Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Updates to FTS4 to improve performance and make more accurate cost estimates for prefix terms. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | experimental |
Files: | files | file ages | folders |
SHA1: |
d0a450ce78e99f55c862f26f93327866 |
User & Date: | dan 2010-10-20 18:56:04.000 |
Context
2010-10-21
| ||
15:49 | Merge trunk changes into experimental branch. (check-in: fd1e5cade0 user: dan tags: experimental) | |
2010-10-20
| ||
18:56 | Updates to FTS4 to improve performance and make more accurate cost estimates for prefix terms. (check-in: d0a450ce78 user: dan tags: experimental) | |
2010-10-19
| ||
14:08 | Experimental changes to fts4 to try to selectively avoid loading very large doclists. (check-in: 5ae0ba447a user: dan tags: experimental) | |
Changes
Changes to ext/fts3/fts3.c.
︙ | ︙ | |||
922 923 924 925 926 927 928 | return SQLITE_OK; } /* ** Close the cursor. For additional information see the documentation ** on the xClose method of the virtual table interface. */ | | > | 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 | return SQLITE_OK; } /* ** Close the cursor. For additional information see the documentation ** on the xClose method of the virtual table interface. */ static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); sqlite3_finalize(pCsr->pStmt); sqlite3Fts3ExprFree(pCsr->pExpr); sqlite3Fts3FreeDeferredTokens(pCsr); sqlite3_free(pCsr->aDoclist); sqlite3_free(pCsr->aMatchinfo); sqlite3_free(pCsr); return SQLITE_OK; |
︙ | ︙ | |||
965 966 967 968 969 970 971 972 973 974 975 976 977 978 | } }else{ return SQLITE_OK; } } /* ** The buffer pointed to by argument zNode (size nNode bytes) contains the ** root node of a b-tree segment. The segment is guaranteed to be at least ** one level high (i.e. the root node is not also a leaf). If successful, ** this function locates the leaf node of the segment that may contain the | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 | } }else{ return SQLITE_OK; } } static int fts3ScanInteriorNode( Fts3Table *p, /* Virtual table handle */ const char *zTerm, /* Term to select leaves for */ int nTerm, /* Size of term zTerm in bytes */ const char *zNode, /* Buffer containing segment interior node */ int nNode, /* Size of buffer at zNode */ sqlite3_int64 *piFirst, /* OUT: Selected child node */ sqlite3_int64 *piLast /* OUT: Selected child node */ ){ int rc = SQLITE_OK; /* Return code */ const char *zCsr = zNode; /* Cursor to iterate through node */ const char *zEnd = &zCsr[nNode];/* End of interior node buffer */ char *zBuffer = 0; /* Buffer to load terms into */ int nAlloc = 0; /* Size of allocated buffer */ int isFirstTerm = 1; /* True when processing first term on page */ int dummy; sqlite3_int64 iChild; /* Block id of child node to descend to */ int nBlock; /* Size of child node in bytes */ zCsr += sqlite3Fts3GetVarint32(zCsr, &dummy); zCsr += sqlite3Fts3GetVarint(zCsr, &iChild); while( zCsr<zEnd && (piFirst || piLast) ){ int cmp; /* memcmp() result */ int nSuffix; /* Size of term suffix */ int nPrefix = 0; /* Size of term prefix */ int nBuffer; /* Total term size */ /* Load the next term on the node into zBuffer */ if( !isFirstTerm ){ zCsr += sqlite3Fts3GetVarint32(zCsr, &nPrefix); } isFirstTerm = 0; zCsr += sqlite3Fts3GetVarint32(zCsr, &nSuffix); if( nPrefix+nSuffix>nAlloc ){ char *zNew; nAlloc = (nPrefix+nSuffix) * 2; zNew = (char *)sqlite3_realloc(zBuffer, nAlloc); if( !zNew ){ sqlite3_free(zBuffer); return SQLITE_NOMEM; } zBuffer = zNew; } memcpy(&zBuffer[nPrefix], zCsr, nSuffix); nBuffer = nPrefix + nSuffix; zCsr += nSuffix; /* Compare the term we are searching for with the term just loaded from ** the interior node. If the specified term is greater than or equal ** to the term from the interior node, then all terms on the sub-tree ** headed by node iChild are smaller than zTerm. No need to search ** iChild. ** ** If the interior node term is larger than the specified term, then ** the tree headed by iChild may contain the specified term. */ cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer)); if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){ *piFirst = iChild; piFirst = 0; } if( piLast && cmp<0 ){ *piLast = iChild; piLast = 0; } iChild++; }; if( piFirst ) *piFirst = iChild; if( piLast ) *piLast = iChild; sqlite3_free(zBuffer); return rc; } /* ** The buffer pointed to by argument zNode (size nNode bytes) contains the ** root node of a b-tree segment. The segment is guaranteed to be at least ** one level high (i.e. the root node is not also a leaf). If successful, ** this function locates the leaf node of the segment that may contain the |
︙ | ︙ | |||
989 990 991 992 993 994 995 | */ static int fts3SelectLeaf( Fts3Table *p, /* Virtual table handle */ const char *zTerm, /* Term to select leaves for */ int nTerm, /* Size of term zTerm in bytes */ const char *zNode, /* Buffer containing segment interior node */ int nNode, /* Size of buffer at zNode */ | | > | < < < < < < < | < < | < | < < < < < < | < < < < < | | < < < < | > | > > < | < | < < < < < < < < < < < < < < < < > | | < | < < < < | < | 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 | */ static int fts3SelectLeaf( Fts3Table *p, /* Virtual table handle */ const char *zTerm, /* Term to select leaves for */ int nTerm, /* Size of term zTerm in bytes */ const char *zNode, /* Buffer containing segment interior node */ int nNode, /* Size of buffer at zNode */ sqlite3_int64 *piLeaf, /* Selected leaf node */ sqlite3_int64 *piLeaf2 /* Selected leaf node */ ){ int rc; /* Return code */ int iHeight; /* Height of this node in tree */ sqlite3Fts3GetVarint32(zNode, &iHeight); rc = fts3ScanInteriorNode(p, zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2); if( rc==SQLITE_OK && iHeight>1 ){ const char *zBlob; int nBlob; if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){ rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob); if( rc==SQLITE_OK ){ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0); } piLeaf = 0; } rc = sqlite3Fts3ReadBlock(p, piLeaf ? *piLeaf : *piLeaf2, &zBlob, &nBlob); if( rc==SQLITE_OK ){ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2); } } return rc; } /* ** This function is used to create delta-encoded serialized lists of FTS3 ** varints. Each call to this function appends a single varint to a list. */ |
︙ | ︙ | |||
1502 1503 1504 1505 1506 1507 1508 | int nParam1, /* Used by MERGE_NEAR and MERGE_POS_NEAR */ int nParam2, /* Used by MERGE_NEAR and MERGE_POS_NEAR */ char *aBuffer, /* Pre-allocated output buffer */ int *pnBuffer, /* OUT: Bytes written to aBuffer */ char *a1, /* Buffer containing first doclist */ int n1, /* Size of buffer a1 */ char *a2, /* Buffer containing second doclist */ | | > > | 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 | int nParam1, /* Used by MERGE_NEAR and MERGE_POS_NEAR */ int nParam2, /* Used by MERGE_NEAR and MERGE_POS_NEAR */ char *aBuffer, /* Pre-allocated output buffer */ int *pnBuffer, /* OUT: Bytes written to aBuffer */ char *a1, /* Buffer containing first doclist */ int n1, /* Size of buffer a1 */ char *a2, /* Buffer containing second doclist */ int n2, /* Size of buffer a2 */ int *pnDoc /* OUT: Number of docids in output */ ){ sqlite3_int64 i1 = 0; sqlite3_int64 i2 = 0; sqlite3_int64 iPrev = 0; char *p = aBuffer; char *p1 = a1; char *p2 = a2; char *pEnd1 = &a1[n1]; char *pEnd2 = &a2[n2]; int nDoc = 0; assert( mergetype==MERGE_OR || mergetype==MERGE_POS_OR || mergetype==MERGE_AND || mergetype==MERGE_NOT || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE || mergetype==MERGE_NEAR || mergetype==MERGE_POS_NEAR ); |
