SQLite

Check-in [ca69f36832]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Allow an unlimited number of terms in the WHERE clause. The old limit was 100. (CVS 2550)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: ca69f36832d57775e73ac5cdbe0a32d7b759432b
User & Date: drh 2005-07-16 13:33:21.000
Context
2005-07-19
17:38
Refactoring of the query optimizer in advance of adding better optimization. (CVS 2551) (check-in: 57c6bd3760 user: drh tags: trunk)
2005-07-16
13:33
Allow an unlimited number of terms in the WHERE clause. The old limit was 100. (CVS 2550) (check-in: ca69f36832 user: drh tags: trunk)
2005-07-15
23:24
Fix bugs in the new query plan instrumention logic. (CVS 2549) (check-in: 578490c913 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/where.c.
12
13
14
15
16
17
18
19
20
21











22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77
78


















79
80
81
82
83
84
85
86
87
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.144 2005/07/15 23:24:24 drh Exp $
*/
#include "sqliteInt.h"












/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
** clause subexpression is separated from the others by an AND operator.
**
** The idxLeft and idxRight fields are the VDBE cursor numbers for the
** table that contains the column that appears on the left-hand and
** right-hand side of ExprInfo.p.  If either side of ExprInfo.p is
** something other than a simple column reference, then idxLeft or
** idxRight are -1.  
**
** It is the VDBE cursor number is the value stored in Expr.iTable
** when Expr.op==TK_COLUMN and the value stored in SrcList.a[].iCursor.
**
** prereqLeft, prereqRight, and prereqAll record sets of cursor numbers,
** but they do so indirectly.  A single ExprMaskSet structure translates
** cursor number into bits and the translated bit is stored in the prereq
** fields.  The translation is used in order to maximize the number of
** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
** spread out over the non-negative integers.  For example, the cursor
** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
** translates these sparse cursor numbers into consecutive integers
** beginning with 0 in order to make the best possible use of the available
** bits in the Bitmask.  So, in the example above, the cursor numbers
** would be mapped into integers 0 through 7.
**
** prereqLeft tells us every VDBE cursor that is referenced on the
** left-hand side of ExprInfo.p.  prereqRight does the same for the
** right-hand side of the expression.  The following identity always
** holds:
**
**       prereqAll = prereqLeft | prereqRight
**
** The ExprInfo.indexable field is true if the ExprInfo.p expression
** is of a form that might control an index.  Indexable expressions
** look like this:
**
**              <column> <op> <expr>
**
** Where <column> is a simple column name and <op> is on of the operators
** that allowedOp() recognizes.  
*/
typedef struct ExprInfo ExprInfo;
struct ExprInfo {
  Expr *p;                /* Pointer to the subexpression */

  u8 indexable;           /* True if this subexprssion is usable by an index */
  short int idxLeft;      /* p->pLeft is a column in this table number. -1 if
                          ** p->pLeft is not the column of any table */
  short int idxRight;     /* p->pRight is a column in this table number. -1 if
                          ** p->pRight is not the column of any table */
  Bitmask prereqLeft;     /* Bitmask of tables referenced by p->pLeft */
  Bitmask prereqRight;    /* Bitmask of tables referenced by p->pRight */
  Bitmask prereqAll;      /* Bitmask of tables referenced by p */
};

/*


















** An instance of the following structure keeps track of a mapping
** between VDBE cursor numbers and bits of the bitmasks in ExprInfo.
**
** The VDBE cursor numbers are small integers contained in 
** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE 
** clause, the cursor numbers might not begin with 0 and they might
** contain gaps in the numbering sequence.  But we want to make maximum
** use of the bits in our bitmasks.  This structure provides a mapping
** from the sparse cursor numbers into consecutive integers beginning







|


>
>
>
>
>
>
>
>
>
>
>








|



















|





|








|
|

>


|

|






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.145 2005/07/16 13:33:21 drh Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8-1)

/*
** Determine the number of elements in an array.
*/
#define ARRAYSIZE(X)  (sizeof(X)/sizeof(X[0]))


