr;
      Expr *pZ = pExpr->x.pList->a[1].pExpr;
      sqlite3TreeViewLine(pView, "BETWEEN");
      sqlite3TreeViewExpr(pView, pX, 1);
      sqlite3TreeViewExpr(pView, pY, 1);
      sqlite3TreeViewExpr(pView, pZ, 0);



      break;
    }
    case TK_TRIGGER: {
      /* If the opcode is TK_TRIGGER, then the expression is a reference
      ** to a column in the new.* or old.* pseudo-tables available to
      ** trigger programs. In this case Expr.iTable is set to 1 for the
      ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
      ** is set to the column of the pseudo-table to read, or to -1 to
      ** read the rowid field.
      */
      sqlite3TreeViewLine(pView, "%s(%d)", 
          pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
      break;
    }
    case TK_CASE: {
      sqlite3TreeViewLine(pView, "CASE");
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
      sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);

      break;
    }
#ifndef SQLITE_OMIT_TRIGGER
    case TK_RAISE: {
      const char *zType = "unk";
      switch( pExpr->affinity ){
        case OE_Rollback:   zType = "rollback";  break;
        case OE_Abort:      zType = "abort";     break;
        case OE_Fail:       zType = "fail";      break;
        case OE_Ignore:     zType = "ignore";    break;
      }
      sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken);
      break;
    }
#endif
    default: {
      sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
      break;
    }
  }
  if( zBinOp ){




    sqlite3TreeViewLine(pView, "%s", zBinOp);
    sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
    sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
  }else if( zUniOp ){


    sqlite3TreeViewLine(pView, "%s", zUniOp);
    sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
  }
  sqlite3TreeViewPop(pView);
}

#endif /* SQLITE_DEBUG */


#ifdef SQLITE_DEBUG
/*
** Generate a human-readable explanation of an expression list.
*/
void sqlite3TreeViewExprList(
  TreeView *pView,
  const ExprList *pList,
  u8 moreToFollow,
  const char *zLabel
){
  int i;
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
  if( pList==0 ){
    sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
  }else{
    sqlite3TreeViewLine(pView, "%s", zLabel);
    for(i=0; i<pList->nExpr; i++){
      sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);
#if 0
     if( pList->a[i].zName ){
        sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
      }
      if( pList->a[i].bSpanIsTab ){
        sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
      }
#endif

    }
  }


  sqlite3TreeViewPop(pView);
}
#endif /* SQLITE_DEBUG */

/*
** Generate code that pushes the value of every element of the given
** expression list into a sequence of registers beginning at target.
**

Changes to src/func.c.

18
19
20
21
22
23
24
25



26
27
28
29
30
31
32
...
563
564
565
566
567
568
569
570
571

572
573

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
...
599
600
601
602
603
604
605
606
607
608
609
610







611
612
613
614
615
616
617
618
619
620
621
622
623

624


625





626
627
628



629
630
631
632
633
634
635
636
637

638
639
640
641
642
643
644

645
646
647
648
649
650













651
652
653
654

655
656


657




658
659
660


661
662
663
664
665
666
667

668
669
670
671


672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

710
711
712
713
714




715


716
717
718
719
720
721
722
#include <assert.h>
#include "vdbeInt.h"

/*
** Return the collating function associated with a function.
*/
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
  return context->pColl;



}

/*
** Indicate that the accumulator load should be skipped on this
** iteration of the aggregate loop.
*/
static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
................................................................................
/*
** For LIKE and GLOB matching on EBCDIC machines, assume that every
** character is exactly one byte in size.  Also, all characters are
** able to participate in upper-case-to-lower-case mappings in EBCDIC
** whereas only characters less than 0x80 do in ASCII.
*/
#if defined(SQLITE_EBCDIC)
# define sqlite3Utf8Read(A)    (*((*A)++))
# define GlobUpperToLower(A)   A = sqlite3UpperToLower[A]

#else
# define GlobUpperToLower(A)   if( !((A)&~0x7f) ){ A = sqlite3UpperToLower[A]; }

#endif

static const struct compareInfo globInfo = { '*', '?', '[', 0 };
/* The correct SQL-92 behavior is for the LIKE operator to ignore
** case.  Thus  'a' LIKE 'A' would be true. */
static const struct compareInfo likeInfoNorm = { '%', '_',   0, 1 };
/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
** is case sensitive causing 'a' LIKE 'A' to be false */
static const struct compareInfo likeInfoAlt = { '%', '_',   0, 0 };

/*
** Compare two UTF-8 strings for equality where the first string can
** potentially be a "glob" expression.  Return true (1) if they
** are the same and false (0) if they are different.
**
** Globbing rules:
**
**      '*'       Matches any sequence of zero or more characters.
**
**      '?'       Matches exactly one character.
................................................................................
**
** With the [...] and [^...] matching, a ']' character can be included
** in the list by making it the first character after '[' or '^'.  A
** range of characters can be specified using '-'.  Example:
** "[a-z]" matches any single lower-case letter.  To match a '-', make
** it the last character in the list.
**
** This routine is usually quick, but can be N**2 in the worst case.
**
** Hints: to match '*' or '?', put them in "[]".  Like this:
**
**         abc[*]xyz        Matches "abc*xyz" only







*/
static int patternCompare(
  const u8 *zPattern,              /* The glob pattern */
  const u8 *zString,               /* The string to compare against the glob */
  const struct compareInfo *pInfo, /* Information about how to do the compare */
  u32 esc                          /* The escape character */
){
  u32 c, c2;
  int invert;
  int seen;
  u8 matchOne = pInfo->matchOne;
  u8 matchAll = pInfo->matchAll;
  u8 matchSet = pInfo->matchSet;

  u8 noCase = pInfo->noCase; 


  int prevEscape = 0;     /* True if the previous character was 'escape' */






  while( (c = sqlite3Utf8Read(&zPattern))!=0 ){
    if( c==matchAll && !prevEscape ){



      while( (c=sqlite3Utf8Read(&zPattern)) == matchAll
               || c == matchOne ){
        if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
          return 0;
        }
      }
      if( c==0 ){
        return 1;
      }else if( c==esc ){

        c = sqlite3Utf8Read(&zPattern);
        if( c==0 ){
          return 0;
        }
      }else if( c==matchSet ){
        assert( esc==0 );         /* This is GLOB, not LIKE */
        assert( matchSet<0x80 );  /* '[' is a single-byte character */

        while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
          SQLITE_SKIP_UTF8(zString);
        }
        return *zString!=0;
      }
      while( (c2 = sqlite3Utf8Read(&zString))!=0 ){













        if( noCase ){
          GlobUpperToLower(c2);
          GlobUpperToLower(c);
          while( c2 != 0 && c2 != c ){

            c2 = sqlite3Utf8Read(&zString);
            GlobUpperToLower(c2);


          }




        }else{
          while( c2 != 0 && c2 != c ){
            c2 = sqlite3Utf8Read(&zString);


          }
        }
        if( c2==0 ) return 0;
        if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
      }
      return 0;
    }else if( c==matchOne && !prevEscape ){

      if( sqlite3Utf8Read(&zString)==0 ){
        return 0;
      }
    }else if( c==matchSet ){


      u32 prior_c = 0;
      assert( esc==0 );    /* This only occurs for GLOB, not LIKE */
      seen = 0;
      invert = 0;
      c = sqlite3Utf8Read(&zString);
      if( c==0 ) return 0;
      c2 = sqlite3Utf8Read(&zPattern);
      if( c2=='^' ){
        invert = 1;
        c2 = sqlite3Utf8Read(&zPattern);
      }
      if( c2==']' ){
        if( c==']' ) seen = 1;
        c2 = sqlite3Utf8Read(&zPattern);
      }
      while( c2 && c2!=']' ){
        if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
          c2 = sqlite3Utf8Read(&zPattern);
          if( c>=prior_c && c<=c2 ) seen = 1;
          prior_c = 0;
        }else{
          if( c==c2 ){
            seen = 1;
          }
          prior_c = c2;
        }
        c2 = sqlite3Utf8Read(&zPattern);
      }
      if( c2==0 || (seen ^ invert)==0 ){
        return 0;
      }
    }else if( esc==c && !prevEscape ){
      prevEscape = 1;
    }else{
      c2 = sqlite3Utf8Read(&zString);
      if( noCase ){
        GlobUpperToLower(c);
        GlobUpperToLower(c2);

      }
      if( c!=c2 ){
        return 0;
      }
      prevEscape = 0;




    }


  }
  return *zString==0;
}

/*
** The sqlite3_strglob() interface.
*/







|
>
>
>







 







|
|
>

|
>












|







 







|
|
|

|
>
>
>
>
>
>
>







|
<
<
|
|
<
>
|
>
>
|
>
>
>
>
>


|
>
>
>







|
|
>
|
|
<
|
|
|
|
>
|
|
|
|
|
<
>
>
>
>
>
>
>
>
>
>
>
>
>

<
<
<
>
|
<
>
>
|
>
>
>
>
|
<
|
>
>
|
|
|
<
|
<
|
>
|
|
<
<
>
>
|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
<
<
<
<
<
<
>

<
<
|
<
>
>
>
>

>
>







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
...
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
...
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630


631
632

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

661
662
663
664
665
666
667
668
669
670

671
672
673
674
675
676
677
678
679
680
681
682
683
684



685
686

687
688
689
690
691
692
693
694

695
696
697
698
699
700

701

702
703
704
705


706
707
708

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737







738
739


740

741
742
743
744
745
746
747
748
749
750
751
752
753
754
#include <assert.h>
#include "vdbeInt.h"

/*
** Return the collating function associated with a function.
*/
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
  VdbeOp *pOp = &context->pVdbe->aOp[context->iOp-1];
  assert( pOp->opcode==OP_CollSeq );
  assert( pOp->p4type==P4_COLLSEQ );
  return pOp->p4.pColl;
}

/*
** Indicate that the accumulator load should be skipped on this
** iteration of the aggregate loop.
*/
static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
................................................................................
/*
** For LIKE and GLOB matching on EBCDIC machines, assume that every
** character is exactly one byte in size.  Also, all characters are
** able to participate in upper-case-to-lower-case mappings in EBCDIC
** whereas only characters less than 0x80 do in ASCII.
*/
#if defined(SQLITE_EBCDIC)
# define sqlite3Utf8Read(A)        (*((*A)++))
# define GlobUpperToLower(A)       A = sqlite3UpperToLower[A]
# define GlobUpperToLowerAscii(A)  A = sqlite3UpperToLower[A]
#else
# define GlobUpperToLower(A)       if( A<=0x7f ){ A = sqlite3UpperToLower[A]; }
# define GlobUpperToLowerAscii(A)  A = sqlite3UpperToLower[A]
#endif

static const struct compareInfo globInfo = { '*', '?', '[', 0 };
/* The correct SQL-92 behavior is for the LIKE operator to ignore
** case.  Thus  'a' LIKE 'A' would be true. */
static const struct compareInfo likeInfoNorm = { '%', '_',   0, 1 };
/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
** is case sensitive causing 'a' LIKE 'A' to be false */
static const struct compareInfo likeInfoAlt = { '%', '_',   0, 0 };

/*
** Compare two UTF-8 strings for equality where the first string can
** potentially be a "glob" or "like" expression.  Return true (1) if they
** are the same and false (0) if they are different.
**
** Globbing rules:
**
**      '*'       Matches any sequence of zero or more characters.
**
**      '?'       Matches exactly one character.
................................................................................
**
** With the [...] and [^...] matching, a ']' character can be included
** in the list by making it the first character after '[' or '^'.  A
** range of characters can be specified using '-'.  Example:
** "[a-z]" matches any single lower-case letter.  To match a '-', make
** it the last character in the list.
**
** Like matching rules:
** 
**      '%'       Matches any sequence of zero or more characters
**
***     '_'       Matches any one character
**
**      Ec        Where E is the "esc" character and c is any other
**                character, including '%', '_', and esc, match exactly c.
**
** The comments through this routine usually assume glob matching.
**
** This routine is usually quick, but can be N**2 in the worst case.
*/
static int patternCompare(
  const u8 *zPattern,              /* The glob pattern */
  const u8 *zString,               /* The string to compare against the glob */
  const struct compareInfo *pInfo, /* Information about how to do the compare */
  u32 esc                          /* The escape character */
){
  u32 c, c2;                       /* Next pattern and input string chars */


  u32 matchOne = pInfo->matchOne;  /* "?" or "_" */
  u32 matchAll = pInfo->matchAll;  /* "*" or "%" */

  u32 matchOther;                  /* "[" or the escape character */
  u8 noCase = pInfo->noCase;       /* True if uppercase==lowercase */
  const u8 *zEscaped = 0;          /* One past the last escaped input char */
  
  /* The GLOB operator does not have an ESCAPE clause.  And LIKE does not
  ** have the matchSet operator.  So we either have to look for one or
  ** the other, never both.  Hence the single variable matchOther is used
  ** to store the one we have to look for.
  */
  matchOther = esc ? esc : pInfo->matchSet;

  while( (c = sqlite3Utf8Read(&zPattern))!=0 ){
    if( c==matchAll ){  /* Match "*" */
      /* Skip over multiple "*" characters in the pattern.  If there
      ** are also "?" characters, skip those as well, but consume a
      ** single character of the input string for each "?" skipped */
      while( (c=sqlite3Utf8Read(&zPattern)) == matchAll
               || c == matchOne ){
        if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
          return 0;
        }
      }
      if( c==0 ){
        return 1;   /* "*" at the end of the pattern matches */
      }else if( c==matchOther ){
        if( esc ){
          c = sqlite3Utf8Read(&zPattern);
          if( c==0 ) return 0;

        }else{
          /* "[...]" immediately follows the "*".  We have to do a slow
          ** recursive search in this case, but it is an unusual case. */
          assert( matchOther<0x80 );  /* '[' is a single-byte character */
          while( *zString
                 && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
            SQLITE_SKIP_UTF8(zString);
          }
          return *zString!=0;
        }

      }

      /* At this point variable c contains the first character of the
      ** pattern string past the "*".  Search in the input string for the
      ** first matching character and recursively contine the match from
      ** that point.
      **
      ** For a case-insensitive search, set variable cx to be the same as
      ** c but in the other case and search the input string for either
      ** c or cx.
      */
      if( c<=0x80 ){
        u32 cx;
        if( noCase ){



          cx = sqlite3Toupper(c);
          c = sqlite3Tolower(c);

        }else{
          cx = c;
        }
        while( (c2 = *(zString++))!=0 ){
          if( c2!=c && c2!=cx ) continue;
          if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
        }
      }else{

        while( (c2 = sqlite3Utf8Read(&zString))!=0 ){
          if( c2!=c ) continue;
          if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
        }
      }
      return 0;

    }

    if( c==matchOther ){
      if( esc ){
        c = sqlite3Utf8Read(&zPattern);
        if( c==0 ) return 0;


        zEscaped = zPattern;
      }else{
        u32 prior_c = 0;

        int seen = 0;
        int invert = 0;
        c = sqlite3Utf8Read(&zString);
        if( c==0 ) return 0;
        c2 = sqlite3Utf8Read(&zPattern);
        if( c2=='^' ){
          invert = 1;
          c2 = sqlite3Utf8Read(&zPattern);
        }
        if( c2==']' ){
          if( c==']' ) seen = 1;
          c2 = sqlite3Utf8Read(&zPattern);
        }
        while( c2 && c2!=']' ){
          if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
            c2 = sqlite3Utf8Read(&zPattern);
            if( c>=prior_c && c<=c2 ) seen = 1;
            prior_c = 0;
          }else{
            if( c==c2 ){
              seen = 1;
            }
            prior_c = c2;
          }
          c2 = sqlite3Utf8Read(&zPattern);
        }
        if( c2==0 || (seen ^ invert)==0 ){
          return 0;
        }







        continue;
      }


    }

    c2 = sqlite3Utf8Read(&zString);
    if( c==c2 ) continue;
    if( noCase && c<0x80 && c2<0x80 && sqlite3Tolower(c)==sqlite3Tolower(c2) ){
      continue;
    }
    if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
    return 0;
  }
  return *zString==0;
}

/*
** The sqlite3_strglob() interface.
*/

Changes to src/global.c.

125
126
127
128
129
130
131







132
133
134
135
136
137
138
  0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* e0..e7    ........ */
  0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* e8..ef    ........ */
  0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* f0..f7    ........ */
  0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40   /* f8..ff    ........ */
};
#endif








#ifndef SQLITE_USE_URI
# define  SQLITE_USE_URI 0
#endif

#ifndef SQLITE_ALLOW_COVERING_INDEX_SCAN
# define SQLITE_ALLOW_COVERING_INDEX_SCAN 1
#endif







>
>
>
>
>
>
>







125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
  0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* e0..e7    ........ */
  0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* e8..ef    ........ */
  0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* f0..f7    ........ */
  0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40   /* f8..ff    ........ */
};
#endif

/* EVIDENCE-OF: R-02982-34736 In order to maintain full backwards
** compatibility for legacy applications, the URI filename capability is
** disabled by default.
**
** EVIDENCE-OF: R-38799-08373 URI filenames can be enabled or disabled
** using the SQLITE_USE_URI=1 or SQLITE_USE_URI=0 compile-time options.
*/
#ifndef SQLITE_USE_URI
# define  SQLITE_USE_URI 0
#endif

#ifndef SQLITE_ALLOW_COVERING_INDEX_SCAN
# define SQLITE_ALLOW_COVERING_INDEX_SCAN 1
#endif

Changes to src/insert.c.

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
...
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
/*
** Return a pointer to the column affinity string associated with index
** pIdx. A column affinity string has one character for each column in 
** the table, according to the affinity of the column:
**
**  Character      Column affinity
**  ------------------------------
**  'a'            TEXT
**  'b'            NONE
**  'c'            NUMERIC
**  'd'            INTEGER
**  'e'            REAL
**
** An extra 'd' is appended to the end of the string to cover the
** rowid that appears as the last column in every index.
**
** Memory for the buffer containing the column index affinity string
** is managed along with the rest of the Index structure. It will be
** released when sqlite3DeleteIndex() is called.
*/
const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
................................................................................
** then just set the P4 operand of the previous opcode (which should  be
** an OP_MakeRecord) to the affinity string.
**
** A column affinity string has one character per column:
**
**  Character      Column affinity
**  ------------------------------
**  'a'            TEXT
**  'b'            NONE
**  'c'            NUMERIC
**  'd'            INTEGER
**  'e'            REAL
*/
void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
  int i;
  char *zColAff = pTab->zColAff;
  if( zColAff==0 ){
    sqlite3 *db = sqlite3VdbeDb(v);
    zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);







|
|
|
|
|

|







 







|
|
|
|
|







52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
...
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
/*
** Return a pointer to the column affinity string associated with index
** pIdx. A column affinity string has one character for each column in 
** the table, according to the affinity of the column:
**
**  Character      Column affinity
**  ------------------------------
**  'A'            NONE
**  'B'            TEXT
**  'C'            NUMERIC
**  'D'            INTEGER
**  'F'            REAL
**
** An extra 'D' is appended to the end of the string to cover the
** rowid that appears as the last column in every index.
**
** Memory for the buffer containing the column index affinity string
** is managed along with the rest of the Index structure. It will be
** released when sqlite3DeleteIndex() is called.
*/
const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
................................................................................
** then just set the P4 operand of the previous opcode (which should  be
** an OP_MakeRecord) to the affinity string.
**
** A column affinity string has one character per column:
**
**  Character      Column affinity
**  ------------------------------
**  'A'            NONE
**  'B'            TEXT
**  'C'            NUMERIC
**  'D'            INTEGER
**  'E'            REAL
*/
void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
  int i;
  char *zColAff = pTab->zColAff;
  if( zColAff==0 ){
    sqlite3 *db = sqlite3VdbeDb(v);
    zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);

Changes to src/main.c.

472
473
474
475
476
477
478





479
480
481
482
483
484
485
....
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
....
2457
2458
2459
2460
2461
2462
2463
2464


2465
2466
2467
2468
2469
2470
2471
....
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
      */
      typedef void(*LOGFUNC_t)(void*,int,const char*);
      sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t);
      sqlite3GlobalConfig.pLogArg = va_arg(ap, void*);
      break;
    }






    case SQLITE_CONFIG_URI: {
      sqlite3GlobalConfig.bOpenUri = va_arg(ap, int);
      break;
    }

    case SQLITE_CONFIG_COVERING_INDEX_SCAN: {
      sqlite3GlobalConfig.bUseCis = va_arg(ap, int);
................................................................................
  char *zFile;
  char c;
  int nUri = sqlite3Strlen30(zUri);

  assert( *pzErrMsg==0 );

  if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri) 
   && nUri>=5 && memcmp(zUri, "file:", 5)==0 
  ){
    char *zOpt;
    int eState;                   /* Parser state when parsing URI */
    int iIn;                      /* Input character index */
    int iOut = 0;                 /* Output character index */
    int nByte = nUri+2;           /* Bytes of space to allocate */

................................................................................
  */
  assert( SQLITE_OPEN_READONLY  == 0x01 );
  assert( SQLITE_OPEN_READWRITE == 0x02 );
  assert( SQLITE_OPEN_CREATE    == 0x04 );
  testcase( (1<<(flags&7))==0x02 ); /* READONLY */
  testcase( (1<<(flags&7))==0x04 ); /* READWRITE */
  testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */
  if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE_BKPT;



  if( sqlite3GlobalConfig.bCoreMutex==0 ){
    isThreadsafe = 0;
  }else if( flags & SQLITE_OPEN_NOMUTEX ){
    isThreadsafe = 0;
  }else if( flags & SQLITE_OPEN_FULLMUTEX ){
    isThreadsafe = 1;
................................................................................
    ** undo this setting.
    */
    case SQLITE_TESTCTRL_LOCALTIME_FAULT: {
      sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int);
      break;
    }

#if defined(SQLITE_ENABLE_TREE_EXPLAIN)
    /*   sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT,
    **                        sqlite3_stmt*,const char**);
    **
    ** If compiled with SQLITE_ENABLE_TREE_EXPLAIN, each sqlite3_stmt holds
    ** a string that describes the optimized parse tree.  This test-control
    ** returns a pointer to that string.
    */
    case SQLITE_TESTCTRL_EXPLAIN_STMT: {
      sqlite3_stmt *pStmt = va_arg(ap, sqlite3_stmt*);
      const char **pzRet = va_arg(ap, const char**);
      *pzRet = sqlite3VdbeExplanation((Vdbe*)pStmt);
      break;
    }
#endif

    /*   sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int);
    **
    ** Set or clear a flag that indicates that the database file is always well-
    ** formed and never corrupt.  This flag is clear by default, indicating that
    ** database files might have arbitrary corruption.  Setting the flag during
    ** testing causes certain assert() statements in the code to be activated
    ** that demonstrat invariants on well-formed database files.







>
>
>
>
>







 







|







 







|
>
>







 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
....
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
....
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
....
3348
3349
3350
3351
3352
3353
3354
















3355
3356
3357
3358
3359
3360
3361
      */
      typedef void(*LOGFUNC_t)(void*,int,const char*);
      sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t);
      sqlite3GlobalConfig.pLogArg = va_arg(ap, void*);
      break;
    }

    /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames
    ** can be changed at start-time using the
    ** sqlite3_config(SQLITE_CONFIG_URI,1) or
    ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls.
    */
    case SQLITE_CONFIG_URI: {
      sqlite3GlobalConfig.bOpenUri = va_arg(ap, int);
      break;
    }

    case SQLITE_CONFIG_COVERING_INDEX_SCAN: {
      sqlite3GlobalConfig.bUseCis = va_arg(ap, int);
................................................................................
  char *zFile;
  char c;
  int nUri = sqlite3Strlen30(zUri);

  assert( *pzErrMsg==0 );

  if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri) 
   && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */
  ){
    char *zOpt;
    int eState;                   /* Parser state when parsing URI */
    int iIn;                      /* Input character index */
    int iOut = 0;                 /* Output character index */
    int nByte = nUri+2;           /* Bytes of space to allocate */

................................................................................
  */
  assert( SQLITE_OPEN_READONLY  == 0x01 );
  assert( SQLITE_OPEN_READWRITE == 0x02 );
  assert( SQLITE_OPEN_CREATE    == 0x04 );
  testcase( (1<<(flags&7))==0x02 ); /* READONLY */
  testcase( (1<<(flags&7))==0x04 ); /* READWRITE */
  testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */
  if( ((1<<(flags&7)) & 0x46)==0 ){
    return SQLITE_MISUSE_BKPT;  /* IMP: R-65497-44594 */
  }

  if( sqlite3GlobalConfig.bCoreMutex==0 ){
    isThreadsafe = 0;
  }else if( flags & SQLITE_OPEN_NOMUTEX ){
    isThreadsafe = 0;
  }else if( flags & SQLITE_OPEN_FULLMUTEX ){
    isThreadsafe = 1;
................................................................................
    ** undo this setting.
    */
    case SQLITE_TESTCTRL_LOCALTIME_FAULT: {
      sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int);
      break;
    }

















    /*   sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int);
    **
    ** Set or clear a flag that indicates that the database file is always well-
    ** formed and never corrupt.  This flag is clear by default, indicating that
    ** database files might have arbitrary corruption.  Setting the flag during
    ** testing causes certain assert() statements in the code to be activated
    ** that demonstrat invariants on well-formed database files.

Changes to src/malloc.c.

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
...
443
444
445
446
447
448
449
450
451
452
453
454




455
456
457
458
459
460
461
462

463
464
465


466
467
468
469
470
471
472
473
474
475

476
477
478
479
480
481
482
...
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531


532
533
534
535
536
537
538
539
540
541
542
543
...
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
...
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
...
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    mallocWithAlarm((int)n, &p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    p = sqlite3GlobalConfig.m.xMalloc((int)n);
  }
  assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-04675-44850 */
  return p;
}

/*
** This version of the memory allocation is for use by the application.
** First make sure the memory subsystem is initialized, then do the
** allocation.
................................................................................

/*
** Return the size of a memory allocation previously obtained from
** sqlite3Malloc() or sqlite3_malloc().
*/
int sqlite3MallocSize(void *p){
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
  return sqlite3GlobalConfig.m.xSize(p);
}
int sqlite3DbMallocSize(sqlite3 *db, void *p){
  assert( db!=0 );




  assert( sqlite3_mutex_held(db->mutex) );
  if( isLookaside(db, p) ){
    return db->lookaside.sz;
  }else{
    assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
    assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
    assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
    return sqlite3GlobalConfig.m.xSize(p);

  }
}
sqlite3_uint64 sqlite3_msize(void *p){


  return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p);
}

/*
** Free memory previously obtained from sqlite3Malloc().
*/
void sqlite3_free(void *p){
  if( p==0 ) return;  /* IMP: R-49053-54554 */
  assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );

  if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
    sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
    sqlite3GlobalConfig.m.xFree(p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
................................................................................
#endif
      pBuf->pNext = db->lookaside.pFree;
      db->lookaside.pFree = pBuf;
      db->lookaside.nOut--;
      return;
    }
  }
  assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
  assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
  assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
  sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
  sqlite3_free(p);
}

/*
** Change the size of an existing memory allocation
*/
void *sqlite3Realloc(void *pOld, u64 nBytes){
  int nOld, nNew, nDiff;
  void *pNew;


  if( pOld==0 ){
    return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */
  }
  if( nBytes==0 ){
    sqlite3_free(pOld); /* IMP: R-31593-10574 */
    return 0;
  }
  if( nBytes>=0x7fffff00 ){
    /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
    return 0;
  }
  nOld = sqlite3MallocSize(pOld);
................................................................................
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
    nDiff = nNew - nOld;
    if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 
          mem0.alarmThreshold-nDiff ){
      sqlite3MallocAlarm(nDiff);
    }
    assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
    assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmCallback ){
      sqlite3MallocAlarm((int)nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
  }
  assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */
  return pNew;
}

/*
** The public interface to sqlite3Realloc.  Make sure that the memory
** subsystem is initialized prior to invoking sqliteRealloc.
*/
void *sqlite3_realloc(void *pOld, int n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  if( n<0 ) n = 0;
  return sqlite3Realloc(pOld, n);
}
void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return sqlite3Realloc(pOld, n);
................................................................................
    return 0;
  }
#endif
  p = sqlite3Malloc(n);
  if( !p && db ){
    db->mallocFailed = 1;
  }
  sqlite3MemdebugSetType(p, MEMTYPE_DB |
         ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
  return p;
}

/*
** Resize the block of memory pointed to by p to n bytes. If the
** resize fails, set the mallocFailed flag in the connection object.
*/
................................................................................
      }
      pNew = sqlite3DbMallocRaw(db, n);
      if( pNew ){
        memcpy(pNew, p, db->lookaside.sz);
        sqlite3DbFree(db, p);
      }
    }else{
      assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
      assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      pNew = sqlite3_realloc64(p, n);
      if( !pNew ){
        sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
        db->mallocFailed = 1;
      }
      sqlite3MemdebugSetType(pNew, MEMTYPE_DB | 
            (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
    }
  }
  return pNew;
}

/*







|







 







<



|
>
>
>
>
|
|
|
|
|
|
<
|
>



>
>








<

>







 







|
|











>
>

|


|







 







<
<













|











|







 







|
|







 







|
|



<


|







306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
...
443
444
445
446
447
448
449

450
451
452
453
454
455
456
457
458
459
460
461
462
463

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

479
480
481
482
483
484
485
486
487
...
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
...
558
559
560
561
562
563
564


565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
...
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
...
697
698
699
700
701
702
703
704
705
706
707
708

709
710
711
712
713
714
715
716
717
718
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    mallocWithAlarm((int)n, &p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    p = sqlite3GlobalConfig.m.xMalloc((int)n);
  }
  assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-11148-40995 */
  return p;
}

/*
** This version of the memory allocation is for use by the application.
** First make sure the memory subsystem is initialized, then do the
** allocation.
................................................................................

/*
** Return the size of a memory allocation previously obtained from
** sqlite3Malloc() or sqlite3_malloc().
*/
int sqlite3MallocSize(void *p){
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );

  return sqlite3GlobalConfig.m.xSize(p);
}
int sqlite3DbMallocSize(sqlite3 *db, void *p){
  if( db==0 ){
    assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) );
    assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
    return sqlite3MallocSize(p);
  }else{
    assert( sqlite3_mutex_held(db->mutex) );
    if( isLookaside(db, p) ){
      return db->lookaside.sz;
    }else{
      assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );

      return sqlite3GlobalConfig.m.xSize(p);
    }
  }
}
sqlite3_uint64 sqlite3_msize(void *p){
  assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) );
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p);
}

/*
** Free memory previously obtained from sqlite3Malloc().
*/
void sqlite3_free(void *p){
  if( p==0 ) return;  /* IMP: R-49053-54554 */

  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) );
  if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
    sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
    sqlite3GlobalConfig.m.xFree(p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
................................................................................
#endif
      pBuf->pNext = db->lookaside.pFree;
      db->lookaside.pFree = pBuf;
      db->lookaside.nOut--;
      return;
    }
  }
  assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
  assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
  assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
  sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
  sqlite3_free(p);
}

/*
** Change the size of an existing memory allocation
*/
void *sqlite3Realloc(void *pOld, u64 nBytes){
  int nOld, nNew, nDiff;
  void *pNew;
  assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
  assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
  if( pOld==0 ){
    return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
  }
  if( nBytes==0 ){
    sqlite3_free(pOld); /* IMP: R-26507-47431 */
    return 0;
  }
  if( nBytes>=0x7fffff00 ){
    /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
    return 0;
  }
  nOld = sqlite3MallocSize(pOld);
................................................................................
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
    nDiff = nNew - nOld;
    if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 
          mem0.alarmThreshold-nDiff ){
      sqlite3MallocAlarm(nDiff);
    }


    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmCallback ){
      sqlite3MallocAlarm((int)nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
  }
  assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
  return pNew;
}

/*
** The public interface to sqlite3Realloc.  Make sure that the memory
** subsystem is initialized prior to invoking sqliteRealloc.
*/
void *sqlite3_realloc(void *pOld, int n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  if( n<0 ) n = 0;  /* IMP: R-26507-47431 */
  return sqlite3Realloc(pOld, n);
}
void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return sqlite3Realloc(pOld, n);
................................................................................
    return 0;
  }
#endif
  p = sqlite3Malloc(n);
  if( !p && db ){
    db->mallocFailed = 1;
  }
  sqlite3MemdebugSetType(p, 
         (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
  return p;
}

/*
** Resize the block of memory pointed to by p to n bytes. If the
** resize fails, set the mallocFailed flag in the connection object.
*/
................................................................................
      }
      pNew = sqlite3DbMallocRaw(db, n);
      if( pNew ){
        memcpy(pNew, p, db->lookaside.sz);
        sqlite3DbFree(db, p);
      }
    }else{
      assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      pNew = sqlite3_realloc64(p, n);
      if( !pNew ){

        db->mallocFailed = 1;
      }
      sqlite3MemdebugSetType(pNew,
            (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
    }
  }
  return pNew;
}

/*

Changes to src/mem2.c.

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
...
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/*
** Return TRUE if the mask of type in eType matches the type of the
** allocation p.  Also return true if p==NULL.
**
** This routine is designed for use within an assert() statement, to
** verify the type of an allocation.  For example:
**
**     assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
*/
int sqlite3MemdebugHasType(void *p, u8 eType){
  int rc = 1;
  if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){
    struct MemBlockHdr *pHdr;
    pHdr = sqlite3MemsysGetHeader(p);
    assert( pHdr->iForeGuard==FOREGUARD );         /* Allocation is valid */
................................................................................
/*
** Return TRUE if the mask of type in eType matches no bits of the type of the
** allocation p.  Also return true if p==NULL.
**
** This routine is designed for use within an assert() statement, to
** verify the type of an allocation.  For example:
**
**     assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
*/
int sqlite3MemdebugNoType(void *p, u8 eType){
  int rc = 1;
  if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){
    struct MemBlockHdr *pHdr;
    pHdr = sqlite3MemsysGetHeader(p);
    assert( pHdr->iForeGuard==FOREGUARD );         /* Allocation is valid */







|







 







|







390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
...
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/*
** Return TRUE if the mask of type in eType matches the type of the
** allocation p.  Also return true if p==NULL.
**
** This routine is designed for use within an assert() statement, to
** verify the type of an allocation.  For example:
**
**     assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
*/
int sqlite3MemdebugHasType(void *p, u8 eType){
  int rc = 1;
  if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){
    struct MemBlockHdr *pHdr;
    pHdr = sqlite3MemsysGetHeader(p);
    assert( pHdr->iForeGuard==FOREGUARD );         /* Allocation is valid */
................................................................................
/*
** Return TRUE if the mask of type in eType matches no bits of the type of the
** allocation p.  Also return true if p==NULL.
**
** This routine is designed for use within an assert() statement, to
** verify the type of an allocation.  For example:
**
**     assert( sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
*/
int sqlite3MemdebugNoType(void *p, u8 eType){
  int rc = 1;
  if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){
    struct MemBlockHdr *pHdr;
    pHdr = sqlite3MemsysGetHeader(p);
    assert( pHdr->iForeGuard==FOREGUARD );         /* Allocation is valid */

Changes to src/os_unix.c.

4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
....
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
....
4988
4989
4990
4991
4992
4993
4994
4995

4996
4997
4998
4999
5000
5001
5002
5003
5004

5005
5006
5007
5008
5009
5010
5011
5012
5013

5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024

5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036

5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048

5049
5050
5051
5052
5053
5054
5055
....
5066
5067
5068
5069
5070
5071
5072
5073

5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086

5087
5088
5089
5090
5091
5092
5093
**
**   *  A constant sqlite3_io_methods object call METHOD that has locking
**      methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
**
**   *  An I/O method finder function called FINDER that returns a pointer
**      to the METHOD object in the previous bullet.
*/
#define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK)      \
static const sqlite3_io_methods METHOD = {                                   \
   VERSION,                    /* iVersion */                                \
   CLOSE,                      /* xClose */                                  \
   unixRead,                   /* xRead */                                   \
   unixWrite,                  /* xWrite */                                  \
   unixTruncate,               /* xTruncate */                               \
   unixSync,                   /* xSync */                                   \
................................................................................
   unixFileSize,               /* xFileSize */                               \
   LOCK,                       /* xLock */                                   \
   UNLOCK,                     /* xUnlock */                                 \
   CKLOCK,                     /* xCheckReservedLock */                      \
   unixFileControl,            /* xFileControl */                            \
   unixSectorSize,             /* xSectorSize */                             \
   unixDeviceCharacteristics,  /* xDeviceCapabilities */                     \
   unixShmMap,                 /* xShmMap */                                 \
   unixShmLock,                /* xShmLock */                                \
   unixShmBarrier,             /* xShmBarrier */                             \
   unixShmUnmap,               /* xShmUnmap */                               \
   unixFetch,                  /* xFetch */                                  \
   unixUnfetch,                /* xUnfetch */                                \
};                                                                           \
static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){   \
................................................................................
IOMETHODS(
  posixIoFinder,            /* Finder function name */
  posixIoMethods,           /* sqlite3_io_methods object name */
  3,                        /* shared memory and mmap are enabled */
  unixClose,                /* xClose method */
  unixLock,                 /* xLock method */
  unixUnlock,               /* xUnlock method */
  unixCheckReservedLock     /* xCheckReservedLock method */

)
IOMETHODS(
  nolockIoFinder,           /* Finder function name */
  nolockIoMethods,          /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  nolockClose,              /* xClose method */
  nolockLock,               /* xLock method */
  nolockUnlock,             /* xUnlock method */
  nolockCheckReservedLock   /* xCheckReservedLock method */

)
IOMETHODS(
  dotlockIoFinder,          /* Finder function name */
  dotlockIoMethods,         /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  dotlockClose,             /* xClose method */
  dotlockLock,              /* xLock method */
  dotlockUnlock,            /* xUnlock method */
  dotlockCheckReservedLock  /* xCheckReservedLock method */

)

#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
IOMETHODS(
  flockIoFinder,            /* Finder function name */
  flockIoMethods,           /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  flockClose,               /* xClose method */
  flockLock,                /* xLock method */
  flockUnlock,              /* xUnlock method */
  flockCheckReservedLock    /* xCheckReservedLock method */

)
#endif

#if OS_VXWORKS
IOMETHODS(
  semIoFinder,              /* Finder function name */
  semIoMethods,             /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  semClose,                 /* xClose method */
  semLock,                  /* xLock method */
  semUnlock,                /* xUnlock method */
  semCheckReservedLock      /* xCheckReservedLock method */

)
#endif

#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
IOMETHODS(
  afpIoFinder,              /* Finder function name */
  afpIoMethods,             /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  afpClose,                 /* xClose method */
  afpLock,                  /* xLock method */
  afpUnlock,                /* xUnlock method */
  afpCheckReservedLock      /* xCheckReservedLock method */

)
#endif

/*
** The proxy locking method is a "super-method" in the sense that it
** opens secondary file descriptors for the conch and lock files and
** it uses proxy, dot-file, AFP, and flock() locking methods on those
................................................................................
IOMETHODS(
  proxyIoFinder,            /* Finder function name */
  proxyIoMethods,           /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  proxyClose,               /* xClose method */
  proxyLock,                /* xLock method */
  proxyUnlock,              /* xUnlock method */
  proxyCheckReservedLock    /* xCheckReservedLock method */

)
#endif

/* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
IOMETHODS(
  nfsIoFinder,               /* Finder function name */
  nfsIoMethods,              /* sqlite3_io_methods object name */
  1,                         /* shared memory is disabled */
  unixClose,                 /* xClose method */
  unixLock,                  /* xLock method */
  nfsUnlock,                 /* xUnlock method */
  unixCheckReservedLock      /* xCheckReservedLock method */

)
#endif

#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
/* 
** This "finder" function attempts to determine the best locking strategy 
** for the database file "filePath".  It then returns the sqlite3_io_methods







|







 







|







 







|
>




|



|
>








|
>










|
>











|
>











|
>







 







|
>












|
>







4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
....
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
....
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
....
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
**
**   *  A constant sqlite3_io_methods object call METHOD that has locking
**      methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
**
**   *  An I/O method finder function called FINDER that returns a pointer
**      to the METHOD object in the previous bullet.
*/
#define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK, SHMMAP) \
static const sqlite3_io_methods METHOD = {                                   \
   VERSION,                    /* iVersion */                                \
   CLOSE,                      /* xClose */                                  \
   unixRead,                   /* xRead */                                   \
   unixWrite,                  /* xWrite */                                  \
   unixTruncate,               /* xTruncate */                               \
   unixSync,                   /* xSync */                                   \
................................................................................
   unixFileSize,               /* xFileSize */                               \
   LOCK,                       /* xLock */                                   \
   UNLOCK,                     /* xUnlock */                                 \
   CKLOCK,                     /* xCheckReservedLock */                      \
   unixFileControl,            /* xFileControl */                            \
   unixSectorSize,             /* xSectorSize */                             \
   unixDeviceCharacteristics,  /* xDeviceCapabilities */                     \
   SHMMAP,                     /* xShmMap */                                 \
   unixShmLock,                /* xShmLock */                                \
   unixShmBarrier,             /* xShmBarrier */                             \
   unixShmUnmap,               /* xShmUnmap */                               \
   unixFetch,                  /* xFetch */                                  \
   unixUnfetch,                /* xUnfetch */                                \
};                                                                           \
static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){   \
................................................................................
IOMETHODS(
  posixIoFinder,            /* Finder function name */
  posixIoMethods,           /* sqlite3_io_methods object name */
  3,                        /* shared memory and mmap are enabled */
  unixClose,                /* xClose method */
  unixLock,                 /* xLock method */
  unixUnlock,               /* xUnlock method */
  unixCheckReservedLock,    /* xCheckReservedLock method */
  unixShmMap                /* xShmMap method */
)
IOMETHODS(
  nolockIoFinder,           /* Finder function name */
  nolockIoMethods,          /* sqlite3_io_methods object name */
  3,                        /* shared memory is disabled */
  nolockClose,              /* xClose method */
  nolockLock,               /* xLock method */
  nolockUnlock,             /* xUnlock method */
  nolockCheckReservedLock,  /* xCheckReservedLock method */
  0                         /* xShmMap method */
)
IOMETHODS(
  dotlockIoFinder,          /* Finder function name */
  dotlockIoMethods,         /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  dotlockClose,             /* xClose method */
  dotlockLock,              /* xLock method */
  dotlockUnlock,            /* xUnlock method */
  dotlockCheckReservedLock, /* xCheckReservedLock method */
  0                         /* xShmMap method */
)

#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
IOMETHODS(
  flockIoFinder,            /* Finder function name */
  flockIoMethods,           /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  flockClose,               /* xClose method */
  flockLock,                /* xLock method */
  flockUnlock,              /* xUnlock method */
  flockCheckReservedLock,   /* xCheckReservedLock method */
  0                         /* xShmMap method */
)
#endif

#if OS_VXWORKS
IOMETHODS(
  semIoFinder,              /* Finder function name */
  semIoMethods,             /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  semClose,                 /* xClose method */
  semLock,                  /* xLock method */
  semUnlock,                /* xUnlock method */
  semCheckReservedLock,     /* xCheckReservedLock method */
  0                         /* xShmMap method */
)
#endif

#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
IOMETHODS(
  afpIoFinder,              /* Finder function name */
  afpIoMethods,             /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  afpClose,                 /* xClose method */
  afpLock,                  /* xLock method */
  afpUnlock,                /* xUnlock method */
  afpCheckReservedLock,     /* xCheckReservedLock method */
  0                         /* xShmMap method */
)
#endif

/*
** The proxy locking method is a "super-method" in the sense that it
** opens secondary file descriptors for the conch and lock files and
** it uses proxy, dot-file, AFP, and flock() locking methods on those
................................................................................
IOMETHODS(
  proxyIoFinder,            /* Finder function name */
  proxyIoMethods,           /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  proxyClose,               /* xClose method */
  proxyLock,                /* xLock method */
  proxyUnlock,              /* xUnlock method */
  proxyCheckReservedLock,   /* xCheckReservedLock method */
  0                         /* xShmMap method */
)
#endif

/* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
IOMETHODS(
  nfsIoFinder,               /* Finder function name */
  nfsIoMethods,              /* sqlite3_io_methods object name */
  1,                         /* shared memory is disabled */
  unixClose,                 /* xClose method */
  unixLock,                  /* xLock method */
  nfsUnlock,                 /* xUnlock method */
  unixCheckReservedLock,     /* xCheckReservedLock method */
  0                          /* xShmMap method */
)
#endif

#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
/* 
** This "finder" function attempts to determine the best locking strategy 
** for the database file "filePath".  It then returns the sqlite3_io_methods

Changes to src/os_win.c.

939
940
941
942
943
944
945

946



947
948
949
950
951
952
953
....
1282
1283
1284
1285
1286
1287
1288
1289

1290
1291
1292
1293
1294
1295
1296
#else
  { "WaitForSingleObject",     (SYSCALL)0,                       0 },
#endif

#define osWaitForSingleObject ((DWORD(WINAPI*)(HANDLE, \
        DWORD))aSyscall[63].pCurrent)


  { "WaitForSingleObjectEx",   (SYSCALL)WaitForSingleObjectEx,   0 },




#define osWaitForSingleObjectEx ((DWORD(WINAPI*)(HANDLE,DWORD, \
        BOOL))aSyscall[64].pCurrent)

#if SQLITE_OS_WINRT
  { "SetFilePointerEx",        (SYSCALL)SetFilePointerEx,        0 },
#else
................................................................................
  assert( sleepObj!=NULL );
  osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE);
#else
  osSleep(milliseconds);
#endif
}

#if SQLITE_MAX_WORKER_THREADS>0 && !SQLITE_OS_WINRT && SQLITE_THREADSAFE>0

DWORD sqlite3Win32Wait(HANDLE hObject){
  DWORD rc;
  while( (rc = osWaitForSingleObjectEx(hObject, INFINITE,
                                       TRUE))==WAIT_IO_COMPLETION ){}
  return rc;
}
#endif







>

>
>
>







 







|
>







939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
....
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
#else
  { "WaitForSingleObject",     (SYSCALL)0,                       0 },
#endif

#define osWaitForSingleObject ((DWORD(WINAPI*)(HANDLE, \
        DWORD))aSyscall[63].pCurrent)

#if !SQLITE_OS_WINCE
  { "WaitForSingleObjectEx",   (SYSCALL)WaitForSingleObjectEx,   0 },
#else
  { "WaitForSingleObjectEx",   (SYSCALL)0,                       0 },
#endif

#define osWaitForSingleObjectEx ((DWORD(WINAPI*)(HANDLE,DWORD, \
        BOOL))aSyscall[64].pCurrent)

#if SQLITE_OS_WINRT
  { "SetFilePointerEx",        (SYSCALL)SetFilePointerEx,        0 },
#else
................................................................................
  assert( sleepObj!=NULL );
  osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE);
#else
  osSleep(milliseconds);
#endif
}

#if SQLITE_MAX_WORKER_THREADS>0 && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && \
        SQLITE_THREADSAFE>0
DWORD sqlite3Win32Wait(HANDLE hObject){
  DWORD rc;
  while( (rc = osWaitForSingleObjectEx(hObject, INFINITE,
                                       TRUE))==WAIT_IO_COMPLETION ){}
  return rc;
}
#endif

Changes to src/pager.c.

3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639


3640
3641


3642
3643
3644
3645
3646
3647
3648
    if( rc==SQLITE_OK ){
      pNew = (char *)sqlite3PageMalloc(pageSize);
      if( !pNew ) rc = SQLITE_NOMEM;
    }

    if( rc==SQLITE_OK ){
      pager_reset(pPager);
      sqlite3PageFree(pPager->pTmpSpace);
      pPager->pTmpSpace = pNew;
      rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize);
    }
    if( rc==SQLITE_OK ){


      pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize);
      pPager->pageSize = pageSize;


    }
  }

  *pPageSize = pPager->pageSize;
  if( rc==SQLITE_OK ){
    if( nReserve<0 ) nReserve = pPager->nReserve;
    assert( nReserve>=0 && nReserve<1000 );







<
<



>
>


>
>







3628
3629
3630
3631
3632
3633
3634


3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
    if( rc==SQLITE_OK ){
      pNew = (char *)sqlite3PageMalloc(pageSize);
      if( !pNew ) rc = SQLITE_NOMEM;
    }

    if( rc==SQLITE_OK ){
      pager_reset(pPager);


      rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize);
    }
    if( rc==SQLITE_OK ){
      sqlite3PageFree(pPager->pTmpSpace);
      pPager->pTmpSpace = pNew;
      pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize);
      pPager->pageSize = pageSize;
    }else{
      sqlite3PageFree(pNew);
    }
  }

  *pPageSize = pPager->pageSize;
  if( rc==SQLITE_OK ){
    if( nReserve<0 ) nReserve = pPager->nReserve;
    assert( nReserve>=0 && nReserve<1000 );

Changes to src/parse.y.