︙ | ︙ | |||
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 | case MERGE_AND: while( p1 && p2 ){ if( i1==i2 ){ fts3PutDeltaVarint(&p, &iPrev, i1); fts3GetDeltaVarint2(&p1, pEnd1, &i1); fts3GetDeltaVarint2(&p2, pEnd2, &i2); }else if( i1<i2 ){ fts3GetDeltaVarint2(&p1, pEnd1, &i1); }else{ fts3GetDeltaVarint2(&p2, pEnd2, &i2); } } break; | > | 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 | case MERGE_AND: while( p1 && p2 ){ if( i1==i2 ){ fts3PutDeltaVarint(&p, &iPrev, i1); fts3GetDeltaVarint2(&p1, pEnd1, &i1); fts3GetDeltaVarint2(&p2, pEnd2, &i2); nDoc++; }else if( i1<i2 ){ fts3GetDeltaVarint2(&p1, pEnd1, &i1); }else{ fts3GetDeltaVarint2(&p2, pEnd2, &i2); } } break; |
︙ | ︙ | |||
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 | if( i1==i2 ){ char *pSave = p; sqlite3_int64 iPrevSave = iPrev; fts3PutDeltaVarint(&p, &iPrev, i1); if( 0==fts3PoslistPhraseMerge(ppPos, nParam1, 0, 1, &p1, &p2) ){ p = pSave; iPrev = iPrevSave; } fts3GetDeltaVarint2(&p1, pEnd1, &i1); fts3GetDeltaVarint2(&p2, pEnd2, &i2); }else if( i1<i2 ){ fts3PoslistCopy(0, &p1); fts3GetDeltaVarint2(&p1, pEnd1, &i1); }else{ | > > | 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 | if( i1==i2 ){ char *pSave = p; sqlite3_int64 iPrevSave = iPrev; fts3PutDeltaVarint(&p, &iPrev, i1); if( 0==fts3PoslistPhraseMerge(ppPos, nParam1, 0, 1, &p1, &p2) ){ p = pSave; iPrev = iPrevSave; }else{ nDoc++; } fts3GetDeltaVarint2(&p1, pEnd1, &i1); fts3GetDeltaVarint2(&p2, pEnd2, &i2); }else if( i1<i2 ){ fts3PoslistCopy(0, &p1); fts3GetDeltaVarint2(&p1, pEnd1, &i1); }else{ |
︙ | ︙ | |||
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 | } } sqlite3_free(aTmp); break; } } *pnBuffer = (int)(p-aBuffer); return SQLITE_OK; } /* ** A pointer to an instance of this structure is used as the context ** argument to sqlite3Fts3SegReaderIterate() | > | 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 | } } sqlite3_free(aTmp); break; } } if( pnDoc ) *pnDoc = nDoc; *pnBuffer = (int)(p-aBuffer); return SQLITE_OK; } /* ** A pointer to an instance of this structure is used as the context ** argument to sqlite3Fts3SegReaderIterate() |
︙ | ︙ | |||
1688 1689 1690 1691 1692 1693 1694 | int nNew = nOut + pTS->anOutput[i]; char *aNew = sqlite3_malloc(nNew); if( !aNew ){ sqlite3_free(aOut); return SQLITE_NOMEM; } fts3DoclistMerge(mergetype, 0, 0, | | | 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 | int nNew = nOut + pTS->anOutput[i]; char *aNew = sqlite3_malloc(nNew); if( !aNew ){ sqlite3_free(aOut); return SQLITE_NOMEM; } fts3DoclistMerge(mergetype, 0, 0, aNew, &nNew, pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, 0 ); sqlite3_free(pTS->aaOutput[i]); sqlite3_free(aOut); pTS->aaOutput[i] = 0; aOut = aNew; nOut = nNew; } |
︙ | ︙ | |||
1759 1760 1761 1762 1763 1764 1765 | aNew = sqlite3_malloc(nNew); if( !aNew ){ if( aMerge!=aDoclist ){ sqlite3_free(aMerge); } return SQLITE_NOMEM; } | | | | 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 | aNew = sqlite3_malloc(nNew); if( !aNew ){ if( aMerge!=aDoclist ){ sqlite3_free(aMerge); } return SQLITE_NOMEM; } fts3DoclistMerge(mergetype, 0, 0, aNew, &nNew, pTS->aaOutput[iOut], pTS->anOutput[iOut], aMerge, nMerge, 0 ); if( iOut>0 ) sqlite3_free(aMerge); sqlite3_free(pTS->aaOutput[iOut]); pTS->aaOutput[iOut] = 0; aMerge = aNew; |
︙ | ︙ | |||
1901 1902 1903 1904 1905 1906 1907 | /* The entire segment is stored on the root node (which must be a ** leaf). Do not bother inspecting any data in this case, just ** create a Fts3SegReader to scan the single leaf. */ rc = sqlite3Fts3SegReaderNew(p, iAge, 0, 0, 0, zRoot, nRoot, &pNew); }else{ int rc2; /* Return value of sqlite3Fts3ReadBlock() */ | | > | > < | 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 | /* The entire segment is stored on the root node (which must be a ** leaf). Do not bother inspecting any data in this case, just ** create a Fts3SegReader to scan the single leaf. */ rc = sqlite3Fts3SegReaderNew(p, iAge, 0, 0, 0, zRoot, nRoot, &pNew); }else{ int rc2; /* Return value of sqlite3Fts3ReadBlock() */ sqlite3_int64 i1; /* First leaf that may contain zTerm */ sqlite3_int64 i2; /* Last leaf that may contain zTerm */ rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &i1, (isPrefix?&i2:0)); if( isPrefix==0 ) i2 = i1; if( rc==SQLITE_OK ){ rc = sqlite3Fts3SegReaderNew(p, iAge, i1, i2, 0, 0, 0, &pNew); } /* The following call to ReadBlock() serves to reset the SQL statement ** used to retrieve blocks of data from the %_segments table. If it is ** not reset here, then it may remain classified as an active statement ** by SQLite, which may lead to "DROP TABLE" or "DETACH" commands |
︙ | ︙ | |||
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 | } fts3SegReaderArrayFree(pArray); pTok->pArray = 0; return rc; } static int fts3DoclistCountDocids(int isPoslist, char *aList, int nList){ int nDoc = 0; /* Return value */ if( aList ){ char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */ char *p = aList; /* Cursor */ | > > > > > > > > > > | | > > > > > > | | | | > | 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 | } fts3SegReaderArrayFree(pArray); pTok->pArray = 0; return rc; } /* ** This function counts the total number of docids in the doclist stored ** in buffer aList[], size nList bytes. ** ** If the isPoslist argument is true, then it is assumed that the doclist ** contains a position-list following each docid. Otherwise, it is assumed ** that the doclist is simply a list of docids stored as delta encoded ** varints. */ static int fts3DoclistCountDocids(int isPoslist, char *aList, int nList){ int nDoc = 0; /* Return value */ if( aList ){ char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */ char *p = aList; /* Cursor */ if( !isPoslist ){ /* The number of docids in the list is the same as the number of ** varints. In FTS3 a varint consists of a single byte with the 0x80 ** bit cleared and zero or more bytes with the 0x80 bit set. So to ** count the varints in the buffer, just count the number of bytes ** with the 0x80 bit clear. */ while( p<aEnd ) nDoc += (((*p++)&0x80)==0); }else{ while( p<aEnd ){ nDoc++; while( (*p++)&0x80 ); /* Skip docid varint */ fts3PoslistCopy(0, &p); /* Skip over position list */ } } } return nDoc; } /* |
︙ | ︙ | |||
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 | } assert( rc!=SQLITE_OK || pCsr->doDeferred || pTok->pArray==0 ); if( rc!=SQLITE_OK ) break; if( ii==0 ){ pOut = pList; nOut = nList; }else{ /* Merge the new term list and the current output. */ char *aLeft, *aRight; int nLeft, nRight; int nDist; int mt; | > > > | 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 | } assert( rc!=SQLITE_OK || pCsr->doDeferred || pTok->pArray==0 ); if( rc!=SQLITE_OK ) break; if( ii==0 ){ pOut = pList; nOut = nList; if( pCsr->doDeferred==0 && pPhrase->nToken>1 ){ nDoc = fts3DoclistCountDocids(1, pOut, nOut); } }else{ /* Merge the new term list and the current output. */ char *aLeft, *aRight; int nLeft, nRight; int nDist; int mt; |
