Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | A file format change for btree.c makes it between 10 and 20% faster. (CVS 1493) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
cbcaece7f45a0bc994e6c54a996afa4e |
User & Date: | drh 2004-05-29 21:46:49.000 |
Context
2004-05-30
| ||
01:38 | Do not include the P3 parameter on OP_Integer opcodes if the integer will fit in 32 bits. The P3 conversion is slow. (CVS 1494) (check-in: fcd84ebabc user: drh tags: trunk) | |
2004-05-29
| ||
21:46 | A file format change for btree.c makes it between 10 and 20% faster. (CVS 1493) (check-in: cbcaece7f4 user: drh tags: trunk) | |
11:24 | Transform OP_HexBlob and OP_String8 to OP_Blob and OP_String the first time they are executed. (CVS 1492) (check-in: 3225de8902 user: danielk1977 tags: trunk) | |
Changes
Changes to src/btree.c.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** $Id: btree.c,v 1.149 2004/05/29 21:46:49 drh Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to ** ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: ** "Sorting And Searching", pages 473-480. Addison-Wesley ** Publishing Company, Reading, Massachusetts. |
︙ | ︙ | |||
91 92 93 94 95 96 97 | ** the cell size drop below the min embedded payload fraction. ** ** The min leaf payload fraction is like the min embedded payload fraction ** except that it applies to leaf nodes in a LEAFDATA tree. The maximum ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it ** not specified in the header. ** | | > | | > > | > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < < < < < < < < | < < < < < < < < | 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | ** the cell size drop below the min embedded payload fraction. ** ** The min leaf payload fraction is like the min embedded payload fraction ** except that it applies to leaf nodes in a LEAFDATA tree. The maximum ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it ** not specified in the header. ** ** Each btree pages is divided into three sections: The header, the ** cell pointer array, and the cell area area. Page 1 also has a 100-byte ** file header that occurs before the page header. The 100-byte file ** header occurs on page 1 only. ** ** The page headers looks like this: ** ** OFFSET SIZE DESCRIPTION ** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf ** 1 2 byte offset to the first freeblock ** 3 2 number of cells on this page ** 5 2 first byte past the cell array area ** 7 1 number of fragmented free bytes ** 8 4 Right child (the Ptr(N+1) value). Omitted if leaf ** ** The flags define the format of this btree page. The leaf flag means that ** this page has no children. The zerodata flag means that this page carries ** only keys and no data. The intkey flag means that the key is a single ** variable length integer at the beginning of the payload. ** ** The cell pointer array begins on the first byte after the page header. ** The cell pointer array contains zero or more 2-byte numbers which are ** offsets from the beginning of the page to the cell content in the cell ** content area. The cell pointers occur in sorted order. The system strives ** to keep free space after the last cell pointer so that new cells can ** be easily added without have to defragment the page. ** ** Cell content is stored at the very end of the page and grows toward the ** beginning of the page. ** ** Unused space within the cell content area is collected into a linked list of ** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset ** to the first freeblock is given in the header. Freeblocks occur in ** increasing order. Because a freeblock must be at least 4 bytes in size, ** any group of 3 or fewer unused bytes in the cell content area cannot ** exist on the freeblock chain. A group of 3 or fewer free bytes is called ** a fragment. The total number of bytes in all fragments is recorded. ** in the page header at offset 7. ** ** SIZE DESCRIPTION ** 2 Byte offset of the next freeblock ** 2 Bytes in this freeblock ** ** Cells are of variable length. Cells are stored in the cell content area at ** the end of the page. Pointers to the cells are in the cell pointer array ** that immediately follows the page header. Cells is not necessarily ** contiguous or in order, but cell pointers are contiguous and in order. ** ** Cell content makes use of variable length integers. A variable ** length integer is 1 to 9 bytes where the lower 7 bits of each ** byte are used. The integer consists of all bytes that have bit 8 set and ** the first byte with bit 8 clear. The most significant byte of the integer ** appears first. A variable-length integer may not be more than 9 bytes long. ** As a special case, all 8 bytes of the 9th byte are used as data. This ** allows a 64-bit integer to be encoded in 9 bytes. ** ** 0x00 becomes 0x00000000 ** 0x7f becomes 0x0000007f ** 0x81 0x00 becomes 0x00000080 ** 0x82 0x00 becomes 0x00000100 ** 0x80 0x7f becomes 0x0000007f ** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678 ** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081 ** ** Variable length integers are used for rowids and to hold the number of ** bytes of key and data in a btree cell. ** ** The content of a cell looks like this: ** ** SIZE DESCRIPTION ** 4 Page number of the left child. Omitted if leaf flag is set. ** var Number of bytes of data. Omitted if the zerodata flag is set. ** var Number of bytes of key. Or the key itself if intkey flag is set. ** * Payload ** 4 First page of the overflow chain. Omitted if no overflow ** ** Overflow pages form a linked list. Each page except the last is completely |
︙ | ︙ | |||
176 177 178 179 180 181 182 | #include "sqliteInt.h" #include "pager.h" #include "btree.h" #include <assert.h> /* Maximum page size. The upper bound on this value is 65536 (a limit | | | | | 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | #include "sqliteInt.h" #include "pager.h" #include "btree.h" #include <assert.h> /* Maximum page size. The upper bound on this value is 65536 (a limit ** imposed by the 2-byte size of cell array pointers.) The ** maximum page size determines the amount of stack space allocated ** by many of the routines in this module. On embedded architectures ** or any machine where memory and especially stack memory is limited, ** one may wish to chose a smaller value for the maximum page size. */ #ifndef MX_PAGE_SIZE # define MX_PAGE_SIZE 1024 #endif /* The following value is the maximum cell size assuming a maximum page ** size give above. */ #define MX_CELL_SIZE (MX_PAGE_SIZE-8) /* The maximum number of cells on a single page of the database. This ** assumes a minimum cell size of 3 bytes. Such small cells will be ** exceedingly rare, but they are possible. */ #define MX_CELL ((MX_PAGE_SIZE-8)/3) /* Forward declarations */ typedef struct MemPage MemPage; /* ** This is a magic string that appears at the beginning of every ** SQLite database in order to identify the file as a real database. |
︙ | ︙ | |||
226 227 228 229 230 231 232 | ** ** The pParent field points back to the parent page. This allows us to ** walk up the BTree from any leaf to the root. Care must be taken to ** unref() the parent page pointer when this page is no longer referenced. ** The pageDestructor() routine handles that chore. */ struct MemPage { | | | | | | | | | | | | | | > | | > | < < < < | | | | 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 | ** ** The pParent field points back to the parent page. This allows us to ** walk up the BTree from any leaf to the root. Care must be taken to ** unref() the parent page pointer when this page is no longer referenced. ** The pageDestructor() routine handles that chore. */ struct MemPage { u8 isInit; /* True if previously initialized */ u8 idxShift; /* True if Cell indices have changed */ u8 nOverflow; /* Number of overflow cell bodies in aCell[] */ u8 intKey; /* True if intkey flag is set */ u8 leaf; /* True if leaf flag is set */ u8 zeroData; /* True if table stores keys only */ u8 leafData; /* True if tables stores data on leaves only */ u8 hasData; /* True if this page stores data */ u8 hdrOffset; /* 100 for page 1. 0 otherwise */ u16 cellOffset; /* Index in aData of first cell pointer */ u16 idxParent; /* Index in parent of this node */ u16 nFree; /* Number of free bytes on the page */ u16 nCell; /* Number of cells on this page, local and ovfl */ struct _OvflCell { /* Cells that will not fit on aData[] */ u8 *pCell; /* Pointers to the body of the overflow cell */ u16 idx; /* Insert this cell before idx-th non-overflow cell */ } aOvfl[3]; struct Btree *pBt; /* Pointer back to BTree structure */ u8 *aData; /* Pointer back to the start of the page */ Pgno pgno; /* Page number for this page */ MemPage *pParent; /* The parent of this page. NULL for root */ }; /* ** The in-memory image of a disk page has the auxiliary information appended ** to the end. EXTRA_SIZE is the number of bytes of space needed to hold ** that extra information. */ |
