Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Simplify the mem3.c memory allocator. Have it call sqlite3_release_memory() automatically, without having to specify the soft heap limit. (CVS 4496) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
ca51b2f54076fcf73a8857aecf4b45d6 |
User & Date: | drh 2007-10-20 15:41:58.000 |
Context
2007-10-20
| ||
16:11 | Bug fix in the realloc algorithm of the static memory allocator. (CVS 4497) (check-in: 50db16be50 user: drh tags: trunk) | |
15:41 | Simplify the mem3.c memory allocator. Have it call sqlite3_release_memory() automatically, without having to specify the soft heap limit. (CVS 4496) (check-in: ca51b2f540 user: drh tags: trunk) | |
13:17 | Go back to allocating each page and its header with a single memory allocation. This undoes the change of (4409). (CVS 4495) (check-in: f56c9884be user: drh tags: trunk) | |
Changes
Changes to src/mem3.c.
︙ | ︙ | |||
16 17 18 19 20 21 22 | ** use of malloc(). All dynamically allocatable memory is ** contained in a static array, mem.aPool[]. The size of this ** fixed memory pool is SQLITE_MEMORY_SIZE bytes. ** ** This version of the memory allocation subsystem is used if ** and only if SQLITE_MEMORY_SIZE is defined. ** | | | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | ** use of malloc(). All dynamically allocatable memory is ** contained in a static array, mem.aPool[]. The size of this ** fixed memory pool is SQLITE_MEMORY_SIZE bytes. ** ** This version of the memory allocation subsystem is used if ** and only if SQLITE_MEMORY_SIZE is defined. ** ** $Id: mem3.c,v 1.3 2007/10/20 15:41:58 drh Exp $ */ /* ** This version of the memory allocator is used only when ** SQLITE_MEMORY_SIZE is defined. */ #if defined(SQLITE_MEMORY_SIZE) |
︙ | ︙ | |||
85 86 87 88 89 90 91 | ** All of the static variables used by this module are collected ** into a single structure named "mem". This is to keep the ** static variables organized and to reduce namespace pollution ** when this module is combined with other in the amalgamation. */ static struct { /* | < < < < | < < < | | < | 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | ** All of the static variables used by this module are collected ** into a single structure named "mem". This is to keep the ** static variables organized and to reduce namespace pollution ** when this module is combined with other in the amalgamation. */ static struct { /* ** True if we are evaluating an out-of-memory callback. */ int alarmBusy; /* ** Mutex to control access to the memory allocation subsystem. */ sqlite3_mutex *mutex; /* ** The minimum amount of free space that we have seen. */ int mnMaster; /* ** iMaster is the index of the master chunk. Most new allocations ** occur off of this chunk. szMaster is the size (in Mem3Blocks) ** of the current master. iMaster is 0 if there is not master chunk. ** The master chunk is not in either the aiHash[] or aiSmall[]. */ |
︙ | ︙ | |||
134 135 136 137 138 139 140 | Mem3Block aPool[SQLITE_MEMORY_SIZE/sizeof(Mem3Block)+2]; } mem; /* ** Unlink the chunk at mem.aPool[i] from list it is currently ** on. *pRoot is the list that i is a member of. */ | | | | | | | | | | > | | | | | | > > > > > < < < < < | | < < < | | < < < | | | | > | | | | | | > > > > | | | | | | | | | | > | | | | | | | | | | < < < | < < < < < < < < < < < | < | < > | > < | | | | < < < < | | | | | | < < < | 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 | Mem3Block aPool[SQLITE_MEMORY_SIZE/sizeof(Mem3Block)+2]; } mem; /* ** Unlink the chunk at mem.aPool[i] from list it is currently ** on. *pRoot is the list that i is a member of. */ static void memsys3UnlinkFromList(int i, int *pRoot){ int next = mem.aPool[i].u.list.next; int prev = mem.aPool[i].u.list.prev; if( prev==0 ){ *pRoot = next; }else{ mem.aPool[prev].u.list.next = next; } if( next ){ mem.aPool[next].u.list.prev = prev; } mem.aPool[i].u.list.next = 0; mem.aPool[i].u.list.prev = 0; } /* ** Unlink