SQLite

Check-in [d134d29cea]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:The power-of-two first-fit memory allocator is now working. (CVS 4793)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: d134d29cea971eb01a0e0fd94341ab79e2d5b57a
User & Date: drh 2008-02-16 16:21:46.000
Context
2008-02-18
14:47
Add the Bitvec object for tracking which pages have been journalled. This reduces memory consumption and runs faster than the bitmap approach it replaced. (CVS 4794) (check-in: 7c57bdbcdb user: drh tags: trunk)
2008-02-16
16:21
The power-of-two first-fit memory allocator is now working. (CVS 4793) (check-in: d134d29cea user: drh tags: trunk)
2008-02-15
17:38
Fix a bug in the ".show" command of the CLI. Ticket #2942. (CVS 4792) (check-in: dedf5f230b user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/mem5.c.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


35

36
37

38
39
40

41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60

61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
















90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109





110


111
112
113
114
115
116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133
134
135
136
137
138
139
140
141
142
143
144






145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221




222
223
224
225
226

227
228
229

230

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
** use of malloc().  All dynamically allocatable memory is
** contained in a static array, mem.aPool[].  The size of this
** fixed memory pool is SQLITE_POW2_MEMORY_SIZE bytes.
**
** This version of the memory allocation subsystem is used if
** and only if SQLITE_POW2_MEMORY_SIZE is defined.
**
** $Id: mem5.c,v 1.1 2008/02/14 23:26:56 drh Exp $
*/
#include "sqliteInt.h"

/*
** This version of the memory allocator is used only when 
** SQLITE_POW2_MEMORY_SIZE is defined.
*/
#ifdef SQLITE_POW2_MEMORY_SIZE

/*
** Maximum size (in Mem3Blocks) of a "small" chunk.


*/

#define MX_SMALL 10



/*
** Number of freelist hash slots

*/

#define N_HASH  61

/*
** A memory allocation (also called a "chunk") consists of two or 
** more blocks where each block is 8 bytes.  The first 8 bytes are 
** a header that is not returned to the user.
**
** A chunk is two or more blocks that is either checked out or
** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
** size of the allocation in blocks if the allocation is free.
** The u.hdr.size4x&1 bit is true if the chunk is checked out and
** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
** is true if the previous chunk is checked out and false if the
** previous chunk is free.  The u.hdr.prevSize field is the size of
** the previous chunk in blocks if the previous chunk is on the
** freelist. If the previous chunk is checked out, then

** u.hdr.prevSize can be part of the data for that chunk and should
** not be read or written.
**

** We often identify a chunk by its index in mem.aPool[].  When
** this is done, the chunk index refers to the second block of
** the chunk.  In this way, the first chunk has an index of 1.
** A chunk index of 0 means "no such chunk" and is the equivalent
** of a NULL pointer.
**

** The second block of free chunks is of the form u.list.  The
** two fields form a double-linked list of chunks of related sizes.
** Pointers to the head of the list are stored in mem.aiSmall[] 
** for smaller chunks and mem.aiHash[] for larger chunks.
**
** The second block of a chunk is user data if the chunk is checked 
** out.  If a chunk is checked out, the user data may extend into
** the u.hdr.prevSize value of the following chunk.
*/
typedef struct Mem3Block Mem3Block;
struct Mem3Block {
  union {
    struct {
      u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
      u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
    } hdr;
    struct {
      u32 next;       /* Index in mem.aPool[] of next free chunk */
      u32 prev;       /* Index in mem.aPool[] of previous free chunk */
    } list;
  } u;
};

















/*
** All of the static variables used by this module are collected
** into a single structure named "mem".  This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static struct {
  /*
  ** True if we are evaluating an out-of-memory callback.
  */
  int alarmBusy;
  
  /*
  ** Mutex to control access to the memory allocation subsystem.
  */
  sqlite3_mutex *mutex;
  
  /*
  ** The minimum amount of free space that we have seen.
  */





  u32 mnMaster;



  /*
  ** iMaster is the index of the master chunk.  Most new allocations
  ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
  ** of the current master.  iMaster is 0 if there is not master chunk.
  ** The master chunk is not in either the aiHash[] or aiSmall[].

  */
  u32 iMaster;
  u32 szMaster;


u64 totalAlloc;
u64 totalExcess;
int nAlloc;

  /*
  ** Array of lists of free blocks according to the block size 
  ** for smaller chunks, or a hash on the block size for larger
  ** chunks.
  */
  u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
  u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */


  /*
  ** Memory available for allocation
  */
  Mem3Block aPool[SQLITE_POW2_MEMORY_SIZE/sizeof(Mem3Block)+2];
} mem;

/*
** Unlink the chunk at mem.aPool[i] from list it is currently
** on.  *pRoot is the list that i is a member of.
*/
static void memsys3UnlinkFromList(u32 i, u32 *pRoot){






  u32 next = mem.aPool[i].u.list.next;
  u32 prev = mem.aPool[i].u.list.prev;
  assert( sqlite3_mutex_held(mem.mutex) );
  if( prev==0 ){
    *pRoot = next;
  }else{
    mem.aPool[prev].u.list.next = next;
  }
  if( next ){
    mem.aPool[next].u.list.prev = prev;
  }
  mem.aPool[i].u.list.next = 0;
  mem.aPool[i].u.list.prev = 0;
}

/*
** Unlink the chunk at index i from 
** whatever list is currently a member of.
*/
static void memsys3Unlink(u32 i){
  u32 size, hash;
  assert( sqlite3_mutex_held(mem.mutex) );
  assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
  assert( i>=1 );
  size = mem.aPool[i-1].u.hdr.size4x/4;
  assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
  assert( size>=2 );
  if( size <= MX_SMALL ){
    memsys3UnlinkFromList(i, &mem.aiSmall[size-2]);
  }else{
    hash = size % N_HASH;
    memsys3UnlinkFromList(i, &mem.aiHash[hash]);
  }
}