︙ | ︙ | |||
287 288 289 290 291 292 293 294 295 296 297 298 | /* ** An instance of the following structure is used to hold information ** about a cell. The parseCell() function fills in this structure ** based on information extract from the raw disk page. */ typedef struct CellInfo CellInfo; struct CellInfo { i64 nKey; /* The key for INTKEY tables, or number of bytes in key */ u32 nData; /* Number of bytes of data */ u16 nHeader; /* Size of the cell header in bytes */ u16 nLocal; /* Amount of payload held locally */ u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */ | > | | 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | /* ** An instance of the following structure is used to hold information ** about a cell. The parseCell() function fills in this structure ** based on information extract from the raw disk page. */ typedef struct CellInfo CellInfo; struct CellInfo { u8 *pCell; /* Pointer to the start of cell content */ i64 nKey; /* The key for INTKEY tables, or number of bytes in key */ u32 nData; /* Number of bytes of data */ u16 nHeader; /* Size of the cell header in bytes */ u16 nLocal; /* Amount of payload held locally */ u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */ u16 nSize; /* Total size of the cell content (on the main b-tree page) */ }; /* ** A cursor is a pointer to a particular entry in the BTree. ** The entry is identified by its MemPage and the index in ** MemPage.aCell[] of the entry. */ |
︙ | ︙ | |||
346 347 348 349 350 351 352 | ** file. */ #define getVarint sqlite3GetVarint #define getVarint32 sqlite3GetVarint32 #define putVarint sqlite3PutVarint /* | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > | | > > | | 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 | ** file. */ #define getVarint sqlite3GetVarint #define getVarint32 sqlite3GetVarint32 #define putVarint sqlite3PutVarint /* ** Return a pointer to the start of cell content for the given ** cell of a page. This routine works only for pages that ** do not contain overflow cells. */ static u8 *findCell(MemPage *pPage, int iCell){ u8 *data = pPage->aData; assert( iCell>=0 ); assert( iCell<get2byte(&data[pPage->hdrOffset+3]) ); return data + get2byte(&data[pPage->cellOffset+2*iCell]); } /* ** This a more complex version of findCell() that works for ** pages that do contain overflow cells. See insert */ static u8 *findOverflowCell(MemPage *pPage, int iCell){ int i; for(i=pPage->nOverflow-1; i>=0; i--){ if( pPage->aOvfl[i].idx<=iCell ){ if( pPage->aOvfl[i].idx==iCell ){ return pPage->aOvfl[i].pCell; } iCell--; } } return findCell(pPage, iCell); } /* ** Parse a cell content block and fill in the CellInfo structure. There ** are two versions of this function. parseCell() takes a cell index ** as the second argument and parseCellPtr() takes a pointer to the ** body of the cell as its second argument. */ static void parseCellPtr( MemPage *pPage, /* Page containing the cell */ u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ int n; int nPayload; Btree *pBt; int minLocal, maxLocal; pInfo->pCell = pCell; assert( pPage->leaf==0 || pPage->leaf==1 ); n = 4 - 4*pPage->leaf; if( pPage->hasData ){ n += getVarint32(&pCell[n], &pInfo->nData); }else{ pInfo->nData = 0; } n += getVarint(&pCell[n], &pInfo->nKey); pInfo->nHeader = n; |
︙ | ︙ | |||
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | minLocal = pBt->minLocal; maxLocal = pBt->maxLocal; } if( nPayload<=maxLocal ){ pInfo->nLocal = nPayload; pInfo->iOverflow = 0; pInfo->nSize = nPayload + n; }else{ int surplus = minLocal + (nPayload - minLocal)%(pBt->usableSize - 4); if( surplus <= maxLocal ){ pInfo->nLocal = surplus; }else{ pInfo->nLocal = minLocal; } pInfo->iOverflow = pInfo->nLocal + n; pInfo->nSize = pInfo->iOverflow + 4; } } | > > > > > > > > > | > | | | | < | > > | > > | | > > > > < | > | > > > < > < | | | < < > | > > | > | > > | > > > | | | | < | | | > | | < | | > > > | < < | | < < < < < | > | < < | < < | | < < < < | < | < < > | < < | < < < < > > > < < < | | > > | | < < > > | | < < | | > | < | | | < < < | > | | | > > | < > | > | | < | > > | < | | > | | < < < | > | | | < < | | < < < < < < > | < | < < < < < < > | > < | 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 | minLocal = pBt->minLocal; maxLocal = pBt->maxLocal; } if( nPayload<=maxLocal ){ pInfo->nLocal = nPayload; pInfo->iOverflow = 0; pInfo->nSize = nPayload + n; if( pInfo->nSize<4 ){ pInfo->nSize = 4; /* Minimum cell size is 4 */ } }else{ int surplus = minLocal + (nPayload - minLocal)%(pBt->usableSize - 4); if( surplus <= maxLocal ){ pInfo->nLocal = surplus; }else{ pInfo->nLocal = minLocal; } pInfo->iOverflow = pInfo->nLocal + n; pInfo->nSize = pInfo->iOverflow + 4; } } static void parseCell( MemPage *pPage, /* Page containing the cell */ int iCell, /* The cell index. First cell is 0 */ CellInfo *pInfo /* Fill in this structure */ ){ parseCellPtr(pPage, findCell(pPage, iCell), pInfo); } /* ** Compute the total number of bytes that a Cell needs in the cell ** data area of the btree-page. The return number includes the cell ** data header and the local payload, but not any overflow page or ** the space used by the cell pointer. */ static int cellSize(MemPage *pPage, int iCell){ CellInfo info; parseCell(pPage, iCell, &info); return info.nSize; } static int cellSizePtr(MemPage *pPage, u8 *pCell){ CellInfo info; parseCellPtr(pPage, pCell, &info); return info.nSize; } /* ** Do sanity checking on a page. Throw an exception if anything is ** not right. ** ** This routine is used for internal error checking only. It is omitted ** from most builds. */ #if defined(BTREE_DEBUG) && !defined(NDEBUG) && 0 static void _pageIntegrity(MemPage *pPage){ int usableSize; u8 *data; int i, j, idx, c, pc, hdr, nFree; int cellOffset; int nCell, cellLimit; u8 used[MX_PAGE_SIZE]; usableSize = pPage->pBt->usableSize; assert( pPage->aData==&((unsigned char*)pPage)[-pPage->pBt->pageSize] ); hdr = pPage->hdrOffset; assert( hdr==(pPage->pgno==1 ? 100 : 0) ); assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) ); c = pPage->aData[hdr]; if( pPage->isInit ){ assert( pPage->leaf == ((c & PTF_LEAF)!=0) ); assert( pPage->zeroData == ((c & PTF_ZERODATA)!=0) ); assert( pPage->leafData == ((c & PTF_LEAFDATA)!=0) ); assert( pPage->intKey == ((c & (PTF_INTKEY|PTF_LEAFDATA))!=0) ); assert( pPage->hasData == !(pPage->zeroData || (!pPage->leaf && pPage->leafData)) ); assert( pPage->cellOffset==pPage->hdrOffset+12-4*pPage->leaf ); assert( pPage->nCell = get2byte(&pPage->aData[hdr+3]) ); } data = pPage->aData; memset(used, 0, usableSize); for(i=0; i<hdr+10-pPage->leaf*4; i++) used[i] = 1; nFree = 0; pc = get2byte(&data[hdr+1]); while( pc ){ int size; assert( pc>0 && pc<usableSize-4 ); size = get2byte(&data[pc+2]); assert( pc+size<=usableSize ); nFree += size; for(i=pc; i<pc+size; i++){ assert( used[i]==0 ); used[i] = 1; } pc = get2byte(&data[pc]); } idx = 0; nCell = get2byte(&data[hdr+3]); cellLimit = get2byte(&data[hdr+5]); assert( pPage->isInit==0 || pPage->nFree==nFree+data[hdr+7]+cellLimit-(cellOffset+2*nCell) ); cellOffset = pPage->cellOffset; for(i=0; i<nCell; i++){ int size; pc = get2byte(&data[cellOffset+2*i]); assert( pc>0 && pc<usableSize-4 ); size = cellSize(pPage, &data[pc]); assert( pc+size<=usableSize ); for(j=pc; j<pc+size; j++){ assert( used[j]==0 ); used[j] = 1; } } for(i=cellOffset+2*nCell; i<cellimit; i++){ assert( used[i]==0 ); used[i] = 1; } nFree = 0; for(i=0; i<usableSize; i++){ assert( used[i]<=1 ); if( used[i]==0 ) nFree++; } assert( nFree==data[hdr+7] ); } #define pageIntegrity(X) _pageIntegrity(X) #else # define pageIntegrity(X) #endif /* ** Defragment the page given. All Cells are moved to the ** beginning of the page and all free space is collected ** into one big FreeBlk at the end of the page. */ static void defragmentPage(MemPage *pPage){ int i; /* Loop counter */ int pc; /* Address of a i-th cell */ int addr; /* Offset of first byte after cell pointer array */ int hdr; /* Offset to the page header */ int size; /* Size of a cell */ int usableSize; /* Number of usable bytes on a page */ int cellOffset; /* Offset to the cell pointer array */ int brk; /* Offset to the cell content area */ int nCell; /* Number of cells on the page */ unsigned char *data; /* The page data */ unsigned char temp[MX_PAGE_SIZE]; /* Temp holding area for cell content */ assert( sqlite3pager_iswriteable(pPage->aData) ); assert( pPage->pBt!