︙ | ︙ | |||
2185 2186 2187 2188 2189 2190 2191 | aRight = pOut; nRight = nOut; aLeft = pList; nLeft = nList; nDist = iPrevTok-iTok; } pOut = aRight; | | | > < | 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 | aRight = pOut; nRight = nOut; aLeft = pList; nLeft = nList; nDist = iPrevTok-iTok; } pOut = aRight; fts3DoclistMerge( mt, nDist, 0, pOut, &nOut, aLeft, nLeft, aRight, nRight, &nDoc ); sqlite3_free(aLeft); } assert( nOut==0 || pOut!=0 ); iPrevTok = iTok; } if( rc==SQLITE_OK ){ if( ii!=pPhrase->nToken ){ assert( pCsr->doDeferred==0 && isReqPos==0 ); fts3DoclistStripPositions(pOut, &nOut); } |
︙ | ︙ | |||
2230 2231 2232 2233 2234 2235 2236 | assert( mergetype==MERGE_POS_NEAR || MERGE_NEAR ); aOut = sqlite3_malloc(nLeft+nRight+1); if( aOut==0 ){ rc = SQLITE_NOMEM; }else{ rc = fts3DoclistMerge(mergetype, nNear+nTokenRight, nNear+nTokenLeft, | | | 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 | assert( mergetype==MERGE_POS_NEAR || MERGE_NEAR ); aOut = sqlite3_malloc(nLeft+nRight+1); if( aOut==0 ){ rc = SQLITE_NOMEM; }else{ rc = fts3DoclistMerge(mergetype, nNear+nTokenRight, nNear+nTokenLeft, aOut, pnOut, aLeft, nLeft, aRight, nRight, 0 ); if( rc!=SQLITE_OK ){ sqlite3_free(aOut); aOut = 0; } } |
︙ | ︙ | |||
2438 2439 2440 2441 2442 2443 2444 2445 2446 | }else{ rc = fts3EvalExpr(p, pBest->pExpr, &aNew, &nNew, 0); if( rc!=SQLITE_OK ) break; pBest->pExpr = 0; if( ii==0 ){ aRet = aNew; nRet = nNew; }else{ fts3DoclistMerge( | > > > | < | 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 | }else{ rc = fts3EvalExpr(p, pBest->pExpr, &aNew, &nNew, 0); if( rc!=SQLITE_OK ) break; pBest->pExpr = 0; if( ii==0 ){ aRet = aNew; nRet = nNew; if( nExpr>1 ){ nDoc = fts3DoclistCountDocids(0, aRet, nRet); } }else{ fts3DoclistMerge( MERGE_AND, 0, 0, aRet, &nRet, aRet, nRet, aNew, nNew, &nDoc ); sqlite3_free(aNew); } } } } *paOut = aRet; *pnOut = nRet; sqlite3_free(aExpr); |
︙ | ︙ | |||
2503 2504 2505 2506 2507 2508 2509 | /* Allocate a buffer for the output. The maximum size is the ** sum of the sizes of the two input buffers. The +1 term is ** so that a buffer of zero bytes is never allocated - this can ** cause fts3DoclistMerge() to incorrectly return SQLITE_NOMEM. */ char *aBuffer = sqlite3_malloc(nRight+nLeft+1); rc = fts3DoclistMerge(MERGE_OR, 0, 0, aBuffer, pnOut, | | | | 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 | /* Allocate a buffer for the output. The maximum size is the ** sum of the sizes of the two input buffers. The +1 term is ** so that a buffer of zero bytes is never allocated - this can ** cause fts3DoclistMerge() to incorrectly return SQLITE_NOMEM. */ char *aBuffer = sqlite3_malloc(nRight+nLeft+1); rc = fts3DoclistMerge(MERGE_OR, 0, 0, aBuffer, pnOut, aLeft, nLeft, aRight, nRight, 0 ); *paOut = aBuffer; sqlite3_free(aLeft); break; } default: { assert( FTSQUERY_NOT==MERGE_NOT && FTSQUERY_AND==MERGE_AND ); fts3DoclistMerge(pExpr->eType, 0, 0, aLeft, pnOut, aLeft, nLeft, aRight, nRight, 0 ); *paOut = aLeft; break; } } } sqlite3_free(aRight); |
︙ | ︙ | |||
2593 2594 2595 2596 2597 2598 2599 | pCsr->isMatchinfoNeeded = 1; } }while( SQLITE_OK==(rc = fts3EvalDeferred(pCsr, &res)) && res==0 ); return rc; } | < | 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 | pCsr->isMatchinfoNeeded = 1; } }while( SQLITE_OK==(rc = fts3EvalDeferred(pCsr, &res)) && res==0 ); return rc; } /* ** This is the xFilter interface for the virtual table. See ** the virtual table xFilter method documentation for additional ** information. ** ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against ** the %_content table. |
︙ | ︙ | |||
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 | UNUSED_PARAMETER(idxStr); UNUSED_PARAMETER(nVal); assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) ); assert( nVal==0 || nVal==1 ); assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) ); /* In case the cursor has been used before, clear it now. */ sqlite3_finalize(pCsr->pStmt); sqlite3_free(pCsr->aDoclist); sqlite3Fts3ExprFree(pCsr->pExpr); memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor)); | > | 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 | UNUSED_PARAMETER(idxStr); UNUSED_PARAMETER(nVal); assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) ); assert( nVal==0 || nVal==1 ); assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) ); assert( p->pSegments==0 ); /* In case the cursor has been used before, clear it now. */ sqlite3_finalize(pCsr->pStmt); sqlite3_free(pCsr->aDoclist); sqlite3Fts3ExprFree(pCsr->pExpr); memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor)); |
︙ | ︙ | |||
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 | return rc; } rc = sqlite3Fts3ReadLock(p); if( rc!=SQLITE_OK ) return rc; rc = fts3EvalExpr(pCsr, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist, 0); if( rc!=SQLITE_OK ) return rc; pCsr->pNextId = pCsr->aDoclist; pCsr->iPrevId = 0; if( pCsr->nDoclist<0 ){ assert( pCsr->aDoclist==0 ); idxNum = FTS3_FULLSCAN_SEARCH; } | > | 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 | return rc; } rc = sqlite3Fts3ReadLock(p); if( rc!=SQLITE_OK ) return rc; rc = fts3EvalExpr(pCsr, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist, 0); sqlite3Fts3SegmentsClose(p); if( rc!=SQLITE_OK ) return rc; pCsr->pNextId = pCsr->aDoclist; pCsr->iPrevId = 0; if( pCsr->nDoclist<0 ){ assert( pCsr->aDoclist==0 ); idxNum = FTS3_FULLSCAN_SEARCH; } |
︙ | ︙ | |||
2778 2779 2780 2781 2782 2783 2784 | } /* ** Implementation of xSync() method. Flush the contents of the pending-terms ** hash-table to the database. */ static int fts3SyncMethod(sqlite3_vtab *pVtab){ | | > > | 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 | } /* ** Implementation of xSync() method. Flush the contents of the pending-terms ** hash-table to the database. */ static int fts3SyncMethod(sqlite3_vtab *pVtab){ int rc = sqlite3Fts3PendingTermsFlush((Fts3Table *)pVtab); sqlite3Fts3SegmentsClose((Fts3Table *)pVtab); return rc; } /* ** Implementation of xBegin() method. This is a no-op. */ static int fts3BeginMethod(sqlite3_vtab *pVtab){ UNUSED_PARAMETER(pVtab); |
︙ | ︙ | |||
3112 3113 3114 3115 3116 3117 3118 | /* iVersion */ 0, /* xCreate */ fts3CreateMethod, /* xConnect */ fts3ConnectMethod, /* xBestIndex */ fts3BestIndexMethod, /* xDisconnect */ fts3DisconnectMethod, /* xDestroy */ fts3DestroyMethod, /* xOpen */ fts3OpenMethod, | | | 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 | /* iVersion */ 0, /* xCreate */ fts3CreateMethod, /* xConnect */ fts3ConnectMethod, /* xBestIndex */ fts3BestIndexMethod, /* xDisconnect */ fts3DisconnectMethod, /* xDestroy */ fts3DestroyMethod, /* xOpen */ fts3OpenMethod, /* xClose */ fts3CloseMethod, /* xFilter */ fts3FilterMethod, /* xNext */ fts3NextMethod, /* xEof */ fts3EofMethod, /* xColumn */ fts3ColumnMethod, /* xRowid */ fts3RowidMethod, /* xUpdate */ fts3UpdateMethod, /* xBegin */ fts3BeginMethod, |
︙ | ︙ |
Changes to ext/fts3/fts3Int.h.