/*
** Link the chunk at mem.aPool[i] so that is on the list rooted
** at *pRoot.
*/
static void memsys3LinkIntoList(u32 i, u32 *pRoot){
  assert( sqlite3_mutex_held(mem.mutex) );
  mem.aPool[i].u.list.next = *pRoot;
  mem.aPool[i].u.list.prev = 0;
  if( *pRoot ){
    mem.aPool[*pRoot].u.list.prev = i;
  }
  *pRoot = i;
}

/*
** Link the chunk at index i into either the appropriate
** small chunk list, or into the large chunk hash table.
*/
static void memsys3Link(u32 i){
  u32 size, hash;
  assert( sqlite3_mutex_held(mem.mutex) );
  assert( i>=1 );
  assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
  size = mem.aPool[i-1].u.hdr.size4x/4;
  assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
  assert( size>=2 );
  if( size <= MX_SMALL ){
    memsys3LinkIntoList(i, &mem.aiSmall[size-2]);
  }else{
    hash = size % N_HASH;
    memsys3LinkIntoList(i, &mem.aiHash[hash]);
  }

}

/*
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
**
** Also:  Initialize the memory allocation subsystem the first time
** this routine is called.
*/
static void memsys3Enter(void){
  if( mem.mutex==0 ){




    mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
    mem.aPool[0].u.hdr.size4x = SQLITE_POW2_MEMORY_SIZE/2 + 2;
    mem.aPool[SQLITE_POW2_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_POW2_MEMORY_SIZE/8;
    mem.aPool[SQLITE_POW2_MEMORY_SIZE/8].u.hdr.size4x = 1;
    mem.iMaster = 1;

    mem.szMaster = SQLITE_POW2_MEMORY_SIZE/8;
    mem.mnMaster = mem.szMaster;
  }

  sqlite3_mutex_enter(mem.mutex);

}

/*
** Return the amount of memory currently checked out.
*/
sqlite3_int64 sqlite3_memory_used(void){
  sqlite3_int64 n;
  memsys3Enter();
  n = SQLITE_POW2_MEMORY_SIZE - mem.szMaster*8;
  sqlite3_mutex_leave(mem.mutex);  
  return n;
}

/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
  sqlite3_int64 n;
  memsys3Enter();
  n = SQLITE_POW2_MEMORY_SIZE - mem.mnMaster*8;
  if( resetFlag ){
    mem.mnMaster = mem.szMaster;
  }
printf("alloc-cnt=%d avg-size=%lld avg-excess=%lld\n",
mem.nAlloc, mem.totalAlloc/mem.nAlloc, mem.totalExcess/mem.nAlloc);
  sqlite3_mutex_leave(mem.mutex);  
  return n;
}

/*
** Change the alarm callback.
**







|










|
>
>

>
|
|
>


<
>

>
|
|
<
<
<
<
<
|
<
<
<
<
<
<
|
<
>
|
<
|
>
|
<
<
<
<
<
>
|
<
<
|
<
<
<
|

|
|

|
<
<
<

|
|




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
















|

|

>
>
>
>
>
|
>
>
|

<
<
<
<
>

<
<
|

<
<
<
<

|
<
|

<
<
>




|




|

|
>
>
>
>
>
>
|
|
<
|
|



|


<
<



|
|

|
|

<
|
<
|
|
<
<
<
<
<
|
<
<
<
<
<
<
<
<
|
|
|
<
<
<
<
<
<
<
<
<
<
<
<
|
<
|
<
<
<
<
<
<
<

>








|

>
>
>
>

<
<
|
|
>
|
|
|
>
|
>






<
<
<
<
|









|
|

|

<
<







16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48





49






50

51
52

53
54
55





56
57


58



59
60
61
62
63
64



65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117




118
119


120
121




122
123

124
125


126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147
148
149
150
151
152
153
154


155
156
157
158
159
160
161
162
163

164

165
166





167








168
169
170












171

172







173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189


190
191
192
193
194
195
196
197
198
199
200
201
202
203
204




205
206
207
208
209
210
211
212
213
214
215
216
217
218
219


220
221
222
223
224
225
226
** use of malloc().  All dynamically allocatable memory is
** contained in a static array, mem.aPool[].  The size of this
** fixed memory pool is SQLITE_POW2_MEMORY_SIZE bytes.
**
** This version of the memory allocation subsystem is used if
** and only if SQLITE_POW2_MEMORY_SIZE is defined.
**
** $Id: mem5.c,v 1.2 2008/02/16 16:21:46 drh Exp $
*/
#include "sqliteInt.h"

/*
** This version of the memory allocator is used only when 
** SQLITE_POW2_MEMORY_SIZE is defined.
*/
#ifdef SQLITE_POW2_MEMORY_SIZE

/*
** Log2 of the minimum size of an allocation.  For example, if
** 4 then all allocations will be rounded up to at least 16 bytes.
** If 5 then all allocations will be rounded up to at least 32 bytes.
*/
#ifndef SQLITE_POW2_LOGMIN
# define SQLITE_POW2_LOGMIN 6
#endif
#define POW2_MIN (1<<SQLITE_POW2_LOGMIN)

/*

** Log2 of the maximum size of an allocation.
*/
#ifndef SQLITE_POW2_LOGMAX
# define SQLITE_POW2_LOGMAX 18
#endif





#define POW2_MAX (((unsigned int)1)<<SQLITE_POW2_LOGMAX)








/*
** Number of distinct allocation sizes.