=0 ); assert( pPage->pBt->usableSize <= MX_PAGE_SIZE ); assert( pPage->nOverflow==0 ); data = pPage->aData; hdr = pPage->hdrOffset; cellOffset = pPage->cellOffset; nCell = pPage->nCell; assert( nCell==get2byte(&data[hdr+3]) ); usableSize = pPage->pBt->usableSize; brk = get2byte(&data[hdr+5]); memcpy(&temp[brk], &data[brk], usableSize - brk); brk = usableSize; for(i=0; i<nCell; i++){ u8 *pAddr; /* The i-th cell pointer */ pAddr = &data[cellOffset + i*2]; pc = get2byte(pAddr); assert( pc<pPage->pBt->usableSize ); size = cellSizePtr(pPage, &temp[pc]); brk -= size; memcpy(&data[brk], &temp[pc], size); put2byte(pAddr, brk); } assert( brk>=cellOffset+2*nCell ); put2byte(&data[hdr+5], brk); data[hdr+1] = 0; data[hdr+2] = 0; data[hdr+7] = 0; addr = cellOffset+2*nCell; memset(&data[addr], 0, brk-addr); } /* ** Allocate nByte bytes of space on a page. ** ** Return the index into pPage->aData[] of the first byte of ** the new allocation. Or return 0 if there is not enough free ** space on the page to satisfy the allocation request. ** ** If the page contains nBytes of free space but does not contain ** nBytes of contiguous free space, then this routine automatically ** calls defragementPage() to consolidate all free space before ** allocating the new chunk. */ static int allocateSpace(MemPage *pPage, int nByte){ int addr, pc, hdr; int size; int nFrag; int top; int nCell; int cellOffset; unsigned char *data; data = pPage->aData; assert( sqlite3pager_iswriteable(data) ); assert( pPage->pBt ); if( nByte<4 ) nByte = 4; if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0; pPage->nFree -= nByte; hdr = pPage->hdrOffset; nFrag = data[hdr+7]; if( nFrag<60 ){ /* Search the freelist looking for a slot big enough to satisfy the ** space request. */ addr = hdr+1; while( (pc = get2byte(&data[addr]))>0 ){ size = get2byte(&data[pc+2]); if( size>=nByte ){ if( size<nByte+4 ){ memcpy(&data[addr], &data[pc], 2); data[hdr+7] = nFrag + size - nByte; return pc; }else{ put2byte(&data[pc+2], size-nByte); return pc + size - nByte; } } addr = pc; } } /* Allocate memory from the gap in between the cell pointer array ** and the cell content area. */ top = get2byte(&data[hdr+5]); nCell = get2byte(&data[hdr+3]); cellOffset = pPage->cellOffset; if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){ defragmentPage(pPage); top = get2byte(&data[hdr+5]); } top -= nByte; assert( cellOffset + 2*nCell <= top ); put2byte(&data[hdr+5], top); return top; } /* ** Return a section of the pPage->aData to the freelist. ** The first byte of the new free block is pPage->aDisk[start] ** and the size of the block is "size" bytes. ** ** Most of the effort here is involved in coalesing adjacent ** free blocks into a single big free block. */ static void freeSpace(MemPage *pPage, int start, int size){ int end = start + size; /* End of the segment being freed */ int addr, pbegin, hdr; unsigned char *data = pPage->aData; assert( pPage->pBt!=0 ); assert( sqlite3pager_iswriteable(data) ); assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) ); assert( end<=pPage->pBt->usableSize ); if( size<4 ) size = 4; /* Add the space back into the linked list of freeblocks */ hdr = pPage->hdrOffset; addr = hdr + 1; while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){ assert( pbegin<=pPage->pBt->usableSize-4 ); assert( pbegin>addr ); addr = pbegin; } assert( pbegin<=pPage->pBt->usableSize-4 ); assert( pbegin>addr || pbegin==0 ); put2byte(&data[addr], start); put2byte(&data[start], pbegin); put2byte(&data[start+2], size); pPage->nFree += size; /* Coalesce adjacent free blocks */ addr = pPage->hdrOffset + 1; while( (pbegin = get2byte(&data[addr]))>0 ){ int pnext, psize; assert( pbegin>addr ); assert( pbegin<=pPage->pBt->usableSize-4 ); pnext = get2byte(&data[pbegin]); psize = get2byte(&data[pbegin+2]); if( pbegin + psize + 3 >= pnext && pnext>0 ){ int frag = pnext - (pbegin+psize); assert( frag<=data[pPage->hdrOffset+7] ); data[pPage->hdrOffset+7] -= frag; put2byte(&data[pbegin], get2byte(&data[pnext])); put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin); }else{ addr = pbegin; } } /* If the cell content area begins with a freeblock, remove it. */ if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){ int top; pbegin = get2byte(&data[hdr+1]); memcpy(&data[hdr+1], &data[pbegin], 2); top = get2byte(&data[hdr+5]); put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2])); } } /* ** Initialize the auxiliary information for a disk block. ** ** The pParent parameter must be a pointer to the MemPage which ** is the parent of the page being initialized. The root of a |
︙ | ︙ | |||
708 709 710 711 712 713 714 | */ static int initPage( MemPage *pPage, /* The page to be initialized */ MemPage *pParent /* The parent. Might be NULL */ ){ int c, pc, i, hdr; unsigned char *data; | | | < | < < > < | | < < | < < < < < < < < < < | < | | 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 | */ static int initPage( MemPage *pPage, /* The page to be initialized */ MemPage *pParent /* The parent. Might be NULL */ ){ int c, pc, i, hdr; unsigned char *data; int usableSize, cellOffset; int nFree; int top; assert( pPage->pBt!=0 ); assert( pParent==0 || pParent->pBt==pPage->pBt ); assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) ); assert( pPage->aData == &((unsigned char*)pPage)[-pPage->pBt->pageSize] ); assert( pPage->pParent==0 || pPage->pParent==pParent ); assert( pPage->pParent==pParent || !pPage->isInit ); if( pPage->isInit ) return SQLITE_OK; if( pPage->pParent==0 && pParent!=0 ){ pPage->pParent = pParent; sqlite3pager_ref(pParent->aData); } hdr = pPage->hdrOffset; data = pPage->aData; c = data[hdr]; assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0; pPage->zeroData = (c & PTF_ZERODATA)!=0; pPage->leafData = (c & PTF_LEAFDATA)!=0; pPage->leaf = (c & PTF_LEAF)!=0; pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData)); pPage->nOverflow = 0; pPage->idxShift = 0; usableSize = pPage->pBt->usableSize; pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf; top = get2byte(&data[hdr+5]); pPage->nCell = get2byte(&data[hdr+3]); /* Compute the total free space on the page */ pc = get2byte(&data[hdr+1]); nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell); i = 0; while( pc>0 ){ int next, size; if( pc>=usableSize ) return SQLITE_CORRUPT; if( i++>MX_PAGE_SIZE ) return SQLITE_CORRUPT; next = get2byte(&data[pc]); size = get2byte(&data[pc+2]); |
︙ | ︙ | |||
792 793 794 795 796 797 798 | int first; assert( sqlite3pager_pagenumber(data)==pPage->pgno ); assert( &data[pBt->pageSize] == (unsigned char*)pPage ); assert( sqlite3pager_iswriteable(data) ); memset(&data[hdr], 0, pBt->usableSize - hdr); data[hdr] = flags; | | | > | < < < < | | > | 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 | int first; assert( sqlite3pager_pagenumber(data)==pPage->pgno ); assert( &data[pBt->pageSize] == (unsigned char*)pPage ); assert( sqlite3pager_iswriteable(data) ); memset(&data[hdr], 0, pBt->usableSize - hdr); data[hdr] = flags; first = hdr + 8 + 4*((flags&PTF_LEAF)==0); memset(&data[hdr+1], 0, 4); data[hdr+7] = 0; put2byte(&data[hdr+5], pBt->usableSize); pPage->nFree = pBt->usableSize - first; pPage->intKey = (flags & (PTF_INTKEY|PTF_LEAFDATA))!=0; pPage->zeroData = (flags & PTF_ZERODATA)!=0; pPage->leafData = (flags & PTF_LEAFDATA)!=0; pPage->leaf = (flags & PTF_LEAF)!=0; pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData)); pPage->hdrOffset = hdr; pPage->cellOffset = first; pPage->nOverflow = 0; pPage->idxShift = 0; pPage->nCell = 0; pPage->isInit = 1; pageIntegrity(pPage); } /* ** Get a page from the pager. Initialize the MemPage.pBt and ** MemPage.aData elements if needed. |
︙ | ︙ | |||
871 872 873 874 875 876 877 | /* ** This routine is called when the reference count for a page ** reaches zero. We need to unref the pParent pointer when that ** happens. */ static void pageDestructor(void *pData, int pageSize){ MemPage *pPage = (MemPage*)&((char*)pData)[pageSize]; | < < < | 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 | /* ** This routine is called when the reference count for a page ** reaches zero. We need to unref the pParent pointer when that ** happens. */ static void pageDestructor(void *pData, int pageSize){ MemPage *pPage = (MemPage*)&((char*)pData)[pageSize]; if( pPage->pParent ){ MemPage *pParent = pPage->pParent; pPage->pParent = 0; releasePage(pParent); } pPage->isInit = 0; } /* ** Open a new database. ** ** Actually, this routine just sets up the internal data structures |