the chunk at index i from ** whatever list is currently a member of. */ static void memsys3Unlink(int i){ int size, hash; size = mem.aPool[i-1].u.hdr.size; assert( size==mem.aPool[i+size-1].u.hdr.prevSize ); assert( size>=2 ); if( size <= MX_SMALL ){ memsys3UnlinkFromList(i, &mem.aiSmall[size-2]); }else{ hash = size % N_HASH; memsys3UnlinkFromList(i, &mem.aiHash[hash]); } } /* ** Link the chunk at mem.aPool[i] so that is on the list rooted ** at *pRoot. */ static void memsys3LinkIntoList(int i, int *pRoot){ mem.aPool[i].u.list.next = *pRoot; mem.aPool[i].u.list.prev = 0; if( *pRoot ){ mem.aPool[*pRoot].u.list.prev = i; } *pRoot = i; } /* ** Link the chunk at index i into either the appropriate ** small chunk list, or into the large chunk hash table. */ static void memsys3Link(int i){ int size, hash; size = mem.aPool[i-1].u.hdr.size; assert( size==mem.aPool[i+size-1].u.hdr.prevSize ); assert( size>=2 ); if( size <= MX_SMALL ){ memsys3LinkIntoList(i, &mem.aiSmall[size-2]); }else{ hash = size % N_HASH; memsys3LinkIntoList(i, &mem.aiHash[hash]); } } /* ** Enter the mutex mem.mutex. Allocate it if it is not already allocated. ** ** Also: Initialize the memory allocation subsystem the first time ** this routine is called. */ static void memsys3Enter(void){ if( mem.mutex==0 ){ mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM); mem.aPool[0].u.hdr.size = SQLITE_MEMORY_SIZE/8; mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_MEMORY_SIZE/8; mem.iMaster = 1; mem.szMaster = SQLITE_MEMORY_SIZE/8; mem.mnMaster = mem.szMaster; } sqlite3_mutex_enter(mem.mutex); } /* ** Return the amount of memory currently checked out. */ sqlite3_int64 sqlite3_memory_used(void){ sqlite3_int64 n; memsys3Enter(); n = SQLITE_MEMORY_SIZE - mem.szMaster*8; sqlite3_mutex_leave(mem.mutex); return n; } /* ** Return the maximum amount of memory that has ever been ** checked out since either the beginning of this process ** or since the most recent reset. */ sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ sqlite3_int64 n; memsys3Enter(); n = SQLITE_MEMORY_SIZE - mem.mnMaster*8; if( resetFlag ){ mem.mnMaster = mem.szMaster; } sqlite3_mutex_leave(mem.mutex); return n; } /* ** Change the alarm callback. ** ** This is a no-op for the static memory allocator. The purpose ** of the memory alarm is to support sqlite3_soft_heap_limit(). ** But with this memory allocator, the soft_heap_limit is really ** a hard limit that is fixed at SQLITE_MEMORY_SIZE. */ int sqlite3_memory_alarm( void(*xCallback)(void *pArg, sqlite3_int64 used,int N), void *pArg, sqlite3_int64 iThreshold ){ return SQLITE_OK; } /* ** Called when we are unable to satisfy an allocation of nBytes. */ static void memsys3OutOfMemory(int nByte){ if( !mem.alarmBusy ){ mem.alarmBusy = 1; sqlite3_mutex_leave(mem.mutex); sqlite3_release_memory(nByte); sqlite3_mutex_enter(mem.mutex); mem.alarmBusy = 0; } } /* ** Return the size of an outstanding allocation, in bytes. The ** size returned omits the 8-byte header overhead. This only ** works for chunks that are currently checked out. */ static int memsys3Size(void *p){ Mem3Block *pBlock = (Mem3Block*)p; assert( pBlock[-1].u.hdr.size<0 ); return (1-pBlock[-1].u.hdr.size)*8; } /* ** Chunk i is a free chunk that has been unlinked. Adjust its ** size parameters for check-out and return a pointer to the ** user portion of the chunk. */ static void *memsys3Checkout(int i, int nBlock){ assert( mem.aPool[i-1].u.hdr.size==nBlock ); assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock ); mem.aPool[i-1].u.hdr.size = -nBlock; mem.aPool[i+nBlock-1].u.hdr.prevSize = -nBlock; return &mem.aPool[i]; } /* ** Carve a piece off of the end of the mem.iMaster free chunk. ** Return a pointer to the new allocation. Or, if the master chunk ** is not large enough, return 0. */ static void *memsys3FromMaster(int nBlock){ assert( mem.szMaster>=nBlock ); if( nBlock>=mem.szMaster-1 ){ /* Use the entire master */ void *p = memsys3Checkout(mem.iMaster, mem.szMaster); mem.iMaster = 0; mem.szMaster = 0; mem.mnMaster = 0; return p; }else{ /* Split the master block. Return the tail. */ int newi; newi = mem.iMaster + mem.szMaster - nBlock; assert( newi > mem.iMaster+1 ); mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = -nBlock; mem.aPool[newi-1].u.hdr.size = -nBlock; mem.szMaster -= nBlock; mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster; mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster; if( mem.szMaster < mem.mnMaster ){ mem.mnMaster = mem.szMaster; } return (void*)&mem.aPool[newi]; } } /* ** *pRoot is the head of a list of free chunks of the same size ** or same size hash. In other words, *pRoot is an entry in either ** mem.aiSmall[] or mem.aiHash[]. ** ** This routine examines all entries on the given list and tries ** to coalesce each entries with adjacent free chunks. ** ** If it sees a chunk that is larger than mem.iMaster, it replaces ** the current mem.iMaster with the new larger chunk. In order for ** this mem.iMaster replacement to work, the master chunk must be ** linked into the hash tables. That is not the normal state of ** affairs, of course. The calling routine must link the master ** chunk before invoking this routine, then must unlink the (possibly ** changed) master chunk once this routine has finished. */ static void memsys3Merge(int *pRoot){ int iNext, prev, size, i; for(i=*pRoot; i>0; i=iNext){ iNext = mem.aPool[i].u.list.next; size = mem.aPool[i-1].u.hdr.size; assert( size>0 ); if( mem.aPool[i-1].u.hdr.prevSize>0 ){ memsys3UnlinkFromList(i, pRoot); prev = i - mem.aPool[i-1].u.hdr.prevSize; assert( prev>=0 ); if( prev==iNext ){ iNext = mem.aPool[prev].u.list.next; } memsys3Unlink(prev); size = i + size - prev; mem.aPool[prev-1].u.hdr.size = size; mem.aPool[prev+size-1].u.hdr.prevSize = size; memsys3Link(prev); i = prev; } if( size>mem.szMaster ){ mem.iMaster = i; mem.szMaster = size; } } } /* ** Return a block of memory of at least nBytes in size. ** Return NULL if unable. */ static void *memsys3Malloc(int nByte){ int i; int nBlock; assert( sizeof(Mem3Block)==8 ); if( nByte<=0 ){ nBlock = 2; }else{ nBlock = (nByte + 15)/8; } assert( nBlock >= 2 ); /* STEP 1: ** Look for an entry of the correct size in either the small ** chunk table or in the large chunk hash table. This is ** successful most of the time (about 9 times out of 10). */ if( nBlock <= MX_SMALL ){ i = mem.aiSmall[nBlock-2]; if( i>0 ){ memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]); return memsys3Checkout(i, nBlock); } }else{ int hash = nBlock % N_HASH; for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){ if( mem.aPool[i-1].u.hdr.size==nBlock ){ memsys3UnlinkFromList(i, &mem.aiHash[hash]); return memsys3Checkout(i, nBlock); } } } /* STEP 2: ** Try to satisfy the allocation by carving a piece off of the end ** of the master chunk. This step usually works if step 1 fails. */ if( mem.szMaster>=nBlock ){ return memsys3FromMaster(nBlock); } /* STEP 3: ** Loop through the entire memory pool. Coalesce adjacent free ** chunks. Recompute the master chunk as the largest free chunk. ** Then try again to satisfy the allocation by carving a piece off ** of the end of the master chunk. This step happens very ** rarely (we hope!) */ memsys3OutOfMemory(nBlock*16); if( mem.iMaster ){ memsys3Link(mem.iMaster); mem.iMaster = 0; mem.szMaster = 0; } for(i=0; i<N_HASH; i++){ memsys3Merge(&mem.aiHash[i]); } for(i=0; i<MX_SMALL-1; i++){ memsys3Merge(&mem.aiSmall[i]); } if( mem.szMaster ){ memsys3Unlink(mem.iMaster); if( mem.szMaster>=nBlock ){ return memsys3FromMaster(nBlock); } } /* If none of the above worked, then we fail. */ return 0; } /* ** Free an outstanding memory allocation. */ void memsys3Free(void *pOld){ Mem3Block *p = (Mem3Block*)pOld; int i; int size; assert( p>mem.aPool && p<&mem.aPool[SQLITE_MEMORY_SIZE/8] ); i = p - mem.aPool; size = -mem.aPool[i-1].u.hdr.size; assert( size>=2 ); assert( mem.aPool[i+size-1].u.hdr.prevSize==-size ); mem.aPool[i-1].u.hdr.size = size; mem.aPool[i+size-1].u.hdr.prevSize = size; memsys3Link(i); /* Try to expand the master using the newly freed chunk */ if( mem.iMaster ){ while( mem.aPool[mem.iMaster-1].u.hdr.prevSize>0 ){ size = mem.aPool[mem.iMaster-1].u.hdr.prevSize; mem.iMaster -= size; mem.szMaster += size; memsys3Unlink(mem.iMaster); mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster; mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster; } while( mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size>0 ){ memsys3Unlink(mem.iMaster+mem.szMaster); mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size; mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster; mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster; } } } /* ** Allocate nBytes of memory */ void *sqlite3_malloc(int nBytes){ sqlite3_int64 *p = 0; if( nBytes>0 ){ memsys3Enter(); p = memsys3Malloc(nBytes); sqlite3_mutex_leave(mem.mutex); } return (void*)p; } /* ** Free memory. */ void sqlite3_free(void *pPrior){ if( pPrior==0 ){ return; } assert( mem.mutex!=0 ); sqlite3_mutex_enter(mem.mutex); memsys3Free(pPrior); sqlite3_mutex_leave(mem.mutex); } /* ** Change the size of an existing memory allocation */ void *sqlite3_realloc(void *pPrior, int nBytes){ int nOld; void *p; if( pPrior==0 ){ return sqlite3_malloc(nBytes); } if( nBytes<=0 ){ sqlite3_free(pPrior); return 0; } assert( mem.mutex!=0 ); nOld = memsys3Size(pPrior); #if 0 if( nBytes<=nOld && nBytes>=nOld-128 ){ return pPrior; } #endif sqlite3_mutex_enter(mem.mutex); p = memsys3Malloc(nBytes); if( p ){ if( nOld<nBytes ){ memcpy(p, pPrior, nOld); }else{ memcpy(p, pPrior, nBytes); } memsys3Free(pPrior); } sqlite3_mutex_leave(mem.mutex); return p; } /* ** Open the file indicated and write a log of all unfreed memory |
︙ | ︙ | |||
579 580 581 582 583 584 585 | out = fopen(zFilename, "w"); if( out==0 ){ fprintf(stderr, "** Unable to output memory debug output log: %s **\n", zFilename); return; } } | | | 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 | out = fopen(zFilename, "w"); if( out==0 ){ fprintf(stderr, "** Unable to output memory debug output log: %s **\n", zFilename); return; } } memsys3Enter(); fprintf(out, "CHUNKS:\n"); for(i=1; i<=SQLITE_MEMORY_SIZE/8; i+=size){ size = mem.aPool[i-1].u.hdr.size; if( size>=-1 && size<=1 ){ fprintf(out, "%p size error\n", &mem.aPool[i]); assert( 0 ); break; |
︙ | ︙ | |||
618 619 620 621 622 623 624 | fprintf(out, "hash(%2d):", i); for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){ fprintf(out, " %p(%d)", &mem.aPool[j], mem.aPool[j-1].u.hdr.size*8-8); } fprintf(out, "\n"); } fprintf(out, "master=%d\n", mem.iMaster); | | | | 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 | fprintf(out, "hash(%2d):", i); for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){ fprintf(out, " %p(%d)", &mem.aPool[j], mem.aPool[j-1].u.hdr.size*8-8); } fprintf(out, "\n"); } fprintf(out, "master=%d\n", mem.iMaster); fprintf(out, "nowUsed=%d\n", SQLITE_MEMORY_SIZE - mem.szMaster*8); fprintf(out, "mxUsed=%d\n", SQLITE_MEMORY_SIZE - mem.mnMaster*8); sqlite3_mutex_leave(mem.mutex); if( out==stdout ){ fflush(stdout); }else{ fclose(out); } #endif } #endif /* !SQLITE_MEMORY_SIZE */ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
95 96 97 98 99 100 101 | void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ p->trace = trace; } #endif /* ** Resize the Vdbe.aOp array so that it contains at least N | | < < < < < | < | | | | | | | < | 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ p->trace = trace; } #endif /* ** Resize the Vdbe.aOp array so that it contains at least N ** elements. ** ** If an out-of-memory error occurs while resizing the array, ** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that ** any opcodes already allocated can be correctly deallocated ** along with the rest of the Vdbe). */ static void resizeOpArray(Vdbe *p, int N){ VdbeOp *pNew; int oldSize = p->nOpAlloc; pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op)); if( pNew ){ p->nOpAlloc = N; p->aOp = pNew; if( N>oldSize ){ memset(&p->aOp[oldSize], 0, (N-oldSize)*sizeof(Op)); } } } /* ** Add a new instruction to the list of instructions current in the ** VDBE. Return the address of the new instruction. |