*/
#define NSIZE (SQLITE_POW2_LOGMAX - SQLITE_POW2_LOGMIN + 1)






/*
** A minimum allocation is an instance of the following structure.


** Larger allocations are an array of these structures where the



** size of the array is a power of 2.
*/
typedef struct Mem5Block Mem5Block;
struct Mem5Block {
  union {
    char aData[POW2_MIN];



    struct {
      int next;       /* Index in mem.aPool[] of next free chunk */
      int prev;       /* Index in mem.aPool[] of previous free chunk */
    } list;
  } u;
};

/*
** Number of blocks of memory available for allocation.
*/
#define NBLOCK (SQLITE_POW2_MEMORY_SIZE/POW2_MIN)

/*
** The size in blocks of an POW2_MAX allocation
*/
#define SZ_MAX (1<<(NSIZE-1))

/*
** Masks used for mem.aCtrl[] elements.
*/
#define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block relative to POW2_MIN */
#define CTRL_FREE     0x20    /* True if not checked out */

/*
** All of the static variables used by this module are collected
** into a single structure named "mem".  This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static struct {
  /*
  ** True if we are evaluating an out-of-memory callback.
  */
  int alarmBusy;
  
  /*
  ** Mutex to control access to the memory allocation subsystem.
  */
  sqlite3_mutex *mutex;

  /*
  ** Performance statistics
  */
  u64 nAlloc;         /* Total number of calls to malloc */
  u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
  u64 totalExcess;    /* Total internal fragmentation */
  u32 currentOut;     /* Current checkout, including internal fragmentation */
  u32 currentCount;   /* Current number of distinct checkouts */
  u32 maxOut;         /* Maximum instantaneous currentOut */
  u32 maxCount;       /* Maximum instantaneous currentCount */
  u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
  
  /*




  ** Lists of free blocks of various sizes.
  */


  int aiFreelist[NSIZE];





  /*
  ** Space for tracking which blocks are checked out and the size

  ** of each block.  One byte per block.
  */


  u8 aCtrl[NBLOCK];

  /*
  ** Memory available for allocation
  */
  Mem5Block aPool[NBLOCK];
} mem;

/*
** Unlink the chunk at mem.aPool[i] from list it is currently
** on.  It should be found on mem.aiFreelist[iLogsize].
*/
static void memsys5Unlink(int i, int iLogsize){
  int next, prev;
  assert( i>=0 && i<NBLOCK );
  assert( iLogsize>=0 && iLogsize<NSIZE );
  assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
  assert( sqlite3_mutex_held(mem.mutex) );

  next = mem.aPool[i].u.list.next;
  prev = mem.aPool[i].u.list.prev;

  if( prev<0 ){
    mem.aiFreelist[iLogsize] = next;
  }else{
    mem.aPool[prev].u.list.next = next;
  }
  if( next>=0 ){
    mem.aPool[next].u.list.prev = prev;
  }


}

/*
** Link the chunk at mem.aPool[i] so that is on the iLogsize
** free list.
*/
static void memsys5Link(int i, int iLogsize){
  int x;
  assert( sqlite3_mutex_held(mem.mutex) );

  assert( i>=0 && i<NBLOCK );

  assert( iLogsize>=0 && iLogsize<NSIZE );
  assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );














  mem.aPool[i].u.list.next = x = mem.aiFreelist[iLogsize];
  mem.aPool[i].u.list.prev = -1;
  if( x>=0 ){












    assert( x<NBLOCK );

    mem.aPool[x].u.list.prev = i;







  }
  mem.aiFreelist[iLogsize] = i;
}

/*
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
**
** Also:  Initialize the memory allocation subsystem the first time
** this routine is called.
*/
static void memsys5Enter(void){
  if( mem.mutex==0 ){
    int i;
    assert( sizeof(Mem5Block)==POW2_MIN );
    assert( (SQLITE_POW2_MEMORY_SIZE % POW2_MAX)==0 );
    assert( SQLITE_POW2_MEMORY_SIZE>=POW2_MAX );
    mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);


    sqlite3_mutex_enter(mem.mutex);
    for(i=0; i<NSIZE; i++) mem.aiFreelist[i] = -1;
    for(i=0; i<=NBLOCK-SZ_MAX; i += SZ_MAX){
      mem.aCtrl[i] = (NSIZE-1) | CTRL_FREE;
      memsys5Link(i, NSIZE-1);
    }
  }else{
    sqlite3_mutex_enter(mem.mutex);
  }
}

/*
** Return the amount of memory currently checked out.
*/
sqlite3_int64 sqlite3_memory_used(void){




  return mem.currentOut;
}

/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
  sqlite3_int64 n;
  memsys5Enter();
  n = mem.maxOut;
  if( resetFlag ){
    mem.maxOut = mem.currentOut;
  }


  sqlite3_mutex_leave(mem.mutex);  
  return n;
}

/*
** Change the alarm callback.
**
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436


437
438

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

496
497
498
499
500

501
502
503
504

505



506
507
508
509

510
511
512
513

514
515
516
517

518

519

520
521


522
523
524

525

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
){
  return SQLITE_OK;
}

/*
** Called when we are unable to satisfy an allocation of nBytes.
*/
static void memsys3OutOfMemory(int nByte){
  if( !mem.alarmBusy ){
    mem.alarmBusy = 1;
    assert( sqlite3_mutex_held(mem.mutex) );
    sqlite3_mutex_leave(mem.mutex);
    sqlite3_release_memory(nByte);
    sqlite3_mutex_enter(mem.mutex);
    mem.alarmBusy = 0;
  }
}