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
...
455
456
457
458
459
460
461
462
463
464
























465
466
467
468
469
470
471
...
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
%endif  SQLITE_OMIT_VIEW

//////////////////////// The SELECT statement /////////////////////////////////
//
cmd ::= select(X).  {
  SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0};
  sqlite3Select(pParse, X, &dest);
  sqlite3ExplainBegin(pParse->pVdbe);
  sqlite3ExplainSelect(pParse->pVdbe, X);
  sqlite3ExplainFinish(pParse->pVdbe);
  sqlite3SelectDelete(pParse->db, X);
}

%type select {Select*}
%destructor select {sqlite3SelectDelete(pParse->db, $$);}
%type selectnowith {Select*}
%destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);}
................................................................................
  A = pRhs;
}
%type multiselect_op {int}
multiselect_op(A) ::= UNION(OP).             {A = @OP;}
multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP;}
%endif SQLITE_OMIT_COMPOUND_SELECT
oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
                 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
  A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
























}
oneselect(A) ::= values(X).    {A = X;}

%type values {Select*}
%destructor values {sqlite3SelectDelete(pParse->db, $$);}
values(A) ::= VALUES LP nexprlist(X) RP. {
  A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0);
................................................................................
expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);}

%include {
  /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
  ** unary TK_ISNULL or TK_NOTNULL expression. */
  static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
    sqlite3 *db = pParse->db;
    if( db->mallocFailed==0 && pY->op==TK_NULL ){
      pA->op = (u8)op;
      sqlite3ExprDelete(db, pA->pRight);
      pA->pRight = 0;
    }
  }
}








<
<
<







 







|


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







395
396
397
398
399
400
401



402
403
404
405
406
407
408
...
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
...
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
%endif  SQLITE_OMIT_VIEW

//////////////////////// The SELECT statement /////////////////////////////////
//
cmd ::= select(X).  {
  SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0};
  sqlite3Select(pParse, X, &dest);



  sqlite3SelectDelete(pParse->db, X);
}

%type select {Select*}
%destructor select {sqlite3SelectDelete(pParse->db, $$);}
%type selectnowith {Select*}
%destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);}
................................................................................
  A = pRhs;
}
%type multiselect_op {int}
multiselect_op(A) ::= UNION(OP).             {A = @OP;}
multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP;}
%endif SQLITE_OMIT_COMPOUND_SELECT
oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y)
                 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
  A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
#if SELECTTRACE_ENABLED
  /* Populate the Select.zSelName[] string that is used to help with
  ** query planner debugging, to differentiate between multiple Select
  ** objects in a complex query.
  **
  ** If the SELECT keyword is immediately followed by a C-style comment
  ** then extract the first few alphanumeric characters from within that
  ** comment to be the zSelName value.  Otherwise, the label is #N where
  ** is an integer that is incremented with each SELECT statement seen.
  */
  if( A!=0 ){
    const char *z = S.z+6;
    int i;
    sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d",
                     ++pParse->nSelect);
    while( z[0]==' ' ) z++;
    if( z[0]=='/' && z[1]=='*' ){
      z += 2;
      while( z[0]==' ' ) z++;
      for(i=0; sqlite3Isalnum(z[i]); i++){}
      sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z);
    }
  }
#endif /* SELECTRACE_ENABLED */
}
oneselect(A) ::= values(X).    {A = X;}

%type values {Select*}
%destructor values {sqlite3SelectDelete(pParse->db, $$);}
values(A) ::= VALUES LP nexprlist(X) RP. {
  A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0);
................................................................................
expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);}

%include {
  /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
  ** unary TK_ISNULL or TK_NOTNULL expression. */
  static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
    sqlite3 *db = pParse->db;
    if( pY && pA && pY->op==TK_NULL ){
      pA->op = (u8)op;
      sqlite3ExprDelete(db, pA->pRight);
      pA->pRight = 0;
    }
  }
}

Changes to src/pcache1.c.

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
  assert( pCache->nPage >= pCache->nRecyclable );
  nPinned = pCache->nPage - pCache->nRecyclable;
  assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
  assert( pCache->n90pct == pCache->nMax*9/10 );
  if( createFlag==1 && (
        nPinned>=pGroup->mxPinned
     || nPinned>=pCache->n90pct
     || pcache1UnderMemoryPressure(pCache)
  )){
    return 0;
  }

  if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
  assert( pCache->nHash>0 && pCache->apHash );








|







684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
  assert( pCache->nPage >= pCache->nRecyclable );
  nPinned = pCache->nPage - pCache->nRecyclable;
  assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
  assert( pCache->n90pct == pCache->nMax*9/10 );
  if( createFlag==1 && (
        nPinned>=pGroup->mxPinned
     || nPinned>=pCache->n90pct
     || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
  )){
    return 0;
  }

  if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
  assert( pCache->nHash>0 && pCache->apHash );

Changes to src/printf.c.

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
....
1052
1053
1054
1055
1056
1057
1058































































1059
1060
1061
1062
1063
1064
1065
1066
1067
/*
** If the strchrnul() library function is available, then set
** HAVE_STRCHRNUL.  If that routine is not available, this module
** will supply its own.  The built-in version is slower than
** the glibc version so the glibc version is definitely preferred.
*/
#if !defined(HAVE_STRCHRNUL)
# if defined(__linux__) && defined(_GNU_SOURCE)
#  define HAVE_STRCHRNUL 1
# else
#  define HAVE_STRCHRNUL 0
# endif
#endif


................................................................................
  va_end(ap);
  sqlite3StrAccumFinish(&acc);
  fprintf(stdout,"%s", zBuf);
  fflush(stdout);
}
#endif
































































/*
** variable-argument wrapper around sqlite3VXPrintf().
*/
void sqlite3XPrintf(StrAccum *p, u32 bFlags, const char *zFormat, ...){
  va_list ap;
  va_start(ap,zFormat);
  sqlite3VXPrintf(p, bFlags, zFormat, ap);
  va_end(ap);
}







|







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
....
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
/*
** If the strchrnul() library function is available, then set
** HAVE_STRCHRNUL.  If that routine is not available, this module
** will supply its own.  The built-in version is slower than
** the glibc version so the glibc version is definitely preferred.
*/
#if !defined(HAVE_STRCHRNUL)
# if defined(linux)
#  define HAVE_STRCHRNUL 1
# else
#  define HAVE_STRCHRNUL 0
# endif
#endif


................................................................................
  va_end(ap);
  sqlite3StrAccumFinish(&acc);
  fprintf(stdout,"%s", zBuf);
  fflush(stdout);
}
#endif

#ifdef SQLITE_DEBUG
/*************************************************************************
** Routines for implementing the "TreeView" display of hierarchical
** data structures for debugging.
**
** The main entry points (coded elsewhere) are:
**     sqlite3TreeViewExpr(0, pExpr, 0);
**     sqlite3TreeViewExprList(0, pList, 0, 0);
**     sqlite3TreeViewSelect(0, pSelect, 0);
** Insert calls to those routines while debugging in order to display
** a diagram of Expr, ExprList, and Select objects.
**
*/
/* Add a new subitem to the tree.  The moreToFollow flag indicates that this
** is not the last item in the tree. */
TreeView *sqlite3TreeViewPush(TreeView *p, u8 moreToFollow){
  if( p==0 ){
    p = sqlite3_malloc( sizeof(*p) );
    if( p==0 ) return 0;
    memset(p, 0, sizeof(*p));
  }else{
    p->iLevel++;
  }
  assert( moreToFollow==0 || moreToFollow==1 );
  if( p->iLevel<sizeof(p->bLine) ) p->bLine[p->iLevel] = moreToFollow;
  return p;
}
/* Finished with one layer of the tree */
void sqlite3TreeViewPop(TreeView *p){
  if( p==0 ) return;
  p->iLevel--;
  if( p->iLevel<0 ) sqlite3_free(p);
}
/* Generate a single line of output for the tree, with a prefix that contains
** all the appropriate tree lines */
void sqlite3TreeViewLine(TreeView *p, const char *zFormat, ...){
  va_list ap;
  int i;
  StrAccum acc;
  char zBuf[500];
  sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0);
  acc.useMalloc = 0;
  if( p ){
    for(i=0; i<p->iLevel && i<sizeof(p->bLine)-1; i++){
      sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|   " : "    ", 4);
    }
    sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|-- " : "'-- ", 4);
  }
  va_start(ap, zFormat);
  sqlite3VXPrintf(&acc, 0, zFormat, ap);
  va_end(ap);
  if( zBuf[acc.nChar-1]!='\n' ) sqlite3StrAccumAppend(&acc, "\n", 1);
  sqlite3StrAccumFinish(&acc);
  fprintf(stdout,"%s", zBuf);
  fflush(stdout);
}
/* Shorthand for starting a new tree item that consists of a single label */
void sqlite3TreeViewItem(TreeView *p, const char *zLabel, u8 moreToFollow){
  p = sqlite3TreeViewPush(p, moreToFollow);
  sqlite3TreeViewLine(p, "%s", zLabel);
}
#endif /* SQLITE_DEBUG */

/*
** variable-argument wrapper around sqlite3VXPrintf().
*/
void sqlite3XPrintf(StrAccum *p, u32 bFlags, const char *zFormat, ...){
  va_list ap;
  va_start(ap,zFormat);
  sqlite3VXPrintf(p, bFlags, zFormat, ap);
  va_end(ap);
}

Changes to src/select.c.

9
10
11
12
13
14
15














16
17
18
19
20
21
22
...
121
122
123
124
125
126
127












128
129
130
131
132
133
134
....
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
....
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
....
3351
3352
3353
3354
3355
3356
3357


3358
3359
3360
3361
3362
3363
3364
....
3403
3404
3405
3406
3407
3408
3409

3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421



3422
3423
3424
3425
3426
3427
3428
....
3544
3545
3546
3547
3548
3549
3550














3551

3552
3553
3554
3555
3556
3557
3558
3559
....
3590
3591
3592
3593
3594
3595
3596







3597
3598
3599
3600
3601
3602
3603
....
4061
4062
4063
4064
4065
4066
4067

4068
4069
4070
4071
4072
4073
4074
....
4595
4596
4597
4598
4599
4600
4601







4602
4603
4604
4605
4606
4607
4608
....
4751
4752
4753
4754
4755
4756
4757




4758
4759
4760
4761
4762
4763
4764
....
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
....
5350
5351
5352
5353
5354
5355
5356




5357
5358
5359
5360
5361
5362
5363
5364
5365
5366

5367
5368
5369
5370

5371
5372

5373
5374
5375

5376
5377


5378
5379
5380
5381


5382
5383
5384




5385
5386

5387
5388

5389
5390
5391

5392
5393
5394
5395
5396
5397

5398
5399




5400
5401

5402


5403
5404
5405
5406



5407
5408
5409
5410
5411

5412
5413
5414
5415
5416



5417
5418
5419
5420
5421

5422
5423
5424
5425
5426



5427
5428
5429
5430
5431



5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446

5447
5448
5449

5450
5451
5452
5453
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
*/
#include "sqliteInt.h"















/*
** An instance of the following object is used to record information about
** how to process the DISTINCT keyword, to simplify passing that information
** into the selectInnerLoop() routine.
*/
typedef struct DistinctCtx DistinctCtx;
................................................................................
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  assert( pNew!=&standin );
  return pNew;
}













/*
** Delete the given Select structure and all of its substructures.
*/
void sqlite3SelectDelete(sqlite3 *db, Select *p){
  if( p ){
    clearSelect(db, p);
................................................................................
  int eDest = pDest->eDest;
  int iParm = pDest->iSDParm;
  int regRow;
  int regRowid;
  int nKey;
  int iSortTab;                   /* Sorter cursor to read from */
  int nSortData;                  /* Trailing values to read from sorter */
  u8 p5;                          /* p5 parameter for 1st OP_Column */
  int i;
  int bSeq;                       /* True if sorter record includes seq. no. */
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
  struct ExprList_item *aOutEx = p->pEList->a;
#endif

  if( pSort->labelBkOut ){
................................................................................
      addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
    }
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
    if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
    addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
    VdbeCoverage(v);
    codeOffset(v, p->iOffset, addrContinue);
    sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
    p5 = OPFLAG_CLEARCACHE;
    bSeq = 0;
  }else{
    addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
    codeOffset(v, p->iOffset, addrContinue);
    iSortTab = iTab;
    p5 = 0;
    bSeq = 1;
  }
  for(i=0; i<nSortData; i++){
    sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
    if( i==0 ) sqlite3VdbeChangeP5(v, p5);
    VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
  }
  switch( eDest ){
    case SRT_Table:
    case SRT_EphemTab: {
      testcase( eDest==SRT_Table );
      testcase( eDest==SRT_EphemTab );
................................................................................
      for(ii=0; ii<p->pOrderBy->nExpr; ii++){
        if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
      }
    }
  }

  /***** If we reach this point, flattening is permitted. *****/



  /* Authorize the subquery */
  pParse->zAuthContext = pSubitem->zName;
  TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
  testcase( i==SQLITE_DENY );
  pParse->zAuthContext = zSavedAuthContext;

................................................................................
    Select *pPrior = p->pPrior;
    p->pOrderBy = 0;
    p->pSrc = 0;
    p->pPrior = 0;
    p->pLimit = 0;
    p->pOffset = 0;
    pNew = sqlite3SelectDup(db, p, 0);

    p->pOffset = pOffset;
    p->pLimit = pLimit;
    p->pOrderBy = pOrderBy;
    p->pSrc = pSrc;
    p->op = TK_ALL;
    if( pNew==0 ){
      p->pPrior = pPrior;
    }else{
      pNew->pPrior = pPrior;
      if( pPrior ) pPrior->pNext = pNew;
      pNew->pNext = p;
      p->pPrior = pNew;



    }
    if( db->mallocFailed ) return 1;
  }

  /* Begin flattening the iFrom-th entry of the FROM clause 
  ** in the outer query.
  */
................................................................................
    }
    substExprList(db, pParent->pEList, iParent, pSub->pEList);
    if( isAgg ){
      substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
      pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
    }
    if( pSub->pOrderBy ){














      assert( pParent->pOrderBy==0 );

      pParent->pOrderBy = pSub->pOrderBy;
      pSub->pOrderBy = 0;
    }else if( pParent->pOrderBy ){
      substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
    }
    if( pSub->pWhere ){
      pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
    }else{
................................................................................
    }
  }

  /* Finially, delete what is left of the subquery and return
  ** success.
  */
  sqlite3SelectDelete(db, pSub1);








  return 1;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

/*
** Based on the contents of the AggInfo structure indicated by the first
................................................................................
      pTab->nRef++;
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
      if( pTab->pSelect || IsVirtual(pTab) ){
        /* We reach here if the named table is a really a view */
        if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
        assert( pFrom->pSelect==0 );
        pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);

        sqlite3WalkSelect(pWalker, pFrom->pSelect);
      }
#endif
    }

    /* Locate the index named by the INDEXED BY clause, if any. */
    if( sqlite3IndexedByLookup(pParse, pFrom) ){
................................................................................

  db = pParse->db;
  if( p==0 || db->mallocFailed || pParse->nErr ){
    return 1;
  }
  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
  memset(&sAggInfo, 0, sizeof(sAggInfo));








  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
  if( IgnorableOrderby(pDest) ){
    assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 
................................................................................

#ifndef SQLITE_OMIT_COMPOUND_SELECT
  /* If there is are a sequence of queries, do the earlier ones first.
  */
  if( p->pPrior ){
    rc = multiSelect(pParse, p, pDest);
    explainSetInteger(pParse->iSelectId, iRestoreSelectId);




    return rc;
  }
#endif

  /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 
  ** if the select-list is the same as the ORDER BY list, then this query
  ** can be rewritten as a GROUP BY. In other words, this:
................................................................................
      ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
      ** Then compare the current GROUP BY terms against the GROUP BY terms
      ** from the previous row currently stored in a0, a1, a2...
      */
      addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
      sqlite3ExprCacheClear(pParse);
      if( groupBySort ){
        sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
      }
      for(j=0; j<pGroupBy->nExpr; j++){
        if( groupBySort ){
          sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
          if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
        }else{
          sAggInfo.directMode = 1;
          sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
        }
      }
      sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
                          (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
................................................................................
  */
  if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
    generateColumnNames(pParse, pTabList, pEList);
  }

  sqlite3DbFree(db, sAggInfo.aCol);
  sqlite3DbFree(db, sAggInfo.aFunc);




  return rc;
}

#if defined(SQLITE_ENABLE_TREE_EXPLAIN)
/*
** Generate a human-readable description of a the Select object.
*/
static void explainOneSelect(Vdbe *pVdbe, Select *p){
  sqlite3ExplainPrintf(pVdbe, "SELECT ");
  if( p->selFlags & (SF_Distinct|SF_Aggregate) ){

    if( p->selFlags & SF_Distinct ){
      sqlite3ExplainPrintf(pVdbe, "DISTINCT ");
    }
    if( p->selFlags & SF_Aggregate ){

      sqlite3ExplainPrintf(pVdbe, "agg_flag ");
    }

    sqlite3ExplainNL(pVdbe);
    sqlite3ExplainPrintf(pVdbe, "   ");
  }

  sqlite3ExplainExprList(pVdbe, p->pEList);
  sqlite3ExplainNL(pVdbe);


  if( p->pSrc && p->pSrc->nSrc ){
    int i;
    sqlite3ExplainPrintf(pVdbe, "FROM ");
    sqlite3ExplainPush(pVdbe);


    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];
      sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor);




      if( pItem->pSelect ){
        sqlite3ExplainSelect(pVdbe, pItem->pSelect);

        if( pItem->pTab ){
          sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName);

        }
      }else if( pItem->zName ){
        sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName);

      }
      if( pItem->zAlias ){
        sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias);
      }
      if( pItem->jointype & JT_LEFT ){
        sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN");

      }
      sqlite3ExplainNL(pVdbe);




    }
    sqlite3ExplainPop(pVdbe);

  }


  if( p->pWhere ){
    sqlite3ExplainPrintf(pVdbe, "WHERE ");
    sqlite3ExplainExpr(pVdbe, p->pWhere);
    sqlite3ExplainNL(pVdbe);



  }
  if( p->pGroupBy ){
    sqlite3ExplainPrintf(pVdbe, "GROUPBY ");
    sqlite3ExplainExprList(pVdbe, p->pGroupBy);
    sqlite3ExplainNL(pVdbe);

  }
  if( p->pHaving ){
    sqlite3ExplainPrintf(pVdbe, "HAVING ");
    sqlite3ExplainExpr(pVdbe, p->pHaving);
    sqlite3ExplainNL(pVdbe);



  }
  if( p->pOrderBy ){
    sqlite3ExplainPrintf(pVdbe, "ORDERBY ");
    sqlite3ExplainExprList(pVdbe, p->pOrderBy);
    sqlite3ExplainNL(pVdbe);

  }
  if( p->pLimit ){
    sqlite3ExplainPrintf(pVdbe, "LIMIT ");
    sqlite3ExplainExpr(pVdbe, p->pLimit);
    sqlite3ExplainNL(pVdbe);



  }
  if( p->pOffset ){
    sqlite3ExplainPrintf(pVdbe, "OFFSET ");
    sqlite3ExplainExpr(pVdbe, p->pOffset);
    sqlite3ExplainNL(pVdbe);



  }
}
void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
  if( p==0 ){
    sqlite3ExplainPrintf(pVdbe, "(null-select)");
    return;
  }
  sqlite3ExplainPush(pVdbe);
  while( p ){
    explainOneSelect(pVdbe, p);
    p = p->pNext;
    if( p==0 ) break;
    sqlite3ExplainNL(pVdbe);
    sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
  }

  sqlite3ExplainPrintf(pVdbe, "END");
  sqlite3ExplainPop(pVdbe);
}


/* End of the structure debug printing code
*****************************************************************************/
#endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */







>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
>
>
>
>
>
>
>
>
>
>
>







 







<







 







|
<





<




<







 







>
>







 







>












>
>
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
|







 







>
>
>
>
>
>
>







 







>







 







>
>
>
>
>
>
>







 







>
>
>
>







 







|




<







 







>
>
>
>



|



|
|
|
>
|
<
<
|
>
|
<
>
|
|
<
>
|
|
>
>


<
<
>
>


<
>
>
>
>
|
<
>
|
<
>
|
|
<
>


|


<
>

<
>
>
>
>
|
<
>
|
>
>

<
<
<
>
>
>


<
<
<
>


<
<
<
>
>
>


<
<
<
>


<
<
<
>
>
>


<
<
<
>
>
>

<
<
|
<
<
<
<
|
|
|
|
|
<
|
>
|
|
|
>
|
<
|
<
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
...
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
....
1177
1178
1179
1180
1181
1182
1183

1184
1185
1186
1187
1188
1189
1190
....
1210
1211
1212
1213
1214
1215
1216
1217

1218
1219
1220
1221
1222

1223
1224
1225
1226

1227
1228
1229
1230
1231
1232
1233
....
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
....
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
....
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
....
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
....
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
....
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
....
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
....
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159

5160
5161
5162
5163
5164
5165
5166
....
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433


5434
5435
5436

5437
5438
5439

5440
5441
5442
5443
5444
5445
5446


5447
5448
5449
5450

5451
5452
5453
5454
5455

5456
5457

5458
5459
5460

5461
5462
5463
5464
5465
5466

5467
5468

5469
5470
5471
5472
5473

5474
5475
5476
5477
5478



5479
5480
5481
5482
5483



5484
5485
5486



5487
5488
5489
5490
5491



5492
5493
5494



5495
5496
5497
5498
5499



5500
5501
5502
5503


5504




5505
5506
5507
5508
5509

5510
5511
5512
5513
5514
5515
5516

5517

**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
*/
#include "sqliteInt.h"

/*
** Trace output macros
*/
#if SELECTTRACE_ENABLED
/***/ int sqlite3SelectTrace = 0;
# define SELECTTRACE(K,P,S,X)  \
  if(sqlite3SelectTrace&(K))   \
    sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\
    sqlite3DebugPrintf X
#else
# define SELECTTRACE(K,P,S,X)
#endif


/*
** An instance of the following object is used to record information about
** how to process the DISTINCT keyword, to simplify passing that information
** into the selectInnerLoop() routine.
*/
typedef struct DistinctCtx DistinctCtx;
................................................................................
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  assert( pNew!=&standin );
  return pNew;
}

#if SELECTTRACE_ENABLED
/*
** Set the name of a Select object
*/
void sqlite3SelectSetName(Select *p, const char *zName){
  if( p && zName ){
    sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
  }
}
#endif


/*
** Delete the given Select structure and all of its substructures.
*/
void sqlite3SelectDelete(sqlite3 *db, Select *p){
  if( p ){
    clearSelect(db, p);
................................................................................
  int eDest = pDest->eDest;
  int iParm = pDest->iSDParm;
  int regRow;
  int regRowid;
  int nKey;
  int iSortTab;                   /* Sorter cursor to read from */
  int nSortData;                  /* Trailing values to read from sorter */

  int i;
  int bSeq;                       /* True if sorter record includes seq. no. */
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
  struct ExprList_item *aOutEx = p->pEList->a;
#endif

  if( pSort->labelBkOut ){
................................................................................
      addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
    }
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
    if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
    addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
    VdbeCoverage(v);
    codeOffset(v, p->iOffset, addrContinue);
    sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);

    bSeq = 0;
  }else{
    addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
    codeOffset(v, p->iOffset, addrContinue);
    iSortTab = iTab;

    bSeq = 1;
  }
  for(i=0; i<nSortData; i++){
    sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);

    VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
  }
  switch( eDest ){
    case SRT_Table:
    case SRT_EphemTab: {
      testcase( eDest==SRT_Table );
      testcase( eDest==SRT_EphemTab );
................................................................................
      for(ii=0; ii<p->pOrderBy->nExpr; ii++){
        if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
      }
    }
  }

  /***** If we reach this point, flattening is permitted. *****/
  SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
                   pSub->zSelName, pSub, iFrom));

  /* Authorize the subquery */
  pParse->zAuthContext = pSubitem->zName;
  TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
  testcase( i==SQLITE_DENY );
  pParse->zAuthContext = zSavedAuthContext;

................................................................................
    Select *pPrior = p->pPrior;
    p->pOrderBy = 0;
    p->pSrc = 0;
    p->pPrior = 0;
    p->pLimit = 0;
    p->pOffset = 0;
    pNew = sqlite3SelectDup(db, p, 0);
    sqlite3SelectSetName(pNew, pSub->zSelName);
    p->pOffset = pOffset;
    p->pLimit = pLimit;
    p->pOrderBy = pOrderBy;
    p->pSrc = pSrc;
    p->op = TK_ALL;
    if( pNew==0 ){
      p->pPrior = pPrior;
    }else{
      pNew->pPrior = pPrior;
      if( pPrior ) pPrior->pNext = pNew;
      pNew->pNext = p;
      p->pPrior = pNew;
      SELECTTRACE(2,pParse,p,
         ("compound-subquery flattener creates %s.%p as peer\n",
         pNew->zSelName, pNew));
    }
    if( db->mallocFailed ) return 1;
  }

  /* Begin flattening the iFrom-th entry of the FROM clause 
  ** in the outer query.
  */
................................................................................
    }
    substExprList(db, pParent->pEList, iParent, pSub->pEList);
    if( isAgg ){
      substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
      pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
    }
    if( pSub->pOrderBy ){
      /* At this point, any non-zero iOrderByCol values indicate that the
      ** ORDER BY column expression is identical to the iOrderByCol'th
      ** expression returned by SELECT statement pSub. Since these values
      ** do not necessarily correspond to columns in SELECT statement pParent,
      ** zero them before transfering the ORDER BY clause.
      **
      ** Not doing this may cause an error if a subsequent call to this
      ** function attempts to flatten a compound sub-query into pParent
      ** (the only way this can happen is if the compound sub-query is
      ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
      ExprList *pOrderBy = pSub->pOrderBy;
      for(i=0; i<pOrderBy->nExpr; i++){
        pOrderBy->a[i].u.x.iOrderByCol = 0;
      }
      assert( pParent->pOrderBy==0 );
      assert( pSub->pPrior==0 );
      pParent->pOrderBy = pOrderBy;
      pSub->pOrderBy = 0;
    }else if( pParent->pOrderBy ){
      substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
    }
    if( pSub->pWhere ){
      pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
    }else{
................................................................................
    }
  }

  /* Finially, delete what is left of the subquery and return
  ** success.
  */
  sqlite3SelectDelete(db, pSub1);

#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x100 ){
    sqlite3DebugPrintf("After flattening:\n");
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif

  return 1;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

/*
** Based on the contents of the AggInfo structure indicated by the first
................................................................................
      pTab->nRef++;
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
      if( pTab->pSelect || IsVirtual(pTab) ){
        /* We reach here if the named table is a really a view */
        if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
        assert( pFrom->pSelect==0 );
        pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
        sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
        sqlite3WalkSelect(pWalker, pFrom->pSelect);
      }
#endif
    }

    /* Locate the index named by the INDEXED BY clause, if any. */
    if( sqlite3IndexedByLookup(pParse, pFrom) ){
................................................................................

  db = pParse->db;
  if( p==0 || db->mallocFailed || pParse->nErr ){
    return 1;
  }
  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
  memset(&sAggInfo, 0, sizeof(sAggInfo));
#if SELECTTRACE_ENABLED
  pParse->nSelectIndent++;
  SELECTTRACE(1,pParse,p, ("begin processing:\n"));
  if( sqlite3SelectTrace & 0x100 ){
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif

  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
  if( IgnorableOrderby(pDest) ){
    assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 
................................................................................

#ifndef SQLITE_OMIT_COMPOUND_SELECT
  /* If there is are a sequence of queries, do the earlier ones first.
  */
  if( p->pPrior ){
    rc = multiSelect(pParse, p, pDest);
    explainSetInteger(pParse->iSelectId, iRestoreSelectId);
#if SELECTTRACE_ENABLED
    SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
    pParse->nSelectIndent--;
#endif
    return rc;
  }
#endif

  /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 
  ** if the select-list is the same as the ORDER BY list, then this query
  ** can be rewritten as a GROUP BY. In other words, this:
................................................................................
      ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
      ** Then compare the current GROUP BY terms against the GROUP BY terms
      ** from the previous row currently stored in a0, a1, a2...
      */
      addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
      sqlite3ExprCacheClear(pParse);
      if( groupBySort ){
        sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab);
      }
      for(j=0; j<pGroupBy->nExpr; j++){
        if( groupBySort ){
          sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);

        }else{
          sAggInfo.directMode = 1;
          sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
        }
      }
      sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
                          (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
................................................................................
  */
  if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
    generateColumnNames(pParse, pTabList, pEList);
  }

  sqlite3DbFree(db, sAggInfo.aCol);
  sqlite3DbFree(db, sAggInfo.aFunc);
#if SELECTTRACE_ENABLED
  SELECTTRACE(1,pParse,p,("end processing\n"));
  pParse->nSelectIndent--;
#endif
  return rc;
}

#ifdef SQLITE_DEBUG
/*
** Generate a human-readable description of a the Select object.
*/
void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
  int n = 0;
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  sqlite3TreeViewLine(pView, "SELECT%s%s",
    ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),


    ((p->selFlags & SF_Aggregate) ? " agg_flag" : "")
  );
  if( p->pSrc && p->pSrc->nSrc ) n++;

  if( p->pWhere ) n++;
  if( p->pGroupBy ) n++;
  if( p->pHaving ) n++;

  if( p->pOrderBy ) n++;
  if( p->pLimit ) n++;
  if( p->pOffset ) n++;
  if( p->pPrior ) n++;
  sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set");
  if( p->pSrc && p->pSrc->nSrc ){
    int i;


    pView = sqlite3TreeViewPush(pView, (n--)>0);
    sqlite3TreeViewLine(pView, "FROM");
    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];

      StrAccum x;
      char zLine[100];
      sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0);
      sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor);
      if( pItem->zDatabase ){

        sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName);
      }else if( pItem->zName ){

        sqlite3XPrintf(&x, 0, " %s", pItem->zName);
      }
      if( pItem->pTab ){

        sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName);
      }
      if( pItem->zAlias ){
        sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias);
      }
      if( pItem->jointype & JT_LEFT ){

        sqlite3XPrintf(&x, 0, " LEFT-JOIN");
      }

      sqlite3StrAccumFinish(&x);
      sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); 
      if( pItem->pSelect ){
        sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
      }

      sqlite3TreeViewPop(pView);
    }
    sqlite3TreeViewPop(pView);
  }
  if( p->pWhere ){



    sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
    sqlite3TreeViewExpr(pView, p->pWhere, 0);
    sqlite3TreeViewPop(pView);
  }
  if( p->pGroupBy ){



    sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY");
  }
  if( p->pHaving ){



    sqlite3TreeViewItem(pView, "HAVING", (n--)>0);
    sqlite3TreeViewExpr(pView, p->pHaving, 0);
    sqlite3TreeViewPop(pView);
  }
  if( p->pOrderBy ){



    sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY");
  }
  if( p->pLimit ){



    sqlite3TreeViewItem(pView, "LIMIT", (n--)>0);
    sqlite3TreeViewExpr(pView, p->pLimit, 0);
    sqlite3TreeViewPop(pView);
  }
  if( p->pOffset ){



    sqlite3TreeViewItem(pView, "OFFSET", (n--)>0);
    sqlite3TreeViewExpr(pView, p->pOffset, 0);
    sqlite3TreeViewPop(pView);
  }


  if( p->pPrior ){




    const char *zOp = "UNION";
    switch( p->op ){
      case TK_ALL:         zOp = "UNION ALL";  break;
      case TK_INTERSECT:   zOp = "INTERSECT";  break;
      case TK_EXCEPT:      zOp = "EXCEPT";     break;

    }
    sqlite3TreeViewItem(pView, zOp, (n--)>0);
    sqlite3TreeViewSelect(pView, p->pPrior, 0);
    sqlite3TreeViewPop(pView);
  }
  sqlite3TreeViewPop(pView);
}

#endif /* SQLITE_DEBUG */

Changes to src/shell.c.

878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
....
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
....
3096
3097
3098
3099
3100
3101
3102









3103
3104
3105
3106
3107
3108
3109
....
3721
3722
3723
3724
3725
3726
3727

3728
3729
3730
3731
3732
3733
3734
#endif
      if( p->cnt++==0 && p->showHeader ){
        for(i=0; i<nArg; i++){
          output_csv(p, azCol[i] ? azCol[i] : "", i<nArg-1);
        }
        fprintf(p->out,"%s",p->newline);
      }
      if( azArg>0 ){
        for(i=0; i<nArg; i++){
          output_csv(p, azArg[i], i<nArg-1);
        }
        fprintf(p->out,"%s",p->newline);
      }
#if defined(WIN32) || defined(_WIN32)
      fflush(p->out);
................................................................................
            fprintf(pArg->out,"%s\n", sqlite3_column_text(pExplain, 3));
          }
        }
        sqlite3_finalize(pExplain);
        sqlite3_free(zEQP);
      }

      /* Output TESTCTRL_EXPLAIN text of requested */
      if( pArg && pArg->mode==MODE_Explain ){
        const char *zExplain = 0;
        sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT, pStmt, &zExplain);
        if( zExplain && zExplain[0] ){
          fprintf(pArg->out, "%s", zExplain);
        }
      }

      /* If the shell is currently in ".explain" mode, gather the extra
      ** data required to add indents to the output.*/
      if( pArg && pArg->mode==MODE_Explain ){
        explain_data_prepare(pArg, pStmt);
      }

      /* perform the first step.  this will tell us if we
................................................................................
    }else if( rc != SQLITE_OK ){
      fprintf(stderr,"Error: querying schema information\n");
      rc = 1;
    }else{
      rc = 0;
    }
  }else










#ifdef SQLITE_DEBUG
  /* Undocumented commands for internal testing.  Subject to change
  ** without notice. */
  if( c=='s' && n>=10 && strncmp(azArg[0], "selftest-", 9)==0 ){
    if( strncmp(azArg[0]+9, "boolean", n-9)==0 ){
      int i, v;
................................................................................
      if( p->echoOn ) printf("%s\n", zSql);
      nSql = 0;
    }
  }
  if( nSql ){
    if( !_all_whitespace(zSql) ){
      fprintf(stderr, "Error: incomplete SQL: %s\n", zSql);

    }
    free(zSql);
  }
  free(zLine);
  return errCnt>0;
}








|







 







<
<
<
<
<
<
<
<
<







 







>
>
>
>
>
>
>
>
>







 







>







878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
....
1349
1350
1351
1352
1353
1354
1355









1356
1357
1358
1359
1360
1361
1362
....
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
....
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
#endif
      if( p->cnt++==0 && p->showHeader ){
        for(i=0; i<nArg; i++){
          output_csv(p, azCol[i] ? azCol[i] : "", i<nArg-1);
        }
        fprintf(p->out,"%s",p->newline);
      }
      if( nArg>0 ){
        for(i=0; i<nArg; i++){
          output_csv(p, azArg[i], i<nArg-1);
        }
        fprintf(p->out,"%s",p->newline);
      }
#if defined(WIN32) || defined(_WIN32)
      fflush(p->out);
................................................................................
            fprintf(pArg->out,"%s\n", sqlite3_column_text(pExplain, 3));
          }
        }
        sqlite3_finalize(pExplain);
        sqlite3_free(zEQP);
      }










      /* If the shell is currently in ".explain" mode, gather the extra
      ** data required to add indents to the output.*/
      if( pArg && pArg->mode==MODE_Explain ){
        explain_data_prepare(pArg, pStmt);
      }

      /* perform the first step.  this will tell us if we
................................................................................
    }else if( rc != SQLITE_OK ){
      fprintf(stderr,"Error: querying schema information\n");
      rc = 1;
    }else{
      rc = 0;
    }
  }else


#if defined(SQLITE_DEBUG) && defined(SQLITE_ENABLE_SELECTTRACE)
  if( c=='s' && n==11 && strncmp(azArg[0], "selecttrace", n)==0 ){
    extern int sqlite3SelectTrace;
    sqlite3SelectTrace = nArg>=2 ? booleanValue(azArg[1]) : 0xff;
  }else
#endif


#ifdef SQLITE_DEBUG
  /* Undocumented commands for internal testing.  Subject to change
  ** without notice. */
  if( c=='s' && n>=10 && strncmp(azArg[0], "selftest-", 9)==0 ){
    if( strncmp(azArg[0]+9, "boolean", n-9)==0 ){
      int i, v;
................................................................................
      if( p->echoOn ) printf("%s\n", zSql);
      nSql = 0;
    }
  }
  if( nSql ){
    if( !_all_whitespace(zSql) ){
      fprintf(stderr, "Error: incomplete SQL: %s\n", zSql);
      errCnt++;
    }
    free(zSql);
  }
  free(zLine);
  return errCnt>0;
}

Changes to src/sqlite.h.in.

2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
....
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762

2763
2764
2765
2766
2767
2768
2769
2770
....
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
....
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
....
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
....
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
** object.)^ ^(If the database is opened (and/or created) successfully, then
** [SQLITE_OK] is returned.  Otherwise an [error code] is returned.)^ ^The
** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
** an English language description of the error following a failure of any
** of the sqlite3_open() routines.
**
** ^The default encoding for the database will be UTF-8 if
** sqlite3_open() or sqlite3_open_v2() is called and
** UTF-16 in the native byte order if sqlite3_open16() is used.
**
** Whether or not an error occurs when it is opened, resources
** associated with the [database connection] handle should be released by
** passing it to [sqlite3_close()] when it is no longer required.
**
** The sqlite3_open_v2() interface works like sqlite3_open()
** except that it accepts two additional parameters for additional control
................................................................................
** present, is ignored.
**
** ^SQLite uses the path component of the URI as the name of the disk file
** which contains the database. ^If the path begins with a '/' character, 
** then it is interpreted as an absolute path. ^If the path does not begin 
** with a '/' (meaning that the authority section is omitted from the URI)
** then the path is interpreted as a relative path. 
** ^On windows, the first component of an absolute path 
** is a drive specification (e.g. "C:").
**
** [[core URI query parameters]]
** The query component of a URI may contain parameters that are interpreted
** either by SQLite itself, or by a [VFS | custom VFS implementation].

** SQLite interprets the following three query parameters:
**
** <ul>
**   <li> <b>vfs</b>: ^The "vfs" parameter may be used to specify the name of
**     a VFS object that provides the operating system interface that should
**     be used to access the database file on disk. ^If this option is set to
**     an empty string the default VFS object is used. ^Specifying an unknown
**     VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is
................................................................................
**     SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to
**     sqlite3_open_v2(). ^Setting the cache parameter to "private" is 
**     equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit.
**     ^If sqlite3_open_v2() is used and the "cache" parameter is present in
**     a URI filename, its value overrides any behavior requested by setting
**     SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag.
**
**  <li> <b>psow</b>: ^The psow parameter may be "true" (or "on" or "yes" or
**     "1") or "false" (or "off" or "no" or "0") to indicate that the
**     [powersafe overwrite] property does or does not apply to the
**     storage media on which the database file resides.  ^The psow query
**     parameter only works for the built-in unix and Windows VFSes.
**
**  <li> <b>nolock</b>: ^The nolock parameter is a boolean query parameter
**     which if set disables file locking in rollback journal modes.  This
**     is useful for accessing a database on a filesystem that does not
**     support locking.  Caution:  Database corruption might result if two
**     or more processes write to the same database and any one of those
**     processes uses nolock=1.
................................................................................
** that parameter must be the byte offset
** where the NUL terminator would occur assuming the string were NUL
** terminated.  If any NUL characters occur at byte offsets less than 
** the value of the fourth parameter then the resulting string value will
** contain embedded NULs.  The result of expressions involving strings
** with embedded NULs is undefined.
**
** ^The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
** string after SQLite has finished with it.  ^The destructor is called
** to dispose of the BLOB or string even if the call to sqlite3_bind_blob(),
** sqlite3_bind_text(), or sqlite3_bind_text16() fails.  
** ^If the fifth argument is
** the special value [SQLITE_STATIC], then SQLite assumes that the
** information is in static, unmanaged space and does not need to be freed.
** ^If the fifth argument has the value [SQLITE_TRANSIENT], then
** SQLite makes its own private copy of the data immediately, before
** the sqlite3_bind_*() routine returns.
**
** ^The sixth argument to sqlite3_bind_text64() must be one of
** [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE]
** to specify the encoding of the text in the third parameter.  If
** the sixth argument to sqlite3_bind_text64() is not how of the
** allowed values shown above, or if the text encoding is different
** from the encoding specified by the sixth parameter, then the behavior
** is undefined.
**
** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
** is filled with zeroes.  ^A zeroblob uses a fixed amount of memory
** (just an integer to hold its size) while it is being processed.
................................................................................
** of the application-defined function to be the 64-bit signed integer
** value given in the 2nd argument.
**
** ^The sqlite3_result_null() interface sets the return value
** of the application-defined function to be NULL.
**
** ^The sqlite3_result_text(), sqlite3_result_text16(),
** sqlite3_result_text16le(), and sqlite3_result_text16be()
** set the return value of the application-defined function to be
** a text string which is represented as UTF-8, UTF-16 native byte order,
** UTF-16 little endian, or UTF-16 big endian, respectively.
** ^The sqlite3_result_text64() interface sets the return value of an
** application-defined function to be a text string in an encoding
** specified by the fifth (and last) parameter, which must be one
** of [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE].
................................................................................
#define SQLITE_TESTCTRL_ASSERT                  12
#define SQLITE_TESTCTRL_ALWAYS                  13
#define SQLITE_TESTCTRL_RESERVE                 14
#define SQLITE_TESTCTRL_OPTIMIZATIONS           15
#define SQLITE_TESTCTRL_ISKEYWORD               16
#define SQLITE_TESTCTRL_SCRATCHMALLOC           17
#define SQLITE_TESTCTRL_LOCALTIME_FAULT         18
#define SQLITE_TESTCTRL_EXPLAIN_STMT            19
#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
#define SQLITE_TESTCTRL_BYTEORDER               22
#define SQLITE_TESTCTRL_ISINIT                  23
#define SQLITE_TESTCTRL_SORTER_MMAP             24
#define SQLITE_TESTCTRL_LAST                    24








|
|
|







 







|
|




>
|







 







|
<

|
<







 







|
|

|
<










|







 







|







 







|







2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
....
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
....
2792
2793
2794
2795
2796
2797
2798
2799

2800
2801

2802
2803
2804
2805
2806
2807
2808
....
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399

3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
....
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
....
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
** object.)^ ^(If the database is opened (and/or created) successfully, then
** [SQLITE_OK] is returned.  Otherwise an [error code] is returned.)^ ^The
** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
** an English language description of the error following a failure of any
** of the sqlite3_open() routines.
**
** ^The default encoding will be UTF-8 for databases created using
** sqlite3_open() or sqlite3_open_v2().  ^The default encoding for databases
** created using sqlite3_open16() will be UTF-16 in the native byte order.
**
** Whether or not an error occurs when it is opened, resources
** associated with the [database connection] handle should be released by
** passing it to [sqlite3_close()] when it is no longer required.
**
** The sqlite3_open_v2() interface works like sqlite3_open()
** except that it accepts two additional parameters for additional control
................................................................................
** present, is ignored.
**
** ^SQLite uses the path component of the URI as the name of the disk file
** which contains the database. ^If the path begins with a '/' character, 
** then it is interpreted as an absolute path. ^If the path does not begin 
** with a '/' (meaning that the authority section is omitted from the URI)
** then the path is interpreted as a relative path. 
** ^(On windows, the first component of an absolute path 
** is a drive specification (e.g. "C:").)^
**
** [[core URI query parameters]]
** The query component of a URI may contain parameters that are interpreted
** either by SQLite itself, or by a [VFS | custom VFS implementation].
** SQLite and its built-in [VFSes] interpret the
** following query parameters:
**
** <ul>
**   <li> <b>vfs</b>: ^The "vfs" parameter may be used to specify the name of
**     a VFS object that provides the operating system interface that should
**     be used to access the database file on disk. ^If this option is set to
**     an empty string the default VFS object is used. ^Specifying an unknown
**     VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is
................................................................................
**     SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to
**     sqlite3_open_v2(). ^Setting the cache parameter to "private" is 
**     equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit.
**     ^If sqlite3_open_v2() is used and the "cache" parameter is present in
**     a URI filename, its value overrides any behavior requested by setting
**     SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag.
**
**  <li> <b>psow</b>: ^The psow parameter indicates whether or not the

**     [powersafe overwrite] property does or does not apply to the
**     storage media on which the database file resides.

**
**  <li> <b>nolock</b>: ^The nolock parameter is a boolean query parameter
**     which if set disables file locking in rollback journal modes.  This
**     is useful for accessing a database on a filesystem that does not
**     support locking.  Caution:  Database corruption might result if two
**     or more processes write to the same database and any one of those
**     processes uses nolock=1.
................................................................................
** that parameter must be the byte offset
** where the NUL terminator would occur assuming the string were NUL
** terminated.  If any NUL characters occur at byte offsets less than 
** the value of the fourth parameter then the resulting string value will
** contain embedded NULs.  The result of expressions involving strings
** with embedded NULs is undefined.
**
** ^The fifth argument to the BLOB and string binding interfaces
** is a destructor used to dispose of the BLOB or
** string after SQLite has finished with it.  ^The destructor is called
** to dispose of the BLOB or string even if the call to bind API fails.

** ^If the fifth argument is
** the special value [SQLITE_STATIC], then SQLite assumes that the
** information is in static, unmanaged space and does not need to be freed.
** ^If the fifth argument has the value [SQLITE_TRANSIENT], then
** SQLite makes its own private copy of the data immediately, before
** the sqlite3_bind_*() routine returns.
**
** ^The sixth argument to sqlite3_bind_text64() must be one of
** [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE]
** to specify the encoding of the text in the third parameter.  If
** the sixth argument to sqlite3_bind_text64() is not one of the
** allowed values shown above, or if the text encoding is different
** from the encoding specified by the sixth parameter, then the behavior
** is undefined.
**
** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
** is filled with zeroes.  ^A zeroblob uses a fixed amount of memory
** (just an integer to hold its size) while it is being processed.
................................................................................
** of the application-defined function to be the 64-bit signed integer
** value given in the 2nd argument.
**
** ^The sqlite3_result_null() interface sets the return value
** of the application-defined function to be NULL.
**
** ^The sqlite3_result_text(), sqlite3_result_text16(),
** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
** set the return value of the application-defined function to be
** a text string which is represented as UTF-8, UTF-16 native byte order,
** UTF-16 little endian, or UTF-16 big endian, respectively.
** ^The sqlite3_result_text64() interface sets the return value of an
** application-defined function to be a text string in an encoding
** specified by the fifth (and last) parameter, which must be one
** of [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE].
................................................................................
#define SQLITE_TESTCTRL_ASSERT                  12
#define SQLITE_TESTCTRL_ALWAYS                  13
#define SQLITE_TESTCTRL_RESERVE                 14
#define SQLITE_TESTCTRL_OPTIMIZATIONS           15
#define SQLITE_TESTCTRL_ISKEYWORD               16
#define SQLITE_TESTCTRL_SCRATCHMALLOC           17
#define SQLITE_TESTCTRL_LOCALTIME_FAULT         18
#define SQLITE_TESTCTRL_EXPLAIN_STMT            19  /* NOT USED */
#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
#define SQLITE_TESTCTRL_BYTEORDER               22
#define SQLITE_TESTCTRL_ISINIT                  23
#define SQLITE_TESTCTRL_SORTER_MMAP             24
#define SQLITE_TESTCTRL_LAST                    24

Changes to src/sqliteInt.h.