/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
** clause subexpression is separated from the others by an AND operator.
**
** The idxLeft and idxRight fields are the VDBE cursor numbers for the
** table that contains the column that appears on the left-hand and
** right-hand side of WhereTerm.p.  If either side of WhereTerm.p is
** something other than a simple column reference, then idxLeft or
** idxRight are -1.  
**
** It is the VDBE cursor number is the value stored in Expr.iTable
** when Expr.op==TK_COLUMN and the value stored in SrcList.a[].iCursor.
**
** prereqLeft, prereqRight, and prereqAll record sets of cursor numbers,
** but they do so indirectly.  A single ExprMaskSet structure translates
** cursor number into bits and the translated bit is stored in the prereq
** fields.  The translation is used in order to maximize the number of
** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
** spread out over the non-negative integers.  For example, the cursor
** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
** translates these sparse cursor numbers into consecutive integers
** beginning with 0 in order to make the best possible use of the available
** bits in the Bitmask.  So, in the example above, the cursor numbers
** would be mapped into integers 0 through 7.
**
** prereqLeft tells us every VDBE cursor that is referenced on the
** left-hand side of WhereTerm.p.  prereqRight does the same for the
** right-hand side of the expression.  The following identity always
** holds:
**
**       prereqAll = prereqLeft | prereqRight
**
** The WhereTerm.indexable field is true if the WhereTerm.p expression
** is of a form that might control an index.  Indexable expressions
** look like this:
**
**              <column> <op> <expr>
**
** Where <column> is a simple column name and <op> is on of the operators
** that allowedOp() recognizes.  
*/
typedef struct WhereTerm WhereTerm;
struct WhereTerm {
  Expr *p;                /* Pointer to the subexpression */
  u16 flags;              /* Bit flags.  See below */
  u8 indexable;           /* True if this subexprssion is usable by an index */
  short int idxLeft;      /* p->pLeft is a column in this table number. -1 if
                          ** p->pLeft is not a column of any table */
  short int idxRight;     /* p->pRight is a column in this table number. -1 if
                          ** p->pRight is not a column of any table */
  Bitmask prereqLeft;     /* Bitmask of tables referenced by p->pLeft */
  Bitmask prereqRight;    /* Bitmask of tables referenced by p->pRight */
  Bitmask prereqAll;      /* Bitmask of tables referenced by p */
};

/*
** Allowed values of WhereTerm.flags
*/
#define TERM_DYNAMIC    0x0001   /* Need to call sqlite3ExprDelete(p) */
#define TERM_VIRTUAL    0x0002   /* Added by the optimizer.  Do not code */

/*
** An instance of the following structure holds all information about a
** WHERE clause.  Mostly this is a container for one or more WhereTerms.
*/
typedef struct WhereClause WhereClause;
struct WhereClause {
  int nTerm;               /* Number of terms */
  int nSlot;               /* Number of entries in a[] */
  WhereTerm *a;            /* Pointer to an array of terms */
  WhereTerm aStatic[10];   /* Initial static space for the terms */
};

/*
** An instance of the following structure keeps track of a mapping
** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
**
** The VDBE cursor numbers are small integers contained in 
** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE 
** clause, the cursor numbers might not begin with 0 and they might
** contain gaps in the numbering sequence.  But we want to make maximum
** use of the bits in our bitmasks.  This structure provides a mapping
** from the sparse cursor numbers into consecutive integers beginning
103
104
105
106
107
108
109

110







111



112












113




















114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
*/
typedef struct ExprMaskSet ExprMaskSet;
struct ExprMaskSet {
  int n;                        /* Number of assigned cursor values */
  int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
};


/*







** Determine the number of elements in an array.



*/












#define ARRAYSIZE(X)  (sizeof(X)/sizeof(X[0]))





















/*
** This routine identifies subexpressions in the WHERE clause where
** each subexpression is separate by the AND operator.  aSlot is 
** filled with pointers to the subexpressions.  For example:
**
**    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
**           \________/     \_______________/     \________________/
**            slot[0]            slot[1]               slot[2]
**
** The original WHERE clause in pExpr is unaltered.  All this routine
** does is make aSlot[] entries point to substructure within pExpr.
**
** aSlot[] is an array of subexpressions structures.  There are nSlot
** spaces left in this array.  This routine finds as many AND-separated
** subexpressions as it can and puts pointers to those subexpressions
** into aSlot[] entries.  The return value is the number of slots filled.
*/
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
  int cnt = 0;
  if( pExpr==0 || nSlot<1 ) return 0;
  if( nSlot==1 || pExpr->op!=TK_AND ){
    aSlot[0].p = pExpr;
    return 1;
  }
  if( pExpr->pLeft->op!=TK_AND ){
    aSlot[0].p = pExpr->pLeft;
    cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
  }else{
    cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
    cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
  }
  return cnt;
}

/*
** Initialize an expression mask set
*/
#define initMaskSet(P)  memset(P, 0, sizeof(*P))








>

>
>
>
>
>
>
>
|
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


















|
<
|
|
|
<
<
<
<
<

|
|

<







133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

206
207
208





209
210
211
212

213
214
215
216
217
218
219
*/
typedef struct ExprMaskSet ExprMaskSet;
struct ExprMaskSet {
  int n;                        /* Number of assigned cursor values */
  int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
};


/*
** Initialize a preallocated WhereClause structure.
*/
static void whereClauseInit(WhereClause *pWC){
  pWC->nTerm = 0;
  pWC->nSlot = ARRAYSIZE(pWC->aStatic);
  pWC->a = pWC->aStatic;
}

/*
** Deallocate a WhereClause structure.  The WhereClause structure
** itself is not freed.  This routine is the inverse of whereClauseInit().
*/
static void whereClauseClear(WhereClause *pWC){
  int i;
  WhereTerm *a;
  for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
    if( a->flags & TERM_DYNAMIC ){
      sqlite3ExprDelete(a->p);
    }
  }
  if( pWC->a!=pWC->aStatic ){
    sqliteFree(pWC->a);
  }
}