︙ | ︙ | |||
1032 1033 1034 1035 1036 1037 1038 | pBt->minLeafFrac = page1[23]; } /* maxLocal is the maximum amount of payload to store locally for ** a cell. Make sure it is small enough so that at least minFanout ** cells can will fit on one page. We assume a 10-byte page header. ** Besides the payload, the cell must store: | | | | > | | | | | 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 | pBt->minLeafFrac = page1[23]; } /* maxLocal is the maximum amount of payload to store locally for ** a cell. Make sure it is small enough so that at least minFanout ** cells can will fit on one page. We assume a 10-byte page header. ** Besides the payload, the cell must store: ** 2-byte pointer to the cell ** 4-byte child pointer ** 9-byte nKey value ** 4-byte nData value ** 4-byte overflow page pointer ** So a cell consists of a 2-byte poiner, a header which is as much as ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow ** page pointer. */ pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23; pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23; pBt->maxLeaf = pBt->usableSize - 35; pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23; if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){ goto page1_init_failed; } assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE ); pBt->pPage1 = pPage1; return SQLITE_OK; |
︙ | ︙ | |||
1481 1482 1483 1484 1485 1486 1487 | ** ** BtCursor.info is a cache of the information in the current cell. ** Using this cache reduces the number of calls to parseCell(). */ static void getCellInfo(BtCursor *pCur){ MemPage *pPage = pCur->pPage; if( !pCur->infoValid ){ | | | | 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 | ** ** BtCursor.info is a cache of the information in the current cell. ** Using this cache reduces the number of calls to parseCell(). */ static void getCellInfo(BtCursor *pCur){ MemPage *pPage = pCur->pPage; if( !pCur->infoValid ){ parseCell(pPage, pCur->idx, &pCur->info); pCur->infoValid = 1; }else{ #ifndef NDEBUG CellInfo info; parseCell(pPage, pCur->idx, &info); assert( memcmp(&info, &pCur->info, sizeof(info))==0 ); #endif } } /* ** Set *pSize to the size of the buffer needed to hold the value of |
︙ | ︙ | |||
1558 1559 1560 1561 1562 1563 1564 | assert( pCur!=0 && pCur->pPage!=0 ); assert( pCur->isValid ); pBt = pCur->pBt; pPage = pCur->pPage; pageIntegrity(pPage); assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); | < > | 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 | assert( pCur!=0 && pCur->pPage!=0 ); assert( pCur->isValid ); pBt = pCur->pBt; pPage = pCur->pPage; pageIntegrity(pPage); assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); getCellInfo(pCur); aPayload = pCur->info.pCell; aPayload += pCur->info.nHeader; if( pPage->intKey ){ nKey = 0; }else{ nKey = pCur->info.nKey; } assert( offset>=0 ); |
︙ | ︙ | |||
1697 1698 1699 1700 1701 1702 1703 | assert( pCur!=0 && pCur->pPage!=0 ); assert( pCur->isValid ); pBt = pCur->pBt; pPage = pCur->pPage; pageIntegrity(pPage); assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); | < > | 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 | assert( pCur!=0 && pCur->pPage!=0 ); assert( pCur->isValid ); pBt = pCur->pBt; pPage = pCur->pPage; pageIntegrity(pPage); assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); getCellInfo(pCur); aPayload = pCur->info.pCell; aPayload += pCur->info.nHeader; if( pPage->intKey ){ nKey = 0; }else{ nKey = pCur->info.nKey; } if( skipKey ){ |
︙ | ︙ | |||
1821 1822 1823 1824 1825 1826 1827 | idxParent = pPage->idxParent; sqlite3pager_ref(pParent->aData); oldPgno = pPage->pgno; releasePage(pPage); pCur->pPage = pParent; pCur->infoValid = 0; assert( pParent->idxShift==0 ); | < | < < < < < < < < < < < < < < < < < < < < < < < < < | 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 | idxParent = pPage->idxParent; sqlite3pager_ref(pParent->aData); oldPgno = pPage->pgno; releasePage(pPage); pCur->pPage = pParent; pCur->infoValid = 0; assert( pParent->idxShift==0 ); pCur->idx = idxParent; } /* ** Move the cursor to the root page */ static int moveToRoot(BtCursor *pCur){ MemPage *pRoot; |
︙ | ︙ | |||
1871 1872 1873 1874 1875 1876 1877 | pageIntegrity(pRoot); pCur->pPage = pRoot; pCur->idx = 0; pCur->infoValid = 0; if( pRoot->nCell==0 && !pRoot->leaf ){ Pgno subpage; assert( pRoot->pgno==1 ); | | | | | 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 | pageIntegrity(pRoot); pCur->pPage = pRoot; pCur->idx = 0; pCur->infoValid = 0; if( pRoot->nCell==0 && !pRoot->leaf ){ Pgno subpage; assert( pRoot->pgno==1 ); subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); assert( subpage>0 ); pCur->isValid = 1; rc = moveToChild(pCur, subpage); } pCur->isValid = pCur->pPage->nCell>0; return rc; } /* ** Move the cursor down to the left-most leaf entry beneath the ** entry to which it is currently pointing. */ static int moveToLeftmost(BtCursor *pCur){ Pgno pgno; int rc; MemPage *pPage; assert( pCur->isValid ); while( !(pPage = pCur->pPage)->leaf ){ assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); pgno = get4byte(findCell(pPage, pCur->idx)); rc = moveToChild(pCur, pgno); if( rc ) return rc; } return SQLITE_OK; } /* ** Move the cursor down to the right-most leaf entry beneath the ** page to which it is currently pointing. Notice the difference ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() ** finds the left-most entry beneath the *entry* whereas moveToRightmost() ** finds the right-most entry beneath the *page*. */ static int moveToRightmost(BtCursor *pCur){ Pgno pgno; int rc; MemPage *pPage; assert( pCur->isValid ); while( !(pPage = pCur->pPage)->leaf ){ pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); pCur->idx = pPage->nCell; rc = moveToChild(pCur, pgno); if( rc ) return rc; } pCur->idx = pPage->nCell - 1; pCur->infoValid = 0; return SQLITE_OK; |
︙ | ︙ | |||
2062 2063 2064 2065 2066 2067 2068 | } } assert( lwr==upr+1 ); assert( pPage->isInit ); if( pPage->leaf ){ chldPg = 0; }else if( lwr>=pPage->nCell ){ | | | | 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 | } } assert( lwr==upr+1 ); assert( pPage->isInit ); if( pPage->leaf ){ chldPg = 0; }else if( lwr>=pPage->nCell ){ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); }else{ chldPg = get4byte(findCell(pPage, lwr)); } if( chldPg==0 ){ assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); if( pRes ) *pRes = c; return SQLITE_OK; } pCur->idx = lwr; |
︙ | ︙ | |||
2113 2114 2115 2116 2117 2118 2119 | } assert( pPage->isInit ); assert( pCur->idx<pPage->nCell ); pCur->idx++; pCur->infoValid = 0; if( pCur->idx>=pPage->nCell ){ if( !pPage->leaf ){ | | | 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 | } assert( pPage->isInit ); assert( pCur->idx<pPage->nCell ); pCur->idx++; pCur->infoValid = 0; if( pCur->idx>=pPage->nCell ){ if( !pPage->leaf ){ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); if( rc ) return rc; rc = moveToLeftmost(pCur); *pRes = 0; return rc; } do{ if( isRootPage(pPage) ){ |
︙ | ︙ | |||
2162 2163 2164 2165 2166 2167 2168 | *pRes = 1; return SQLITE_OK; } pPage = pCur->pPage; assert( pPage->isInit ); assert( pCur->idx>=0 ); if( !pPage->leaf ){ | | | 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 | *pRes = 1; return SQLITE_OK; } pPage = pCur->pPage; assert( pPage->isInit ); assert( pCur->idx>=0 ); if( !pPage->leaf ){ pgno = get4byte( findCell(pPage, pCur->idx) ); rc = moveToChild(pCur, pgno); if( rc ) return rc; rc = moveToRightmost(pCur); }else{ while( pCur->idx==0 ){ if( isRootPage(pPage) ){ pCur->isValid = 0; |
︙ | ︙ | |||
2358 2359 2360 2361 2362 2363 2364 | */ static int clearCell(MemPage *pPage, unsigned char *pCell){ Btree *pBt = pPage->pBt; CellInfo info; Pgno ovflPgno; int rc; | | | 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 | */ static int clearCell(MemPage *pPage, unsigned char *pCell){ Btree *pBt = pPage->pBt; CellInfo info; Pgno ovflPgno; int rc; parseCellPtr(pPage, pCell, &info); if( info.iOverflow==0 ){ return SQLITE_OK; /* No overflow pages. Return without doing anything */ } ovflPgno = get4byte(&pCell[info.iOverflow]); while( ovflPgno!=0 ){ MemPage *pOvfl; rc = getPage(pBt, ovflPgno, &pOvfl); |
︙ | ︙ | |||