43
44
45
46
47
48
49









50
51
52
53
54
55
56
...
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
...
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
...
465
466
467
468
469
470
471





472
473
474
475
476
477
478
...
702
703
704
705
706
707
708










709
710
711
712
713
714
715
...
841
842
843
844
845
846
847

848
849
850
851
852
853
854
....
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
....
1783
1784
1785
1786
1787
1788
1789

1790
1791
1792
1793
1794
1795
1796
....
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
....
2298
2299
2300
2301
2302
2303
2304



2305
2306
2307
2308
2309
2310
2311
....
2556
2557
2558
2559
2560
2561
2562




2563
2564
2565
2566
2567
2568
2569
....
2635
2636
2637
2638
2639
2640
2641

2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
....
2903
2904
2905
2906
2907
2908
2909











2910
2911
2912
2913
2914
2915
2916
....
2968
2969
2970
2971
2972
2973
2974

2975
2976
2977
2978
2979
2980
2981
....
3066
3067
3068
3069
3070
3071
3072
3073
3074

3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
....
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
....
3290
3291
3292
3293
3294
3295
3296





3297
3298
3299
3300
3301
3302
3303
....
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
# define _LARGE_FILE       1
# ifndef _FILE_OFFSET_BITS
#   define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif










/*
** For MinGW, check to see if we can include the header file containing its
** version information, among other things.  Normally, this internal MinGW
** header file would [only] be included automatically by other MinGW header
** files; however, the contained version information is now required by this
** header file to work around binary compatibility issues (see below) and
** this is the only known way to reliably obtain it.  This entire #if block
................................................................................
#pragma warn -rch /* unreachable code */
#pragma warn -ccc /* Condition is always true or false */
#pragma warn -aus /* Assigned value is never used */
#pragma warn -csu /* Comparing signed and unsigned */
#pragma warn -spa /* Suspicious pointer arithmetic */
#endif

/* Needed for various definitions... */
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif

#if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
# define _BSD_SOURCE
#endif

/*
** Include standard header files as necessary
*/
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#ifdef HAVE_INTTYPES_H
................................................................................

/*
** A macro to hint to the compiler that a function should not be
** inlined.
*/
#if defined(__GNUC__)
#  define SQLITE_NOINLINE  __attribute__((noinline))
#elif defined(_MSC_VER)
#  define SQLITE_NOINLINE  __declspec(noinline)
#else
#  define SQLITE_NOINLINE
#endif

/*
** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
................................................................................

/*
** Macros to compute minimum and maximum of two numbers.
*/
#define MIN(A,B) ((A)<(B)?(A):(B))
#define MAX(A,B) ((A)>(B)?(A):(B))






/*
** Check to see if this machine uses EBCDIC.  (Yes, believe it or
** not, there are still machines out there that use EBCDIC.)
*/
#if 'A' == '\301'
# define SQLITE_EBCDIC 1
#else
................................................................................
# define SQLITE_ENABLE_STAT3_OR_STAT4 1
#elif SQLITE_ENABLE_STAT3
# define SQLITE_ENABLE_STAT3_OR_STAT4 1
#elif SQLITE_ENABLE_STAT3_OR_STAT4
# undef SQLITE_ENABLE_STAT3_OR_STAT4
#endif











/*
** An instance of the following structure is used to store the busy-handler
** callback for a given sqlite handle. 
**
** The sqlite.busyHandler member of the sqlite struct contains the busy
** callback for the database handle. Each pager opened via the sqlite
** handle is passed a pointer to sqlite.busyHandler. The busy-handler
................................................................................
typedef struct SQLiteThread SQLiteThread;
typedef struct SelectDest SelectDest;
typedef struct SrcList SrcList;
typedef struct StrAccum StrAccum;
typedef struct Table Table;
typedef struct TableLock TableLock;
typedef struct Token Token;

typedef struct Trigger Trigger;
typedef struct TriggerPrg TriggerPrg;
typedef struct TriggerStep TriggerStep;
typedef struct UnpackedRecord UnpackedRecord;
typedef struct VTable VTable;
typedef struct VtabCtx VtabCtx;
typedef struct Walker Walker;
................................................................................
/*
** Column affinity types.
**
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
** the speed a little by numbering the values consecutively.  
**
** But rather than start with 0 or 1, we begin with 'a'.  That way,
** when multiple affinity types are concatenated into a string and
** used as the P4 operand, they will be more readable.
**
** Note also that the numeric types are grouped together so that testing
** for a numeric type is a single comparison.
*/
#define SQLITE_AFF_TEXT     'a'
#define SQLITE_AFF_NONE     'b'
#define SQLITE_AFF_NUMERIC  'c'
#define SQLITE_AFF_INTEGER  'd'
#define SQLITE_AFF_REAL     'e'

#define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)

/*
** The SQLITE_AFF_MASK values masks off the significant bits of an
** affinity value. 
*/
#define SQLITE_AFF_MASK     0x67

/*
** Additional bit values that can be ORed with an affinity without
** changing the affinity.
**
** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
** It causes an assert() to fire if either operand to a comparison
** operator is NULL.  It is added to certain comparison operators to
** prove that the operands are always NOT NULL.
*/
#define SQLITE_JUMPIFNULL   0x08  /* jumps if either operand is NULL */
#define SQLITE_STOREP2      0x10  /* Store result in reg[P2] rather than jump */
#define SQLITE_NULLEQ       0x80  /* NULL=NULL */
#define SQLITE_NOTNULL      0x88  /* Assert that operands are never NULL */

/*
** An object of this type is created for each virtual table present in
** the database schema. 
**
** If the database schema is shared, then there is one instance of this
** structure for each database connection (sqlite3*) that uses the shared
................................................................................
  unsigned isResized:1;    /* True if resizeIndexObject() has been called */
  unsigned isCovering:1;   /* True if this is a covering index */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  int nSample;             /* Number of elements in aSample[] */
  int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
  tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */

#endif
};

/*
** Allowed values for Index.idxType
*/
#define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
................................................................................
#define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
#define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
#define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
#define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
#define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
#define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
#define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
#define WHERE_AND_ONLY         0x0080 /* Don't use indices for OR terms */
#define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
#define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
#define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
#define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
#define WHERE_REOPEN_IDX       0x1000 /* Try to use OP_ReopenIdx */

/* Allowed return values from sqlite3WhereIsDistinct()
................................................................................
** sequences for the ORDER BY clause.
*/
struct Select {
  ExprList *pEList;      /* The fields of the result */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  u16 selFlags;          /* Various SF_* values */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */



  int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
  u64 nSelectRow;        /* Estimated number of result rows */
  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
................................................................................
  Token constraintName;/* Name of the constraint currently being parsed */
  yDbMask writeMask;   /* Start a write transaction on these databases */
  yDbMask cookieMask;  /* Bitmask of schema verified databases */
  int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
  int regRowid;        /* Register holding rowid of CREATE TABLE entry */
  int regRoot;         /* Register holding root page number for new objects */
  int nMaxArg;         /* Max args passed to user function by sub-program */




#ifndef SQLITE_OMIT_SHARED_CACHE
  int nTableLock;        /* Number of locks in aTableLock */
  TableLock *aTableLock; /* Required table locks for shared-cache mode */
#endif
  AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */

  /* Information used while coding trigger programs. */
................................................................................
  Parse *pParse;              /* The Parse structure */
};

/*
** Bitfield flags for P5 value in various opcodes.
*/
#define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */

#define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
#define OPFLAG_CLEARCACHE    0x20    /* Clear pseudo-table cache in OP_Column */
#define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
#define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
#define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
#define OPFLAG_P2ISREG       0x02    /* P2 to OP_Open** is a register number */
#define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */

/*
................................................................................
    char *zName;                    /* Name of this CTE */
    ExprList *pCols;                /* List of explicit column names, or NULL */
    Select *pSelect;                /* The definition of this CTE */
    const char *zErr;               /* Error message for circular references */
  } a[1];
};












/*
** Assuming zIn points to the first byte of a UTF-8 character,
** advance zIn to point to the first byte of the next UTF-8 character.
*/
#define SQLITE_SKIP_UTF8(zIn) {                        \
  if( (*(zIn++))>=0xc0 ){                              \
    while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
................................................................................
# define sqlite3Isspace(x)   isspace((unsigned char)(x))
# define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
# define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
# define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
# define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
# define sqlite3Tolower(x)   tolower((unsigned char)(x))
#endif


/*
** Internal function prototypes
*/
#define sqlite3StrICmp sqlite3_stricmp
int sqlite3Strlen30(const char*);
#define sqlite3StrNICmp sqlite3_strnicmp
................................................................................
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
  void sqlite3DebugPrintf(const char*, ...);
#endif
#if defined(SQLITE_TEST)
  void *sqlite3TestTextToPtr(const char*);
#endif

/* Output formatting for SQLITE_TESTCTRL_EXPLAIN */
#if defined(SQLITE_ENABLE_TREE_EXPLAIN)

  void sqlite3ExplainBegin(Vdbe*);
  void sqlite3ExplainPrintf(Vdbe*, const char*, ...);
  void sqlite3ExplainNL(Vdbe*);
  void sqlite3ExplainPush(Vdbe*);
  void sqlite3ExplainPop(Vdbe*);
  void sqlite3ExplainFinish(Vdbe*);
  void sqlite3ExplainSelect(Vdbe*, Select*);
  void sqlite3ExplainExpr(Vdbe*, Expr*);
  void sqlite3ExplainExprList(Vdbe*, ExprList*);
  const char *sqlite3VdbeExplanation(Vdbe*);
#else
# define sqlite3ExplainBegin(X)
# define sqlite3ExplainSelect(A,B)
# define sqlite3ExplainExpr(A,B)
# define sqlite3ExplainExprList(A,B)
# define sqlite3ExplainFinish(X)
# define sqlite3VdbeExplanation(X) 0
#endif


void sqlite3SetString(char **, sqlite3*, const char*, ...);
void sqlite3ErrorMsg(Parse*, const char*, ...);
int sqlite3Dequote(char*);
int sqlite3KeywordCode(const unsigned char*, int);
................................................................................
void sqlite3CommitTransaction(Parse*);
void sqlite3RollbackTransaction(Parse*);
void sqlite3Savepoint(Parse*, int, Token*);
void sqlite3CloseSavepoints(sqlite3 *);
void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
int sqlite3ExprIsConstant(Expr*);
int sqlite3ExprIsConstantNotJoin(Expr*);
int sqlite3ExprIsConstantOrFunction(Expr*);
int sqlite3ExprIsInteger(Expr*, int*);
int sqlite3ExprCanBeNull(const Expr*);
int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
int sqlite3IsRowid(const char*);
void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8);
void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*);
int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
................................................................................
void sqlite3UniqueConstraint(Parse*, int, Index*);
void sqlite3RowidConstraint(Parse*, int, Table*);
Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
IdList *sqlite3IdListDup(sqlite3*,IdList*);
Select *sqlite3SelectDup(sqlite3*,Select*,int);





void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
void sqlite3RegisterBuiltinFunctions(sqlite3*);
void sqlite3RegisterDateTimeFunctions(void);
void sqlite3RegisterGlobalFunctions(void);
int sqlite3SafetyCheckOk(sqlite3*);
int sqlite3SafetyCheckSickOrOk(sqlite3*);
................................................................................
  int sqlite3MemdebugNoType(void*,u8);
#else
# define sqlite3MemdebugSetType(X,Y)  /* no-op */
# define sqlite3MemdebugHasType(X,Y)  1
# define sqlite3MemdebugNoType(X,Y)   1
#endif
#define MEMTYPE_HEAP       0x01  /* General heap allocations */
#define MEMTYPE_LOOKASIDE  0x02  /* Might have been lookaside memory */
#define MEMTYPE_SCRATCH    0x04  /* Scratch allocations */
#define MEMTYPE_PCACHE     0x08  /* Page cache allocations */
#define MEMTYPE_DB         0x10  /* Uses sqlite3DbMalloc, not sqlite_malloc */


/*
** Threading interface
*/
#if SQLITE_MAX_WORKER_THREADS>0
int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*);
int sqlite3ThreadJoin(SQLiteThread*, void**);
#endif

#endif /* _SQLITEINT_H_ */







>
>
>
>
>
>
>
>
>







 







<
<
<
<
<
<
<
<
<







 







|







 







>
>
>
>
>







 







>
>
>
>
>
>
>
>
>
>







 







>







 







|




|

|
|
|
|
|







|










|
|

|







 







>







 







|







 







>
>
>







 







>
>
>
>







 







>




<







 







>
>
>
>
>
>
>
>
>
>
>







 







>







 







<
|
>
|
|
|
|
|
|
<
<
<
<
<
<
<
<
<
<
<







 







|







 







>
>
>
>
>







 







|


<











43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
...
109
110
111
112
113
114
115









116
117
118
119
120
121
122
...
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
...
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
...
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
...
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
....
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
....
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
....
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
....
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
....
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
....
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670

2671
2672
2673
2674
2675
2676
2677
....
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
....
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
....
3102
3103
3104
3105
3106
3107
3108

3109
3110
3111
3112
3113
3114
3115
3116











3117
3118
3119
3120
3121
3122
3123
....
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
....
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
....
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806

3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
# define _LARGE_FILE       1
# ifndef _FILE_OFFSET_BITS
#   define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif

/* Needed for various definitions... */
#if defined(__GNUC__) && !defined(_GNU_SOURCE)
# define _GNU_SOURCE
#endif

#if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
# define _BSD_SOURCE
#endif

/*
** For MinGW, check to see if we can include the header file containing its
** version information, among other things.  Normally, this internal MinGW
** header file would [only] be included automatically by other MinGW header
** files; however, the contained version information is now required by this
** header file to work around binary compatibility issues (see below) and
** this is the only known way to reliably obtain it.  This entire #if block
................................................................................
#pragma warn -rch /* unreachable code */
#pragma warn -ccc /* Condition is always true or false */
#pragma warn -aus /* Assigned value is never used */
#pragma warn -csu /* Comparing signed and unsigned */
#pragma warn -spa /* Suspicious pointer arithmetic */
#endif










/*
** Include standard header files as necessary
*/
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#ifdef HAVE_INTTYPES_H
................................................................................

/*
** A macro to hint to the compiler that a function should not be
** inlined.
*/
#if defined(__GNUC__)
#  define SQLITE_NOINLINE  __attribute__((noinline))
#elif defined(_MSC_VER) && _MSC_VER>=1310
#  define SQLITE_NOINLINE  __declspec(noinline)
#else
#  define SQLITE_NOINLINE
#endif

/*
** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
................................................................................

/*
** Macros to compute minimum and maximum of two numbers.
*/
#define MIN(A,B) ((A)<(B)?(A):(B))
#define MAX(A,B) ((A)>(B)?(A):(B))

/*
** Swap two objects of type TYPE.
*/
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}

/*
** Check to see if this machine uses EBCDIC.  (Yes, believe it or
** not, there are still machines out there that use EBCDIC.)
*/
#if 'A' == '\301'
# define SQLITE_EBCDIC 1
#else
................................................................................
# define SQLITE_ENABLE_STAT3_OR_STAT4 1
#elif SQLITE_ENABLE_STAT3
# define SQLITE_ENABLE_STAT3_OR_STAT4 1
#elif SQLITE_ENABLE_STAT3_OR_STAT4
# undef SQLITE_ENABLE_STAT3_OR_STAT4
#endif

/*
** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not
** the Select query generator tracing logic is turned on.
*/
#if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE)
# define SELECTTRACE_ENABLED 1
#else
# define SELECTTRACE_ENABLED 0
#endif

/*
** An instance of the following structure is used to store the busy-handler
** callback for a given sqlite handle. 
**
** The sqlite.busyHandler member of the sqlite struct contains the busy
** callback for the database handle. Each pager opened via the sqlite
** handle is passed a pointer to sqlite.busyHandler. The busy-handler
................................................................................
typedef struct SQLiteThread SQLiteThread;
typedef struct SelectDest SelectDest;
typedef struct SrcList SrcList;
typedef struct StrAccum StrAccum;
typedef struct Table Table;
typedef struct TableLock TableLock;
typedef struct Token Token;
typedef struct TreeView TreeView;
typedef struct Trigger Trigger;
typedef struct TriggerPrg TriggerPrg;
typedef struct TriggerStep TriggerStep;
typedef struct UnpackedRecord UnpackedRecord;
typedef struct VTable VTable;
typedef struct VtabCtx VtabCtx;
typedef struct Walker Walker;
................................................................................
/*
** Column affinity types.
**
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
** the speed a little by numbering the values consecutively.  
**
** But rather than start with 0 or 1, we begin with 'A'.  That way,
** when multiple affinity types are concatenated into a string and
** used as the P4 operand, they will be more readable.
**
** Note also that the numeric types are grouped together so that testing
** for a numeric type is a single comparison.  And the NONE type is first.
*/
#define SQLITE_AFF_NONE     'A'
#define SQLITE_AFF_TEXT     'B'
#define SQLITE_AFF_NUMERIC  'C'
#define SQLITE_AFF_INTEGER  'D'
#define SQLITE_AFF_REAL     'E'

#define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)

/*
** The SQLITE_AFF_MASK values masks off the significant bits of an
** affinity value. 
*/
#define SQLITE_AFF_MASK     0x47

/*
** Additional bit values that can be ORed with an affinity without
** changing the affinity.
**
** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
** It causes an assert() to fire if either operand to a comparison
** operator is NULL.  It is added to certain comparison operators to
** prove that the operands are always NOT NULL.
*/
#define SQLITE_JUMPIFNULL   0x10  /* jumps if either operand is NULL */
#define SQLITE_STOREP2      0x20  /* Store result in reg[P2] rather than jump */
#define SQLITE_NULLEQ       0x80  /* NULL=NULL */
#define SQLITE_NOTNULL      0x90  /* Assert that operands are never NULL */

/*
** An object of this type is created for each virtual table present in
** the database schema. 
**
** If the database schema is shared, then there is one instance of this
** structure for each database connection (sqlite3*) that uses the shared
................................................................................
  unsigned isResized:1;    /* True if resizeIndexObject() has been called */
  unsigned isCovering:1;   /* True if this is a covering index */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  int nSample;             /* Number of elements in aSample[] */
  int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
  tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
  tRowcnt *aiRowEst;       /* Non-logarithmic stat1 data for this table */
#endif
};

/*
** Allowed values for Index.idxType
*/
#define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
................................................................................
#define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
#define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
#define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
#define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
#define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
#define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
#define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
                          /*   0x0080 // not currently used */
#define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
#define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
#define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
#define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
#define WHERE_REOPEN_IDX       0x1000 /* Try to use OP_ReopenIdx */

/* Allowed return values from sqlite3WhereIsDistinct()
................................................................................
** sequences for the ORDER BY clause.
*/
struct Select {
  ExprList *pEList;      /* The fields of the result */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  u16 selFlags;          /* Various SF_* values */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
#if SELECTTRACE_ENABLED
  char zSelName[12];     /* Symbolic name of this SELECT use for debugging */
#endif
  int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
  u64 nSelectRow;        /* Estimated number of result rows */
  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
................................................................................
  Token constraintName;/* Name of the constraint currently being parsed */
  yDbMask writeMask;   /* Start a write transaction on these databases */
  yDbMask cookieMask;  /* Bitmask of schema verified databases */
  int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
  int regRowid;        /* Register holding rowid of CREATE TABLE entry */
  int regRoot;         /* Register holding root page number for new objects */
  int nMaxArg;         /* Max args passed to user function by sub-program */
#if SELECTTRACE_ENABLED
  int nSelect;         /* Number of SELECT statements seen */
  int nSelectIndent;   /* How far to indent SELECTTRACE() output */
#endif
#ifndef SQLITE_OMIT_SHARED_CACHE
  int nTableLock;        /* Number of locks in aTableLock */
  TableLock *aTableLock; /* Required table locks for shared-cache mode */
#endif
  AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */

  /* Information used while coding trigger programs. */
................................................................................
  Parse *pParse;              /* The Parse structure */
};

/*
** Bitfield flags for P5 value in various opcodes.
*/
#define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */
#define OPFLAG_EPHEM         0x01    /* OP_Column: Ephemeral output is ok */
#define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */

#define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
#define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
#define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
#define OPFLAG_P2ISREG       0x02    /* P2 to OP_Open** is a register number */
#define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */

/*
................................................................................
    char *zName;                    /* Name of this CTE */
    ExprList *pCols;                /* List of explicit column names, or NULL */
    Select *pSelect;                /* The definition of this CTE */
    const char *zErr;               /* Error message for circular references */
  } a[1];
};

#ifdef SQLITE_DEBUG
/*
** An instance of the TreeView object is used for printing the content of
** data structures on sqlite3DebugPrintf() using a tree-like view.
*/
struct TreeView {
  int iLevel;             /* Which level of the tree we are on */
  u8  bLine[100];         /* Draw vertical in column i if bLine[i] is true */
};
#endif /* SQLITE_DEBUG */

/*
** Assuming zIn points to the first byte of a UTF-8 character,
** advance zIn to point to the first byte of the next UTF-8 character.
*/
#define SQLITE_SKIP_UTF8(zIn) {                        \
  if( (*(zIn++))>=0xc0 ){                              \
    while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
................................................................................
# define sqlite3Isspace(x)   isspace((unsigned char)(x))
# define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
# define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
# define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
# define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
# define sqlite3Tolower(x)   tolower((unsigned char)(x))
#endif
int sqlite3IsIdChar(u8);

/*
** Internal function prototypes
*/
#define sqlite3StrICmp sqlite3_stricmp
int sqlite3Strlen30(const char*);
#define sqlite3StrNICmp sqlite3_strnicmp
................................................................................
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
  void sqlite3DebugPrintf(const char*, ...);
#endif
#if defined(SQLITE_TEST)
  void *sqlite3TestTextToPtr(const char*);
#endif


#if defined(SQLITE_DEBUG)
  TreeView *sqlite3TreeViewPush(TreeView*,u8);
  void sqlite3TreeViewPop(TreeView*);
  void sqlite3TreeViewLine(TreeView*, const char*, ...);
  void sqlite3TreeViewItem(TreeView*, const char*, u8);
  void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
  void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
  void sqlite3TreeViewSelect(TreeView*, const Select*, u8);











#endif


void sqlite3SetString(char **, sqlite3*, const char*, ...);
void sqlite3ErrorMsg(Parse*, const char*, ...);
int sqlite3Dequote(char*);
int sqlite3KeywordCode(const unsigned char*, int);
................................................................................
void sqlite3CommitTransaction(Parse*);
void sqlite3RollbackTransaction(Parse*);
void sqlite3Savepoint(Parse*, int, Token*);
void sqlite3CloseSavepoints(sqlite3 *);
void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
int sqlite3ExprIsConstant(Expr*);
int sqlite3ExprIsConstantNotJoin(Expr*);
int sqlite3ExprIsConstantOrFunction(Expr*, u8);
int sqlite3ExprIsInteger(Expr*, int*);
int sqlite3ExprCanBeNull(const Expr*);
int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
int sqlite3IsRowid(const char*);
void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8);
void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*);
int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
................................................................................
void sqlite3UniqueConstraint(Parse*, int, Index*);
void sqlite3RowidConstraint(Parse*, int, Table*);
Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
IdList *sqlite3IdListDup(sqlite3*,IdList*);
Select *sqlite3SelectDup(sqlite3*,Select*,int);
#if SELECTTRACE_ENABLED
void sqlite3SelectSetName(Select*,const char*);
#else
# define sqlite3SelectSetName(A,B)
#endif
void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
void sqlite3RegisterBuiltinFunctions(sqlite3*);
void sqlite3RegisterDateTimeFunctions(void);
void sqlite3RegisterGlobalFunctions(void);
int sqlite3SafetyCheckOk(sqlite3*);
int sqlite3SafetyCheckSickOrOk(sqlite3*);
................................................................................
  int sqlite3MemdebugNoType(void*,u8);
#else
# define sqlite3MemdebugSetType(X,Y)  /* no-op */
# define sqlite3MemdebugHasType(X,Y)  1
# define sqlite3MemdebugNoType(X,Y)   1
#endif
#define MEMTYPE_HEAP       0x01  /* General heap allocations */
#define MEMTYPE_LOOKASIDE  0x02  /* Heap that might have been lookaside */
#define MEMTYPE_SCRATCH    0x04  /* Scratch allocations */
#define MEMTYPE_PCACHE     0x08  /* Page cache allocations */



/*
** Threading interface
*/
#if SQLITE_MAX_WORKER_THREADS>0
int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*);
int sqlite3ThreadJoin(SQLiteThread*, void**);
#endif

#endif /* _SQLITEINT_H_ */

Changes to src/status.c.

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
...
234
235
236
237
238
239
240
241


242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
      db->pnBytesFreed = &nByte;
      for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
        sqlite3VdbeClearObject(db, pVdbe);
        sqlite3DbFree(db, pVdbe);
      }
      db->pnBytesFreed = 0;

      *pHighwater = 0;
      *pCurrent = nByte;

      break;
    }

    /*
    ** Set *pCurrent to the total cache hits or misses encountered by all
................................................................................

      for(i=0; i<db->nDb; i++){
        if( db->aDb[i].pBt ){
          Pager *pPager = sqlite3BtreePager(db->aDb[i].pBt);
          sqlite3PagerCacheStat(pPager, op, resetFlag, &nRet);
        }
      }
      *pHighwater = 0;


      *pCurrent = nRet;
      break;
    }

    /* Set *pCurrent to non-zero if there are unresolved deferred foreign
    ** key constraints.  Set *pCurrent to zero if all foreign key constraints
    ** have been satisfied.  The *pHighwater is always set to zero.
    */
    case SQLITE_DBSTATUS_DEFERRED_FKS: {
      *pHighwater = 0;
      *pCurrent = db->nDeferredImmCons>0 || db->nDeferredCons>0;
      break;
    }

    default: {
      rc = SQLITE_ERROR;
    }
  }
  sqlite3_mutex_leave(db->mutex);
  return rc;
}







|







 







|
>
>









|











209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
...
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
      db->pnBytesFreed = &nByte;
      for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
        sqlite3VdbeClearObject(db, pVdbe);
        sqlite3DbFree(db, pVdbe);
      }
      db->pnBytesFreed = 0;

      *pHighwater = 0;  /* IMP: R-64479-57858 */
      *pCurrent = nByte;

      break;
    }

    /*
    ** Set *pCurrent to the total cache hits or misses encountered by all
................................................................................

      for(i=0; i<db->nDb; i++){
        if( db->aDb[i].pBt ){
          Pager *pPager = sqlite3BtreePager(db->aDb[i].pBt);
          sqlite3PagerCacheStat(pPager, op, resetFlag, &nRet);
        }
      }
      *pHighwater = 0; /* IMP: R-42420-56072 */
                       /* IMP: R-54100-20147 */
                       /* IMP: R-29431-39229 */
      *pCurrent = nRet;
      break;
    }

    /* Set *pCurrent to non-zero if there are unresolved deferred foreign
    ** key constraints.  Set *pCurrent to zero if all foreign key constraints
    ** have been satisfied.  The *pHighwater is always set to zero.
    */
    case SQLITE_DBSTATUS_DEFERRED_FKS: {
      *pHighwater = 0;  /* IMP: R-11967-56545 */
      *pCurrent = db->nDeferredImmCons>0 || db->nDeferredCons>0;
      break;
    }

    default: {
      rc = SQLITE_ERROR;
    }
  }
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

Changes to src/test1.c.

5509
5510
5511
5512
5513
5514
5515

5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
    { "SQLITE_LIMIT_COMPOUND_SELECT",     SQLITE_LIMIT_COMPOUND_SELECT      },
    { "SQLITE_LIMIT_VDBE_OP",             SQLITE_LIMIT_VDBE_OP              },
    { "SQLITE_LIMIT_FUNCTION_ARG",        SQLITE_LIMIT_FUNCTION_ARG         },
    { "SQLITE_LIMIT_ATTACHED",            SQLITE_LIMIT_ATTACHED             },
    { "SQLITE_LIMIT_LIKE_PATTERN_LENGTH", SQLITE_LIMIT_LIKE_PATTERN_LENGTH  },
    { "SQLITE_LIMIT_VARIABLE_NUMBER",     SQLITE_LIMIT_VARIABLE_NUMBER      },
    { "SQLITE_LIMIT_TRIGGER_DEPTH",       SQLITE_LIMIT_TRIGGER_DEPTH        },

    
    /* Out of range test cases */
    { "SQLITE_LIMIT_TOOSMALL",            -1,                               },
    { "SQLITE_LIMIT_TOOBIG",              SQLITE_LIMIT_TRIGGER_DEPTH+1      },
  };
  int i, id;
  int val;
  const char *zId;

  if( objc!=4 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"",







>



|







5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
    { "SQLITE_LIMIT_COMPOUND_SELECT",     SQLITE_LIMIT_COMPOUND_SELECT      },
    { "SQLITE_LIMIT_VDBE_OP",             SQLITE_LIMIT_VDBE_OP              },
    { "SQLITE_LIMIT_FUNCTION_ARG",        SQLITE_LIMIT_FUNCTION_ARG         },
    { "SQLITE_LIMIT_ATTACHED",            SQLITE_LIMIT_ATTACHED             },
    { "SQLITE_LIMIT_LIKE_PATTERN_LENGTH", SQLITE_LIMIT_LIKE_PATTERN_LENGTH  },
    { "SQLITE_LIMIT_VARIABLE_NUMBER",     SQLITE_LIMIT_VARIABLE_NUMBER      },
    { "SQLITE_LIMIT_TRIGGER_DEPTH",       SQLITE_LIMIT_TRIGGER_DEPTH        },
    { "SQLITE_LIMIT_WORKER_THREADS",      SQLITE_LIMIT_WORKER_THREADS       },
    
    /* Out of range test cases */
    { "SQLITE_LIMIT_TOOSMALL",            -1,                               },
    { "SQLITE_LIMIT_TOOBIG",              SQLITE_LIMIT_WORKER_THREADS+1     },
  };
  int i, id;
  int val;
  const char *zId;

  if( objc!=4 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"",

Changes to src/test_config.c.

640
641
642
643
644
645
646

647
648
649
650
651
652
653
  LINKVAR( MAX_TRIGGER_DEPTH );
  LINKVAR( DEFAULT_TEMP_CACHE_SIZE );
  LINKVAR( DEFAULT_CACHE_SIZE );
  LINKVAR( DEFAULT_PAGE_SIZE );
  LINKVAR( DEFAULT_FILE_FORMAT );
  LINKVAR( MAX_ATTACHED );
  LINKVAR( MAX_DEFAULT_PAGE_SIZE );


  {
    static const int cv_TEMP_STORE = SQLITE_TEMP_STORE;
    Tcl_LinkVar(interp, "TEMP_STORE", (char *)&(cv_TEMP_STORE),
                TCL_LINK_INT | TCL_LINK_READ_ONLY);
  }








>







640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
  LINKVAR( MAX_TRIGGER_DEPTH );
  LINKVAR( DEFAULT_TEMP_CACHE_SIZE );
  LINKVAR( DEFAULT_CACHE_SIZE );
  LINKVAR( DEFAULT_PAGE_SIZE );
  LINKVAR( DEFAULT_FILE_FORMAT );
  LINKVAR( MAX_ATTACHED );
  LINKVAR( MAX_DEFAULT_PAGE_SIZE );
  LINKVAR( MAX_WORKER_THREADS );

  {
    static const int cv_TEMP_STORE = SQLITE_TEMP_STORE;
    Tcl_LinkVar(interp, "TEMP_STORE", (char *)&(cv_TEMP_STORE),
                TCL_LINK_INT | TCL_LINK_READ_ONLY);
  }

Changes to src/test_func.c.

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
...
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
    pHdr += sqlite3GetVarint(pHdr, &iSerialType);
    pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);

    if( iCurrent==iIdx ){
      sqlite3_result_value(context, &mem);
    }

    sqlite3DbFree(db, mem.zMalloc);
  }
}

/*
** tclcmd: test_decode(record)
**
** This function implements an SQL user-function that accepts a blob
................................................................................

      default:
        assert( 0 );
    }

    Tcl_ListObjAppendElement(0, pRet, pVal);

    if( mem.zMalloc ){
      sqlite3DbFree(db, mem.zMalloc);
    }
  }

  sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
  Tcl_DecrRefCount(pRet);
}







|







 







|







500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
...
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
    pHdr += sqlite3GetVarint(pHdr, &iSerialType);
    pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);

    if( iCurrent==iIdx ){
      sqlite3_result_value(context, &mem);
    }

    if( mem.szMalloc ) sqlite3DbFree(db, mem.zMalloc);
  }
}

/*
** tclcmd: test_decode(record)
**
** This function implements an SQL user-function that accepts a blob
................................................................................

      default:
        assert( 0 );
    }

    Tcl_ListObjAppendElement(0, pRet, pVal);

    if( mem.szMalloc ){
      sqlite3DbFree(db, mem.zMalloc);
    }
  }

  sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
  Tcl_DecrRefCount(pRet);
}

Changes to src/test_multiplex.c.

998
999
1000
1001
1002
1003
1004




















1005
1006
1007
1008
1009
1010
1011
      rc = SQLITE_OK;
      break;
    case SQLITE_FCNTL_SIZE_HINT:
    case SQLITE_FCNTL_CHUNK_SIZE:
      /* no-op these */
      rc = SQLITE_OK;
      break;




















    default:
      pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0);
      if( pSubOpen ){
        rc = pSubOpen->pMethods->xFileControl(pSubOpen, op, pArg);
        if( op==SQLITE_FCNTL_VFSNAME && rc==SQLITE_OK ){
         *(char**)pArg = sqlite3_mprintf("multiplex/%z", *(char**)pArg);
        }







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
      rc = SQLITE_OK;
      break;
    case SQLITE_FCNTL_SIZE_HINT:
    case SQLITE_FCNTL_CHUNK_SIZE:
      /* no-op these */
      rc = SQLITE_OK;
      break;
    case SQLITE_FCNTL_PRAGMA: {
      char **aFcntl = (char**)pArg;
      if( aFcntl[1] && sqlite3_stricmp(aFcntl[1],"multiplex_truncate")==0 ){
        if( aFcntl[2] && aFcntl[2][0] ){
          if( sqlite3_stricmp(aFcntl[2], "on")==0
           || sqlite3_stricmp(aFcntl[2], "1")==0 ){
            pGroup->bTruncate = 1;
          }else
          if( sqlite3_stricmp(aFcntl[2], "off")==0
           || sqlite3_stricmp(aFcntl[2], "0")==0 ){
            pGroup->bTruncate = 0;
          }
        }
        aFcntl[0] = sqlite3_mprintf(pGroup->bTruncate ? "on" : "off");
        rc = SQLITE_OK;
        break;
      }
      /* If the multiplexor does not handle the pragma, pass it through
      ** into the default case. */
    }
    default:
      pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0);
      if( pSubOpen ){
        rc = pSubOpen->pMethods->xFileControl(pSubOpen, op, pArg);
        if( op==SQLITE_FCNTL_VFSNAME && rc==SQLITE_OK ){
         *(char**)pArg = sqlite3_mprintf("multiplex/%z", *(char**)pArg);
        }

Changes to src/threads.c.

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
...
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
...
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
}

#endif /* SQLITE_OS_UNIX && defined(SQLITE_MUTEX_PTHREADS) */
/******************************** End Unix Pthreads *************************/


/********************************* Win32 Threads ****************************/
#if SQLITE_OS_WIN && !SQLITE_OS_WINRT && SQLITE_THREADSAFE>0

#define SQLITE_THREADS_IMPLEMENTED 1  /* Prevent the single-thread code below */
#include <process.h>

/* A running thread */
struct SQLiteThread {
  uintptr_t tid;           /* The thread handle */
  unsigned id;             /* The thread identifier */
  void *(*xTask)(void*);   /* The routine to run as a thread */
  void *pIn;               /* Argument to xTask */
  void *pResult;           /* Result of xTask */
};

/* Thread procedure Win32 compatibility shim */
................................................................................
  p = sqlite3Malloc(sizeof(*p));
  if( p==0 ) return SQLITE_NOMEM;
  if( sqlite3GlobalConfig.bCoreMutex==0 ){
    memset(p, 0, sizeof(*p));
  }else{
    p->xTask = xTask;
    p->pIn = pIn;
    p->tid = _beginthreadex(0, 0, sqlite3ThreadProc, p, 0, &p->id);
    if( p->tid==0 ){
      memset(p, 0, sizeof(*p));
    }
  }
  if( p->xTask==0 ){
    p->id = GetCurrentThreadId();
    p->pResult = xTask(pIn);
................................................................................
    assert( bRc );
  }
  if( rc==WAIT_OBJECT_0 ) *ppOut = p->pResult;
  sqlite3_free(p);
  return (rc==WAIT_OBJECT_0) ? SQLITE_OK : SQLITE_ERROR;
}

#endif /* SQLITE_OS_WIN && !SQLITE_OS_WINRT */
/******************************** End Win32 Threads *************************/


/********************************* Single-Threaded **************************/
#ifndef SQLITE_THREADS_IMPLEMENTED
/*
** This implementation does not actually create a new thread.  It does the







|






|







 







|







 







|







94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
...
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
...
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
}

#endif /* SQLITE_OS_UNIX && defined(SQLITE_MUTEX_PTHREADS) */
/******************************** End Unix Pthreads *************************/


/********************************* Win32 Threads ****************************/
#if SQLITE_OS_WIN && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_THREADSAFE>0

#define SQLITE_THREADS_IMPLEMENTED 1  /* Prevent the single-thread code below */
#include <process.h>

/* A running thread */
struct SQLiteThread {
  void *tid;               /* The thread handle */
  unsigned id;             /* The thread identifier */
  void *(*xTask)(void*);   /* The routine to run as a thread */
  void *pIn;               /* Argument to xTask */
  void *pResult;           /* Result of xTask */
};

/* Thread procedure Win32 compatibility shim */
................................................................................
  p = sqlite3Malloc(sizeof(*p));
  if( p==0 ) return SQLITE_NOMEM;
  if( sqlite3GlobalConfig.bCoreMutex==0 ){
    memset(p, 0, sizeof(*p));
  }else{
    p->xTask = xTask;
    p->pIn = pIn;
    p->tid = (void*)_beginthreadex(0, 0, sqlite3ThreadProc, p, 0, &p->id);
    if( p->tid==0 ){
      memset(p, 0, sizeof(*p));
    }
  }
  if( p->xTask==0 ){
    p->id = GetCurrentThreadId();
    p->pResult = xTask(pIn);
................................................................................
    assert( bRc );
  }
  if( rc==WAIT_OBJECT_0 ) *ppOut = p->pResult;
  sqlite3_free(p);
  return (rc==WAIT_OBJECT_0) ? SQLITE_OK : SQLITE_ERROR;
}

#endif /* SQLITE_OS_WIN && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT */
/******************************** End Win32 Threads *************************/


/********************************* Single-Threaded **************************/
#ifndef SQLITE_THREADS_IMPLEMENTED
/*
** This implementation does not actually create a new thread.  It does the

Changes to src/tokenize.c.

98
99
100
101
102
103
104

105
106
107
108
109
110
111
    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,  /* Cx */
    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,  /* Dx */
    0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,  /* Ex */
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,  /* Fx */
};
#define IdChar(C)  (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
#endif



/*
** Return the length of the token that begins at z[0]. 
** Store the token type in *tokenType before returning.
*/
int sqlite3GetToken(const unsigned char *z, int *tokenType){







>







98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,  /* Cx */
    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,  /* Dx */
    0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,  /* Ex */
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,  /* Fx */
};
#define IdChar(C)  (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
#endif
int sqlite3IsIdChar(u8 c){ return IdChar(c); }


/*
** Return the length of the token that begins at z[0]. 
** Store the token type in *tokenType before returning.
*/
int sqlite3GetToken(const unsigned char *z, int *tokenType){

Changes to src/utf.c.

316
317
318
319
320
321
322

323
324
325
326
327
328
329

  c = pMem->flags;
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Str|MEM_Term|(c&MEM_AffMask);
  pMem->enc = desiredEnc;
  pMem->z = (char*)zOut;
  pMem->zMalloc = pMem->z;


translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];
    sqlite3VdbeMemPrettyPrint(pMem, zBuf);
    fprintf(stderr, "OUTPUT: %s\n", zBuf);







>







316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

  c = pMem->flags;
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Str|MEM_Term|(c&MEM_AffMask);
  pMem->enc = desiredEnc;
  pMem->z = (char*)zOut;
  pMem->zMalloc = pMem->z;
  pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->z);

translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];
    sqlite3VdbeMemPrettyPrint(pMem, zBuf);
    fprintf(stderr, "OUTPUT: %s\n", zBuf);

Changes to src/vdbe.c.

205
206
207
208
209
210
211
212
213
214
215
216

217
218
219
220
221
222
223
...
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
...
273
274
275
276
277
278
279










280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
...
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
...
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
...
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
....
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
....
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
....
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
....
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
....
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
....
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
....
1900
1901
1902
1903
1904
1905
1906
1907

1908


1909
1910
1911





1912






1913
1914
1915
1916
1917
1918
1919
1920
1921

1922
1923
1924
1925
1926
1927
1928
....
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266

2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
....
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
....
2349
2350
2351
2352
2353
2354
2355
















2356
2357
2358
2359
2360
2361
2362
2363
2364

2365
2366
2367
2368
2369
2370
2371
....
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
....
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413


2414
2415

2416
2417
2418
2419
2420
2421
2422
2423
2424
....
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445

2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
....
2472
2473
2474
2475
2476
2477
2478
2479














2480
2481
2482
2483
2484
2485
2486
....
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
....
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
....
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
....
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
....
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581

3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
....
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
....
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
....
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
....
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009



4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
....
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
....
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187

4188
4189

4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
....
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254







4255
4256
4257
4258
4259
4260
4261
4262
4263


4264
4265
4266
4267
4268
4269
4270
....
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313



4314
4315
4316
4317


4318
4319

4320
4321
4322
4323
4324
4325
4326
....
4329
4330
4331
4332
4333
4334
4335

4336
4337
4338
4339
4340
4341
4342
4343
....
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
....
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
....
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
....
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
....
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
....
4749
4750
4751
4752
4753
4754
4755







4756
4757
4758
4759

4760
4761
4762
4763
4764
4765
4766
....
5612
5613
5614
5615
5616
5617
5618
5619

5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
      (isBtreeCursor?sqlite3BtreeCursorSize():0);

  assert( iCur<p->nCursor );
  if( p->apCsr[iCur] ){
    sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
    p->apCsr[iCur] = 0;
  }
  if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
    p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
    memset(pCx, 0, sizeof(VdbeCursor));
    pCx->iDb = iDb;
    pCx->nField = nField;

    if( isBtreeCursor ){
      pCx->pCursor = (BtCursor*)
          &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
      sqlite3BtreeCursorZero(pCx->pCursor);
    }
  }
  return pCx;
................................................................................
** point or exponential notation, the result is only MEM_Real, even
** if there is an exact integer representation of the quantity.
*/
static void applyNumericAffinity(Mem *pRec, int bTryForInt){
  double rValue;
  i64 iValue;
  u8 enc = pRec->enc;
  if( (pRec->flags&MEM_Str)==0 ) return;
  if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
  if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
    pRec->u.i = iValue;
    pRec->flags |= MEM_Int;
  }else{
    pRec->r = rValue;
    pRec->flags |= MEM_Real;
    if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
  }
}

/*
** Processing is determine by the affinity parameter:
................................................................................
**    No-op.  pRec is unchanged.
*/
static void applyAffinity(
  Mem *pRec,          /* The value to apply affinity to */
  char affinity,      /* The affinity to be applied */
  u8 enc              /* Use this text encoding */
){










  if( affinity==SQLITE_AFF_TEXT ){
    /* Only attempt the conversion to TEXT if there is an integer or real
    ** representation (blob and NULL do not get converted) but no string
    ** representation.
    */
    if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
      sqlite3VdbeMemStringify(pRec, enc, 1);
    }
  }else if( affinity!=SQLITE_AFF_NONE ){
    assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
             || affinity==SQLITE_AFF_NUMERIC );
    if( (pRec->flags & MEM_Int)==0 ){
      if( (pRec->flags & MEM_Real)==0 ){
        applyNumericAffinity(pRec,1);
      }else{
        sqlite3VdbeIntegerAffinity(pRec);
      }
    }
  }
}

/*
** Try to convert the type of a function argument or a result column
** into a numeric representation.  Use either INTEGER or REAL whichever
** is appropriate.  But only do the conversion if it is possible without
................................................................................
){
  applyAffinity((Mem *)pVal, affinity, enc);
}

/*
** pMem currently only holds a string type (or maybe a BLOB that we can
** interpret as a string if we want to).  Compute its corresponding
** numeric type, if has one.  Set the pMem->r and pMem->u.i fields
** accordingly.
*/
static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
  assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
  assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
  if( sqlite3AtoF(pMem->z, &pMem->r, pMem->n, pMem->enc)==0 ){
    return 0;
  }
  if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
    return MEM_Int;
  }
  return MEM_Real;
}

/*
** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
** none.  
**
** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
** But it does set pMem->r and pMem->u.i appropriately.
*/
static u16 numericType(Mem *pMem){
  if( pMem->flags & (MEM_Int|MEM_Real) ){
    return pMem->flags & (MEM_Int|MEM_Real);
  }
  if( pMem->flags & (MEM_Str|MEM_Blob) ){
    return computeNumericType(pMem);
................................................................................
    printf(" NULL");
  }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
    printf(" si:%lld", p->u.i);
  }else if( p->flags & MEM_Int ){
    printf(" i:%lld", p->u.i);
#ifndef SQLITE_OMIT_FLOATING_POINT
  }else if( p->flags & MEM_Real ){
    printf(" r:%g", p->r);
#endif
  }else if( p->flags & MEM_RowSet ){
    printf(" (rowset)");
  }else{
    char zBuf[200];
    sqlite3VdbeMemPrettyPrint(p, zBuf);
    printf(" %s", zBuf);
................................................................................
**
** P4 is a pointer to a 64-bit floating point value.
** Write that value into register P2.
*/
case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
  pOut->flags = MEM_Real;
  assert( !sqlite3IsNaN(*pOp->p4.pReal) );
  pOut->r = *pOp->p4.pReal;
  break;
}
#endif

/* Opcode: String8 * P2 * P4 *
** Synopsis: r[P2]='P4'
**
................................................................................
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( rc==SQLITE_TOOBIG ) goto too_big;
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
    assert( pOut->zMalloc==pOut->z );
    assert( VdbeMemDynamic(pOut)==0 );
    pOut->zMalloc = 0;
    pOut->flags |= MEM_Static;
    if( pOp->p4type==P4_DYNAMIC ){
      sqlite3DbFree(db, pOp->p4.z);
    }
    pOp->p4type = P4_DYNAMIC;
    pOp->p4.z = pOut->z;
    pOp->p1 = pOut->n;
................................................................................
** Move the P3 values in register P1..P1+P3-1 over into
** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
** for P3 to be less than 1.
*/
case OP_Move: {
  char *zMalloc;   /* Holding variable for allocated memory */
  int n;           /* Number of registers left to copy */
  int p1;          /* Register to copy from */
  int p2;          /* Register to copy to */

  n = pOp->p3;
  p1 = pOp->p1;
  p2 = pOp->p2;
................................................................................
  pIn1 = &aMem[p1];
  pOut = &aMem[p2];
  do{
    assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
    assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
    assert( memIsValid(pIn1) );
    memAboutToChange(p, pOut);
    sqlite3VdbeMemRelease(pOut);
    zMalloc = pOut->zMalloc;
    memcpy(pOut, pIn1, sizeof(Mem));
#ifdef SQLITE_DEBUG
    if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
      pOut->pScopyFrom += p1 - pOp->p2;
    }
#endif
    pIn1->flags = MEM_Undefined;
    pIn1->zMalloc = zMalloc;
    REGISTER_TRACE(p2++, pOut);
    pIn1++;
    pOut++;
  }while( --n );
  break;
}

................................................................................
#ifdef SQLITE_OMIT_FLOATING_POINT
    pOut->u.i = rB;
    MemSetTypeFlag(pOut, MEM_Int);
#else
    if( sqlite3IsNaN(rB) ){
      goto arithmetic_result_is_null;
    }
    pOut->r = rB;
    MemSetTypeFlag(pOut, MEM_Real);
    if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
      sqlite3VdbeIntegerAffinity(pOut);
    }
#endif
  }
  break;
................................................................................
  }

  assert( pOp->p4type==P4_FUNCDEF );
  ctx.pFunc = pOp->p4.pFunc;
  ctx.iOp = pc;
  ctx.pVdbe = p;
  MemSetTypeFlag(ctx.pOut, MEM_Null);

  ctx.fErrorOrAux = 0;
  if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
    assert( pOp>aOp );
    assert( pOp[-1].p4type==P4_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = pOp[-1].p4.pColl;
  }
  db->lastRowid = lastRowid;
  (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
  lastRowid = db->lastRowid;

  /* If the function returned an error, throw an exception */
  if( ctx.fErrorOrAux ){
    if( ctx.isError ){
      sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut));
      rc = ctx.isError;
    }
................................................................................
** <li value="100"> INTEGER
** <li value="101"> REAL
** </ul>
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_Cast: {                  /* in1 */
  assert( pOp->p2>=SQLITE_AFF_TEXT && pOp->p2<=SQLITE_AFF_REAL );
  testcase( pOp->p2==SQLITE_AFF_TEXT );
  testcase( pOp->p2==SQLITE_AFF_NONE );
  testcase( pOp->p2==SQLITE_AFF_NUMERIC );
  testcase( pOp->p2==SQLITE_AFF_INTEGER );
  testcase( pOp->p2==SQLITE_AFF_REAL );
  pIn1 = &aMem[pOp->p1];
  memAboutToChange(p, pIn1);
................................................................................
        }
      }
      break;
    }
  }else{
    /* Neither operand is NULL.  Do a comparison. */
    affinity = pOp->p5 & SQLITE_AFF_MASK;
    if( affinity ){

      applyAffinity(pIn1, affinity, encoding);


      applyAffinity(pIn3, affinity, encoding);
      if( db->mallocFailed ) goto no_mem;
    }












    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
    if( pIn1->flags & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn1);
      flags1 &= ~MEM_Zero;
    }
    if( pIn3->flags & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn3);
      flags3 &= ~MEM_Zero;
    }

    res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
  }
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
................................................................................
** skipped for length() and all content loading can be skipped for typeof().
*/
case OP_Column: {
  i64 payloadSize64; /* Number of bytes in the record */
  int p2;            /* column number to retrieve */
  VdbeCursor *pC;    /* The VDBE cursor */
  BtCursor *pCrsr;   /* The BTree cursor */
  u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  int len;           /* The length of the serialized data for the column */
  int i;             /* Loop counter */
  Mem *pDest;        /* Where to write the extracted value */
  Mem sMem;          /* For storing the record being decoded */
  const u8 *zData;   /* Part of the record being decoded */
  const u8 *zHdr;    /* Next unparsed byte of the header */
  const u8 *zEndHdr; /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u32 szField;       /* Number of bytes in the content of a field */
  u32 avail;         /* Number of bytes of available data */
  u32 t;             /* A type code from the record header */

  Mem *pReg;         /* PseudoTable input register */

  p2 = pOp->p2;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( p2<pC->nField );
  aType = pC->aType;
  aOffset = aType + pC->nField;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
#endif
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
  assert( pCrsr!=0 || pC->nullRow );          /* pC->nullRow on PseudoTables */

  /* If the cursor cache is stale, bring it up-to-date */
  rc = sqlite3VdbeCursorMoveto(pC);
  if( rc ) goto abort_due_to_error;
  if( pC->cacheStatus!=p->cacheCtr || (pOp->p5&OPFLAG_CLEARCACHE)!=0 ){
    if( pC->nullRow ){
      if( pCrsr==0 ){
        assert( pC->pseudoTableReg>0 );
        pReg = &aMem[pC->pseudoTableReg];
        assert( pReg->flags & MEM_Blob );
        assert( memIsValid(pReg) );
        pC->payloadSize = pC->szRow = avail = pReg->n;
................................................................................
        goto too_big;
      }
    }
    pC->cacheStatus = p->cacheCtr;
    pC->iHdrOffset = getVarint32(pC->aRow, offset);
    pC->nHdrParsed = 0;
    aOffset[0] = offset;
    if( avail<offset ){
      /* pC->aRow does not have to hold the entire row, but it does at least
      ** need to cover the header of the record.  If pC->aRow does not contain
      ** the complete header, then set it to zero, forcing the header to be
      ** dynamically allocated. */
      pC->aRow = 0;
      pC->szRow = 0;
    }

    /* Make sure a corrupt database has not given us an oversize header.
    ** Do this now to avoid an oversize memory allocation.
    **
    ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
    ** types use so much data space that there can only be 4096 and 32 of
    ** them, respectively.  So the maximum header length results from a
................................................................................
    ** 3-byte type for each of the maximum of 32768 columns plus three
    ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
    */
    if( offset > 98307 || offset > pC->payloadSize ){
      rc = SQLITE_CORRUPT_BKPT;
      goto op_column_error;
    }
















  }

  /* Make sure at least the first p2+1 entries of the header have been
  ** parsed and valid information is in aOffset[] and aType[].
  */
  if( pC->nHdrParsed<=p2 ){
    /* If there is more header available for parsing in the record, try
    ** to extract additional fields up through the p2+1-th field 
    */

    if( pC->iHdrOffset<aOffset[0] ){
      /* Make sure zData points to enough of the record to cover the header. */
      if( pC->aRow==0 ){
        memset(&sMem, 0, sizeof(sMem));
        rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], 
                                     !pC->isTable, &sMem);
        if( rc!=SQLITE_OK ){
................................................................................
          goto op_column_error;
        }
        zData = (u8*)sMem.z;
      }else{
        zData = pC->aRow;
      }
  
      /* Fill in aType[i] and aOffset[i] values through the p2-th field. */
      i = pC->nHdrParsed;
      offset = aOffset[i];
      zHdr = zData + pC->iHdrOffset;
      zEndHdr = zData + aOffset[0];
      assert( i<=p2 && zHdr<zEndHdr );
      do{
        if( zHdr[0]<0x80 ){
          t = zHdr[0];
          zHdr++;
        }else{
          zHdr += sqlite3GetVarint32(zHdr, &t);
        }
        aType[i] = t;
        szField = sqlite3VdbeSerialTypeLen(t);
        offset += szField;
        if( offset<szField ){  /* True if offset overflows */
          zHdr = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
          break;
        }
        i++;
................................................................................
      pC->nHdrParsed = i;
      pC->iHdrOffset = (u32)(zHdr - zData);
      if( pC->aRow==0 ){
        sqlite3VdbeMemRelease(&sMem);
        sMem.flags = MEM_Null;
      }
  
      /* If we have read more header data than was contained in the header,
      ** or if the end of the last field appears to be past the end of the
      ** record, or if the end of the last field appears to be before the end
      ** of the record (when all fields present), then we must be dealing 
      ** with a corrupt database.