/*
** Add a new entries to the WhereClause structure.  Increase the allocated
** space as necessary.
*/
static void whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
  WhereTerm *pTerm;
  if( pWC->nTerm>=pWC->nSlot ){
    WhereTerm *pOld = pWC->a;
    pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
    if( pWC->a==0 ) return;
    memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
    if( pOld!=pWC->aStatic ){
      sqliteFree(pOld);
    }
    pWC->nSlot *= 2;
  }
  pTerm = &pWC->a[pWC->nTerm++];
  pTerm->p = p;
  pTerm->flags = flags;
}

/*
** This routine identifies subexpressions in the WHERE clause where
** each subexpression is separate by the AND operator.  aSlot is 
** filled with pointers to the subexpressions.  For example:
**
**    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
**           \________/     \_______________/     \________________/
**            slot[0]            slot[1]               slot[2]
**
** The original WHERE clause in pExpr is unaltered.  All this routine
** does is make aSlot[] entries point to substructure within pExpr.
**
** aSlot[] is an array of subexpressions structures.  There are nSlot
** spaces left in this array.  This routine finds as many AND-separated
** subexpressions as it can and puts pointers to those subexpressions
** into aSlot[] entries.  The return value is the number of slots filled.
*/
static void whereSplit(WhereClause *pWC, Expr *pExpr){

  if( pExpr==0 ) return;
  if( pExpr->op!=TK_AND ){
    whereClauseInsert(pWC, pExpr, 0);





  }else{
    whereSplit(pWC, pExpr->pLeft);
    whereSplit(pWC, pExpr->pRight);
  }

}

/*
** Initialize an expression mask set
*/
#define initMaskSet(P)  memset(P, 0, sizeof(*P))

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
  for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
    if( pItem->iCursor==iCur ) return i;
  }
  return -1;
}

/*
** The input to this routine is an ExprInfo structure with only the
** "p" field filled in.  The job of this routine is to analyze the
** subexpression and populate all the other fields of the ExprInfo
** structure.
*/
static void exprAnalyze(SrcList *pSrc, ExprMaskSet *pMaskSet, ExprInfo *pInfo){
  Expr *pExpr = pInfo->p;
  pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
  pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
  pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
  pInfo->indexable = 0;
  pInfo->idxLeft = -1;
  pInfo->idxRight = -1;







|

|


|







319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
  for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
    if( pItem->iCursor==iCur ) return i;
  }
  return -1;
}

/*
** The input to this routine is an WhereTerm structure with only the
** "p" field filled in.  The job of this routine is to analyze the
** subexpression and populate all the other fields of the WhereTerm
** structure.
*/
static void exprAnalyze(SrcList *pSrc, ExprMaskSet *pMaskSet, WhereTerm *pInfo){
  Expr *pExpr = pInfo->p;
  pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
  pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
  pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
  pInfo->indexable = 0;
  pInfo->idxLeft = -1;
  pInfo->idxRight = -1;
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

/*
** Generate code for an equality term of the WHERE clause.  An equality
** term can be either X=expr  or X IN (...).   pTerm is the X.  
*/
static void codeEqualityTerm(
  Parse *pParse,      /* The parsing context */
  ExprInfo *pTerm,    /* The term of the WHERE clause to be coded */
  int brk,            /* Jump here to abandon the loop */
  WhereLevel *pLevel  /* When level of the FROM clause we are working on */
){
  Expr *pX = pTerm->p;
  if( pX->op!=TK_IN ){
    assert( pX->op==TK_EQ );
    sqlite3ExprCode(pParse, pX->pRight);







|







543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

/*
** Generate code for an equality term of the WHERE clause.  An equality
** term can be either X=expr  or X IN (...).   pTerm is the X.  
*/
static void codeEqualityTerm(
  Parse *pParse,      /* The parsing context */
  WhereTerm *pTerm,    /* The term of the WHERE clause to be coded */
  int brk,            /* Jump here to abandon the loop */
  WhereLevel *pLevel  /* When level of the FROM clause we are working on */
){
  Expr *pX = pTerm->p;
  if( pX->op!=TK_IN ){
    assert( pX->op==TK_EQ );
    sqlite3ExprCode(pParse, pX->pRight);
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    pLevel->inOp = OP_Next;
    pLevel->inP1 = iTab;
#endif
  }
  disableTerm(pLevel, &pTerm->p);
}

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8-1)

#ifdef SQLITE_TEST
/*
** The following variable holds a text description of query plan generated
** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
** overwrites the previous.  This information is used for testing and
** analysis only.
*/







<
<
<
<
<







568
569
570
571
572
573
574





575
576
577
578
579
580
581
    pLevel->inOp = OP_Next;
    pLevel->inP1 = iTab;
#endif
  }
  disableTerm(pLevel, &pTerm->p);
}