︙ | ︙ | |||
126 127 128 129 130 131 132 133 134 135 136 137 138 139 | char *zSegmentsTbl; /* Name of %_segments table */ int nPgsz; /* Page size for host database */ int nNodeSize; /* Soft limit for node size */ u8 bHasContent; /* True if %_content table exists */ u8 bHasDocsize; /* True if %_docsize table exists */ /* The following hash table is used to buffer pending index updates during ** transactions. Variable nPendingData estimates the memory size of the ** pending data, including hash table overhead, but not malloc overhead. ** When nPendingData exceeds nMaxPendingData, the buffer is flushed ** automatically. Variable iPrevDocid is the docid of the most recently ** inserted record. */ | > > | 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | char *zSegmentsTbl; /* Name of %_segments table */ int nPgsz; /* Page size for host database */ int nNodeSize; /* Soft limit for node size */ u8 bHasContent; /* True if %_content table exists */ u8 bHasDocsize; /* True if %_docsize table exists */ sqlite3_blob *pSegments; /* Blob handle open on %_segments table */ /* The following hash table is used to buffer pending index updates during ** transactions. Variable nPendingData estimates the memory size of the ** pending data, including hash table overhead, but not malloc overhead. ** When nPendingData exceeds nMaxPendingData, the buffer is flushed ** automatically. Variable iPrevDocid is the docid of the most recently ** inserted record. */ |
︙ | ︙ | |||
282 283 284 285 286 287 288 289 290 291 292 293 294 295 | int sqlite3Fts3ReadLock(Fts3Table *); void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *); int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int); int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *); void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *); char *sqlite3Fts3DeferredDoclist(Fts3DeferredToken *, int *); /* Flags allowed as part of the 4th argument to SegmentReaderIterate() */ #define FTS3_SEGMENT_REQUIRE_POS 0x00000001 #define FTS3_SEGMENT_IGNORE_EMPTY 0x00000002 #define FTS3_SEGMENT_COLUMN_FILTER 0x00000004 #define FTS3_SEGMENT_PREFIX 0x00000008 | > > | 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | int sqlite3Fts3ReadLock(Fts3Table *); void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *); int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int); int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *); void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *); char *sqlite3Fts3DeferredDoclist(Fts3DeferredToken *, int *); void sqlite3Fts3SegmentsClose(Fts3Table *); /* Flags allowed as part of the 4th argument to SegmentReaderIterate() */ #define FTS3_SEGMENT_REQUIRE_POS 0x00000001 #define FTS3_SEGMENT_IGNORE_EMPTY 0x00000002 #define FTS3_SEGMENT_COLUMN_FILTER 0x00000004 #define FTS3_SEGMENT_PREFIX 0x00000008 |
︙ | ︙ |
Changes to ext/fts3/fts3_snippet.c.
︙ | ︙ | |||
264 265 266 267 268 269 270 271 272 273 274 275 276 277 | sCtx.pCsr = pCsr; rc = fts3ExprIterate(pCsr->pExpr, fts3ExprLoadDoclistsCb1, (void *)&sCtx); if( rc==SQLITE_OK ){ (void)fts3ExprIterate(pCsr->pExpr, fts3ExprLoadDoclistsCb2, 0); } if( pnPhrase ) *pnPhrase = sCtx.nPhrase; if( pnToken ) *pnToken = sCtx.nToken; return rc; } /* ** Advance the position list iterator specified by the first two ** arguments so that it points to the first element with a value greater ** than or equal to parameter iNext. | > | 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | sCtx.pCsr = pCsr; rc = fts3ExprIterate(pCsr->pExpr, fts3ExprLoadDoclistsCb1, (void *)&sCtx); if( rc==SQLITE_OK ){ (void)fts3ExprIterate(pCsr->pExpr, fts3ExprLoadDoclistsCb2, 0); } if( pnPhrase ) *pnPhrase = sCtx.nPhrase; if( pnToken ) *pnToken = sCtx.nToken; sqlite3Fts3SegmentsClose((Fts3Table *)pCsr->base.pVtab); return rc; } /* ** Advance the position list iterator specified by the first two ** arguments so that it points to the first element with a value greater ** than or equal to parameter iNext. |
︙ | ︙ |
Changes to ext/fts3/fts3_write.c.