/*
** Return the size of an outstanding allocation, in bytes.  The
** size returned omits the 8-byte header overhead.  This only
** works for chunks that are currently checked out.
*/
int sqlite3MallocSize(void *p){
  int iSize = 0;
  if( p ){
    Mem3Block *pBlock = (Mem3Block*)p;
    assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
    iSize = (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
  }
  return iSize;
}

/*
** Chunk i is a free chunk that has been unlinked.  Adjust its 
** size parameters for check-out and return a pointer to the 
** user portion of the chunk.
*/
static void *memsys3Checkout(u32 i, int nBlock){
  u32 x;
  assert( sqlite3_mutex_held(mem.mutex) );
  assert( i>=1 );
  assert( mem.aPool[i-1].u.hdr.size4x/4==nBlock );
  assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
  x = mem.aPool[i-1].u.hdr.size4x;
  mem.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
  mem.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
  mem.aPool[i+nBlock-1].u.hdr.size4x |= 2;
  return &mem.aPool[i];
}

/*
** Carve a piece off of the end of the mem.iMaster free chunk.
** Return a pointer to the new allocation.  Or, if the master chunk
** is not large enough, return 0.
*/
static void *memsys3FromMaster(int nBlock){
  assert( sqlite3_mutex_held(mem.mutex) );
  assert( mem.szMaster>=nBlock );
  if( nBlock>=mem.szMaster-1 ){
    /* Use the entire master */
    void *p = memsys3Checkout(mem.iMaster, mem.szMaster);
    mem.iMaster = 0;
    mem.szMaster = 0;
    mem.mnMaster = 0;
    return p;
  }else{
    /* Split the master block.  Return the tail. */
    u32 newi, x;
    newi = mem.iMaster + mem.szMaster - nBlock;
    assert( newi > mem.iMaster+1 );
    mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = nBlock;
    mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x |= 2;
    mem.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
    mem.szMaster -= nBlock;
    mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster;
    x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
    mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
    if( mem.szMaster < mem.mnMaster ){
      mem.mnMaster = mem.szMaster;
    }
    return (void*)&mem.aPool[newi];
  }
}

/*
** *pRoot is the head of a list of free chunks of the same size
** or same size hash.  In other words, *pRoot is an entry in either
** mem.aiSmall[] or mem.aiHash[].  
**
** This routine examines all entries on the given list and tries
** to coalesce each entries with adjacent free chunks.  
**
** If it sees a chunk that is larger than mem.iMaster, it replaces 
** the current mem.iMaster with the new larger chunk.  In order for
** this mem.iMaster replacement to work, the master chunk must be
** linked into the hash tables.  That is not the normal state of
** affairs, of course.  The calling routine must link the master
** chunk before invoking this routine, then must unlink the (possibly
** changed) master chunk once this routine has finished.
*/
static void memsys3Merge(u32 *pRoot){
  u32 iNext, prev, size, i, x;

  assert( sqlite3_mutex_held(mem.mutex) );
  for(i=*pRoot; i>0; i=iNext){

    iNext = mem.aPool[i].u.list.next;
    size = mem.aPool[i-1].u.hdr.size4x;
    assert( (size&1)==0 );
    if( (size&2)==0 ){
      memsys3UnlinkFromList(i, pRoot);
      assert( i > mem.aPool[i-1].u.hdr.prevSize );
      prev = i - mem.aPool[i-1].u.hdr.prevSize;
      if( prev==iNext ){
        iNext = mem.aPool[prev].u.list.next;
      }
      memsys3Unlink(prev);
      size = i + size/4 - prev;
      x = mem.aPool[prev-1].u.hdr.size4x & 2;
      mem.aPool[prev-1].u.hdr.size4x = size*4 | x;
      mem.aPool[prev+size-1].u.hdr.prevSize = size;
      memsys3Link(prev);
      i = prev;
    }else{
      size /= 4;
    }
    if( size>mem.szMaster ){
      mem.iMaster = i;
      mem.szMaster = size;
    }
  }
}

/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.
*/
static void *memsys3Malloc(int nByte){
  u32 i;
  int nBlock;
  int toFree;
  int x;

  assert( sqlite3_mutex_held(mem.mutex) );
  assert( sizeof(Mem3Block)==8 );
  for(x=256; x<nByte; x *= 2){}
mem.nAlloc++;
mem.totalAlloc += x;
mem.totalExcess += x - nByte;
  nByte = x;
  nBlock = (nByte + 11)/8;
  assert( nBlock >= 2 );

  /* STEP 1:
  ** Look for an entry of the correct size in either the small
  ** chunk table or in the large chunk hash table.  This is
  ** successful most of the time (about 9 times out of 10).
  */
  if( nBlock <= MX_SMALL ){
    i = mem.aiSmall[nBlock-2];
    if( i>0 ){
      memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]);
      return memsys3Checkout(i, nBlock);


    }
  }else{

    int hash = nBlock % N_HASH;
    for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){
      if( mem.aPool[i-1].u.hdr.size4x/4==nBlock ){
        memsys3UnlinkFromList(i, &mem.aiHash[hash]);
        return memsys3Checkout(i, nBlock);
      }
    }
  }

  /* STEP 2:
  ** Try to satisfy the allocation by carving a piece off of the end
  ** of the master chunk.  This step usually works if step 1 fails.
  */
  if( mem.szMaster>=nBlock ){
    return memsys3FromMaster(nBlock);
  }