2408 2409 2410 2411 2412 2413 2414 | unsigned char *pPayload; Btree *pBt = pPage->pBt; Pgno pgnoOvfl = 0; int nHeader; CellInfo info; /* Fill in the header. */ | | | | 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 | unsigned char *pPayload; Btree *pBt = pPage->pBt; Pgno pgnoOvfl = 0; int nHeader; CellInfo info; /* Fill in the header. */ nHeader = 0; if( !pPage->leaf ){ nHeader += 4; } if( pPage->hasData ){ nHeader += putVarint(&pCell[nHeader], nData); }else{ nData = 0; } nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); parseCellPtr(pPage, pCell, &info); assert( info.nHeader==nHeader ); assert( info.nKey==nKey ); assert( info.nData==nData ); /* Fill in the payload */ nPayload = nData; if( pPage->intKey ){ |
︙ | ︙ | |||
2516 2517 2518 2519 2520 2521 2522 | static void reparentChildPages(MemPage *pPage){ int i; Btree *pBt; if( pPage->leaf ) return; pBt = pPage->pBt; for(i=0; i<pPage->nCell; i++){ | | | < < < < < < | > | > > | < < > | | | | > < < < | < < < | < < < < < < < < < | < | | > | < < < | < | | | > > > > > > > > > | | | < < < < < | < < < | > > > > | | > > > > > > > > > > > > > > > | < < < | < < < | | | | < < < | | > | < | | < | > > > > > | < < | | < > < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < > > > | 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 | static void reparentChildPages(MemPage *pPage){ int i; Btree *pBt; if( pPage->leaf ) return; pBt = pPage->pBt; for(i=0; i<pPage->nCell; i++){ reparentPage(pBt, get4byte(findCell(pPage,i)), pPage, i); } reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]), pPage, i); pPage->idxShift = 0; } /* ** Remove the i-th cell from pPage. This routine effects pPage only. ** The cell content is not freed or deallocated. It is assumed that ** the cell content has been copied someplace else. This routine just ** removes the reference to the cell from pPage. ** ** "sz" must be the number of bytes in the cell. */ static void dropCell(MemPage *pPage, int idx, int sz){ int i; /* Loop counter */ int pc; /* Offset to cell content of cell being deleted */ u8 *data; /* pPage->aData */ u8 *ptr; /* Used to move bytes around within data[] */ assert( idx>=0 && idx<pPage->nCell ); assert( sz==cellSize(pPage, idx) ); assert( sqlite3pager_iswriteable(pPage->aData) ); data = pPage->aData; ptr = &data[pPage->cellOffset + 2*idx]; pc = get2byte(ptr); assert( pc>10 && pc+sz<=pPage->pBt->usableSize ); freeSpace(pPage, pc, sz); for(i=idx+1; i<pPage->nCell; i++, ptr+=2){ ptr[0] = ptr[2]; ptr[1] = ptr[3]; } pPage->nCell--; put2byte(&data[pPage->hdrOffset+3], pPage->nCell); pPage->nFree += 2; pPage->idxShift = 1; } /* ** Insert a new cell on pPage at cell index "i". pCell points to the ** content of the cell. ** ** If the cell content will fit on the page, then put it there. If it ** will not fit, then make a copy of the cell content into pTemp if ** pTemp is not null. Regardless of pTemp, allocate a new entry ** in pPage->aOvfl[] and make it point to the cell content (either ** in pTemp or the original pCell) and also record its index. ** Allocating a new entry in pPage->aCell[] implies that ** pPage->nOverflow is incremented. */ static void insertCell( MemPage *pPage, /* Page into which we are copying */ int i, /* New cell becomes the i-th cell of the page */ u8 *pCell, /* Content of the new cell */ int sz, /* Bytes of content in pCell */ u8 *pTemp /* Temp storage space for pCell, if needed */ ){ int idx; /* Where to write new cell content in data[] */ int j; /* Loop counter */ int top; /* First byte of content for any cell in data[] */ int end; /* First byte past the last cell pointer in data[] */ int ins; /* Index in data[] where new cell pointer is inserted */ int hdr; /* Offset into data[] of the page header */ int cellOffset; /* Address of first cell pointer in data[] */ u8 *data; /* The content of the whole page */ u8 *ptr; /* Used for moving information around in data[] */ assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); assert( sz==cellSizePtr(pPage, pCell) ); assert( sqlite3pager_iswriteable(pPage->aData) ); if( pPage->nOverflow || sz+2>pPage->nFree ){ if( pTemp ){ memcpy(pTemp, pCell, sz); pCell = pTemp; } j = pPage->nOverflow++; assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) ); pPage->aOvfl[j].pCell = pCell; pPage->aOvfl[j].idx = i; pPage->nFree = 0; }else{ data = pPage->aData; hdr = pPage->hdrOffset; top = get2byte(&data[hdr+5]); cellOffset = pPage->cellOffset; end = cellOffset + 2*pPage->nCell + 2; ins = cellOffset + 2*i; if( end > top - sz ){ defragmentPage(pPage); top = get2byte(&data[hdr+5]); assert( end + sz <= top ); } idx = allocateSpace(pPage, sz); assert( idx>0 ); assert( end <= get2byte(&data[hdr+5]) ); pPage->nCell++; pPage->nFree -= 2; memcpy(&data[idx], pCell, sz); for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){ ptr[0] = ptr[-2]; ptr[1] = ptr[-1]; } put2byte(&data[ins], idx); put2byte(&data[hdr+3], pPage->nCell); pPage->idxShift = 1; pageIntegrity(pPage); } } /* ** Add a list of cells to a page. The page should be initially empty. ** The cells are guaranteed to fit on the page. */ static void assemblePage( MemPage *pPage, /* The page to be assemblied */ int nCell, /* The number of cells to add to this page */ u8 **apCell, /* Pointers to cell bodies */ int *aSize /* Sizes of the cells */ ){ int i; /* Loop counter */ int totalSize; /* Total size of all cells */ int hdr; /* Index of page header */ int cellptr; /* Address of next cell pointer */ int cellbody; /* Address of next cell body */ u8 *data; /* Data for the page */ assert( pPage->nOverflow==0 ); totalSize = 0; for(i=0; i<nCell; i++){ totalSize += aSize[i]; } assert( totalSize+2*nCell<=pPage->nFree ); assert( pPage->nCell==0 ); cellptr = pPage->cellOffset; data = pPage->aData; hdr = pPage->hdrOffset; put2byte(&data[hdr+3], nCell); cellbody = allocateSpace(pPage, totalSize); assert( cellbody>0 ); assert( pPage->nFree >= 2*nCell ); pPage->nFree -= 2*nCell; for(i=0; i<nCell; i++){ put2byte(&data[cellptr], cellbody); memcpy(&data[cellbody], apCell[i], aSize[i]); cellptr += 2; cellbody += aSize[i]; } assert( cellbody==pPage->pBt->usableSize ); pPage->nCell = nCell; } /* ** GCC does not define the offsetof() macro so we'll have to do it ** ourselves. */ #ifndef offsetof #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) #endif /* ** The following parameters determine how many adjacent pages get involved ** in a balancing operation. NN is the number of neighbors on either side ** of the page that participate in the balancing operation. NB is the ** total number of pages that participate, including the target page and ** NN neighbors on either side. ** ** The minimum value of NN is 1 (of course). Increasing NN above 1 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance ** in exchange for a larger degradation in INSERT and UPDATE performance. ** The value of NN appears to give the best results overall. */ #define NN 1 /* Number of neighbors on either side of pPage */ #define NB (NN*2+1) /* Total pages involved in the balance */ /* Forward reference */ static int balance(MemPage*); /* ** This routine redistributes Cells on pPage and up to NN*2 siblings ** of pPage so that all pages have about the same amount of free space. ** Usually one sibling on either side of pPage is used in the balancing, ** though both siblings might come from one side if pPage is the first ** or last child of its parent. If pPage has fewer than 2*NN siblings ** (something which can only happen if pPage is the root page or a |
︙ | ︙ | |||
2788 2789 2790 2791 2792 2793 2794 | ** might become overfull or underfull. If that happens, then this routine ** is called recursively on the parent. ** ** If this routine fails for any reason, it might leave the database ** in a corrupted state. So if this routine fails, the database should ** be rolled back. */ | | < < | < < < < < < < < < < | < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | < < < < < | | | 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 | ** might become overfull or underfull. If that happens, then this routine ** is called recursively on the parent. ** ** If this routine fails for any reason, it might leave the database ** in a corrupted state. So if this routine fails, the database should ** be rolled back. */ static int balance_nonroot(MemPage *pPage){ MemPage *pParent; /* The parent of pPage */ Btree *pBt; /* The whole database */ int nCell; /* Number of cells in aCell[] */ int nOld; /* Number of pages in apOld[] */ int nNew; /* Number of pages in apNew[] */ int nDiv; /* Number of cells in apDiv[] */ int i, j, k; /* Loop counters */ int idx; /* Index of pPage in pParent->aCell[] */ int nxDiv; /* Next divider slot in pParent->aCell[] */ int rc; /* The return code */ int leafCorrection; /* 4 if pPage is a leaf. 0 if not */ int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ int usableSpace; /* Bytes in pPage beyond the header */ int pageFlags; /* Value