︙ | ︙ | |||
803 804 805 806 807 808 809 | return rc; } /* ** The %_segments table is declared as follows: ** ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB) | < < < < < < < < < | | | | > > > > > > | | < | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > | 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 | return rc; } /* ** The %_segments table is declared as follows: ** ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB) */ static int fts3SegmentsBlob( Fts3Table *p, sqlite3_int64 iSegment, char **paBlob, int *pnBlob ){ int rc; if( p->pSegments ){ rc = sqlite3_blob_reopen(p->pSegments, iSegment); }else{ if( 0==p->zSegmentsTbl ){ p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName); if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM; } rc = sqlite3_blob_open( p->db, p->zDb, p->zSegmentsTbl, "block", iSegment, 0, &p->pSegments ); } if( rc==SQLITE_OK ){ int nByte = sqlite3_blob_bytes(p->pSegments); if( paBlob ){ char *aByte = sqlite3_malloc(nByte); if( !aByte ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0); if( rc!=SQLITE_OK ){ sqlite3_free(aByte); aByte = 0; } } *paBlob = aByte; } *pnBlob = nByte; } return rc; } void sqlite3Fts3SegmentsClose(Fts3Table *p){ sqlite3_blob_close(p->pSegments); p->pSegments = 0; } /* ** Move the iterator passed as the first argument to the next term in the ** segment. If successful, SQLITE_OK is returned. If there is no next term, ** SQLITE_DONE. Otherwise, an SQLite error code. |
︙ | ︙ | |||
876 877 878 879 880 881 882 | /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf ** blocks have already been traversed. */ if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){ return SQLITE_OK; } | | < < < | < < < < | < | 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 | /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf ** blocks have already been traversed. */ if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){ return SQLITE_OK; } rc = fts3SegmentsBlob( p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode ); if( rc!=SQLITE_OK ){ return rc; } pNext = pReader->aNode; } |
︙ | ︙ | |||
1004 1005 1006 1007 1008 1009 1010 | ** for the segment is stored on the root page of the b-tree, then the cost ** is zero. In this case all required data is already in main memory. */ if( p->bHasDocsize && !fts3SegReaderIsPending(pReader) && !fts3SegReaderIsRootOnly(pReader) ){ | | > | 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 | ** for the segment is stored on the root page of the b-tree, then the cost ** is zero. In this case all required data is already in main memory. */ if( p->bHasDocsize && !fts3SegReaderIsPending(pReader) && !fts3SegReaderIsRootOnly(pReader) ){ int nBlob = 0; sqlite3_int64 iBlock; if( pCsr->nRowAvg==0 ){ /* The average document size, which is required to calculate the cost ** of each doclist, has not yet been determined. Read the required ** data from the %_stat table to calculate it. ** ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 |
︙ | ︙ | |||
1041 1042 1043 1044 1045 1046 1047 | pCsr->nRowAvg = (((nByte / nDoc) + pgsz - 1) / pgsz); } rc = sqlite3_reset(pStmt); if( rc!=SQLITE_OK || pCsr->nRowAvg==0 ) return rc; } | < < | | | | > | > < < | 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 | pCsr->nRowAvg = (((nByte / nDoc) + pgsz - 1) / pgsz); } rc = sqlite3_reset(pStmt); if( rc!=SQLITE_OK || pCsr->nRowAvg==0 ) return rc; } /* Assume that a blob flows over onto overflow pages if it is larger ** than (pgsz-35) bytes in size (the file-format documentation ** confirms this). */ for(iBlock=pReader->iStartBlock; iBlock<=pReader->iLeafEndBlock; iBlock++){ rc = fts3SegmentsBlob(p, iBlock, 0, &nBlob); if( rc!=SQLITE_OK ) break; if( (nBlob+35)>pgsz ){ int nOvfl = (nBlob + 34)/pgsz; nCost += ((nOvfl + pCsr->nRowAvg - 1)/pCsr->nRowAvg); } } } *pnCost += nCost; return rc; } /* |
︙ | ︙ | |||
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 | int nRoot, /* Size of buffer containing root node */ Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */ ){ int rc = SQLITE_OK; /* Return code */ Fts3SegReader *pReader; /* Newly allocated SegReader object */ int nExtra = 0; /* Bytes to allocate segment root node */ if( iStartLeaf==0 ){ nExtra = nRoot; } pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra); if( !pReader ){ return SQLITE_NOMEM; | > | 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 | int nRoot, /* Size of buffer containing root node */ Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */ ){ int rc = SQLITE_OK; /* Return code */ Fts3SegReader *pReader; /* Newly allocated SegReader object */ int nExtra = 0; /* Bytes to allocate segment root node */ assert( iStartLeaf<=iEndLeaf ); if( iStartLeaf==0 ){ nExtra = nRoot; } pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra); if( !pReader ){ return SQLITE_NOMEM; |
︙ | ︙ | |||
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 | p->nMaxPendingData = atoi(&zVal[11]); rc = SQLITE_OK; #endif }else{ rc = SQLITE_ERROR; } return rc; } /* ** Return the deferred doclist associated with deferred token pDeferred. ** This function assumes that sqlite3Fts3CacheDeferredDoclists() has already ** been called to allocate and populate the doclist. | > | 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 | p->nMaxPendingData = atoi(&zVal[11]); rc = SQLITE_OK; #endif }else{ rc = SQLITE_ERROR; } sqlite3Fts3SegmentsClose(p); return rc; } /* ** Return the deferred doclist associated with deferred token pDeferred. ** This function assumes that sqlite3Fts3CacheDeferredDoclists() has already ** been called to allocate and populate the doclist. |
︙ | ︙ | |||
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 | int rc = SQLITE_OK; /* Return Code */ int isRemove = 0; /* True for an UPDATE or DELETE */ sqlite3_int64 iRemove = 0; /* Rowid removed by UPDATE or DELETE */ u32 *aSzIns; /* Sizes of inserted documents */ u32 *aSzDel; /* Sizes of deleted documents */ int nChng = 0; /* Net change in number of documents */ /* Allocate space to hold the change in document sizes */ aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*p->nColumn*2 ); if( aSzIns==0 ) return SQLITE_NOMEM; aSzDel = &aSzIns[p->nColumn]; memset(aSzIns, 0, sizeof(aSzIns[0])*p->nColumn*2); | > | 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 | int rc = SQLITE_OK; /* Return Code */ int isRemove = 0; /* True for an UPDATE or DELETE */ sqlite3_int64 iRemove = 0; /* Rowid removed by UPDATE or DELETE */ u32 *aSzIns; /* Sizes of inserted documents */ u32 *aSzDel; /* Sizes of deleted documents */ int nChng = 0; /* Net change in number of documents */ assert( p->pSegments==0 ); /* Allocate space to hold the change in document sizes */ aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*p->nColumn*2 ); if( aSzIns==0 ) return SQLITE_NOMEM; aSzDel = &aSzIns[p->nColumn]; memset(aSzIns, 0, sizeof(aSzIns[0])*p->nColumn*2); |
︙ | ︙ | |||
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 | } if( p->bHasDocsize ){ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng); } sqlite3_free(aSzIns); return rc; } /* ** Flush any data in the pending-terms hash table to disk. If successful, ** merge all segments in the database (including the new segment, if ** there was any data to flush) into a single segment. | > | 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 | } if( p->bHasDocsize ){ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng); } sqlite3_free(aSzIns); sqlite3Fts3SegmentsClose(p); return rc; } /* ** Flush any data in the pending-terms hash table to disk. If successful, ** merge all segments in the database (including the new segment, if ** there was any data to flush) into a single segment. |
︙ | ︙ | |||
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 | sqlite3Fts3PendingTermsClear(p); } }else{ sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0); sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); } } return rc; } #endif | > | 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 | sqlite3Fts3PendingTermsClear(p); } }else{ sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0); sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); } } sqlite3Fts3SegmentsClose(p); return rc; } #endif |
Changes to ext/fts3/fts3speed.tcl.