  /* STEP 3:  
  ** Loop through the entire memory pool.  Coalesce adjacent free
  ** chunks.  Recompute the master chunk as the largest free chunk.
  ** Then try again to satisfy the allocation by carving a piece off
  ** of the end of the master chunk.  This step happens very
  ** rarely (we hope!)
  */
  for(toFree=nBlock*16; toFree<SQLITE_POW2_MEMORY_SIZE*2; toFree *= 2){
    memsys3OutOfMemory(toFree);
    if( mem.iMaster ){
      memsys3Link(mem.iMaster);
      mem.iMaster = 0;
      mem.szMaster = 0;
    }
    for(i=0; i<N_HASH; i++){
      memsys3Merge(&mem.aiHash[i]);
    }
    for(i=0; i<MX_SMALL-1; i++){
      memsys3Merge(&mem.aiSmall[i]);
    }
    if( mem.szMaster ){
      memsys3Unlink(mem.iMaster);
      if( mem.szMaster>=nBlock ){
        return memsys3FromMaster(nBlock);
      }
    }
  }

  /* If none of the above worked, then we fail. */
  return 0;
}

/*
** Free an outstanding memory allocation.
*/
void memsys3Free(void *pOld){
  Mem3Block *p = (Mem3Block*)pOld;
  int i;
  u32 size, x;

  assert( sqlite3_mutex_held(mem.mutex) );
  assert( p>mem.aPool && p<&mem.aPool[SQLITE_POW2_MEMORY_SIZE/8] );
  i = p - mem.aPool;
  assert( (mem.aPool[i-1].u.hdr.size4x&1)==1 );
  size = mem.aPool[i-1].u.hdr.size4x/4;

  assert( i+size<=SQLITE_POW2_MEMORY_SIZE/8+1 );
  mem.aPool[i-1].u.hdr.size4x &= ~1;
  mem.aPool[i+size-1].u.hdr.prevSize = size;
  mem.aPool[i+size-1].u.hdr.size4x &= ~2;

  memsys3Link(i);




  /* Try to expand the master using the newly freed chunk */
  if( mem.iMaster ){
    while( (mem.aPool[mem.iMaster-1].u.hdr.size4x&2)==0 ){

      size = mem.aPool[mem.iMaster-1].u.hdr.prevSize;
      mem.iMaster -= size;
      mem.szMaster += size;
      memsys3Unlink(mem.iMaster);

      x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
      mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
      mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
    }

    x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;

    while( (mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x&1)==0 ){

      memsys3Unlink(mem.iMaster+mem.szMaster);
      mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x/4;


      mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
      mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
    }

  }

}

/*
** Allocate nBytes of memory
*/
void *sqlite3_malloc(int nBytes){
  sqlite3_int64 *p = 0;
  if( nBytes>0 ){
    memsys3Enter();
    p = memsys3Malloc(nBytes);
    sqlite3_mutex_leave(mem.mutex);
  }
  return (void*)p; 
}

/*
** Free memory.
*/
void sqlite3_free(void *pPrior){
  if( pPrior==0 ){
    return;
  }
  assert( mem.mutex!=0 );
  sqlite3_mutex_enter(mem.mutex);
  memsys3Free(pPrior);
  sqlite3_mutex_leave(mem.mutex);  
}

/*
** Change the size of an existing memory allocation
*/
void *sqlite3_realloc(void *pPrior, int nBytes){
  int nOld;
  void *p;
  if( pPrior==0 ){
    return sqlite3_malloc(nBytes);
  }
  if( nBytes<=0 ){
    sqlite3_free(pPrior);
    return 0;
  }
  assert( mem.mutex!=0 );
  nOld = sqlite3MallocSize(pPrior);
  if( nBytes<=nOld && nBytes>=nOld-128 ){
    return pPrior;
  }
  sqlite3_mutex_enter(mem.mutex);
  p = memsys3Malloc(nBytes);
  if( p ){
    if( nOld<nBytes ){
      memcpy(p, pPrior, nOld);
    }else{
      memcpy(p, pPrior, nBytes);
    }
    memsys3Free(pPrior);
  }
  sqlite3_mutex_leave(mem.mutex);
  return p;
}

/*
** Open the file indicated and write a log of all unfreed memory 
** allocations into that log.
*/
void sqlite3_memdebug_dump(const char *zFilename){
#ifdef SQLITE_DEBUG
  FILE *out;
  int i, j;
  u32 size;
  if( zFilename==0 || zFilename[0]==0 ){
    out = stdout;
  }else{
    out = fopen(zFilename, "w");
    if( out==0 ){
      fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
                      zFilename);
      return;
    }
  }
  memsys3Enter();
  fprintf(out, "CHUNKS:\n");
  for(i=1; i<=SQLITE_POW2_MEMORY_SIZE/8; i+=size/4){
    size = mem.aPool[i-1].u.hdr.size4x;
    if( size/4<=1 ){
      fprintf(out, "%p size error\n", &mem.aPool[i]);
      assert( 0 );
      break;
    }
    if( (size&1)==0 && mem.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
      fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
      assert( 0 );
      break;
    }
    if( ((mem.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
      fprintf(out, "%p tail checkout bit is incorrect\n", &mem.aPool[i]);
      assert( 0 );
      break;
    }
    if( size&1 ){
      fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], (size/4)*8-8);
    }else{
      fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], (size/4)*8-8,
                  i==mem.iMaster ? " **master**" : "");
    }
  }
  for(i=0; i<MX_SMALL-1; i++){
    if( mem.aiSmall[i]==0 ) continue;
    fprintf(out, "small(%2d):", i);
    for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){
      fprintf(out, " %p(%d)", &mem.aPool[j],
              (mem.aPool[j-1].u.hdr.size4x/4)*8-8);
    }
    fprintf(out, "\n"); 
  }
  for(i=0; i<N_HASH; i++){
    if( mem.aiHash[i]==0 ) continue;
    fprintf(out, "hash(%2d):", i);
    for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){
      fprintf(out, " %p(%d)", &mem.aPool[j],
              (mem.aPool[j-1].u.hdr.size4x/4)*8-8);
    }
    fprintf(out, "\n"); 
  }
  fprintf(out, "master=%d\n", mem.iMaster);
  fprintf(out, "nowUsed=%d\n", SQLITE_POW2_MEMORY_SIZE - mem.szMaster*8);
  fprintf(out, "mxUsed=%d\n", SQLITE_POW2_MEMORY_SIZE - mem.mnMaster*8);
  sqlite3_mutex_leave(mem.mutex);
  if( out==stdout ){
    fflush(stdout);
  }else{
    fclose(out);
  }
#endif
}