      */
      if( (zHdr > zEndHdr)

       || (offset > pC->payloadSize)
       || (zHdr==zEndHdr && offset!=pC->payloadSize)
      ){
        rc = SQLITE_CORRUPT_BKPT;
        goto op_column_error;
      }
    }

    /* If after trying to extra new entries from the header, nHdrParsed is
................................................................................
        MemSetTypeFlag(pDest, MEM_Null);
      }
      goto op_column_out;
    }
  }

  /* Extract the content for the p2+1-th column.  Control can only
  ** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are
  ** all valid.
  */
  assert( p2<pC->nHdrParsed );
  assert( rc==SQLITE_OK );
  assert( sqlite3VdbeCheckMemInvariants(pDest) );
  if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);

  if( pC->szRow>=aOffset[p2+1] ){
    /* This is the common case where the desired content fits on the original
    ** page - where the content is not on an overflow page */
    sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest);
  }else{
    /* This branch happens only when content is on overflow pages */
    t = aType[p2];
    if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
          && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
     || (len = sqlite3VdbeSerialTypeLen(t))==0
    ){
      /* Content is irrelevant for
      **    1. the typeof() function,
      **    2. the length(X) function if X is a blob, and
................................................................................
      sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
      pDest->flags &= ~MEM_Ephem;
    }
  }
  pDest->enc = encoding;

op_column_out:
  Deephemeralize(pDest);














op_column_error:
  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;
}

/* Opcode: Affinity P1 P2 * P4 *
................................................................................

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  pRec = pLast;
  do{
    assert( memIsValid(pRec) );
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
    len = sqlite3VdbeSerialTypeLen(serial_type);
    if( pRec->flags & MEM_Zero ){
      if( nData ){
        sqlite3VdbeMemExpandBlob(pRec);
      }else{
        nZero += pRec->u.nZero;
        len -= pRec->u.nZero;
................................................................................
  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

  /* Make sure the output register has a buffer large enough to store 
  ** the new record. The output register (pOp->p3) is not allowed to
  ** be one of the input registers (because the following call to
  ** sqlite3VdbeMemGrow() could clobber the value before it is used).
  */
  if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
    goto no_mem;
  }
  zNewRecord = (u8 *)pOut->z;

  /* Write the record */
  i = putVarint32(zNewRecord, nHdr);
  j = nHdr;
  assert( pData0<=pLast );
  pRec = pData0;
  do{
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
    i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
    j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
  }while( (++pRec)<=pLast );
  assert( i==nHdr );
  assert( j==nByte );

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
................................................................................
  pCur->isOrdered = 1;
  pCur->pgnoRoot = p2;
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
  pCur->pKeyInfo = pKeyInfo;
  assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
  sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));

  /* Since it performs no memory allocation or IO, the only value that
  ** sqlite3BtreeCursor() may return is SQLITE_OK. */
  assert( rc==SQLITE_OK );

  /* Set the VdbeCursor.isTable variable. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;
  break;
}
................................................................................
  pC->seekOp = pOp->opcode;
#endif
  if( pC->isTable ){
    /* The input value in P3 might be of any type: integer, real, string,
    ** blob, or NULL.  But it needs to be an integer before we can do
    ** the seek, so convert it. */
    pIn3 = &aMem[pOp->p3];
    if( (pIn3->flags & (MEM_Int|MEM_Real))==0 ){
      applyNumericAffinity(pIn3, 0);
    }
    iKey = sqlite3VdbeIntValue(pIn3);
    pC->rowidIsValid = 0;

    /* If the P3 value could not be converted into an integer without
    ** loss of information, then special processing is required... */
    if( (pIn3->flags & MEM_Int)==0 ){
      if( (pIn3->flags & MEM_Real)==0 ){
        /* If the P3 value cannot be converted into any kind of a number,
        ** then the seek is not possible, so jump to P2 */
................................................................................
      /* If the approximation iKey is larger than the actual real search
      ** term, substitute >= for > and < for <=. e.g. if the search term
      ** is 4.9 and the integer approximation 5:
      **
      **        (x >  4.9)    ->     (x >= 5)
      **        (x <= 4.9)    ->     (x <  5)
      */
      if( pIn3->r<(double)iKey ){
        assert( OP_SeekGE==(OP_SeekGT-1) );
        assert( OP_SeekLT==(OP_SeekLE-1) );
        assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
        if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
      }

      /* If the approximation iKey is smaller than the actual real search
      ** term, substitute <= for < and > for >=.  */
      else if( pIn3->r>(double)iKey ){
        assert( OP_SeekLE==(OP_SeekLT+1) );
        assert( OP_SeekGT==(OP_SeekGE+1) );
        assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
        if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
      }
    } 
    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);

    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
    if( res==0 ){
      pC->rowidIsValid = 1;
      pC->lastRowid = iKey;
    }
  }else{
    nField = pOp->p4.i;
    assert( pOp->p4type==P4_INT32 );
    assert( nField>0 );
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)nField;

................................................................................
    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
    ExpandBlob(r.aMem);
    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
    pC->rowidIsValid = 0;
  }
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;
#ifdef SQLITE_TEST
  sqlite3_search_count++;
#endif
  if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
    if( res<0 || (res==0 && oc==OP_SeekGT) ){
      res = 0;
      rc = sqlite3BtreeNext(pC->pCursor, &res);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
      pC->rowidIsValid = 0;
    }else{
      res = 0;
    }
  }else{
    assert( oc==OP_SeekLT || oc==OP_SeekLE );
    if( res>0 || (res==0 && oc==OP_SeekLT) ){
      res = 0;
      rc = sqlite3BtreePrevious(pC->pCursor, &res);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
      pC->rowidIsValid = 0;
    }else{
      /* res might be negative because the table is empty.  Check to
      ** see if this is the case.
      */
      res = sqlite3BtreeEof(pC->pCursor);
    }
  }
................................................................................
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pCursor!=0 );
  assert( pC->isTable );
  pC->nullRow = 0;
  pIn2 = &aMem[pOp->p2];
  pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
  pC->rowidIsValid = 0;
  pC->deferredMoveto = 1;
  break;
}
  

/* Opcode: Found P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
................................................................................
  assert( pC->isTable );
  assert( pC->pseudoTableReg==0 );
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  res = 0;
  iKey = pIn3->u.i;
  rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
  pC->lastRowid = pIn3->u.i;
  pC->rowidIsValid = res==0 ?1:0;
  pC->nullRow = 0;
  pC->cacheStatus = CACHE_STALE;
  pC->deferredMoveto = 0;
  VdbeBranchTaken(res!=0,2);
  if( res!=0 ){
    pc = pOp->p2 - 1;
    assert( pC->rowidIsValid==0 );
  }
  pC->seekResult = res;
  break;
}

/* Opcode: Sequence P1 P2 * * *
** Synopsis: r[P2]=cursor[P1].ctr++
................................................................................
    if( pC->useRandomRowid ){
      /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
      ** largest possible integer (9223372036854775807) then the database
      ** engine starts picking positive candidate ROWIDs at random until
      ** it finds one that is not previously used. */
      assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
                             ** an AUTOINCREMENT table. */
      /* on the first attempt, simply do one more than previous */
      v = lastRowid;
      v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
      v++; /* ensure non-zero */
      cnt = 0;



      while(   ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
                                                 0, &res))==SQLITE_OK)
            && (res==0)
            && (++cnt<100)){
        /* collision - try another random rowid */
        sqlite3_randomness(sizeof(v), &v);
        if( cnt<5 ){
          /* try "small" random rowids for the initial attempts */
          v &= 0xffffff;
        }else{
          v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
        }
        v++; /* ensure non-zero */
      }
      if( rc==SQLITE_OK && res==0 ){
        rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
        goto abort_due_to_error;
      }
      assert( v>0 );  /* EV: R-40812-03570 */
    }
    pC->rowidIsValid = 0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
  }
  pOut->u.i = v;
  break;
}

................................................................................
  }else{
    nZero = 0;
  }
  rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
                          pData->z, pData->n, nZero,
                          (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
  );
  pC->rowidIsValid = 0;
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
    zDb = db->aDb[pC->iDb].zName;
    zTbl = pOp->p4.z;
................................................................................
**
** If P4 is not NULL, then it is the name of the table that P1 is
** pointing to.  The update hook will be invoked, if it exists.
** If P4 is not NULL then the P1 cursor must have been positioned
** using OP_NotFound prior to invoking this opcode.
*/
case OP_Delete: {
  i64 iKey;
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
  iKey = pC->lastRowid;      /* Only used for the update hook */

  /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
  ** OP_Column on the same table without any intervening operations that
  ** might move or invalidate the cursor.  Hence cursor pC is always pointing
  ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
  ** below is always a no-op and cannot fail.  We will run it anyhow, though,
  ** to guard against future changes to the code generator.
  **/

  assert( pC->deferredMoveto==0 );
  rc = sqlite3VdbeCursorMoveto(pC);

  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;

  rc = sqlite3BtreeDelete(pC->pCursor);
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
                        db->aDb[pC->iDb].zName, pOp->p4.z, iKey);
    assert( pC->iDb>=0 );
  }
  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
  break;
}
/* Opcode: ResetCount * * * * *
**
................................................................................
  VdbeBranchTaken(res!=0,2);
  if( res ){
    pc = pOp->p2-1;
  }
  break;
};

/* Opcode: SorterData P1 P2 * * *
** Synopsis: r[P2]=data
**
** Write into register P2 the current sorter data for sorter cursor P1.







*/
case OP_SorterData: {
  VdbeCursor *pC;

  pOut = &aMem[pOp->p2];
  pC = p->apCsr[pOp->p1];
  assert( isSorter(pC) );
  rc = sqlite3VdbeSorterRowkey(pC, pOut);
  assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );


  break;
}

/* Opcode: RowData P1 P2 * * *
** Synopsis: r[P2]=data
**
** Write into register P2 the complete row data for cursor P1.
................................................................................
  assert( pC->isTable || pOp->opcode!=OP_RowData );
  assert( pC->isTable==0 || pOp->opcode==OP_RowData );
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTableReg==0 );
  assert( pC->pCursor!=0 );
  pCrsr = pC->pCursor;
  assert( sqlite3BtreeCursorIsValid(pCrsr) );

  /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
  ** OP_Rewind/Op_Next with no intervening instructions that might invalidate



  ** the cursor.  Hence the following sqlite3VdbeCursorMoveto() call is always
  ** a no-op and can never fail.  But we leave it in place as a safety.
  */
  assert( pC->deferredMoveto==0 );


  rc = sqlite3VdbeCursorMoveto(pC);
  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;


  if( pC->isTable==0 ){
    assert( !pC->isTable );
    VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
    assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
    if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
................................................................................
  }else{
    VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
    assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
    if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
  }

  if( sqlite3VdbeMemGrow(pOut, n, 0) ){
    goto no_mem;
  }
  pOut->n = n;
  MemSetTypeFlag(pOut, MEM_Blob);
  if( pC->isTable==0 ){
    rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
  }else{
................................................................................
    pModule = pVtab->pModule;
    assert( pModule->xRowid );
    rc = pModule->xRowid(pC->pVtabCursor, &v);
    sqlite3VtabImportErrmsg(p, pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{
    assert( pC->pCursor!=0 );
    rc = sqlite3VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    if( pC->rowidIsValid ){
      v = pC->lastRowid;
    }else{
      rc = sqlite3BtreeKeySize(pC->pCursor, &v);
      assert( rc==SQLITE_OK );  /* Always so because of CursorMoveto() above */
    }
  }
  pOut->u.i = v;
  break;
}

/* Opcode: NullRow P1 * * * *
**
................................................................................
case OP_NullRow: {
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->rowidIsValid = 0;
  pC->cacheStatus = CACHE_STALE;
  if( pC->pCursor ){
    sqlite3BtreeClearCursor(pC->pCursor);
  }
  break;
}

................................................................................
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  res = 0;
  assert( pCrsr!=0 );
  rc = sqlite3BtreeLast(pCrsr, &res);
  pC->nullRow = (u8)res;
  pC->deferredMoveto = 0;
  pC->rowidIsValid = 0;
  pC->cacheStatus = CACHE_STALE;
#ifdef SQLITE_DEBUG
  pC->seekOp = OP_Last;
#endif
  if( pOp->p2>0 ){
    VdbeBranchTaken(res!=0,2);
    if( res ) pc = pOp->p2 - 1;
................................................................................
    rc = sqlite3VdbeSorterRewind(pC, &res);
  }else{
    pCrsr = pC->pCursor;
    assert( pCrsr );
    rc = sqlite3BtreeFirst(pCrsr, &res);
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
    pC->rowidIsValid = 0;
  }
  pC->nullRow = (u8)res;
  assert( pOp->p2>0 && pOp->p2<p->nOp );
  VdbeBranchTaken(res!=0,2);
  if( res ){
    pc = pOp->p2 - 1;
  }
................................................................................
    p->aCounter[pOp->p5]++;
#ifdef SQLITE_TEST
    sqlite3_search_count++;
#endif
  }else{
    pC->nullRow = 1;
  }
  pC->rowidIsValid = 0;
  goto check_for_interrupt;
}

/* Opcode: IdxInsert P1 P2 P3 * P5
** Synopsis: key=r[P2]
**
** Register P2 holds an SQL index key made using the
................................................................................

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  pOut->flags = MEM_Null;







  rc = sqlite3VdbeCursorMoveto(pC);
  if( NEVER(rc) ) goto abort_due_to_error;
  assert( pC->deferredMoveto==0 );
  assert( pC->isTable==0 );

  if( !pC->nullRow ){
    rowid = 0;  /* Not needed.  Only used to silence a warning. */
    rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
    pOut->u.i = rowid;
................................................................................
  ctx.pFunc = pOp->p4.pFunc;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  ctx.pMem = pMem = &aMem[pOp->p3];
  pMem->n++;
  sqlite3VdbeMemInit(&t, db, MEM_Null);
  ctx.pOut = &t;
  ctx.isError = 0;
  ctx.pColl = 0;

  ctx.skipFlag = 0;
  if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p4type==P4_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = pOp[-1].p4.pColl;
  }
  (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t));
    rc = ctx.isError;
  }
  if( ctx.skipFlag ){
    assert( pOp[-1].opcode==OP_CollSeq );







|




>







 







|





|







 







>
>
>
>
>
>
>
>
>
>
|







<
<
<
<
<
<
<
<
<
<







 







|





|













|







 







|







 







|







 







|

|







 







<







 







|
<
<





<
<







 







|







 







<

<
<
<
<
<
<


|







 







|







 







|
>
|
>
>
|
<
|
>
>
>
>
>
|
>
>
>
>
>
>









>







 







<












>










|
<










|







 







<
<
<
<
<
<
<
<







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|





>







 







|












|







 







|
|
|
|
|
>
>

<
>

<







 







|






>



|


<







 







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







|

|










|







 







<
<
<
<







 







|



<







 







|








|







>



<
<
<
<







 







<











<









<







 







<







 







|
<






<







 







<
<
<
<

>
>
>
|


|
<
<
<
<
<
<
<
<
<
<






<







 







<







 







<






|

|
|
|
|
|
|
<
>
|
<
>
|
|






|







 







|



>
>
>
>
>
>
>









>
>







 







<



>
>
>
|
<


>
>

|
>







 







>
|







 







|

<
<
<
|
|
<







 







<







 







<







 







<







 







<







 







>
>
>
>
>
>
>
|
|
<
<
>







 







|
>

<
<
<
<
<
<







205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
...
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
...
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298










299
300
301
302
303
304
305
...
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
...
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
...
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
....
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
....
1144
1145
1146
1147
1148
1149
1150

1151
1152
1153
1154
1155
1156
1157
....
1161
1162
1163
1164
1165
1166
1167
1168


1169
1170
1171
1172
1173


1174
1175
1176
1177
1178
1179
1180
....
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
....
1554
1555
1556
1557
1558
1559
1560

1561






1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
....
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
....
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901

1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
....
2250
2251
2252
2253
2254
2255
2256

2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280

2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
....
2329
2330
2331
2332
2333
2334
2335








2336
2337
2338
2339
2340
2341
2342
....
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
....
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
....
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427

2428
2429

2430
2431
2432
2433
2434
2435
2436
....
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464

2465
2466
2467
2468
2469
2470
2471
....
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
....
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
....
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
....
3287
3288
3289
3290
3291
3292
3293




3294
3295
3296
3297
3298
3299
3300
....
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567

3568
3569
3570
3571
3572
3573
3574
....
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606




3607
3608
3609
3610
3611
3612
3613
....
3629
3630
3631
3632
3633
3634
3635

3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646

3647
3648
3649
3650
3651
3652
3653
3654
3655

3656
3657
3658
3659
3660
3661
3662
....
3685
3686
3687
3688
3689
3690
3691

3692
3693
3694
3695
3696
3697
3698
....
3870
3871
3872
3873
3874
3875
3876
3877

3878
3879
3880
3881
3882
3883

3884
3885
3886
3887
3888
3889
3890
....
4010
4011
4012
4013
4014
4015
4016




4017
4018
4019
4020
4021
4022
4023
4024










4025
4026
4027
4028
4029
4030

4031
4032
4033
4034
4035
4036
4037
....
4128
4129
4130
4131
4132
4133
4134

4135
4136
4137
4138
4139
4140
4141
....
4164
4165
4166
4167
4168
4169
4170

4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184

4185
4186

4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
....
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
....
4310
4311
4312
4313
4314
4315
4316

4317
4318
4319
4320
4321
4322
4323

4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
....
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
....
4392
4393
4394
4395
4396
4397
4398
4399
4400



4401
4402

4403
4404
4405
4406
4407
4408
4409
....
4414
4415
4416
4417
4418
4419
4420

4421
4422
4423
4424
4425
4426
4427
....
4447
4448
4449
4450
4451
4452
4453

4454
4455
4456
4457
4458
4459
4460
....
4513
4514
4515
4516
4517
4518
4519

4520
4521
4522
4523
4524
4525
4526
....
4638
4639
4640
4641
4642
4643
4644

4645
4646
4647
4648
4649
4650
4651
....
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768


4769
4770
4771
4772
4773
4774
4775
4776
....
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631






5632
5633
5634
5635
5636
5637
5638
      (isBtreeCursor?sqlite3BtreeCursorSize():0);

  assert( iCur<p->nCursor );
  if( p->apCsr[iCur] ){
    sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
    p->apCsr[iCur] = 0;
  }
  if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
    p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
    memset(pCx, 0, sizeof(VdbeCursor));
    pCx->iDb = iDb;
    pCx->nField = nField;
    pCx->aOffset = &pCx->aType[nField];
    if( isBtreeCursor ){
      pCx->pCursor = (BtCursor*)
          &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
      sqlite3BtreeCursorZero(pCx->pCursor);
    }
  }
  return pCx;
................................................................................
** point or exponential notation, the result is only MEM_Real, even
** if there is an exact integer representation of the quantity.
*/
static void applyNumericAffinity(Mem *pRec, int bTryForInt){
  double rValue;
  i64 iValue;
  u8 enc = pRec->enc;
  assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
  if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
  if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
    pRec->u.i = iValue;
    pRec->flags |= MEM_Int;
  }else{
    pRec->u.r = rValue;
    pRec->flags |= MEM_Real;
    if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
  }
}

/*
** Processing is determine by the affinity parameter:
................................................................................
**    No-op.  pRec is unchanged.
*/
static void applyAffinity(
  Mem *pRec,          /* The value to apply affinity to */
  char affinity,      /* The affinity to be applied */
  u8 enc              /* Use this text encoding */
){
  if( affinity>=SQLITE_AFF_NUMERIC ){
    assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
             || affinity==SQLITE_AFF_NUMERIC );
    if( (pRec->flags & MEM_Int)==0 ){
      if( (pRec->flags & MEM_Real)==0 ){
        if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
      }else{
        sqlite3VdbeIntegerAffinity(pRec);
      }
    }
  }else if( affinity==SQLITE_AFF_TEXT ){
    /* Only attempt the conversion to TEXT if there is an integer or real
    ** representation (blob and NULL do not get converted) but no string
    ** representation.
    */
    if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
      sqlite3VdbeMemStringify(pRec, enc, 1);
    }










  }
}

/*
** Try to convert the type of a function argument or a result column
** into a numeric representation.  Use either INTEGER or REAL whichever
** is appropriate.  But only do the conversion if it is possible without
................................................................................
){
  applyAffinity((Mem *)pVal, affinity, enc);
}

/*
** pMem currently only holds a string type (or maybe a BLOB that we can
** interpret as a string if we want to).  Compute its corresponding
** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
** accordingly.
*/
static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
  assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
  assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
  if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
    return 0;
  }
  if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
    return MEM_Int;
  }
  return MEM_Real;
}

/*
** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
** none.  
**
** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
** But it does set pMem->u.r and pMem->u.i appropriately.
*/
static u16 numericType(Mem *pMem){
  if( pMem->flags & (MEM_Int|MEM_Real) ){
    return pMem->flags & (MEM_Int|MEM_Real);
  }
  if( pMem->flags & (MEM_Str|MEM_Blob) ){
    return computeNumericType(pMem);
................................................................................
    printf(" NULL");
  }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
    printf(" si:%lld", p->u.i);
  }else if( p->flags & MEM_Int ){
    printf(" i:%lld", p->u.i);
#ifndef SQLITE_OMIT_FLOATING_POINT
  }else if( p->flags & MEM_Real ){
    printf(" r:%g", p->u.r);
#endif
  }else if( p->flags & MEM_RowSet ){
    printf(" (rowset)");
  }else{
    char zBuf[200];
    sqlite3VdbeMemPrettyPrint(p, zBuf);
    printf(" %s", zBuf);
................................................................................
**
** P4 is a pointer to a 64-bit floating point value.
** Write that value into register P2.
*/
case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
  pOut->flags = MEM_Real;
  assert( !sqlite3IsNaN(*pOp->p4.pReal) );
  pOut->u.r = *pOp->p4.pReal;
  break;
}
#endif

/* Opcode: String8 * P2 * P4 *
** Synopsis: r[P2]='P4'
**
................................................................................
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( rc==SQLITE_TOOBIG ) goto too_big;
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
    assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
    assert( VdbeMemDynamic(pOut)==0 );
    pOut->szMalloc = 0;
    pOut->flags |= MEM_Static;
    if( pOp->p4type==P4_DYNAMIC ){
      sqlite3DbFree(db, pOp->p4.z);
    }
    pOp->p4type = P4_DYNAMIC;
    pOp->p4.z = pOut->z;
    pOp->p1 = pOut->n;
................................................................................
** Move the P3 values in register P1..P1+P3-1 over into
** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
** for P3 to be less than 1.
*/
case OP_Move: {

  int n;           /* Number of registers left to copy */
  int p1;          /* Register to copy from */
  int p2;          /* Register to copy to */

  n = pOp->p3;
  p1 = pOp->p1;
  p2 = pOp->p2;
................................................................................
  pIn1 = &aMem[p1];
  pOut = &aMem[p2];
  do{
    assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
    assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
    assert( memIsValid(pIn1) );
    memAboutToChange(p, pOut);
    sqlite3VdbeMemMove(pOut, pIn1);


#ifdef SQLITE_DEBUG
    if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
      pOut->pScopyFrom += p1 - pOp->p2;
    }
#endif


    REGISTER_TRACE(p2++, pOut);
    pIn1++;
    pOut++;
  }while( --n );
  break;
}

................................................................................
#ifdef SQLITE_OMIT_FLOATING_POINT
    pOut->u.i = rB;
    MemSetTypeFlag(pOut, MEM_Int);
#else
    if( sqlite3IsNaN(rB) ){
      goto arithmetic_result_is_null;
    }
    pOut->u.r = rB;
    MemSetTypeFlag(pOut, MEM_Real);
    if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
      sqlite3VdbeIntegerAffinity(pOut);
    }
#endif
  }
  break;
................................................................................
  }

  assert( pOp->p4type==P4_FUNCDEF );
  ctx.pFunc = pOp->p4.pFunc;
  ctx.iOp = pc;
  ctx.pVdbe = p;
  MemSetTypeFlag(ctx.pOut, MEM_Null);

  ctx.fErrorOrAux = 0;






  db->lastRowid = lastRowid;
  (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
  lastRowid = db->lastRowid;  /* Remember rowid changes made by xFunc */

  /* If the function returned an error, throw an exception */
  if( ctx.fErrorOrAux ){
    if( ctx.isError ){
      sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut));
      rc = ctx.isError;
    }
................................................................................
** <li value="100"> INTEGER
** <li value="101"> REAL
** </ul>
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_Cast: {                  /* in1 */
  assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL );
  testcase( pOp->p2==SQLITE_AFF_TEXT );
  testcase( pOp->p2==SQLITE_AFF_NONE );
  testcase( pOp->p2==SQLITE_AFF_NUMERIC );
  testcase( pOp->p2==SQLITE_AFF_INTEGER );
  testcase( pOp->p2==SQLITE_AFF_REAL );
  pIn1 = &aMem[pOp->p1];
  memAboutToChange(p, pIn1);
................................................................................
        }
      }
      break;
    }
  }else{
    /* Neither operand is NULL.  Do a comparison. */
    affinity = pOp->p5 & SQLITE_AFF_MASK;
    if( affinity>=SQLITE_AFF_NUMERIC ){
      if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
        applyNumericAffinity(pIn1,0);
      }
      if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
        applyNumericAffinity(pIn3,0);

      }
    }else if( affinity==SQLITE_AFF_TEXT ){
      if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
        testcase( pIn1->flags & MEM_Int );
        testcase( pIn1->flags & MEM_Real );
        sqlite3VdbeMemStringify(pIn1, encoding, 1);
      }
      if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
        testcase( pIn3->flags & MEM_Int );
        testcase( pIn3->flags & MEM_Real );
        sqlite3VdbeMemStringify(pIn3, encoding, 1);
      }
    }
    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
    if( pIn1->flags & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn1);
      flags1 &= ~MEM_Zero;
    }
    if( pIn3->flags & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn3);
      flags3 &= ~MEM_Zero;
    }
    if( db->mallocFailed ) goto no_mem;
    res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
  }
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
................................................................................
** skipped for length() and all content loading can be skipped for typeof().
*/
case OP_Column: {
  i64 payloadSize64; /* Number of bytes in the record */
  int p2;            /* column number to retrieve */
  VdbeCursor *pC;    /* The VDBE cursor */
  BtCursor *pCrsr;   /* The BTree cursor */

  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  int len;           /* The length of the serialized data for the column */
  int i;             /* Loop counter */
  Mem *pDest;        /* Where to write the extracted value */
  Mem sMem;          /* For storing the record being decoded */
  const u8 *zData;   /* Part of the record being decoded */
  const u8 *zHdr;    /* Next unparsed byte of the header */
  const u8 *zEndHdr; /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u32 szField;       /* Number of bytes in the content of a field */
  u32 avail;         /* Number of bytes of available data */
  u32 t;             /* A type code from the record header */
  u16 fx;            /* pDest->flags value */
  Mem *pReg;         /* PseudoTable input register */

  p2 = pOp->p2;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( p2<pC->nField );
  aOffset = pC->aOffset;

#ifndef SQLITE_OMIT_VIRTUALTABLE
  assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
#endif
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
  assert( pCrsr!=0 || pC->nullRow );          /* pC->nullRow on PseudoTables */

  /* If the cursor cache is stale, bring it up-to-date */
  rc = sqlite3VdbeCursorMoveto(pC);
  if( rc ) goto abort_due_to_error;
  if( pC->cacheStatus!=p->cacheCtr ){
    if( pC->nullRow ){
      if( pCrsr==0 ){
        assert( pC->pseudoTableReg>0 );
        pReg = &aMem[pC->pseudoTableReg];
        assert( pReg->flags & MEM_Blob );
        assert( memIsValid(pReg) );
        pC->payloadSize = pC->szRow = avail = pReg->n;
................................................................................
        goto too_big;
      }
    }
    pC->cacheStatus = p->cacheCtr;
    pC->iHdrOffset = getVarint32(pC->aRow, offset);
    pC->nHdrParsed = 0;
    aOffset[0] = offset;









    /* Make sure a corrupt database has not given us an oversize header.
    ** Do this now to avoid an oversize memory allocation.
    **
    ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
    ** types use so much data space that there can only be 4096 and 32 of
    ** them, respectively.  So the maximum header length results from a
................................................................................
    ** 3-byte type for each of the maximum of 32768 columns plus three
    ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
    */
    if( offset > 98307 || offset > pC->payloadSize ){
      rc = SQLITE_CORRUPT_BKPT;
      goto op_column_error;
    }

    if( avail<offset ){
      /* pC->aRow does not have to hold the entire row, but it does at least
      ** need to cover the header of the record.  If pC->aRow does not contain
      ** the complete header, then set it to zero, forcing the header to be
      ** dynamically allocated. */
      pC->aRow = 0;
      pC->szRow = 0;
    }

    /* The following goto is an optimization.  It can be omitted and
    ** everything will still work.  But OP_Column is measurably faster
    ** by skipping the subsequent conditional, which is always true.
    */
    assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
    goto op_column_read_header;
  }

  /* Make sure at least the first p2+1 entries of the header have been
  ** parsed and valid information is in aOffset[] and pC->aType[].
  */
  if( pC->nHdrParsed<=p2 ){
    /* If there is more header available for parsing in the record, try
    ** to extract additional fields up through the p2+1-th field 
    */
    op_column_read_header:
    if( pC->iHdrOffset<aOffset[0] ){
      /* Make sure zData points to enough of the record to cover the header. */
      if( pC->aRow==0 ){
        memset(&sMem, 0, sizeof(sMem));
        rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], 
                                     !pC->isTable, &sMem);
        if( rc!=SQLITE_OK ){
................................................................................
          goto op_column_error;
        }
        zData = (u8*)sMem.z;
      }else{
        zData = pC->aRow;
      }
  
      /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
      i = pC->nHdrParsed;
      offset = aOffset[i];
      zHdr = zData + pC->iHdrOffset;
      zEndHdr = zData + aOffset[0];
      assert( i<=p2 && zHdr<zEndHdr );
      do{
        if( zHdr[0]<0x80 ){
          t = zHdr[0];
          zHdr++;
        }else{
          zHdr += sqlite3GetVarint32(zHdr, &t);
        }
        pC->aType[i] = t;
        szField = sqlite3VdbeSerialTypeLen(t);
        offset += szField;
        if( offset<szField ){  /* True if offset overflows */
          zHdr = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
          break;
        }
        i++;
................................................................................
      pC->nHdrParsed = i;
      pC->iHdrOffset = (u32)(zHdr - zData);
      if( pC->aRow==0 ){
        sqlite3VdbeMemRelease(&sMem);
        sMem.flags = MEM_Null;
      }
  
      /* The record is corrupt if any of the following are true:
      ** (1) the bytes of the header extend past the declared header size
      **          (zHdr>zEndHdr)
      ** (2) the entire header was used but not all data was used
      **          (zHdr==zEndHdr && offset!=pC->payloadSize)
      ** (3) the end of the data extends beyond the end of the record.
      **          (offset > pC->payloadSize)
      */

      if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize))
       || (offset > pC->payloadSize)

      ){
        rc = SQLITE_CORRUPT_BKPT;
        goto op_column_error;
      }
    }

    /* If after trying to extra new entries from the header, nHdrParsed is
................................................................................
        MemSetTypeFlag(pDest, MEM_Null);
      }
      goto op_column_out;
    }
  }

  /* Extract the content for the p2+1-th column.  Control can only
  ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
  ** all valid.
  */
  assert( p2<pC->nHdrParsed );
  assert( rc==SQLITE_OK );
  assert( sqlite3VdbeCheckMemInvariants(pDest) );
  if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
  t = pC->aType[p2];
  if( pC->szRow>=aOffset[p2+1] ){
    /* This is the common case where the desired content fits on the original
    ** page - where the content is not on an overflow page */
    sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
  }else{
    /* This branch happens only when content is on overflow pages */

    if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
          && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
     || (len = sqlite3VdbeSerialTypeLen(t))==0
    ){
      /* Content is irrelevant for
      **    1. the typeof() function,
      **    2. the length(X) function if X is a blob, and
................................................................................
      sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
      pDest->flags &= ~MEM_Ephem;
    }
  }
  pDest->enc = encoding;

op_column_out:
  /* If the column value is an ephemeral string, go ahead and persist
  ** that string in case the cursor moves before the column value is
  ** used.  The following code does the equivalent of Deephemeralize()
  ** but does it faster. */
  if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
    fx = pDest->flags & (MEM_Str|MEM_Blob);
    assert( fx!=0 );
    zData = (const u8*)pDest->z;
    len = pDest->n;
    if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
    memcpy(pDest->z, zData, len);
    pDest->z[len] = 0;
    pDest->z[len+1] = 0;
    pDest->flags = fx|MEM_Term;
  }
op_column_error:
  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;
}

/* Opcode: Affinity P1 P2 * P4 *
................................................................................

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  pRec = pLast;
  do{
    assert( memIsValid(pRec) );
    pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format);
    len = sqlite3VdbeSerialTypeLen(serial_type);
    if( pRec->flags & MEM_Zero ){
      if( nData ){
        sqlite3VdbeMemExpandBlob(pRec);
      }else{
        nZero += pRec->u.nZero;
        len -= pRec->u.nZero;
................................................................................
  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

  /* Make sure the output register has a buffer large enough to store 
  ** the new record. The output register (pOp->p3) is not allowed to
  ** be one of the input registers (because the following call to
  ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
  */
  if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
    goto no_mem;
  }
  zNewRecord = (u8 *)pOut->z;

  /* Write the record */
  i = putVarint32(zNewRecord, nHdr);
  j = nHdr;
  assert( pData0<=pLast );
  pRec = pData0;
  do{
    serial_type = pRec->uTemp;
    i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
    j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
  }while( (++pRec)<=pLast );
  assert( i==nHdr );
  assert( j==nByte );

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
................................................................................
  pCur->isOrdered = 1;
  pCur->pgnoRoot = p2;
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
  pCur->pKeyInfo = pKeyInfo;
  assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
  sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));





  /* Set the VdbeCursor.isTable variable. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;
  break;
}
................................................................................
  pC->seekOp = pOp->opcode;
#endif
  if( pC->isTable ){
    /* The input value in P3 might be of any type: integer, real, string,
    ** blob, or NULL.  But it needs to be an integer before we can do
    ** the seek, so convert it. */
    pIn3 = &aMem[pOp->p3];
    if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
      applyNumericAffinity(pIn3, 0);
    }
    iKey = sqlite3VdbeIntValue(pIn3);


    /* If the P3 value could not be converted into an integer without
    ** loss of information, then special processing is required... */
    if( (pIn3->flags & MEM_Int)==0 ){
      if( (pIn3->flags & MEM_Real)==0 ){
        /* If the P3 value cannot be converted into any kind of a number,
        ** then the seek is not possible, so jump to P2 */
................................................................................
      /* If the approximation iKey is larger than the actual real search
      ** term, substitute >= for > and < for <=. e.g. if the search term
      ** is 4.9 and the integer approximation 5:
      **
      **        (x >  4.9)    ->     (x >= 5)
      **        (x <= 4.9)    ->     (x <  5)
      */
      if( pIn3->u.r<(double)iKey ){
        assert( OP_SeekGE==(OP_SeekGT-1) );
        assert( OP_SeekLT==(OP_SeekLE-1) );
        assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
        if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
      }

      /* If the approximation iKey is smaller than the actual real search
      ** term, substitute <= for < and > for >=.  */
      else if( pIn3->u.r>(double)iKey ){
        assert( OP_SeekLE==(OP_SeekLT+1) );
        assert( OP_SeekGT==(OP_SeekGE+1) );
        assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
        if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
      }
    } 
    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
    pC->movetoTarget = iKey;  /* Used by OP_Delete */
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }




  }else{
    nField = pOp->p4.i;
    assert( pOp->p4type==P4_INT32 );
    assert( nField>0 );
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)nField;

................................................................................
    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
    ExpandBlob(r.aMem);
    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }

  }
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;
#ifdef SQLITE_TEST
  sqlite3_search_count++;
#endif
  if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
    if( res<0 || (res==0 && oc==OP_SeekGT) ){
      res = 0;
      rc = sqlite3BtreeNext(pC->pCursor, &res);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;

    }else{
      res = 0;
    }
  }else{
    assert( oc==OP_SeekLT || oc==OP_SeekLE );
    if( res>0 || (res==0 && oc==OP_SeekLT) ){
      res = 0;
      rc = sqlite3BtreePrevious(pC->pCursor, &res);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;

    }else{
      /* res might be negative because the table is empty.  Check to
      ** see if this is the case.
      */
      res = sqlite3BtreeEof(pC->pCursor);
    }
  }
................................................................................
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pCursor!=0 );
  assert( pC->isTable );
  pC->nullRow = 0;
  pIn2 = &aMem[pOp->p2];
  pC->movetoTarget = sqlite3VdbeIntValue(pIn2);

  pC->deferredMoveto = 1;
  break;
}
  

/* Opcode: Found P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
................................................................................
  assert( pC->isTable );
  assert( pC->pseudoTableReg==0 );
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  res = 0;
  iKey = pIn3->u.i;
  rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
  pC->movetoTarget = iKey;  /* Used by OP_Delete */

  pC->nullRow = 0;
  pC->cacheStatus = CACHE_STALE;
  pC->deferredMoveto = 0;
  VdbeBranchTaken(res!=0,2);
  if( res!=0 ){
    pc = pOp->p2 - 1;

  }
  pC->seekResult = res;
  break;
}

/* Opcode: Sequence P1 P2 * * *
** Synopsis: r[P2]=cursor[P1].ctr++
................................................................................
    if( pC->useRandomRowid ){
      /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
      ** largest possible integer (9223372036854775807) then the database
      ** engine starts picking positive candidate ROWIDs at random until
      ** it finds one that is not previously used. */
      assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
                             ** an AUTOINCREMENT table. */




      cnt = 0;
      do{
        sqlite3_randomness(sizeof(v), &v);
        v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
      }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
                                                 0, &res))==SQLITE_OK)
            && (res==0)
            && (++cnt<100));










      if( rc==SQLITE_OK && res==0 ){
        rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
        goto abort_due_to_error;
      }
      assert( v>0 );  /* EV: R-40812-03570 */
    }

    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
  }
  pOut->u.i = v;
  break;
}

................................................................................
  }else{
    nZero = 0;
  }
  rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
                          pData->z, pData->n, nZero,
                          (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
  );

  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
    zDb = db->aDb[pC->iDb].zName;
    zTbl = pOp->p4.z;
................................................................................
**
** If P4 is not NULL, then it is the name of the table that P1 is
** pointing to.  The update hook will be invoked, if it exists.
** If P4 is not NULL then the P1 cursor must have been positioned
** using OP_NotFound prior to invoking this opcode.
*/
case OP_Delete: {

  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
  assert( pC->deferredMoveto==0 );

#ifdef SQLITE_DEBUG
  /* The seek operation that positioned the cursor prior to OP_Delete will
  ** have also set the pC->movetoTarget field to the rowid of the row that
  ** is being deleted */
  if( pOp->p4.z && pC->isTable ){
    i64 iKey = 0;

    sqlite3BtreeKeySize(pC->pCursor, &iKey);
    assert( pC->movetoTarget==iKey ); 

  }
#endif
 
  rc = sqlite3BtreeDelete(pC->pCursor);
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
                        db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
    assert( pC->iDb>=0 );
  }
  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
  break;
}
/* Opcode: ResetCount * * * * *
**
................................................................................
  VdbeBranchTaken(res!=0,2);
  if( res ){
    pc = pOp->p2-1;
  }
  break;
};

/* Opcode: SorterData P1 P2 P3 * *
** Synopsis: r[P2]=data
**
** Write into register P2 the current sorter data for sorter cursor P1.
** Then clear the column header cache on cursor P3.
**
** This opcode is normally use to move a record out of the sorter and into
** a register that is the source for a pseudo-table cursor created using
** OpenPseudo.  That pseudo-table cursor is the one that is identified by
** parameter P3.  Clearing the P3 column cache as part of this opcode saves
** us from having to issue a separate NullRow instruction to clear that cache.
*/
case OP_SorterData: {
  VdbeCursor *pC;

  pOut = &aMem[pOp->p2];
  pC = p->apCsr[pOp->p1];
  assert( isSorter(pC) );
  rc = sqlite3VdbeSorterRowkey(pC, pOut);
  assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
  break;
}

/* Opcode: RowData P1 P2 * * *
** Synopsis: r[P2]=data
**
** Write into register P2 the complete row data for cursor P1.
................................................................................
  assert( pC->isTable || pOp->opcode!=OP_RowData );
  assert( pC->isTable==0 || pOp->opcode==OP_RowData );
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTableReg==0 );
  assert( pC->pCursor!=0 );
  pCrsr = pC->pCursor;


  /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
  ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
  ** the cursor.  If this where not the case, on of the following assert()s
  ** would fail.  Should this ever change (because of changes in the code
  ** generator) then the fix would be to insert a call to
  ** sqlite3VdbeCursorMoveto().