of pPage->aData[0] */ int subtotal; /* Subtotal of bytes in cells on one page */ int iSpace = 0; /* First unused byte of aSpace[] */ MemPage *apOld[NB]; /* pPage and up to two siblings */ Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */ MemPage *apCopy[NB]; /* Private copies of apOld[] pages */ MemPage *apNew[NB+1]; /* pPage and up to NB siblings after balancing */ Pgno pgnoNew[NB+1]; /* Page numbers for each page in apNew[] */ int idxDiv[NB]; /* Indices of divider cells in pParent */ u8 *apDiv[NB]; /* Divider cells in pParent */ int cntNew[NB+1]; /* Index in aCell[] of cell after i-th page */ int szNew[NB+1]; /* Combined size of cells place on i-th page */ u8 *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */ int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */ u8 aCopy[NB][MX_PAGE_SIZE+sizeof(MemPage)]; /* Space for apCopy[] */ u8 aSpace[MX_PAGE_SIZE*4]; /* Space to copies of divider cells */ /* ** Find the parent page. */ assert( pPage->isInit ); assert( sqlite3pager_iswriteable(pPage->aData) ); pBt = pPage->pBt; pParent = pPage->pParent; sqlite3pager_write(pParent->aData); assert( pParent ); TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); /* ** Find the cell in the parent page whose left child points back ** to pPage. The "idx" variable is the index of that cell. If pPage ** is the rightmost child of pParent then set idx to pParent->nCell */ if( pParent->idxShift ){ Pgno pgno; pgno = pPage->pgno; assert( pgno==sqlite3pager_pagenumber(pPage->aData) ); for(idx=0; idx<pParent->nCell; idx++){ if( get4byte(findCell(pParent, idx))==pgno ){ break; } } assert( idx<pParent->nCell || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno ); }else{ idx = pPage->idxParent; } /* ** Initialize variables so that it will be safe to jump ** directly to balance_cleanup at any moment. |
︙ | ︙ | |||
2981 2982 2983 2984 2985 2986 2987 | if( nxDiv<0 ){ nxDiv = 0; } nDiv = 0; for(i=0, k=nxDiv; i<NB; i++, k++){ if( k<pParent->nCell ){ idxDiv[i] = k; | | | | | < < | > | 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 | if( nxDiv<0 ){ nxDiv = 0; } nDiv = 0; for(i=0, k=nxDiv; i<NB; i++, k++){ if( k<pParent->nCell ){ idxDiv[i] = k; apDiv[i] = findCell(pParent, k); nDiv++; assert( !pParent->leaf ); pgnoOld[i] = get4byte(apDiv[i]); }else if( k==pParent->nCell ){ pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]); }else{ break; } rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent); if( rc ) goto balance_cleanup; apOld[i]->idxParent = k; apCopy[i] = 0; assert( i==nOld ); nOld++; } /* ** Make copies of the content of pPage and its siblings into aOld[]. ** The rest of this function will use data from the copies rather ** that the original pages since the original pages will be in the ** process of being overwritten. */ for(i=0; i<nOld; i++){ MemPage *p = apCopy[i] = (MemPage*)&aCopy[i+1][-sizeof(MemPage)]; p->aData = &((u8*)p)[-pBt->pageSize]; memcpy(p->aData, apOld[i]->aData, pBt->pageSize + sizeof(MemPage)); p->aData = &((u8*)p)[-pBt->pageSize]; } /* ** Load pointers to all cells on sibling pages and the divider cells ** into the local apCell[] array. Make copies of the divider cells ** into space obtained form aSpace[] and remove the the divider Cells ** from pParent. |
︙ | ︙ | |||
3033 3034 3035 3036 3037 3038 3039 | ** leafData: 1 if pPage holds key+data and pParent holds only keys. */ nCell = 0; leafCorrection = pPage->leaf*4; leafData = pPage->leafData && pPage->leaf; for(i=0; i<nOld; i++){ MemPage *pOld = apCopy[i]; | > | | | | | | | 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 | ** leafData: 1 if pPage holds key+data and pParent holds only keys. */ nCell = 0; leafCorrection = pPage->leaf*4; leafData = pPage->leafData && pPage->leaf; for(i=0; i<nOld; i++){ MemPage *pOld = apCopy[i]; int limit = pOld->nCell+pOld->nOverflow; for(j=0; j<limit; j++){ apCell[nCell] = findOverflowCell(pOld, j); szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); nCell++; } if( i<nOld-1 ){ int sz = cellSizePtr(pParent, apDiv[i]); if( leafData ){ /* With the LEAFDATA flag, pParent cells hold only INTKEYs that ** are duplicates of keys on the child pages. We need to remove ** the divider cells from pParent, but the dividers cells are not ** added to apCell[] because they are duplicates of child cells. */ dropCell(pParent, nxDiv, sz); }else{ u8 *pTemp; szCell[nCell] = sz; pTemp = &aSpace[iSpace]; iSpace += sz; assert( iSpace<=sizeof(aSpace) ); memcpy(pTemp, apDiv[i], sz); apCell[nCell] = pTemp+leafCorrection; dropCell(pParent, nxDiv, sz); szCell[nCell] -= leafCorrection; assert( get4byte(pTemp)==pgnoOld[i] ); if( !pOld->leaf ){ assert( leafCorrection==0 ); /* The right pointer of the child page pOld becomes the left ** pointer of the divider cell */ memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4); }else{ assert( leafCorrection==4 ); } nCell++; } } } |
︙ | ︙ | |||
3087 3088 3089 3090 3091 3092 3093 | ** k: The total number of sibling pages ** szNew[i]: Spaced used on the i-th sibling page. ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to ** the right of the i-th sibling page. ** usableSpace: Number of bytes of space available on each sibling. ** */ | | | | 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 | ** k: The total number of sibling pages ** szNew[i]: Spaced used on the i-th sibling page. ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to ** the right of the i-th sibling page. ** usableSpace: Number of bytes of space available on each sibling. ** */ usableSpace = pBt->usableSize - 12 + leafCorrection; for(subtotal=k=i=0; i<nCell; i++){ subtotal += szCell[i] + 2; if( subtotal > usableSpace ){ szNew[k] = subtotal - szCell[i]; cntNew[k] = i; if( leafData ){ i--; } subtotal = 0; k++; } |
︙ | ︙ | |||
3120 3121 3122 3123 3124 3125 3126 | int szRight = szNew[i]; /* Size of sibling on the right */ int szLeft = szNew[i-1]; /* Size of sibling on the left */ int r; /* Index of right-most cell in left sibling */ int d; /* Index of first cell to the left of right sibling */ r = cntNew[i-1] - 1; d = r + 1 - leafData; | | | | | 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 | int szRight = szNew[i]; /* Size of sibling on the right */ int szLeft = szNew[i-1]; /* Size of sibling on the left */ int r; /* Index of right-most cell in left sibling */ int d; /* Index of first cell to the left of right sibling */ r = cntNew[i-1] - 1; d = r + 1 - leafData; while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){ szRight += szCell[d] + 2; szLeft -= szCell[r] + 2; cntNew[i-1]--; r = cntNew[i-1] - 1; d = r + 1 - leafData; } szNew[i] = szRight; szNew[i-1] = szLeft; } |
︙ | ︙ | |||
3215 3216 3217 3218 3219 3220 3221 | ** Evenly distribute the data in apCell[] across the new pages. ** Insert divider cells into pParent as necessary. */ j = 0; for(i=0; i<nNew; i++){ MemPage *pNew = apNew[i]; assert( pNew->pgno==pgnoNew[i] ); | < < | | | | | | | | | 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 | ** Evenly distribute the data in apCell[] across the new pages. ** Insert divider cells into pParent as necessary. */ j = 0; for(i=0; i<nNew; i++){ MemPage *pNew = apNew[i]; assert( pNew->pgno==pgnoNew[i] ); assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]); j = cntNew[i]; assert( pNew->nCell>0 ); assert( pNew->nOverflow==0 ); if( i<nNew-1 && j<nCell ){ u8 *pCell; u8 *pTemp; int sz; pCell = apCell[j]; sz = szCell[j] + leafCorrection; if( !pNew->leaf ){ memcpy(&pNew->aData[8], pCell, 4); pTemp = 0; }else if( leafData ){ CellInfo info; j--; parseCellPtr(pNew, apCell[j], &info); pCell = &aSpace[iSpace]; fillInCell(pParent, pCell, 0, info.nKey, 0, 0, &sz); iSpace += sz; assert( iSpace<=sizeof(aSpace) ); pTemp = 0; }else{ pCell -= 4; pTemp = &aSpace[iSpace]; iSpace += sz; assert( iSpace<=sizeof(aSpace) ); } insertCell(pParent, nxDiv, pCell, sz, pTemp); put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno); j++; nxDiv++; } } assert( j==nCell ); if( (pageFlags & PTF_LEAF)==0 ){ memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4); } if( nxDiv==pParent->nCell+pParent->nOverflow ){ /* Right-most sibling is the right-most child of pParent */ put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]); }else{ /* Right-most sibling is the left child of the first entry in pParent ** past the right-most divider entry */ put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]); } /* ** Reparent children of all cells. */ for(i=0; i<nNew; i++){ reparentChildPages(apNew[i]); |
︙ | ︙ | |||