#ifdef SQLITE_TEST
/*
** The following variable holds a text description of query plan generated
** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
** overwrites the previous.  This information is used for testing and
** analysis only.
*/
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
  Expr *pWhere,         /* The WHERE clause */
  ExprList **ppOrderBy  /* An ORDER BY clause, or NULL */
){
  int i;                     /* Loop counter */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
  int brk, cont = 0;         /* Addresses used during code generation */
  int nExpr;           /* Number of subexpressions in the WHERE clause */
  Bitmask loopMask;    /* One bit set for each outer loop */
  ExprInfo *pTerm;     /* A single term in the WHERE clause; ptr to aExpr[] */
  ExprMaskSet maskSet; /* The expression mask set */
  int iDirectEq[BMS];  /* Term of the form ROWID==X for the N-th table */
  int iDirectLt[BMS];  /* Term of the form ROWID<X or ROWID<=X */
  int iDirectGt[BMS];  /* Term of the form ROWID>X or ROWID>=X */
  ExprInfo aExpr[101]; /* The WHERE clause is divided into these terms */
  struct SrcList_item *pTabItem;  /* A single entry from pTabList */
  WhereLevel *pLevel;             /* A single level in the pWInfo list */

  /* The number of terms in the FROM clause is limited by the number of
  ** bits in a Bitmask 
  */
  if( pTabList->nSrc>sizeof(Bitmask)*8 ){
    sqlite3ErrorMsg(pParse, "at most %d tables in a join",
       sizeof(Bitmask)*8);
    return 0;
  }

  /* Split the WHERE clause into separate subexpressions where each
  ** subexpression is separated by an AND operator.  If the aExpr[]
  ** array fills up, the last entry might point to an expression which
  ** contains additional unfactored AND operators.
  */
  initMaskSet(&maskSet);
  memset(aExpr, 0, sizeof(aExpr));
  nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
  if( nExpr==ARRAYSIZE(aExpr) ){
    sqlite3ErrorMsg(pParse, "WHERE clause too complex - no more "
       "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
    return 0;
  }
    
  /* Allocate and initialize the WhereInfo structure that will become the
  ** return value.
  */
  pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
  if( sqlite3_malloc_failed ){
    sqliteFree(pWInfo); /* Avoid leaking memory when malloc fails */

    return 0;
  }
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);

  /* Special case: a WHERE clause that is constant.  Evaluate the
  ** expression and either jump over all of the code or fall thru.
  */
  if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
    sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
    pWhere = 0;
  }

  /* Analyze all of the subexpressions.
  */
  for(i=0; i<pTabList->nSrc; i++){
    createMask(&maskSet, pTabList->a[i].iCursor);
  }
  for(pTerm=aExpr, i=0; i<nExpr; i++, pTerm++){
    exprAnalyze(pTabList, &maskSet, pTerm);
  }

  /* Figure out what index to use (if any) for each nested loop.
  ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
  ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
  ** loop. 







<
|
|
|
|
|
|
|













|




|
|
<
<
<
<
<







>



















|







674
675
676
677
678
679
680

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707





708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
  Expr *pWhere,         /* The WHERE clause */
  ExprList **ppOrderBy  /* An ORDER BY clause, or NULL */
){
  int i;                     /* Loop counter */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
  int brk, cont = 0;         /* Addresses used during code generation */

  Bitmask loopMask;          /* One bit set for each outer loop */
  WhereTerm *pTerm;          /* A single term in the WHERE clause */
  ExprMaskSet maskSet;       /* The expression mask set */
  int iDirectEq[BMS];        /* Term of the form ROWID==X for the N-th table */
  int iDirectLt[BMS];        /* Term of the form ROWID<X or ROWID<=X */
  int iDirectGt[BMS];        /* Term of the form ROWID>X or ROWID>=X */
  WhereClause wc;            /* The WHERE clause is divided into these terms */
  struct SrcList_item *pTabItem;  /* A single entry from pTabList */
  WhereLevel *pLevel;             /* A single level in the pWInfo list */

  /* The number of terms in the FROM clause is limited by the number of
  ** bits in a Bitmask 
  */
  if( pTabList->nSrc>sizeof(Bitmask)*8 ){
    sqlite3ErrorMsg(pParse, "at most %d tables in a join",
       sizeof(Bitmask)*8);
    return 0;
  }

  /* Split the WHERE clause into separate subexpressions where each
  ** subexpression is separated by an AND operator.  If the wc.a[]
  ** array fills up, the last entry might point to an expression which
  ** contains additional unfactored AND operators.
  */
  initMaskSet(&maskSet);
  whereClauseInit(&wc);
  whereSplit(&wc, pWhere);





    
  /* Allocate and initialize the WhereInfo structure that will become the
  ** return value.
  */
  pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
  if( sqlite3_malloc_failed ){
    sqliteFree(pWInfo); /* Avoid leaking memory when malloc fails */
    whereClauseClear(&wc);
    return 0;
  }
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);