  */
  assert( pC->deferredMoveto==0 );
  assert( sqlite3BtreeCursorIsValid(pCrsr) );
#if 0  /* Not required due to the previous to assert() statements */
  rc = sqlite3VdbeCursorMoveto(pC);
  if( rc!=SQLITE_OK ) goto abort_due_to_error;
#endif

  if( pC->isTable==0 ){
    assert( !pC->isTable );
    VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
    assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
    if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
................................................................................
  }else{
    VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
    assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
    if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
  }
  testcase( n==0 );
  if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
    goto no_mem;
  }
  pOut->n = n;
  MemSetTypeFlag(pOut, MEM_Blob);
  if( pC->isTable==0 ){
    rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
  }else{
................................................................................
    pModule = pVtab->pModule;
    assert( pModule->xRowid );
    rc = pModule->xRowid(pC->pVtabCursor, &v);
    sqlite3VtabImportErrmsg(p, pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{
    assert( pC->pCursor!=0 );
    rc = sqlite3VdbeCursorRestore(pC);
    if( rc ) goto abort_due_to_error;



    rc = sqlite3BtreeKeySize(pC->pCursor, &v);
    assert( rc==SQLITE_OK );  /* Always so because of CursorRestore() above */

  }
  pOut->u.i = v;
  break;
}

/* Opcode: NullRow P1 * * * *
**
................................................................................
case OP_NullRow: {
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pC->nullRow = 1;

  pC->cacheStatus = CACHE_STALE;
  if( pC->pCursor ){
    sqlite3BtreeClearCursor(pC->pCursor);
  }
  break;
}

................................................................................
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  res = 0;
  assert( pCrsr!=0 );
  rc = sqlite3BtreeLast(pCrsr, &res);
  pC->nullRow = (u8)res;
  pC->deferredMoveto = 0;

  pC->cacheStatus = CACHE_STALE;
#ifdef SQLITE_DEBUG
  pC->seekOp = OP_Last;
#endif
  if( pOp->p2>0 ){
    VdbeBranchTaken(res!=0,2);
    if( res ) pc = pOp->p2 - 1;
................................................................................
    rc = sqlite3VdbeSorterRewind(pC, &res);
  }else{
    pCrsr = pC->pCursor;
    assert( pCrsr );
    rc = sqlite3BtreeFirst(pCrsr, &res);
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;

  }
  pC->nullRow = (u8)res;
  assert( pOp->p2>0 && pOp->p2<p->nOp );
  VdbeBranchTaken(res!=0,2);
  if( res ){
    pc = pOp->p2 - 1;
  }
................................................................................
    p->aCounter[pOp->p5]++;
#ifdef SQLITE_TEST
    sqlite3_search_count++;
#endif
  }else{
    pC->nullRow = 1;
  }

  goto check_for_interrupt;
}

/* Opcode: IdxInsert P1 P2 P3 * P5
** Synopsis: key=r[P2]
**
** Register P2 holds an SQL index key made using the
................................................................................

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  pOut->flags = MEM_Null;
  assert( pC->isTable==0 );
  assert( pC->deferredMoveto==0 );

  /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
  ** out from under the cursor.  That will never happend for an IdxRowid
  ** opcode, hence the NEVER() arround the check of the return value.
  */
  rc = sqlite3VdbeCursorRestore(pC);
  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;



  if( !pC->nullRow ){
    rowid = 0;  /* Not needed.  Only used to silence a warning. */
    rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
    pOut->u.i = rowid;
................................................................................
  ctx.pFunc = pOp->p4.pFunc;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  ctx.pMem = pMem = &aMem[pOp->p3];
  pMem->n++;
  sqlite3VdbeMemInit(&t, db, MEM_Null);
  ctx.pOut = &t;
  ctx.isError = 0;
  ctx.pVdbe = p;
  ctx.iOp = pc;
  ctx.skipFlag = 0;






  (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t));
    rc = ctx.isError;
  }
  if( ctx.skipFlag ){
    assert( pOp[-1].opcode==OP_CollSeq );

Changes to src/vdbeInt.h.

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
..
96
97
98
99
100
101
102

103
104
105
106
107
108
109
...
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177



178
179
180
181
182
183
184
...
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
...
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
...
383
384
385
386
387
388
389

390
391
392
393
394
395
396
...
431
432
433
434
435
436
437

438
439
440
441
442
443
444
  i16 nField;           /* Number of fields in the header */
  u16 nHdrParsed;       /* Number of header fields parsed so far */
#ifdef SQLITE_DEBUG
  u8 seekOp;            /* Most recent seek operation on this cursor */
#endif
  i8 iDb;               /* Index of cursor database in db->aDb[] (or -1) */
  u8 nullRow;           /* True if pointing to a row with no data */
  u8 rowidIsValid;      /* True if lastRowid is valid */
  u8 deferredMoveto;    /* A call to sqlite3BtreeMoveto() is needed */
  Bool isEphemeral:1;   /* True for an ephemeral table */
  Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */
  Bool isTable:1;       /* True if a table requiring integer keys */
  Bool isOrdered:1;     /* True if the underlying table is BTREE_UNORDERED */
  Pgno pgnoRoot;        /* Root page of the open btree cursor */
  sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  i64 lastRowid;        /* Rowid being deleted by OP_Delete */
  VdbeSorter *pSorter;  /* Sorter object for OP_SorterOpen cursors */

  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to.  Only valid if cacheStatus matches
  ** Vdbe.cacheCtr.  Vdbe.cacheCtr will never take on the value of
  ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that
  ** the cache is out of date.
................................................................................
  ** be NULL.
  */
  u32 cacheStatus;      /* Cache is valid if this matches Vdbe.cacheCtr */
  u32 payloadSize;      /* Total number of bytes in the record */
  u32 szRow;            /* Byte available in aRow */
  u32 iHdrOffset;       /* Offset to next unparsed byte of the header */
  const u8 *aRow;       /* Data for the current row, if all on one page */

  u32 aType[1];         /* Type values for all entries in the record */
  /* 2*nField extra array elements allocated for aType[], beyond the one
  ** static element declared in the structure.  nField total array slots for
  ** aType[] and nField+1 array slots for aOffset[] */
};
typedef struct VdbeCursor VdbeCursor;

................................................................................

/*
** Internally, the vdbe manipulates nearly all SQL values as Mem
** structures. Each Mem struct may cache multiple representations (string,
** integer etc.) of the same value.
*/
struct Mem {
  union {

    i64 i;              /* Integer value used when MEM_Int is set in flags */
    int nZero;          /* Used when bit MEM_Zero is set in flags */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
    RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */
  } u;
  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
  u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
  int n;              /* Number of characters in string value, excluding '\0' */
  double r;           /* Real value */
  char *z;            /* String or BLOB value */
  char *zMalloc;      /* Dynamic buffer allocated by sqlite3_malloc() */
  /* ShallowCopy only needs to copy the information above */



  sqlite3 *db;        /* The associated database connection */
  void (*xDel)(void*);/* Destructor for Mem.z - only valid if MEM_Dyn */
#ifdef SQLITE_DEBUG
  Mem *pScopyFrom;    /* This Mem is a shallow copy of pScopyFrom */
  void *pFiller;      /* So that sizeof(Mem) is a multiple of 8 */
#endif
};
................................................................................
** structure are known.
**
** This structure is defined inside of vdbeInt.h because it uses substructures
** (Mem) which are only defined there.
*/
struct sqlite3_context {
  Mem *pOut;            /* The return value is stored here */
  FuncDef *pFunc;       /* Pointer to function information.  MUST BE FIRST */
  Mem *pMem;            /* Memory cell used to store aggregate context */
  CollSeq *pColl;       /* Collating sequence */
  Vdbe *pVdbe;          /* The VM that owns this context */
  int iOp;              /* Instruction number of OP_Function */
  int isError;          /* Error code returned by the function. */
  u8 skipFlag;          /* Skip skip accumulator loading if true */
  u8 fErrorOrAux;       /* isError!=0 or pVdbe->pAuxData modified */
};

/*
** An Explain object accumulates indented output which is helpful
** in describing recursive data structures.
*/
................................................................................
#endif
  i64 iCurrentTime;       /* Value of julianday('now') for this statement */
  i64 nFkConstraint;      /* Number of imm. FK constraints this VM */
  i64 nStmtDefCons;       /* Number of def. constraints when stmt started */
  i64 nStmtDefImmCons;    /* Number of def. imm constraints when stmt started */
  char *zSql;             /* Text of the SQL statement that generated this */
  void *pFree;            /* Free this when deleting the vdbe */
#ifdef SQLITE_ENABLE_TREE_EXPLAIN
  Explain *pExplain;      /* The explainer */
  char *zExplain;         /* Explanation of data structures */
#endif
  VdbeFrame *pFrame;      /* Parent frame */
  VdbeFrame *pDelFrame;   /* List of frame objects to free on VM reset */
  int nFrame;             /* Number of frames in pFrame list */
  u32 expmask;            /* Binding to these vars invalidates VM */
  SubProgram *pProgram;   /* Linked list of all sub-programs used by VM */
  int nOnceFlag;          /* Size of array aOnceFlag[] */
  u8 *aOnceFlag;          /* Flags for OP_Once */
................................................................................

/*
** Function prototypes
*/
void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
void sqliteVdbePopStack(Vdbe*,int);
int sqlite3VdbeCursorMoveto(VdbeCursor*);

#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
void sqlite3VdbePrintOp(FILE*, int, Op*);
#endif
u32 sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
................................................................................
int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
#define VdbeMemDynamic(X)  \
  (((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame))!=0)
int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
const char *sqlite3OpcodeName(int);
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);

int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);
int sqlite3VdbeFrameRestore(VdbeFrame *);
int sqlite3VdbeTransferError(Vdbe *p);

int sqlite3VdbeSorterInit(sqlite3 *, int, VdbeCursor *);
void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *);







<









<







 







>







 







|
>









<

<

>
>
>







 







|

<



|







 







<
<
<
<







 







>







 







>







69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84

85
86
87
88
89
90
91
..
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
...
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

175
176
177
178
179
180
181
182
183
184
185
...
265
266
267
268
269
270
271
272
273

274
275
276
277
278
279
280
281
282
283
284
...
355
356
357
358
359
360
361




362
363
364
365
366
367
368
...
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
...
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
  i16 nField;           /* Number of fields in the header */
  u16 nHdrParsed;       /* Number of header fields parsed so far */
#ifdef SQLITE_DEBUG
  u8 seekOp;            /* Most recent seek operation on this cursor */
#endif
  i8 iDb;               /* Index of cursor database in db->aDb[] (or -1) */
  u8 nullRow;           /* True if pointing to a row with no data */

  u8 deferredMoveto;    /* A call to sqlite3BtreeMoveto() is needed */
  Bool isEphemeral:1;   /* True for an ephemeral table */
  Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */
  Bool isTable:1;       /* True if a table requiring integer keys */
  Bool isOrdered:1;     /* True if the underlying table is BTREE_UNORDERED */
  Pgno pgnoRoot;        /* Root page of the open btree cursor */
  sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */

  VdbeSorter *pSorter;  /* Sorter object for OP_SorterOpen cursors */

  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to.  Only valid if cacheStatus matches
  ** Vdbe.cacheCtr.  Vdbe.cacheCtr will never take on the value of
  ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that
  ** the cache is out of date.
................................................................................
  ** be NULL.
  */
  u32 cacheStatus;      /* Cache is valid if this matches Vdbe.cacheCtr */
  u32 payloadSize;      /* Total number of bytes in the record */
  u32 szRow;            /* Byte available in aRow */
  u32 iHdrOffset;       /* Offset to next unparsed byte of the header */
  const u8 *aRow;       /* Data for the current row, if all on one page */
  u32 *aOffset;         /* Pointer to aType[nField] */
  u32 aType[1];         /* Type values for all entries in the record */
  /* 2*nField extra array elements allocated for aType[], beyond the one
  ** static element declared in the structure.  nField total array slots for
  ** aType[] and nField+1 array slots for aOffset[] */
};
typedef struct VdbeCursor VdbeCursor;

................................................................................

/*
** Internally, the vdbe manipulates nearly all SQL values as Mem
** structures. Each Mem struct may cache multiple representations (string,
** integer etc.) of the same value.
*/
struct Mem {
  union MemValue {
    double r;           /* Real value used when MEM_Real is set in flags */
    i64 i;              /* Integer value used when MEM_Int is set in flags */
    int nZero;          /* Used when bit MEM_Zero is set in flags */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
    RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */
  } u;
  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
  u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
  int n;              /* Number of characters in string value, excluding '\0' */

  char *z;            /* String or BLOB value */

  /* ShallowCopy only needs to copy the information above */
  char *zMalloc;      /* Space to hold MEM_Str or MEM_Blob if szMalloc>0 */
  int szMalloc;       /* Size of the zMalloc allocation */
  u32 uTemp;          /* Transient storage for serial_type in OP_MakeRecord */
  sqlite3 *db;        /* The associated database connection */
  void (*xDel)(void*);/* Destructor for Mem.z - only valid if MEM_Dyn */
#ifdef SQLITE_DEBUG
  Mem *pScopyFrom;    /* This Mem is a shallow copy of pScopyFrom */
  void *pFiller;      /* So that sizeof(Mem) is a multiple of 8 */
#endif
};
................................................................................
** structure are known.
**
** This structure is defined inside of vdbeInt.h because it uses substructures
** (Mem) which are only defined there.
*/
struct sqlite3_context {
  Mem *pOut;            /* The return value is stored here */
  FuncDef *pFunc;       /* Pointer to function information */
  Mem *pMem;            /* Memory cell used to store aggregate context */

  Vdbe *pVdbe;          /* The VM that owns this context */
  int iOp;              /* Instruction number of OP_Function */
  int isError;          /* Error code returned by the function. */
  u8 skipFlag;          /* Skip accumulator loading if true */
  u8 fErrorOrAux;       /* isError!=0 or pVdbe->pAuxData modified */
};

/*
** An Explain object accumulates indented output which is helpful
** in describing recursive data structures.
*/
................................................................................
#endif
  i64 iCurrentTime;       /* Value of julianday('now') for this statement */
  i64 nFkConstraint;      /* Number of imm. FK constraints this VM */
  i64 nStmtDefCons;       /* Number of def. constraints when stmt started */
  i64 nStmtDefImmCons;    /* Number of def. imm constraints when stmt started */
  char *zSql;             /* Text of the SQL statement that generated this */
  void *pFree;            /* Free this when deleting the vdbe */




  VdbeFrame *pFrame;      /* Parent frame */
  VdbeFrame *pDelFrame;   /* List of frame objects to free on VM reset */
  int nFrame;             /* Number of frames in pFrame list */
  u32 expmask;            /* Binding to these vars invalidates VM */
  SubProgram *pProgram;   /* Linked list of all sub-programs used by VM */
  int nOnceFlag;          /* Size of array aOnceFlag[] */
  u8 *aOnceFlag;          /* Flags for OP_Once */
................................................................................

/*
** Function prototypes
*/
void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
void sqliteVdbePopStack(Vdbe*,int);
int sqlite3VdbeCursorMoveto(VdbeCursor*);
int sqlite3VdbeCursorRestore(VdbeCursor*);
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
void sqlite3VdbePrintOp(FILE*, int, Op*);
#endif
u32 sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
................................................................................
int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
#define VdbeMemDynamic(X)  \
  (((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame))!=0)
int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
const char *sqlite3OpcodeName(int);
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
int sqlite3VdbeMemClearAndResize(Mem *pMem, int n);
int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);
int sqlite3VdbeFrameRestore(VdbeFrame *);
int sqlite3VdbeTransferError(Vdbe *p);

int sqlite3VdbeSorterInit(sqlite3 *, int, VdbeCursor *);
void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *);

Changes to src/vdbeapi.c.

314
315
316
317
318
319
320

321
322
323
324
325
326
327
...
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
...
803
804
805
806
807
808
809
810
811
812


813
814
815
816
817
818
819
....
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
  const char *z, 
  sqlite3_uint64 n,
  void (*xDel)(void *),
  unsigned char enc
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  assert( xDel!=SQLITE_DYNAMIC );

  if( n>0x7fffffff ){
    (void)invokeValueDestructor(z, xDel, pCtx);
  }else{
    setResultStrOrError(pCtx, z, (int)n, enc, xDel);
  }
}
#ifndef SQLITE_OMIT_UTF16
................................................................................
static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
  Mem *pMem = p->pMem;
  assert( (pMem->flags & MEM_Agg)==0 );
  if( nByte<=0 ){
    sqlite3VdbeMemSetNull(pMem);
    pMem->z = 0;
  }else{
    sqlite3VdbeMemGrow(pMem, nByte, 0);
    pMem->flags = MEM_Agg;
    pMem->u.pDef = p->pFunc;
    if( pMem->z ){
      memset(pMem->z, 0, nByte);
    }
  }
  return (void*)pMem->z;
................................................................................
    __attribute__((aligned(8))) 
#endif
    = {
        /* .u          = */ {0},
        /* .flags      = */ MEM_Null,
        /* .enc        = */ 0,
        /* .n          = */ 0,
        /* .r          = */ (double)0,
        /* .z          = */ 0,
        /* .zMalloc    = */ 0,


        /* .db         = */ 0,
        /* .xDel       = */ 0,
#ifdef SQLITE_DEBUG
        /* .pScopyFrom = */ 0,
        /* .pFiller    = */ 0,
#endif
      };
................................................................................
  int rc;
  switch( sqlite3_value_type((sqlite3_value*)pValue) ){
    case SQLITE_INTEGER: {
      rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
      break;
    }
    case SQLITE_FLOAT: {
      rc = sqlite3_bind_double(pStmt, i, pValue->r);
      break;
    }
    case SQLITE_BLOB: {
      if( pValue->flags & MEM_Zero ){
        rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
      }else{
        rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);







>







 







|







 







<


>
>







 







|







314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
...
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
...
804
805
806
807
808
809
810

811
812
813
814
815
816
817
818
819
820
821
....
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
  const char *z, 
  sqlite3_uint64 n,
  void (*xDel)(void *),
  unsigned char enc
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  assert( xDel!=SQLITE_DYNAMIC );
  if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
  if( n>0x7fffffff ){
    (void)invokeValueDestructor(z, xDel, pCtx);
  }else{
    setResultStrOrError(pCtx, z, (int)n, enc, xDel);
  }
}
#ifndef SQLITE_OMIT_UTF16
................................................................................
static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
  Mem *pMem = p->pMem;
  assert( (pMem->flags & MEM_Agg)==0 );
  if( nByte<=0 ){
    sqlite3VdbeMemSetNull(pMem);
    pMem->z = 0;
  }else{
    sqlite3VdbeMemClearAndResize(pMem, nByte);
    pMem->flags = MEM_Agg;
    pMem->u.pDef = p->pFunc;
    if( pMem->z ){
      memset(pMem->z, 0, nByte);
    }
  }
  return (void*)pMem->z;
................................................................................
    __attribute__((aligned(8))) 
#endif
    = {
        /* .u          = */ {0},
        /* .flags      = */ MEM_Null,
        /* .enc        = */ 0,
        /* .n          = */ 0,

        /* .z          = */ 0,
        /* .zMalloc    = */ 0,
        /* .szMalloc   = */ 0,
        /* .iPadding1  = */ 0,
        /* .db         = */ 0,
        /* .xDel       = */ 0,
#ifdef SQLITE_DEBUG
        /* .pScopyFrom = */ 0,
        /* .pFiller    = */ 0,
#endif
      };
................................................................................
  int rc;
  switch( sqlite3_value_type((sqlite3_value*)pValue) ){
    case SQLITE_INTEGER: {
      rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
      break;
    }
    case SQLITE_FLOAT: {
      rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
      break;
    }
    case SQLITE_BLOB: {
      if( pValue->flags & MEM_Zero ){
        rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
      }else{
        rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);

Changes to src/vdbeaux.c.

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
...
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
...
750
751
752
753
754
755
756
757

758
759
760
761
762
763
764
....
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
....
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
....
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
....
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
....
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
....
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
....
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
....
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794


1795
1796
1797
1798
1799
1800
1801
....
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
....
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
....
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
....
2750
2751
2752
2753
2754
2755
2756











2757
2758
2759
2760
2761
2762
2763
....
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
....
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
....
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
....
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
....
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
....
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
....
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
....
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
....
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
....
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
....
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
....
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
....
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used for creating, destroying, and populating
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
** to version 2.8.7, all this code was combined into the vdbe.c source file.
** But that file was getting too big so this subroutines were split out.
*/
#include "sqliteInt.h"
#include "vdbeInt.h"

/*
** Create a new virtual database engine.
*/
................................................................................
        break;
      }
      case P4_MEM: {
        if( db->pnBytesFreed==0 ){
          sqlite3ValueFree((sqlite3_value*)p4);
        }else{
          Mem *p = (Mem*)p4;
          sqlite3DbFree(db, p->zMalloc);
          sqlite3DbFree(db, p);
        }
        break;
      }
      case P4_VTAB : {
        if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
        break;
................................................................................
    memset(pOp, 0, sizeof(pOp[0]));
    pOp->opcode = OP_Noop;
    if( addr==p->nOp-1 ) p->nOp--;
  }
}

/*
** Remove the last opcode inserted

*/
int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
  if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
    sqlite3VdbeChangeToNoop(p, p->nOp-1);
    return 1;
  }else{
    return 0;
................................................................................
    case P4_MEM: {
      Mem *pMem = pOp->p4.pMem;
      if( pMem->flags & MEM_Str ){
        zP4 = pMem->z;
      }else if( pMem->flags & MEM_Int ){
        sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
      }else if( pMem->flags & MEM_Real ){
        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
      }else if( pMem->flags & MEM_Null ){
        sqlite3_snprintf(nTemp, zTemp, "NULL");
      }else{
        assert( pMem->flags & MEM_Blob );
        zP4 = "(blob)";
      }
      break;
................................................................................
#endif

/*
** Release an array of N Mem elements
*/
static void releaseMemArray(Mem *p, int N){
  if( p && N ){
    Mem *pEnd;
    sqlite3 *db = p->db;
    u8 malloc_failed = db->mallocFailed;
    if( db->pnBytesFreed ){
      for(pEnd=&p[N]; p<pEnd; p++){
        sqlite3DbFree(db, p->zMalloc);
      }
      return;
    }
    for(pEnd=&p[N]; p<pEnd; p++){
      assert( (&p[1])==pEnd || p[0].db==p[1].db );
      assert( sqlite3VdbeCheckMemInvariants(p) );

      /* This block is really an inlined version of sqlite3VdbeMemRelease()
      ** that takes advantage of the fact that the memory cell value is 
      ** being set to NULL after releasing any dynamic resources.
      **
................................................................................
      */
      testcase( p->flags & MEM_Agg );
      testcase( p->flags & MEM_Dyn );
      testcase( p->flags & MEM_Frame );
      testcase( p->flags & MEM_RowSet );
      if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
        sqlite3VdbeMemRelease(p);
      }else if( p->zMalloc ){
        sqlite3DbFree(db, p->zMalloc);
        p->zMalloc = 0;
      }

      p->flags = MEM_Undefined;
    }
    db->mallocFailed = malloc_failed;
  }
}

/*
** Delete a VdbeFrame object and its contents. VdbeFrame objects are
** allocated by the OP_Program opcode in sqlite3VdbeExec().
................................................................................
    pMem->u.i = pOp->p2;                          /* P2 */
    pMem++;

    pMem->flags = MEM_Int;
    pMem->u.i = pOp->p3;                          /* P3 */
    pMem++;

    if( sqlite3VdbeMemGrow(pMem, 32, 0) ){            /* P4 */
      assert( p->db->mallocFailed );
      return SQLITE_ERROR;
    }
    pMem->flags = MEM_Str|MEM_Term;
    zP4 = displayP4(pOp, pMem->z, 32);
    if( zP4!=pMem->z ){
      sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
................................................................................
      assert( pMem->z!=0 );
      pMem->n = sqlite3Strlen30(pMem->z);
      pMem->enc = SQLITE_UTF8;
    }
    pMem++;

    if( p->explain==1 ){
      if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
        assert( p->db->mallocFailed );
        return SQLITE_ERROR;
      }
      pMem->flags = MEM_Str|MEM_Term;
      pMem->n = 2;
      sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
      pMem->enc = SQLITE_UTF8;
      pMem++;
  
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
      if( sqlite3VdbeMemGrow(pMem, 500, 0) ){
        assert( p->db->mallocFailed );
        return SQLITE_ERROR;
      }
      pMem->flags = MEM_Str|MEM_Term;
      pMem->n = displayComment(pOp, zP4, pMem->z, 500);
      pMem->enc = SQLITE_UTF8;
#else
................................................................................
  }
#endif
}

/*
** Prepare a virtual machine for execution for the first time after
** creating the virtual machine.  This involves things such
** as allocating stack space and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqlite3VdbeExec().  
**
** This function may be called exactly once on each virtual machine.
** After this routine is called the VM has been "packaged" and is ready
** to run.  After this routine is called, further calls to 
** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
................................................................................
    sqlite3BtreeClose(pCx->pBt);
    /* The pCx->pCursor will be close automatically, if it exists, by
    ** the call above. */
  }else if( pCx->pCursor ){
    sqlite3BtreeCloseCursor(pCx->pCursor);
  }
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( pCx->pVtabCursor ){
    sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
    const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
    p->inVtabMethod = 1;
    pModule->xClose(pVtabCursor);
    p->inVtabMethod = 0;
  }
#endif
................................................................................
** open cursors.
*/
static void closeAllCursors(Vdbe *p){
  if( p->pFrame ){
    VdbeFrame *pFrame;
    for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
    sqlite3VdbeFrameRestore(pFrame);
  }
  p->pFrame = 0;
  p->nFrame = 0;



  if( p->apCsr ){
    int i;
    for(i=0; i<p->nCursor; i++){
      VdbeCursor *pC = p->apCsr[i];
      if( pC ){
        sqlite3VdbeFreeCursor(p, pC);
................................................................................
  while( p->pDelFrame ){
    VdbeFrame *pDel = p->pDelFrame;
    p->pDelFrame = pDel->pParent;
    sqlite3VdbeFrameDelete(pDel);
  }

  /* Delete any auxdata allocations made by the VM */
  sqlite3VdbeDeleteAuxData(p, -1, 0);
  assert( p->pAuxData==0 );
}

/*
** Clean up the VM after execution.
**
** This routine will automatically close any cursors, lists, and/or
** sorters that were left open.  It also deletes the values of
** variables in the aVar[] array.
*/
static void Cleanup(Vdbe *p){
  sqlite3 *db = p->db;

#ifdef SQLITE_DEBUG
  /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 
  ** Vdbe.aMem[] arrays have already been cleaned up.  */
................................................................................
    sqlite3DbFree(db, pSub);
  }
  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);
#if defined(SQLITE_ENABLE_TREE_EXPLAIN)
  sqlite3DbFree(db, p->zExplain);
  sqlite3DbFree(db, p->pExplain);
#endif
}

/*
** Delete an entire VDBE.
*/
void sqlite3VdbeDelete(Vdbe *p){
  sqlite3 *db;
................................................................................
#ifdef SQLITE_TEST
  extern int sqlite3_search_count;
#endif
  assert( p->deferredMoveto );
  assert( p->isTable );
  rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
  if( rc ) return rc;
  p->lastRowid = p->movetoTarget;
  if( res!=0 ) return SQLITE_CORRUPT_BKPT;
  p->rowidIsValid = 1;
#ifdef SQLITE_TEST
  sqlite3_search_count++;
#endif
  p->deferredMoveto = 0;
  p->cacheStatus = CACHE_STALE;
  return SQLITE_OK;
}
................................................................................
  assert( p->pCursor!=0 );
  assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
  rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
  p->cacheStatus = CACHE_STALE;
  if( isDifferentRow ) p->nullRow = 1;
  return rc;
}












/*
** Make sure the cursor p is ready to read or write the row to which it
** was last positioned.  Return an error code if an OOM fault or I/O error
** prevents us from positioning the cursor to its correct position.
**
** If a MoveTo operation is pending on the given cursor, then do that
................................................................................
** If the cursor is already pointing to the correct row and that row has
** not been deleted out from under the cursor, then this routine is a no-op.
*/
int sqlite3VdbeCursorMoveto(VdbeCursor *p){
  if( p->deferredMoveto ){
    return handleDeferredMoveto(p);
  }
  if( sqlite3BtreeCursorHasMoved(p->pCursor) ){
    return handleMovedCursor(p);
  }
  return SQLITE_OK;
}

/*
** The following functions:
................................................................................
  u32 len;

  /* Integer and Real */
  if( serial_type<=7 && serial_type>0 ){
    u64 v;
    u32 i;
    if( serial_type==7 ){
      assert( sizeof(v)==sizeof(pMem->r) );
      memcpy(&v, &pMem->r, sizeof(v));
      swapMixedEndianFloat(v);
    }else{
      v = pMem->u.i;
    }
    len = i = sqlite3VdbeSerialTypeLen(serial_type);
    assert( i>0 );
    do{
................................................................................
    */
    static const u64 t1 = ((u64)0x3ff00000)<<32;
    static const double r1 = 1.0;
    u64 t2 = t1;
    swapMixedEndianFloat(t2);
    assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
#endif
    assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
    swapMixedEndianFloat(x);
    memcpy(&pMem->r, &x, sizeof(x));
    pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
  }
  return 8;
}
u32 sqlite3VdbeSerialGet(
  const unsigned char *buf,     /* Buffer to deserialize from */
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */
................................................................................
  while( idx<szHdr && d<=nKey ){
    u32 serial_type;

    idx += getVarint32(&aKey[idx], serial_type);
    pMem->enc = pKeyInfo->enc;
    pMem->db = pKeyInfo->db;
    /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
    pMem->zMalloc = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    if( (++u)>=p->nField ) break;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;
}
................................................................................
  Mem mem1;

  pKeyInfo = pPKey2->pKeyInfo;
  if( pKeyInfo->db==0 ) return 1;
  mem1.enc = pKeyInfo->enc;
  mem1.db = pKeyInfo->db;
  /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
  VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */

  /* Compilers may complain that mem1.u.i is potentially uninitialized.
  ** We could initialize it, as shown here, to silence those complaints.
  ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 
  ** the unnecessary initialization has a measurable negative performance
  ** impact, since this routine is a very high runner.  And so, we choose
  ** to ignore the compiler warnings and leave this variable uninitialized.
................................................................................
    */
    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);

    /* Do the comparison
    */
    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
    if( rc!=0 ){
      assert( mem1.zMalloc==0 );  /* See comment below */
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;  /* Invert the result for DESC sort order. */
      }
      goto debugCompareEnd;
    }
    i++;
  }while( idx1<szHdr1 && i<pPKey2->nField );

  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
  */
  assert( mem1.zMalloc==0 );

  /* rc==0 here means that one of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the default_rc
  ** value.  */
  rc = pPKey2->default_rc;

debugCompareEnd:
................................................................................
    return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
  }else{
    int rc;
    const void *v1, *v2;
    int n1, n2;
    Mem c1;
    Mem c2;
    c1.db = c2.db = pMem1->db;
    c1.flags = c2.flags = 0;
    c1.zMalloc = c2.zMalloc = 0;
    sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
    sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
    v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
    n1 = v1==0 ? 0 : c1.n;
    v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
    n2 = v2==0 ? 0 : c2.n;
    rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
................................................................................
    double r1, r2;
    if( (f1 & f2 & MEM_Int)!=0 ){
      if( pMem1->u.i < pMem2->u.i ) return -1;
      if( pMem1->u.i > pMem2->u.i ) return 1;
      return 0;
    }
    if( (f1&MEM_Real)!=0 ){
      r1 = pMem1->r;
    }else if( (f1&MEM_Int)!=0 ){
      r1 = (double)pMem1->u.i;
    }else{
      return 1;
    }
    if( (f2&MEM_Real)!=0 ){
      r2 = pMem2->r;
    }else if( (f2&MEM_Int)!=0 ){
      r2 = (double)pMem2->u.i;
    }else{
      return -1;
    }
    if( r1<r2 ) return -1;
    if( r1>r2 ) return 1;
................................................................................
    if( d1>(unsigned)nKey1 ){ 
      pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
      return 0;  /* Corruption */
    }
    i = 0;
  }

  VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
  assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 
       || CORRUPT_DB );
  assert( pPKey2->pKeyInfo->aSortOrder!=0 );
  assert( pPKey2->pKeyInfo->nField>0 );
  assert( idx1<=szHdr1 || CORRUPT_DB );
  do{
    u32 serial_type;
................................................................................
      if( serial_type>=12 ){
        rc = +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else if( serial_type==7 ){
        double rhs = (double)pRhs->u.i;
        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
        if( mem1.r<rhs ){
          rc = -1;
        }else if( mem1.r>rhs ){
          rc = +1;
        }
      }else{
        i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
        i64 rhs = pRhs->u.i;
        if( lhs<rhs ){
          rc = -1;
................................................................................
    else if( pRhs->flags & MEM_Real ){
      serial_type = aKey1[idx1];
      if( serial_type>=12 ){
        rc = +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else{
        double rhs = pRhs->r;
        double lhs;
        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
        if( serial_type==7 ){
          lhs = mem1.r;
        }else{
          lhs = (double)mem1.u.i;
        }
        if( lhs<rhs ){
          rc = -1;
        }else if( lhs>rhs ){
          rc = +1;
................................................................................
    }

    if( rc!=0 ){
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;
      }
      assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
      assert( mem1.zMalloc==0 );  /* See comment below */
      return rc;
    }

    i++;
    pRhs++;
    d1 += sqlite3VdbeSerialTypeLen(serial_type);
    idx1 += sqlite3VarintLen(serial_type);
  }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );

  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
  assert( mem1.zMalloc==0 );

  /* rc==0 here means that one or both of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the default_rc
  ** value.  */
  assert( CORRUPT_DB 
       || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 
       || pKeyInfo->db->mallocFailed
................................................................................
  *rowid = v.u.i;
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;

  /* Jump here if database corruption is detected after m has been
  ** allocated.  Free the m object and return SQLITE_CORRUPT. */
idx_rowid_corruption:
  testcase( m.zMalloc!=0 );
  sqlite3VdbeMemRelease(&m);
  return SQLITE_CORRUPT_BKPT;
}

/*
** Compare the key of the index entry that cursor pC is pointing to against
** the key string in pUnpacked.  Write into *pRes a number







|
<
<







 







|







 







|
>







 







|







 







|



|
|
|


|







 







|

|



|







 







|







 







|










|







 







|







 







|







 







<
|
|
>
>







 







|




|
<
<
<
<







 







<
<
<
<







 







<

<







 







>
>
>
>
>
>
>
>
>
>
>







 







|







 







|
|







 







|

|
|







 







|







 







|







 







|












|







 







|
|
<







 







|






|







 







|







 







|

|







 







|



|







 







|












|







 







|







6
7
8
9
10
11
12
13


14
15
16
17
18
19
20
...
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
...
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
....
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
....
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
....
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
....
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
....
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
....
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
....
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
....
1784
1785
1786
1787
1788
1789
1790

1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
....
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821




1822
1823
1824
1825
1826
1827
1828
....
2675
2676
2677
2678
2679
2680
2681




2682
2683
2684
2685
2686
2687
2688
....
2715
2716
2717
2718
2719
2720
2721

2722

2723
2724
2725
2726
2727
2728
2729
....
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
....
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
....
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
....
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
....
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
....
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
....
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
....
3299
3300
3301
3302
3303
3304
3305
3306
3307

3308
3309
3310
3311
3312
3313
3314
....
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
....
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
....
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
....
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
....
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
....
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used for creating, destroying, and populating
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 


*/
#include "sqliteInt.h"
#include "vdbeInt.h"

/*
** Create a new virtual database engine.
*/
................................................................................
        break;
      }
      case P4_MEM: {
        if( db->pnBytesFreed==0 ){
          sqlite3ValueFree((sqlite3_value*)p4);
        }else{
          Mem *p = (Mem*)p4;
          if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
          sqlite3DbFree(db, p);
        }
        break;
      }
      case P4_VTAB : {
        if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
        break;
................................................................................
    memset(pOp, 0, sizeof(pOp[0]));
    pOp->opcode = OP_Noop;
    if( addr==p->nOp-1 ) p->nOp--;
  }
}

/*
** If the last opcode is "op" and it is not a jump destination,
** then remove it.  Return true if and only if an opcode was removed.
*/
int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
  if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
    sqlite3VdbeChangeToNoop(p, p->nOp-1);
    return 1;
  }else{
    return 0;
................................................................................
    case P4_MEM: {
      Mem *pMem = pOp->p4.pMem;
      if( pMem->flags & MEM_Str ){
        zP4 = pMem->z;
      }else if( pMem->flags & MEM_Int ){
        sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
      }else if( pMem->flags & MEM_Real ){
        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
      }else if( pMem->flags & MEM_Null ){
        sqlite3_snprintf(nTemp, zTemp, "NULL");
      }else{
        assert( pMem->flags & MEM_Blob );
        zP4 = "(blob)";
      }
      break;
................................................................................
#endif

/*
** Release an array of N Mem elements
*/
static void releaseMemArray(Mem *p, int N){
  if( p && N ){
    Mem *pEnd = &p[N];
    sqlite3 *db = p->db;
    u8 malloc_failed = db->mallocFailed;
    if( db->pnBytesFreed ){
      do{
        if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
      }while( (++p)<pEnd );
      return;
    }
    do{
      assert( (&p[1])==pEnd || p[0].db==p[1].db );
      assert( sqlite3VdbeCheckMemInvariants(p) );

      /* This block is really an inlined version of sqlite3VdbeMemRelease()
      ** that takes advantage of the fact that the memory cell value is 
      ** being set to NULL after releasing any dynamic resources.
      **
................................................................................
      */
      testcase( p->flags & MEM_Agg );
      testcase( p->flags & MEM_Dyn );
      testcase( p->flags & MEM_Frame );
      testcase( p->flags & MEM_RowSet );
      if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
        sqlite3VdbeMemRelease(p);
      }else if( p->szMalloc ){
        sqlite3DbFree(db, p->zMalloc);
        p->szMalloc = 0;
      }

      p->flags = MEM_Undefined;
    }while( (++p)<pEnd );
    db->mallocFailed = malloc_failed;
  }
}

/*
** Delete a VdbeFrame object and its contents. VdbeFrame objects are
** allocated by the OP_Program opcode in sqlite3VdbeExec().
................................................................................
    pMem->u.i = pOp->p2;                          /* P2 */
    pMem++;

    pMem->flags = MEM_Int;
    pMem->u.i = pOp->p3;                          /* P3 */
    pMem++;

    if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */
      assert( p->db->mallocFailed );
      return SQLITE_ERROR;
    }
    pMem->flags = MEM_Str|MEM_Term;
    zP4 = displayP4(pOp, pMem->z, 32);
    if( zP4!=pMem->z ){
      sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
................................................................................
      assert( pMem->z!=0 );
      pMem->n = sqlite3Strlen30(pMem->z);
      pMem->enc = SQLITE_UTF8;
    }
    pMem++;

    if( p->explain==1 ){
      if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
        assert( p->db->mallocFailed );
        return SQLITE_ERROR;
      }
      pMem->flags = MEM_Str|MEM_Term;
      pMem->n = 2;
      sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
      pMem->enc = SQLITE_UTF8;
      pMem++;
  
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
      if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
        assert( p->db->mallocFailed );
        return SQLITE_ERROR;
      }
      pMem->flags = MEM_Str|MEM_Term;
      pMem->n = displayComment(pOp, zP4, pMem->z, 500);
      pMem->enc = SQLITE_UTF8;
#else
................................................................................
  }
#endif
}

/*
** Prepare a virtual machine for execution for the first time after
** creating the virtual machine.  This involves things such
** as allocating registers and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqlite3VdbeExec().  
**
** This function may be called exactly once on each virtual machine.
** After this routine is called the VM has been "packaged" and is ready
** to run.  After this routine is called, further calls to 
** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
................................................................................
    sqlite3BtreeClose(pCx->pBt);
    /* The pCx->pCursor will be close automatically, if it exists, by
    ** the call above. */
  }else if( pCx->pCursor ){
    sqlite3BtreeCloseCursor(pCx->pCursor);
  }
#ifndef SQLITE_OMIT_VIRTUALTABLE
  else if( pCx->pVtabCursor ){
    sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
    const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
    p->inVtabMethod = 1;
    pModule->xClose(pVtabCursor);
    p->inVtabMethod = 0;
  }
#endif
................................................................................
** open cursors.
*/
static void closeAllCursors(Vdbe *p){
  if( p->pFrame ){
    VdbeFrame *pFrame;
    for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
    sqlite3VdbeFrameRestore(pFrame);

    p->pFrame = 0;
    p->nFrame = 0;
  }
  assert( p->nFrame==0 );

  if( p->apCsr ){
    int i;
    for(i=0; i<p->nCursor; i++){
      VdbeCursor *pC = p->apCsr[i];
      if( pC ){
        sqlite3VdbeFreeCursor(p, pC);
................................................................................
  while( p->pDelFrame ){
    VdbeFrame *pDel = p->pDelFrame;
    p->pDelFrame = pDel->pParent;
    sqlite3VdbeFrameDelete(pDel);
  }

  /* Delete any auxdata allocations made by the VM */
  if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0);
  assert( p->pAuxData==0 );
}

/*
** Clean up the VM after a single run.




*/
static void Cleanup(Vdbe *p){
  sqlite3 *db = p->db;

#ifdef SQLITE_DEBUG
  /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 
  ** Vdbe.aMem[] arrays have already been cleaned up.  */
................................................................................
    sqlite3DbFree(db, pSub);
  }
  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);




}

/*
** Delete an entire VDBE.
*/
void sqlite3VdbeDelete(Vdbe *p){
  sqlite3 *db;
................................................................................
#ifdef SQLITE_TEST
  extern int sqlite3_search_count;
#endif
  assert( p->deferredMoveto );
  assert( p->isTable );
  rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
  if( rc ) return rc;

  if( res!=0 ) return SQLITE_CORRUPT_BKPT;

#ifdef SQLITE_TEST
  sqlite3_search_count++;
#endif
  p->deferredMoveto = 0;
  p->cacheStatus = CACHE_STALE;
  return SQLITE_OK;
}
................................................................................
  assert( p->pCursor!=0 );
  assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
  rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
  p->cacheStatus = CACHE_STALE;
  if( isDifferentRow ) p->nullRow = 1;
  return rc;
}

/*
** Check to ensure that the cursor is valid.  Restore the cursor
** if need be.  Return any I/O error from the restore operation.
*/
int sqlite3VdbeCursorRestore(VdbeCursor *p){
  if( sqlite3BtreeCursorHasMoved(p->pCursor) ){
    return handleMovedCursor(p);
  }
  return SQLITE_OK;
}

/*
** Make sure the cursor p is ready to read or write the row to which it
** was last positioned.  Return an error code if an OOM fault or I/O error
** prevents us from positioning the cursor to its correct position.
**
** If a MoveTo operation is pending on the given cursor, then do that
................................................................................
** If the cursor is already pointing to the correct row and that row has
** not been deleted out from under the cursor, then this routine is a no-op.
*/
int sqlite3VdbeCursorMoveto(VdbeCursor *p){
  if( p->deferredMoveto ){
    return handleDeferredMoveto(p);
  }
  if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){
    return handleMovedCursor(p);
  }
  return SQLITE_OK;
}

/*
** The following functions:
................................................................................
  u32 len;

  /* Integer and Real */
  if( serial_type<=7 && serial_type>0 ){
    u64 v;
    u32 i;
    if( serial_type==7 ){
      assert( sizeof(v)==sizeof(pMem->u.r) );
      memcpy(&v, &pMem->u.r, sizeof(v));
      swapMixedEndianFloat(v);
    }else{
      v = pMem->u.i;
    }
    len = i = sqlite3VdbeSerialTypeLen(serial_type);
    assert( i>0 );
    do{
................................................................................
    */
    static const u64 t1 = ((u64)0x3ff00000)<<32;
    static const double r1 = 1.0;
    u64 t2 = t1;
    swapMixedEndianFloat(t2);
    assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
#endif
    assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
    swapMixedEndianFloat(x);
    memcpy(&pMem->u.r, &x, sizeof(x));
    pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
  }
  return 8;
}
u32 sqlite3VdbeSerialGet(
  const unsigned char *buf,     /* Buffer to deserialize from */
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */
................................................................................
  while( idx<szHdr && d<=nKey ){
    u32 serial_type;

    idx += getVarint32(&aKey[idx], serial_type);
    pMem->enc = pKeyInfo->enc;
    pMem->db = pKeyInfo->db;
    /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
    pMem->szMalloc = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    if( (++u)>=p->nField ) break;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;
}
................................................................................
  Mem mem1;

  pKeyInfo = pPKey2->pKeyInfo;
  if( pKeyInfo->db==0 ) return 1;
  mem1.enc = pKeyInfo->enc;
  mem1.db = pKeyInfo->db;
  /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
  VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */

  /* Compilers may complain that mem1.u.i is potentially uninitialized.
  ** We could initialize it, as shown here, to silence those complaints.
  ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 
  ** the unnecessary initialization has a measurable negative performance
  ** impact, since this routine is a very high runner.  And so, we choose
  ** to ignore the compiler warnings and leave this variable uninitialized.
................................................................................
    */
    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);

    /* Do the comparison
    */
    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
    if( rc!=0 ){
      assert( mem1.szMalloc==0 );  /* See comment below */
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;  /* Invert the result for DESC sort order. */
      }
      goto debugCompareEnd;
    }
    i++;
  }while( idx1<szHdr1 && i<pPKey2->nField );

  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
  */
  assert( mem1.szMalloc==0 );

  /* rc==0 here means that one of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the default_rc
  ** value.  */
  rc = pPKey2->default_rc;

debugCompareEnd:
................................................................................
    return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
  }else{
    int rc;
    const void *v1, *v2;
    int n1, n2;
    Mem c1;
    Mem c2;
    sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
    sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);

    sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
    sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
    v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
    n1 = v1==0 ? 0 : c1.n;
    v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
    n2 = v2==0 ? 0 : c2.n;
    rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
................................................................................
    double r1, r2;
    if( (f1 & f2 & MEM_Int)!=0 ){
      if( pMem1->u.i < pMem2->u.i ) return -1;
      if( pMem1->u.i > pMem2->u.i ) return 1;
      return 0;
    }
    if( (f1&MEM_Real)!=0 ){
      r1 = pMem1->u.r;
    }else if( (f1&MEM_Int)!=0 ){
      r1 = (double)pMem1->u.i;
    }else{
      return 1;
    }
    if( (f2&MEM_Real)!=0 ){
      r2 = pMem2->u.r;
    }else if( (f2&MEM_Int)!=0 ){
      r2 = (double)pMem2->u.i;
    }else{
      return -1;
    }
    if( r1<r2 ) return -1;
    if( r1>r2 ) return 1;
................................................................................
    if( d1>(unsigned)nKey1 ){ 
      pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
      return 0;  /* Corruption */
    }
    i = 0;
  }

  VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
  assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 
       || CORRUPT_DB );
  assert( pPKey2->pKeyInfo->aSortOrder!=0 );
  assert( pPKey2->pKeyInfo->nField>0 );
  assert( idx1<=szHdr1 || CORRUPT_DB );
  do{
    u32 serial_type;
................................................................................
      if( serial_type>=12 ){
        rc = +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else if( serial_type==7 ){
        double rhs = (double)pRhs->u.i;
        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
        if( mem1.u.r<rhs ){
          rc = -1;
        }else if( mem1.u.r>rhs ){
          rc = +1;
        }
      }else{
        i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
        i64 rhs = pRhs->u.i;
        if( lhs<rhs ){
          rc = -1;
................................................................................
    else if( pRhs->flags & MEM_Real ){
      serial_type = aKey1[idx1];
      if( serial_type>=12 ){
        rc = +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else{
        double rhs = pRhs->u.r;
        double lhs;
        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
        if( serial_type==7 ){
          lhs = mem1.u.r;
        }else{
          lhs = (double)mem1.u.i;
        }
        if( lhs<rhs ){
          rc = -1;
        }else if( lhs>rhs ){
          rc = +1;
................................................................................
    }

    if( rc!=0 ){
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;
      }
      assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
      assert( mem1.szMalloc==0 );  /* See comment below */
      return rc;
    }

    i++;
    pRhs++;
    d1 += sqlite3VdbeSerialTypeLen(serial_type);
    idx1 += sqlite3VarintLen(serial_type);
  }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );

  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
  assert( mem1.szMalloc==0 );

  /* rc==0 here means that one or both of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the default_rc
  ** value.  */
  assert( CORRUPT_DB 
       || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 
       || pKeyInfo->db->mallocFailed
................................................................................
  *rowid = v.u.i;
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;

  /* Jump here if database corruption is detected after m has been
  ** allocated.  Free the m object and return SQLITE_CORRUPT. */
idx_rowid_corruption:
  testcase( m.szMalloc!=0 );
  sqlite3VdbeMemRelease(&m);
  return SQLITE_CORRUPT_BKPT;
}

/*
** Compare the key of the index entry that cursor pC is pointing to against
** the key string in pUnpacked.  Write into *pRes a number

Changes to src/vdbemem.c.