︙ | ︙ | |||
14 15 16 17 18 19 20 | # # Number of tokens in vocabulary. And number of tokens in each document. # set VOCAB_SIZE 2000 set DOC_SIZE 100 | | | 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | # # Number of tokens in vocabulary. And number of tokens in each document. # set VOCAB_SIZE 2000 set DOC_SIZE 100 set NUM_INSERTS 100000 set NUM_SELECTS 1000 # Force everything in this script to be deterministic. # expr {srand(0)} proc usage {} { |
︙ | ︙ | |||
70 71 72 73 74 75 76 | proc test_1 {nInsert} { sql "PRAGMA synchronous = OFF;" sql "DROP TABLE IF EXISTS t1;" sql "CREATE VIRTUAL TABLE t1 USING fts4;" for {set i 0} {$i < $nInsert} {incr i} { set doc [select_doc $::DOC_SIZE] | | < | 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | proc test_1 {nInsert} { sql "PRAGMA synchronous = OFF;" sql "DROP TABLE IF EXISTS t1;" sql "CREATE VIRTUAL TABLE t1 USING fts4;" for {set i 0} {$i < $nInsert} {incr i} { set doc [select_doc $::DOC_SIZE] sql "INSERT INTO t1 VALUES('$doc');" } } proc test_2 {} { sql "INSERT INTO t1(t1) VALUES('optimize');" } |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
8092 8093 8094 8095 8096 8097 8098 | ** (stored in BtCursor.aOverflow[]) is allocated and used by function ** accessPayload() (the worker function for sqlite3BtreeData() and ** sqlite3BtreePutData()). */ void sqlite3BtreeCacheOverflow(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); | < | | 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 | ** (stored in BtCursor.aOverflow[]) is allocated and used by function ** accessPayload() (the worker function for sqlite3BtreeData() and ** sqlite3BtreePutData()). */ void sqlite3BtreeCacheOverflow(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); invalidateOverflowCache(pCur); pCur->isIncrblobHandle = 1; } #endif /* ** Set both the "read version" (single byte at byte offset 18) and ** "write version" (single byte at byte offset 19) fields in the database |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 | const char *zTable, const char *zColumn, sqlite3_int64 iRow, int flags, sqlite3_blob **ppBlob ); /* ** CAPI3REF: Close A BLOB Handle ** ** ^Closes an open [BLOB handle]. ** ** ^Closing a BLOB shall cause the current transaction to commit ** if there are no other BLOBs, no pending prepared statements, and the | > > > > > | 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 | const char *zTable, const char *zColumn, sqlite3_int64 iRow, int flags, sqlite3_blob **ppBlob ); /* ** CAPI3REF: Move a BLOB Handle */ SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64); /* ** CAPI3REF: Close A BLOB Handle ** ** ^Closes an open [BLOB handle]. ** ** ^Closing a BLOB shall cause the current transaction to commit ** if there are no other BLOBs, no pending prepared statements, and the |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 | rc = sqlite3_blob_write(pBlob, zBuf, nBuf, iOffset); if( rc!=SQLITE_OK ){ Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_VOLATILE); } return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR); } #endif /* ** Usage: sqlite3_create_collation_v2 DB-HANDLE NAME CMP-PROC DEL-PROC ** ** This Tcl proc is used for testing the experimental ** sqlite3_create_collation_v2() interface. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 | rc = sqlite3_blob_write(pBlob, zBuf, nBuf, iOffset); if( rc!=SQLITE_OK ){ Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_VOLATILE); } return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR); } static int test_blob_reopen( ClientData clientData, /* Not used */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ Tcl_WideInt iRowid; Tcl_Channel channel; ClientData instanceData; sqlite3_blob *pBlob; int notUsed; int rc; unsigned char *zBuf; int nBuf; if( objc!=3 ){ Tcl_WrongNumArgs(interp, 1, objv, "CHANNEL ROWID"); return TCL_ERROR; } channel = Tcl_GetChannel(interp, Tcl_GetString(objv[1]), ¬Used); if( !channel || TCL_OK!=Tcl_GetWideIntFromObj(interp, objv[2], &iRowid) ){ return TCL_ERROR; } if( TCL_OK!=(rc = Tcl_Flush(channel)) ){ return rc; } if( TCL_OK!=(rc = Tcl_Seek(channel, 0, SEEK_SET)) ){ return rc; } instanceData = Tcl_GetChannelInstanceData(channel); pBlob = *((sqlite3_blob **)instanceData); rc = sqlite3_blob_reopen(pBlob, iRowid); if( rc!=SQLITE_OK ){ Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_VOLATILE); } return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR); } #endif /* ** Usage: sqlite3_create_collation_v2 DB-HANDLE NAME CMP-PROC DEL-PROC ** ** This Tcl proc is used for testing the experimental ** sqlite3_create_collation_v2() interface. |
︙ | ︙ | |||
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 | { "sqlite3_libversion_number", test_libversion_number, 0 }, #ifdef SQLITE_ENABLE_COLUMN_METADATA { "sqlite3_table_column_metadata", test_table_column_metadata, 0 }, #endif #ifndef SQLITE_OMIT_INCRBLOB { "sqlite3_blob_read", test_blob_read, 0 }, { "sqlite3_blob_write", test_blob_write, 0 }, #endif { "pcache_stats", test_pcache_stats, 0 }, #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY { "sqlite3_unlock_notify", test_unlock_notify, 0 }, #endif { "sqlite3_wal_checkpoint", test_wal_checkpoint, 0 }, { "test_sqlite3_log", test_sqlite3_log, 0 }, | > | 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 | { "sqlite3_libversion_number", test_libversion_number, 0 }, #ifdef SQLITE_ENABLE_COLUMN_METADATA { "sqlite3_table_column_metadata", test_table_column_metadata, 0 }, #endif #ifndef SQLITE_OMIT_INCRBLOB { "sqlite3_blob_read", test_blob_read, 0 }, { "sqlite3_blob_write", test_blob_write, 0 }, { "sqlite3_blob_reopen", test_blob_reopen, 0 }, #endif { "pcache_stats", test_pcache_stats, 0 }, #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY { "sqlite3_unlock_notify", test_unlock_notify, 0 }, #endif { "sqlite3_wal_checkpoint", test_wal_checkpoint, 0 }, { "test_sqlite3_log", test_sqlite3_log, 0 }, |
︙ | ︙ |
Changes to src/vdbeblob.c.