3288 3289 3290 3291 3292 3293 3294 | /* ** Cleanup before returning. */ balance_cleanup: for(i=0; i<nOld; i++){ releasePage(apOld[i]); | < < < < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 | /* ** Cleanup before returning. */ balance_cleanup: for(i=0; i<nOld; i++){ releasePage(apOld[i]); } for(i=0; i<nNew; i++){ releasePage(apNew[i]); } releasePage(pParent); TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n", pPage->pgno, nOld, nNew, nCell)); return rc; } /* ** This routine is called for the root page of a btree when the root ** page contains no cells. This is an opportunity to make the tree ** shallower by one level. */ static int balance_shallower(MemPage *pPage){ MemPage *pChild; /* The only child page of pPage */ Pgno pgnoChild; /* Page number for pChild */ int rc; /* Return code from subprocedures */ u8 *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */ int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */ assert( pPage->pParent==0 ); assert( pPage->nCell==0 ); if( pPage->leaf ){ /* The table is completely empty */ TRACE(("BALANCE: empty table %d\n", pPage->pgno)); }else{ /* The root page is empty but has one child. Transfer the ** information from that one child into the root page if it ** will fit. This reduces the depth of the tree by one. ** ** If the root page is page 1, it has less space available than ** its child (due to the 100 byte header that occurs at the beginning ** of the database fle), so it might not be able to hold all of the ** information currently contained in the child. If this is the ** case, then do not do the transfer. Leave page 1 empty except ** for the right-pointer to the child page. The child page becomes ** the virtual root of the tree. */ pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]); assert( pgnoChild>0 ); assert( pgnoChild<=sqlite3pager_pagecount(pPage->pBt->pPager) ); rc = getPage(pPage->pBt, pgnoChild, &pChild); if( rc ) return rc; if( pPage->pgno==1 ){ rc = initPage(pChild, pPage); if( rc ) return rc; assert( pChild->nOverflow==0 ); if( pChild->nFree>=100 ){ /* The child information will fit on the root page, so do the ** copy */ int i; zeroPage(pPage, pChild->aData[0]); for(i=0; i<pChild->nCell; i++){ apCell[i] = findCell(pChild,i); szCell[i] = cellSizePtr(pChild, apCell[i]); } assemblePage(pPage, pChild->nCell, apCell, szCell); freePage(pChild); TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno)); }else{ /* The child has more information that will fit on the root. ** The tree is already balanced. Do nothing. */ TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno)); } }else{ memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize); pPage->isInit = 0; pPage->pParent = 0; rc = initPage(pPage, 0); assert( rc==SQLITE_OK ); freePage(pChild); TRACE(("BALANCE: transfer child %d into root %d\n", pChild->pgno, pPage->pgno)); } reparentChildPages(pPage); releasePage(pChild); } return SQLITE_OK; } /* ** The root page is overfull ** ** When this happens, Create a new child page and copy the ** contents of the root into the child. Then make the root ** page an empty page with rightChild pointing to the new ** child. Finally, call balance_internal() on the new child ** to cause it to split. */ static int balance_deeper(MemPage *pPage){ int rc; /* Return value from subprocedures */ MemPage *pChild; /* Pointer to a new child page */ Pgno pgnoChild; /* Page number of the new child page */ Btree *pBt; /* The BTree */ int usableSize; /* Total usable size of a page */ u8 *data; /* Content of the parent page */ u8 *cdata; /* Content of the child page */ int hdr; /* Offset to page header in parent */ int brk; /* Offset to content of first cell in parent */ assert( pPage->pParent==0 ); assert( pPage->nOverflow>0 ); pBt = pPage->pBt; rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno); if( rc ) return rc; assert( sqlite3pager_iswriteable(pChild->aData) ); usableSize = pBt->usableSize; data = pPage->aData; hdr = pPage->hdrOffset; brk = get2byte(&data[hdr+5]); cdata = pChild->aData; memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr); memcpy(&cdata[brk], &data[brk], usableSize-brk); rc = initPage(pChild, pPage); if( rc ) return rc; memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0])); pChild->nOverflow = pPage->nOverflow; if( pChild->nOverflow ){ pChild->nFree = 0; } assert( pChild->nCell==pPage->nCell ); zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF); put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild); TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno)); rc = balance_nonroot(pChild); releasePage(pChild); return rc; } /* ** Decide if the page pPage needs to be balanced. If balancing is ** required, call the appropriate balancing routine. */ static int balance(MemPage *pPage){ int rc = SQLITE_OK; if( pPage->pParent==0 ){ if( pPage->nOverflow>0 ){ rc = balance_deeper(pPage); } if( pPage->nCell==0 ){ rc = balance_shallower(pPage); } }else{ if( pPage->nOverflow>0 || pPage->nFree>pPage->pBt->usableSize*2/3 ){ rc = balance_nonroot(pPage); } } return rc; } /* ** This routine checks all cursors that point to the same table ** as pCur points to. If any of those cursors were opened with ** wrFlag==0 then this routine returns SQLITE_LOCKED. If all ** cursors point to the same table were opened with wrFlag==1 ** then this routine returns SQLITE_OK. |
︙ | ︙ | |||
3381 3382 3383 3384 3385 3386 3387 | pCur->pgnoRoot, nKey, nData, pPage->pgno, loc==0 ? "overwrite" : "new entry")); assert( pPage->isInit ); rc = sqlite3pager_write(pPage->aData); if( rc ) return rc; rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew); if( rc ) return rc; | | | | | | 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 | pCur->pgnoRoot, nKey, nData, pPage->pgno, loc==0 ? "overwrite" : "new entry")); assert( pPage->isInit ); rc = sqlite3pager_write(pPage->aData); if( rc ) return rc; rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew); if( rc ) return rc; assert( szNew==cellSizePtr(pPage, newCell) ); assert( szNew<=sizeof(newCell) ); if( loc==0 && pCur->isValid ){ int szOld; assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); oldCell = findCell(pPage, pCur->idx); if( !pPage->leaf ){ memcpy(newCell, oldCell, 4); } szOld = cellSizePtr(pPage, oldCell); rc = clearCell(pPage, oldCell); if( rc ) return rc; dropCell(pPage, pCur->idx, szOld); }else if( loc<0 && pPage->nCell>0 ){ assert( pPage->leaf ); pCur->idx++; pCur->infoValid = 0; |
︙ | ︙ | |||
3440 3441 3442 3443 3444 3445 3446 | return SQLITE_PERM; /* Did not open this cursor for writing */ } if( checkReadLocks(pCur) ){ return SQLITE_LOCKED; /* The table pCur points to has a read lock */ } rc = sqlite3pager_write(pPage->aData); if( rc ) return rc; | | | | 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 | return SQLITE_PERM; /* Did not open this cursor for writing */ } if( checkReadLocks(pCur) ){ return SQLITE_LOCKED; /* The table pCur points to has a read lock */ } rc = sqlite3pager_write(pPage->aData); if( rc ) return rc; pCell = findCell(pPage, pCur->idx); if( !pPage->leaf ){ pgnoChild = get4byte(pCell); } clearCell(pPage, pCell); if( !pPage->leaf ){ /* ** The entry we are about to delete is not a leaf so if we do not ** do something we will leave a hole on an internal page. ** We have to fill the hole by moving in a cell from a leaf. The |
︙ | ︙ | |||
3469 3470 3471 3472 3473 3474 3475 | if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT; return rc; } rc = sqlite3pager_write(leafCur.pPage->aData); if( rc ) return rc; TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n", pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno)); | | | | | | | 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 | if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT; return rc; } rc = sqlite3pager_write(leafCur.pPage->aData); if( rc ) return rc; TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n", pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno)); dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell)); pNext = findCell(leafCur.pPage, leafCur.idx); szNext = cellSizePtr(leafCur.pPage, pNext); assert( sizeof(tempCell)>=szNext+4 ); insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell); put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild); rc = balance(pPage); if( rc ) return rc; dropCell(leafCur.pPage, leafCur.idx, szNext); rc = balance(leafCur.pPage); releaseTempCursor(&leafCur); }else{ TRACE(("DELETE: table=%d delete from leaf %d\n", pCur->pgnoRoot, pPage->pgno)); dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell)); rc = balance(pPage); } moveToRoot(pCur); return rc; } /* |
︙ | ︙ | |||