#endif /* !SQLITE_POW2_MEMORY_SIZE */







|


















|
|
|





|
|
<

|
<
<
|
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
|
>
|
<
<
<
<
<
<
<
<
|
|
<
<
<
<
<
|
<
<
<
<
<
<
<
<






|
|
|
|
|


<
<
<
<
|
|
|
<

<
<
<
<
<
<
|
|
<
|
>
>
|
<
>
|
<
|
<
|
|
<
<
|
<
<
<
<
<
<
|
|
|
<
<
<
<
<
<
<
<
<
|
<
|
|
<
<
<
<
<
<
<
|
<
|
<
|
<
<
<
<
|





|
|

|
>

|
<
|
|
>
|
|
|
|
>
|
>
>
>

<
|
|
>
|
|
|
<
>
|
<
<

>
|
>
|
>
|
|
>
>
|
|

>

>








|
|














|


















|



|

<
|
<
<
<
|












|
|










|
<
|
|
<
|
<
<
|
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
|
<
<
|
<
<
<
|
<
|
<
<
|
<
|
<
<











236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

272
273


274








275































276

277


















278
279
280
281
282








283
284





285








286
287
288
289
290
291
292
293
294
295
296
297
298




299
300
301

302






303
304

305
306
307
308

309
310

311

312
313


314






315
316
317









318

319
320







321

322

323




324
325
326
327
328
329
330
331
332
333
334
335
336

337
338
339
340
341
342
343
344
345
346
347
348
349

350
351
352
353
354
355

356
357


358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

423



424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

450
451

452


453

454

















455

456


457



458

459


460

461


462
463
464
465
466
467
468
469
470
471
472
){
  return SQLITE_OK;
}

/*
** Called when we are unable to satisfy an allocation of nBytes.
*/
static void memsys5OutOfMemory(int nByte){
  if( !mem.alarmBusy ){
    mem.alarmBusy = 1;
    assert( sqlite3_mutex_held(mem.mutex) );
    sqlite3_mutex_leave(mem.mutex);
    sqlite3_release_memory(nByte);
    sqlite3_mutex_enter(mem.mutex);
    mem.alarmBusy = 0;
  }
}

/*
** Return the size of an outstanding allocation, in bytes.  The
** size returned omits the 8-byte header overhead.  This only
** works for chunks that are currently checked out.
*/
int sqlite3MallocSize(void *p){
  int iSize = 0;
  if( p ){
    int i = ((Mem5Block*)p) - mem.aPool;
    assert( i>=0 && i<NBLOCK );
    iSize = 1 << ((mem.aCtrl[i]&CTRL_LOGSIZE) + SQLITE_POW2_LOGMIN);
  }
  return iSize;
}

/*
** Find the first entry on the freelist iLogsize.  Unlink that
** entry and return its index. 

*/
static int memsys5UnlinkFirst(int iLogsize){


  int i;








  int iFirst;

































  assert( iLogsize>=0 && iLogsize<NSIZE );


















  i = iFirst = mem.aiFreelist[iLogsize];
  assert( iFirst>=0 );
  while( i>0 ){
    if( i<iFirst ) iFirst = i;
    i = mem.aPool[i].u.list.next;








  }
  memsys5Unlink(iFirst, iLogsize);





  return iFirst;








}

/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.
*/
static void *memsys5Malloc(int nByte){
  int i;           /* Index of a mem.aPool[] slot */
  int iBin;        /* Index into mem.aiFreelist[] */
  int iFullSz;     /* Size of allocation rounded up to power of 2 */
  int iLogsize;    /* Log2 of iFullSz/POW2_MIN */

  assert( sqlite3_mutex_held(mem.mutex) );




  if( nByte>mem.maxRequest ) mem.maxRequest = nByte;
  if( nByte>POW2_MAX ) return 0;
  for(iFullSz=POW2_MIN, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}








  for(iBin=iLogsize; mem.aiFreelist[iBin]<0 && iBin<NSIZE; iBin++){}
  if( iBin>=NSIZE ) return 0;

  i = memsys5UnlinkFirst(iBin);
  while( iBin>iLogsize ){
    int newSize;


    iBin--;
    newSize = 1 << iBin;

    mem.aCtrl[i+newSize] = CTRL_FREE | iBin;

    memsys5Link(i+newSize, iBin);
  }


  mem.aCtrl[i] = iLogsize;







  mem.nAlloc++;
  mem.totalAlloc += iFullSz;









  mem.totalExcess += iFullSz - nByte;

  mem.currentCount++;
  mem.currentOut += iFullSz;







  if( mem.maxCount<mem.currentCount ) mem.maxCount = mem.currentCount;

  if( mem.maxOut<mem.currentOut ) mem.maxOut = mem.currentOut;






  return (void*)&mem.aPool[i];
}

/*
** Free an outstanding memory allocation.
*/
void memsys5Free(void *pOld){
  u32 size, iLogsize;
  int i;

  i = ((Mem5Block*)pOld) - mem.aPool;
  assert( sqlite3_mutex_held(mem.mutex) );
  assert( i>=0 && i<NBLOCK );