︙ | ︙ | |||
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | ** Valid sqlite3_blob* handles point to Incrblob structures. */ typedef struct Incrblob Incrblob; struct Incrblob { int flags; /* Copy of "flags" passed to sqlite3_blob_open() */ int nByte; /* Size of open blob, in bytes */ int iOffset; /* Byte offset of blob in cursor data */ BtCursor *pCsr; /* Cursor pointing at blob row */ sqlite3_stmt *pStmt; /* Statement holding cursor open */ sqlite3 *db; /* The associated database */ }; /* ** Open a blob handle. */ int sqlite3_blob_open( sqlite3* db, /* The database connection */ const char *zDb, /* The attached database containing the blob */ const char *zTable, /* The table containing the blob */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | ** Valid sqlite3_blob* handles point to Incrblob structures. */ typedef struct Incrblob Incrblob; struct Incrblob { int flags; /* Copy of "flags" passed to sqlite3_blob_open() */ int nByte; /* Size of open blob, in bytes */ int iOffset; /* Byte offset of blob in cursor data */ int iCol; /* Table column this handle is open on */ BtCursor *pCsr; /* Cursor pointing at blob row */ sqlite3_stmt *pStmt; /* Statement holding cursor open */ sqlite3 *db; /* The associated database */ }; static int blobSeekToRow(Incrblob *p, sqlite3_int64 iRow, char **pzErr){ int rc; /* Error code */ char *zErr = 0; /* Error message */ Vdbe *v = (Vdbe *)p->pStmt; v->aVar[0].u.i = iRow; rc = sqlite3_step(p->pStmt); if( rc==SQLITE_ROW ){ Vdbe *v = (Vdbe *)p->pStmt; u32 type = v->apCsr[0]->aType[p->iCol]; if( type<12 ){ zErr = sqlite3MPrintf(p->db, "cannot open value of type %s", type==0?"null": type==7?"real": "integer" ); rc = SQLITE_ERROR; sqlite3_finalize(p->pStmt); p->pStmt = 0; }else{ p->iOffset = v->apCsr[0]->aOffset[p->iCol]; p->nByte = sqlite3VdbeSerialTypeLen(type); p->pCsr = v->apCsr[0]->pCursor; sqlite3BtreeEnterCursor(p->pCsr); sqlite3BtreeCacheOverflow(p->pCsr); sqlite3BtreeLeaveCursor(p->pCsr); } } if( rc==SQLITE_ROW ){ rc = SQLITE_OK; }else if( p->pStmt ){ rc = sqlite3_finalize(p->pStmt); p->pStmt = 0; if( rc==SQLITE_OK ){ zErr = sqlite3MPrintf(p->db, "no such rowid: %lld", iRow); rc = SQLITE_ERROR; }else{ zErr = sqlite3MPrintf(p->db, "%s", sqlite3_errmsg(p->db)); } } assert( rc!=SQLITE_OK || zErr==0 ); assert( rc!=SQLITE_ROW && rc!=SQLITE_DONE ); *pzErr = zErr; return rc; } /* ** Open a blob handle. */ int sqlite3_blob_open( sqlite3* db, /* The database connection */ const char *zDb, /* The attached database containing the blob */ const char *zTable, /* The table containing the blob */ |
︙ | ︙ | |||
67 68 69 70 71 72 73 | {OP_TableLock, 0, 0, 0}, /* 2: Acquire a read or write lock */ /* One of the following two instructions is replaced by an OP_Noop. */ {OP_OpenRead, 0, 0, 0}, /* 3: Open cursor 0 for reading */ {OP_OpenWrite, 0, 0, 0}, /* 4: Open cursor 0 for read/write */ {OP_Variable, 1, 1, 1}, /* 5: Push the rowid to the stack */ | | > | | > > > > > | < > > | 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | {OP_TableLock, 0, 0, 0}, /* 2: Acquire a read or write lock */ /* One of the following two instructions is replaced by an OP_Noop. */ {OP_OpenRead, 0, 0, 0}, /* 3: Open cursor 0 for reading */ {OP_OpenWrite, 0, 0, 0}, /* 4: Open cursor 0 for read/write */ {OP_Variable, 1, 1, 1}, /* 5: Push the rowid to the stack */ {OP_NotExists, 0, 10, 1}, /* 6: Seek the cursor */ {OP_Column, 0, 0, 1}, /* 7 */ {OP_ResultRow, 1, 0, 0}, /* 8 */ {OP_Goto, 0, 5, 0}, /* 9 */ {OP_Close, 0, 0, 0}, /* 10 */ {OP_Halt, 0, 0, 0}, /* 11 */ }; Vdbe *v = 0; int rc = SQLITE_OK; char *zErr = 0; Table *pTab; Parse *pParse; Incrblob *pBlob; flags = !!flags; /* flags = (flags ? 1 : 0); */ *ppBlob = 0; sqlite3_mutex_enter(db->mutex); pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob)); pParse = sqlite3StackAllocRaw(db, sizeof(*pParse)); if( pParse==0 || pBlob==0 ){ assert( db->mallocFailed ); goto blob_open_out; } do { memset(pParse, 0, sizeof(Parse)); pParse->db = db; sqlite3BtreeEnterAll(db); pTab = sqlite3LocateTable(pParse, 0, zTable, zDb); if( pTab && IsVirtual(pTab) ){ |
︙ | ︙ | |||
173 174 175 176 177 178 179 | } } v = sqlite3VdbeCreate(db); if( v ){ int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sqlite3VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob); | < | 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | } } v = sqlite3VdbeCreate(db); if( v ){ int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sqlite3VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob); /* Configure the OP_Transaction */ sqlite3VdbeChangeP1(v, 0, iDb); sqlite3VdbeChangeP2(v, 0, flags); /* Configure the OP_VerifyCookie */ sqlite3VdbeChangeP1(v, 1, iDb); |
︙ | ︙ | |||
216 217 218 219 220 221 222 223 224 225 226 227 | sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32); sqlite3VdbeChangeP2(v, 7, pTab->nCol); if( !db->mallocFailed ){ sqlite3VdbeMakeReady(v, 1, 1, 1, 0, 0, 0); } } sqlite3BtreeLeaveAll(db); if( db->mallocFailed ){ goto blob_open_out; } | > > > > > | < < < < | < < < | < < < < < < < < < < < < < < < < | < < < | < < < < < < < < < | < | > > | < < < < < < | | 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 | sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32); sqlite3VdbeChangeP2(v, 7, pTab->nCol); if( !db->mallocFailed ){ sqlite3VdbeMakeReady(v, 1, 1, 1, 0, 0, 0); } } pBlob->flags = flags; pBlob->pStmt = (sqlite3_stmt *)v; pBlob->iCol = iCol; pBlob->db = db; sqlite3BtreeLeaveAll(db); v = 0; if( db->mallocFailed ){ goto blob_open_out; } sqlite3_bind_int64(pBlob->pStmt, 1, iRow); rc = blobSeekToRow(pBlob, iRow, &zErr); } while( (++nAttempt)<5 && rc==SQLITE_SCHEMA ); blob_open_out: if( rc==SQLITE_OK && db->mallocFailed==0 ){ *ppBlob = (sqlite3_blob *)pBlob; }else{ if( v ) sqlite3VdbeFinalize(v); if( pBlob && pBlob->pStmt ) sqlite3VdbeFinalize((Vdbe *)pBlob->pStmt); sqlite3DbFree(db, pBlob); } sqlite3Error(db, rc, (zErr ? "%s" : 0), zErr); sqlite3DbFree(db, zErr); sqlite3StackFree(db, pParse); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } |
︙ | ︙ | |||
327 328 329 330 331 332 333 | sqlite3_mutex_enter(db->mutex); v = (Vdbe*)p->pStmt; if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){ /* Request is out of range. Return a transient error. */ rc = SQLITE_ERROR; sqlite3Error(db, SQLITE_ERROR, 0); | | | 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 | sqlite3_mutex_enter(db->mutex); v = (Vdbe*)p->pStmt; if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){ /* Request is out of range. Return a transient error. */ rc = SQLITE_ERROR; sqlite3Error(db, SQLITE_ERROR, 0); }else if( v==0 ){ /* If there is no statement handle, then the blob-handle has ** already been invalidated. Return SQLITE_ABORT in this case. */ rc = SQLITE_ABORT; }else{ /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is ** returned, clean-up the statement handle. |
︙ | ︙ | |||
377 378 379 380 381 382 383 384 385 | ** The Incrblob.nByte field is fixed for the lifetime of the Incrblob ** so no mutex is required for access. */ int sqlite3_blob_bytes(sqlite3_blob *pBlob){ Incrblob *p = (Incrblob *)pBlob; return p ? p->nByte : 0; } #endif /* #ifndef SQLITE_OMIT_INCRBLOB */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 | ** The Incrblob.nByte field is fixed for the lifetime of the Incrblob ** so no mutex is required for access. */ int sqlite3_blob_bytes(sqlite3_blob *pBlob){ Incrblob *p = (Incrblob *)pBlob; return p ? p->nByte : 0; } /* ** Move an existing blob handle to point to a different row of the same ** database table. ** ** If an error occurs, or if the specified row does not exist or does not ** contain a blob or text value, then an error code is returned and the ** database handle error code and message set. If this happens, then all ** subsequent calls to sqlite3_blob_xxx() functions (except blob_close()) ** immediately return SQLITE_ABORT. */ int sqlite3_blob_reopen(sqlite3_blob *pBlob, sqlite3_int64 iRow){ int rc; Incrblob *p = (Incrblob *)pBlob; sqlite3 *db; if( p==0 ) return SQLITE_MISUSE_BKPT; db = p->db; sqlite3_mutex_enter(db->mutex); if( p->pStmt==0 ){ /* If there is no statement handle, then the blob-handle has ** already been invalidated. Return SQLITE_ABORT in this case. */ rc = SQLITE_ABORT; }else{ char *zErr; rc = blobSeekToRow(p, iRow, &zErr); if( rc!=SQLITE_OK ){ sqlite3Error(db, rc, (zErr ? "%s" : 0), zErr); sqlite3DbFree(db, zErr); } assert( rc!=SQLITE_SCHEMA ); } rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* #ifndef SQLITE_OMIT_INCRBLOB */ |
Changes to test/fts3ah.test.