3541 3542 3543 3544 3545 3546 3547 | int i; rc = getAndInitPage(pBt, pgno, &pPage, pParent); if( rc ) return rc; rc = sqlite3pager_write(pPage->aData); if( rc ) return rc; for(i=0; i<pPage->nCell; i++){ | | | | | 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 | int i; rc = getAndInitPage(pBt, pgno, &pPage, pParent); if( rc ) return rc; rc = sqlite3pager_write(pPage->aData); if( rc ) return rc; for(i=0; i<pPage->nCell; i++){ pCell = findCell(pPage, i); if( !pPage->leaf ){ rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1); if( rc ) return rc; } rc = clearCell(pPage, pCell); if( rc ) return rc; } if( !pPage->leaf ){ rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1); if( rc ) return rc; } if( freePageFlag ){ rc = freePage(pPage); }else{ zeroPage(pPage, pPage->aData[0] | PTF_LEAF); } |
︙ | ︙ | |||
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 | int sqlite3BtreePageDump(Btree *pBt, int pgno, int recursive){ int rc; MemPage *pPage; int i, j, c; int nFree; u16 idx; int hdr; unsigned char *data; char range[20]; unsigned char payload[20]; rc = getPage(pBt, (Pgno)pgno, &pPage); if( rc ){ return rc; } hdr = pPage->hdrOffset; data = pPage->aData; c = data[hdr]; pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0; pPage->zeroData = (c & PTF_ZERODATA)!=0; pPage->leafData = (c & PTF_LEAFDATA)!=0; pPage->leaf = (c & PTF_LEAF)!=0; pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData)); printf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno, | > > | < | | | > > | | | | < < | < < < < < < | | < | | | | 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 | int sqlite3BtreePageDump(Btree *pBt, int pgno, int recursive){ int rc; MemPage *pPage; int i, j, c; int nFree; u16 idx; int hdr; int nCell; unsigned char *data; char range[20]; unsigned char payload[20]; rc = getPage(pBt, (Pgno)pgno, &pPage); if( rc ){ return rc; } hdr = pPage->hdrOffset; data = pPage->aData; c = data[hdr]; pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0; pPage->zeroData = (c & PTF_ZERODATA)!=0; pPage->leafData = (c & PTF_LEAFDATA)!=0; pPage->leaf = (c & PTF_LEAF)!=0; pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData)); nCell = get2byte(&data[hdr+3]); printf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno, data[hdr], data[hdr+7], (pPage->isInit && pPage->pParent) ? pPage->pParent->pgno : 0); assert( hdr == (pgno==1 ? 100 : 0) ); idx = hdr + 12 - pPage->leaf*4; for(i=0; i<nCell; i++){ CellInfo info; Pgno child; unsigned char *pCell; int sz; int addr; addr = get2byte(&data[idx + 2*i]); pCell = &data[addr]; parseCellPtr(pPage, pCell, &info); sz = info.nSize; sprintf(range,"%d..%d", addr, addr+sz-1); if( pPage->leaf ){ child = 0; }else{ child = get4byte(pCell); } sz = info.nData; if( !pPage->intKey ) sz += info.nKey; if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1; memcpy(payload, &pCell[info.nHeader], sz); for(j=0; j<sz; j++){ if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.'; } payload[sz] = 0; printf( "cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4d payload=%s\n", i, range, child, info.nKey, info.nData, payload ); } if( !pPage->leaf ){ printf("right_child: %d\n", get4byte(&data[hdr+8])); } nFree = 0; i = 0; idx = get2byte(&data[hdr+1]); while( idx>0 && idx<pPage->pBt->usableSize ){ int sz = get2byte(&data[idx+2]); sprintf(range,"%d..%d", idx, idx+sz-1); nFree += sz; printf("freeblock %2d: i=%-10s size=%-4d total=%d\n", i, range, sz, nFree); idx = get2byte(&data[idx]); i++; } if( idx!=0 ){ printf("ERROR: next freeblock index out of range: %d\n", idx); } if( recursive && !pPage->leaf ){ for(i=0; i<nCell; i++){ unsigned char *pCell = findCell(pPage, i); sqlite3BtreePageDump(pBt, get4byte(pCell), 1); idx = get2byte(pCell); } sqlite3BtreePageDump(pBt, get4byte(&data[hdr+8]), 1); } sqlite3pager_unref(data); fflush(stdout); return SQLITE_OK; } #endif |
︙ | ︙ | |||
3810 3811 3812 3813 3814 3815 3816 | pageIntegrity(pPage); assert( pPage->isInit ); aResult[0] = sqlite3pager_pagenumber(pPage->aData); assert( aResult[0]==pPage->pgno ); aResult[1] = pCur->idx; aResult[2] = pPage->nCell; if( pCur->idx>=0 && pCur->idx<pPage->nCell ){ | > | | | | 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 | pageIntegrity(pPage); assert( pPage->isInit ); aResult[0] = sqlite3pager_pagenumber(pPage->aData); assert( aResult[0]==pPage->pgno ); aResult[1] = pCur->idx; aResult[2] = pPage->nCell; if( pCur->idx>=0 && pCur->idx<pPage->nCell ){ u8 *pCell = findCell(pPage, pCur->idx); aResult[3] = cellSizePtr(pPage, pCell); aResult[6] = pPage->leaf ? 0 : get4byte(pCell); }else{ aResult[3] = 0; aResult[6] = 0; } aResult[4] = pPage->nFree; cnt = 0; idx = get2byte(&pPage->aData[pPage->hdrOffset+1]); while( idx>0 && idx<pPage->pBt->usableSize ){ cnt++; idx = get2byte(&pPage->aData[idx]); } aResult[5] = cnt; aResult[7] = pPage->leaf ? 0 : get4byte(&pPage->aData[pPage->hdrOffset+8]); return SQLITE_OK; } #endif /* ** Return the pager associated with a BTree. This routine is used for ** testing and debugging only. |
︙ | ︙ | |||
3960 3961 3962 3963 3964 3965 3966 | char *zLowerBound, /* All keys should be greater than this, if not NULL */ int nLower, /* Number of characters in zLowerBound */ char *zUpperBound, /* All keys should be less than this, if not NULL */ int nUpper /* Number of characters in zUpperBound */ ){ MemPage *pPage; int i, rc, depth, d2, pgno, cnt; | | > | 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 | char *zLowerBound, /* All keys should be greater than this, if not NULL */ int nLower, /* Number of characters in zLowerBound */ char *zUpperBound, /* All keys should be less than this, if not NULL */ int nUpper /* Number of characters in zUpperBound */ ){ MemPage *pPage; int i, rc, depth, d2, pgno, cnt; int hdr, cellStart; int nCell; u8 *data; BtCursor cur; Btree *pBt; int maxLocal, usableSize; char zMsg[100]; char zContext[100]; char hit[MX_PAGE_SIZE]; |
︙ | ︙ | |||
4000 4001 4002 4003 4004 4005 4006 | u8 *pCell; int sz; CellInfo info; /* Check payload overflow pages */ sprintf(zContext, "On tree page %d cell %d: ", iPage, i); | | | | | < < > > | > > > | | < | | | 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 | u8 *pCell; int sz; CellInfo info; /* Check payload overflow pages */ sprintf(zContext, "On tree page %d cell %d: ", iPage, i); pCell = findCell(pPage,i); parseCellPtr(pPage, pCell, &info); sz = info.nData; if( !pPage->intKey ) sz += info.nKey; if( sz>info.nLocal ){ int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); checkList(pCheck, 0, get4byte(&pCell[info.iOverflow]),nPage,zContext); } /* Check sanity of left child page. */ if( !pPage->leaf ){ pgno = get4byte(pCell); d2 = checkTreePage(pCheck,pgno,pPage,zContext,0,0,0,0); if( i>0 && d2!=depth ){ checkAppendMsg(pCheck, zContext, "Child page depth differs"); } depth = d2; } } if( !pPage->leaf ){ pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); sprintf(zContext, "On page %d at right child: ", iPage); checkTreePage(pCheck, pgno, pPage, zContext,0,0,0,0); } /* Check for complete coverage of the page */ data = pPage->aData; hdr = pPage->hdrOffset; memset(hit, 0, usableSize); memset(hit, 1, get2byte(&data[hdr+5])); nCell = get2byte(&data[hdr+3]); cellStart = hdr + 12 - 4*pPage->leaf; for(i=0; i<nCell; i++){ int pc = get2byte(&data[cellStart+i*2]); int size = cellSizePtr(pPage, &data[pc]); int j; for(j=pc+size-1; j>=pc; j--) hit[j]++; } for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; cnt++){ int size = get2byte(&data[i+2]); int j; for(j=i+size-1; j>=i; j--) hit[j]++; i = get2byte(&data[i]); } for(i=cnt=0; i<usableSize; i++){ if( hit[i]==0 ){ cnt++; }else if( hit[i]>1 ){ sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage); checkAppendMsg(pCheck, zMsg, 0); break; } } if( cnt!=data[hdr+7] ){ sprintf(zMsg, "Fragmented space is %d byte reported as %d on page %d", cnt, data[hdr+7], iPage); checkAppendMsg(pCheck, zMsg, 0); } releasePage(pPage); return depth+1; } |
︙ | ︙ | |||
4146 4147 4148 4149 4150 4151 4152 | } /* ** Copy the complete content of pBtFrom into pBtTo. A transaction ** must be active for both files. ** ** The size of file pBtFrom may be reduced by this operation. | | | 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 | } /* ** Copy the complete content of pBtFrom into pBtTo. A transaction ** must be active for both files. ** ** The size of file pBtFrom may be reduced by this operation. ** If anything goes wrong, the transaction on pBtFrom is rolled back. */ int sqlite3BtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){ int rc = SQLITE_OK; Pgno i, nPage, nToPage; if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR; if( pBtTo->pCursor ) return SQLITE_BUSY; |
︙ | ︙ |