26
27
28
29
30
31
32













33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
..
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112

113
114
115
116
117
118
119
120
121
122
123

124


125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145























146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
...
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
...
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
...
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
...
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
...
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
...
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
...
457
458
459
460
461
462
463

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
...
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
...
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
...
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
...
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
...
677
678
679
680
681
682
683

684
685

686
687
688
689
690
691
692
693
694
...
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
...
850
851
852
853
854
855
856



857
858
859
860
861
862
863

864
865
866
867
868
869
870
...
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
...
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
....
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
....
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
** this:    assert( sqlite3VdbeCheckMemInvariants(pMem) );
*/
int sqlite3VdbeCheckMemInvariants(Mem *p){
  /* If MEM_Dyn is set then Mem.xDel!=0.  
  ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
  */
  assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );














  /* If p holds a string or blob, the Mem.z must point to exactly
  ** one of the following:
  **
  **   (1) Memory in Mem.zMalloc and managed by the Mem object
  **   (2) Memory to be freed using Mem.xDel
  **   (3) An ephemeral string or blob
  **   (4) A static string or blob
  */
  if( (p->flags & (MEM_Str|MEM_Blob)) && p->z!=0 ){
    assert( 
      ((p->z==p->zMalloc)? 1 : 0) +
      ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
      ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
      ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
    );
  }
  return 1;
}
................................................................................
** min(n,32) bytes.
**
** If the bPreserve argument is true, then copy of the content of
** pMem->z into the new allocation.  pMem must be either a string or
** blob if bPreserve is true.  If bPreserve is false, any prior content
** in pMem->z is discarded.
*/
int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
  assert( sqlite3VdbeCheckMemInvariants(pMem) );
  assert( (pMem->flags&MEM_RowSet)==0 );

  /* If the bPreserve flag is set to true, then the memory cell must already
  ** contain a valid string or blob value.  */
  assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
  testcase( bPreserve && pMem->z==0 );


  if( pMem->zMalloc==0 || sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){

    if( n<32 ) n = 32;
    if( bPreserve && pMem->z==pMem->zMalloc ){
      pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
      bPreserve = 0;
    }else{
      sqlite3DbFree(pMem->db, pMem->zMalloc);
      pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
    }
    if( pMem->zMalloc==0 ){
      sqlite3VdbeMemSetNull(pMem);
      pMem->z = 0;

      return SQLITE_NOMEM;


    }
  }

  if( pMem->z && bPreserve && pMem->z!=pMem->zMalloc ){
    memcpy(pMem->zMalloc, pMem->z, pMem->n);
  }
  if( (pMem->flags&MEM_Dyn)!=0 ){
    assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
    pMem->xDel((void *)(pMem->z));
  }

  pMem->z = pMem->zMalloc;
  pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
  return SQLITE_OK;
}

/*
** Make the given Mem object MEM_Dyn.  In other words, make it so
** that any TEXT or BLOB content is stored in memory obtained from
** malloc().  In this way, we know that the memory is safe to be
** overwritten or altered.























**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
  int f;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( (pMem->flags&MEM_RowSet)==0 );
  ExpandBlob(pMem);
  f = pMem->flags;
  if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
    if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
      return SQLITE_NOMEM;
    }
    pMem->z[pMem->n] = 0;
    pMem->z[pMem->n+1] = 0;
    pMem->flags |= MEM_Term;
#ifdef SQLITE_DEBUG
................................................................................
  assert( !(fg&MEM_Zero) );
  assert( !(fg&(MEM_Str|MEM_Blob)) );
  assert( fg&(MEM_Int|MEM_Real) );
  assert( (pMem->flags&MEM_RowSet)==0 );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );


  if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
    return SQLITE_NOMEM;
  }

  /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
  ** string representation of the value. Then, if the required encoding
  ** is UTF-16le or UTF-16be do a translation.
  ** 
  ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
  */
  if( fg & MEM_Int ){
    sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
  }else{
    assert( fg & MEM_Real );
    sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
  }
  pMem->n = sqlite3Strlen30(pMem->z);
  pMem->enc = SQLITE_UTF8;
  pMem->flags |= MEM_Str|MEM_Term;
  if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
  sqlite3VdbeChangeEncoding(pMem, enc);
  return SQLITE_OK;
................................................................................
    t.flags = MEM_Null;
    t.db = pMem->db;
    ctx.pOut = &t;
    ctx.pMem = pMem;
    ctx.pFunc = pFunc;
    pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
    assert( (pMem->flags & MEM_Dyn)==0 );
    sqlite3DbFree(pMem->db, pMem->zMalloc);
    memcpy(pMem, &t, sizeof(t));
    rc = ctx.isError;
  }
  return rc;
}

/*
................................................................................
** the unusual case where there really is memory in p that needs
** to be freed.
*/
static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
  if( VdbeMemDynamic(p) ){
    vdbeMemClearExternAndSetNull(p);
  }
  if( p->zMalloc ){
    sqlite3DbFree(p->db, p->zMalloc);
    p->zMalloc = 0;
  }
  p->z = 0;
}

/*
** Release any memory resources held by the Mem.  Both the memory that is
** free by Mem.xDel and the Mem.zMalloc allocation are freed.
................................................................................
** reset a Mem back to its minimum memory utilization.
**
** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
** prior to inserting new content into the Mem.
*/
void sqlite3VdbeMemRelease(Mem *p){
  assert( sqlite3VdbeCheckMemInvariants(p) );
  if( VdbeMemDynamic(p) || p->zMalloc ){
    vdbeMemClear(p);
  }
}

/*
** Convert a 64-bit IEEE double into a 64-bit signed integer.
** If the double is out of range of a 64-bit signed integer then
................................................................................
  int flags;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  flags = pMem->flags;
  if( flags & MEM_Int ){
    return pMem->u.i;
  }else if( flags & MEM_Real ){
    return doubleToInt64(pMem->r);
  }else if( flags & (MEM_Str|MEM_Blob) ){
    i64 value = 0;
    assert( pMem->z || pMem->n==0 );
    sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
    return value;
  }else{
    return 0;
................................................................................
** value.  If it is a string or blob, try to convert it to a double.
** If it is a NULL, return 0.0.
*/
double sqlite3VdbeRealValue(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  if( pMem->flags & MEM_Real ){
    return pMem->r;
  }else if( pMem->flags & MEM_Int ){
    return (double)pMem->u.i;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
    /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    double val = (double)0;
    sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
    return val;
................................................................................
}

/*
** The MEM structure is already a MEM_Real.  Try to also make it a
** MEM_Int if we can.
*/
void sqlite3VdbeIntegerAffinity(Mem *pMem){

  assert( pMem->flags & MEM_Real );
  assert( (pMem->flags & MEM_RowSet)==0 );
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );

  pMem->u.i = doubleToInt64(pMem->r);

  /* Only mark the value as an integer if
  **
  **    (1) the round-trip conversion real->int->real is a no-op, and
  **    (2) The integer is neither the largest nor the smallest
  **        possible integer (ticket #3922)
  **
  ** The second and third terms in the following conditional enforces
  ** the second condition under the assumption that addition overflow causes
  ** values to wrap around.
  */
  if( pMem->r==(double)pMem->u.i
   && pMem->u.i>SMALLEST_INT64
   && pMem->u.i<LARGEST_INT64
  ){
    pMem->flags |= MEM_Int;
  }
}

/*
** Convert pMem to type integer.  Invalidate any prior representations.
*/
int sqlite3VdbeMemIntegerify(Mem *pMem){
................................................................................
** Convert pMem so that it is of type MEM_Real.
** Invalidate any prior representations.
*/
int sqlite3VdbeMemRealify(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );

  pMem->r = sqlite3VdbeRealValue(pMem);
  MemSetTypeFlag(pMem, MEM_Real);
  return SQLITE_OK;
}

/*
** Convert pMem so that it has types MEM_Real or MEM_Int or both.
** Invalidate any prior representations.
................................................................................
int sqlite3VdbeMemNumerify(Mem *pMem){
  if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
    assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
    assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
      MemSetTypeFlag(pMem, MEM_Int);
    }else{
      pMem->r = sqlite3VdbeRealValue(pMem);
      MemSetTypeFlag(pMem, MEM_Real);
      sqlite3VdbeIntegerAffinity(pMem);
    }
  }
  assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
  pMem->flags &= ~(MEM_Str|MEM_Blob);
  return SQLITE_OK;
................................................................................
**
** The minimum amount of initialization feasible is performed.
*/
void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
  assert( (flags & ~MEM_TypeMask)==0 );
  pMem->flags = flags;
  pMem->db = db;
  pMem->zMalloc = 0;
}


/*
** Delete any previous value and set the value stored in *pMem to NULL.
**
** This routine calls the Mem.xDel destructor to dispose of values that
................................................................................
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type REAL.
*/
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
  sqlite3VdbeMemSetNull(pMem);
  if( !sqlite3IsNaN(val) ){
    pMem->r = val;
    pMem->flags = MEM_Real;
  }
}
#endif

/*
** Delete any previous value and set the value of pMem to be an
................................................................................
  sqlite3 *db = pMem->db;
  assert( db!=0 );
  assert( (pMem->flags & MEM_RowSet)==0 );
  sqlite3VdbeMemRelease(pMem);
  pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
  if( db->mallocFailed ){
    pMem->flags = MEM_Null;

  }else{
    assert( pMem->zMalloc );

    pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, 
                                       sqlite3DbMallocSize(db, pMem->zMalloc));
    assert( pMem->u.pRowSet!=0 );
    pMem->flags = MEM_RowSet;
  }
}

/*
** Return true if the Mem object contains a TEXT or BLOB that is
................................................................................
  assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
  assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
  assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );

  sqlite3VdbeMemRelease(pTo);
  memcpy(pTo, pFrom, sizeof(Mem));
  pFrom->flags = MEM_Null;
  pFrom->zMalloc = 0;
}

/*
** Change the value of a Mem to be a string or a BLOB.
**
** The memory management strategy depends on the value of the xDel
** parameter. If the value passed is SQLITE_TRANSIENT, then the 
................................................................................
    int nAlloc = nByte;
    if( flags&MEM_Term ){
      nAlloc += (enc==SQLITE_UTF8?1:2);
    }
    if( nByte>iLimit ){
      return SQLITE_TOOBIG;
    }



    if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
      return SQLITE_NOMEM;
    }
    memcpy(pMem->z, z, nAlloc);
  }else if( xDel==SQLITE_DYNAMIC ){
    sqlite3VdbeMemRelease(pMem);
    pMem->zMalloc = pMem->z = (char *)z;

  }else{
    sqlite3VdbeMemRelease(pMem);
    pMem->z = (char *)z;
    pMem->xDel = xDel;
    flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
  }

................................................................................

  if( offset+amt<=available ){
    pMem->z = &zData[offset];
    pMem->flags = MEM_Blob|MEM_Ephem;
    pMem->n = (int)amt;
  }else{
    pMem->flags = MEM_Null;
    if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
      if( key ){
        rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
      }else{
        rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
      }
      if( rc==SQLITE_OK ){
        pMem->z[amt] = 0;
................................................................................
}

/*
** The pVal argument is known to be a value other than NULL.
** Convert it into a string with encoding enc and return a pointer
** to a zero-terminated version of that string.
*/
SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
  assert( pVal!=0 );
  assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
  assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
  assert( (pVal->flags & MEM_RowSet)==0 );
  assert( (pVal->flags & (MEM_Null))==0 );
  if( pVal->flags & (MEM_Blob|MEM_Str) ){
    pVal->flags |= MEM_Str;
................................................................................
    }
  }else if( op==TK_UMINUS ) {
    /* This branch happens for multiple negative signs.  Ex: -(-5) */
    if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) 
     && pVal!=0
    ){
      sqlite3VdbeMemNumerify(pVal);
      if( pVal->u.i==SMALLEST_INT64 ){
        pVal->flags &= ~MEM_Int;
        pVal->flags |= MEM_Real;
        pVal->r = (double)SMALLEST_INT64;

      }else{
        pVal->u.i = -pVal->u.i;
      }
      pVal->r = -pVal->r;
      sqlite3ValueApplyAffinity(pVal, affinity, enc);
    }
  }else if( op==TK_NULL ){
    pVal = valueNew(db, pCtx);
    if( pVal==0 ) goto no_mem;
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL
................................................................................
void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
  if( pRec ){
    int i;
    int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
    Mem *aMem = pRec->aMem;
    sqlite3 *db = aMem[0].db;
    for(i=0; i<nCol; i++){
      sqlite3DbFree(db, aMem[i].zMalloc);
    }
    sqlite3KeyInfoUnref(pRec->pKeyInfo);
    sqlite3DbFree(db, pRec);
  }
}
#endif /* ifdef SQLITE_ENABLE_STAT4 */








>
>
>
>
>
>
>
>
>
>
>
>
>









|

|







 







|








>
|
>

|



|





>

>
>



|













|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









|







 







|













|







 







|







 







|

|







 







|







 







|







 







|







 







>





|











|
|
|
<
<







 







|







 







|







 







|







 







|







 







>


>
|
<







 







|







 







>
>
>
|






>







 







|







 







|







 







|
|
|
|
>



<







 







|







26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
...
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
...
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
...
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
...
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
...
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
...
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
...
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
...
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525


526
527
528
529
530
531
532
...
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
...
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
...
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
...
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
...
717
718
719
720
721
722
723
724
725
726
727
728

729
730
731
732
733
734
735
...
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
...
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
...
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
...
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
....
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

1224
1225
1226
1227
1228
1229
1230
....
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
** this:    assert( sqlite3VdbeCheckMemInvariants(pMem) );
*/
int sqlite3VdbeCheckMemInvariants(Mem *p){
  /* If MEM_Dyn is set then Mem.xDel!=0.  
  ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
  */
  assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );

  /* MEM_Dyn may only be set if Mem.szMalloc==0.  In this way we
  ** ensure that if Mem.szMalloc>0 then it is safe to do
  ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
  ** That saves a few cycles in inner loops. */
  assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );

  /* Cannot be both MEM_Int and MEM_Real at the same time */
  assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );

  /* The szMalloc field holds the correct memory allocation size */
  assert( p->szMalloc==0
       || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );

  /* If p holds a string or blob, the Mem.z must point to exactly
  ** one of the following:
  **
  **   (1) Memory in Mem.zMalloc and managed by the Mem object
  **   (2) Memory to be freed using Mem.xDel
  **   (3) An ephemeral string or blob
  **   (4) A static string or blob
  */
  if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
    assert( 
      ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
      ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
      ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
      ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
    );
  }
  return 1;
}
................................................................................
** min(n,32) bytes.
**
** If the bPreserve argument is true, then copy of the content of
** pMem->z into the new allocation.  pMem must be either a string or
** blob if bPreserve is true.  If bPreserve is false, any prior content
** in pMem->z is discarded.
*/
SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
  assert( sqlite3VdbeCheckMemInvariants(pMem) );
  assert( (pMem->flags&MEM_RowSet)==0 );

  /* If the bPreserve flag is set to true, then the memory cell must already
  ** contain a valid string or blob value.  */
  assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
  testcase( bPreserve && pMem->z==0 );

  assert( pMem->szMalloc==0
       || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
  if( pMem->szMalloc<n ){
    if( n<32 ) n = 32;
    if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){
      pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
      bPreserve = 0;
    }else{
      if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
      pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
    }
    if( pMem->zMalloc==0 ){
      sqlite3VdbeMemSetNull(pMem);
      pMem->z = 0;
      pMem->szMalloc = 0;
      return SQLITE_NOMEM;
    }else{
      pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
    }
  }

  if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){
    memcpy(pMem->zMalloc, pMem->z, pMem->n);
  }
  if( (pMem->flags&MEM_Dyn)!=0 ){
    assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
    pMem->xDel((void *)(pMem->z));
  }

  pMem->z = pMem->zMalloc;
  pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
  return SQLITE_OK;
}

/*
** Change the pMem->zMalloc allocation to be at least szNew bytes.
** If pMem->zMalloc already meets or exceeds the requested size, this
** routine is a no-op.
**
** Any prior string or blob content in the pMem object may be discarded.
** The pMem->xDel destructor is called, if it exists.  Though MEM_Str
** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
** values are preserved.
**
** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
** if unable to complete the resizing.
*/
int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
  assert( szNew>0 );
  assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
  if( pMem->szMalloc<szNew ){
    return sqlite3VdbeMemGrow(pMem, szNew, 0);
  }
  assert( (pMem->flags & MEM_Dyn)==0 );
  pMem->z = pMem->zMalloc;
  pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
  return SQLITE_OK;
}

/*
** Change pMem so that its MEM_Str or MEM_Blob value is stored in
** MEM.zMalloc, where it can be safely written.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
  int f;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( (pMem->flags&MEM_RowSet)==0 );
  ExpandBlob(pMem);
  f = pMem->flags;
  if( (f&(MEM_Str|MEM_Blob)) && (pMem->szMalloc==0 || pMem->z!=pMem->zMalloc) ){
    if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
      return SQLITE_NOMEM;
    }
    pMem->z[pMem->n] = 0;
    pMem->z[pMem->n+1] = 0;
    pMem->flags |= MEM_Term;
#ifdef SQLITE_DEBUG
................................................................................
  assert( !(fg&MEM_Zero) );
  assert( !(fg&(MEM_Str|MEM_Blob)) );
  assert( fg&(MEM_Int|MEM_Real) );
  assert( (pMem->flags&MEM_RowSet)==0 );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );


  if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
    return SQLITE_NOMEM;
  }

  /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
  ** string representation of the value. Then, if the required encoding
  ** is UTF-16le or UTF-16be do a translation.
  ** 
  ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
  */
  if( fg & MEM_Int ){
    sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
  }else{
    assert( fg & MEM_Real );
    sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
  }
  pMem->n = sqlite3Strlen30(pMem->z);
  pMem->enc = SQLITE_UTF8;
  pMem->flags |= MEM_Str|MEM_Term;
  if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
  sqlite3VdbeChangeEncoding(pMem, enc);
  return SQLITE_OK;
................................................................................
    t.flags = MEM_Null;
    t.db = pMem->db;
    ctx.pOut = &t;
    ctx.pMem = pMem;
    ctx.pFunc = pFunc;
    pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
    assert( (pMem->flags & MEM_Dyn)==0 );
    if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
    memcpy(pMem, &t, sizeof(t));
    rc = ctx.isError;
  }
  return rc;
}

/*
................................................................................
** the unusual case where there really is memory in p that needs
** to be freed.
*/
static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
  if( VdbeMemDynamic(p) ){
    vdbeMemClearExternAndSetNull(p);
  }
  if( p->szMalloc ){
    sqlite3DbFree(p->db, p->zMalloc);
    p->szMalloc = 0;
  }
  p->z = 0;
}

/*
** Release any memory resources held by the Mem.  Both the memory that is
** free by Mem.xDel and the Mem.zMalloc allocation are freed.
................................................................................
** reset a Mem back to its minimum memory utilization.
**
** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
** prior to inserting new content into the Mem.
*/
void sqlite3VdbeMemRelease(Mem *p){
  assert( sqlite3VdbeCheckMemInvariants(p) );
  if( VdbeMemDynamic(p) || p->szMalloc ){
    vdbeMemClear(p);
  }
}

/*
** Convert a 64-bit IEEE double into a 64-bit signed integer.
** If the double is out of range of a 64-bit signed integer then
................................................................................
  int flags;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  flags = pMem->flags;
  if( flags & MEM_Int ){
    return pMem->u.i;
  }else if( flags & MEM_Real ){
    return doubleToInt64(pMem->u.r);
  }else if( flags & (MEM_Str|MEM_Blob) ){
    i64 value = 0;
    assert( pMem->z || pMem->n==0 );
    sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
    return value;
  }else{
    return 0;
................................................................................
** value.  If it is a string or blob, try to convert it to a double.
** If it is a NULL, return 0.0.
*/
double sqlite3VdbeRealValue(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  if( pMem->flags & MEM_Real ){
    return pMem->u.r;
  }else if( pMem->flags & MEM_Int ){
    return (double)pMem->u.i;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
    /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    double val = (double)0;
    sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
    return val;
................................................................................
}

/*
** The MEM structure is already a MEM_Real.  Try to also make it a
** MEM_Int if we can.
*/
void sqlite3VdbeIntegerAffinity(Mem *pMem){
  i64 ix;
  assert( pMem->flags & MEM_Real );
  assert( (pMem->flags & MEM_RowSet)==0 );
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );

  ix = doubleToInt64(pMem->u.r);

  /* Only mark the value as an integer if
  **
  **    (1) the round-trip conversion real->int->real is a no-op, and
  **    (2) The integer is neither the largest nor the smallest
  **        possible integer (ticket #3922)
  **
  ** The second and third terms in the following conditional enforces
  ** the second condition under the assumption that addition overflow causes
  ** values to wrap around.
  */
  if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
    pMem->u.i = ix;
    MemSetTypeFlag(pMem, MEM_Int);


  }
}

/*
** Convert pMem to type integer.  Invalidate any prior representations.
*/
int sqlite3VdbeMemIntegerify(Mem *pMem){
................................................................................
** Convert pMem so that it is of type MEM_Real.
** Invalidate any prior representations.
*/
int sqlite3VdbeMemRealify(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );

  pMem->u.r = sqlite3VdbeRealValue(pMem);
  MemSetTypeFlag(pMem, MEM_Real);
  return SQLITE_OK;
}

/*
** Convert pMem so that it has types MEM_Real or MEM_Int or both.
** Invalidate any prior representations.
................................................................................
int sqlite3VdbeMemNumerify(Mem *pMem){
  if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
    assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
    assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
      MemSetTypeFlag(pMem, MEM_Int);
    }else{
      pMem->u.r = sqlite3VdbeRealValue(pMem);
      MemSetTypeFlag(pMem, MEM_Real);
      sqlite3VdbeIntegerAffinity(pMem);
    }
  }
  assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
  pMem->flags &= ~(MEM_Str|MEM_Blob);
  return SQLITE_OK;
................................................................................
**
** The minimum amount of initialization feasible is performed.
*/
void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
  assert( (flags & ~MEM_TypeMask)==0 );
  pMem->flags = flags;
  pMem->db = db;
  pMem->szMalloc = 0;
}


/*
** Delete any previous value and set the value stored in *pMem to NULL.
**
** This routine calls the Mem.xDel destructor to dispose of values that
................................................................................
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type REAL.
*/
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
  sqlite3VdbeMemSetNull(pMem);
  if( !sqlite3IsNaN(val) ){
    pMem->u.r = val;
    pMem->flags = MEM_Real;
  }
}
#endif

/*
** Delete any previous value and set the value of pMem to be an
................................................................................
  sqlite3 *db = pMem->db;
  assert( db!=0 );
  assert( (pMem->flags & MEM_RowSet)==0 );
  sqlite3VdbeMemRelease(pMem);
  pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
  if( db->mallocFailed ){
    pMem->flags = MEM_Null;
    pMem->szMalloc = 0;
  }else{
    assert( pMem->zMalloc );
    pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
    pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);

    assert( pMem->u.pRowSet!=0 );
    pMem->flags = MEM_RowSet;
  }
}

/*
** Return true if the Mem object contains a TEXT or BLOB that is
................................................................................
  assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
  assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
  assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );

  sqlite3VdbeMemRelease(pTo);
  memcpy(pTo, pFrom, sizeof(Mem));
  pFrom->flags = MEM_Null;
  pFrom->szMalloc = 0;
}

/*
** Change the value of a Mem to be a string or a BLOB.
**
** The memory management strategy depends on the value of the xDel
** parameter. If the value passed is SQLITE_TRANSIENT, then the 
................................................................................
    int nAlloc = nByte;
    if( flags&MEM_Term ){
      nAlloc += (enc==SQLITE_UTF8?1:2);
    }
    if( nByte>iLimit ){
      return SQLITE_TOOBIG;
    }
    testcase( nAlloc==0 );
    testcase( nAlloc==31 );
    testcase( nAlloc==32 );
    if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
      return SQLITE_NOMEM;
    }
    memcpy(pMem->z, z, nAlloc);
  }else if( xDel==SQLITE_DYNAMIC ){
    sqlite3VdbeMemRelease(pMem);
    pMem->zMalloc = pMem->z = (char *)z;
    pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
  }else{
    sqlite3VdbeMemRelease(pMem);
    pMem->z = (char *)z;
    pMem->xDel = xDel;
    flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
  }

................................................................................

  if( offset+amt<=available ){
    pMem->z = &zData[offset];
    pMem->flags = MEM_Blob|MEM_Ephem;
    pMem->n = (int)amt;
  }else{
    pMem->flags = MEM_Null;
    if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){
      if( key ){
        rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
      }else{
        rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
      }
      if( rc==SQLITE_OK ){
        pMem->z[amt] = 0;
................................................................................
}

/*
** The pVal argument is known to be a value other than NULL.
** Convert it into a string with encoding enc and return a pointer
** to a zero-terminated version of that string.
*/
static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
  assert( pVal!=0 );
  assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
  assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
  assert( (pVal->flags & MEM_RowSet)==0 );
  assert( (pVal->flags & (MEM_Null))==0 );
  if( pVal->flags & (MEM_Blob|MEM_Str) ){
    pVal->flags |= MEM_Str;
................................................................................
    }
  }else if( op==TK_UMINUS ) {
    /* This branch happens for multiple negative signs.  Ex: -(-5) */
    if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) 
     && pVal!=0
    ){
      sqlite3VdbeMemNumerify(pVal);
      if( pVal->flags & MEM_Real ){
        pVal->u.r = -pVal->u.r;
      }else if( pVal->u.i==SMALLEST_INT64 ){
        pVal->u.r = -(double)SMALLEST_INT64;
        MemSetTypeFlag(pVal, MEM_Real);
      }else{
        pVal->u.i = -pVal->u.i;
      }

      sqlite3ValueApplyAffinity(pVal, affinity, enc);
    }
  }else if( op==TK_NULL ){
    pVal = valueNew(db, pCtx);
    if( pVal==0 ) goto no_mem;
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL
................................................................................
void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
  if( pRec ){
    int i;
    int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
    Mem *aMem = pRec->aMem;
    sqlite3 *db = aMem[0].db;
    for(i=0; i<nCol; i++){
      if( aMem[i].szMalloc ) sqlite3DbFree(db, aMem[i].zMalloc);
    }
    sqlite3KeyInfoUnref(pRec->pKeyInfo);
    sqlite3DbFree(db, pRec);
  }
}
#endif /* ifdef SQLITE_ENABLE_STAT4 */

Changes to src/vdbesort.c.

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
....
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
....
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
** attempts to extend the file to nByte bytes in size and to ensure that
** the VFS has memory mapped it.
**
** Whether or not the file does end up memory mapped of course depends on
** the specific VFS implementation.
*/
static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){
  if( nByte<=(i64)(db->nMaxSorterMmap) ){
    int rc = sqlite3OsTruncate(pFd, nByte);
    if( rc==SQLITE_OK && pFd->pMethods->iVersion>=3 ){
      void *p = 0;
      sqlite3OsFetch(pFd, 0, (int)nByte, &p);
      sqlite3OsUnfetch(pFd, 0, p);
    }
  }
}
#else
................................................................................

  rc = vdbeSorterMergeTreeBuild(pSorter, &pMain);
  if( rc==SQLITE_OK ){
#if SQLITE_MAX_WORKER_THREADS
    assert( pSorter->bUseThreads==0 || pSorter->nTask>1 );
    if( pSorter->bUseThreads ){
      int iTask;
      PmaReader *pReadr;
      SortSubtask *pLast = &pSorter->aTask[pSorter->nTask-1];
      rc = vdbeSortAllocUnpacked(pLast);
      if( rc==SQLITE_OK ){
        pReadr = (PmaReader*)sqlite3DbMallocZero(db, sizeof(PmaReader));
        pSorter->pReader = pReadr;
        if( pReadr==0 ) rc = SQLITE_NOMEM;
      }
................................................................................
** Copy the current sorter key into the memory cell pOut.
*/
int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){
  VdbeSorter *pSorter = pCsr->pSorter;
  void *pKey; int nKey;           /* Sorter key to copy into pOut */

  pKey = vdbeSorterRowkey(pSorter, &nKey);
  if( sqlite3VdbeMemGrow(pOut, nKey, 0) ){
    return SQLITE_NOMEM;
  }
  pOut->n = nKey;
  MemSetTypeFlag(pOut, MEM_Blob);
  memcpy(pOut->z, pKey, nKey);

  return SQLITE_OK;







|

|







 







|







 







|







1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
....
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
....
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
** attempts to extend the file to nByte bytes in size and to ensure that
** the VFS has memory mapped it.
**
** Whether or not the file does end up memory mapped of course depends on
** the specific VFS implementation.
*/
static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){
  if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){
    int rc = sqlite3OsTruncate(pFd, nByte);
    if( rc==SQLITE_OK ){
      void *p = 0;
      sqlite3OsFetch(pFd, 0, (int)nByte, &p);
      sqlite3OsUnfetch(pFd, 0, p);
    }
  }
}
#else
................................................................................

  rc = vdbeSorterMergeTreeBuild(pSorter, &pMain);
  if( rc==SQLITE_OK ){
#if SQLITE_MAX_WORKER_THREADS
    assert( pSorter->bUseThreads==0 || pSorter->nTask>1 );
    if( pSorter->bUseThreads ){
      int iTask;
      PmaReader *pReadr = 0;
      SortSubtask *pLast = &pSorter->aTask[pSorter->nTask-1];
      rc = vdbeSortAllocUnpacked(pLast);
      if( rc==SQLITE_OK ){
        pReadr = (PmaReader*)sqlite3DbMallocZero(db, sizeof(PmaReader));
        pSorter->pReader = pReadr;
        if( pReadr==0 ) rc = SQLITE_NOMEM;
      }
................................................................................
** Copy the current sorter key into the memory cell pOut.
*/
int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){
  VdbeSorter *pSorter = pCsr->pSorter;
  void *pKey; int nKey;           /* Sorter key to copy into pOut */

  pKey = vdbeSorterRowkey(pSorter, &nKey);
  if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){
    return SQLITE_NOMEM;
  }
  pOut->n = nKey;
  MemSetTypeFlag(pOut, MEM_Blob);
  memcpy(pOut->z, pKey, nKey);

  return SQLITE_OK;

Changes to src/vdbetrace.c.

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
...
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
      assert( idx>0 && idx<=p->nVar );
      pVar = &p->aVar[idx-1];
      if( pVar->flags & MEM_Null ){
        sqlite3StrAccumAppend(&out, "NULL", 4);
      }else if( pVar->flags & MEM_Int ){
        sqlite3XPrintf(&out, 0, "%lld", pVar->u.i);
      }else if( pVar->flags & MEM_Real ){
        sqlite3XPrintf(&out, 0, "%!.15g", pVar->r);
      }else if( pVar->flags & MEM_Str ){
        int nOut;  /* Number of bytes of the string text to include in output */
#ifndef SQLITE_OMIT_UTF16
        u8 enc = ENC(db);
        Mem utf8;
        if( enc!=SQLITE_UTF8 ){
          memset(&utf8, 0, sizeof(utf8));
................................................................................
      }
    }
  }
  return sqlite3StrAccumFinish(&out);
}

#endif /* #ifndef SQLITE_OMIT_TRACE */

/*****************************************************************************
** The following code implements the data-structure explaining logic
** for the Vdbe.
*/

#if defined(SQLITE_ENABLE_TREE_EXPLAIN)

/*
** Allocate a new Explain object
*/
void sqlite3ExplainBegin(Vdbe *pVdbe){
  if( pVdbe ){
    Explain *p;
    sqlite3BeginBenignMalloc();
    p = (Explain *)sqlite3MallocZero( sizeof(Explain) );
    if( p ){
      p->pVdbe = pVdbe;
      sqlite3_free(pVdbe->pExplain);
      pVdbe->pExplain = p;
      sqlite3StrAccumInit(&p->str, p->zBase, sizeof(p->zBase),
                          SQLITE_MAX_LENGTH);
      p->str.useMalloc = 2;
    }else{
      sqlite3EndBenignMalloc();
    }
  }
}

/*
** Return true if the Explain ends with a new-line.
*/
static int endsWithNL(Explain *p){
  return p && p->str.zText && p->str.nChar
           && p->str.zText[p->str.nChar-1]=='\n';
}
    
/*
** Append text to the indentation
*/
void sqlite3ExplainPrintf(Vdbe *pVdbe, const char *zFormat, ...){
  Explain *p;
  if( pVdbe && (p = pVdbe->pExplain)!=0 ){
    va_list ap;
    if( p->nIndent && endsWithNL(p) ){
      int n = p->nIndent;
      if( n>ArraySize(p->aIndent) ) n = ArraySize(p->aIndent);
      sqlite3AppendSpace(&p->str, p->aIndent[n-1]);
    }   
    va_start(ap, zFormat);
    sqlite3VXPrintf(&p->str, SQLITE_PRINTF_INTERNAL, zFormat, ap);
    va_end(ap);
  }
}

/*
** Append a '\n' if there is not already one.
*/
void sqlite3ExplainNL(Vdbe *pVdbe){
  Explain *p;
  if( pVdbe && (p = pVdbe->pExplain)!=0 && !endsWithNL(p) ){
    sqlite3StrAccumAppend(&p->str, "\n", 1);
  }
}

/*
** Push a new indentation level.  Subsequent lines will be indented
** so that they begin at the current cursor position.
*/
void sqlite3ExplainPush(Vdbe *pVdbe){
  Explain *p;
  if( pVdbe && (p = pVdbe->pExplain)!=0 ){
    if( p->str.zText && p->nIndent<ArraySize(p->aIndent) ){
      const char *z = p->str.zText;
      int i = p->str.nChar-1;
      int x;
      while( i>=0 && z[i]!='\n' ){ i--; }
      x = (p->str.nChar - 1) - i;
      if( p->nIndent && x<p->aIndent[p->nIndent-1] ){
        x = p->aIndent[p->nIndent-1];
      }
      p->aIndent[p->nIndent] = x;
    }
    p->nIndent++;
  }
}

/*
** Pop the indentation stack by one level.
*/
void sqlite3ExplainPop(Vdbe *p){
  if( p && p->pExplain ) p->pExplain->nIndent--;
}

/*
** Free the indentation structure
*/
void sqlite3ExplainFinish(Vdbe *pVdbe){
  if( pVdbe && pVdbe->pExplain ){
    sqlite3_free(pVdbe->zExplain);
    sqlite3ExplainNL(pVdbe);
    pVdbe->zExplain = sqlite3StrAccumFinish(&pVdbe->pExplain->str);
    sqlite3_free(pVdbe->pExplain);
    pVdbe->pExplain = 0;
    sqlite3EndBenignMalloc();
  }
}

/*
** Return the explanation of a virtual machine.
*/
const char *sqlite3VdbeExplanation(Vdbe *pVdbe){
  return (pVdbe && pVdbe->zExplain) ? pVdbe->zExplain : 0;
}
#endif /* defined(SQLITE_DEBUG) */







|







 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
...
179
180
181
182
183
184
185



















































































































      assert( idx>0 && idx<=p->nVar );
      pVar = &p->aVar[idx-1];
      if( pVar->flags & MEM_Null ){
        sqlite3StrAccumAppend(&out, "NULL", 4);
      }else if( pVar->flags & MEM_Int ){
        sqlite3XPrintf(&out, 0, "%lld", pVar->u.i);
      }else if( pVar->flags & MEM_Real ){
        sqlite3XPrintf(&out, 0, "%!.15g", pVar->u.r);
      }else if( pVar->flags & MEM_Str ){
        int nOut;  /* Number of bytes of the string text to include in output */
#ifndef SQLITE_OMIT_UTF16
        u8 enc = ENC(db);
        Mem utf8;
        if( enc!=SQLITE_UTF8 ){
          memset(&utf8, 0, sizeof(utf8));
................................................................................
      }
    }
  }
  return sqlite3StrAccumFinish(&out);
}

#endif /* #ifndef SQLITE_OMIT_TRACE */



















































































































Changes to src/vtab.c.

515
516
517
518
519
520
521

522
523
524
525
526
527
528
      *pzErr = sqlite3MPrintf(db, "%s", zErr);
      sqlite3_free(zErr);
    }
    sqlite3DbFree(db, pVTable);
  }else if( ALWAYS(pVTable->pVtab) ){
    /* Justification of ALWAYS():  A correct vtab constructor must allocate
    ** the sqlite3_vtab object if successful.  */

    pVTable->pVtab->pModule = pMod->pModule;
    pVTable->nRef = 1;
    if( sCtx.pTab ){
      const char *zFormat = "vtable constructor did not declare schema: %s";
      *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
      sqlite3VtabUnlock(pVTable);
      rc = SQLITE_ERROR;







>







515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
      *pzErr = sqlite3MPrintf(db, "%s", zErr);
      sqlite3_free(zErr);
    }
    sqlite3DbFree(db, pVTable);
  }else if( ALWAYS(pVTable->pVtab) ){
    /* Justification of ALWAYS():  A correct vtab constructor must allocate
    ** the sqlite3_vtab object if successful.  */
    memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0]));
    pVTable->pVtab->pModule = pMod->pModule;
    pVTable->nRef = 1;
    if( sCtx.pTab ){
      const char *zFormat = "vtable constructor did not declare schema: %s";
      *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
      sqlite3VtabUnlock(pVTable);
      rc = SQLITE_ERROR;

Changes to src/where.c.

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
....
2207
2208
2209
2210
2211
2212
2213








2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
....
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
....
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821



2822
2823
2824
2825
2826
2827
2828
2829
2830
2831


2832
2833

2834
2835

2836
2837
2838
2839
2840
2841
2842
2843
2844



2845
2846
2847
2848
2849


2850
2851
2852
2853
2854
2855

2856
2857
2858
2859
2860


2861


2862
2863

2864
2865
2866
2867


2868
2869

2870


2871
2872
2873
2874
2875
2876
2877
2878







2879
2880
2881
2882
2883
2884
2885
....
3525
3526
3527
3528
3529
3530
3531
3532

3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544

3545
3546
3547
3548
3549
3550
3551
....
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768



3769
3770
3771
3772
3773
3774



3775
3776
3777
3778

3779
3780
3781
3782
3783
3784
3785
....
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
....
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
....
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
....
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
....
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366



4367
4368
4369
4370
4371
4372
4373
....
4556
4557
4558
4559
4560
4561
4562

4563
4564
4565
4566
4567
4568
4569
....
4713
4714
4715
4716
4717
4718
4719
4720
4721





4722



4723
4724
4725
4726
4727
4728
4729
....
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
....
5024
5025
5026
5027
5028
5029
5030

5031
5032
5033
5034
5035
5036
5037
....
5038
5039
5040
5041
5042
5043
5044









5045
5046
5047
5048
5049
5050
5051
5052



5053
5054
5055
5056
5057
5058
5059
....
5090
5091
5092
5093
5094
5095
5096

5097
5098
5099
5100
5101
5102
5103
....
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
....
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810



5811
5812
5813
5814
5815
5816
5817
....
6156
6157
6158
6159
6160
6161
6162

6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179

6180
6181
6182
6183
6184
6185
6186
  assert( TK_GT>TK_EQ && TK_GT<TK_GE );
  assert( TK_LT>TK_EQ && TK_LT<TK_GE );
  assert( TK_LE>TK_EQ && TK_LE<TK_GE );
  assert( TK_GE==TK_EQ+4 );
  return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
}

/*
** Swap two objects of type TYPE.
*/
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}

/*
** Commute a comparison operator.  Expressions of the form "X op Y"
** are converted into "Y op X".
**
** If left/right precedence rules come into play when determining the
** collating sequence, then COLLATE operators are adjusted to ensure
** that the collating sequence does not change.  For example:
................................................................................
      }else{
        /* Note: this call could be optimized away - since the same values must 
        ** have been requested when testing key $P in whereEqualScanEst().  */
        whereKeyStats(pParse, p, pRec, 0, a);
        iLower = a[0];
        iUpper = a[0] + a[1];
      }









      /* If possible, improve on the iLower estimate using ($P:$L). */
      if( pLower ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pLower->pExpr->pRight;
        assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 );
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;
          whereKeyStats(pParse, p, pRec, 0, a);
          iNew = a[0] + ((pLower->eOperator & WO_GT) ? a[1] : 0);
          if( iNew>iLower ) iLower = iNew;
          nOut--;
          pLower = 0;
        }
      }

      /* If possible, improve on the iUpper estimate using ($P:$U). */
      if( pUpper ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pUpper->pExpr->pRight;
        assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;
          whereKeyStats(pParse, p, pRec, 1, a);
          iNew = a[0] + ((pUpper->eOperator & WO_LE) ? a[1] : 0);
          if( iNew<iUpper ) iUpper = iNew;
          nOut--;
          pUpper = 0;
        }
      }

      pBuilder->pRec = pRec;
................................................................................
  sqlite3StrAccumAppendAll(pStr, zColumn);
  sqlite3StrAccumAppend(pStr, zOp, 1);
  sqlite3StrAccumAppend(pStr, "?", 1);
}

/*
** Argument pLevel describes a strategy for scanning table pTab. This 
** function returns a pointer to a string buffer containing a description
** of the subset of table rows scanned by the strategy in the form of an
** SQL expression. Or, if all rows are scanned, NULL is returned.
**
** For example, if the query:
**
**   SELECT * FROM t1 WHERE a=1 AND b>2;
**
** is run and there is an index on (a, b), then this function returns a
** string similar to:
**
**   "a=? AND b>?"
**
** The returned pointer points to memory obtained from sqlite3DbMalloc().
** It is the responsibility of the caller to free the buffer when it is
** no longer required.
*/
static char *explainIndexRange(sqlite3 *db, WhereLoop *pLoop, Table *pTab){
  Index *pIndex = pLoop->u.btree.pIndex;
  u16 nEq = pLoop->u.btree.nEq;
  u16 nSkip = pLoop->u.btree.nSkip;
  int i, j;
  Column *aCol = pTab->aCol;
  i16 *aiColumn = pIndex->aiColumn;
  StrAccum txt;

  if( nEq==0 && (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
    return 0;
  }
  sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
  txt.db = db;
  sqlite3StrAccumAppend(&txt, " (", 2);
  for(i=0; i<nEq; i++){
    char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName;
    if( i>=nSkip ){
      explainAppendTerm(&txt, i, z, "=");
    }else{
      if( i ) sqlite3StrAccumAppend(&txt, " AND ", 5);
      sqlite3StrAccumAppend(&txt, "ANY(", 4);
      sqlite3StrAccumAppendAll(&txt, z);
      sqlite3StrAccumAppend(&txt, ")", 1);
    }
  }

  j = i;
  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
    char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName;
    explainAppendTerm(&txt, i++, z, ">");
  }
  if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
    char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName;
    explainAppendTerm(&txt, i, z, "<");
  }
  sqlite3StrAccumAppend(&txt, ")", 1);
  return sqlite3StrAccumFinish(&txt);
}

/*
** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
** record is added to the output to describe the table scan strategy in 
** pLevel.
................................................................................
#ifndef SQLITE_DEBUG
  if( pParse->explain==2 )
#endif
  {
    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */
    char *zMsg;                   /* Text to add to EQP output */
    int iId = pParse->iSelectId;  /* Select id (left-most output column) */
    int isSearch;                 /* True for a SEARCH. False for SCAN. */
    WhereLoop *pLoop;             /* The controlling WhereLoop object */
    u32 flags;                    /* Flags that describe this loop */




    pLoop = pLevel->pWLoop;
    flags = pLoop->wsFlags;
    if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;

    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN");


    if( pItem->pSelect ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId);

    }else{
      zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName);

    }

    if( pItem->zAlias ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
    }
    if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0
     && ALWAYS(pLoop->u.btree.pIndex!=0)
    ){
      const char *zFmt;



      Index *pIdx = pLoop->u.btree.pIndex;
      char *zWhere = explainIndexRange(db, pLoop, pItem->pTab);
      assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
      if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
        zFmt = zWhere ? "%s USING PRIMARY KEY%.0s%s" : "%s%.0s%s";


      }else if( flags & WHERE_AUTO_INDEX ){
        zFmt = "%s USING AUTOMATIC COVERING INDEX%.0s%s";
      }else if( flags & WHERE_IDX_ONLY ){
        zFmt = "%s USING COVERING INDEX %s%s";
      }else{
        zFmt = "%s USING INDEX %s%s";

      }
      zMsg = sqlite3MAppendf(db, zMsg, zFmt, zMsg, pIdx->zName, zWhere);
      sqlite3DbFree(db, zWhere);
    }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);





      if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg);

      }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg);
      }else if( flags&WHERE_BTM_LIMIT ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg);


      }else if( ALWAYS(flags&WHERE_TOP_LIMIT) ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg);

      }


    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
                  pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
    }
#endif
    zMsg = sqlite3MAppendf(db, zMsg, "%s", zMsg);







    sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
  }
}
#else
# define explainOneScan(u,v,w,x,y,z)
#endif /* SQLITE_OMIT_EXPLAIN */

................................................................................
      }
    }

    /* Run a separate WHERE clause for each term of the OR clause.  After
    ** eliminating duplicates from other WHERE clauses, the action for each
    ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
    */
    wctrlFlags =  WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |

                  WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY;
    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
        WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
        int j1 = 0;                     /* Address of jump operation */
        if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
          pAndExpr->pLeft = pOrExpr;
          pOrExpr = pAndExpr;
        }
        /* Loop through table entries that match term pOrTerm. */

        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                                      wctrlFlags, iCovCur);
        assert( pSubWInfo || pParse->nErr || db->mallocFailed );
        if( pSubWInfo ){
          WhereLoop *pSubLoop;
          explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
................................................................................
      pTerm->wtFlags |= TERM_CODED;
    }
  }

  return pLevel->notReady;
}

#if defined(WHERETRACE_ENABLED) && defined(SQLITE_ENABLE_TREE_EXPLAIN)
/*
** Generate "Explanation" text for a WhereTerm.
*/
static void whereExplainTerm(Vdbe *v, WhereTerm *pTerm){



  char zType[4];
  memcpy(zType, "...", 4);
  if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
  if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
  if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
  sqlite3ExplainPrintf(v, "%s ", zType);



  sqlite3ExplainExpr(v, pTerm->pExpr);
}
#endif /* WHERETRACE_ENABLED && SQLITE_ENABLE_TREE_EXPLAIN */



#ifdef WHERETRACE_ENABLED
/*
** Print a WhereLoop object for debugging purposes
*/
static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
  WhereInfo *pWInfo = pWC->pWInfo;
................................................................................
  }
  if( p->wsFlags & WHERE_SKIPSCAN ){
    sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->u.btree.nSkip);
  }else{
    sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
  }
  sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
#ifdef SQLITE_ENABLE_TREE_EXPLAIN
  /* If the 0x100 bit of wheretracing is set, then show all of the constraint
  ** expressions in the WhereLoop.aLTerm[] array.
  */
  if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){  /* WHERETRACE 0x100 */
    int i;
    Vdbe *v = pWInfo->pParse->pVdbe;
    sqlite3ExplainBegin(v);
    for(i=0; i<p->nLTerm; i++){
      WhereTerm *pTerm = p->aLTerm[i];
      if( pTerm==0 ) continue;
      sqlite3ExplainPrintf(v, "  (%d) #%-2d ", i+1, (int)(pTerm-pWC->a));
      sqlite3ExplainPush(v);
      whereExplainTerm(v, pTerm);
      sqlite3ExplainPop(v);
      sqlite3ExplainNL(v);
    }
    sqlite3ExplainFinish(v);
    sqlite3DebugPrintf("%s", sqlite3VdbeExplanation(v));
  }
#endif
}
#endif