  assert( (mem.aCtrl[i] & CTRL_FREE)==0 );
  iLogsize = mem.aCtrl[i] & CTRL_LOGSIZE;
  size = 1<<iLogsize;
  assert( i+size-1<NBLOCK );
  mem.aCtrl[i] |= CTRL_FREE;
  mem.aCtrl[i+size-1] |= CTRL_FREE;
  assert( mem.currentCount>0 );
  assert( mem.currentOut>=0 );
  mem.currentCount--;
  mem.currentOut -= size*POW2_MIN;
  assert( mem.currentOut>0 || mem.currentCount==0 );
  assert( mem.currentCount>0 || mem.currentOut==0 );


  mem.aCtrl[i] = CTRL_FREE | iLogsize;
  while( iLogsize<NSIZE-1 ){
    int iBuddy;

    if( (i>>iLogsize) & 1 ){
      iBuddy = i - size;

    }else{
      iBuddy = i + size;


    }
    assert( iBuddy>=0 && iBuddy<NBLOCK );
    if( mem.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
    memsys5Unlink(iBuddy, iLogsize);
    iLogsize++;
    if( iBuddy<i ){
      mem.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
      mem.aCtrl[i] = 0;
      i = iBuddy;
    }else{
      mem.aCtrl[i] = CTRL_FREE | iLogsize;
      mem.aCtrl[iBuddy] = 0;
    }
    size *= 2;
  }
  memsys5Link(i, iLogsize);
}

/*
** Allocate nBytes of memory
*/
void *sqlite3_malloc(int nBytes){
  sqlite3_int64 *p = 0;
  if( nBytes>0 ){
    memsys5Enter();
    p = memsys5Malloc(nBytes);
    sqlite3_mutex_leave(mem.mutex);
  }
  return (void*)p; 
}

/*
** Free memory.
*/
void sqlite3_free(void *pPrior){
  if( pPrior==0 ){
    return;
  }
  assert( mem.mutex!=0 );
  sqlite3_mutex_enter(mem.mutex);
  memsys5Free(pPrior);
  sqlite3_mutex_leave(mem.mutex);  
}

/*
** Change the size of an existing memory allocation
*/
void *sqlite3_realloc(void *pPrior, int nBytes){
  int nOld;
  void *p;
  if( pPrior==0 ){
    return sqlite3_malloc(nBytes);
  }
  if( nBytes<=0 ){
    sqlite3_free(pPrior);
    return 0;
  }
  assert( mem.mutex!=0 );
  nOld = sqlite3MallocSize(pPrior);
  if( nBytes<=nOld ){
    return pPrior;
  }
  sqlite3_mutex_enter(mem.mutex);
  p = memsys5Malloc(nBytes);
  if( p ){

    memcpy(p, pPrior, nOld);



    memsys5Free(pPrior);
  }
  sqlite3_mutex_leave(mem.mutex);
  return p;
}

/*
** Open the file indicated and write a log of all unfreed memory 
** allocations into that log.
*/
void sqlite3_memdebug_dump(const char *zFilename){
#ifdef SQLITE_DEBUG
  FILE *out;
  int i, j, n;

  if( zFilename==0 || zFilename[0]==0 ){
    out = stdout;
  }else{
    out = fopen(zFilename, "w");
    if( out==0 ){
      fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
                      zFilename);
      return;
    }
  }
  memsys5Enter();

  for(i=0; i<NSIZE; i++){
    for(n=0, j=mem.aiFreelist[i]; j>=0; j = mem.aPool[j].u.list.next, n++){}

    fprintf(out, "freelist items of size %d: %d\n", POW2_MIN << i, n);


  }

  fprintf(out, "mem.nAlloc       = %llu\n", mem.nAlloc);

















  fprintf(out, "mem.totalAlloc   = %llu\n", mem.totalAlloc);

  fprintf(out, "mem.totalExcess  = %llu\n", mem.totalExcess);


  fprintf(out, "mem.currentOut   = %u\n", mem.currentOut);



  fprintf(out, "mem.currentCount = %u\n", mem.currentCount);

  fprintf(out, "mem.maxOut       = %u\n", mem.maxOut);


  fprintf(out, "mem.maxCount     = %u\n", mem.maxCount);

  fprintf(out, "mem.maxRequest   = %u\n", mem.maxRequest);


  sqlite3_mutex_leave(mem.mutex);
  if( out==stdout ){
    fflush(stdout);
  }else{
    fclose(out);
  }
#endif
}


#endif /* !SQLITE_POW2_MEMORY_SIZE */
Changes to src/test_config.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** 
** This file contains code used for testing the SQLite system.
** None of the code in this file goes into a deliverable build.
** 
** The focus of this file is providing the TCL testing layer
** access to compile-time constants.
**
** $Id: test_config.c,v 1.19 2008/01/23 12:52:41 drh Exp $
*/

#include "sqliteLimit.h"

int sqlite3MAX_LENGTH = SQLITE_MAX_LENGTH;
int sqlite3MAX_COLUMN = SQLITE_MAX_COLUMN;
int sqlite3MAX_SQL_LENGTH = SQLITE_MAX_SQL_LENGTH;







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** 
** This file contains code used for testing the SQLite system.
** None of the code in this file goes into a deliverable build.
** 
** The focus of this file is providing the TCL testing layer
** access to compile-time constants.
**
** $Id: test_config.c,v 1.20 2008/02/16 16:21:46 drh Exp $
*/

#include "sqliteLimit.h"

int sqlite3MAX_LENGTH = SQLITE_MAX_LENGTH;
int sqlite3MAX_COLUMN = SQLITE_MAX_COLUMN;
int sqlite3MAX_SQL_LENGTH = SQLITE_MAX_SQL_LENGTH;
83
84
85
86
87
88
89