︙ | ︙ | |||
52 53 54 55 56 57 58 | execsql {SELECT rowid FROM t1 WHERE t1 MATCH 'something'} } {} do_test fts3ah-1.2 { execsql {SELECT rowid FROM t1 WHERE t1 MATCH $aterm} } {1 3} | | | | | 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | execsql {SELECT rowid FROM t1 WHERE t1 MATCH 'something'} } {} do_test fts3ah-1.2 { execsql {SELECT rowid FROM t1 WHERE t1 MATCH $aterm} } {1 3} do_test fts3ah-1.3 { execsql {SELECT rowid FROM t1 WHERE t1 MATCH $xterm} } {} do_test fts3ah-1.4 { execsql "SELECT rowid FROM t1 WHERE t1 MATCH '$aterm -$xterm'" } {1 3} do_test fts3ah-1.5 { execsql "SELECT rowid FROM t1 WHERE t1 MATCH '\"$aterm $bterm\"'" } {1} finish_test |
Changes to test/fts3defer.test.
︙ | ︙ | |||
14 15 16 17 18 19 20 21 22 23 24 25 26 27 | source $testdir/malloc_common.tcl ifcapable !fts3 { finish_test return } set ::testprefix fts3defer #-------------------------------------------------------------------------- # Test cases fts3defer-1.* are the "warm body" cases. The database contains # one row with 15000 instances of the token "a". This makes the doclist for # "a" so large that FTS3 will avoid loading it in most cases. # | > > | 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | source $testdir/malloc_common.tcl ifcapable !fts3 { finish_test return } set sqlite_fts3_enable_parentheses 1 set ::testprefix fts3defer #-------------------------------------------------------------------------- # Test cases fts3defer-1.* are the "warm body" cases. The database contains # one row with 15000 instances of the token "a". This makes the doclist for # "a" so large that FTS3 will avoid loading it in most cases. # |
︙ | ︙ | |||
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 | "urvysbnykk dzadnqzprr csjqxhgj mjpavjuhw ubwrfqnbjf nkaotm jk jk zm drir" "nvfasfh xh igju zm wluvgsw jk zm srwwnezqk ewle ovnq" "jk nvfasfh eh ktxdty urvysbnykk vgsld zm jk eh uenvbm" "orpfawpx pahlds jk uhzq hi zm zm zf jk dzadnqzprr" "srwwnezqk csjqxhgj rbwzuf nvfasfh jcpiwj xldlpy nvfasfh jk vgsld wjybxmieki" } foreach {tn setup} { 1 { set dmt_modes 0 execsql { CREATE VIRTUAL TABLE t1 USING FTS3 } foreach doc $data { execsql { INSERT INTO t1 VALUES($doc) } } } 2 { set dmt_modes 0 execsql { CREATE VIRTUAL TABLE t1 USING FTS4 } foreach doc $data { execsql { INSERT INTO t1 VALUES($doc) } } } 3 { set dmt_modes {0 1 2} execsql { CREATE VIRTUAL TABLE t1 USING FTS4 } foreach doc $data { execsql { INSERT INTO t1 VALUES($doc) } } | > > > > > > > | < < < | > > > > > > | 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | "urvysbnykk dzadnqzprr csjqxhgj mjpavjuhw ubwrfqnbjf nkaotm jk jk zm drir" "nvfasfh xh igju zm wluvgsw jk zm srwwnezqk ewle ovnq" "jk nvfasfh eh ktxdty urvysbnykk vgsld zm jk eh uenvbm" "orpfawpx pahlds jk uhzq hi zm zm zf jk dzadnqzprr" "srwwnezqk csjqxhgj rbwzuf nvfasfh jcpiwj xldlpy nvfasfh jk vgsld wjybxmieki" } #set e [list] #foreach d $data {set e [concat $e $d]} #puts [lsort -unique $e] #exit set zero_long_doclists { UPDATE t1_segments SET block=zeroblob(length(block)) WHERE length(block)>10000 } foreach {tn setup} { 1 { set dmt_modes 0 execsql { CREATE VIRTUAL TABLE t1 USING FTS3 } foreach doc $data { execsql { INSERT INTO t1 VALUES($doc) } } } 2 { set dmt_modes 0 execsql { CREATE VIRTUAL TABLE t1 USING FTS4 } foreach doc $data { execsql { INSERT INTO t1 VALUES($doc) } } } 3 { set dmt_modes {0 1 2} execsql { CREATE VIRTUAL TABLE t1 USING FTS4 } foreach doc $data { execsql { INSERT INTO t1 VALUES($doc) } } execsql $zero_long_doclists } 4 { set dmt_modes 0 execsql { CREATE VIRTUAL TABLE t1 USING FTS4 } foreach doc $data { execsql { INSERT INTO t1 VALUES($doc) } } execsql "INSERT INTO t1(t1) VALUES('optimize')" execsql $zero_long_doclists } } { execsql { DROP TABLE IF EXISTS t1 } eval $setup set ::testprefix fts3defer-2.$tn set DO_MALLOC_TEST 0 |
︙ | ︙ | |||
267 268 269 270 271 272 273 274 275 276 277 278 279 280 | do_select_test 2.6 { SELECT rowid FROM t1 WHERE t1 MATCH '"xh jk jk"' } {18} do_select_test 2.7 { SELECT rowid FROM t1 WHERE t1 MATCH '"zm jk vgsld"' } {13 17} do_select_test 3.1 { SELECT snippet(t1, '[', ']') FROM t1 WHERE t1 MATCH '"zm agmckuiu"' } { {zm [zm] [agmckuiu] uhzq nsab jk rrkx duszemmzl hyq jk} {jk [zm] [agmckuiu] urvysbnykk jk jk zm zm jk jk} {[zm] [agmckuiu] zexh fibokdry jk uhzq bu tugflixoex xnxhf sk} {zm zf uenvbm jk azavwm zm [zm] [agmckuiu] zm jk} | > > > > > > > > > > > | 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 | do_select_test 2.6 { SELECT rowid FROM t1 WHERE t1 MATCH '"xh jk jk"' } {18} do_select_test 2.7 { SELECT rowid FROM t1 WHERE t1 MATCH '"zm jk vgsld"' } {13 17} do_select_test 2.8 { SELECT rowid FROM t1 WHERE t1 MATCH 'z* vgsld' } {10 13 17 31 35 51 58 88 89 90 93 100} do_select_test 2.9 { SELECT rowid FROM t1 WHERE t1 MATCH '( zdu OR zexh OR zf OR zhbrzadb OR zidhxhbtv OR zk OR zkhdvkw OR zm OR zsmhnf ) vgsld' } {10 13 17 31 35 51 58 88 89 90 93 100} do_select_test 3.1 { SELECT snippet(t1, '[', ']') FROM t1 WHERE t1 MATCH '"zm agmckuiu"' } { {zm [zm] [agmckuiu] uhzq nsab jk rrkx duszemmzl hyq jk} {jk [zm] [agmckuiu] urvysbnykk jk jk zm zm jk jk} {[zm] [agmckuiu] zexh fibokdry jk uhzq bu tugflixoex xnxhf sk} {zm zf uenvbm jk azavwm zm [zm] [agmckuiu] zm jk} |
︙ | ︙ |