  /* Special case: a WHERE clause that is constant.  Evaluate the
  ** expression and either jump over all of the code or fall thru.
  */
  if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
    sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
    pWhere = 0;
  }

  /* Analyze all of the subexpressions.
  */
  for(i=0; i<pTabList->nSrc; i++){
    createMask(&maskSet, pTabList->a[i].iCursor);
  }
  for(pTerm=wc.a, i=0; i<wc.nTerm; i++, pTerm++){
    exprAnalyze(pTabList, &maskSet, pTerm);
  }

  /* Figure out what index to use (if any) for each nested loop.
  ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
  ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
  ** loop. 
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
    **
    ** (Added:) Treat ROWID IN expr like ROWID=expr.
    */
    pLevel->iIdxCur = -1;
    iDirectEq[i] = -1;
    iDirectLt[i] = -1;
    iDirectGt[i] = -1;
    for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
      Expr *pX = pTerm->p;
      if( pTerm->idxLeft==iCur && pX->pLeft->iColumn<0
            && (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
        switch( pX->op ){
          case TK_IN:
          case TK_EQ: iDirectEq[i] = j; break;
          case TK_LE:







|







773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
    **
    ** (Added:) Treat ROWID IN expr like ROWID=expr.
    */
    pLevel->iIdxCur = -1;
    iDirectEq[i] = -1;
    iDirectLt[i] = -1;
    iDirectGt[i] = -1;
    for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
      Expr *pX = pTerm->p;
      if( pTerm->idxLeft==iCur && pX->pLeft->iColumn<0
            && (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
        switch( pX->op ){
          case TK_IN:
          case TK_EQ: iDirectEq[i] = j; break;
          case TK_LE:
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
      Bitmask inMask = 0;  /* Index columns covered by an x IN .. term */
      Bitmask m;
      int nEq, score, bRev = 0;

      if( pIdx->nColumn>sizeof(eqMask)*8 ){
        continue;  /* Ignore indices with too many columns to analyze */
      }
      for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
        Expr *pX = pTerm->p;
        CollSeq *pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
        if( !pColl && pX->pRight ){
          pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
        }
        if( !pColl ){
          pColl = pParse->db->pDfltColl;







|







844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
      Bitmask inMask = 0;  /* Index columns covered by an x IN .. term */
      Bitmask m;
      int nEq, score, bRev = 0;

      if( pIdx->nColumn>sizeof(eqMask)*8 ){
        continue;  /* Ignore indices with too many columns to analyze */
      }
      for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
        Expr *pX = pTerm->p;
        CollSeq *pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
        if( !pColl && pX->pRight ){
          pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
        }
        if( !pColl ){
          pColl = pParse->db->pDfltColl;
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

    if( i<ARRAYSIZE(iDirectEq) && (k = iDirectEq[i])>=0 ){
      /* Case 1:  We can directly reference a single row using an
      **          equality comparison against the ROWID field.  Or
      **          we reference multiple rows using a "rowid IN (...)"
      **          construct.
      */
      assert( k<nExpr );
      pTerm = &aExpr[k];
      assert( pTerm->p!=0 );
      assert( pTerm->idxLeft==iCur );
      assert( omitTable==0 );
      brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
      codeEqualityTerm(pParse, pTerm, brk, pLevel);
      cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
      sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
      VdbeComment((v, "pk"));
      pLevel->op = OP_Noop;
    }else if( pIdx!=0 && pLevel->score>3 && (pLevel->score&0x0c)==0 ){
      /* Case 2:  There is an index and all terms of the WHERE clause that
      **          refer to the index using the "==" or "IN" operators.
      */
      int start;
      int nColumn = (pLevel->score+16)/32;
      brk = pLevel->brk = sqlite3VdbeMakeLabel(v);

      /* For each column of the index, find the term of the WHERE clause that
      ** constraints that column.  If the WHERE clause term is X=expr, then
      ** evaluation expr and leave the result on the stack */
      for(j=0; j<nColumn; j++){
        for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
          Expr *pX = pTerm->p;
          if( pX==0 ) continue;
          if( pTerm->idxLeft==iCur
             && (pTerm->prereqRight & loopMask)==pTerm->prereqRight 
             && pX->pLeft->iColumn==pIdx->aiColumn[j]
             && (pX->op==TK_EQ || pX->op==TK_IN)
          ){







|
|




















|

|







1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141

    if( i<ARRAYSIZE(iDirectEq) && (k = iDirectEq[i])>=0 ){
      /* Case 1:  We can directly reference a single row using an
      **          equality comparison against the ROWID field.  Or
      **          we reference multiple rows using a "rowid IN (...)"
      **          construct.
      */
      assert( k<wc.nTerm );
      pTerm = &wc.a[k];
      assert( pTerm->p!=0 );
      assert( pTerm->idxLeft==iCur );
      assert( omitTable==0 );
      brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
      codeEqualityTerm(pParse, pTerm, brk, pLevel);
      cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
      sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
      VdbeComment((v, "pk"));
      pLevel->op = OP_Noop;
    }else if( pIdx!=0 && pLevel->score>3 && (pLevel->score&0x0c)==0 ){
      /* Case 2:  There is an index and all terms of the WHERE clause that
      **          refer to the index using the "==" or "IN" operators.
      */
      int start;
      int nColumn = (pLevel->score+16)/32;
      brk = pLevel->brk = sqlite3VdbeMakeLabel(v);