︙ | ︙ | |||
145 146 147 148 149 150 151 | int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){ int i; VdbeOp *pOp; i = p->nOp; assert( p->magic==VDBE_MAGIC_INIT ); if( p->nOpAlloc<=i ){ | | | 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){ int i; VdbeOp *pOp; i = p->nOp; assert( p->magic==VDBE_MAGIC_INIT ); if( p->nOpAlloc<=i ){ resizeOpArray(p, p->nOpAlloc*2 + 100); if( p->db->mallocFailed ){ return 0; } } p->nOp++; pOp = &p->aOp[i]; pOp->opcode = op; |
︙ | ︙ | |||
356 357 358 359 360 361 362 | /* ** Add a whole list of operations to the operation stack. Return the ** address of the first operation added. */ int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ int addr; assert( p->magic==VDBE_MAGIC_INIT ); | > | > | 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | /* ** Add a whole list of operations to the operation stack. Return the ** address of the first operation added. */ int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ int addr; assert( p->magic==VDBE_MAGIC_INIT ); if( p->nOp + nOp > p->nOpAlloc ){ resizeOpArray(p, p->nOp*2 + nOp); } if( p->db->mallocFailed ){ return 0; } addr = p->nOp; if( nOp>0 ){ int i; VdbeOpList const *pIn = aOp; |
︙ | ︙ |
Changes to test/func.test.
1 2 3 4 5 6 7 8 9 10 11 12 13 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing built-in functions. # | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing built-in functions. # # $Id: func.test,v 1.70 2007/10/20 15:41:58 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Create a table to work with. # do_test func-0.0 { |
︙ | ︙ | |||
460 461 462 463 464 465 466 467 468 469 470 471 472 473 | } } {0} do_test func-12.7 { execsql { DROP TABLE t4; } } {} # Test that the auxdata API for scalar functions works. This test uses # a special user-defined function only available in test builds, # test_auxdata(). Function test_auxdata() takes any number of arguments. do_test func-13.1 { execsql { SELECT test_auxdata('hello world'); | > | 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 | } } {0} do_test func-12.7 { execsql { DROP TABLE t4; } } {} # Test that the auxdata API for scalar functions works. This test uses # a special user-defined function only available in test builds, # test_auxdata(). Function test_auxdata() takes any number of arguments. do_test func-13.1 { execsql { SELECT test_auxdata('hello world'); |
︙ | ︙ |
Changes to test/tester.tcl.
1 2 3 4 5 6 7 8 9 10 11 12 13 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements some common TCL routines used for regression # testing the SQLite library # | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements some common TCL routines used for regression # testing the SQLite library # # $Id: tester.tcl,v 1.93 2007/10/20 15:41:58 drh Exp $ set tcl_precision 15 set sqlite_pending_byte 0x0010000 # # Check the command-line arguments for a default soft-heap-limit. |
︙ | ︙ | |||
193 194 195 196 197 198 199 | if {$sqlite_open_file_count} { puts "$sqlite_open_file_count files were left open" incr nErr } if {[sqlite3_memory_used]>0} { puts "Unfreed memory: [sqlite3_memory_used] bytes" incr nErr | | | 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | if {$sqlite_open_file_count} { puts "$sqlite_open_file_count files were left open" incr nErr } if {[sqlite3_memory_used]>0} { puts "Unfreed memory: [sqlite3_memory_used] bytes" incr nErr ifcapable memdebug||(mem3&&debug) { puts "Writing unfreed memory log to \"./memleak.txt\"" sqlite3_memdebug_dump ./memleak.txt } } else { puts "All memory allocations freed - no leaks" ifcapable memdebug { sqlite3_memdebug_dump ./memusage.txt |
︙ | ︙ |