/*
** Convert bulk memory into a valid WhereLoop that can be passed
** to whereLoopClear harmlessly.
*/
................................................................................
  ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);

  if( ppPrev==0 ){
    /* There already exists a WhereLoop on the list that is better
    ** than pTemplate, so just ignore pTemplate */
#if WHERETRACE_ENABLED /* 0x8 */
    if( sqlite3WhereTrace & 0x8 ){
      sqlite3DebugPrintf("ins-noop: ");
      whereLoopPrint(pTemplate, pBuilder->pWC);
    }
#endif
    return SQLITE_OK;  
  }else{
    p = *ppPrev;
  }
................................................................................
  /* If we reach this point it means that either p[] should be overwritten
  ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
  ** WhereLoop and insert it.
  */
#if WHERETRACE_ENABLED /* 0x8 */
  if( sqlite3WhereTrace & 0x8 ){
    if( p!=0 ){
      sqlite3DebugPrintf("ins-del:  ");
      whereLoopPrint(p, pBuilder->pWC);
    }
    sqlite3DebugPrintf("ins-new:  ");
    whereLoopPrint(pTemplate, pBuilder->pWC);
  }
#endif
  if( p==0 ){
    /* Allocate a new WhereLoop to add to the end of the list */
    *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop));
    if( p==0 ) return SQLITE_NOMEM;
................................................................................
      ppTail = whereLoopFindLesser(ppTail, pTemplate);
      if( ppTail==0 ) break;
      pToDel = *ppTail;
      if( pToDel==0 ) break;
      *ppTail = pToDel->pNextLoop;
#if WHERETRACE_ENABLED /* 0x8 */
      if( sqlite3WhereTrace & 0x8 ){
        sqlite3DebugPrintf("ins-del:  ");
        whereLoopPrint(pToDel, pBuilder->pWC);
      }
#endif
      whereLoopDelete(db, pToDel);
    }
  }
  whereLoopXfer(db, p, pTemplate);
................................................................................
    pNew->u.btree.nEq++;
    pNew->u.btree.nSkip++;
    pNew->aLTerm[pNew->nLTerm++] = 0;
    pNew->wsFlags |= WHERE_SKIPSCAN;
    nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
    if( pTerm ){
      /* TUNING:  When estimating skip-scan for a term that is also indexable,
      ** increase the cost of the skip-scan by 2x, to make it a little less
      ** desirable than the regular index lookup. */
      nIter += 10;  assert( 10==sqlite3LogEst(2) );
    }
    pNew->nOut -= nIter;



    whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
    pNew->nOut = saved_nOut;
    pNew->u.btree.nEq = saved_nEq;
    pNew->u.btree.nSkip = saved_nSkip;
  }
  for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
    u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
................................................................................

  if( pIndex->bUnordered ) return 0;
  if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
  for(ii=0; ii<pOB->nExpr; ii++){
    Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
    if( pExpr->op!=TK_COLUMN ) return 0;
    if( pExpr->iTable==iCursor ){

      for(jj=0; jj<pIndex->nKeyCol; jj++){
        if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
      }
    }
  }
  return 0;
}
................................................................................
      if( termCanDriveIndex(pTerm, pSrc, 0) ){
        pNew->u.btree.nEq = 1;
        pNew->u.btree.nSkip = 0;
        pNew->u.btree.pIndex = 0;
        pNew->nLTerm = 1;
        pNew->aLTerm[0] = pTerm;
        /* TUNING: One-time cost for computing the automatic index is
        ** approximately 7*N*log2(N) where N is the number of rows in
        ** the table being indexed. */





        pNew->rSetup = rLogSize + rSize + 28;  assert( 28==sqlite3LogEst(7) );



        ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
        /* TUNING: Each index lookup yields 20 rows in the table.  This
        ** is more than the usual guess of 10 rows, since we have no way
        ** of knowing how selective the index will ultimately be.  It would
        ** not be unreasonable to make this value much larger. */
        pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
        pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
................................................................................
  int iCur;
  WhereClause tempWC;
  WhereLoopBuilder sSubBuild;
  WhereOrSet sSum, sCur;
  struct SrcList_item *pItem;
  
  pWC = pBuilder->pWC;
  if( pWInfo->wctrlFlags & WHERE_AND_ONLY ) return SQLITE_OK;
  pWCEnd = pWC->a + pWC->nTerm;
  pNew = pBuilder->pNew;
  memset(&sSum, 0, sizeof(sSum));
  pItem = pWInfo->pTabList->a + pNew->iTab;
  iCur = pItem->iCursor;

  for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
................................................................................
      int once = 1;
      int i, j;
    
      sSubBuild = *pBuilder;
      sSubBuild.pOrderBy = 0;
      sSubBuild.pOrSet = &sCur;


      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        if( (pOrTerm->eOperator & WO_AND)!=0 ){
          sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
        }else if( pOrTerm->leftCursor==iCur ){
          tempWC.pWInfo = pWC->pWInfo;
          tempWC.pOuter = pWC;
          tempWC.op = TK_AND;
................................................................................
          tempWC.nTerm = 1;
          tempWC.a = pOrTerm;
          sSubBuild.pWC = &tempWC;
        }else{
          continue;
        }
        sCur.n = 0;









#ifndef SQLITE_OMIT_VIRTUALTABLE
        if( IsVirtual(pItem->pTab) ){
          rc = whereLoopAddVirtual(&sSubBuild, mExtra);
        }else
#endif
        {
          rc = whereLoopAddBtree(&sSubBuild, mExtra);
        }



        assert( rc==SQLITE_OK || sCur.n==0 );
        if( sCur.n==0 ){
          sSum.n = 0;
          break;
        }else if( once ){
          whereOrMove(&sSum, &sCur);
          once = 0;
................................................................................
        ** the planner may elect to "OR" together a full-table scan and an
        ** index lookup. And other similarly odd results.  */
        pNew->rRun = sSum.a[i].rRun + 1;
        pNew->nOut = sSum.a[i].nOut;
        pNew->prereq = sSum.a[i].prereq;
        rc = whereLoopInsert(pBuilder, pNew);
      }

    }
  }
  return rc;
}

/*
** Add all WhereLoop objects for all tables 
................................................................................
            pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
            if( !pColl ) pColl = db->pDfltColl;
            if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
          }
          isMatch = 1;
          break;
        }
        if( isMatch && (pWInfo->wctrlFlags & WHERE_GROUPBY)==0 ){
          /* Make sure the sort order is compatible in an ORDER BY clause.
          ** Sort order is irrelevant for a GROUP BY clause. */
          if( revSet ){
            if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
          }else{
            rev = revIdx ^ pOrderBy->a[i].sortOrder;
            if( rev ) *pRevMask |= MASKBIT(iLoop);
................................................................................
      pWInfo->nOBSat = pFrom->isOrdered;
      if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0;
      pWInfo->revMask = pFrom->revLoop;
    }
    if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
        && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr
    ){
      Bitmask notUsed = 0;
      int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 
          pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed
      );
      assert( pWInfo->sorted==0 );
      pWInfo->sorted = (nOrder==pWInfo->pOrderBy->nExpr);



    }
  }


  pWInfo->nRowOut = pFrom->nRow;

  /* Free temporary memory and return success */
................................................................................
      pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
      pWInfo->pOrderBy = pResultSet;
    }
  }

  /* Construct the WhereLoop objects */
  WHERETRACE(0xffff,("*** Optimizer Start ***\n"));

  /* Display all terms of the WHERE clause */
#if defined(WHERETRACE_ENABLED) && defined(SQLITE_ENABLE_TREE_EXPLAIN)
  if( sqlite3WhereTrace & 0x100 ){
    int i;
    Vdbe *v = pParse->pVdbe;
    sqlite3ExplainBegin(v);
    for(i=0; i<sWLB.pWC->nTerm; i++){
      sqlite3ExplainPrintf(v, "#%-2d ", i);
      sqlite3ExplainPush(v);
      whereExplainTerm(v, &sWLB.pWC->a[i]);
      sqlite3ExplainPop(v);
      sqlite3ExplainNL(v);
    }
    sqlite3ExplainFinish(v);
    sqlite3DebugPrintf("%s", sqlite3VdbeExplanation(v));
  }
#endif

  if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
    rc = whereLoopAddAll(&sWLB);
    if( rc ) goto whereBeginError;
  
    /* Display all of the WhereLoop objects if wheretrace is enabled */
#ifdef WHERETRACE_ENABLED /* !=0 */
    if( sqlite3WhereTrace ){







<
<
<
<
<







 







>
>
>
>
>
>
>
>





<




|










<




|







 







|
|
<









<
<
<
<

|






<

|
<
<
<
<
|



|

|
|
<
<






|



|

|
<







 







<




>
>
>









|
>
>

<
>

<
>



|

|
<
<
|
>
>
>
|
<


|
>
>

|

|

<
>

<
<
|
|
>
>
|
>
>

<
>

|

<
>
>
|
<
>

>
>



|



|
>
>
>
>
>
>
>







 







|
>
|











>







 







|

|

|
>
>
>
|
|
|
|
|
<
>
>
>
|
|
<
|
>







 







<
<
<
<
|

<
<

|
<
<
<
<
<
<

<
<

<







 







|







 







|


|







 







|







 







|




>
>
>







 







>







 







|
|
>
>
>
>
>
|
>
>
>







 







<







 







>







 







>
>
>
>
>
>
>
>
>








>
>
>







 







>







 







|







 







|

|


|
>
>
>







 







>

<


<
<

<
<
|
<
<

<
<


>







360
361
362
363
364
365
366





367
368
369
370
371
372
373
....
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221

2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236

2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
....
2733
2734
2735
2736
2737
2738
2739
2740
2741

2742
2743
2744
2745
2746
2747
2748
2749
2750




2751
2752
2753
2754
2755
2756
2757
2758

2759
2760




2761
2762
2763
2764
2765
2766
2767
2768


2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781

2782
2783
2784
2785
2786
2787
2788
....
2798
2799
2800
2801
2802
2803
2804

2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824

2825
2826

2827
2828
2829
2830
2831
2832
2833


2834
2835
2836
2837
2838

2839
2840
2841
2842
2843
2844
2845
2846
2847
2848

2849
2850


2851
2852
2853
2854
2855
2856
2857
2858

2859
2860
2861
2862

2863
2864
2865

2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
....
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
....
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784

3785
3786
3787
3788
3789

3790
3791
3792
3793
3794
3795
3796
3797
3798
....
3828
3829
3830
3831
3832
3833
3834




3835
3836


3837
3838






3839


3840

3841
3842
3843
3844
3845
3846
3847
....
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
....
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
....
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
....
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
....
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
....
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
....
5013
5014
5015
5016
5017
5018
5019

5020
5021
5022
5023
5024
5025
5026
....
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
....
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
....
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
....
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
....
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
....
6182
6183
6184
6185
6186
6187
6188
6189
6190

6191
6192


6193


6194


6195


6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
  assert( TK_GT>TK_EQ && TK_GT<TK_GE );
  assert( TK_LT>TK_EQ && TK_LT<TK_GE );
  assert( TK_LE>TK_EQ && TK_LE<TK_GE );
  assert( TK_GE==TK_EQ+4 );
  return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
}






/*
** Commute a comparison operator.  Expressions of the form "X op Y"
** are converted into "Y op X".
**
** If left/right precedence rules come into play when determining the
** collating sequence, then COLLATE operators are adjusted to ensure
** that the collating sequence does not change.  For example:
................................................................................
      }else{
        /* Note: this call could be optimized away - since the same values must 
        ** have been requested when testing key $P in whereEqualScanEst().  */
        whereKeyStats(pParse, p, pRec, 0, a);
        iLower = a[0];
        iUpper = a[0] + a[1];
      }

      assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
      assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
      assert( p->aSortOrder!=0 );
      if( p->aSortOrder[nEq] ){
        /* The roles of pLower and pUpper are swapped for a DESC index */
        SWAP(WhereTerm*, pLower, pUpper);
      }

      /* If possible, improve on the iLower estimate using ($P:$L). */
      if( pLower ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pLower->pExpr->pRight;

        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;
          whereKeyStats(pParse, p, pRec, 0, a);
          iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
          if( iNew>iLower ) iLower = iNew;
          nOut--;
          pLower = 0;
        }
      }

      /* If possible, improve on the iUpper estimate using ($P:$U). */
      if( pUpper ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pUpper->pExpr->pRight;

        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;
          whereKeyStats(pParse, p, pRec, 1, a);
          iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
          if( iNew<iUpper ) iUpper = iNew;
          nOut--;
          pUpper = 0;
        }
      }

      pBuilder->pRec = pRec;
................................................................................
  sqlite3StrAccumAppendAll(pStr, zColumn);
  sqlite3StrAccumAppend(pStr, zOp, 1);
  sqlite3StrAccumAppend(pStr, "?", 1);
}

/*
** Argument pLevel describes a strategy for scanning table pTab. This 
** function appends text to pStr that describes the subset of table
** rows scanned by the strategy in the form of an SQL expression.

**
** For example, if the query:
**
**   SELECT * FROM t1 WHERE a=1 AND b>2;
**
** is run and there is an index on (a, b), then this function returns a
** string similar to:
**
**   "a=? AND b>?"




*/
static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){
  Index *pIndex = pLoop->u.btree.pIndex;
  u16 nEq = pLoop->u.btree.nEq;
  u16 nSkip = pLoop->u.btree.nSkip;
  int i, j;
  Column *aCol = pTab->aCol;
  i16 *aiColumn = pIndex->aiColumn;


  if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;




  sqlite3StrAccumAppend(pStr, " (", 2);
  for(i=0; i<nEq; i++){
    char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName;
    if( i>=nSkip ){
      explainAppendTerm(pStr, i, z, "=");
    }else{
      if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
      sqlite3XPrintf(pStr, 0, "ANY(%s)", z);


    }
  }

  j = i;
  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
    char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName;
    explainAppendTerm(pStr, i++, z, ">");
  }
  if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
    char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName;
    explainAppendTerm(pStr, i, z, "<");
  }
  sqlite3StrAccumAppend(pStr, ")", 1);

}

/*
** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
** record is added to the output to describe the table scan strategy in 
** pLevel.
................................................................................
#ifndef SQLITE_DEBUG
  if( pParse->explain==2 )
#endif
  {
    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */

    int iId = pParse->iSelectId;  /* Select id (left-most output column) */
    int isSearch;                 /* True for a SEARCH. False for SCAN. */
    WhereLoop *pLoop;             /* The controlling WhereLoop object */
    u32 flags;                    /* Flags that describe this loop */
    char *zMsg;                   /* Text to add to EQP output */
    StrAccum str;                 /* EQP output string */
    char zBuf[100];               /* Initial space for EQP output string */

    pLoop = pLevel->pWLoop;
    flags = pLoop->wsFlags;
    if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;

    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
    str.db = db;
    sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
    if( pItem->pSelect ){

      sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId);
    }else{

      sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName);
    }

    if( pItem->zAlias ){
      sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias);
    }
    if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){


      const char *zFmt = 0;
      Index *pIdx;

      assert( pLoop->u.btree.pIndex!=0 );
      pIdx = pLoop->u.btree.pIndex;

      assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
      if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
        if( isSearch ){
          zFmt = "PRIMARY KEY";
        }
      }else if( flags & WHERE_AUTO_INDEX ){
        zFmt = "AUTOMATIC COVERING INDEX";
      }else if( flags & WHERE_IDX_ONLY ){
        zFmt = "COVERING INDEX %s";
      }else{

        zFmt = "INDEX %s";
      }


      if( zFmt ){
        sqlite3StrAccumAppend(&str, " USING ", 7);
        sqlite3XPrintf(&str, 0, zFmt, pIdx->zName);
        explainIndexRange(&str, pLoop, pItem->pTab);
      }
    }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
      const char *zRange;
      if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){

        zRange = "(rowid=?)";
      }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
        zRange = "(rowid>? AND rowid<?)";
      }else if( flags&WHERE_BTM_LIMIT ){

        zRange = "(rowid>?)";
      }else{
        assert( flags&WHERE_TOP_LIMIT);

        zRange = "(rowid<?)";
      }
      sqlite3StrAccumAppendAll(&str, " USING INTEGER PRIMARY KEY ");
      sqlite3StrAccumAppendAll(&str, zRange);
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
      sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s",
                  pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
    }
#endif
#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
    if( pLoop->nOut>=10 ){
      sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
    }else{
      sqlite3StrAccumAppend(&str, " (~1 row)", 9);
    }
#endif
    zMsg = sqlite3StrAccumFinish(&str);
    sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
  }
}
#else
# define explainOneScan(u,v,w,x,y,z)
#endif /* SQLITE_OMIT_EXPLAIN */

................................................................................
      }
    }

    /* Run a separate WHERE clause for each term of the OR clause.  After
    ** eliminating duplicates from other WHERE clauses, the action for each
    ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
    */
    wctrlFlags =  WHERE_OMIT_OPEN_CLOSE
                | WHERE_FORCE_TABLE
                | WHERE_ONETABLE_ONLY;
    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
        WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
        int j1 = 0;                     /* Address of jump operation */
        if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
          pAndExpr->pLeft = pOrExpr;
          pOrExpr = pAndExpr;
        }
        /* Loop through table entries that match term pOrTerm. */
        WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                                      wctrlFlags, iCovCur);
        assert( pSubWInfo || pParse->nErr || db->mallocFailed );
        if( pSubWInfo ){
          WhereLoop *pSubLoop;
          explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
................................................................................
      pTerm->wtFlags |= TERM_CODED;
    }
  }

  return pLevel->notReady;
}

#ifdef WHERETRACE_ENABLED
/*
** Print the content of a WhereTerm object
*/
static void whereTermPrint(WhereTerm *pTerm, int iTerm){
  if( pTerm==0 ){
    sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
  }else{
    char zType[4];
    memcpy(zType, "...", 4);
    if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
    if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
    if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';

    sqlite3DebugPrintf("TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x\n",
                       iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb,
                       pTerm->eOperator);
    sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
  }

}
#endif

#ifdef WHERETRACE_ENABLED
/*
** Print a WhereLoop object for debugging purposes
*/
static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
  WhereInfo *pWInfo = pWC->pWInfo;
................................................................................
  }
  if( p->wsFlags & WHERE_SKIPSCAN ){
    sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->u.btree.nSkip);
  }else{
    sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
  }
  sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);




  if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
    int i;


    for(i=0; i<p->nLTerm; i++){
      whereTermPrint(p->aLTerm[i], i);






    }


  }

}
#endif

/*
** Convert bulk memory into a valid WhereLoop that can be passed
** to whereLoopClear harmlessly.
*/
................................................................................
  ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);

  if( ppPrev==0 ){
    /* There already exists a WhereLoop on the list that is better
    ** than pTemplate, so just ignore pTemplate */
#if WHERETRACE_ENABLED /* 0x8 */
    if( sqlite3WhereTrace & 0x8 ){
      sqlite3DebugPrintf("   skip: ");
      whereLoopPrint(pTemplate, pBuilder->pWC);
    }
#endif
    return SQLITE_OK;  
  }else{
    p = *ppPrev;
  }
................................................................................
  /* If we reach this point it means that either p[] should be overwritten
  ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
  ** WhereLoop and insert it.
  */
#if WHERETRACE_ENABLED /* 0x8 */
  if( sqlite3WhereTrace & 0x8 ){
    if( p!=0 ){
      sqlite3DebugPrintf("replace: ");
      whereLoopPrint(p, pBuilder->pWC);
    }
    sqlite3DebugPrintf("    add: ");
    whereLoopPrint(pTemplate, pBuilder->pWC);
  }
#endif
  if( p==0 ){
    /* Allocate a new WhereLoop to add to the end of the list */
    *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop));
    if( p==0 ) return SQLITE_NOMEM;
................................................................................
      ppTail = whereLoopFindLesser(ppTail, pTemplate);
      if( ppTail==0 ) break;
      pToDel = *ppTail;
      if( pToDel==0 ) break;
      *ppTail = pToDel->pNextLoop;
#if WHERETRACE_ENABLED /* 0x8 */
      if( sqlite3WhereTrace & 0x8 ){
        sqlite3DebugPrintf(" delete: ");
        whereLoopPrint(pToDel, pBuilder->pWC);
      }
#endif
      whereLoopDelete(db, pToDel);
    }
  }
  whereLoopXfer(db, p, pTemplate);
................................................................................
    pNew->u.btree.nEq++;
    pNew->u.btree.nSkip++;
    pNew->aLTerm[pNew->nLTerm++] = 0;
    pNew->wsFlags |= WHERE_SKIPSCAN;
    nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
    if( pTerm ){
      /* TUNING:  When estimating skip-scan for a term that is also indexable,
      ** multiply the cost of the skip-scan by 2.0, to make it a little less
      ** desirable than the regular index lookup. */
      nIter += 10;  assert( 10==sqlite3LogEst(2) );
    }
    pNew->nOut -= nIter;
    /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
    ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
    nIter += 5;
    whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
    pNew->nOut = saved_nOut;
    pNew->u.btree.nEq = saved_nEq;
    pNew->u.btree.nSkip = saved_nSkip;
  }
  for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
    u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
................................................................................

  if( pIndex->bUnordered ) return 0;
  if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
  for(ii=0; ii<pOB->nExpr; ii++){
    Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
    if( pExpr->op!=TK_COLUMN ) return 0;
    if( pExpr->iTable==iCursor ){
      if( pExpr->iColumn<0 ) return 1;
      for(jj=0; jj<pIndex->nKeyCol; jj++){
        if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
      }
    }
  }
  return 0;
}
................................................................................
      if( termCanDriveIndex(pTerm, pSrc, 0) ){
        pNew->u.btree.nEq = 1;
        pNew->u.btree.nSkip = 0;
        pNew->u.btree.pIndex = 0;
        pNew->nLTerm = 1;
        pNew->aLTerm[0] = pTerm;
        /* TUNING: One-time cost for computing the automatic index is
        ** estimated to be X*N*log2(N) where N is the number of rows in
        ** the table being indexed and where X is 7 (LogEst=28) for normal
        ** tables or 1.375 (LogEst=4) for views and subqueries.  The value
        ** of X is smaller for views and subqueries so that the query planner
        ** will be more aggressive about generating automatic indexes for
        ** those objects, since there is no opportunity to add schema
        ** indexes on subqueries and views. */
        pNew->rSetup = rLogSize + rSize + 4;
        if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
          pNew->rSetup += 24;
        }
        ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
        /* TUNING: Each index lookup yields 20 rows in the table.  This
        ** is more than the usual guess of 10 rows, since we have no way
        ** of knowing how selective the index will ultimately be.  It would
        ** not be unreasonable to make this value much larger. */
        pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
        pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
................................................................................
  int iCur;
  WhereClause tempWC;
  WhereLoopBuilder sSubBuild;
  WhereOrSet sSum, sCur;
  struct SrcList_item *pItem;
  
  pWC = pBuilder->pWC;

  pWCEnd = pWC->a + pWC->nTerm;
  pNew = pBuilder->pNew;
  memset(&sSum, 0, sizeof(sSum));
  pItem = pWInfo->pTabList->a + pNew->iTab;
  iCur = pItem->iCursor;

  for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
................................................................................
      int once = 1;
      int i, j;
    
      sSubBuild = *pBuilder;
      sSubBuild.pOrderBy = 0;
      sSubBuild.pOrSet = &sCur;

      WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        if( (pOrTerm->eOperator & WO_AND)!=0 ){
          sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
        }else if( pOrTerm->leftCursor==iCur ){
          tempWC.pWInfo = pWC->pWInfo;
          tempWC.pOuter = pWC;
          tempWC.op = TK_AND;
................................................................................
          tempWC.nTerm = 1;
          tempWC.a = pOrTerm;
          sSubBuild.pWC = &tempWC;
        }else{
          continue;
        }
        sCur.n = 0;
#ifdef WHERETRACE_ENABLED
        WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 
                   (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
        if( sqlite3WhereTrace & 0x400 ){
          for(i=0; i<sSubBuild.pWC->nTerm; i++){
            whereTermPrint(&sSubBuild.pWC->a[i], i);
          }
        }
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
        if( IsVirtual(pItem->pTab) ){
          rc = whereLoopAddVirtual(&sSubBuild, mExtra);
        }else
#endif
        {
          rc = whereLoopAddBtree(&sSubBuild, mExtra);
        }
        if( rc==SQLITE_OK ){
          rc = whereLoopAddOr(&sSubBuild, mExtra);
        }
        assert( rc==SQLITE_OK || sCur.n==0 );
        if( sCur.n==0 ){
          sSum.n = 0;
          break;
        }else if( once ){
          whereOrMove(&sSum, &sCur);
          once = 0;
................................................................................
        ** the planner may elect to "OR" together a full-table scan and an
        ** index lookup. And other similarly odd results.  */
        pNew->rRun = sSum.a[i].rRun + 1;
        pNew->nOut = sSum.a[i].nOut;
        pNew->prereq = sSum.a[i].prereq;
        rc = whereLoopInsert(pBuilder, pNew);
      }
      WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
    }
  }
  return rc;
}

/*
** Add all WhereLoop objects for all tables 
................................................................................
            pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
            if( !pColl ) pColl = db->pDfltColl;
            if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
          }
          isMatch = 1;
          break;
        }
        if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
          /* Make sure the sort order is compatible in an ORDER BY clause.
          ** Sort order is irrelevant for a GROUP BY clause. */
          if( revSet ){
            if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
          }else{
            rev = revIdx ^ pOrderBy->a[i].sortOrder;
            if( rev ) *pRevMask |= MASKBIT(iLoop);
................................................................................
      pWInfo->nOBSat = pFrom->isOrdered;
      if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0;
      pWInfo->revMask = pFrom->revLoop;
    }
    if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
        && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr
    ){
      Bitmask revMask = 0;
      int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 
          pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
      );
      assert( pWInfo->sorted==0 );
      if( nOrder==pWInfo->pOrderBy->nExpr ){
        pWInfo->sorted = 1;
        pWInfo->revMask = revMask;
      }
    }
  }


  pWInfo->nRowOut = pFrom->nRow;

  /* Free temporary memory and return success */
................................................................................
      pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
      pWInfo->pOrderBy = pResultSet;
    }
  }

  /* Construct the WhereLoop objects */
  WHERETRACE(0xffff,("*** Optimizer Start ***\n"));
#if defined(WHERETRACE_ENABLED)
  /* Display all terms of the WHERE clause */

  if( sqlite3WhereTrace & 0x100 ){
    int i;


    for(i=0; i<sWLB.pWC->nTerm; i++){


      whereTermPrint(&sWLB.pWC->a[i], i);


    }


  }
#endif

  if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
    rc = whereLoopAddAll(&sWLB);
    if( rc ) goto whereBeginError;
  
    /* Display all of the WhereLoop objects if wheretrace is enabled */
#ifdef WHERETRACE_ENABLED /* !=0 */
    if( sqlite3WhereTrace ){

Added test/analyzeD.test.











































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# 2005 July 22
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
# This file implements tests for the ANALYZE command.
#
# $Id: analyze.test,v 1.9 2008/08/11 18:44:58 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix analyzeD

ifcapable {!stat4} {
  finish_test
  return
}


# Set up a table with the following properties:
#
#    * Contains 1000 rows.
#    * Column a contains even integers between 0 and 18, inclusive (so that
#      a=? for any such integer matches 100 rows).
#    * Column b contains integers between 0 and 9, inclusive.
#    * Column c contains integers between 0 and 199, inclusive (so that
#      for any such integer, c=? matches 5 rows).
#    * Then add 7 rows with a new value for "a" - 3001. The stat4 table will
#      not contain any samples with a=3001.
#
do_execsql_test 1.0 {
  CREATE TABLE t1(a, b, c);
}
do_test 1.1 {
  for {set i 1} {$i < 1000} {incr i} {
    set c [expr $i % 200]
    execsql { INSERT INTO t1(a, b, c) VALUES( 2*($i/100), $i%10, $c ) }
  }

  execsql {
    INSERT INTO t1 VALUES(3001, 3001, 3001);
    INSERT INTO t1 VALUES(3001, 3001, 3002);
    INSERT INTO t1 VALUES(3001, 3001, 3003);
    INSERT INTO t1 VALUES(3001, 3001, 3004);
    INSERT INTO t1 VALUES(3001, 3001, 3005);
    INSERT INTO t1 VALUES(3001, 3001, 3006);
    INSERT INTO t1 VALUES(3001, 3001, 3007);

    CREATE INDEX t1_ab ON t1(a, b);
    CREATE INDEX t1_c ON t1(c);

    ANALYZE;
  }
} {}

# With full ANALYZE data, SQLite sees that c=150 (5 rows) is better than
# a=3001 (7 rows).
#
do_eqp_test 1.2 {
  SELECT * FROM t1 WHERE a=3001 AND c=150;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX t1_c (c=?)}
}

do_test 1.3 {
  execsql { DELETE FROM sqlite_stat1 }
  db close
  sqlite3 db test.db
} {}

# Without stat1, because 3001 is larger than all samples in the stat4
# table, SQLite things that a=3001 matches just 1 row. So it (incorrectly)
# chooses it over the c=150 index (5 rows). Even with stat1 data, things
# worked this way before commit [e6f7f97dbc].
#
do_eqp_test 1.4 {
  SELECT * FROM t1 WHERE a=3001 AND c=150;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX t1_ab (a=?)}
}

do_test 1.5 {
  execsql { 
    UPDATE t1 SET a=13 WHERE a = 3001;
    ANALYZE;
  }
} {}

do_eqp_test 1.6 {
  SELECT * FROM t1 WHERE a=13 AND c=150;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX t1_c (c=?)}
}

do_test 1.7 {
  execsql { DELETE FROM sqlite_stat1 }
  db close
  sqlite3 db test.db
} {}

# Same test as 1.4, except this time the 7 rows that match the a=? condition 
# do not feature larger values than all rows in the stat4 table. So SQLite
# gets this right, even without stat1 data.
do_eqp_test 1.8 {
  SELECT * FROM t1 WHERE a=13 AND c=150;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX t1_c (c=?)}
}

finish_test

Added test/analyzeE.test.





































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# 2014-10-08
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements tests for using STAT4 information
# on a descending index in a range query.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix analyzeE

ifcapable {!stat4} {
  finish_test
  return
}

# Verify that range queries on an ASCENDING index will use the
# index only if the range covers only a small fraction of the
# entries.
#
do_execsql_test analyzeE-1.0 {
  CREATE TABLE t1(a,b);
  WITH RECURSIVE
    cnt(x) AS (VALUES(1000) UNION ALL SELECT x+1 FROM cnt WHERE x<2000)
  INSERT INTO t1(a,b) SELECT x, x FROM cnt;
  CREATE INDEX t1a ON t1(a);
  ANALYZE;
} {}
do_execsql_test analyzeE-1.1 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 500 AND 2500;
} {/SCAN TABLE t1/}
do_execsql_test analyzeE-1.2 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 2900 AND 3000;
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-1.3 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 1700 AND 1750;
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-1.4 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 1 AND 500
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-1.5 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 3000 AND 3000000
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-1.6 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a<500
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-1.7 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a>2500
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-1.8 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a>1900
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-1.9 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a>1100
} {/SCAN TABLE t1/}
do_execsql_test analyzeE-1.10 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a<1100
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-1.11 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a<1900
} {/SCAN TABLE t1/}

# Verify that everything works the same on a DESCENDING index.
#
do_execsql_test analyzeE-2.0 {
  DROP INDEX t1a;
  CREATE INDEX t1a ON t1(a DESC);
  ANALYZE;
} {}
do_execsql_test analyzeE-2.1 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 500 AND 2500;
} {/SCAN TABLE t1/}
do_execsql_test analyzeE-2.2 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 2900 AND 3000;
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-2.3 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 1700 AND 1750;
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-2.4 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 1 AND 500
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-2.5 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 3000 AND 3000000
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-2.6 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a<500
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-2.7 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a>2500
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-2.8 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a>1900
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-2.9 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a>1100
} {/SCAN TABLE t1/}
do_execsql_test analyzeE-2.10 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a<1100
} {/SEARCH TABLE t1 USING INDEX t1a/}
do_execsql_test analyzeE-2.11 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a<1900
} {/SCAN TABLE t1/}

# Now do a range query on the second term of an ASCENDING index
# where the first term is constrained by equality.
#
do_execsql_test analyzeE-3.0 {
  DROP TABLE t1;
  CREATE TABLE t1(a,b,c);
  WITH RECURSIVE
    cnt(x) AS (VALUES(1000) UNION ALL SELECT x+1 FROM cnt WHERE x<2000)
  INSERT INTO t1(a,b,c) SELECT x, x, 123 FROM cnt;
  CREATE INDEX t1ca ON t1(c,a);
  ANALYZE;
} {}
do_execsql_test analyzeE-3.1 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 500 AND 2500 AND c=123;
} {/SCAN TABLE t1/}
do_execsql_test analyzeE-3.2 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 2900 AND 3000 AND c=123;
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-3.3 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 1700 AND 1750 AND c=123;
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-3.4 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 1 AND 500 AND c=123
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-3.5 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 3000 AND 3000000 AND c=123
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-3.6 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a<500 AND c=123
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-3.7 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a>2500 AND c=123
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-3.8 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a>1900 AND c=123
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-3.9 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a>1100 AND c=123
} {/SCAN TABLE t1/}
do_execsql_test analyzeE-3.10 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a<1100 AND c=123
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-3.11 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a<1900 AND c=123
} {/SCAN TABLE t1/}

# Repeat the 3.x tests using a DESCENDING index
#
do_execsql_test analyzeE-4.0 {
  DROP INDEX t1ca;
  CREATE INDEX t1ca ON t1(c ASC,a DESC);
  ANALYZE;
} {}
do_execsql_test analyzeE-4.1 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 500 AND 2500 AND c=123;
} {/SCAN TABLE t1/}
do_execsql_test analyzeE-4.2 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 2900 AND 3000 AND c=123;
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-4.3 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 1700 AND 1750 AND c=123;
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-4.4 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 1 AND 500 AND c=123
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-4.5 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a BETWEEN 3000 AND 3000000 AND c=123
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-4.6 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a<500 AND c=123
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-4.7 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a>2500 AND c=123
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-4.8 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a>1900 AND c=123
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-4.9 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a>1100 AND c=123
} {/SCAN TABLE t1/}
do_execsql_test analyzeE-4.10 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a<1100 AND c=123
} {/SEARCH TABLE t1 USING INDEX t1ca/}
do_execsql_test analyzeE-4.11 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a<1900 AND c=123
} {/SCAN TABLE t1/}

finish_test

Changes to test/autoindex1.test.

408
409
410
411
412
413
414
415

































































































416
  EXPLAIN QUERY PLAN
  SELECT * FROM 
        data JOIN mimetypes ON (data.mimetype_id=mimetypes._id) 
             JOIN raw_contacts ON (data.raw_contact_id=raw_contacts._id) 
             JOIN accounts ON (raw_contacts.account_id=accounts._id)
   WHERE mimetypes._id=10 AND data14 IS NOT NULL;
} {/SEARCH TABLE data .*SEARCH TABLE raw_contacts/}


































































































finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
  EXPLAIN QUERY PLAN
  SELECT * FROM 
        data JOIN mimetypes ON (data.mimetype_id=mimetypes._id) 
             JOIN raw_contacts ON (data.raw_contact_id=raw_contacts._id) 
             JOIN accounts ON (raw_contacts.account_id=accounts._id)
   WHERE mimetypes._id=10 AND data14 IS NOT NULL;
} {/SEARCH TABLE data .*SEARCH TABLE raw_contacts/}

# Another test case from an important user of SQLite.  The key feature of
# this test is that the "aggindex" subquery should make use of an
# automatic index.  If it does, the query is fast.  If it does not, the
# query is deathly slow.  It worked OK in 3.7.17 but started going slow
# with version 3.8.0.  The problem was fixed for 3.8.7 by reducing the
# cost estimate for automatic indexes on views and subqueries.
#
db close
forcedelete test.db
sqlite3 db test.db
do_execsql_test autoindex1-900 {
  CREATE TABLE messages (ROWID INTEGER PRIMARY KEY AUTOINCREMENT, message_id, document_id BLOB, in_reply_to, remote_id INTEGER, sender INTEGER, subject_prefix, subject INTEGER, date_sent INTEGER, date_received INTEGER, date_created INTEGER, date_last_viewed INTEGER, mailbox INTEGER, remote_mailbox INTEGER, original_mailbox INTEGER, flags INTEGER, read, flagged, size INTEGER, color, encoding, type INTEGER, pad, conversation_id INTEGER DEFAULT -1, snippet TEXT DEFAULT NULL, fuzzy_ancestor INTEGER DEFAULT NULL, automated_conversation INTEGER DEFAULT 0, root_status INTEGER DEFAULT -1, conversation_position INTEGER DEFAULT -1);
  CREATE INDEX date_index ON messages(date_received);
  CREATE INDEX date_last_viewed_index ON messages(date_last_viewed);
  CREATE INDEX date_created_index ON messages(date_created);
  CREATE INDEX message_message_id_mailbox_index ON messages(message_id, mailbox);
  CREATE INDEX message_document_id_index ON messages(document_id);
  CREATE INDEX message_read_index ON messages(read);
  CREATE INDEX message_flagged_index ON messages(flagged);
  CREATE INDEX message_mailbox_index ON messages(mailbox, date_received);
  CREATE INDEX message_remote_mailbox_index ON messages(remote_mailbox, remote_id);
  CREATE INDEX message_type_index ON messages(type);
  CREATE INDEX message_conversation_id_conversation_position_index ON messages(conversation_id, conversation_position);
  CREATE INDEX message_fuzzy_ancestor_index ON messages(fuzzy_ancestor);
  CREATE INDEX message_subject_fuzzy_ancestor_index ON messages(subject, fuzzy_ancestor);
  CREATE INDEX message_sender_subject_automated_conversation_index ON messages(sender, subject, automated_conversation);
  CREATE INDEX message_sender_index ON messages(sender);
  CREATE INDEX message_root_status ON messages(root_status);
  CREATE TABLE subjects (ROWID INTEGER PRIMARY KEY, subject COLLATE RTRIM, normalized_subject COLLATE RTRIM);
  CREATE INDEX subject_subject_index ON subjects(subject);
  CREATE INDEX subject_normalized_subject_index ON subjects(normalized_subject);
  CREATE TABLE addresses (ROWID INTEGER PRIMARY KEY, address COLLATE NOCASE, comment, UNIQUE(address, comment));
  CREATE INDEX addresses_address_index ON addresses(address);
  CREATE TABLE mailboxes (ROWID INTEGER PRIMARY KEY, url UNIQUE, total_count INTEGER DEFAULT 0, unread_count INTEGER DEFAULT 0, unseen_count INTEGER DEFAULT 0, deleted_count INTEGER DEFAULT 0, unread_count_adjusted_for_duplicates INTEGER DEFAULT 0, change_identifier, source INTEGER, alleged_change_identifier);
  CREATE INDEX mailboxes_source_index ON mailboxes(source);
  CREATE TABLE labels (ROWID INTEGER PRIMARY KEY, message_id INTEGER NOT NULL, mailbox_id INTEGER NOT NULL, UNIQUE(message_id, mailbox_id));
  CREATE INDEX labels_message_id_mailbox_id_index ON labels(message_id, mailbox_id);
  CREATE INDEX labels_mailbox_id_index ON labels(mailbox_id);
  
  explain query plan
  SELECT messages.ROWID,
         messages.message_id,
         messages.remote_id,
         messages.date_received,
         messages.date_sent,
         messages.flags,
         messages.size,
         messages.color,
         messages.date_last_viewed,
         messages.subject_prefix,
         subjects.subject,
         sender.comment,
         sender.address,
         NULL,
         messages.mailbox,
         messages.original_mailbox,
         NULL,
         NULL,
         messages.type,
         messages.document_id,
         sender,
         NULL,
         messages.conversation_id,
         messages.conversation_position,
         agglabels.labels
   FROM mailboxes AS mailbox
        JOIN messages ON mailbox.ROWID = messages.mailbox
        LEFT OUTER JOIN subjects ON messages.subject = subjects.ROWID
        LEFT OUTER JOIN addresses AS sender ON messages.sender = sender.ROWID
        LEFT OUTER JOIN (
               SELECT message_id, group_concat(mailbox_id) as labels
               FROM labels GROUP BY message_id
             ) AS agglabels ON messages.ROWID = agglabels.message_id
  WHERE (mailbox.url = 'imap://email.app@imap.gmail.com/%5BGmail%5D/All%20Mail')
    AND (messages.ROWID IN (
            SELECT labels.message_id
              FROM labels JOIN mailboxes ON labels.mailbox_id = mailboxes.ROWID
             WHERE mailboxes.url = 'imap://email.app@imap.gmail.com/INBOX'))
    AND messages.mailbox in (6,12,18,24,30,36,42,1,7,13,19,25,31,37,43,2,8,
                             14,20,26,32,38,3,9,15,21,27,33,39,4,10,16,22,28,
                             34,40,5,11,17,23,35,41)
   ORDER BY date_received DESC;
} {/agglabels USING AUTOMATIC COVERING INDEX/}

# A test case for VIEWs
#
do_execsql_test autoindex1-901 {
  CREATE TABLE t1(x INTEGER PRIMARY KEY, y, z);
  CREATE TABLE t2(a, b);
  CREATE VIEW agg2 AS SELECT a, sum(b) AS m FROM t2 GROUP BY a;
  EXPLAIN QUERY PLAN
  SELECT t1.z, agg2.m
    FROM t1 JOIN agg2 ON t1.y=agg2.m
   WHERE t1.x IN (1,2,3);
} {/USING AUTOMATIC COVERING INDEX/}


finish_test

Changes to test/corruptI.test.

71
72
73
74
75
76
77



78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105
  catchsql { SELECT * FROM r WHERE x >= 10.0 }
} {1 {database disk image is malformed}}

do_test 2.2 {
  catchsql { SELECT * FROM r WHERE x >= 10 }
} {1 {database disk image is malformed}}




reset_db

do_execsql_test 3.1 {

  PRAGMA page_size = 512;
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b);
  WITH s(a, b) AS (
    SELECT 2, 'abcdefghij'
    UNION ALL
    SELECT a+2, b FROM s WHERe a < 40
  )
  INSERT INTO t1 SELECT * FROM s;
} {}

do_test 3.2 {
  hexio_write test.db [expr 512+3] 0054
  db close
  sqlite3 db test.db
  execsql { INSERT INTO t1 VALUES(5, 'klmnopqrst') }
  execsql { INSERT INTO t1 VALUES(7, 'klmnopqrst') }
} {}

db close
sqlite3 db test.db
do_catchsql_test 3.2 {
  INSERT INTO t1 VALUES(9, 'klmnopqrst');
} {1 {database disk image is malformed}}


finish_test







>
>
>
|
<
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
>

71
72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
  catchsql { SELECT * FROM r WHERE x >= 10.0 }
} {1 {database disk image is malformed}}

do_test 2.2 {
  catchsql { SELECT * FROM r WHERE x >= 10 }
} {1 {database disk image is malformed}}

if {[db one {SELECT sqlite_compileoption_used('ENABLE_OVERSIZE_CELL_CHECK')}]} {
  # The following tests only work if OVERSIZE_CELL_CHECK is disabled
} else {
  reset_db

  do_execsql_test 3.1 {
     PRAGMA auto_vacuum=0;
     PRAGMA page_size = 512;
     CREATE TABLE t1(a INTEGER PRIMARY KEY, b);
     WITH s(a, b) AS (
       SELECT 2, 'abcdefghij'
       UNION ALL
       SELECT a+2, b FROM s WHERe a < 40
     )
     INSERT INTO t1 SELECT * FROM s;
   } {}
   
   do_test 3.2 {
     hexio_write test.db [expr 512+3] 0054
     db close
     sqlite3 db test.db
     execsql { INSERT INTO t1 VALUES(5, 'klmnopqrst') }
     execsql { INSERT INTO t1 VALUES(7, 'klmnopqrst') }
   } {}
   
   db close
   sqlite3 db test.db
   do_catchsql_test 3.3 {
     INSERT INTO t1 VALUES(9, 'klmnopqrst');
   } {1 {database disk image is malformed}}

} ;# end-if !defined(ENABLE_OVERSIZE_CELL_CHECK)
finish_test

Changes to test/default.test.

94
95
96
97
98
99
100
101




























102
    f INT DEFAULT -9223372036854775808,
    g INT DEFAULT (-(-9223372036854775808)),
    h INT DEFAULT (-(-9223372036854775807))
  );
  INSERT INTO t300 DEFAULT VALUES;
  SELECT * FROM t300;
} {2147483647 2147483648 9223372036854775807 -2147483647 -2147483648 -9223372036854775808 9.22337203685478e+18 9223372036854775807}





























finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    f INT DEFAULT -9223372036854775808,
    g INT DEFAULT (-(-9223372036854775808)),
    h INT DEFAULT (-(-9223372036854775807))
  );
  INSERT INTO t300 DEFAULT VALUES;
  SELECT * FROM t300;
} {2147483647 2147483648 9223372036854775807 -2147483647 -2147483648 -9223372036854775808 9.22337203685478e+18 9223372036854775807}

# Do now allow bound parameters in new DEFAULT values. 
# Silently convert bound parameters to NULL in DEFAULT causes
# in the sqlite_master table, for backwards compatibility.
#
db close
forcedelete test.db
sqlite3 db test.db
do_execsql_test default-4.0 {
  CREATE TABLE t1(a TEXT, b TEXT DEFAULT(99));
  PRAGMA writable_schema=ON;
  UPDATE sqlite_master SET sql='CREATE TABLE t1(a TEXT, b TEXT DEFAULT(:xyz))';
} {}
db close 
sqlite3 db test.db
do_execsql_test default-4.1 {
  INSERT INTO t1(a) VALUES('xyzzy');
  SELECT a, quote(b) FROM t1;
} {xyzzy NULL}
do_catchsql_test default-4.2 {
  CREATE TABLE t2(a TEXT, b TEXT DEFAULT(:xyz));
} {1 {default value of column [b] is not constant}}
do_catchsql_test default-4.3 {
  CREATE TABLE t2(a TEXT, b TEXT DEFAULT(abs(:xyz)));
} {1 {default value of column [b] is not constant}}
do_catchsql_test default-4.4 {
  CREATE TABLE t2(a TEXT, b TEXT DEFAULT(98+coalesce(5,:xyz)));
} {1 {default value of column [b] is not constant}}

finish_test

Changes to test/e_createtable.test.

858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
...
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898

899
900
901
902
903
904
905
  execsql { DELETE FROM t1 }
} {
  1   "INSERT INTO t1(x, y) VALUES('abc', 'xyz')"   {'abc' 'xyz' NULL}
  2   "INSERT INTO t1(x, z) VALUES('abc', 'xyz')"   {'abc' NULL 'xyz'}
  3   "INSERT INTO t1 DEFAULT VALUES"               {NULL NULL NULL}
}

# EVIDENCE-OF: R-62940-43005 An explicit DEFAULT clause may specify that
# the default value is NULL, a string constant, a blob constant, a
# signed-number, or any constant expression enclosed in parentheses. An
# explicit default value may also be one of the special case-independent
# keywords CURRENT_TIME, CURRENT_DATE or CURRENT_TIMESTAMP.
#
do_execsql_test e_createtable-3.3.1 {
  CREATE TABLE t4(
    a DEFAULT NULL,
    b DEFAULT 'string constant',
    c DEFAULT X'424C4F42',
    d DEFAULT 1,
................................................................................
    h DEFAULT ( substr('abcd', 0, 2) || 'cd' ),
    i DEFAULT CURRENT_TIME,
    j DEFAULT CURRENT_DATE,
    k DEFAULT CURRENT_TIMESTAMP
  );
} {}

# EVIDENCE-OF: R-36381-62919 For the purposes of the DEFAULT clause, an
# expression is considered constant provided that it does not contain
# any sub-queries, column or table references, or string literals
# enclosed in double-quotes instead of single-quotes.
#
do_createtable_tests 3.4.1 -error {
  default value of column [x] is not constant
} {
  1   {CREATE TABLE t5(x DEFAULT ( (SELECT 1) ))}  {}
  2   {CREATE TABLE t5(x DEFAULT ( "abc" ))}  {}
  3   {CREATE TABLE t5(x DEFAULT ( 1 IN (SELECT 1) ))}  {}
  4   {CREATE TABLE t5(x DEFAULT ( EXISTS (SELECT 1) ))}  {}

}
do_createtable_tests 3.4.2 -repair {
  catchsql { DROP TABLE t5 }
} {
  1   {CREATE TABLE t5(x DEFAULT ( 'abc' ))}  {}
  2   {CREATE TABLE t5(x DEFAULT ( 1 IN (1, 2, 3) ))}  {}
}







|

|
|
|







 







|
|
|









>







858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
...
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
  execsql { DELETE FROM t1 }
} {
  1   "INSERT INTO t1(x, y) VALUES('abc', 'xyz')"   {'abc' 'xyz' NULL}
  2   "INSERT INTO t1(x, z) VALUES('abc', 'xyz')"   {'abc' NULL 'xyz'}
  3   "INSERT INTO t1 DEFAULT VALUES"               {NULL NULL NULL}
}

# EVIDENCE-OF: R-07343-35026 An explicit DEFAULT clause may specify that
# the default value is NULL, a string constant, a blob constant, a
# signed-number, or any constant expression enclosed in parentheses. A
# default value may also be one of the special case-independent keywords
# CURRENT_TIME, CURRENT_DATE or CURRENT_TIMESTAMP.
#
do_execsql_test e_createtable-3.3.1 {
  CREATE TABLE t4(
    a DEFAULT NULL,
    b DEFAULT 'string constant',
    c DEFAULT X'424C4F42',
    d DEFAULT 1,
................................................................................
    h DEFAULT ( substr('abcd', 0, 2) || 'cd' ),
    i DEFAULT CURRENT_TIME,
    j DEFAULT CURRENT_DATE,
    k DEFAULT CURRENT_TIMESTAMP
  );
} {}

# EVIDENCE-OF: R-18415-27776 For the purposes of the DEFAULT clause, an
# expression is considered constant if it does contains no sub-queries,
# column or table references, bound parameters, or string literals
# enclosed in double-quotes instead of single-quotes.
#
do_createtable_tests 3.4.1 -error {
  default value of column [x] is not constant
} {
  1   {CREATE TABLE t5(x DEFAULT ( (SELECT 1) ))}  {}
  2   {CREATE TABLE t5(x DEFAULT ( "abc" ))}  {}
  3   {CREATE TABLE t5(x DEFAULT ( 1 IN (SELECT 1) ))}  {}
  4   {CREATE TABLE t5(x DEFAULT ( EXISTS (SELECT 1) ))}  {}
  5   {CREATE TABLE t5(x DEFAULT ( x!=?1 ))}  {}
}
do_createtable_tests 3.4.2 -repair {
  catchsql { DROP TABLE t5 }
} {
  1   {CREATE TABLE t5(x DEFAULT ( 'abc' ))}  {}
  2   {CREATE TABLE t5(x DEFAULT ( 1 IN (1, 2, 3) ))}  {}
}

Changes to test/e_uri.test.