90
91
92
93
94
95
96
#endif

#ifdef SQLITE_MEMORY_SIZE
  Tcl_SetVar2(interp, "sqlite_options", "mem3", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "mem3", "0", TCL_GLOBAL_ONLY);
#endif







#ifdef SQLITE_OMIT_ALTERTABLE
  Tcl_SetVar2(interp, "sqlite_options", "altertable", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "altertable", "1", TCL_GLOBAL_ONLY);
#endif








>
>
>
>
>
>







83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#endif

#ifdef SQLITE_MEMORY_SIZE
  Tcl_SetVar2(interp, "sqlite_options", "mem3", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "mem3", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_POW2_MEMORY_SIZE
  Tcl_SetVar2(interp, "sqlite_options", "mem5", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "mem5", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_OMIT_ALTERTABLE
  Tcl_SetVar2(interp, "sqlite_options", "altertable", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "altertable", "1", TCL_GLOBAL_ONLY);
#endif

Changes to src/test_malloc.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code used to implement test interfaces to the
** memory allocation subsystem.
**
** $Id: test_malloc.c,v 1.12 2008/02/13 18:25:27 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>








|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code used to implement test interfaces to the
** memory allocation subsystem.
**
** $Id: test_malloc.c,v 1.13 2008/02/16 16:21:46 drh Exp $
*/
#include "sqliteInt.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>

330
331
332
333
334
335
336
337

338
339
340
341
342
343
344
  int objc,
  Tcl_Obj *CONST objv[]
){
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "FILENAME");
    return TCL_ERROR;
  }
#if defined(SQLITE_MEMDEBUG) || defined(SQLITE_MEMORY_SIZE)

  {
    extern void sqlite3_memdebug_dump(const char*);
    sqlite3_memdebug_dump(Tcl_GetString(objv[1]));
  }
#endif
  return TCL_OK;
}







|
>







330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
  int objc,
  Tcl_Obj *CONST objv[]
){
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "FILENAME");
    return TCL_ERROR;
  }
#if defined(SQLITE_MEMDEBUG) || defined(SQLITE_MEMORY_SIZE) \
     || defined(SQLITE_POW2_MEMORY_SIZE)
  {
    extern void sqlite3_memdebug_dump(const char*);
    sqlite3_memdebug_dump(Tcl_GetString(objv[1]));
  }
#endif
  return TCL_OK;
}
Changes to test/tester.tcl.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements some common TCL routines used for regression
# testing the SQLite library
#
# $Id: tester.tcl,v 1.104 2008/02/13 18:25:27 danielk1977 Exp $


set tcl_precision 15
set sqlite_pending_byte 0x0010000

# 
# Check the command-line arguments for a default soft-heap-limit.













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements some common TCL routines used for regression
# testing the SQLite library
#
# $Id: tester.tcl,v 1.105 2008/02/16 16:21:46 drh Exp $


set tcl_precision 15
set sqlite_pending_byte 0x0010000

# 
# Check the command-line arguments for a default soft-heap-limit.
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
  if {$sqlite_open_file_count} {
    puts "$sqlite_open_file_count files were left open"
    incr nErr
  }
  if {[sqlite3_memory_used]>0} {
    puts "Unfreed memory: [sqlite3_memory_used] bytes"
    incr nErr
    ifcapable memdebug||(mem3&&debug) {
      puts "Writing unfreed memory log to \"./memleak.txt\""
      sqlite3_memdebug_dump ./memleak.txt
    }
  } else {
    puts "All memory allocations freed - no leaks"
    ifcapable memdebug {
      sqlite3_memdebug_dump ./memusage.txt
    }
  }
  puts "Maximum memory usage: [sqlite3_memory_highwater 1] bytes"
  puts "Current memory usage: [sqlite3_memory_highwater] bytes"
  if {[info commands sqlite3_memdebug_malloc_count] ne ""} {
    puts "Number of malloc()  : [sqlite3_memdebug_malloc_count] calls"







|





|







211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
  if {$sqlite_open_file_count} {
    puts "$sqlite_open_file_count files were left open"
    incr nErr
  }
  if {[sqlite3_memory_used]>0} {
    puts "Unfreed memory: [sqlite3_memory_used] bytes"
    incr nErr
    ifcapable memdebug||mem5||(mem3&&debug) {
      puts "Writing unfreed memory log to \"./memleak.txt\""
      sqlite3_memdebug_dump ./memleak.txt
    }
  } else {
    puts "All memory allocations freed - no leaks"
    ifcapable memdebug||mem5 {
      sqlite3_memdebug_dump ./memusage.txt
    }
  }
  puts "Maximum memory usage: [sqlite3_memory_highwater 1] bytes"
  puts "Current memory usage: [sqlite3_memory_highwater] bytes"
  if {[info commands sqlite3_memdebug_malloc_count] ne ""} {
    puts "Number of malloc()  : [sqlite3_memdebug_malloc_count] calls"
Changes to tool/mksqlite3c.tcl.
204
205
206
207
208
209
210

211
212
213
214
215
216
217
   date.c
   os.c

   fault.c
   mem1.c
   mem2.c
   mem3.c

   mutex.c
   mutex_os2.c
   mutex_unix.c
   mutex_w32.c
   malloc.c
   printf.c
   random.c







>







204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
   date.c
   os.c

   fault.c
   mem1.c
   mem2.c
   mem3.c
   mem5.c
   mutex.c
   mutex_os2.c
   mutex_unix.c
   mutex_w32.c
   malloc.c
   printf.c
   random.c