      /* For each column of the index, find the term of the WHERE clause that
      ** constraints that column.  If the WHERE clause term is X=expr, then
      ** generate code to evaluate expr and leave the result on the stack */
      for(j=0; j<nColumn; j++){
        for(pTerm=wc.a, k=0; k<wc.nTerm; k++, pTerm++){
          Expr *pX = pTerm->p;
          if( pX==0 ) continue;
          if( pTerm->idxLeft==iCur
             && (pTerm->prereqRight & loopMask)==pTerm->prereqRight 
             && pX->pLeft->iColumn==pIdx->aiColumn[j]
             && (pX->op==TK_EQ || pX->op==TK_IN)
          ){
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
        int t = iDirectGt[i];
        iDirectGt[i] = iDirectLt[i];
        iDirectLt[i] = t;
      }
      if( iDirectGt[i]>=0 ){
        Expr *pX;
        k = iDirectGt[i];
        assert( k<nExpr );
        pTerm = &aExpr[k];
        pX = pTerm->p;
        assert( pX!=0 );
        assert( pTerm->idxLeft==iCur );
        sqlite3ExprCode(pParse, pX->pRight);
        sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
        sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
        VdbeComment((v, "pk"));
        disableTerm(pLevel, &pTerm->p);
      }else{
        sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
      }
      if( iDirectLt[i]>=0 ){
        Expr *pX;
        k = iDirectLt[i];
        assert( k<nExpr );
        pTerm = &aExpr[k];
        pX = pTerm->p;
        assert( pX!=0 );
        assert( pTerm->idxLeft==iCur );
        sqlite3ExprCode(pParse, pX->pRight);
        pLevel->iMem = pParse->nMem++;
        sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
        if( pX->op==TK_LT || pX->op==TK_GT ){







|
|














|
|







1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
        int t = iDirectGt[i];
        iDirectGt[i] = iDirectLt[i];
        iDirectLt[i] = t;
      }
      if( iDirectGt[i]>=0 ){
        Expr *pX;
        k = iDirectGt[i];
        assert( k<wc.nTerm );
        pTerm = &wc.a[k];
        pX = pTerm->p;
        assert( pX!=0 );
        assert( pTerm->idxLeft==iCur );
        sqlite3ExprCode(pParse, pX->pRight);
        sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
        sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
        VdbeComment((v, "pk"));
        disableTerm(pLevel, &pTerm->p);
      }else{
        sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
      }
      if( iDirectLt[i]>=0 ){
        Expr *pX;
        k = iDirectLt[i];
        assert( k<wc.nTerm );
        pTerm = &wc.a[k];
        pX = pTerm->p;
        assert( pX!=0 );
        assert( pTerm->idxLeft==iCur );
        sqlite3ExprCode(pParse, pX->pRight);
        pLevel->iMem = pParse->nMem++;
        sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
        if( pX->op==TK_LT || pX->op==TK_GT ){
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
      int leFlag=0, geFlag=0;
      int testOp;

      /* Evaluate the equality constraints
      */
      for(j=0; j<nEqColumn; j++){
        int iIdxCol = pIdx->aiColumn[j];
        for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
          Expr *pX = pTerm->p;
          if( pX==0 ) continue;
          if( pTerm->idxLeft==iCur
             && pX->op==TK_EQ
             && (pTerm->prereqRight & loopMask)==pTerm->prereqRight 
             && pX->pLeft->iColumn==iIdxCol
          ){







|







1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
      int leFlag=0, geFlag=0;
      int testOp;

      /* Evaluate the equality constraints
      */
      for(j=0; j<nEqColumn; j++){
        int iIdxCol = pIdx->aiColumn[j];
        for(pTerm=wc.a, k=0; k<wc.nTerm; k++, pTerm++){
          Expr *pX = pTerm->p;
          if( pX==0 ) continue;
          if( pTerm->idxLeft==iCur
             && pX->op==TK_EQ
             && (pTerm->prereqRight & loopMask)==pTerm->prereqRight 
             && pX->pLeft->iColumn==iIdxCol
          ){
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
      ** will end the search.  There is no termination key if there
      ** are no equality terms and no "X<..." term.
      **
      ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
      ** key computed here really ends up being the start key.
      */
      if( (score & 4)!=0 ){
        for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
          Expr *pX = pTerm->p;
          if( pX==0 ) continue;
          if( pTerm->idxLeft==iCur
             && (pX->op==TK_LT || pX->op==TK_LE)
             && (pTerm->prereqRight & loopMask)==pTerm->prereqRight 
             && pX->pLeft->iColumn==pIdx->aiColumn[j]
          ){