121
122
123
124
125
126
127



128
129
130
131
132
133
134
  sqlite3_close $DB
}

# ensure uri processing enabled for the rest of the tests
sqlite3_shutdown
sqlite3_config_uri 1




# EVIDENCE-OF: R-17482-00398 If the authority is not an empty string or
# "localhost", an error is returned to the caller.
#
if {$tcl_platform(platform) == "unix"} {
  set flags [list SQLITE_OPEN_READWRITE SQLITE_OPEN_CREATE SQLITE_OPEN_URI]
  foreach {tn uri error} "
    1  {file://localhost[test_pwd /]test.db}   {not an error}







>
>
>







121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
  sqlite3_close $DB
}

# ensure uri processing enabled for the rest of the tests
sqlite3_shutdown
sqlite3_config_uri 1

# EVIDENCE-OF: R-06842-00595 If the URI contains an authority, then it
# must be either an empty string or the string "localhost".
#
# EVIDENCE-OF: R-17482-00398 If the authority is not an empty string or
# "localhost", an error is returned to the caller.
#
if {$tcl_platform(platform) == "unix"} {
  set flags [list SQLITE_OPEN_READWRITE SQLITE_OPEN_CREATE SQLITE_OPEN_URI]
  foreach {tn uri error} "
    1  {file://localhost[test_pwd /]test.db}   {not an error}

Changes to test/eval.test.

50
51
52
53
54
55
56












57
58
59
60
61
62
63
  execsql {
    CREATE TABLE t2(x,y);
    INSERT INTO t2 SELECT x, x+1 FROM t1 WHERE x<5;
    SELECT x, test_eval('DELETE FROM t2 WHERE x='||x), y FROM t2;
  }
} {1 {} {} 2 {} {} 3 {} {} 4 {} {}}
do_test eval-2.2 {












  execsql {
    SELECT * FROM t2
  }
} {}

# Modify a row while it is being read.
#







>
>
>
>
>
>
>
>
>
>
>
>







50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
  execsql {
    CREATE TABLE t2(x,y);
    INSERT INTO t2 SELECT x, x+1 FROM t1 WHERE x<5;
    SELECT x, test_eval('DELETE FROM t2 WHERE x='||x), y FROM t2;
  }
} {1 {} {} 2 {} {} 3 {} {} 4 {} {}}
do_test eval-2.2 {
  execsql {
    SELECT * FROM t2
  }
} {}
do_test eval-2.3 {
  execsql {
    INSERT INTO t2 SELECT x, x+1 FROM t1 WHERE x<5;
    SELECT x, test_eval('DELETE FROM t2 WHERE x='||x), y FROM t2
     ORDER BY rowid DESC;
  }
} {4 {} {} 3 {} {} 2 {} {} 1 {} {}}
do_test eval-2.4 {
  execsql {
    SELECT * FROM t2
  }
} {}

# Modify a row while it is being read.
#

Changes to test/expr.test.

201
202
203
204
205
206
207




208
209
210
211
212
213
214
test_expr expr-1.124 {i1=NULL, i2=NULL} \
  {CASE WHEN i1 IS NOT i2 THEN 'yes' ELSE 'no' END} no
test_expr expr-1.125 {i1=6, i2=NULL} \
  {CASE WHEN i1 IS NOT i2 THEN 'yes' ELSE 'no' END} yes
test_expr expr-1.126 {i1=8, i2=8} \
  {CASE WHEN i1 IS NOT i2 THEN 'yes' ELSE 'no' END} no





ifcapable floatingpoint {if {[working_64bit_int]} {
  test_expr expr-1.200\
      {i1=9223372036854775806, i2=1} {i1+i2}      9223372036854775807
  test_realnum_expr expr-1.201\
      {i1=9223372036854775806, i2=2} {i1+i2}      9.22337203685478e+18
  test_realnum_expr expr-1.202\
      {i1=9223372036854775806, i2=100000} {i1+i2} 9.22337203685488e+18







>
>
>
>







201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
test_expr expr-1.124 {i1=NULL, i2=NULL} \
  {CASE WHEN i1 IS NOT i2 THEN 'yes' ELSE 'no' END} no
test_expr expr-1.125 {i1=6, i2=NULL} \
  {CASE WHEN i1 IS NOT i2 THEN 'yes' ELSE 'no' END} yes
test_expr expr-1.126 {i1=8, i2=8} \
  {CASE WHEN i1 IS NOT i2 THEN 'yes' ELSE 'no' END} no

do_catchsql_test expr-1.127 {
  SELECT 1 IS #1;
} {1 {near "#1": syntax error}}

ifcapable floatingpoint {if {[working_64bit_int]} {
  test_expr expr-1.200\
      {i1=9223372036854775806, i2=1} {i1+i2}      9223372036854775807
  test_realnum_expr expr-1.201\
      {i1=9223372036854775806, i2=2} {i1+i2}      9.22337203685478e+18
  test_realnum_expr expr-1.202\
      {i1=9223372036854775806, i2=100000} {i1+i2} 9.22337203685488e+18

Changes to test/fts3expr4.test.

20
21
22
23
24
25
26
27
28
29
30
31
32




33
34
35
36
37
38
39
..
48
49
50
51
52
53
54





















55
56
57
ifcapable !fts3||!icu {
  finish_test
  return
}

set sqlite_fts3_enable_parentheses 1

proc test_icu_fts3expr {expr} {
  db one {SELECT fts3_exprtest('icu', $expr, 'a', 'b', 'c')}
}

proc do_icu_expr_test {tn expr res} {
  uplevel [list do_test $tn [list test_icu_fts3expr $expr] $res]




}

#-------------------------------------------------------------------------
#
do_icu_expr_test 1.1 "abcd"    {PHRASE 3 0 abcd}
do_icu_expr_test 1.2 " tag "   {PHRASE 3 0 tag}
do_icu_expr_test 1.3 {"x y z"} {PHRASE 3 0 x y z}
................................................................................
do_icu_expr_test 1.8 {d:word} {PHRASE 3 0 d:word}

set sqlite_fts3_enable_parentheses 0

do_icu_expr_test 2.1 {
  f (e NEAR/2 a)
} {AND {AND {AND {PHRASE 3 0 f} {PHRASE 3 0 (}} {NEAR/2 {PHRASE 3 0 e} {PHRASE 3 0 a}}} {PHRASE 3 0 )}}






















finish_test








|
|



|
>
>
>
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
..
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
ifcapable !fts3||!icu {
  finish_test
  return
}

set sqlite_fts3_enable_parentheses 1

proc test_fts3expr {tokenizer expr} {
  db one {SELECT fts3_exprtest($tokenizer, $expr, 'a', 'b', 'c')}
}

proc do_icu_expr_test {tn expr res} {
  uplevel [list do_test $tn [list test_fts3expr icu $expr] [list {*}$res]]
}

proc do_simple_expr_test {tn expr res} {
  uplevel [list do_test $tn [list test_fts3expr simple $expr] [list {*}$res]]
}

#-------------------------------------------------------------------------
#
do_icu_expr_test 1.1 "abcd"    {PHRASE 3 0 abcd}
do_icu_expr_test 1.2 " tag "   {PHRASE 3 0 tag}
do_icu_expr_test 1.3 {"x y z"} {PHRASE 3 0 x y z}
................................................................................
do_icu_expr_test 1.8 {d:word} {PHRASE 3 0 d:word}

set sqlite_fts3_enable_parentheses 0

do_icu_expr_test 2.1 {
  f (e NEAR/2 a)
} {AND {AND {AND {PHRASE 3 0 f} {PHRASE 3 0 (}} {NEAR/2 {PHRASE 3 0 e} {PHRASE 3 0 a}}} {PHRASE 3 0 )}}

#-------------------------------------------------------------------------
#
do_simple_expr_test 3.1 {*lOl* *h4h*} {
  AND {PHRASE 3 0 lol+} {PHRASE 3 0 h4h+}
}

do_icu_expr_test 3.2 {*lOl* *h4h*} {
  AND {AND {AND {PHRASE 3 0 *} {PHRASE 3 0 lol+}} {PHRASE 3 0 *}} {PHRASE 3 0 h4h+}
}

do_simple_expr_test 3.3 { * }    { }
do_simple_expr_test 3.4 { *a }   { PHRASE 3 0 a }
do_simple_expr_test 3.5 { a*b }  { AND {PHRASE 3 0 a+} {PHRASE 3 0 b} }
do_simple_expr_test 3.6 { *a*b } { AND {PHRASE 3 0 a+} {PHRASE 3 0 b} }
do_simple_expr_test 3.7 { *"abc" } { PHRASE 3 0 abc }
do_simple_expr_test 3.8 { "abc"* } { PHRASE 3 0 abc }
do_simple_expr_test 3.8 { "ab*c" } { PHRASE 3 0 ab+ c }

do_icu_expr_test    3.9 { "ab*c" } { PHRASE 3 0 ab+ * c }
do_icu_expr_test    3.10 { ab*c } { AND {PHRASE 3 0 ab+} {PHRASE 3 0 c}}

finish_test

Changes to test/fts3matchinfo.test.

428
429
430
431
432
433
434
435

















436

do_execsql_test 9.1 {
  CREATE VIRTUAL TABLE ft2 USING fts4;
  INSERT INTO ft2 VALUES('a b c d e');
  INSERT INTO ft2 VALUES('f a b c d');
  SELECT snippet(ft2, '[', ']', '', -1, 1) FROM ft2 WHERE ft2 MATCH 'c';
} {{[c]} {[c]}}


















finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

do_execsql_test 9.1 {
  CREATE VIRTUAL TABLE ft2 USING fts4;
  INSERT INTO ft2 VALUES('a b c d e');
  INSERT INTO ft2 VALUES('f a b c d');
  SELECT snippet(ft2, '[', ']', '', -1, 1) FROM ft2 WHERE ft2 MATCH 'c';
} {{[c]} {[c]}}

#---------------------------------------------------------------------------
# Test for a memory leak
#
do_execsql_test 10.1 {
  DROP TABLE t10;
  CREATE VIRTUAL TABLE t10 USING fts4(idx, value);
  INSERT INTO t10 values (1, 'one'),(2, 'two'),(3, 'three');
  SELECT docId, t10.*
    FROM t10
    JOIN (SELECT 1 AS idx UNION SELECT 2 UNION SELECT 3) AS x
   WHERE t10 MATCH x.idx
     AND matchinfo(t10) not null
   GROUP BY docId
   ORDER BY 1;
} {1 1 one 2 2 two 3 3 three}
  

finish_test

Changes to test/index5.test.

12
13
14
15
16
17
18



19
20
21
22
23
24
25
..
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48


set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix index5

do_test 1.1 {



  execsql {
    PRAGMA page_size = 1024;
    CREATE TABLE t1(x);
    BEGIN;
  }
  for {set i 0} {$i < 100000} {incr i} {
    execsql { INSERT INTO t1 VALUES(randstr(100,100)) }
................................................................................

db close
testvfs tvfs
tvfs filter xWrite
tvfs script write_cb
proc write_cb {xCall file handle iOfst args} {
  if {[file tail $file]=="test.db"} {
    lappend ::write_list [expr $iOfst/1024]
  }
}

do_test 1.2 {
  sqlite3 db test.db -vfs tvfs
  set ::write_list [list]
  execsql { CREATE INDEX i1 ON t1(x) }







>
>
>







 







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
..
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix index5

do_test 1.1 {
  if {[permutation]=="memsubsys1"} {
    execsql { PRAGMA auto_vacuum = 0; }
  }
  execsql {
    PRAGMA page_size = 1024;
    CREATE TABLE t1(x);
    BEGIN;
  }
  for {set i 0} {$i < 100000} {incr i} {
    execsql { INSERT INTO t1 VALUES(randstr(100,100)) }
................................................................................

db close
testvfs tvfs
tvfs filter xWrite
tvfs script write_cb
proc write_cb {xCall file handle iOfst args} {
  if {[file tail $file]=="test.db"} {
    lappend ::write_list [expr $iOfst/1024 + 1]
  }
}

do_test 1.2 {
  sqlite3 db test.db -vfs tvfs
  set ::write_list [list]
  execsql { CREATE INDEX i1 ON t1(x) }

Changes to test/lock5.test.

150
151
152
153
154
155
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
...
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
} {}

#####################################################################

do_test lock5-none.1 {
  sqlite3 db test.db -vfs unix-none
  sqlite3 db2 test.db -vfs unix-none

  execsql {
    BEGIN;
    INSERT INTO t1 VALUES(3, 4);
  }
} {}
do_test lock5-none.2 {
  execsql { SELECT * FROM t1 }
} {1 2 3 4}
do_test lock5-flock.3 {
  execsql { SELECT * FROM t1 } db2
} {1 2}
do_test lock5-none.4 {
  execsql { 
    BEGIN;
    SELECT * FROM t1;
  } db2
} {1 2}
................................................................................
ifcapable memorymanage {
  do_test lock5-none.6 {
    sqlite3_release_memory 1000000
    execsql {SELECT * FROM t1} db2
  } {1 2 3 4}
}

do_test lock5-flock.X {
  db close
  db2 close
} {}

ifcapable lock_proxy_pragmas {
  set env(SQLITE_FORCE_PROXY_LOCKING) $::using_proxy
}

finish_test







>








|
|







 







|









150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
...
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
} {}

#####################################################################

do_test lock5-none.1 {
  sqlite3 db test.db -vfs unix-none
  sqlite3 db2 test.db -vfs unix-none
  execsql { PRAGMA mmap_size = 0 } db2
  execsql {
    BEGIN;
    INSERT INTO t1 VALUES(3, 4);
  }
} {}
do_test lock5-none.2 {
  execsql { SELECT * FROM t1 }
} {1 2 3 4}
do_test lock5-none.3 {
  execsql { SELECT * FROM t1; } db2
} {1 2}
do_test lock5-none.4 {
  execsql { 
    BEGIN;
    SELECT * FROM t1;
  } db2
} {1 2}
................................................................................
ifcapable memorymanage {
  do_test lock5-none.6 {
    sqlite3_release_memory 1000000
    execsql {SELECT * FROM t1} db2
  } {1 2 3 4}
}

do_test lock5-none.X {
  db close
  db2 close
} {}

ifcapable lock_proxy_pragmas {
  set env(SQLITE_FORCE_PROXY_LOCKING) $::using_proxy
}

finish_test

Changes to test/mallocA.test.

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
  }
}

do_execsql_test 7.0 {
  PRAGMA cache_size = 5;
}
do_faultsim_test 7 -faults oom-trans* -prep {
  if {$iFail < 500} { set iFail 2000 }
  if {$iFail > 1215} { set iFail 2000 }
} -body {
  execsql {
    WITH r(x,y) AS (
      SELECT 1, randomblob(100)
      UNION ALL
      SELECT x+1, randomblob(100) FROM r
      LIMIT 1000







<
<







115
116
117
118
119
120
121


122
123
124
125
126
127
128
  }
}

do_execsql_test 7.0 {
  PRAGMA cache_size = 5;
}
do_faultsim_test 7 -faults oom-trans* -prep {


} -body {
  execsql {
    WITH r(x,y) AS (
      SELECT 1, randomblob(100)
      UNION ALL
      SELECT x+1, randomblob(100) FROM r
      LIMIT 1000

Added test/multiplex4.test.





































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# 2014-09-25
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains tests for the "truncate" option in the multiplexor.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix multiplex4

db close
sqlite3_shutdown
sqlite3_multiplex_initialize {} 0

# delete all filesl with the base name of $basename
#
proc multiplex_delete_db {basename} {
  foreach file [glob -nocomplain $basename.*] {
    forcedelete $file
  }
}

# Return a sorted list of all files with the base name of $basename.
# Except, delete all text from the end of $basename through the NNN
# suffix on the end of the filename.
#
proc multiplex_file_list {basename} {
  set x {}
  foreach file [glob -nocomplain $basename.*] {
    regsub "^$basename\\..*(\\d\\d\\d)\$" $file $basename.\\1 file
    lappend x $file
  }
  return [lsort $x]
}

do_test multiplex4-1.0 {
  multiplex_delete_db mx4test
  sqlite3 db {file:mx4test.db?chunksize=10&truncate=1} -uri 1 -vfs multiplex
  db eval {
    CREATE TABLE t1(x);
    INSERT INTO t1(x) VALUES(randomblob(250000));
  }
  multiplex_file_list mx4test
} {mx4test.001 mx4test.db}

do_test multiplex4-1.1 {
  db eval {
    DELETE FROM t1;
    VACUUM;
  }
  multiplex_file_list mx4test
} {mx4test.db}

do_test multiplex4-1.2 {
  db eval {PRAGMA multiplex_truncate}
} {on}
do_test multiplex4-1.3 {
  db eval {PRAGMA multiplex_truncate=off}
} {off}
do_test multiplex4-1.4 {
  db eval {PRAGMA multiplex_truncate}
} {off}
do_test multiplex4-1.5 {
  db eval {PRAGMA multiplex_truncate=on}
} {on}
do_test multiplex4-1.6 {
  db eval {PRAGMA multiplex_truncate}
} {on}
do_test multiplex4-1.7 {
  db eval {PRAGMA multiplex_truncate=0}
} {off}
do_test multiplex4-1.8 {
  db eval {PRAGMA multiplex_truncate=1}
} {on}
do_test multiplex4-1.9 {
  db eval {PRAGMA multiplex_truncate=0}
} {off}

do_test multiplex4-1.10 {
  db eval {
    INSERT INTO t1(x) VALUES(randomblob(250000));
  }
  multiplex_file_list mx4test
} {mx4test.001 mx4test.db}

do_test multiplex4-1.11 {
  db eval {
    DELETE FROM t1;
    VACUUM;
  }
  multiplex_file_list mx4test
} {mx4test.001 mx4test.db}

do_test multiplex4-1.12 {
  db eval {
    PRAGMA multiplex_truncate=ON;
    DROP TABLE t1;
    VACUUM;
  }
  multiplex_file_list mx4test
} {mx4test.db}

catch { db close }
forcedelete mx4test.db
sqlite3_multiplex_shutdown
finish_test

Changes to test/orderby1.test.

476
477
478
479
480
481
482














483
484
485
  SELECT (
    SELECT 'hardware' FROM ( 
      SELECT 'software' ORDER BY 'firmware' ASC, 'sportswear' DESC 
    ) GROUP BY 1 HAVING length(b)
  )
  FROM abc;
} {hardware hardware hardware}
















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>



476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
  SELECT (
    SELECT 'hardware' FROM ( 
      SELECT 'software' ORDER BY 'firmware' ASC, 'sportswear' DESC 
    ) GROUP BY 1 HAVING length(b)
  )
  FROM abc;
} {hardware hardware hardware}

# Here is a test for a query-planner problem reported on the SQLite
# mailing list on 2014-09-18 by "Merike".  Beginning with version 3.8.0,
# a separate sort was being used rather than using the single-column
# index.  This was due to an oversight in the indexMightHelpWithOrderby()
# routine in where.c.
#
do_execsql_test 7.0 {
  CREATE TABLE t7(a,b);
  CREATE INDEX t7a ON t7(a);
  CREATE INDEX t7ab ON t7(a,b);
  EXPLAIN QUERY PLAN
  SELECT * FROM t7 WHERE a=?1 ORDER BY rowid;
} {~/ORDER BY/}


finish_test

Added test/ovfl.test.



































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# 2014 October 01
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the SQLITE_DIRECT_OVERFLOW_READ logic.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix ovfl

# Populate table t2:
#
#   CREATE TABLE t1(c1 TEXT, c2 TEXT);
#
# with 2000 rows. In each row, c2 spans multiple overflow pages. The text
# value of c1 ranges in size from 1 to 2000 bytes. The idea is to create
# at least one row where the first byte of c2 is also the first byte of
# an overflow page. This was at one point exposing an obscure bug in the
# SQLITE_DIRECT_OVERFLOW_READ logic.
#
do_test 1.1 {
  set c2 [string repeat abcdefghij 200]
  execsql {
    PRAGMA cache_size = 10;
    CREATE TABLE t1(c1 TEXT, c2 TEXT);
    BEGIN;
  }
  for {set i 1} {$i <= 2000} {incr i} {
    set c1 [string repeat . $i]
    execsql { INSERT INTO t1 VALUES($c1, $c2) }
  }
  execsql COMMIT
} {}

do_execsql_test 1.2 {
  SELECT sum(length(c2)) FROM t1;
} [expr 2000 * 2000]

finish_test


Changes to test/releasetest.tcl.

9
10
11
12
13
14
15

16
17
18
19
20
21
22
...
191
192
193
194
195
196
197

198
199
200
201
202
203
204
205
...
288
289
290
291
292
293
294

295
296
297
298
299
300
301
...
306
307
308
309
310
311
312





313
314
315
316
317
318
319
...
329
330
331
332
333
334
335




336

337
338
339
340
341
342
343
This Tcl script is used to test the various configurations required
before releasing a new version. Supported command line options (all 
optional) are:

    -makefile PATH-TO-MAKEFILE           (default "releasetest.mk")
    -platform PLATFORM                   (see below)
    -quick    BOOLEAN                    (default "0")


The default value for -makefile is "./releasetest.mk".

The script determines the default value for -platform using the
$tcl_platform(os) and $tcl_platform(machine) variables. Supported 
platforms are "Linux-x86", "Linux-x86_64" and "Darwin-i386".

................................................................................
    "Secure-Delete"           test
    "Unlock-Notify"           "QUICKTEST_INCLUDE=notify2.test test"
    "Update-Delete-Limit"     test
    "Extra-Robustness"        test
    "Device-Two"              test
    "Ftrapv"                  test
    "No-lookaside"            test

    "Default"                 "threadtest test"
    "Device-One"              fulltest
  }
  Linux-i686 {
    "Devkit"                  test
    "Unlock-Notify"           "QUICKTEST_INCLUDE=notify2.test test"
    "Device-One"              test
    "Device-Two"              test
................................................................................
# Currently the only option supported is "-makefile", default
# "releasetest.mk". Set the ::MAKEFILE variable to the value of this
# option.
#
proc process_options {argv} {
  set ::MAKEFILE releasetest.mk                       ;# Default value
  set ::QUICK    0                                    ;# Default value

  set platform $::tcl_platform(os)-$::tcl_platform(machine)

  for {set i 0} {$i < [llength $argv]} {incr i} {
    switch -- [lindex $argv $i] {
      -makefile {
        incr i
        set ::MAKEFILE [lindex $argv $i]
................................................................................
        set platform [lindex $argv $i]
      }

      -quick {
        incr i
        set ::QUICK [lindex $argv $i]
      }





  
      default {
        puts stderr ""
        puts stderr [string trim $::USAGE_MESSAGE]
        exit -1
      }
    }
................................................................................
      lappend print "\"$p\""
    }
    lset print end "or [lindex $print end]"
    puts "[join $print {, }]."
    exit
  }





  set ::CONFIGLIST $::Platforms($platform)

  puts "Running the following configurations for $platform:"
  puts "    [string trim $::CONFIGLIST]"
}

# Main routine.
#
proc main {argv} {







>







 







>
|







 







>







 







>
>
>
>
>







 







>
>
>
>
|
>







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
...
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
...
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
...
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
...
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
This Tcl script is used to test the various configurations required
before releasing a new version. Supported command line options (all 
optional) are:

    -makefile PATH-TO-MAKEFILE           (default "releasetest.mk")
    -platform PLATFORM                   (see below)
    -quick    BOOLEAN                    (default "0")
    -config   CONFIGNAME                 (Run only CONFIGNAME)

The default value for -makefile is "./releasetest.mk".

The script determines the default value for -platform using the
$tcl_platform(os) and $tcl_platform(machine) variables. Supported 
platforms are "Linux-x86", "Linux-x86_64" and "Darwin-i386".

................................................................................
    "Secure-Delete"           test
    "Unlock-Notify"           "QUICKTEST_INCLUDE=notify2.test test"
    "Update-Delete-Limit"     test
    "Extra-Robustness"        test
    "Device-Two"              test
    "Ftrapv"                  test
    "No-lookaside"            test
    "Devkit"                  test
    "Default"                 "threadtest fulltest"
    "Device-One"              fulltest
  }
  Linux-i686 {
    "Devkit"                  test
    "Unlock-Notify"           "QUICKTEST_INCLUDE=notify2.test test"
    "Device-One"              test
    "Device-Two"              test
................................................................................
# Currently the only option supported is "-makefile", default
# "releasetest.mk". Set the ::MAKEFILE variable to the value of this
# option.
#
proc process_options {argv} {
  set ::MAKEFILE releasetest.mk                       ;# Default value
  set ::QUICK    0                                    ;# Default value
  set config {}
  set platform $::tcl_platform(os)-$::tcl_platform(machine)

  for {set i 0} {$i < [llength $argv]} {incr i} {
    switch -- [lindex $argv $i] {
      -makefile {
        incr i
        set ::MAKEFILE [lindex $argv $i]
................................................................................
        set platform [lindex $argv $i]
      }

      -quick {
        incr i
        set ::QUICK [lindex $argv $i]
      }

      -config {
        incr i
        set config [lindex $argv $i]
      }
  
      default {
        puts stderr ""
        puts stderr [string trim $::USAGE_MESSAGE]
        exit -1
      }
    }
................................................................................
      lappend print "\"$p\""
    }
    lset print end "or [lindex $print end]"
    puts "[join $print {, }]."
    exit
  }

  if {$config!=""} {
    if {[llength $config]==1} {lappend config fulltest}
    set ::CONFIGLIST $config
  } else {
    set ::CONFIGLIST $::Platforms($platform)
  }
  puts "Running the following configurations for $platform:"
  puts "    [string trim $::CONFIGLIST]"
}

# Main routine.
#
proc main {argv} {

Changes to test/rowid.test.

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
...
697
698
699
700
701
702
703


704












705
} {a}
do_test rowid-12.2 {
  db close
  sqlite3 db test.db
  save_prng_state
  execsql {
    INSERT INTO t7 VALUES(NULL,'b');
    SELECT x, y FROM t7;
  }
} {1 b 9223372036854775807 a}
execsql {INSERT INTO t7 VALUES(2,'y');}
for {set i 1} {$i<100} {incr i} {
  do_test rowid-12.3.$i {
    db eval {DELETE FROM t7temp; INSERT INTO t7temp VALUES(1);}
    restore_prng_state
    execsql {
      INSERT INTO t7 VALUES(NULL,'x');
................................................................................
  db eval {DELETE FROM t7temp; INSERT INTO t7temp VALUES(1);}
  restore_prng_state
  catchsql {
    INSERT INTO t7 VALUES(NULL,'x');
  }
} {1 {database or disk is full}}
















finish_test







|

|







 







>
>
|
>
>
>
>
>
>
>
>
>
>
>
>

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
...
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
} {a}
do_test rowid-12.2 {
  db close
  sqlite3 db test.db
  save_prng_state
  execsql {
    INSERT INTO t7 VALUES(NULL,'b');
    SELECT x, y FROM t7 ORDER BY x;
  }
} {/\d+ b 9223372036854775807 a/}
execsql {INSERT INTO t7 VALUES(2,'y');}
for {set i 1} {$i<100} {incr i} {
  do_test rowid-12.3.$i {
    db eval {DELETE FROM t7temp; INSERT INTO t7temp VALUES(1);}
    restore_prng_state
    execsql {
      INSERT INTO t7 VALUES(NULL,'x');
................................................................................
  db eval {DELETE FROM t7temp; INSERT INTO t7temp VALUES(1);}
  restore_prng_state
  catchsql {
    INSERT INTO t7 VALUES(NULL,'x');
  }
} {1 {database or disk is full}}

# INSERTs that happen inside of nested function calls are recorded
# by last_insert_rowid.
#
proc rowid_addrow_func {n} {
  db eval {INSERT INTO t13(rowid,x) VALUES($n,$n*$n)}
  return [db last_insert_rowid]
}
db function addrow rowid_addrow_func
do_execsql_test rowid-13.1 {
  CREATE TABLE t13(x);
  INSERT INTO t13(rowid,x) VALUES(1234,5);
  SELECT rowid, x, addrow(rowid+1000), '|' FROM t13 LIMIT 3;
  SELECT last_insert_rowid();
} {1234 5 2234 | 2234 4990756 3234 | 3234 10458756 4234 | 4234}

finish_test

Changes to test/skipscan1.test.

241
242
243
244
245
246
247


248
























249
250
} {}
db cache flush
do_execsql_test skipscan1-5.3 {
  EXPLAIN QUERY PLAN
    SELECT xh, loc FROM t5 WHERE loc >= 'M' AND loc < 'N';
} {/.*COVERING INDEX t5i1 .*/}





























finish_test







>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
} {}
db cache flush
do_execsql_test skipscan1-5.3 {
  EXPLAIN QUERY PLAN
    SELECT xh, loc FROM t5 WHERE loc >= 'M' AND loc < 'N';
} {/.*COVERING INDEX t5i1 .*/}

# The column used by the skip-scan needs to be sufficiently selective.
# See the private email from Adi Zaimi to drh@sqlite.org on 2014-09-22.
#
db close
forcedelete test.db
sqlite3 db test.db
do_execsql_test skipscan1-6.1 {
  CREATE TABLE t1(a,b,c,d,e,f,g,h varchar(300));
  CREATE INDEX t1ab ON t1(a,b);
  ANALYZE sqlite_master;
  -- Only two distinct values for the skip-scan column.  Skip-scan is not used.
  INSERT INTO sqlite_stat1 VALUES('t1','t1ab','500000 250000 125000');
  ANALYZE sqlite_master;
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=1;
} {~/ANY/}
do_execsql_test skipscan1-6.2 {
  -- Four distinct values for the skip-scan column.  Skip-scan is used.
  UPDATE sqlite_stat1 SET stat='500000 250000 62500';
  ANALYZE sqlite_master;
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=1;
} {/ANY.a. AND b=/}
do_execsql_test skipscan1-6.3 {
  -- Two distinct values for the skip-scan column again.  Skip-scan is not used.
  UPDATE sqlite_stat1 SET stat='500000 125000 62500';
  ANALYZE sqlite_master;
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=1;
} {~/ANY/}

finish_test

Changes to test/skipscan5.test.

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
...
176
177
178
179
180
181
182
183
184
185
186

  foreach {tn2 q res} {
    1 { c BETWEEN 'd' AND 'e' }       {/*ANY(a) AND ANY(b) AND c>? AND c<?*/}
    2 { c BETWEEN 'b' AND 'r' }       {/*SCAN TABLE t2*/}
    3 { c > 'q' }                     {/*ANY(a) AND ANY(b) AND c>?*/}
    4 { c > 'e' }                     {/*SCAN TABLE t2*/}
    5 { c < 'q' }                     {/*SCAN TABLE t2*/}
    4 { c < 'e' }                     {/*ANY(a) AND ANY(b) AND c<?*/}
  } {
    set sql "EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE $q" 
    do_execsql_test 2.$tn.$tn2 $sql $res
  }

}

................................................................................
  6 "b < 'zzz'"                        {/*SCAN TABLE t3*/}
} {
  set sql "EXPLAIN QUERY PLAN SELECT * FROM t3 WHERE $q" 
  do_execsql_test 3.3.$tn $sql $res
}

finish_test











|







 







<
<
<
<
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
...
176
177
178
179
180
181
182





  foreach {tn2 q res} {
    1 { c BETWEEN 'd' AND 'e' }       {/*ANY(a) AND ANY(b) AND c>? AND c<?*/}
    2 { c BETWEEN 'b' AND 'r' }       {/*SCAN TABLE t2*/}
    3 { c > 'q' }                     {/*ANY(a) AND ANY(b) AND c>?*/}
    4 { c > 'e' }                     {/*SCAN TABLE t2*/}
    5 { c < 'q' }                     {/*SCAN TABLE t2*/}
    6 { c < 'c' }                     {/*ANY(a) AND ANY(b) AND c<?*/}
  } {
    set sql "EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE $q" 
    do_execsql_test 2.$tn.$tn2 $sql $res
  }

}

................................................................................
  6 "b < 'zzz'"                        {/*SCAN TABLE t3*/}
} {
  set sql "EXPLAIN QUERY PLAN SELECT * FROM t3 WHERE $q" 
  do_execsql_test 3.3.$tn $sql $res
}

finish_test




Changes to test/sort.test.

11
12
13
14
15
16
17

18
19
20
21
22
23
24
#
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the sorter (code in vdbesort.c).
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl


# Create a bunch of data to sort against
#
do_test sort-1.0 {
  execsql {
    CREATE TABLE t1(
       n int,







>







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the sorter (code in vdbesort.c).
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix sort

# Create a bunch of data to sort against
#
do_test sort-1.0 {
  execsql {
    CREATE TABLE t1(
       n int,

Changes to test/speedtest1.c.

930
931
932
933
934
935
936

937
938
939
940
941
942
943
...
950
951
952
953
954
955
956

957

958
959
960
961
962
963
964
...
970
971
972
973
974
975
976

977

978
979
980
981
982
983
984
....
1106
1107
1108
1109
1110
1111
1112

1113
1114
1115
1116
1117
1118
1119
....
1325
1326
1327
1328
1329
1330
1331

1332




1333
1334
1335
1336
1337
1338
1339
    nElem, nElem
  );
  speedtest1_run();
  speedtest1_end_test();

}


/* Generate two numbers between 1 and mx.  The first number is less than
** the second.  Usually the numbers are near each other but can sometimes
** be far apart.
*/
static void twoCoords(
  int p1, int p2,                   /* Parameters adjusting sizes */
  unsigned mx,                      /* Range of 1..mx */
................................................................................
  if( speedtest1_random()%p2==0 ) span = mx/2;
  d = speedtest1_random()%span + 1;
  x0 = speedtest1_random()%(mx-d) + 1;
  x1 = x0 + d;
  *pX0 = x0;
  *pX1 = x1;
}



/* The following routine is an R-Tree geometry callback.  It returns
** true if the object overlaps a slice on the Y coordinate between the
** two values given as arguments.  In other words
**
**     SELECT count(*) FROM rt1 WHERE id MATCH xslice(10,20);
**
** Is the same as saying:
................................................................................
  int nCoord,
  double *aCoord,
  int *pRes
){
  *pRes = aCoord[3]>=p->aParam[0] && aCoord[2]<=p->aParam[1];
  return SQLITE_OK;
}



/*
** A testset for the R-Tree virtual table
*/
void testset_rtree(int p1, int p2){
  unsigned i, n;
  unsigned mxCoord;
  unsigned x0, x1, y0, y1, z0, z1;
................................................................................
  speedtest1_prepare("SELECT * FROM rt1 WHERE id=?1");
  for(i=1; i<=n; i++){
    sqlite3_bind_int(g.pStmt, 1, i);
    speedtest1_run();
  }
  speedtest1_end_test();
}


/*
** A testset used for debugging speedtest1 itself.
*/
void testset_debug1(void){
  unsigned i, n;
  unsigned x1, x2;
................................................................................
  if( strcmp(zTSet,"main")==0 ){
    testset_main();
  }else if( strcmp(zTSet,"debug1")==0 ){
    testset_debug1();
  }else if( strcmp(zTSet,"cte")==0 ){
    testset_cte();
  }else if( strcmp(zTSet,"rtree")==0 ){

    testset_rtree(6, 147);




  }else{
    fatal_error("unknown testset: \"%s\"\nChoices: main debug1 cte rtree\n",
                 zTSet);
  }
  speedtest1_final();

  /* Database connection statistics printed after both prepared statements







>







 







>

>







 







>

>







 







>







 







>

>
>
>
>







930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
...
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
...
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
....
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
....
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
    nElem, nElem
  );
  speedtest1_run();
  speedtest1_end_test();

}

#ifdef SQLITE_ENABLE_RTREE
/* Generate two numbers between 1 and mx.  The first number is less than
** the second.  Usually the numbers are near each other but can sometimes
** be far apart.
*/
static void twoCoords(
  int p1, int p2,                   /* Parameters adjusting sizes */
  unsigned mx,                      /* Range of 1..mx */
................................................................................
  if( speedtest1_random()%p2==0 ) span = mx/2;
  d = speedtest1_random()%span + 1;
  x0 = speedtest1_random()%(mx-d) + 1;
  x1 = x0 + d;
  *pX0 = x0;
  *pX1 = x1;
}
#endif

#ifdef SQLITE_ENABLE_RTREE
/* The following routine is an R-Tree geometry callback.  It returns
** true if the object overlaps a slice on the Y coordinate between the
** two values given as arguments.  In other words
**
**     SELECT count(*) FROM rt1 WHERE id MATCH xslice(10,20);
**
** Is the same as saying:
................................................................................
  int nCoord,
  double *aCoord,
  int *pRes
){
  *pRes = aCoord[3]>=p->aParam[0] && aCoord[2]<=p->aParam[1];
  return SQLITE_OK;
}
#endif /* SQLITE_ENABLE_RTREE */

#ifdef SQLITE_ENABLE_RTREE
/*
** A testset for the R-Tree virtual table
*/
void testset_rtree(int p1, int p2){
  unsigned i, n;
  unsigned mxCoord;
  unsigned x0, x1, y0, y1, z0, z1;
................................................................................
  speedtest1_prepare("SELECT * FROM rt1 WHERE id=?1");
  for(i=1; i<=n; i++){
    sqlite3_bind_int(g.pStmt, 1, i);
    speedtest1_run();
  }
  speedtest1_end_test();
}
#endif /* SQLITE_ENABLE_RTREE */

/*
** A testset used for debugging speedtest1 itself.
*/
void testset_debug1(void){
  unsigned i, n;
  unsigned x1, x2;
................................................................................
  if( strcmp(zTSet,"main")==0 ){
    testset_main();
  }else if( strcmp(zTSet,"debug1")==0 ){
    testset_debug1();
  }else if( strcmp(zTSet,"cte")==0 ){
    testset_cte();
  }else if( strcmp(zTSet,"rtree")==0 ){
#ifdef SQLITE_ENABLE_RTREE
    testset_rtree(6, 147);
#else
    fatal_error("compile with -DSQLITE_ENABLE_RTREE to enable "
                "the R-Tree tests\n");
#endif
  }else{
    fatal_error("unknown testset: \"%s\"\nChoices: main debug1 cte rtree\n",
                 zTSet);
  }
  speedtest1_final();

  /* Database connection statistics printed after both prepared statements

Changes to test/sqllimits1.test.

47
48
49
50
51
52
53







54
55
56
57
58
59
60
} $SQLITE_MAX_ATTACHED
do_test sqllimits1-1.9 {
  sqlite3_limit db SQLITE_LIMIT_LIKE_PATTERN_LENGTH -1
} $SQLITE_MAX_LIKE_PATTERN_LENGTH
do_test sqllimits1-1.10 {
  sqlite3_limit db SQLITE_LIMIT_VARIABLE_NUMBER -1
} $SQLITE_MAX_VARIABLE_NUMBER








# Limit parameters out of range.
#
do_test sqllimits1-1.20 {
  sqlite3_limit db SQLITE_LIMIT_TOOSMALL 123
} {-1}
do_test sqllimits1-1.21 {







>
>
>
>
>
>
>







47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
} $SQLITE_MAX_ATTACHED
do_test sqllimits1-1.9 {
  sqlite3_limit db SQLITE_LIMIT_LIKE_PATTERN_LENGTH -1
} $SQLITE_MAX_LIKE_PATTERN_LENGTH
do_test sqllimits1-1.10 {
  sqlite3_limit db SQLITE_LIMIT_VARIABLE_NUMBER -1
} $SQLITE_MAX_VARIABLE_NUMBER
do_test sqllimits1-1.11 {
  sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH -1
} $SQLITE_MAX_TRIGGER_DEPTH
do_test sqllimits1-1.12 {
  sqlite3_limit db SQLITE_LIMIT_WORKER_THREADS 99999
  sqlite3_limit db SQLITE_LIMIT_WORKER_THREADS -1
} $SQLITE_MAX_WORKER_THREADS

# Limit parameters out of range.
#
do_test sqllimits1-1.20 {
  sqlite3_limit db SQLITE_LIMIT_TOOSMALL 123
} {-1}
do_test sqllimits1-1.21 {

Changes to test/subquery2.test.

98
99
100
101
102
103
104
105



106










































107
}

do_execsql_test 2.2 {
  SELECT * 
  FROM (SELECT * FROM t4 ORDER BY a LIMIT -1 OFFSET 1) 
  LIMIT (SELECT a FROM t5)
} {2 3   3 6   4 10}















































finish_test








>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
}

do_execsql_test 2.2 {
  SELECT * 
  FROM (SELECT * FROM t4 ORDER BY a LIMIT -1 OFFSET 1) 
  LIMIT (SELECT a FROM t5)
} {2 3   3 6   4 10}

############################################################################
# Ticket http://www.sqlite.org/src/info/d11a6e908f (2014-09-20)
# Query planner fault on three-way nested join with compound inner SELECT 
#
do_execsql_test 3.0 {
  DROP TABLE IF EXISTS t1;
  DROP TABLE IF EXISTS t2;
  CREATE TABLE t1 (id INTEGER PRIMARY KEY, data TEXT);
  INSERT INTO t1(id,data) VALUES(9,'nine-a');
  INSERT INTO t1(id,data) VALUES(10,'ten-a');
  INSERT INTO t1(id,data) VALUES(11,'eleven-a');
  CREATE TABLE t2 (id INTEGER PRIMARY KEY, data TEXT);
  INSERT INTO t2(id,data) VALUES(9,'nine-b');
  INSERT INTO t2(id,data) VALUES(10,'ten-b');
  INSERT INTO t2(id,data) VALUES(11,'eleven-b');
  
  SELECT id FROM (
    SELECT id,data FROM (
       SELECT * FROM t1 UNION ALL SELECT * FROM t2
    )
    WHERE id=10 ORDER BY data
  );
} {10 10}
do_execsql_test 3.1 {
  SELECT data FROM (
     SELECT 'dummy', data FROM (
       SELECT data FROM t1 UNION ALL SELECT data FROM t1
     ) ORDER BY data
  );
} {eleven-a eleven-a nine-a nine-a ten-a ten-a}
do_execsql_test 3.2 {
  DROP TABLE IF EXISTS t3;
  DROP TABLE IF EXISTS t4;
  CREATE TABLE t3(id INTEGER, data TEXT);
  CREATE TABLE t4(id INTEGER, data TEXT);
  INSERT INTO t3 VALUES(4, 'a'),(2,'c');
  INSERT INTO t4 VALUES(3, 'b'),(1,'d');

  SELECT data, id FROM (
    SELECT id, data FROM (
       SELECT * FROM t3 UNION ALL SELECT * FROM t4
    ) ORDER BY data
  );
} {a 4 b 3 c 2 d 1}


finish_test

Added test/tkt-ba7cbfaedc.test.



































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# 2014-10-11
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#*************************************************************************
#
# Test that ticket [ba7cbfaedc] has been fixed.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix tkt-ba7cbfaedc

do_execsql_test 1 {
  CREATE TABLE t1 (x, y);
  INSERT INTO t1 VALUES (3, 'a');
  INSERT INTO t1 VALUES (1, 'a'); 
  INSERT INTO t1 VALUES (2, 'b');
  INSERT INTO t1 VALUES (2, 'a');
  INSERT INTO t1 VALUES (3, 'b');
  INSERT INTO t1 VALUES (1, 'b'); 
}

do_execsql_test 1.1 {
  CREATE INDEX i1 ON t1(x, y);
}

foreach {n idx} {
  1 { CREATE INDEX i1 ON t1(x, y) }
  2 { CREATE INDEX i1 ON t1(x DESC, y) }
  3 { CREATE INDEX i1 ON t1(x, y DESC) }
  4 { CREATE INDEX i1 ON t1(x DESC, y DESC) }
} {
  catchsql { DROP INDEX i1 }
  execsql $idx
  foreach {tn q res} {
    1 "GROUP BY x, y ORDER BY x, y"            {1 a 1 b   2 a 2 b   3 a 3 b}
    2 "GROUP BY x, y ORDER BY x DESC, y"       {3 a 3 b   2 a 2 b   1 a 1 b}
    3 "GROUP BY x, y ORDER BY x, y DESC"       {1 b 1 a   2 b 2 a   3 b 3 a}
    4 "GROUP BY x, y ORDER BY x DESC, y DESC"  {3 b 3 a   2 b 2 a   1 b 1 a}
  } {
    do_execsql_test 1.$n.$tn "SELECT * FROM t1 $q" $res
  }
}

do_execsql_test 2.0 {
  drop table if exists t1;
  create table t1(id int);
  insert into t1(id) values(1),(2),(3),(4),(5);
  create index t1_idx_id on t1(id asc);
  select * from t1 group by id order by id;
  select * from t1 group by id order by id asc;
  select * from t1 group by id order by id desc;
} {
  1 2 3 4 5   1 2 3 4 5   5 4 3 2 1
}

finish_test


Changes to tool/vdbe-compress.tcl.

106
107
108
109
110
111
112





113
114
115
116
117
118
119
    append afterUnion $line\n
    set vlist {}
  } elseif {[llength $vlist]>0} {
    append line " "
    foreach v $vlist {
      regsub -all "(\[^a-zA-Z0-9>.\])${v}(\\W)" $line "\\1u.$sname.$v\\2" line
      regsub -all "(\[^a-zA-Z0-9>.\])${v}(\\W)" $line "\\1u.$sname.$v\\2" line





    }
    append afterUnion [string trimright $line]\n
  } elseif {$line=="" && [eof stdin]} {
    # no-op
  } else {
    append afterUnion $line\n
  }







>
>
>
>
>







106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    append afterUnion $line\n
    set vlist {}
  } elseif {[llength $vlist]>0} {
    append line " "
    foreach v $vlist {
      regsub -all "(\[^a-zA-Z0-9>.\])${v}(\\W)" $line "\\1u.$sname.$v\\2" line
      regsub -all "(\[^a-zA-Z0-9>.\])${v}(\\W)" $line "\\1u.$sname.$v\\2" line

      # The expressions above fail to catch instance of variable "abc" in
      # expressions like (32>abc). The following expression makes those
      # substitutions.
      regsub -all "(\[^-\])>${v}(\\W)" $line "\\1>u.$sname.$v\\2" line
    }
    append afterUnion [string trimright $line]\n
  } elseif {$line=="" && [eof stdin]} {
    # no-op
  } else {
    append afterUnion $line\n
  }