|







1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
      ** will end the search.  There is no termination key if there
      ** are no equality terms and no "X<..." term.
      **
      ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
      ** key computed here really ends up being the start key.
      */
      if( (score & 4)!=0 ){
        for(pTerm=wc.a, k=0; k<wc.nTerm; k++, pTerm++){
          Expr *pX = pTerm->p;
          if( pX==0 ) continue;
          if( pTerm->idxLeft==iCur
             && (pX->op==TK_LT || pX->op==TK_LE)
             && (pTerm->prereqRight & loopMask)==pTerm->prereqRight 
             && pX->pLeft->iColumn==pIdx->aiColumn[j]
          ){
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
      ** that case, generate a "Rewind" instruction in place of the
      ** start key search.
      **
      ** 2002-Dec-04: In the case of a reverse-order search, the so-called
      ** "start" key really ends up being used as the termination key.
      */
      if( (score & 8)!=0 ){
        for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
          Expr *pX = pTerm->p;
          if( pX==0 ) continue;
          if( pTerm->idxLeft==iCur
             && (pX->op==TK_GT || pX->op==TK_GE)
             && (pTerm->prereqRight & loopMask)==pTerm->prereqRight 
             && pX->pLeft->iColumn==pIdx->aiColumn[j]
          ){







|







1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
      ** that case, generate a "Rewind" instruction in place of the
      ** start key search.
      **
      ** 2002-Dec-04: In the case of a reverse-order search, the so-called
      ** "start" key really ends up being used as the termination key.
      */
      if( (score & 8)!=0 ){
        for(pTerm=wc.a, k=0; k<wc.nTerm; k++, pTerm++){
          Expr *pX = pTerm->p;
          if( pX==0 ) continue;
          if( pTerm->idxLeft==iCur
             && (pX->op==TK_GT || pX->op==TK_GE)
             && (pTerm->prereqRight & loopMask)==pTerm->prereqRight 
             && pX->pLeft->iColumn==pIdx->aiColumn[j]
          ){
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399

1400
1401
1402
1403
1404
1405
1406
      pLevel->p2 = start;
    }
    loopMask |= getMask(&maskSet, iCur);

    /* Insert code to test every subexpression that can be completely
    ** computed using the current set of tables.
    */
    for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
      Expr *pE = pTerm->p;
      if( pE==0 || ExprHasProperty(pE, EP_OptOnly) ) continue;
      if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
      if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
        continue;
      }
      sqlite3ExprIfFalse(pParse, pE, cont, 1);
      pTerm->p = 0;
    }
    brk = cont;

    /* For a LEFT OUTER JOIN, generate code that will record the fact that
    ** at least one row of the right table has matched the left table.  
    */
    if( pLevel->iLeftJoin ){
      pLevel->top = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
      sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
      VdbeComment((v, "# record LEFT JOIN hit"));
      for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
        Expr *pE = pTerm->p;
        if( pE==0 || ExprHasProperty(pE, EP_OptOnly) ) continue;
        if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
        sqlite3ExprIfFalse(pParse, pE, cont, 1);
        pTerm->p = 0;
      }
    }
  }
  pWInfo->iContinue = cont;
  freeMaskSet(&maskSet);

  return pWInfo;
}

/*
** Generate the end of the WHERE loop.  See comments on 
** sqlite3WhereBegin() for additional information.
*/







|



















|










>







1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
      pLevel->p2 = start;
    }
    loopMask |= getMask(&maskSet, iCur);

    /* Insert code to test every subexpression that can be completely
    ** computed using the current set of tables.
    */
    for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
      Expr *pE = pTerm->p;
      if( pE==0 || ExprHasProperty(pE, EP_OptOnly) ) continue;
      if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
      if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
        continue;
      }
      sqlite3ExprIfFalse(pParse, pE, cont, 1);
      pTerm->p = 0;
    }
    brk = cont;

    /* For a LEFT OUTER JOIN, generate code that will record the fact that
    ** at least one row of the right table has matched the left table.  
    */
    if( pLevel->iLeftJoin ){
      pLevel->top = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
      sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
      VdbeComment((v, "# record LEFT JOIN hit"));
      for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
        Expr *pE = pTerm->p;
        if( pE==0 || ExprHasProperty(pE, EP_OptOnly) ) continue;
        if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
        sqlite3ExprIfFalse(pParse, pE, cont, 1);
        pTerm->p = 0;
      }
    }
  }
  pWInfo->iContinue = cont;
  freeMaskSet(&maskSet);
  whereClauseClear(&wc);
  return pWInfo;
}

/*
** Generate the end of the WHERE loop.  See comments on 
** sqlite3WhereBegin() for additional information.
*/
Changes to test/misc1.test.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file implements tests for miscellanous features that were
# left out of other test files.
#
# $Id: misc1.test,v 1.34 2005/03/29 03:11:00 danielk1977 Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Mimic the SQLite 2 collation type NUMERIC.
db collate numeric numeric_collate
proc numeric_collate {lhs rhs} {







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file implements tests for miscellanous features that were
# left out of other test files.
#
# $Id: misc1.test,v 1.35 2005/07/16 13:33:21 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Mimic the SQLite 2 collation type NUMERIC.
db collate numeric numeric_collate
proc numeric_collate {lhs rhs} {
276
277
278
279
280
281
282




283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    SELECT * FROM t1;
  }
} {0 {a 1234567890123456789 b 1234567891123456789 c 1234567892123456789}}

# A WHERE clause is not allowed to contain more than 99 terms.  Check to
# make sure this limit is enforced.
#




do_test misc1-10.0 {
  execsql {SELECT count(*) FROM manycol}
} {9}
do_test misc1-10.1 {
  set ::where {WHERE x0>=0}
  for {set i 1} {$i<=99} {incr i} {
    append ::where " AND x$i<>0"
  }
  catchsql "SELECT count(*) FROM manycol $::where"
} {0 9}
do_test misc1-10.2 {
  catchsql "SELECT count(*) FROM manycol $::where AND rowid>0"
} {1 {WHERE clause too complex - no more than 100 terms allowed}}
do_test misc1-10.3 {
  regsub "x0>=0" $::where "x0=0" ::where
  catchsql "DELETE FROM manycol $::where"
} {0 {}}
do_test misc1-10.4 {
  execsql {SELECT count(*) FROM manycol}
} {8}
do_test misc1-10.5 {
  catchsql "DELETE FROM manycol $::where AND rowid>0"
} {1 {WHERE clause too complex - no more than 100 terms allowed}}
do_test misc1-10.6 {
  execsql {SELECT x1 FROM manycol WHERE x0=100}
} {101}
do_test misc1-10.7 {
  regsub "x0=0" $::where "x0=100" ::where
  catchsql "UPDATE manycol SET x1=x1+1 $::where"
} {0 {}}
do_test misc1-10.8 {
  execsql {SELECT x1 FROM manycol WHERE x0=100}
} {102}
do_test misc1-10.9 {
  catchsql "UPDATE manycol SET x1=x1+1 $::where AND rowid>0"
} {1 {WHERE clause too complex - no more than 100 terms allowed}}
do_test misc1-10.10 {
  execsql {SELECT x1 FROM manycol WHERE x0=100}
} {102}

# Make sure the initialization works even if a database is opened while
# another process has the database locked.
#
# Update for v3: The BEGIN doesn't lock the database so the schema is read
# and the SELECT returns successfully.
do_test misc1-11.1 {







>
>
>
>












|









|












|


|







276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    SELECT * FROM t1;
  }
} {0 {a 1234567890123456789 b 1234567891123456789 c 1234567892123456789}}

# A WHERE clause is not allowed to contain more than 99 terms.  Check to
# make sure this limit is enforced.
#
# 2005-07-16: There is no longer a limit on the number of terms in a
# WHERE clause.  But keep these tests just so that we have some tests
# that use a large number of terms in the WHERE clause.
#
do_test misc1-10.0 {
  execsql {SELECT count(*) FROM manycol}
} {9}
do_test misc1-10.1 {
  set ::where {WHERE x0>=0}
  for {set i 1} {$i<=99} {incr i} {
    append ::where " AND x$i<>0"
  }
  catchsql "SELECT count(*) FROM manycol $::where"
} {0 9}
do_test misc1-10.2 {
  catchsql "SELECT count(*) FROM manycol $::where AND rowid>0"
} {0 9}
do_test misc1-10.3 {
  regsub "x0>=0" $::where "x0=0" ::where
  catchsql "DELETE FROM manycol $::where"
} {0 {}}
do_test misc1-10.4 {
  execsql {SELECT count(*) FROM manycol}
} {8}
do_test misc1-10.5 {
  catchsql "DELETE FROM manycol $::where AND rowid>0"
} {0 {}}
do_test misc1-10.6 {
  execsql {SELECT x1 FROM manycol WHERE x0=100}
} {101}
do_test misc1-10.7 {
  regsub "x0=0" $::where "x0=100" ::where
  catchsql "UPDATE manycol SET x1=x1+1 $::where"
} {0 {}}
do_test misc1-10.8 {
  execsql {SELECT x1 FROM manycol WHERE x0=100}
} {102}
do_test misc1-10.9 {
  catchsql "UPDATE manycol SET x1=x1+1 $::where AND rowid>0"
} {0 {}}
do_test misc1-10.10 {
  execsql {SELECT x1 FROM manycol WHERE x0=100}
} {103}

# Make sure the initialization works even if a database is opened while
# another process has the database locked.
#
# Update for v3: The BEGIN doesn't lock the database so the schema is read
# and the SELECT returns successfully.
do_test misc1-11.1 {